Category: Northern Fund

Productivity, migration timing, and survival of sockeye, coho, and pink salmon at Auke Creek

The goal of this project is to examine the productivity, migration timing, and survival of sockeye, coho, and pink salmon through support of essential operations at the Auke Creek Research Station in Juneau, Alaska, USA. The Auke Creek Research Station maintains a 40-plus year time series of biological and environmental data related to the timing and productivity of Pacific salmon. The weir at Auke Creek operates annually from mid-February through the end of October, with a base function of enumerating virtually 100% of outmigrating salmon fry and smolt species and returning adults. Along with basic counts, migrating fishes are subsampled for age and growth, sex, length, and genetics throughout the season. Auke Creek is the longest and most complete coho salmon time series in Southeast Alaska and is used as a regional indicator of marine survival, harvest, and productivity. Additionally, the complete enumeration of sockeye and pink salmon juveniles and returning adults provide indices of productivity that help inform science and management of those species in the Transboundary Rivers and Northern Boundary regions of the Pacific Salmon Treaty.

Coho and Chinook Early Saltwater Introduction Rearing

The Port Armstrong Hatchery (PAH), which is owned and operated by Armstrong-Keta, Inc. (AKI), has been producing cohos annually since 1988 and Chinooks since 2001. The expansion of facilities at PAH for the production of both species has been supported by a series of Chinook Mitigation grants, including the US/Canada Mitigation Fund, the Southeast Sustainable Salmon Fund and the Chinook Mitigation Fund and these projects have had full support of the Alaska Trollers Association (ATA) and various Southeast Alaska communities. The ATA has encouraged AKI to submit this current application for boosting coho and Chinook production by acquiring additional net pens and making use of our new early introduction saltwater techniques, thereby avoiding the burdensome costs of developing increased freshwater delivery to the hatchery and installing on-land rearing raceways. The management and staff of the Little Port Walter Research Station have been similarly encouraging of this plan, as they have decades of expertise in the propagation of various Chinook stocks for dissemination to production hatcheries throughout Southeast Alaska and are interested in increasing their contributions to the Alaska salmon industry via collaboration with the salmon enhancement hatcheries.

AKI’s goal is to maximize the return of adult coho and Chinook salmon to lower Chatham Strait in order to benefit the troll and sport fisheries. Common property contributions of Port Armstrong cohos have ranged from 42% to 67%, with averages over 50%, as measured by ADF&G coded-wire tag recoveries. PAH has experienced higher contribution rates in recent years and also in years when buyers have been stationed locally, which in turn increases the number of trollers in the area. There is currently a processor stationing a buying barge at Port Armstrong each summer to take advantage our PAH production as well as the wild salmon in the area.

Relaxed selection in salmon hatcheries

Hatchery fish are a significant component of fisheries subject to management under the Pacific Salmon Treaty (PST), and research on the costs and benefits of additional enhancement opportunities is a priority of the Northern Fund. The genetic risks of hatcheries, including potential loss of fitness to wild stocks, have been a long-standing concern (Waples and Do 1994, Naish et al. 2008, Grant et al. 2017). This study will investigate domestication in hatchery populations arising from relaxation of natural selection, a little-studied pathway for hatchery-induced changes. The results could have implications for the design of additional enhancement efforts as well as for practices at current enhancement facilities.

Taku River – Chinook Headwater Sampling

The purpose of this project is conduct mark-recapture Event II (i.e. recapture) sampling on various Taku headwater streams, both established locations (i.e. Tatsatua Creek, Tseta Creek, Nahlin River and Dudidontu River) as well as exploratory areas (i.e. Sloko River). These sites are the major contributors of samples and tag recoveries to the estimation of drainage-wide Taku River Chinook salmon abundance. Sampling will be conducted by Fisheries and Oceans Canada (DFO) in collaboration with the Taku River Tlingit First Nation (TRTFN) and Alaska Department of Fish and Game (ADF&G). This tag recovery and sampling is a critical element of the Event II component of the Taku River Chinook salmon mark-recapture program, provides coded-wire tag (CWT) recoveries to estimate smolt survival and marine survival (in concert with other bilateral projects), and provides data essential for forecasting and monitoring the health of Taku River Chinook salmon stocks.

The bulk of this project is tag recovery and biological sampling for Chinook salmon on Tatsatua Creek (in the vicinity of Little Tatsamenie Lake), a long standing DFO project which contributes more than 25% of the total Taku River Chinook salmon tag recoveries, and many CWT recoveries in recent years. This component has been funded by the NEF in recent years as part of a different proposal. The remainder of the project will allow DFO and TRTFN staff to fully participate with ADF&G on other Taku River Chinook headwater sampling projects at other established sampling sites which also provide a significant recovery and sampling contribution to the Taku River Chinook mark-recapture and CWT programs.

N19-I25 Taku River Watershed Chinook Salmon Headwater Sampling 2019 Report

Transboundary Rivers Otolith Thermal Mark Recovery

Enhanced sockeye salmon outplanted as part of enhancement projects in the Transboundary Rivers area have their otoliths thermally marked as fry to allow later identification to stocking origin and brood year. Transboundary Rivers (TBR) stock assessment and monitoring projects collect otoliths from both outmigrating sockeye smolts and returning sockeye adults through a variety of projects. The proposed thermal mark recovery project will fund the preparation, interpretation and analysis of these samples, which will provide critical data to stock assessment and enhancement activities; wild/enhanced ratios, scale aging validation, fry to smolt survival, smolt to adult survival, contributions of enhanced fish to returns, straying rates, etc. These data are vital elements of Transboundary stock assessment, enhancement, and fishery management programs. Data are used in enhancement planning and evaluation for multiple stocks, forecasting of returns, annual run reconstructions, and monitoring fishery management performance.

N19-I31 Transboundary Rivers Otolith Thermal Mark Recovery 2019 Report

Taku River Sockeye Salmon Telemetry

The purpose of this project is to augment the ongoing Taku Fishery Sampling and Stock Assessment in support of management as outlined in Chapter 1 of the Pacific Salmon Treaty. The Taku River sockeye salmon stock assessment project has been conducted annually since 1984 and is a cooperative effort between the Alaska Department of Fish and Game (ADF&G), Department of Fisheries and Oceans Canada (DFO), and the Taku River Tlingit First Nation (TRTFN). The objectives of this stock assessment are to provide inseason and postseason estimates of inriver abundance and to document biological characteristics (migratory timing, migratory rates, and age, sex, and size composition) of Taku River sockeye salmon stocks. Spaghetti tagged-to-untagged ratios of salmon harvested in the Canadian inriver gillnet fisheries are used to develop mark-recapture estimates of the inriver abundance of sockeye salmon.

Taku River Sockeye Salmon Genetic Stock Identification Analysis for Commercial Samples

This proposal involves genetic analysis of tissue samples anticipated from the in-river commercial sockeye fishery on the Taku River in 2019. This activity was first supported by the Northern Fund in 2008 and makes use of the baseline samples collected with Northern Fund assistance from 2007-12.

This will identify the composition of the commercial harvest by stock groupings. In addition, when coupled with escapement counts from headwater counting fences (weirs), it will permit estimation of drainage-wide abundance for comparison with the mark-recapture estimate or other assessment methodology.

N19-I27 Taku River Sockeye Salmon Genetic Stock Identification Analysis of 2019 Commercial Samples Report

N16-I46 Taku Sockeye Genetic Stock Identification Report 2016

 

Development of Stikine River Coho Salmon Stock Assessment Options

The primary objective of this project is to test methodologies for enumerating three select components of the Stikine River coho population, specifically the Iskut River, Chutine River, and Katete River stocks.

The Pacific Salmon Treaty agreement requires development of new abundance-based management regimes for Stikine River coho salmon. A central requirement of an abundance-based management program is the development of defensible abundance estimates; ideally stock specific abundance and run timing. Besides being of value as indices, reliable abundance estimates for specific stocks have the potential to be used to estimate drainage-wide abundance using a genetic stock identification (GSI) ratiobased approach, once a Stikine River coho salmon baseline has been established.

N19-I21 Development of Stikine River Coho Salmon Stock Assessment Options 2019 Report

Stikine River Chinook Salmon Mark-Recapture Program

The enumeration of Stikine River Chinook salmon is a critical component of abundance based management mandated by the Pacific Salmon Treaty. A key element of the enumeration is ongoing mark-recapture estimation based on application of tags to returning Chinook and the recovery of these tags in in-river fisheries, at enumeration facilities, and on spawning grounds. Event I of the mark recapture is the application of tags through a scientific live capture drift net program near Kakwan Point, Alaska, on the Stikine River operated jointly by Alaska Department of Fish and Game (ADF&G), Fisheries and Oceans Canada (DFO), and the Tahltan First Nation (TFN). This project covers a majority of Chinook salmon migration into the lower Stikine River at Kakwan, and applies spaghetti tags to as many returning fish as possible through two crews drift netting a minimum of 4 wet hours per day each day. This proposal seeks funding to support the DFO/TFN drift crew for the duration of Event I. Tag recoveries from spawning grounds are critical components of the mark-recapture project and this proposal also seeks funding to support a week of post-spawn sample collection and tag recovery field work at the Verrett River, a Stikine River indicator stock.

N19-I17 Stikine River Chinook Mark-Recapture 2019 Report

Chinook salmon genetic baseline update for Southeast Alaska and Canadian AABM fisheries

Southeast Alaska (SEAK) and Canadian aggregate abundance-based management (AABM) fisheries harvest Chinook salmon originating from throughout Southeast Alaska, Canada, and the southern U.S.  This diverse mixture of migrating stocks requires a comprehensive coastwide genetic baseline to accurately estimate the stock composition of harvests. The overall goal of this project is to use a phased approach to develop a coastwide Chinook salmon single nucleotide polymorphisms (SNPs) baseline to estimate the stock composition of harvests in SEAK and Canadian AABM fisheries.

The two biggest hurdles to assembling a coastwide Chinook salmon SNP baseline are: 1) no single agency has all of the baseline tissue or DNA samples necessary to adequately represent coastwide Chinook salmon production, and 2) different agencies do not all necessarily use the same SNP panels. To address these hurdles, we have worked with collaborators at the University of Washington (UW) to compile lists of SNP markers and populations screened by agency and university labs from Canada and the U.S.

N19-I10B Chinook salmon genetic baseline update for Southeast Alaska and Canadian AABM Fisheries 2019 Report