DRAFT AGENDA
PACIFIC SALMON COMMISSION
FRASER RIVER PANEL
Tuesday August 15, 2023 at 10:30 am.
In-person: Sheraton Airport Hotel and via Zoom Webinar
https://psc-org.zoom.us/j/88416242194

1) Roll Call (Panel and Tech members, others please email Julie, ehrmantraut@psc.org)
2) Webinar Etiquette:
a) Mute Phone: Please mute phone unless you are asking a question
b) Chat feature: Please use for questions regarding the distribution only
3) Agenda
4) Run status of Fraser River sockeye salmon relative to forecasts and adopted run sizes

PSC Staff
5) In-season data flow for updating objectives
a) Test fishing catches and acoustics
b) Mission projected sockeye vs. Qualark sockeye comparison
c) Stock proportions
d) Environmental conditions
e) Observations from the watershed

DFO
6) Assessments and recommendations
a) Migration graphs, escapement projections, run size assessments
7) Review any decisions on staff recommendations Panel
8) Fisheries Recommendations Panel
a) Secretariat staff evaluation of fisheries recommendations
b) Panel decision on fisheries recommendations
9) Other Business Panel
a) Extend Matsqui fishwheel operations to August 23?
10) Next FRP Meeting, Friday August 18, 11:00 a.m. via Zoom Webinar Next Technical Committee meeting, Thursday August 17, 1:00 p.m. via Zoom

2023 Run status of Fraser sockeye and pink salmon
Date: Aug. 15, 2023
The information presented in this distribution has been prepared by PSC Secretariat staff and should be considered preliminary until reviewed by the Fraser River Panel

Week of: Aug. 13 - Aug. 19, 2023	Sockeye					$\begin{gathered} \hline \text { Pink } \\ \hline \text { Total } \\ \text { Fraser } \end{gathered}$
	Management Group				Total Fraser	
	E.Stuart	E.Summer	Summer	Late		
Mission passage (inclds Pitt, Alouette, Coquitlam)	40,900	269,000	242,500	14,600	567,000	15,700
Catch downstream of Mission	200	3,400	4,800	700	9,100	500
Accounted Run To Date	41,100	272,400	247,300	15,300	576,100	16,200
Run size adopted in-season ${ }^{2}$	41,000	290,000	na	na	na	na
Run size forecasted pre-season	23,000	186,000	1,167,000	188,000	1,564,000	6,135,000
Area 20 timing adopted in-season	2/Jul	23/Jul	na	na	na	na
Area 20 timing expected pre-season	7/Jul	6/Aug	17/Aug	24/Aug	16/Aug	25/Aug
Johnstone Str. Diversion Rate		In-season 5-day average			60\%	29\%
		Preseason forecast of annual rate:			67\%	62\%

${ }^{2}$ Run sizes are usually not adopted until after the peak of the run has passed through marine test fishery areas in Juan de Fuca and Johnstone straits.

[^0]| | Fraser Sockeye | | | | | Fraser Pinks | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Early Stuart | Early Summer | Summer | Lates | Total | | Total |
| RUN STATUS, ESCAPEMENT NEEDS \& AVAILABLE SURPLUS | | | | | | | |
| Pre-season or Adopted In-season Run Size | 41,000 | 290,000 | 1,167,000 | 188,000 | 1,686,000 | | 6,135,000 |
| Adult Spawning Escapement Target (SET) | 41,000 | 145,000 | 1,046,600 | 188,000 | 1,420,600 | | 5,335,200 |
| \%SET from TAM rules | 100\% | 50\% | 90\% | 100\% | | | 87\% |
| Management Adjustment (MA)* | 69,700 | 156,600 | 240,720 | 188,000 | 655,020 | | 0 |
| Proportional MA (pMA)* | 1.70 | 1.08 | 0.23 | 1.00 | | | 0.00 |
| Adjusted Spawning Escapement Target (SET) ** | 41,000 | 290,000 | 1,167,000 | 188,000 | 1,686,000 | | 5,335,200 |
| Test Fishing (TF)****** | 250 | 3,700 | 11,860 | 2,030 | 17,840 | | 25,270 |
| Surplus above Adjusted SET \& Test fishing | 0 | 0 | 0 | 0 | 0 | | 774,530 |
| DEDUCTIONS \& TAC FOR INTERNATIONAL SHARING | | | | | | | |
| Aboriginal Fishery Exemption (AFE) | 0 | 0 | 0 | 0 | 0 | | 0 |
| Total Deductions (Adj. SET + TF + Available AFE) | 41,250 | 293,700 | 1,178,860 | 190,030 | 1,703,840 | | 5,360,470 |
| Available TAC for International Sharing | 0 | 0 | 0 | 0 | 0 | | 774,530 |
| UNITED STATES (Washington) TAC | | | | | | | |
| Proportionally Distributed TAC *** 16.5\% | 0 | 0 | 0 | 0 | 0 | 25.7\% | 199,050 |
| U.S. Payback *** 0.0\% | 0 | 0 | 0 | 0 | 0 | | 0 |
| Proportionally Distributed TAC + Payback | 0 | 0 | 0 | 0 | 0 | | 199,050 |
| Treaty Tribes Share *** 67.7\% | 0 | 0 | 0 | 0 | 0 | 50.0\% | 99,525 |
| All Citizen Share 32.3\% | 0 | 0 | 0 | 0 | 0 | 50.0\% | 99,525 |
| CANADA TAC | | | | | | | |
| Aboriginal Fishery Exemption (AFE) | 0 | 0 | 0 | 0 | 0 | | 0 |
| Canadian TAC + AFE | 0 | 0 | 0 | 0 | 0 | | 575,480 |
| CATCH-TO-DATE | | | | | | | |
| Test | 250 | 3,480 | 4,800 | 730 | 9,250 | | 510 |
| Treaty Tribes (Wash.) / Ceremonial (TRB) | 0 | 0 | 0 | 0 | 0 | | 0 |
| All Citizen (Wash.) | 0 | 0 | 0 | 0 | 0 | | 0 |
| Other (Wash.) ${ }^{* * * *}$ | 0 | 0 | 0 | 0 | 0 | | |
| Washington | 0 | 0 | 0 | 0 | 0 | | 0 |
| First Nations Catch (including AFE) | 0 | 0 | 0 | 0 | 0 | | 0 |
| Planned Charter \& Recreational Shares | 20 | 140 | 150 | 8 | 323 | 0 | 20 |
| Other**** | 150 | 780 | 270 | 0 | 1,200 | 0 | 0 |
| Total Commercial (including FN EO/Demo ${ }^{* * * * * \text {) }}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Canada | 170 | 920 | 420 | 8 | 1,530 | | 20 |
| Total Catch in All Fisheries | 420 | 4,400 | 5,220 | 738 | 10,770 | | 530 |
| Exploitation Rate (catch-to-date / run size) | 1.0\% | 1.5\% | 0.4\% | 0.4\% | 0.6\% | | 0.0\% |
| Exploit. Rate with fishery-induced mortality included | 1.1\% | 1.5\% | 0.5\% | 0.4\% | 0.7\% | | |
| CATCH REMAINING (BALANCE) | | | | | | | |
| Washington | 0 | 0 | 0 | 0 | 0 | | 199,050 |
| Canada | -170 | -920 | -420 | -8 | -1,518 | | 575,460 |
| Balance Remaining [below share / -above share] | -170 | -920 | -420 | -8 | -1,518 | | 774,510 |

* Given the 2022 pre-season forecasts of abundances, fisheries decisions that could impact the Early Stuart
sockeye management group will be based on Low Abundance Exploitation Rate (LAER) limit of 10\%.
The intent of LAER is to allow for limited fisheries directed on co-migrating stocks or species, but also may permit limited harvest in some cases. The application of the LAER obviates the need for management adjustments for this group.
** The adjusted SET is the lesser of the run size or the sum of the MA + TAM - defined SET.
*** Washington sockeye and pink shares according to Annex IV of the Pacific Salmon Treaty.
Sockeye: 16.5% of the TAC - payback (maximum of 5% of share).
Pink: 25.7% of the TAC - payback (maximum of 5% of share)
**** May include unauthorized directed retention or unauthorized bycatch retention in fisheries directed at other species.
***** EO = FN Economic Opportunity fisheries; Demo = FN Demonstration fisheries.
****** The test fishing deduction was updated in-season to 42,579 on September 2, 2022.

2023 Fraser Sockeye Test Fishing \& Escapement Summary

	Johnstone Strait	Juan de Fuca Strait		Fraser River									
Area/Gear Location From A20	A12 PS Blinkhorn (-1 day)	A20 PS Port Renfrew (0 days)	A7 RN ${ }^{1}$ San Juan Is (+3 days)	A29-13 GN Cottonwood (+5 days)	A29-17 GN Brownsville Bar^{2} (+5 days)	A29-16 GN Whonnock (+6 days)	Whon CPUE Estimate (+6 days)	$\begin{aligned} & \text { GN Catch } \\ & \text { (+8 days) } \end{aligned}$	ark Estimate ${ }^{3}$	Method ${ }^{4}$	$\begin{aligned} & \text { Mission } \\ & \text { Estimate }{ }^{5} \\ & \text { (+6 days) } \end{aligned}$	droacoustics Method ${ }^{6}$	Hells Gate Estimates ${ }^{7}$ (+10 days)
25-Jul	134	50			43	2	0.19	15	9,079	RB + LB	9,000	S1+M2+A2	1,970
26-Jul	1,390	70		16	42	4	0.37	16	9,408	$R B+L B$	10,700	S1+M2+A2	1,880
27-Jul	107	127		9	40	2	0.17	9	8,444	$R B+L B$	8,500	S1+M2+A2	5,000
28-Jul	522	81		20	36	9	0.83	10	6,521	$R B+L B$	7,000	S1+M2+A2	3,010
29-Jul	13	265		1	17	3	0.27	11	6,965	$R B+L B$	9,200	S1+M2+A2	2,660
30-Jul	239	384		3	44	5	0.47	11	5,396	$R B+L B$	6,600	S1+M2+A2	930
31-Jul	99	1,021		8	66	19	1.64	8	6,890	$R B+L B$	11,000	S1+M2+A2	890
1-Aug	4,592	230		3	36	11	0.93	16	8,067	$R B+L B$	9,000	S1+M2+A2	930
2-Aug	1,400	143		3	24	20	1.72	10	8,834	$R B+L B$	7,900	S1+M2+A2	1,080
3-Aug	6,197	147		10	44	21	1.74	14	9,597	$R B+L B$	17,800	S1+M2+A2	1,960
4-Aug	2,824	184		17	57	15	1.25	23	9,209	$R B+L B$	13,900	A1+S1+M2+A2	2,720
5-Aug	203	162		17	136	58	4.33	10	12,073	$R B+L B$	19,600	$\mathrm{A} 1+\mathrm{S} 1+\mathrm{M} 2+\mathrm{A} 2$	2,630
6-Aug	683	387		21	143	31	2.48	7	14,372	$R B+L B$	23,900	$\mathrm{A} 1+\mathrm{S} 1+\mathrm{M} 2+\mathrm{A} 2$	4,220
7-Aug	663	492		28	51	11	0.97	20	16,577	$R B+L B$	25,700	$\mathrm{A} 1+\mathrm{S} 1+\mathrm{M} 2+\mathrm{A} 2$	4,500
8-Aug	93 (2 sets)	188		9	107	12	1.06	17	21,431	$R B+L B$	30,600	$\mathrm{A} 1+\mathrm{S} 1+\mathrm{M} 2+\mathrm{A} 2$	6,870
9-Aug	5,923	85 (3 sets)		19	116	9	0.82	15	21,271	$R B+L B$	18,000	A1+S1+M2+A2	6,860
10-Aug	1,645	72 (3 sets)		44	155	24	1.89	17	20,706	$R B+L B$	32,000	$\mathrm{A} 1+\mathrm{S} 1+\mathrm{M} 2+\mathrm{A} 2$	11,100
11-Aug	4,017	1,294		15	83	44	3.42	19	11,411	$R B+L B$	37,100	$\mathrm{A} 1+\mathrm{S} 1+\mathrm{M} 2+\mathrm{A} 2$	11,620
12-Aug	9,032	2,000		24	80	72	5.63	12	18,569	$R B+L B$	37,800	$\mathrm{A} 1+\mathrm{S} 1+\mathrm{M} 2+\mathrm{A} 2$	7,060
13-Aug	991	865		15	71	60	4.82	20	29,195	$R B+L B$	35,200	A1+S1+M2+A2	2,580
14-Aug	763	1006 (5 sets)	290	45	106	84	6.16	47			26,100	A1+S1+M2+A2	No Count
$\begin{aligned} & \text { 15-Aug } \\ & \text { 16-Aug } \end{aligned}$													

${ }^{1}$ Area 7 Reefnet test fishery is for observation of fish presence and species composition. Vessels are operating at two observation sites.
${ }^{2}$ Alternative Lower River Test Fishery - Southern Endowment Fund Project
Qualark escapement estimate - does not include Chilliwack, Pitt, Harrison, Birkenhead, Big Silver, Weaver, and Cultus
${ }^{4}$ Qualark source:
$R B+L B=$ Right-bank (RB) + Left-bank (LB)
${ }^{5}$ Mission escapement estimate - does not include Pitt
${ }^{6}$ Mission source:
S1+M2+A2 = Left bank split-beam (S1) + Mobile ARIS (M2) + Right bank ARIS (A2
A1 $1+\mathrm{S} 1+\mathrm{M} 2+\mathrm{A} 2=$ Left bank ARIS (A1) + Left bank split-beam (S1) + Mobile ARIS (M2) + Right bank ARIS (A2)
${ }^{7}$ Daily Hells Gate abundance estimate; actual daily count has been expanded.

2023 Fraser Pink Test Fishing \& Escapement Summary

Area/Gear Location From A20	Johnstone Strait	Juan de Fuca Strait		Fraser River									
	A12 PS	A20 PS Port Renfrew (0 days)	A7 RN ${ }^{1}$ San Juan Is	A29-13 GN Cottonwood	$\begin{gathered} \text { A29-17 GN } \\ \text { Brownsville Bar }{ }^{2} \end{gathered}$	A29-16 GN Whonnock	Whon CPUE Estimate	Qualark			Mission Hydroacoustics		Hell's Gate Estimates ${ }^{7}$
	Blinkhorn (-2 days)							GN Catch	Estimate ${ }^{3}$	Method ${ }^{4}$	Estimate ${ }^{5}$	Method ${ }^{6}$	
25-Jul	927	1,150			0	0	0.00	0	0	RB+LB	0	S1+M2+A2	0
26-Jul	9,305	3,364		0	0	0	0.00	0	0	RB+LB	0	S1+M2+A2	0
27-Jul	3,334	10,148		0	0	0	0.00	0	0	RB+LB	0	S1+M2+A2	0
28-Jul	11,055	6,285		0	0	0	0.00	0	0	RB+LB	0	S1+M2+A2	0
29-Jul	574	7,964		0	0	0	0.00	0	0	RB+LB	0	S1+M2+A2	0
30-Jul	1,800	6,100		0	0	0	0.00	0	0	RB+LB	0	S1+M2+A2	0
31-Jul	2,199	4,152		0	0	0	0.00	0	0	RB+LB	0	S1+M2+A2	0
1-Aug	10,849	6,072		0	0	0	0.00	0	0	RB+LB	0	S1+M2+A2	0
2-Aug	11,745	4,101		0	0	0	0.00	0	0	RB+LB	0	S1+M2+A2	0
3-Aug	15,892	5,102		0	0	0	0.00	0	0	RB+LB	0	S1+M2+A2	0
4-Aug	5,826	10,886		0	1	0	0.00	0	0	RB+LB	0	A1+S1+M2+A2	0
5-Aug	4,442	7,835		0	2	0	0.00	0	0	RB+LB	730	$\mathrm{A} 1+\mathrm{S} 1+\mathrm{M} 2+\mathrm{A} 2$	0
6-Aug	12,365	20,036		0	0	1	0.08	0	0	RB+LB	1,470	$\mathrm{A} 1+\mathrm{S} 1+\mathrm{M} 2+\mathrm{A} 2$	0
7-Aug	25,449	22,255		0	1	0	0.00	0	0	RB+LB	1,470	A1+S1+M2+A2	0
8-Aug	4322 (2 sets)	12,043		0	3	0	0.00	0	0	RB+LB	1,470	A1+S1+M2+A2	0
9-Aug	88,365	2709 (3 sets)		1	0	0	0.00	0	0	RB+LB	2,010	$\mathrm{A} 1+\mathrm{S} 1+\mathrm{M} 2+\mathrm{A} 2$	0
10-Aug	51,493	6080 (3 sets)		0	1	0	0.00	0	0	RB+LB	2,010	A1+S1+M2+A2	0
11-Aug	61,846	32,260		0	1	0	0.00	0	0	RB+LB	2,020	A1+S1+M2+A2	0
12-Aug	92,413	52,160		0	1	1	0.08	0	0	RB+LB	1,010	$\mathrm{A} 1+\mathrm{S} 1+\mathrm{M} 2+\mathrm{A} 2$	0
13-Aug	12,244	49,024		0	2	0	0.00	0	0	RB+LB	1,520	A1+S1+M2+A2	0
14-Aug	9,283	23431 (5 sets)	398	0	2	0	0.00	0			2,020	$\mathrm{A} 1+\mathrm{S} 1+\mathrm{M} 2+\mathrm{A} 2$	No Count
$\begin{aligned} & \text { 15-Aug } \\ & \text { 16-Aug } \end{aligned}$													

${ }^{1}$ Area 7 Reefnet test fishery is for observation of fish presence and species composition. Vessels are operating at two observation sites.
${ }^{2}$ Alternative Lower River Test Fishery - Southern Endowment Fund Project
${ }^{3}$ Qualark escapement estimate - does not include Chilliwack, Pitt, Harrison, Birkenhead, Big Silver, Weaver, and Cultus
${ }^{4}$ Qualark source:
$R B+L B=$ Right Bank (RB) + Left Bank (LB)
${ }^{5}$ Mission escapement estimate - does not include Pitt
${ }^{6}$ Mission source:
S1+M2+A2 = Left bank split-beam (S1) + Mobile ARIS (M2) + Right bank ARIS (A2)
A1+S1+M2+A2 = Left bank ARIS (A1) + Left bank split-beam (S1) + Mobile ARIS (M2) + Right bank ARIS (A2)
${ }^{7}$ Daily Hells Gate abundance estimate; actual daily count has been expanded.

Date: 15/Aug/23

	•		
	Common		
	All Days	Days	
Mission projection	485,596	388,891	
Qualark estimate	344,224	344,224	
	Difference	$\mathbf{4 4 , 6 6 7}$	
	\%Difference	$\mathbf{1 1 \%}$	

Difference between Qualark Passage Estimate and Mission-based Projection

Difference: Mission Projection - Qualark Estimate

2023 Fraser River Sockeye Salmon Stock identification Review
Recent stock composition estimates for sockeye salmon

Area/Gear ${ }^{1}$	FishingSector		Type ${ }^{3}$	SampleSize (n) \%Fraser		Fraser-only Stock Proportions by Reporting Group ${ }^{4}$ (\%)															$\begin{array}{\|l\|} \hline \text { Age (\%) } \\ \hline \text { Overall } \\ \text { Stocks } \\ \hline \end{array}$
						Early Stuart	Early Summer					Summer					Late				
		Date				Early Stuart	Chilli- wack	Pitt Alouette Coquit- Iam	Nadina Bowron Gates Nahatlatch Taseko	Early Thompson	$\begin{gathered} \text { Early } \\ \text { Summer } \\ \text { sub- } \\ \text { total } \end{gathered}$	Harri- son Widgeon	Late Stuart Stellako	Chilko Quesnel	Raft North Thomp- son	Summer subtotal	Birken- head Big Silver		Weaver Cultus	Late subtotal	Age-4 ${ }_{2}$
Johnstone Strait \& Queen Charlotte Strait																					
A12 ps	tf	Aug 6	DNA	94	93\%	0\%			7\%	1\%	7\%		27\%	47\%	3\%	77\%	5\%	2\%	9\%	15\%	56\%
A12 ps	tf	Aug 8	DNA	68	99\%	0\%			7\%	5\%	12\%		14\%	49\%	7\%	70\%	4\%	1\%	13\%	18\%	64\%
A12 ps	tf	Aug 9	DNA	89	98\%	0\%	1\%		5\%	1\%	7\%		23\%	52\%	2\%	77\%	5\%	3\%	8\%	16\%	66\%
A12 ps	tf	Aug 12	DNA	90	99\%	0\%			3\%		3\%		16\%	59\%	1\%	75\%	7\%	4\%	10\%	21\%	64\%
A12 ps		Aug 17	Prediction	1	99\%	0\%			1\%	0\%	1\%		6\%	52\%	4\%	62\%	12\%	5\%	20\%	36\%	NA
Juan de Fuca Strait \& Washington \& Other																					
A20 ps	tf	Aug 5	DNA	99	98\%	0\%		4\%	3\%	5\%	12\%	10\%	14\%	42\%	1\%	66\%	7\%	1\%	15\%	22\%	61\%
A20 ps	tf	Aug 8	DNA	100	96\%	0\%		4\%	7\%	2\%	14\%	2\%	12\%	39\%	4\%	57\%	10\%	4\%	15\%	29\%	62\%
A20 ps	tf	Aug 11	DNA	98	100\%	0\%			4\%	1\%	6\%	2\%	22\%	49\%		73\%	12\%	2\%	7\%	21\%	NA
A20 ps	tf	Aug 12	DNA	97	98\%	0\%			8\%	3\%	11\%		9\%	60\%		69\%	6\%	9\%	5\%	20\%	70\%
A20 ps		Aug 17	Prediction	1	100\%	0\%			5\%	1\%	6\%	1\%	7\%	52\%		60\%	11\%	11\%	12\%	34\%	NA
In-river																					
BB gn Bro	tf	Aug10-11	DNA	99	100\%	0\%		1\%	13\%	6\%	20\%	1\%	14\%	64\%		79\%		0\%	0\%	1\%	NA
BB gn Bro	tf	Aug12-13	DNA	100	100\%	0\%	1\%		5\%	8\%	14\%	2\%	21\%	56\%		80\%	3\%	4\%		7\%	NA
BB gn Cot	tf	Aug12-13	DNA	39	100\%	0\%	1\%	3\%	22\%		26\%		13\%	45\%		59\%	16\%			16\%	NA
$A B \mathrm{gn}$	tf	Aug11-12	DNA	98	100\%	0\%			12\%	5\%	17\%	1\%	7\%	73\%		81\%	2\%			2\%	66\%

2023 Fraser River Pink Salmon Stock identification Review
Recent stock composition estimates for pink salmon

Fishing			Sample		DNA \% Estimates by Group		
Area/Gear ${ }^{1}$	$\text { Sector }^{2}$	Date	Type ${ }^{3}$	Size (n)	Fraser River	Washington	Canada South Coast
Johnstone Strait							
A12 PS	TF	Aug7	DNA	96	17\%	31\%	53\%
A12 PS	TF	Aug11	DNA	95	30\%	28\%	42\%
A12		Aug17	Prediction	1	43\%	25\%	32\%
Juan de Fuca Strait							
A20 PS	TF	Aug7	DNA	95	18\%	49\%	33\%
A20 PS	TF	Aug10	DNA	96	43\%	38\%	19\%
A20		Aug17	Prediction	1	51\%	34\%	15\%
Washington							

Area 20

Area 7

Fraser River Environmental Report for August 14, 2023

Observed Fraser River Temperature at Qualark for 14-Aug	$20.7^{\circ} \mathrm{C}$
Average (1991-2020) Historical Temperature on this day	$18.6^{\circ} \mathrm{C}$
Deviation from Average	$2.1^{\circ} \mathrm{C}$
Forecast Temperature for \quad 20-Aug-23	$21^{\circ} \mathrm{C}$

The forecast in Kamloops and Prince George is for above average air temperature until Aug 17 and 18, respectively. Air temperature is then forecast to drop to below average and then return to above average air temperature for the rest of the forecast period.

Observed Fraser River Discharge at Hope for 14-Aug	$2304 \mathrm{~m}^{3} \cdot \mathrm{~s}^{-1}$
Average (1991-2020) Historical Discharge on this day	$3265 \mathrm{~m}^{3} \cdot \mathrm{~s}^{-1}$
\% above or below Historical Discharge	-29%
Forecast Discharge for \quad 20-Aug-23	$2025 \mathrm{~m}^{3} \cdot \mathrm{~s}^{-1}$

The forecast in Kamloops is for 37 mm of precipiatation. The forecast in Prince George is for 24 mm of precipitation.

Temperature Legend

- Mean Temp (1991-2020)
.-- +/-sd
- Min Temp (1991-2020)
- Max Temp (1991-2020)
- Current Temp
- Forecast Temp
- Opt. T of stock group*
- Upper T range of stock group**

Discharge Legend

- Mean Dis (1991-2020)
.-- +/-sd
- Min Dis (1991-2020)
- Max Dis (1991-2020)
- Current Dis
- Forecast Dis
- E.Stuart Threshold $\left(\mathrm{m}^{3} \cdot \mathrm{~s}^{-1}\right)^{i}$
- E.Summer Threshold $\left(\mathrm{m}^{3} \cdot \mathrm{~s}^{-1}\right)^{\text {it }}$

[^1]| Upriver of Slide | Map \# | Current Temperatures 13-Aug | Daily Mean | Historic Mean | Deviation from Historical Mean | Historic Year Range |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fraser River Mainstem | | | | | | |
| | 1 | Fraser River @ Qualark | 20.7 | 18.6 | 2.1 | 1991-2020 |
| | 2 | Fraser River @ Texas Creek | 19.7 | 18.3 | 1.4 | 2006-2022 |
| | 3 | Fraser River @ Big Bar Creek | NA | NA | NA | 2019-2022 |
| - | 4 | Fraser River @ Marguerite | 18.5 | 18.4 | 0.1 | 2015-2022 |
| - | 5 | Upper Fraser @ Shelley | 15.9 | 15.3 | 0.6 | 1994-2022 |
| Fraser River Tributaries | | | | | | |
| | 6 | Thompson R. @ Ashcroft | 20.5 | 18.5 | 2.0 | 1995-2022 |
| | 7 | South Thompson @ Chase | 21.2 | 19.7 | 1.5 | 1994-2022 |
| | 8 | North Thompson @ McLure | 17.3 | 15.6 | 1.7 | 2006-2022 |
| - | 9 | Quesnel R. @ Quesnel | 18.7 | 17.1 | 1.6 | 2000-2022 |
| - | 10 | Nechako R. @ Isle Pierre | 19.0 | 18.7 | 0.3 | 2006-2022 |
| \checkmark | 11 | Stuart R. @ Ft. St. James | 19.5 | 18.7 | 0.8 | 2000-2022 |

Retrospective Analysis of methods to predict Summer-run pDBEs based on Low Discharge years

Performance using Low Discharge years

Model Performance in Low Discharge years

	MAE	MRE
	Pre-season Model (1977-present)	8%
All years Median (1977-present)	10%	4%
Supplemental Approach (1977-present)	12%	-8%
No DBE	11%	9%
19-day model Estimate (1977-present)	17%	-17%

Conclusions for low discharge years

- During low discharge years ($<2,500 \mathrm{cms}$), the mean absolute error and the mean raw error is smallest for the Preseason model compared to the All-years Median and the Supplemental Approach.
- The pre-season model is still the best performing model, even in low discharge years.

Summer run pDBE Forecast and Sensitivity Analysis forAugust 15, 2023

Based on the retrospective analysis evaluation of 2010-2021 for Summer run the best performing in-season model is the 31-day preseason model

Model Perfo Retrospectiv	rmance Bas e	on "In-season pD	E Approach"		Best	```Tied Second Best (too conservative)```	Tied Second Best (not conservative enough)	Least
Area 20 Date	Hells Gate Date	Average Temperature ${ }^{\circ} \mathrm{C}$	Average Discharge $\mathrm{m}^{3} / \mathrm{s}$	Current Adopted pDBE	31-day Preseason Model Predicted pDBE	Supplemental Approach Predicted pDBE	All-Years Median (1977-2022) Predicted pDBE	Current 19day Model Predictions Predicted pDBE
03-Aug	14-Aug	20.3	2192	-0.19	-0.19	-0.17	-0.07	-0.51
04-Aug	15-Aug	20.4	2177	-0.19	-0.19	-0.17	-0.07	-0.53
05-Aug	16-Aug	20.5	2159	-0.19	-0.19	-0.17	-0.07	-0.55
06-Aug	17-Aug	20.6	2142	-0.19	-0.19	-0.17	-0.07	-0.57
07-Aug	18-Aug	20.7	2126	-0.19	-0.19	-0.17	-0.07	-0.58
08-Aug	19-Aug	20.7	2110	-0.19	-0.19	-0.17	-0.07	-0.59
09-Aug	20-Aug	20.7	2093	-0.19	-0.19	-0.17	-0.07	-0.59
Implied pMA								
09-Aug	20-Aug	20.7	2093	0.23	0.23	0.20	0.08	1.44

2023 Fraser River sockeye salmon daily migration Timing updated based on Timing Correlations

2023 Fraser River sockeye salmon daily migration Timing updated based on Timing Correlations

2023 Fraser River sockeye salmon daily migration Timing updated based on Timing Correlations

2023 Fraser River sockeye abundance en-route to Mission
Current date: 15-Aug

	Escapement past Mission through 14-Aug	Projected abundance en route to Mission based on marine test fishery data ${ }^{1,2}$									Escapement + projections through 20-Aug
Area 20 date		09-Aug	10-Aug	11-Aug	12-Aug	13-Aug	14-Aug	Total	80\% P1 ${ }^{3}$		
Mission date		15-Aug	16-Aug	17-Aug	18-Aug	19-Aug	20-Aug		10p	90p	
Total Fraser	567,100	49,400	57,300	60,100	64,500	80,100	48,600	360,000	214,700	543,900	927,100
Early Summer Run	269,000	7,200	7,200	4,200	10,600	7,600	3,700	40,500	19,800	83,800	309,500
Chilliwack	31,200	0	1,100	200	200	0	0	1,500	700	3,100	32,700
Pitt/Alouette/Coquitlam	32,000	200	100	0	0	0	0	300	100	600	32,300
Nadina group ${ }^{4}$	175,400	4,400	4,800	3,200	7,900	6,800	2,700	29,800	14,600	61,700	205,200
Early Thompson ${ }^{5}$	30,400	2,600	1,200	800	2,500	800	1,000	8,900	4,400	18,400	39,300
Summer Run	242,600	32,900	46,600	44,100	49,600	66,100	31,300	270,600	165,100	389,700	513,200
Harrison / Widgeon ${ }^{2}$	6,400	100	100	800	0	200	400	1,600	1,000	2,300	8,000
Late Stuart / Stellako	56,200	6,800	13,800	12,800	9,300	13,500	4,800	61,000	37,200	87,800	117,200
Chilko	144,300	18,700	25,200	25,600	32,300	44,400	21,100	167,300	102,100	240,900	311,600
Quesnel	31,900	4,200	6,100	4,500	7,600	7,500	4,400	34,300	20,900	49,400	66,200
Raft / North Thompson	3,800	3,100	1,400	400	400	500	600	6,400	3,900	9,200	10,200
Late Run	14,600	9,300	3,500	11,800	4,300	6,400	13,600	48,900	29,800	70,400	63,500
Birkenhead / Big Silver	11,000	2,500	3,500	5,900	4,300	6,400	4,700	27,300	16,700	39,300	38,300
Late run excl Birkenhead	3,600	6,800	0	5,900	0	0	8,900	21,600	13,200	31,100	25,200

${ }^{1}$ En route catches are incomplete: catches from present and future fisheries must be deducted from projections and added to the catches removed
${ }^{2}$ Projected abundances en route to Mission include Harrison and Late runs, an uncertain number of which are expected to delay
${ }^{3} 80 \%$ Probabability Interval: there exists an 80% chance that the true abundance lies within this interval
${ }^{4}$ Nadina / Bowron / Gates / Nahatlatch / Taseko
${ }^{5}$ Early South Thompson / North Barriere
2023 Fraser River sockeye diversion rates through Johnstone Strait

2023 Fraser River Pink salmon diversion rates through Johnstone Strait

	5-day-average
Fraser pink salmon	29%

* Pink forecast diversion rate updated from 53% to 62% based upon the DFO forecast received in August

Pink In-season Update

August 15, 2023

Current Trends

- Continue to see unprecedented high catches in marine test fisheries
- Low abundances of pinks observed in the river to-date
- Added cumulative CPUE as another piece of evidence that the run is exceeding the pre-season p75 (8.6M)

Daily abundances by Area
Area 20 expansion line: 900

Overall run size (for overlapping days only)
2-day assumed offset between Area 12 and Area 20

Pink Salmon Run Size Weight of Evidence
Default Run Size Method: PreSeason Forecast
6.1M (4.4-8.6M 50\% PI)

2023-08-15

$<4.4 \mathrm{M}(\mathrm{p} 25)$	$4.4-8.6 \mathrm{M}(\mathrm{p} 25-\mathrm{p} 75)$	$>8.6 \mathrm{M}(\mathrm{p} 75)$
	\square	$\square \square \square \square$

Default run size estimate $=$ PreSeason Forecast
\square Alternative run size estimate

| Models | Description | |
| :--- | :--- | :--- | :--- |
| PreSeason Forecast | \square | Recruits per spawner (mean) |
| Time Density Model | \square | Bayesian fit to CPUE*EL data (prior to peak of the run) |
| SST Regression | \square | June SST at Pine Island vs. run size |
| Cumulative CPUE | \square | Cumulative CPUE to date vs. run size |
| Power(fry) forecast | \square | Recruits per spawner |

2023 Fraser River run size and timing estimates
The information presented on this page has been prepared by PSC Secretariat Staff. All in-season estimates of run size and timing should be considered draft preliminary estimates unless adopted by the Fraser River Panel.
Preseason forecasts, inseason estimates, and official estimates of run size and associated timing

				Run S					Run size co	mponents					iming ${ }^{1}$		
	Inseason	Preseason	Insea	on estimate			Method	Catch +	6-day	Seaward	Migration	Inseason	Preseason	Inseason	Inseas	80\% PIs ${ }^{2}$	Method
	Adopted	Forecast			10\% PI	$90 \% \text { PI }$		Escapement	Projection ${ }^{3}$	Abundance		Adopted	Forecast		10\% PI	90\% PI	
Early Stuart Run	41,000	23,000	\checkmark	41,000	41,000	41,000	Recon	41,000	0	0	0	02-Jul	07-Jul	02-Jul	02-Jul	02-Jul	Recon
Early Summer Run	290,000	186,000	\bigcirc	295,000	277,000	313,000	Sum	273,000	17,000	5,000	0	23-Jul	06-Aug	23-Jul	22-Jul	24-Jul	Weight
Chilliwack		2,000	\bullet	33,000	32,000	33,000	Recon	31,000	2,000	0	0		$20-\mathrm{Jul}$	$05-\mathrm{Jul}$	05-Jul	$05-\mathrm{Jul}$	Recon
Pitt/Nadina Group ${ }^{4}$		123,000	\bullet	223,000	213,000	235,000	Recon(2)	210,000	9,000	4,000	0		05-Aug	24-Jul	23-Jul	25-Jul	Recon(2)
Early Thompson ${ }^{5}$		61,000	\bigcirc	39,000	32,000	45,000	Model	32,000	6,000	1,000	0		09-Aug	03-Aug	02-Aug	05-Aug	Model
Summer Run	NA	1,167,000	\diamond	695,000	537,000	908,000	Sum	247,000	237,000	207,000	4,000	NA	17-Aug	11-Aug	09-Aug	14-Aug	Weight
Harrison / Widgeon		51,000	\diamond	15,000	10,000	25,000	Model	7,000	2,000	2,000	4,000		12-Aug	31-Jul	28-Jul	03-Aug	Model
Late Stuart / Stellako		196,000	\diamond	124,000	101,000	150,000	Model	57,000	29,000	38,000	0		13-Aug	09-Aug	07-Aug	11-Aug	Model
Chilko		591,000	\diamond	443,000	338,000	585,000	Model	147,000	167,000	129,000	0		17-Aug	12-Aug	09-Aug	15-Aug	Model
Quesnel		319,000	\diamond	98,000	78,000	125,000	Model	32,000	34,000	32,000	0		19-Aug	13-Aug	10-Aug	15-Aug	Model
Raft / North Thompson		10,000	\diamond	15,000	10,000	23,000	Model	4,000	5,000	6,000	0		23-Aug	12-Aug	09-Aug	16-Aug	Model
${ }^{1}$ Run timing refers to the date whe	the run migrated	d past the Area 20	0 referen	e point.				Methods for run siz	ize \& timing estimai	tion							
${ }^{2} 80 \%$ Probability Interval: there ex	\% chance that th	e true abundance	e lies wit	in this interval				Model	Run size assessmen	ent model (median)							
${ }^{3}$ Normally based on test fishery da	on Model if Me	hod $=\operatorname{Recon}(2)$.						Recon	Catch + escapemen	ent +6 -day test fish	projection + model	seaward projec					
${ }^{4}$ Pitt / Alouette / Coquitlam / Nadi	on / Gates / Nala	atatath / Taseko						Recon(2)	Catch + escapemen	t + model projectio							
${ }^{5}$ Early South Thompson / North Ba								Sum	Sum of individual	roups							
								Weight	Weighted average	of individual groups							

Run Size Uncertainty Legend

$\checkmark \geq 95 \%$ of the run size has been accounted for in catch + escapement. Clear indication of run size; minor run size updates still expected

- 270% of the run size has been accounted for in catch + escapement. Good indication of run size; peak fo the run has been observed at
- $\geq 50 \%$ of the run size has been accounted for in catch + escapement. Decent indciation of run size; $\geq 50 \%$ confirmed at Mission
$\diamond<50 \%$ of the run size has been accounted for in catch + escapement. Uncertain or early indciation of run size based on marine data
The Run Size Uncertainty Indicator is a categorical indication of the degree of uncertainty present in the run size estimate. Estimates are categorized
quantitative
quantitatively based on the proportion of the run that has been accounted for with high certainty in catch + escapement.

2023 Predicted Fraser River Sockeye Mortality in Area 7/7A Pink Directed Purse Seine Fisheries

The actual pink salmon catch of proposed fisheries should not exceed the available total allowable catch for pink salmon Pink salmon catches below the expected daily abundances would cause predicted sockeye mortality to be reduced proportionally

Area 7 date	Fraser River pink salmon ${ }^{1}$ Daily predicted catch ${ }^{6}$			\% Sockeye Abundance$S /(S+P)$	Total	Fraser River Sockeye Salmon ${ }^{2,7}$			TRT harvest rate ${ }^{3}$	AC harvest rate ${ }^{3}$	Sockeye Release Mortality rate 4	Sockeye Retention Policy		Predicted mortality of Sockeye ${ }^{5}$	
	Predicted abundance ${ }^{8}$	Treaty Tribes	All Citizen			E. Summers	Summer	Lates				Treaty Tribes	All Citizen	Total Treaty Tribes	Total All Citizen
14-Aug	328,600	77,653	66,870	10.5\%	38,488	2,652	27,781	8,056	12\%	10\%	25\%	Retention	Non-Retention	4,541	977
15-Aug	374,300	88,359	76,089	8.5\%	34,693	7,695	24,795	2,203	12\%	10\%	25\%	Retention	Non-Retention	4,093	881
16-Aug	420,800	99,230	85,450	3.3\%	14,262	2,566	10,261	1,435	12\%	10\%	25\%	Retention	Non-Retention	1,682	362
17-Aug	466,400	107,352	92,445	7.1\%	35,762	3,315	22,523	9,925	12\%	10\%	25\%	Retention	Non-Retention	4,219	908
18-Aug	509,600	120,030	103,363	5.3\%	28,239	4,525	19,193	4,521	12\%	10\%	25\%	Retention	Non-Retention	3,331	717
19-Aug	549,350	129,347	111,385	4.9\%	28,239	4,525	19,193	4,521	12\%	10\%	25\%	Retention	Non-Retention	3,331	717
20-Aug	584,600	137,549	118,448	4.6\%	28,239	4,525	19,193	4,521	12\%	10\%	25\%	Retention	Non-Retention	3,331	717
21-Aug	613,400	144,294	124,257	4.4\%	28,239	4,525	19,193	4,521	12\%	10\%	25\%	Retention	Non-Retention	3,331	717
22-Aug	634,900	148,529	127,904	4.3\%	28,239	4,525	19,193	4,521	12\%	10\%	25\%	Retention	Non-Retention	3,331	717

${ }^{1}$ Assumed travel time for pink salmon from Area 20 to Area 7 is 6 days
${ }^{2}$ Assumed travel time for sockeye salmon from Area 20 to Area 7 is 3 days
${ }^{3}$ Assumes fixed daily sockeye harvest rate combined over 7/7A. TRT effort $=8$ PS equivalents; AC effort $=5$ PS equivalents
${ }^{4}$ Sockeye release mortality of 25% applied to purse seine catches based on past studies
${ }^{5}$ Assumes Treaty Tribes and All Citizen fisheries will take place on different days
${ }^{6}$ Assumes fishing on 3 days (or blocks) of pink salmon. Does not account for any depletion effects.
${ }^{7}$ Sockeye abundance for last 5 days are is based on a 3-day average of preceding values
${ }^{8}$ Pink salmon daily abundances are based on a time-density run-size model

2023 Predicted Fraser River Sockeye Mortality in Area 7/7A Pink Directed Gillnet Fisheries

The actual pink salmon catch of proposed fisheries should not exceed the available total allowable catch for pink salmon
Pink salmon catches below the expected daily abundances would cause predicted sockeye mortality to be reduced proportionally

${ }^{1}$ Assumed travel time for pink salmon from Area 20 to Area 7 is 6 days
${ }^{2}$ Assumed travel time for sockeye salmon from Area 20 to Area 7 is 3 days
${ }^{3}$ TRT effort $=24$ gillnet vessels; AC effort $=10$ gillnet vessels
Sockeye release mortality of 60% applied to gillnet catches based on past studies
${ }^{5}$ Assumes Treaty Tribes and All Citizen fisheries will take place on different days
${ }^{6}$ Assumes fishing on 3 days (or blocks) of pink salmon. Does not account for any depletion effects.
${ }^{9}$ Sockeye abundance for last 5 days and pink abundance for last 2 days is based on a 3 -day average of preceding values
${ }^{10}$ Harvest rate of pink salmon is estimated to be 1% of the sockeye harvest rate
${ }^{11}$ Pink salmon daily abundances are based on a time-density run-size mode

2023 Predicted Fraser River Sockeye Mortality in Area 4B/5 Pink Directed Fisheries

The actual pink salmon catch of proposed fisheries should not exceed the available total allowable catch for pink salmon Pink salmon catches below the expected daily abundances would cause predicted sockeye mortality to be reduced proportionally

${ }^{1}$ Assumed travel time for pink salmon from Area 20 to Area $4 B / 5$ is 0 days
${ }^{2}$ Assumed travel time for sockeye salmon from Area 20 to Area $4 B / 5$ is 0 days
${ }^{3}$ Assumes fixed daily sockeye harvest rate combined over Area 4B/5. TRT effort $=3$ vessels
${ }^{4}$ Sockeye release mortality of 60% applied to gillnet releases based on past studies
${ }^{5}$ Assumes fishing on 1 day (or block) of fish.
${ }^{6}$ Sockeye and pink salmon abundance for last 3 days is based on a 3-day average of preceding values
'Harvest rate of pink salmon is estimated to be 1% of the sockeye harvest rate
${ }^{8}$ Pink salmon daily abundances are based on a time-density run-size model

[^0]: * Alaska data are processed post-season and so are unavailable in-season.
 ** Includes Qualark
 *** All catches in marine areas and in the Fraser River downstream of Mission.
 **** May include unauthorized directed retention or unauthorized bycatch retention in fisheries directed at other species

[^1]: Run timing bars represent a 31 day spread of the run centered around the Hell's Gate date. Hell's gate timing is 5 days from Mission for Early Stuart and Late run; and 4 days from Mission for Early Summer and Summer run.'pMA is the proportional increase to spawning escapement targets to help ensure targets are achieved."\%DBE is \%difference betweeen estimates of potential spawning escapement and spawning escapement.*This is the optimum temp for aerobic swimming - $T_{\text {opt }}$ (Eliason et al. (2011). Science 332 : 109-112)**This is the upper range of the optimum temp for aerobic swimming - $\mathrm{T}_{\text {pejus }}$. Discharge threshold of 8000 cms for Early Stuart from Macdonald (2000). Can. Tech. Rep. Fish. Aquat. Sci. 2315: 120p. iiDischarge threshold of 6500cms for Early Summer run from Macdonald et al. (2010). Trans. Am. Fish. Soc. 139: 768-782. 19 days of T \& Q data are required to calculate a pMA - 15 days before the Hell's Gate Date and 3 days after. MA estimates can be calculated 4 days after the Area 20 date.

