Species composition estimation

 using hydro-acoustic fish length data within a Bayesian mixture modelCatherine G.J. Michielsens, Fiona J. Martens, Jacqueline L. Nelitz and Yunbo Xie
Pacific Salmon Commission, Vancouver, B.C

Introduction
Introduction

Hydro-acoustic data are routinely used to estimate daily
salmon passage in the Fraser River but thus far these
data have not been able to odentify salmon species.
Dual frequency IDentification foNar (DIDsoN) hydro-
acoustic data was examined to determine if it can be
used to estimate the relative abundance of pink and
sockey salmon based on the frequency distributions of
hydro-acoustic fish length as measured from the
DiDSoN acoustic fish images.
Objectives
(1) Evaluate biological and hydro-acoustic fish length
difference between pink and sockeye salmon
2) Estimate the relatite abundance of both species
using simulated mixtures of hydro-acoustic length
data collected when only one species is dominating
the migration.
3) Evaluate the impact of including prior knowledge
about hydro-acoustic fish length or relative
abundance of pink and sockeye salmon on relative
abundance estimates
4) Estimate in-season changes in species proportions
4)

\section*{Data collection

Data collection
 The post-orbital-to-fork (POF) lengths of 3465 sockeye

 and 1530 pink salmon cauwere measured (Fisure 2).
Hydro-acoustic total length data were collected at Mission, BC, using a standard DIDSON (Xie et al. 2005) (Figure 1a). Fish lengths were measured using the Mark Fish feature in the DIDSON software (Figure 1b).
To collect hydro-acoustic length data from fish of a known species, 644 length measurements were taken Similarly 1861 hydro-acoustic fish lengths were measured in 2007 when the salmon migration was dominated by pink salmon (Figure 2).
From July to September 2009, 4215 sockeye and pink salmon were measured during their migration using the
DIDSON (Figure 4). DIDSON (Figure 4).

Collection of high frequency hydro-acoustic fish length data using DIDSON sonar

Comparison of biological fish length data with hydro-acoustic fish length data

Comparison of model predicted proportions of pinks against true proportions assuming different amounts of prior knowledge on mean hydro-acoustic length and pink proportions

Results and Discussio

dro-acoustic versus POF length data
Because hydro-acoustic fish lengths are estimated from fish images obtained through sonar they are subject to larger uncertainty than POF measurements (Figure 2). Compared to POF length distributions, the indicating larger measurement erro
The joint distribution for hydro-acoustic length data for pink and sockeye salmon does not provide a clear indication of the peak of the length distributions of the individual species (Figure 2).
Using simulated data to evaluate model performance
Data sets of 150 hydro-acoustic fish measurements were simulated assuming different proportions of 2007 Pink and 2006 Sockeye data. The proportion of pink salmon against the true proportion (Figure 3). Prior information on mean hydro-acoustic length and expected increasing
proportion of pink salmon improves the accuracy of the estimates.

- Because pink salmon migrate later than sockeye salmon, it is not possible
to know the mean hydro-acoustic pink salmon length until the end of the to know the mean hydro-acoustic pink salmon length until the end of the
season when all sockeye migrations have completed. When including season when all sockeye migrations have completed. When including
known mean lengths, proportion estimates are less biased (Figure 3 c vs. 3a). It is possible to obtain similar information in-season by comparing the POF length in the current year with the POF length in previous years coustic length accordingly
Proportion estimates for 2009
When using the Bayesian mixture model to estimate the proportion of pink salmon in 2009 (Figure 4), results can be compared against the species information obtained by fish wheel (Karl English, pers.com.) and sampling (Keith Forrest, pers.com.) within the same are
The DIDSON-derived pink proportion estimates show a similar increase in
stock proportion estimates as the data collected by the fish wheel (Figure stock proportion estimates as the data collected by the fish wheel (Figure
4). The discrepancies near the start and the end of the time series might be due to bias caused by co-migrating species especially when abundances of pink and sockeye salmon are low. The discrepancies with the set net might be caused by the fact that the net has a greater efficiency for sockeye than for the smaller-sized pink salmon.

Preisiona bias in the proportion estimates

- The higher the sockeye and pink abundance and the larger the DIDSON sample size, the better the hydro-acoustic length distributions are
defined. Increasing the sample sizes would increases the precision of the estimates but would not necessarily reduce the bias.
- Biases in estimates of proportions can result when the hydro-acoustic Biases in estimates of proportions can result when the hydro-acoustic
length distribution deviates from the normal distribution. For sockeye least
salmon this can be due to the presence of fish of different ages. Also the occurrences of co-migrating species, especially during periods of low
sockeye or pink abundance, can bias results.

References

Fleischman, S. J. and D. L. Burwen. 2003. Mixture models for the species apportionment of hydroacoustic data with echo-envelope length as the
discriminatory variable. ICES Journal of Marine Science 60: $592-598$.
Xie Y, A. P. Gray F.J. Martens, 1 L Boffey and I D. Gave 2005. Use of dar Xie, Y., A. P. Gray, F. J. Martens, J. L. Boffey and J. D. Cave. 2005. Use of dualbehaviour in the Fraser River. Pacific Salmon Comm. Tech. Rep. No. 16: 58 p .

[^0]
[^0]: We thank Karl Englsh (LGL I. Inited) and Keinh forrest (PSC) for the use of stock.

