Climate Change and Pacific Salmon

Note Mantua

NOAA/NMFS Southwest Fisheries Science Center

Santa Cruz, CA

Environmental Indicators Workshop
May 11, 2021

Climate is a key part of salmon habitat

Their complex lifecycle puts them in mostly highly dynamic climate-driven habitats

The Regime Concept in Pacific Salmon Production

Beamish and Boullion (1991, 1993) report a relationship between the Aleutian Low Pressure system and Pacific salmon production – prolonged periods of stability separated by rapid shifts

Catch figure from npafc.org

The Pacific Decadal Oscillation and Salmon Production Regimes

Pacific Decadal Oscillation (PDO)

Hare and Francis 1995; Mantua et al., 1997; Hare et al. 1999

Catch figure from npafc.org

Two regimes in the North Pacific?

Beamish and collaborators, late 1990s NPAFC reports: No – there are multiple and different kinds of states

The North Pacific Gyre Oscillation and West Coast Coho and Chinook salmon SARs

D. Patrick Kilduff et al. PNAS 2015;112:35:10962-10966

The two leading patterns of Northeast Pacific SST variations account for most of the year-to-year variability

These variations aren't limited to 20-30 year regimes

Non-stationarity in Alaska climate-salmon relationships (Litzow et al. 2018, Proc. R. Soc. B.)

- non-stationary relationships between Gulf of Alaska salmon catch and SST (PDO too)
- NPGO pattern has had increasing variance since the 1990s

Frequent Marine Heatwaves from 2014-2020

Extreme and persistent warm periods have affected the Bering and Chukchi Seas, Gulf of Alaska, and California Current, with widespread impacts on marine life and fisheries.

https://www.fisheries.noaa.gov/feature-story/new-marine-heatwave-emerges-west-coast-resembles-blob

US Federal Fishery Disaster Timeline

from https://www.fisheries.noaa.gov/national/funding-and-financial-services/fishery-disaster-determinations

Severely restricted or closed salmon fisheries

Increasing frequency of:

- California Drought
- Washington Flooding
- Coastwide warm and poor ocean conditions

The Changing Climate and Context of West Coast Salmon

Climate Extremes: A warming climate and an era of frequent drought; an increased frequency of ocean extremes

Evolving salmon production system: Loss and degradation of natural FW+estuary habitats; increasing hatchery contributions and reliance on releases of large smolts; evidence for increased synchrony among populations

Evolving marine food webs: increases in top predators (whales, sea lions, harbor seals, and some sea birds); boombust cycles in key forage fish (California sardines, northern anchovy)

Era of super-abundant pink salmon: increasing evidence for competition between abundant pinks and N. American sockeye salmon, especially bad for "southern" sockeye in warm ocean years (see Connors et al. 2020, CJFAS)

A warmer and wetter future for most salmon watersheds

- More warming at the highest latitudes
- Largest precipitation increases at higher latitudes
- Ocean warming, acidification, and deoxygenation of the subarctic North Pacific Ocean

CLIMATE PROJECTIONS: OXYGEN, PH

Shrinking sockeye salmon thermal ahabitat

- 10-20% area reductions observed in recent MHW years
- Habitat area projected to decline ~38% in winter, and 45% in summer, under A1B emissions by late 21st century

(Welch et al. 1998, CJFAS; Aziz et al., 2011, CJFAS)

Lindley et al, NPAFC/IYS poster 2021

West Coast Climate Change Vulnerability Assessment for salmon (Crozier et al. 2019: PLoS ONE)

warmer, bigger floods, lower summer low-flows, less snowpack, ocean warming and acidification

- adding climate stress to already stressed ESA-listed salmon/steelhead populations
- Recovery and adaptation or extirpation?

Salmon life
histories for
example
ecotypes
(from Crozier et al. 2019:
PLos ONE)

communications

biology (Nature, 2021)

ARTICLE

https://doi.org/10.1038/s42003-021-01734-w

OPEN

Climate change threatens Chinook salmon throughout their life cycle

Lisa G. Crozier ¹ Brian J. Burke ¹, Brandon E. Chasco ¹, Daniel L. Widener ² & Richard W. Zabel ¹

- Climate change impacts were found to be most dramatic in the marine stage – with rising SST especially important
 - this study focused on populations using highelevation, high-quality spawning and rearing habitat in Idaho's Salmon River
- Freshwater or marine limiting factors need to be addressed for these 8 populations to persist in a warming ocean

Summary of Ocean Changes

We are entering an era of rapid ocean change:

- High frequency of extreme warm events in the NE Pacific since the 1980s caused widespread ecosystem and fishery impacts
- Climate models predict ocean extremes will become more frequent and intense as warming trends accelerate
- 2014-16, 2019, 2020 marine heatwaves were not predicted in advance!

Ecosystem responses to future climate change:

- In the next decade or two, slower trends in the ocean may still be hard to detect in the presence of large year-to-year variations
- Chronic, climate-sensitive fishery challenges likely to become more frequent and intense (*West Coast Chinook salmon)
- A "no-analog future"? As we move deeper into ocean states without historical analogs, expect novel and surprising *ecosystem impacts* and fishery management challenges

Climate Insurance for salmon requires actions that promote resilience

Reduce existing stressors to make space for climate change before it is too late

 This means undoing the 4-H's that have put many salmon populations on the brink without climate change

Protect intact salmon habitat and resilient populations