Category: 2014

Estimation of Fraser River – South Thompson Age 0.3 Chinook Aggregate Escapement

The goal of the project is to estimate the spawning escapement of the Fraser River – South Thompson age 0.3 aggregate (ST0.3A Chinook). The ST0.3A escapement will be estimated using Coded Wire Tags (CWT), Genetic Stock Identification (GSI), and CWT exploitation rate indicator stock data from escapement and Fraser River fisheries. To achieve this objective, we will increase recovery of CWTs from Chinook carcasses in the Lower Shuswap River; conduct a high-precision mark-recapture project and CWT sampling in the Middle Shuswap River; collect age samples across the South Thompson watershed; produce a CWT release group of Middle Shuswap River smolts (to augment the Lower Shuswap indicator stock); and analyze GSI and age data from the Albion Test Fishery.

N18-VHP16 Estimation of 2015 – 2018 Escapements of the South Thompson 0.3 Chinook Aggregate using a Bayesian Model that Combines Data on CWT Recoveries and GSI_Report Title Page

 

Slamgeesh Lake Field Station: Program Operation Support

Several projects on Slamgeesh Lake have been funded by the Northern Endowment Fund from 2007 onward. These projects include the installation and subsequent infrastructure improvements of the smolt trap, the weir, and repairs to the field station’s cabin.

Today and moving forward the continuation of fisheries research activities at Slamgeesh Lake is of high priority to the Upper Skeena Watershed Planning Group of the Gitxsan First Nation, the Skeena Fisheries Commission Technical Committee and the Northern Boundary Technical Committee. Complete coverage of the entire juvenile outmigration of both coho and sockeye salmon is of the upmost importance in accurately estimating recruitment. While enumeration of all returning adult coho and sockeye salmon will increase our understanding of run timing, ocean survival, coded-wire tag retention, and a complete total escapement census above the counting fence. This information is advantageous when managing the Skeena River mixed stock fishery.
We propose to lengthen the sampling season of both the juveniles in the spring and the adults in the fall to meet this need.

N18-I35 Slamgeesh Program Operation Support Report 2018

N14-I30 Slamgeesh Sampling Weir Infrastructure Improvements

N12-I14 Slamgeesh Camp Infrastructure Improvements

N10-I16 Reinstallation of Slamgeesh Lake Smolt Trap. Year 3

N08-I31 Installation of Slamgeesh Smolt Trap

N07-I09 Slamgeesh Weir Upgrade

 

Southeast Alaska Coastal Monitoring of Southeast Alaska Coastal Monitoring of Epipelagic Fish and Marine Ecosystem Conditions Associated with Salmon Fish and Marine Ecosystem Conditions Associated with Salmon

Alaska stocks of pink (Oncorhynchus gorbuscha) and Chinook salmon (O. tshawytscha) spend large portions of their life histories in marine waters within the U.S. Exclusive Economic Zone (EEZ) and beyond the 200-mile EEZ of the coastal States. However, the strength of salmon year-classes is often set during the early overwintering phases of immatures or during the nearshore seaward migration phase of juveniles. Thus, the Alaska Fisheries Science Center (AFSC), Auke Bay Laboratories (ABL) initiated the Southeast Alaska Coastal Monitoring (SECM) project in 1997 to better understand the effects of climate and near-shore Ocean conditions on year-class strength of salmon and ecologically-related species. This research in turn provides improved information for resource management of salmon in the Pacific Salmon Treaty (PST) northern boundary. In particular SECM data provides a forecast index for northern southeast Alaska (SEAK) Transboundary River Chinook salmon returns, an annual pink salmon abundance forecast, and long term environmental and population data that are used by harvest managers in the PST northern boundary, which includes PST Chapter 2 pink salmon treaty issues in districts 101, 102, 103, and 104.

N18-I11 Southeast Alaska Coastal Monitoring of Epipelagic Fish and Marine Ecosystem Conditions Associated with Salmon Report 2018

N17-I12 Southeast Alaska Coastal Monitoring of Epipelagic Fish and Marine Ecosystem Conditions Associated with Salmon 2017

N16_I01 Southeast Alaska Coastal Monitoring of Epipelagic Fish and Marine Ecosystem Conditions Associated with Salmon 2016

N15-I01 Southeast Alaska Coastal Monitoring of Epipelagic Fish and Marine Ecosystem Conditions Associated with Salmon 2015

N14-I01 Southeast Alaska Coastal Monitoring of Epipelagic Fish and Marine Ecosystem Conditions Associated with Salmon 2014

N13-I01 Southeast Alaska Coastal Monitoring of Epipelagic Fish and Marine Ecosystem Conditions Associated with Salmon 2013

 

King Salmon Lake Sockeye Enhancement

The overall project is being utilized to restore sockeye production to higher levels while taking advantage of apparent underutilized rearing capacity in the lake.
Overall, it appears that substantial progress has been made with the King Salmon Lake enhancement program to date. In this regard, there appears to be opportunity to continue this initiative, moving it from experimental in nature towards practical application based upon positive results observed thus far.

N18-E03 King Salmon Lake sockeye enhancement Report

N16-E07 King Salmon Lake sockeye smolt survey 2016

N14-E05 King Salmon Lake, Year 3 (Egg Take)

N14-E05 King Salmon Lake, Year 3 (Survey)

N12-E10 King Salmon Lake – Sockeye Enhancement Project

 

 

Salish Sea Marine Survival Project

The Salish Sea Marine Survival Project leverages human and financial resources from the United States and Canada to determine the primary factors affecting the survival of juvenile salmon and steelhead in the Salish Sea. It is the largest and most important research of its kind in the shared waters of British Columbia and Washington State, addressing a key uncertainty impeding salmon recovery and sustainable fisheries. The project will, for the first time, undertake a comprehensive study of the physical, chemical and biological factors impacting salmon survival, in order to improve our collective understanding of salmon in saltwater, facilitating smarter management and stronger returns.

Over 60 organizations, representing diverse philosophies and encompassing most of the region’s fisheries and marine research and management complex, are working together on this massive transboundary effort. And, the Pacific Salmon Foundation (PSF) and Long Live the Kings (LLTK) are coordinating it.

Salish Sea Marine Survival Project 2018

Salish Sea Marine Survival Project 2017

Salish Sea Marine Survival Project 2016

Salish Sea Marine Survival Project 2015

Salish Sea Marine Survival Project 2014

Stikine Chinook Aerial Surveys

Chinook salmon in the Stikine River comprise one of over 50 indicator stocks included in annual assessments by the Chinook Technical Committee of the Pacific Salmon Commission to determine stock status, effects of management regimes, and other requirements of the Pacific Salmon Treaty (Der Hovanisian and Etherton 2006). The Stikine River is one of the largest producers of Chinook salmon in Northern B.C. and Southeast Alaska (Der Hovanisian and Etherton 2006).

Stikine Chinook aerial surveys provide Chinook counts from index sites in both the upper (Little Tahltan, Tahltan, and Beatty) and lower reaches (Christina and Verrett) of the Stikine River which loosely corresponds to DFO’s Wild Salmon Policy prescribed conservation units (stocks), in concert with augmenting the current Little Tahltan weir, and providing some measure of validation of the system wide mark-recapture based escapement estimates.

N18-VHP06 Stikine River Chinook Aerial Surveys Report 2018

N16-I51 Aerial Survey Counts from Select Stikine River Chinook Spawning Sites 2016. Year 4

N15-I15 Stikine Chinook Aerial Surveys 2015. Year 3

N13-I16 Stikine Chinook Aerial Surveys 2014. Year 1

 

Increased Chinook Salmon Stock Coded-Wire Tagging to Improve the Quality of Chinook Indicator Stock Analyses

We propose to maintain increased coded-wire tagging (CWT) for nine Chinook indicator stocks in B.C. that contribute to Northern and Southern Boundary Area fisheries. This proposal will fund incremental tagging beyond the base level provided by the Canadian Department of Fisheries and Oceans (DFO) in order to meet standards derived by the PSC CWT work group to account for survival rate, fishery sampling rate, exploitation rate, and an 80% probability of attaining a minimum standard of observed CWT recoveries. This work has been funded through the Pacific Salmon Treaty (PST) Coded Wire Tag Improvement Fund from 2009-2013, and the PSC Northern Endowment Fund and as a Very High Priority Chinook project in 2014-2016. This project proposes to maintain the increased tagging rates on the highest priority indicator stocks through to 2018, until which time CWTs will be the primary fishery assessment tool for Chinook salmon. This proposal addresses several priorities for implementation of the PST and will improve the ability to better manage the Chinook stocks and fisheries of relevance to the PST.

This proposal is for stocks providing the majority of benefits, based on total fishing mortality distribution, to Northern and Southern Boundary Area fisheries. This proposal addresses nine stock groups represented by CWT indicator programs on Robertson (WCVI), Quinsam (Upper Georgia Strait), Lower Shuswap and Nicola (Fraser Early), Atnarko (Central Coast), Kitsumkalum (North Coast), Harrison and Chilliwack (Fraser Late), and Cowichan (lower Georgia Strait) populations. When these stocks are healthy and abundant they can be large contributors to Southeast Alaska (SEAK), Northern British Columbia (NBC) and West Coast Vancouver Island (WCVI) fisheries.

S18-VHP13 Increased north-migrating Chinook indicator stock CWT to improve the quality of Chinook indicator stock analyses

S17-VHP19 Increased north-migrating Chinook salmon indicator stock coded-wire tagging to improve the quality of Chinook indicator stock analyse

VHP16-03 Increased Chinook salmon stock coded-wire tagging to improve the quality of Chinook indicator stock analyses report. Year 2

VHP15-03 Increased Chinook Salmon Stock Coded-Wire Tagging to Improve the Quality of Chinook Indicator Stock Analyses. Year 1

N14-I20 Increased North-Migrating Chinook Salmon Indicator Stock Coded-Wire Tagging to Improve the Quality of Chinook Indicator Stock Analyses

 

 

Genetic Stock Identification of Chinook Salmon Caught in Northern British Columbia Troll Fisheries

This project consists of the collection and analyses of genetic samples of Chinook salmon caught by the Northern British Columbia Troll fishery each season. The troll fishery typically has the largest annual catch of Chinook salmon in Northern British Columbia, and is managed within the aggregate abundance based management (AABM) regime described in the Pacific Salmon Treaty (1999). The Haida Gwaii (QCI) sport fishery is included within the regime. The sport fishery receives a priority allocation, but the troll fishery typically harvests more Chinook salmon than the sport fishery when operating in the absence of domestic constraints. Genetic samples of Northern BC Troll Chinook catch are a key component of Canada’s domestic fishery management to avoid stocks of concern. Genetic analyses of tissues collected from this fishery allow for estimates of stock specific impacts and comparison to coded wire tag estimates of stock contributions to this fishery. These data are useful to the assignment of Chinook mortalities for the purposes of specific stock management (e.g. WCVI Chinook or local concerns for Yakoun River or Kwinamass River Chinook) and for accounting of Nisga’a Treaty entitlements. The data are also used to generate escapement and terminal run size estimates for stocks or stock groups with representative coded wire tagged components.

N18-VHP10 Genetic Stock Identification of Chinook caught in Northern British Columbia Troll Fisheries Report 2018

N17-VHP14 Genetic Stock Identification of Chinook Salmon caught in Northern British Columbia Troll Fisheries 2017

N16-I35 Genetic Stock Identification of Chinook caught in Northern BC Troll Fisheries. Year 3

N15-I26 Genetic Stock Identification of Chinook Salmon Caught in Northern British Columbia Troll fisheries 2015. Year 2

N14-I17 Genetic Stock Identification of Chinook Salmon Caught in Northern BC Troll Fisheries 2014

 

Burman River Chinook Salmon Mark-Recapture

Concern for West Coast Vancouver Island (WCVI) natural Chinook currently limits PSC fisheries in Southeast Alaska, the Haida Gwaii recreational fishery and particularly the Area F troll fishery in northern British Columbia and troll fisheries and some recreational fisheries on the WCVI. Although the Burman River is enhanced, the population is of sufficient size to estimate the escapement with precision, and thermally marked otolith sampling provides an estimate of the naturally spawned fraction.
The program will estimate the escapement of adult Chinook salmon to the Burman River, a PSC Chinook escapement indicator, using both closed population and open population mark-recapture techniques refined between 2009-2014. The project will also quantify age, sex and origin compositions. Estimates of abundance of the thermally marked hatchery fraction combined with a precise escapement estimate will provide important information to verify and support the WCVI Aggregate ratio estimation project by providing an independent reference point (the Burman River Chinook hatchery fraction, independent of Robertson Creek Hatchery stock) in the northern WCVI area.

S18-VHP11 Spawning escapements and origin of Chinook salmon at Burman River Report 2018

S17-VHP13 Burman River Chinook salmon mark-recapture 2017

S16-I17 Burman River Chinook Salmon Mark-Recapture Report 2016. Year 8

S15-I06 Burman River Chinook Salmon Escapement Indicator Mark-Recapture Experiment, 2015. Year 7

S14-I13 Burman River Open population mark-recapture estimation of ocean-type Chinook spawning escapements WCVI Report 2014

SSP13-01 Burman River Chinook Salmon Total Escapement Estimation Project, 2013

SSP12-01 Preliminary - Burman River Chinook Salmon Total Escapement Estimation Project, 2012

SSP11-06 Burman River Chinook Salmon Total Escapement Estimation Project, 2011

SSP10-03A Burman River Chinook Salmon Total Escapement Estimation Project, 2010

SSP-1A/B Burman River Chinook Salmon Total Escapement Estimation Project, 2009 (Year 1)

 

 

Chinook Salmon Escapement Estimation to the Skeena River Using Genetic Techniques

The Skeena River is host to the second largest aggregate of Chinook salmon in British Columbia. While the aggregate is a PSC escapement indicator stock, there are no biologically based escapement goals for this population. This project provides an annual escapement estimate for the aggregate as well as for the large component stocks. The estimate produced is comparable with the historic estimates produced using an estimate of variance. The Tyee Test fishery, which has been conducted since 1955, provides data such as age information that is matched to the genetic information. The combination of stock specific escapements with age composition forms the basis for escapement goals and benchmarks.
The Kitsumkalum River hosts one of the major Chinook populations in the Skeena watershed, and is a PSC exploitation rate indicator stock. The mark-recapture estimate produced in in a separate project forms the cornerstone for the expansions of the stock compositions observed at the Tyee Test fishery.
The project consists of genetic analyses of samples from Chinook salmon caught at the Tyee Test fishery, and escapement data from the Kitsumkalum mark-recapture program. Chinook salmon scale samples will be collected from the Tyee Test Fishery and the DNA from the samples will be compared against genetic baselines from Skeena Chinook salmon populations. The proportion identified as Kitsumkalum Chinook will be expanded to generate escapement estimates for the Skeena River aggregate using the mark-recapture estimate of escapement for the Kitsumkalum population.

N19-I34 Chinook Escapement Estimation to the Skeena River Using Genetic Techniques 2019

N18-VHP09 Chinook Escapement Estimation to the Skeena River using Genetic techniques Report 2018

N17-VHP13 Chinook Salmon Escapement Estimation to the Skeena River Using Genetic Techniques Report 2017

N16-I33 Chinook Salmon Escapement Estimation to the Skeena River Using Genetic Techniques 2016. Year 8

N15-I27 Chinook Salmon Escapement Estimation to the Skeena River Using Genetic Techniques 2015. Year 7

SSP14-09 Chinook Salmon Escapement Estimation to the Skeena River Using Genetic Techniques 2014. Year 6

SSP13-06 Chinook Salmon Escapement Estimation to the Skeena River Using Genetic Techniques 2013

SSP12-05 Chinook Salmon Escapement Estimation to the Skeena River using Genetic Techniques 2012. Year 4

SSP11-01 Chinook Salmon Escapement Estimation to the Skeena River Using Genetic Techniques 2011. Year 3

SSP10-01 Chinook Salmon Escapement Estimation to the Skeena River Using Genetic techniques 2010. Year 2

SSP-4 Chinook salmon Escapement Estimation to the Skeena River using Genetic techniques (Year 1)