Effects of climate and competition on the productivity and demography of Pacific salmon

Jan Ohlberger 1,2

- ¹ Science Division, Fish Program, Washington Department of Fish and Wildlife
- ² School of Aquatic and Fishery Sciences, University of Washington

Acknowledgements

Collaborators

- Daniel Schindler (UW)
- Tim Cline (U Michigan)
- Eric Ward (NOAA)
- Bert Lewis (ADFG)
- Rich Brenner (ADFG)
- Mary Hunsicker (NOAA)
- Stormy Haught (DFO)
- Dave Finnoff (U Wyoming)
- Mike Litzow (NOAA)
- Toby Schwoerer (UAF)
- Greg Ruggerone (NRC)
- Claudine Hauri (UAF)
- Sam Brenkman (NPS)
- Pat Crain (NPS)
- Ray Hilborn (UW)
- Tom Quinn (UW)
- George Pess (NOAA)
- Jeff Duda (USGS)

Funding

Causes of changing productivity & demography

Multiple natural and human stressors affecting salmon growth and survival

Predators

Causes of changing productivity & demography

Effects of climate and competition

Floods causing egg scour

spawning

Ocean

adult

adult

Competition for spawning sites (intraspecific)

Low flows and heat stress causing pre-spawn mortality

Competition for food in the ocean (intra-/interspecific)

Ocean temperatures affecting growth/survival

parr

smolt

Competition for juvenile prey and habitat (intraspecific)

Freshwater temperatures affecting juvenile growth and migration timing

Competition with hatchery-origin fish in nearshore habitats (intra-/interspecific)

Causes of changing productivity & demography

Effects of climate and competition

Changes in life-history characteristics

Are changes in freshwater and ocean residence associated with climate warming and/or competition in the ocean?

Climate effects on juvenile outmigration timing

Competition effects on ocean residence

Effects of competition and climate on size

What are the main drivers of changing size-at-age?

Effects of competition and climate on size

What are the main drivers of changing size-at-age?

Ohlberger et al. unpublished

Effects of competition and climate on size

What are the contributions of shifts in size-at-age vs age structure to changes in mean body size?

Ohlberger et al. unpublished

Chinook salmon coast-wide

Declines in mean size in escapements

Pacific salmon in Alaska

Changes in body size of Chinook, chum, coho, and sockeye salmon (Oke et al. 2020)

Productivity

Coho salmon on the WA coast

Effects of river flow on freshwater productivity

Coho salmon on the WA coast

Effects of river flow on freshwater productivity

Pink salmon in PWS

Effects of climate and competition on wild pink salmon productivity

Are wild pink salmon impacted by climate warming, ocean acidification, and/or competition with hatchery pinks?

Majority of pink salmon returns are natural-origin, except in PWS

Source: Ruggerone and Irvine 2018

Pink salmon in PWS

Effects of climate and competition on wild pink salmon productivity

Ohlberger et al. 2022

Pacific salmon coast-wide

Effects of SST on pink, chum, and sockeye salmon productivity (Mueter et al. 2002)

Conclusions

- Climate and competition affect population productivity but also life-history traits and demographic structure
- Salmon growth and survival at sea are impacted by competition within species and among species
- Effects of climate change can vary by life-stage, season, latitude, species, and may be non-stationary

Outlook

Challenges in salmon research, conservation, and management

1. Limited inference about the ocean ecology of salmon

- ▶ How do we best manage based on incomplete information (e.g. correlations rather than process studies)?
- ▶ Are experimental manipulations at the basin-wide scale possible (e.g. changing hatchery production)?

2. Promoting climate resilience of salmon populations

- ▶ Which management strategies or conservation actions are most likely to promote the biological diversity of stocks, life-histories, genetics?
- ▶ Given climate change, where is recovery of at risk populations likely to be possible over the next few decades?

3. Monitoring and managing populations for ecosystem change

▶ How can we build flexible systems that can detect and respond to ongoing ecosystem changes?

4. Uncertainty in population models and future projections

- ▶ How certain are projections for unobserved ecosystem states (e.g. extreme events, tipping points, non-linearities, 'no analogue' futures)?
- ▶ What are the most robust strategies for assessing and managing populations given large knowledge gaps and limitations in predicting the future?