Tag Archives: Northern Boundary Area

Chinook Salmon Escapement Estimation to the Skeena River Using Genetic Techniques

The Skeena River is host to the second largest aggregate of Chinook salmon in British Columbia. While the aggregate is a PSC escapement indicator stock, there are no biologically based escapement goals for this population. This project provides an annual escapement estimate for the aggregate as well as for the large component stocks. The estimate produced is comparable with the historic estimates produced using an estimate of variance. The Tyee Test fishery, which has been conducted since 1955, provides data such as age information that is matched to the genetic information. The combination of stock specific escapements with age composition forms the basis for escapement goals and benchmarks.
The Kitsumkalum River hosts one of the major Chinook populations in the Skeena watershed, and is a PSC exploitation rate indicator stock. The mark-recapture estimate produced in in a separate project forms the cornerstone for the expansions of the stock compositions observed at the Tyee Test fishery.
The project consists of genetic analyses of samples from Chinook salmon caught at the Tyee Test fishery, and escapement data from the Kitsumkalum mark-recapture program. Chinook salmon scale samples will be collected from the Tyee Test Fishery and the DNA from the samples will be compared against genetic baselines from Skeena Chinook salmon populations. The proportion identified as Kitsumkalum Chinook will be expanded to generate escapement estimates for the Skeena River aggregate using the mark-recapture estimate of escapement for the Kitsumkalum population.

N19-I34 Chinook Escapement Estimation to the Skeena River Using Genetic Techniques 2019

N18-VHP09 Chinook Escapement Estimation to the Skeena River using Genetic techniques Report 2018

N17-VHP13 Chinook Salmon Escapement Estimation to the Skeena River Using Genetic Techniques Report 2017

N16-I33 Chinook Salmon Escapement Estimation to the Skeena River Using Genetic Techniques 2016. Year 8

N15-I27 Chinook Salmon Escapement Estimation to the Skeena River Using Genetic Techniques 2015. Year 7

SSP14-09 Chinook Salmon Escapement Estimation to the Skeena River Using Genetic Techniques 2014. Year 6

SSP13-06 Chinook Salmon Escapement Estimation to the Skeena River Using Genetic Techniques 2013

SSP12-05 Chinook Salmon Escapement Estimation to the Skeena River using Genetic Techniques 2012. Year 4

SSP11-01 Chinook Salmon Escapement Estimation to the Skeena River Using Genetic Techniques 2011. Year 3

SSP10-01 Chinook Salmon Escapement Estimation to the Skeena River Using Genetic techniques 2010. Year 2

SSP-4 Chinook salmon Escapement Estimation to the Skeena River using Genetic techniques (Year 1)

 

 

Mixed Stock Analysis of U.S. Districts 101, 102, and 103 Sockeye Seine Fisheries

Annual stock-specific run reconstructions (catch plus escapements) are required to accurately estimate relative contribution of each stock caught in Northern Boundary Area fisheries. Estimates of national origin of contributing stocks provides the most reliable information currently available to complete these run reconstructions, and are used to evaluate stock-specific productivity and revise pre-season forecasts. While the catch of Nass and Skeena sockeye salmon is only subject to treaty harvest-sharing annexes in the Alaska District 101 gillnet and Alaska District 104 purse seine fisheries, the harvest of these stocks in all fisheries, and their escapements, needs to be estimated in order to calculate the total run and the percentage caught in the annexed fisheries.
This project will complete genetic stock identification (GSI) analysis on sockeye salmon tissue samples collected from the 2016 commercial purse seine fisheries in Districts 101, 102, and 103 in Southeast Alaska. This project is a complement to the ongoing project at the Auke Bay Laboratory for Northern Boundary Area sockeye salmon GSI in Districts 101 and 104, and continuing work by DFO in Areas 3, 4, and 5; and will allow for complete assessment of the catches of Nass and Skeena sockeye salmon in all major Northern Boundary Area fisheries for run reconstructions. Estimates will be provided for up to 3 time strata in District 101, up to 3 time strata in District 102, and over the entire season in District 103, for a total of 1,500 samples analyzed.

N16-I18 Mixed stock analysis of U.S. Districts 101, 102 and 103 sockeye salmon seine fisheries 2016

N15-I28 Mixed Stock Analysis of U.S. Districts 101, 102, and 103 Sockeye Seine Fisheries, 2015

Boundary Area Coho Escapement

The Hugh Smith Lake coho salmon population is substantially exploited by mixed-stock fisheries in both the U.S. and Canada and is, therefore, a key indicator stock used to monitor total adult abundance and escapements, and the pattern and intensity of exploitation by these fisheries on populations in the northern boundary area. It is the only system in the southern portion of Southeast Alaska where a total count (with back-up mark-recapture estimate) of coho salmon escapement has been routinely collected since 1982. Its location 70 km southeast of Ketchikan makes it a particularly strategic indicator stock for boundary area fisheries. It has also been one of three key indicator stocks used to measure the overall abundance of wild coho salmon available to the Alaska troll fishery and to measure the exploitation rate by the fishery.
Escapement projections are made from both the cumulative weir count and estimation models based on recovery of coded-wire tags to provide real-time information for management of fisheries for escapement. Peak helicopter survey counts at other Boundary Area streams provide an index with greater coverage that complements higher resolution assessment at Hugh Smith Lake.

N19-I04 Boundary Area Coho Escapement 2019 Report

N18-I03 Boundary Area Coho Escapement Report

N17-I04 Boundary Area Coho Escapement Report 2017

N16-I57 Boundary Area Coho Escapement Report 2016

 

Hugh Smith Lake Coho Smolt Enumeration and Marking

The Hugh Smith Lake coho salmon population is substantially exploited by mixed-stock fisheries in both the U.S. and Canada and is, therefore, a key indicator stock used to monitor total adult abundance and escapements, and the pattern and intensity of exploitation by these fisheries on populations in the northern Boundary Area. Its location 70 km southeast of Ketchikan makes it a particularly strategic indicator stock for boundary area fisheries. It has also been one of three key coded-wire tagged indicator stocks used to measure the exploitation rate by the Alaska troll fishery and to estimate the overall abundance of wild coho salmon available to the fishery. Timely escapement projections are made from both the cumulative weir count and estimation models based on recovery of coded-wire tags to provide real-time information for management of fisheries for escapement goals.
The Hugh Smith Lake coho salmon population has been the only long-term, continuously operated wild coho indicator stock project in the northern boundary area, with a record of catch, escapement, smolt production, marine survival, and age composition estimates dating from 1982. The proposal would continue to fund operation of a smolt weir to enumerate and coded-wire tag coho salmon smolts emigrating from Hugh Smith Lake to generate total population estimates, including total smolt production, marine survival, exploitation rate, and catch by area, time, and gear type. Coho smolt estimates and tag recovery rates in the Southeast Alaska troll fishery will be used to generate inseason estimates of marine survival and total adult abundance for fishery management. Estimates of brood year smolt production and adult return by age class will be used to evaluate and refine the biological escapement goal. Counts and samples of sockeye salmon smolts are also obtained at the smolt weir and have been used to evaluate escapement goals and effectiveness of sockeye salmon stock enhancement efforts. The proposed project will continue a core stock assessment program needed to manage fisheries for coho salmon in the northern Boundary Area.

N16-I58 Hugh Smith Lake Coho Smolt Estimation and Marking Report Year 1 of 2