Tag Archives: hatchery vs. wild

Burman River Chinook Salmon Mark-Recapture

Concern for West Coast Vancouver Island (WCVI) natural Chinook currently limits PSC fisheries in Southeast Alaska, the Haida Gwaii recreational fishery and particularly the Area F troll fishery in northern British Columbia and troll fisheries and some recreational fisheries on the WCVI. Although the Burman River is enhanced, the population is of sufficient size to estimate the escapement with precision, and thermally marked otolith sampling provides an estimate of the naturally spawned fraction.
The program will estimate the escapement of adult Chinook salmon to the Burman River, a PSC Chinook escapement indicator, using both closed population and open population mark-recapture techniques refined between 2009-2014. The project will also quantify age, sex and origin compositions. Estimates of abundance of the thermally marked hatchery fraction combined with a precise escapement estimate will provide important information to verify and support the WCVI Aggregate ratio estimation project by providing an independent reference point (the Burman River Chinook hatchery fraction, independent of Robertson Creek Hatchery stock) in the northern WCVI area.

S18-VHP11 Spawning escapements and origin of Chinook salmon at Burman River Report 2018

S17-VHP13 Burman River Chinook salmon mark-recapture 2017

S16-I17 Burman River Chinook Salmon Mark-Recapture Report 2016. Year 8

S15-I06 Burman River Chinook Salmon Escapement Indicator Mark-Recapture Experiment, 2015. Year 7

S14-I13 Burman River Open population mark-recapture estimation of ocean-type Chinook spawning escapements WCVI Report 2014

SSP13-01 Burman River Chinook Salmon Total Escapement Estimation Project, 2013

SSP12-01 Preliminary - Burman River Chinook Salmon Total Escapement Estimation Project, 2012

SSP11-06 Burman River Chinook Salmon Total Escapement Estimation Project, 2011

SSP10-03A Burman River Chinook Salmon Total Escapement Estimation Project, 2010

SSP-1A/B Burman River Chinook Salmon Total Escapement Estimation Project, 2009 (Year 1)

 

 

Tatsamenie Lake Sockeye Fry Extended Rearing and Smolt Enumeration

A sockeye enhancement program has been ongoing at Tatsamenie Lake since 1990. A review of the program was funded by the Northern Fund in 2005, and in 2008, the Northern Fund began supporting the Extended Sockeye Fry Rearing Project.
The fry were originally reared in lake pens, but because of a devastating disease outbreak, the project shifted to onshore rearing systems beginning in 2009. The egg to smolt survivals of the fed fry have been variable but have ranged from 10% to 70%, or 5 to 15 times compared to wild fry, depending on fry behaviour after outplanting. Assessment of adult production from this project is ongoing. Smolt to adult survivals of the reared fry will be definitively determined with the return of the corresponding adults in the coming years, but to date, the adult production from reared fry has been lower than expected. This project continues to test a technique that has the potential of increasing production for other small scale sockeye salmon enhancement projects as well as rebuilding the Tatsamenie Lake sockeye stock in low brood year cycles.
Also at Tatsamenie Lake, the Canadian Department of Fisheries and Oceans began a smolt enumeration program in 1996, and this ran continuously from 1998 through to 2011. The Northern Fund began supporting this program in 2012, and the two programs were combined in 2015. The combination allowed the Tatsamenie Lake sockeye smolt mark-recapture project to extend beyond its previous end date of June 30, through to the second week of September. This provides a more accurate smolt population estimate as well as increased precision of the estimated enhanced sockeye survival and production. This also allows for monitoring of potential early out-migration of the reared fry.

N19-E02 Tatsamenie Lake Sockeye Fry Rearing and Smolt Projects 2019 Report

N18-E07 Tatsamenie Lake Sockeye Fry Rearing and Smolt Report

N17-E01 Tatsamenie Lake Rearing Final Report

N16-E01 Tatsamenie Lake Sockeye Fry Rearing and Smolt Projects 2016

N15-E01 2015 Tatsamenie Lake Sockeye Fry Extended Rearing and Smolt. Year 11

N14-E01 2014 Tatsamenie Lake Sockeye Fry Extended Rearing. Year 10; N14-E06 2014 Tatsamenie Lake Smolt Project. Year 3

N13-E02 2013 Tatsamenie Lake Sockeye Fry Extended Rearing. Year 9

N13-E07 2013 Tatsamenie Lake Smolt Project. Year 2

Abundance Estimates for Stillaguamish River Chinook Salmon Using Trans-generational Genetic Mark Recapture

The primary objective of this trans-generational genetic mark-recapture (tGMR) project is to: 1) estimate the abundance of Chinook salmon spawners and effective breeders in the Stillaguamish River above the smolt trap site using genetic abundance methods. The secondary objectives of this study are to: 2) estimate the natural spawning Chinook salmon abundance by origin (hatchery or natural), sex and age, and 3) estimate a redd expansion calibration factor from historic redd-based escapement estimates and possible future redd counts. The data collected for this project also provide a genetic baseline for these population estimates, a genetic (parentage-based) estimate of the proportion of hatchery-origin spawners, and an estimate of relative reproductive success of hatchery spawners, because carcasses are classified by origin. Genetic sampling will be conducted during the fall spawning period, and smolt trapping will be conducted during the following spring.

S19-I08 Abundance estimates for Stillaguamish River Chinook salmon using trans-generational genetic mark recapture 2019 Report

S18-VHP12 Abundance estimates for Stillaguamish River Chinook salmon using trans-generational genetic mark recapture

S17-VHP17 2016 Broodyear Report Abundance estimates for Stillaguamish River Chinook salmon using trans-generational genetic mark recapture

VHP16-01: Abundance estimates for Stillaguamish River Chinook salmon using trans-generational genetic mark recapture 2015-2016

VHP15-06 Abundance Estimates for Stillaguamish River Chinook Salmon Using Trans-generational Genetic Mark Recapture. Year 1

SSP14-05 Abundance Estimates for Stillaguamish River Chinook Salmon. Year 5

SSP13-11 Abundance Estimates for Stillaguamish River Chinook Salmon. Year 4

 

 

Assessing Effects of Supplementation on Fitness of Sockeye Salmon in Auke Creek, Alaska

The overarching goal of this joint project by the University of Alaska and the Alaska Department of Fish & Game is to use parentage-based tagging over three generations of experimental hatchery supplementation to quantify differences in fitness between wild and hatchery-origin sockeye salmon in Auke Creek, Alaska. Secondary goals of this research are to test for second-generation differences in fitness between wild and hatchery-origin individuals that spawn naturally, and to quantify changes in genetic diversity and population structure in the wild sockeye salmon population as a result of three generations of hatchery supplementation. Results of this study will provide information critical for assessing the relative costs and benefits of hatchery supplementation in managing sockeye salmon populations subject to the Pacific Salmon Treaty.

N19-I11B Assessing Effects of Supplementation on Fitness of Sockeye Salmon in Auke Creek, AK 2019 Report

N18-I08B Assessing Effects of Supplementation on Fitness of Sockeye Salmon in Auke Creek, AK Report 2018

N17-I10A Assessing Effects of Supplementation on Fitness of Sockeye Salmon in Auke Creek, AK Report 2018

N16-I15A Assessing Effects of Supplementation on Fitness of Sockeye in Auke Creek, AK June 2014-June 2017

N15-I22A Assessing Effects of Supplementation on Fitness of Sockeye Salmon in Auke Creek, AK. (UAF Component) Year 2 of 3

N15-I22B Assessing Effects of Supplementation on Fitness of Sockeye Salmon in Auke Creek, AK. (ADFG Component) Year 2 of 3

N14-I34A Assessing Effects of Supplementation on Fitness of Sockeye Salmon in Auke Creek, AK. (UAF Component) Year 1

N14-I34B Assessing Effects of Supplementation on Fitness of Sockeye Salmon in Auke Creek, AK. (ADFG Component) Year 1

 

 

Atnarko River Chinook Escapement Estimation

The Atnarko River was identified as a potential escapement and exploitation rate indicator for Central BC early summer Chinook, and in 2009 the Atnarko River Chinook stock was proposed as an exploitation rate indicator. It was funded under the Coded Wire Tag (CWT) Improvement program, and the purpose of the five-year mark-recapture program was to improve escapement estimates for early summer Chinook.
Since then, the program has met the data standard of a coefficient of variation (CV) of 15% or less. Continued mark-recapture estimates on the Atnarko River will build on the information thus far. The project will estimate the escapement of Chinook salmon and generate estimates such that the fraction of CWT fish is known relative to the wild and/or unmarked escapement, and this data is essential for Chinook run reconstruction calculations. This program is part of a comprehensive group of programs on Atnarko River Chinook salmon that includes the production of Chinook fry and CWT application (under separate submission to the Northern Fund) and terminal fishery monitoring.

N18-VHP12 Atnarko River Chinook Salmon Spawning Escapement Estimation Final 2018

N17-VHP05 Atnarko River Chinook Salmon Spawning Escapement Estimation Report 2017

N16-I30 Atnarko River Chinook Escapement Estimation Report 2016. Year 3

N15-I33 Atnarko River Chinook Escapement Estimation 2015. Year 2

N14-I33 Atnarko River Chinook Escapement Estimation 2014. Year 1

Terminal Abundance of WCVI Chinook Salmon

Chinook salmon stocks originating from the West Coast of Vancouver Island (WCVI) contribute significantly to the ocean harvests in fisheries in Southeast Alaska and northern British Columbia, as well as being of prime importance to near-shore fisheries along the WCVI itself. Consequently, commercial and sport fishermen, as well as First Nations up and down the coast have a vested interest in the status of WCVI Chinook salmon. Management agencies and organizations responsible for fisheries in Southeast Alaska, northern British Columbia, and along the WCVI have need of stock status information concerning WCVI Chinook salmon.
The overall goal of this project is to estimate the aggregate terminal returns of WCVI hatchery and natural origin Chinook salmon, including catch plus escapement inside the surf line such that the estimates are asymptotically accurate and have a CV of 15% or less. This will be achieved through 1) the first comprehensive assessment of catch plus escapement along the WCVI, and 2) refinement of the ‘driver stock’ approach for estimating aggregate terminal return from a distant fishery.
The “driver stock” approach was first developed through the Sentinel Stock Program, and is based on the assumption that an indicator stock (or stock group) experiences the same exploitation and maturation rates as the aggregate. If the assumption holds, the incidence of this indicator stock group in an ocean fishery (using information such as CWT, otolith, DNA) and in its terminal area would have the same ratio as the catch of the indicator stock group in the same ocean fishery to its terminal run size. When using a single CWT stock, estimating terminal run size is simple. However, given the complexity of the WCVI stock aggregate and terminal WCVI fisheries, the key assumptions of the method – i.e. that maturation rates and exploitation rates are constant across the WCVI aggregate, were not met.
The purpose of this project is to 1) improve the precision of the terminal return estimates of natural and hatchery origin chinook salmon along the WCVI, 2) quantify the variation in maturation, exploitation rates, abundance across the WCVI aggregate, and 3) use the additional information to refine the application of the driver stock approach to the WCVI aggregate through development of a Bayes method. These results will benefit existing stock reconstructions and forecasts in the assessment of the WCVI Chinook salmon stock complex.

N17-VHP02 Terminal Abundance of WCVI Chinook Report 2017

VHP16-04 Progress - Terminal Abundance of WCVI Chinook Salmon. Year 2 of 3

VHP15-02 Terminal Abundance of WCVI Chinook Salmon. Year 1 of 3