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Abstract 

Canada’s Wild Salmon Policy requires the biological assessment of conservation units (CUs) of 
Pacific salmon to ensure their conservation for future generations. A “stop light” approach has 
been adopted that uses stock-recruit information and benchmarks to assign green, amber, or red 
status to CUs. Data limitations for many CUs require the exploration of revised benchmarks to 
ensure conservation objectives are achieved when stock-recruitment data are not available. In 
this study we compare the performance of revised benchmarks that consider variation in 
productivity and exploitation rates using prospective simulation modelling and retrospective 
analyses of empirical data for chum salmon in southern BC. In retrospective analyses, we found 
that benchmarks based on percentiles of escapement time series are generally more precautionary 
than previously adopted stock-recruit based benchmarks for the seven CUs of chum salmon 
analyzed here. The simulation study yielded similar results. In most cases percentile benchmarks 
were a precautionary choice to reach conservation objectives. However, when population 
productivity was low and harvest rates high, neither benchmark type was precautionary and 
percentile-based benchmarks were especially risky. Data truncation methods that aim to adapt 
benchmarks to current productivity regimes and exploitation rates were variably effective, 
depending on the benchmark type and current population dynamics, and should therefore be 
considered carefully on a case-by-case basis.  

Introduction 

The Pacific Salmon Treaty (PST) Chum Annex requires biological benchmarks to inform the 
development of fishery reference points for PST related fisheries; including the lower fishery 
reference point for the Johnstone Strait fisheries and subsequent terminal fisheries.  Biological 
benchmarks for data-limited populations have been proposed and are currently being applied to 
Conservation Units (CUs; population units of biological assessment under Canada’s Wild 
Salmon Policy) of chum salmon in southern BC. However, recent simulation modelling has 
shown that these benchmarks, which are derived from time-series of spawner abundance alone, 
are associated with high probabilities of extirpation under low and/or declining stock 
productivity (Holt and Folkes 2015). In addition, previous unpublished studies suggest these 
benchmarks may be higher than necessary to achieve conservation objectives when exploitation 
rates are low (cited in Fair et al. 2010).  

Reference points that are currently being used for management are 20-35 years out of date, and 
do not reflect current trends in productivity, stock status, or other ecosystem considerations. 
Benchmarks of biological status (and revised versions developed here for southern BC CUs) can 
be used to inform reference points and resulting management decisions (Holt  and Irvine 2013). 
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Certain fisheries in both countries are known to impact chum salmon originating from the other 
country (Pacific Salmon Commission Joint Chum Technical Committee 2013). 

To address these gaps, our original research objectives were to (1) identify candidate revised 
benchmark(s) for data-limited CUs (having time-series of relative abundance of spawners only) 
that account for persistent changes in productivity and/or variability in exploitation rate history, 
and (2) compare performance of revised benchmarks that account for changes in productivity 
and variability in exploitation rate history for data-limited CUs against benchmarks derived from 
data-intensive methods using prospective, simulation modelling, and retrospective analyses of 
empirical data. 

However, the methods proposed to address these objectives include comparisons of benchmarks 
derived for data-limited with data-rich scenarios, and require assumptions about data quality.  
Given pervasive observation errors, inconsistent data, and uncertainties in assessments, estimates 
of benchmarks will differ from underlying “true” values. Previous evaluations of the relative 
performance of benchmarks have not fully accounted for these data uncertainties. Therefore, we 
revised the first objective to evaluate benchmarks given uncertainties in underlying data. In 
addition, we focused our evaluation of methods for accounting for productivity changes to a data 
truncation approach (objective 2). This approach uses subsets of time-series data to estimate 
benchmarks when productivity or capacity has changed over time.  

Our revised objectives were: 

(1) Identify relative performance of benchmarks for data-limited CUs that use either 
spawner-recruitment data or time-series of spawner abundances alone (percentile-based 
benchmarks) by assessing how well they track benchmarks derived from the “true” 
underlying stock-recruitment parameters assuming perfect knowledge. Performance 
isevaluated in (a) retrospective analyses of empirical data and (b) a simulation model of a 
hypothetical CU. 

(2) Use simulation analyses to compare percentile-based benchmarks that have been revised 
to account for changes in capacity and/or productivity against benchmarks derived from 
data-intensive methods, where revised benchmarks are calculated by limiting time-series 
to either historical high-production (productivity) or current low-production 
(productivity) regime.  

                                                                       

Canada’s Wild Salmon Policy and biological benchmarks 

Canada’s Wild Salmon Policy (2005) outlines strategies to ensure the conservation of 
wild Pacific Salmon for future generations. The policy requires the biological assessment of CUs 
into one of three status zones: green, amber and red. The lower benchmark, delineating red and 
amber zones, is to be established at a level ensuring the CUs is buffered from being considered at 
risk of extinction under COSEWIC, the Committee on the Status of Endangered Wildlife in 
Canada, taking into account data uncertainties and harvest management. The upper benchmark, 
delineating amber and green zones is the escapement level associated with the maximum average 
annual catch, under current environmental conditions. While this policy lays out a basic 
framework for the assessment of conservation status of CUs, it does not require a single set of 
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benchmarks for all CUs. Rather, it states that benchmarks will be determined on a “case-by case 
basis, and depend on available information and the risk tolerance applied” (DFO2005).  

 For populations with time-series of stock-recruit data, benchmarks were identified by  
Holt  et al. (2009) to be robust to uncertainties in underlying stock productivity. These 
benchmarks are based on the Ricker stock-recruit relationship, which is widely used for pacific 
salmon populations (Ricker 1975). The lower benchmark, Sgen, is the number of spawners 
required to rebound to SMSY within one generation, under equilibrium conditions, in the absence 
of fishing. The upper benchmark is 80% of SMSY , the number of spawners required to achieve 
maximum sustainable yield (MSY). Alternatively, for those CUs with limited or uncertain stock-
recruit data, alternative benchmarks are being developed. Percentile-based approaches have been 
proposed for determining sustainable escapement goals (SEGs) or conservation benchmarks 
under Canada’s Wild Salmon Policy (Clark et al. 2014, Holt  and Folkes 2015). These methods 
require escapement data only, and simply compare current escapement levels with the percentiles 
of historical observations. The Alaska Department of Fish and Game (ADF&G) compared 
various percentiles as a basis for SEGs (intended to approximate ܵெௌ௒) in a simulation evaluation 
and retrospective analysis (Clark et al. 2014). Based on this work, a multi-tier system was 
recommended, where percentile values for SEGs are chosen based on data contrast, data 
uncertainty, and harvest rates. In particular, Clark et al. (2015) recommend that percentile-based 
SEGs not be used when harvest rates are high (> 40%), or spawner and recruitment data show 
little contrast over time, and measurement error is high. Our evaluation differs from Clark et al. 
(2015) in that we evaluated the extent to which percentile-benchmarks are consistent with 
biological benchmarks already identified under the Wild Salmon Policy, instead of applying (and 
evaluating) them as escapement goals for management at MSY levels. For data-limited chum 
salmon CUs in southern BC, percentile benchmarks at the 25th and 75th percentiles have been 
proposed and provisionally implemented as lower and upper benchmarks, respectively (Hilborn 
et al. 2013). These percentiles are higher, and therefore more conservative, or precautionary, than 
SEGs proposed by the ADF&G.   

In this report, we first provide Methods and Results for Objective 1(a), evaluating data-limited 
benchmarks using retrospective analyses, followed by Objective 1(b), evaluating data-limited 
benchmarks in simulation (Objective 1b). We then describe Methods and Result for Objective 2,  
evaluating benchmarks that use truncated time-series data to account for changes in productivity, 
and provide a synthesis Discussion for both objectives.  
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Objective 1a. Evaluating benchmarks using retrospective analyses  

In retrospective analyses, we compared biological status of 7 CUs of Inner South Coast chum 
salmon using data-rich and data-limited benchmarks derived from historical time-series data. 
Escapement data is available for these CUs from 1953-2012, while CU-specific return data was 
reconstructed from exploitation rates, migration timing and patterns, spawner abundances, and 
age distributions, for brood years 1955-2006 (P. van Will pers. comm. 2016). Run 
reconstructions use catch data and information about migration timing and patterns of fish from 
specific CUs through different fisheries to estimate the number of returning fish originating from 
each CU. However, CU-specific return estimates are very sensitive to uncertainty in migration 
timing and patterns (see Korman J. et al. 2013). In years where spawner abundances were 
missing, data have been infilled using standard approaches (Van Will 2014). On average, across 
CUs and years, 45% of sampling sites were surveyed (ranging from 27% for Howe Sound – 
Burrard Inlet to 57% for Bute Inlet). Infilling occurred at the CU level for 2 CUs in years where 
no sites were surveyed (17 of 61 years for the Upper Knight CU and 8 of 61 years for the Bute 
Inlet CU). Fitting the Ricker model to uncertain data can lead to biased parameter estimates 
because of observation errors-in-variables and time-series biases (Walters and Martell 2004). 
Time-series are relatively long (51 years) and contrast in escapement observations is relatively 
high (ratio of maximum to minimum spawner abundances ranged from 8-2600, mean=481), 
which may ameliorate these biases. However, caution in the interpretation of results is warranted. 
These results should be considered with those from simulation model that incorporates multiple 
sources of data uncertainties (Objective 1b). 

For the data-rich scenarios, we compared benchmarks derived from two different forms of the 
Ricker model, the standard model which estimates parameters independently for each CU, and a 
hierarchical model where CUs are assumed to have similar productivities. Hierarchical models 
may reduce uncertainties and biases in parameter estimation mentioned above by sharing 
information on productivity across CUs. CU-specific productivities were drawn from a global 
hyper-distribution given evidence for spatial covariation in productivity among populations 
within regions (Pyper et al. 2002). Following the results of Holt  and Folkes (2015) who 
investigated the impacts of temporal changes in productivity, we further identified temporal 
trends in productivity over time in these CUs using a recursive Bayes modelling approach.  

Methods 

Stream-specific escapement for inner south coast chum were aggregated to the CU level, and 
identified as either wild, or enhanced (hatchery-origin fish, or those fish used for hatchery brood 
stock). Wild escapement were infilled at the stream level and then again at the CU level when 
there were no escapement estimates for a site within a given CU or a CU within the inner south 
coast region. Infilling assumed that sites within CUs, and CUs within the region contributed their 
geometric average proportion of overall escapement in years when data were missing. Infilling 
occurred at the CU level for two out of seven CUs: Upper Knight (1979, 1980, 1982, 1984, 1989, 
1991, 1996, 2004-1013) and Bute Inlet (2005, 2006, 2008-2013). CU-specific returns were 
estimated for all fish using backwards catch reconstructions with variable vulnerability levels for 
each CU to each fishery (Van Will 2014). To estimate wild returns, we applied the same 
proportion of wild fish in escapement to catches, i.e., we assumed that enhanced and wild fish 
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were equally vulnerable to the fishery. Brood year returns were calculated assuming annual 
estimates of age-at-maturity from the mixed-stock fishery in Johnstone Strait (Van Will 2014).  

We first identified benchmarks and assessed status in the most recent year using all available 
data. The retrospective analysis was then carried out by sequentially calculating benchmarks 
using all available data up to a given year. For the percentile benchmarks, we assumed that 10 
years of data were required to estimate the first benchmark, and benchmarks were re-estimated 
every year after that (1963-2012). Since recruitment information is required for the stock-
recruitment based benchmarks, and recruitment from a given brood year cannot be calculated 
until the oldest age class has recruited to the fishery, data used to calculate Ricker benchmarks 
lag behind percentile benchmarks by 6 years. Therefore, stock-recruitment based benchmarks 
and status are calculated for years 1970-2012, with Ricker models using data from brood years 
1964-2006. Benchmarks were compared to generational mean escapement to determine status. 
Generational mean escapement was estimated as the four-year running geometric average. 

Standard Ricker Model 

For each year with sufficient data, a Ricker model (Eqn. 1) was fit in a Bayesian context, using 
Markov Chain Monte Carlo (MCMC) methods. 

(1) ܴ ൌ  ,ఉௌି݁ܵߙ

where R is the abundance of adult recruits from a given spawning event, S is the number of 
spawners that generated those recruits (also referred to as escapement). The parameter	ߙ	, or 
productivity, is recruits per spawner at low spawner abundances, and ߚ	is the reciprocal of the 
number of spawners that produce maximum recruits (ܵெ௔௫ ). We linearized the equation and 
incorporated normally distributed process error, where ߬௩ represents precision of process error 
and precision is the reciprocal of variance, 

(2) ܴ ൌ logሺߙሻ ൅ logሺܵሻ െ ܵߚ ൅ ,ߥ ,൫0݈ܽ݉ݎ݋݊~ߥ 	߬ఔ൯. 

We put a weakly informative prior on ߙ to ensure values greater than zero and within the bounds 
of observed productivity values for chum salmon (Dorner et al. 2008) (Fig. 1), 

(3) log	ሺߙሻ~݈݊ܽ݉ݎ݋ሺ1,1ሻ. 

The prior for beta was set indirectly by applying a prior on its reciprocal, ܵெ௔௫. We had no prior 
information on  ܵெ௔௫, so we applied a uniform distribution bounded by 1 and twice the 
maximum observed value (Eqn 4a). In a sensitivity analyses, we also considered a diffuse log-
normal distribution for the prior (Eqn 4b), where		߬ௌ is the precision of the log-normal prior, 
calculated using a standard transformation of the coefficient of variation, CV, in normal space to 
log-normal space. See Appendix for details on the parameterization of priors on Smax. 

(4a) ܵ௠௔௫	~	݉ݎ݋݂݅݊ݑሺ1,݉ܽݔሺܵ௢௕௦ሻ ∗ 2ሻ 

(4b) ܵ௠௔௫~݈݈ܽ݉ݎ݋݊݃݋൫݈݃݋൫݉݁ܽ݊ሺܵ௢௕௦ሻ൯ , 	߬ௌ൯, 		߬ௌ ൌ 1/log	ሺܸܥଶ ൅ 1ሻ 

 
Uninformative gamma priors were used for ߬ parameters: 



6 
 

(5) ߬௩, ߬ௌ, ~	݃ܽ݉݉ܽሺ0.01, 0.001ሻ  

Hierarchical Ricker Model 

We estimated Ricker parameters using a hierarchical version of the standard Ricker model (Eqns 
1 and 2), where parameters from each CU, i, were estimated simultaneously. CU-specific ߙ௜ 
values were drawn from a common, normal distribution:  

(6a) ܴ ൌ ,௜ܵ݁ିఉ೔ௌ݁௩ߙ ,ሺ0݈ܽ݉ݎ݋݊~ݒ ߬௩ሻ, 

(6b) ߙ௜~݈݊ܽ݉ݎ݋ሺߤఈ, 	߬ఈሻ, 

where  ߤఈ is the mean of the normal distribution and ߬ఈ is precision.  

The same prior distributions were used as for the standard Ricker model (Eqns 3-5), with the 
addition of a prior on the global mean and variance of alpha, ߤఈ.	 

(7) log	ሺߤఈሻ~݈݊ܽ݉ݎ݋ሺ1,1ሻ 

To impose an uninformative prior on ߬ఈ we put an uninformative prior on variance ߪఈ, where 
ఈߪ ൌ 1/߬ఈ: 

,ሺ0݉ݎ݋݂ܷ݅݊	~	ఈߪ (8) 100ሻ  

Models were fit using MCMC run using JAGS (Plummer 2003), interfaced through R version 
3.2.0  (R Development Core Team 2016) using package “R2jags” (Su and Yajima 2012). Model 
convergence was assessed using Gelman-Rubin statistics and visual inspection of trace plots.  

Benchmarks 

For Ricker-based benchmarks, the lower benchmark, ௚ܵ௘௡, was calculated numerically, 
according to the following equation (Holt  et al. 2009): 

(9) ܵெௌ௒ ൌ ௚ܵ௘௡	ߙ	݁
ିఉௌ೒೐೙ 

The upper benchmark was calculated using an approximation developed by Hilborn and Walters 
(1992): 

(10) 	0.8	ܵெௌ௒ ൌ 	0.8
୪୭୥ሺఈሻ

ఉ
ሺ0.5 െ 0.07 logሺߙሻሻ 

 

Percentile benchmarks were calculated as the 25th and 75th percentile of observed spawner 
abundances ranked from lowest to highest, for the lower and upper benchmarks respectively 
(ܵଶହ௧௛, ܵ଻ହ௧௛). 

 

Changes in productivity 

To identify changes in productivity over time for chum salmon CUs on the inner south coast and 
assess how those changes affect benchmark performance, we fit a recursive Bayes model to 
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stock-recruitment data, which allowed for ߙ to vary over time for each CU individually (Malick 
and Cox 2016). We fit this model using all available data for each site. It follows the standard 
Ricker form with a time-varying ߙ parameter, 

(11) 	ܴ ൌ ,௧ܵ݁ିఉௌ݁௩ߙ ,ሺ0݈ܽ݉ݎ݋݊~ݒ ߬௩ሻ, 

where ߙ௜ is productivity in brood year ݐ. The model assumes that ߙ changes over time following 
a Gaussian random walk: 

(12) 	log	ሺߙ௧ሻ ൌ log	ሺߙ௧ିଵሻ ൅ ,ݓ ,ሺ0݈ܽ݉ݎ݋݊~ݓ 	߬௪ሻ	 
 
The same prior distributions were applied as for the standard Ricker model (Eqns. 3-5), with the 
addition of a normally distributed prior on ߙ in year 1, and a uniform prior on the variance 
associated with the Gaussian random walk ߪ௪, where ߪ௪ ൌ 1/߬௪: 

(13a)  log	ሺߙଵሻ~݈݊ܽ݉ݎ݋ሺ1,1ሻ, and  

(13b)  ߪ௪	~	ܷ݂݊݅݉ݎ݋ሺ0, 100ሻ. 

Results 

Effect of priors on parameter estimates 

Using the standard Ricker model, estimates of ܵ௠௔௫ were slightly lower when a weakly 
informative lognormal prior was used for ܵ௠௔௫ compared with uniform prior, but these 
differences were small and estimates consistently fell within the range of uncertainty under the 
alternate assumption (Fig. 2 shows the most recent parameter estimates, 2012). We found that 
uncertainty in estimates of ߙ	and Smax were reduced slightly in most cases in retrospective 
analysis of the hierarchical model compared with the standard Ricker model, as expected. The 
hierarchical Ricker model stabilized parameter estimates for those sites and years with high 
uncertainty, resulting in slightly narrower credible intervals (Fig. 2). 

Current benchmarks and status 

Lower percentile benchmarks (ܵଶହ௧௛) tended to be similar in value to lower Ricker-based 
benchmarks ( ௚ܵ௘௡), whereas upper percentile benchmarks (ܵ଻ହ௧௛) were generally much higher 
than the Ricker-based upper benchmarks (80% ܵெௌ௒,	Fig. 3, Table 1). Stock-recruitment 
benchmarks varied slightly between the standard and hierarchical Ricker models (comparing 
Fig.3 (i) vs .(ii) for each CU (a)-(g)), but these differences were small compared with large 
uncertainties in benchmark estimates (Table 2). The posterior densities of the upper and lower 
benchmarks overlapped and, in some cases, were nearly indistinguishable, e.g., Southern Coastal 
Streams and North East Vancouver Island (Fig. 3 (a) and (b)).  

As expected, uncertainty in benchmarks was slightly reduced for the hierarchical Ricker model 
compared with standard Ricker for most CUs (e.g. Southern Coastal Streams, Fig. 3(a).). In cases 
where uncertainty in benchmarks was higher for the hierarchical model (e.g., Upper Knight, Fig. 
3(c), productivity information from neighbouring CUs differed from CU-specific signals, 
resulting in larger uncertainty. 
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Statuses for the most recent year, 2012, determined using all data available up to return year 
2012 (brood years 1955-2006) are shown in Table 3. Percentile-based status was the same or 
more precautionary than Ricker-based status in this year. For the two Ricker-based benchmark 
models, final status matched for all CUs.  

Retrospective analyses 

In retrospective analyses, percentile benchmarks tended to vary more over time than Ricker-
based benchmarks (Fig. 4). Stock-recruitment benchmarks tended to remain relatively consistent 
over time for two CUs (Upper Knight, Loughborough), exhibited divergent trends between upper 
and lower benchmarks (Southern Coastal Streams), or increased over time (North East 
Vancouver Island, Bute Inlet, Georgia Strait, and Howe Sound to Burrard Inlet). The standard 
Ricker and hierarchical Ricker benchmarks were nearly indistinguishable from each other over 
time (comparing first and second row of panels Fig.4(i) and 4(ii)).  Uncertainties in stock-
recruitment benchmarks tended to decline over time for  3 CUs (Southern Coastal Streams, 
Upper Knight, and Lougborough), remained approximately consistent over time for three CUs 
(North East Vancouver Island, Georgia Strait, and Howe Sound to Burrard Inlet), and increased 
and then declined for Bute Inlet.  

For three CUs, percentile benchmarks tended to decline over time (i.e., become less 
precautionary, Southern Coastal Streams, North East Vancouver Island, and Upper Knight); the 
others remained constant (Loughborough) or increased over time (Bute Inlet, Georgia  Strait, and 
Howe Sound to Burrard Inlet).  The observed declines in percentile benchmarks for 3 CUs were 
associated with declines in abundance over the entire time series (Southern Coastal Streams), or 
just the beginning of the time series (North East Vancouver Island and Upper Knight). Although 
percentile benchmarks decreased over time for some CUs, they tended to be higher (i.e., more 
precautionary) than stock-recruitment benchmarks. 

Statuses varied over time and among methods used to derive benchmarks. Uncertainty in stock-
recruitment benchmarks resulted in differences in status when upper or lower credible intervals 
(calculated using 2.5th and 97.5th percentiles of posterior distributions) on benchmarks were used 
to derive status instead of best estimates (Fig 5, light bars above and below colored status bars 
for Ricker benchmarks). For example, for Northeast Vancouver Island, in the early 2000’s, the 
assessed status was amber based on best estimate of the standard Ricker benchmarks, but green 
based on the upper credible interval and red based on the lower credible interval of those 
benchmarks (Fig.5a).  
 
Comparing Benchmarks 

Percentile benchmarks were found to provide the same, or more precautionary status compared 
to Ricker-based benchmarks (Fig. 5, Tables 3,4). The proportion of years where the two types of 
benchmarks gave the same status varied across CUs, but averaged 37 and 39% for the standard 
Ricker and hierarchical Ricker model, respectively (Table 4). On average, the percentile 
benchmark provided the same or more precautionary status in 93% of years for both model types 
(Table 4). The relatively few years when percentile benchmarks were lower (less precautionary) 
than stock-recruitment based benchmarks were associated with either periods of consistently low 
escapement, declining S25th benchmarks, and relatively constant Sgen values (e.g., Upper Knight 
from 1999-2001, see Fig. 3c), or with an abrupt increase in escapement, productivity, and Sgen 
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values, and relatively consistent or slowly increasing ܵଶହ௧௛ values (e.g., Bute Inlet 1991, 1999-
2000, Fig. 3e).  

The two stock-recruitment based benchmarks gave the same status 97% of years when averaging 
across-CUs. 

Productivity over Time 

Time-varying productivity, estimated using a recursive Bayes model for each CU, showed 
unique patterns among CUs (Fig. 6). Declines in productivity over time were observed in two 
CUs (Southern Coastal Streams and Loughborough, Fig. 6a and d), increases followed by 
declines in three CUs (North East Vancouver Island, Bute Inlet, and Georgia Strait, Fig. 6b, e, 
and f) and consistent levels followed by a small increase in Howe Sound to Burrard Inlet (Fig. 
6g). Estimates of productivity for Upper Knight (Fig. 6c), were highly variable and uncertain. 
There was considerable uncertainty in estimating 	ߙ over time for all CUs, indicated by wide 
error bounds. Using data to estimate stock-recruitment parameters and benchmarks that spans 
decades where ߙ has changed considerably may lead to poor Ricker model fits and large 
uncertainty in parameter estimates.   

Objective 1b. Evaluating benchmarks using simulation analyses  

Methods 

We adapted the simulation model of Holt and Folkes (2015) to evaluate data-limited 
benchmarks. As in Holt and Folkes (2015), the model included five components representing 
population dynamics, observations of abundances, management (including the derivation of 
benchmarks), harvest, and performance evaluation (Fig. 7). In particular, the model included 
natural variability in adult recruitment based on a Ricker spawner-recruitment relationship with 
variable age at maturity, errors in observations of abundances, assessments of biological status 
relative to benchmarks, the application of a harvest control rule, and uncertainties in the 
outcomes from implementing management decisions. See Holt and Folkes (2015) for model 
equations. 

Our model differed from that of Holt and Folkes (2015) in 8 ways: 

 The population dynamics sub-model included covariance in Ricker residuals among 
subpopulations within a CU, instead of assuming sub-populations varied independently. 

 The observation sub-model was more realistic in that catches (or, alternately exploitation 
rates) were observed with observation errors, and recruitment by brood year was then 
calculated using estimated ages-at-maturity, instead of applying observation error directly 
to “true” recruits by brood year. Annual observation errors in age-at-maturity were 
simulated using a multivariate logistic distribution (as in natural variability in age-at-
maturity). 

 In the observation sub-model, we evaluated scenarios where spawner abundances were 
observed with a consistent negative (or positive) bias that was not corrected for in the 
assessment. 

 In the assessment sub-model, we evaluated scenarios where only a portion of 
subpopulations were sampled within a CU and a constant expansion factor was applied to 
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derive escapement estimates for the entire CU. The expansion factor was estimated from 
observed complete sampling in a 3-year initialization period. 

 The assessment sub-model model focused on percentile-based benchmarks and stock-
recruitment benchmarks applied under the Wild Salmon Policy (Sgen and 80% of SMSY for 
the lower and upper benchmarks, respectively) 

 In the harvest sub-model, a constant low harvest rate (20%) was applied instead of a 
harvest control rule with limit and/or target reference points. The harvest rates applied 
over the initialization period were varied in a sensitivity analysis (but remained constant 
over that period) to reflect the different harvest rate histories observed among CUs. 

 In the performance module, benchmarks were evaluated based on the deviations between 
benchmark estimates and the “true” underlying values. In the case of percentile 
benchmarks, we evaluated deviations between 25th percentile (lower benchmark) and the 
“true” Sgen value, and between the 75th percentile (upper benchmark) and the “true” 80% 
of SMSY value. Specifically, we evaluated, mean percent error and mean raw error because 
we were interested in the direction of bias (i.e., if the estimated benchmark was above or 
below the “true” benchmark) which are reflected in these metrics. We focused our results 
on mean percent error, MPE, as this metric is scale independent, making comparisons in 
sensitivity across benchmarks more intuitive. Results for mean raw error are provided in 
the Appendix. 

 The model was run over 50 years, instead of 100 to provide a more realistic time-series 
length for estimating benchmarks. The model was run over 5000 MC trials, the number 
of trials required to stabilize output metrics at (standard error <=3% in performance 
metrics). The model was initialized for 20 years after a 5-year pre-initialization period 
necessary to generate the first recruitment by brood year. 

 

Parameterization 

The population dynamics sub-model was parameterized based on previous empirical studies in 
the primary literature and governmental reports on chum salmon, or other species of Pacific 
salmon where data on chum were not available. See Holt and Folkes (2015; Appendix) for model 
equations. The productivity parameter of the spawner-recruitment relationship, a (defined as 
loge(recruits/spawner) at low spawner abundance, and referred to simply as productivity here) 
and the range considered in sensitivity analyses (Table 5, see details below) were chosen to 
bound productivities observed for six chum salmon stocks from across BC (Dorner et al. 2008; 
ranging from 0.99-1.94), and three stocks in the Skeena watershed, BC (Korman J. et al. 2013; 
ranging from 0.7-1.05).  Productivity and spawner abundances at equilibrium abundances, Seq 
(set at 10 000 fish) were assumed to be equal among subpopulations.  

We assumed an autocorrelation coefficient of 0.6, based on coefficients estimated for three CUs 
of chum salmon (ranging 0.54-0.68) from Skeena River, BC (Korman et al. 2013), and 
considered a range of plausible autocorrelation coefficients (0 and 0.9) in sensitivity analyses 
(Table 5). The standard deviation in recruitment residuals (in log-space) was set to 0.75, within 
the range of values estimated from the same Skeena River, BC data (0.68-0.90), and within the 
range estimated for sockeye salmon in BC and Alaska (Korman et al. 1995, Peterman et al. 
2003).  The average proportions of mature adults at ages 3, 4, and 5 were estimated for 22 chum 
salmon stocks in BC and Alaska (0.24, 0.67, and 0.09, respectively, Pyper et al. 2002). The 
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variance in the proportions of ages at maturity was estimated from empirical time series data for 
age-specific returns of chum salmon in southern BC (1959-2012; Johnstone Strait test fishery 
and commercial harvest to Statistical Area 12; P. Van Will pers. comm. 2016).  The probability 
of straying among adult recruits was set at 5% based on a review of published stray rates for 
chum salmon in British Columbia (McElhany et al. 2000).  

In the observation sub-model, we assumed the standard deviation in estimates of spawner 
abundances around the true values (observation errors) was equal to 0.5 (in log-space), which 
corresponds to an upper estimate of the uncertainty in spawner abundance derived from various 
visual surveys of Pacific salmon (Cousens 1982, Szerlong and Rundio 2008). Chum salmon 
abundance is largely estimated from visual surveys, which typically produce relatively imprecise 
estimates of abundances. We also considered a lower estimate of observation errors of 0.2 in a 
sensitivity analysis. In the absence of quantitative estimates of uncertainty in catch estimates 
(commercial, recreational and First Nations subsistence catch), we assumed the same standard 
deviation in observed catch (0.5 in log-space), and a sensitivity analysis with a lower estimate of 
0.2. Although errors in observations of commercial catch are likely less than observation errors 
in spawner abundance, uncertainties in reporting and estimation of recreational and subsistence 
harvest are relatively high (Collie et al. 2012, Fleischman et al. 2013).  

The standard deviation of outcome uncertainty was estimated at 0.3 using methods described in 
Collie et al. (2012) by modelling the relationship between catch and total recruitment from two 
DFO Fishery Statistical Areas of chum salmon on the west coast of Vancouver Island, BC 
(Dobson et al. 2009). Because the standard deviation of outcome uncertainty is not widely 
estimated for Pacific salmon and likely varies widely among stocks and management 
approaches, we also considered an upper value of 0.5 in a sensitivity analysis. 

Sensitivity analyses 

To assess the strength and direction of effects of input parameters on benchmark performance 
(measured as deviations between estimated lower benchmarks and “true” lower benchmarks), we 
performed a sensitivity analysis where each input parameters were varied individually while all 
others were held constant (Table 5). These sensitivity analyses did not assess the sensitivity of 
performance to interactions among input variables. For two parameters that had a relatively large 
effect on performance, productivity and initial harvest rates, a bivariate sensitivity analysis was 
performed to assess their combined effect on benchmark performance. To further consider 
interactions among all input variables, we performed a global sensitivity analysis, using the 
Morris method. Similar to univariate analyses, the Morris method varies each input parameter 
one at time, but in contrast to univariate analyses, this is done at different points of the factor 
input space (i.e., at different combinations of other variables) (Morris et al. 2014). The mean 
elemental effect of an input parameter from the Morris method is an index of the sensitivity of 
benchmark performance to uncertainty in that parameter. The standard deviation of the elemental 
effects is an index of sensitivity of benchmark performance to interactions of that variable with 
other variables. The Morris method was run using the R package, sensitivity, v.1.11.1 (Pujol et 
al. 2015). We focused univariate and global sensitivity analyses on lower benchmarks (25th 
percentile and Sgen), but also considered sensitivity of upper benchmarks (75th percentile and 
80% SMSY) in our bivariate sensitivity analysis.  

Results 
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Simulation model outputs for an example CU, Southern Coastal Streams are presented in Fig. 8. 
Harvest rates during the initialization period were drawn at random from the historical time-
series of exploitation rates for the Southern Coastal Streams CU, and the productivity parameter 
was estimated from the historical data for that CU using a hierarchical Ricker model (from 
Objective 1a). Mean percent error between estimated and “true” benchmarks was generally 
greater than zero, especially for percentile benchmarks (Fig 8, right panel). Percentile 
benchmarks tended to be more precautionary than stock-recruitment based benchmarks (i.e., 
positive deviations were greater), but both were precautionary. Estimates of stock-recruitment 
benchmarks differed from the “true” values because estimates were based on observed data 
(black line in Fig 8, left panel, and solid dots in Fig. 8, middle panel) rather than “true” data 
(grey line in Fig 8, left panel, and hollow dots in Fig. 8, middle panel). The assessed stock-
recruitment model (black curve, Fig. 8, middle panel) differed from the “true” underlying model 
(grey curve, Fig. 8, middle panel) due to those errors in spawner abundance and time-series 
biases (Walters and Martell 2004). 

Performance of lower benchmarks (both Sgen and S25th) was more sensitive to uncertainty in 
productivity than to other input parameters (Fig. 9 a and b, respectively). Low productivity 
values (leftmost black bar) were associated with negative deviations from the base case (i.e., 
benchmarks that were less precautionary than the base case); high productivities (leftmost white 
bar) were associated with positive deviations (i.e., benchmarks that were more precautionary). 
While both benchmarks were sensitive to uncertainty in productivity, Sgen was more robust 
(smaller differences in MPE) than S25th. For the lower benchmark, Sgen, Ricker autocorrelation 
had moderate impacts on performance and the remaining input parameters had relatively weak 
effects on performance (<50%). For the lower percentile benchmark, S25th, initial harvest rates 
had a moderate effect on benchmark performance, and the remaining input parameters had 
relatively weak effects on performance (<50%). Similar patterns of results were found for the 
differences in mean raw error of estimated benchmark from the true value (Appendix, Fig. A1). 

Our model assumed spawner abundances at equilibrium, Seq, remained constant as productivity 
varied in sensitivity analyses (as in Holt  and Bradford 2011). When we considered an alternate 
assumption where Smax remained constant, but Seq declined as productivity declined, we found 
similar results (within 4% MPE). This alternate assumption represents a scenario of simultaneous 
declines capacity and productivity. 

We further explored bivariate sensitivity analyses of the effects of variability in productivity and 
initial harvest rates on benchmark MPEs. At moderate to high productivity and low initial 
harvest rates, both S25th and Sgen benchmarks were precautionary (i.e., benchmarks were equal to 
or higher than “true” Sgen lower benchmark) (Fig. 10, top left portion of panels). At low 
productivity and high initial harvest rates (Fig. 10, bottom right corner), neither benchmark is 
precautionary, but Sgen performed slightly better (i.e., was slightly closer to the “true” value than 
S25th).  

When we superimposed CU productivities and harvest rates for inner south coast chum salmon, 
the associated mean percent errors for the estimated lower benchmarks were greater than zero for 
all CUs (Fig. 10, symbols lie above zero contour line). However, for the 25th percentile 
benchmark, the error bounds crossed the zero contour line for 2 CUs, Georgia Strait and Howe 
Sound Burrard Inlet, and for the Sgen benchmark, this was the case for all CUs except Upper 
Knight. For upper benchmarks, the estimated values were always greater than the true values, 
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and these positive deviations were greatest for S75th benchmark (Fig. 11). The curvilinear 
relationship between the estimates 80% SMSY benchmark and initial harvest rates and 
productivity were due to the covariance between productivity and carrying capacity when 
estimating the stock-recruitment relationship and the resulting confounding effect on estimates of 
SMSY. 

The global sensitivity analyses showed similar patterns as the univariate and bivariate sensitivity 
analyses. The mean elemental effects (magnitude of sensitivity) were greatest for productivity 
for both S25th and Sgen benchmarks (Fig. 12). Initial harvest rates were secondarily important for 
S25th benchmark (Fig. 12b), and the Ricker autocorrelation coefficient and observation errors 
were also important for Sgen. The Ricker autocorrelation coefficient was especially important in 
combination with other input variables for Sgen, resulting in relatively high standard deviation in 
elemental effects.   
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Objective 2. Adapting benchmarks to changes in productivity 

For Objective 2, we simulated an abrupt decline in productivity in the population dynamics sub-
model and evaluated benchmarks that used truncated data sets representing either historical 
baseline conditions (high productivity period) or recent conditions (low productivity period). 
This data-truncation approach was adopted by Grant et al. (2011) to evaluate biological status of 
sockeye salmon on the Fraser River using biological benchmarks under the Wild Salmon Policy. 
Specifically, Grant et al. (2011) found that benchmarks estimated using spawner and recruitment 
data from only the recent low-productivity period were larger (i.e., more precautionary) than 
those that were estimated from the entire time-series. This approach has not been applied to other 
species or regions, where the data required for assessing changes in productivity are often 
lacking.  

Methods 

We adapted the simulation model from Objective 1b in 4 ways: 

 The population dynamics sub-model included time-varying productivity modelled as an 
abrupt decline from loge(recruits/spawner)= 2 to 1 at year 35. The magnitude of these 
change in productivity was chosen to reflect the magnitude of observed changes in the 
productivity for chum salmon (Dorner et al. 2008). Evaluating the effects of different 
temporal different patterns in productivity was outside the scope of this study. We 
considered both the scenario where Seq remains constant as productivity changes, and 
where Smax remains constant, and Seq declines with productivity. The latter reflects a 
scenario of changes in productivity and capacity. 

 The population model was run over 70 years (35 years prior to and after the productivity 
shift). 

 In the assessment sub-model, benchmark estimation occurred in the final year of the 
simulation only. 

 Assessments used either the entire time-series, the first 30 years (base line, high-
productivity period), or the final 30 years (recent, low-productivity period) to estimate 
benchmarks. 

 

Results 

As expected, regime shifts from high to low productivity were associated with increases in “true” 
(i.e., deterministic) Sgen, 80% of SMSY, and Smax when Seq was assumed constant (Fig. 13a-e). In 
contrast, when Smax	was assumed constant, declines in productivity were associated with declines 
in “true” 80% of SMSY and increases in “true” Sgen and Seq (Fig. 13f-j). The latter assumption 
incorporates a decline in total capacity of the CU to sustain a population as well as a decline in 
recruits/spawner at low spawner abundances (see Fig. 3 in Holt  and Folkes 2015). 

Truncating time-series data used to estimate benchmarks to the recent low-productivity period 
resulted in lower estimates of productivity (Fig 14a) and higher estimates of Sgen (i.e., more 
precautionary) (Fig. 14c) under constant Seq, as expected from previous analyses. The opposite 
was true when the historical period was used (higher productivity and lower Sgen estimates). 
Median estimates of Sgen were below the “true” value for all but the most recent estimate (dashed 



15 
 

line Fig. 14c), though the confidence intervals covered the “true” value in all three scenarios. The 
upper benchmark, 80% of SMSY, did not change consistently with data truncation (Fig. 14e). Both 
S25th and S75th percentile benchmarks declined (i.e., became less precautionary) when data were 
truncated to the recent period, but these values were consistently higher than the “true” Sgen and 
80% of SMSY benchmarks, respectively. Although Sgen became more precautionary as data were 
truncated to recent period and percentile benchmarks became less precautionary, percentile 
benchmarks were still consistently greater than true values (mean percent errors were >> zero) 
(Fig. 15a) 

Similar patterns were observed under the assumption of constant Smax with an abrupt decline in 
productivity and Seq (Fig. 15b & 16), with two exceptions. When only the recent data were used, 
the estimate of productivity did not decline compared with using the entire data set (Fig. 16a), 
though the estimate of Seq did decline (Fig. 16b). Confounding between estimates of productivity 
and Seq results in a relatively low (instead of high) value for Sgen when only recent data are used 
(Fig. 16c).  
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Discussion and Conclusions 

Our retrospective analysis of chum CUs on inner south coast of BC indicates that 25th and 75th 
percentile benchmarks are generally higher than stock-recruitment based benchmarks adopted 
under the Wild Salmon Policy, and are therefore a precautionary choice in data-limited 
situations. The few exceptions in our analyses did not occur in the most recent year (i.e., 
occurred in retrospective assessments that used shorter time-series) and were associated with 
either long periods of very low escapement or large, abrupt increases in productivity or 
escapement. Upper percentile benchmarks (ܵ଻ହ௧௛) were considerably higher than upper stock-
recruitment based benchmarks (>>80% ܵெௌ௒), and by definition, green status occurred in only a 
quarter of observed years. If upper percentile benchmarks are used to inform fisheries 
management targets, these will likely lie above ܵெௌ௒ levels resulting in harvests below MSY.  

For the seven CUs analyzed here, benchmarks derived from hierarchical Ricker models were 
virtually indistinguishable from those estimated using standard Ricker models. In the 
retrospective analysis, the standard Ricker model and hierarchical Ricker model gave the same 
status for 99% of CU-year combinations. However, benchmarks derived from the hierarchical 
Ricker model were generally less uncertain than those from the standard model. Given large 
uncertainties in stock-recruitment data and inconsistent time-series for chum salmon in BC, a 
hierarchical approach is recommended over standard Ricker model when there is support for the 
assumption of similar productivities among CUs. 

Our retrospective analysis illustrates that most inner south coast chum CUs have shown 
considerable change in conservation status over time and these changes depend on the 
benchmarks used. Percentile-based benchmarks were associated with higher variability in status 
over time than stock-recruitment benchmarks. One caveat on the application of percentile-based 
benchmarks is that uncertainties in benchmarks are not provided. Nevertheless, status determined 
using percentile-based benchmarks were consistently more precautionary than Ricker-based 
benchmarks, and are therefore a viable choice for use in sites where Ricker-based benchmarks 
cannot be calculated or are highly uncertain.  

Similarly, our simulation model suggests that the lower percentile benchmark, S25th, tends to be 
more precautionary than the corresponding stock-recruitment based benchmark, Sgen, when 
historical harvest rates are moderate to low, current harvest rates are low, and productivity is 
moderate to low. At low productivity and high exploitation rates, neither benchmark is 
precautionary, but the percentile benchmark is especially negatively biased. Although most CUs 
in our study had historical exploitation rates and productivities associated with relatively 
precautionary estimates of benchmarks, uncertainties in the remaining input parameters may 
affect benchmark performance. Specifically, Sgen performance is also sensitive to Ricker 
autocorrelation coefficient, Ricker sigma (residual variance), and observation errors in 
abundances.  

Our retrospective analyses assumed constant productivity over time, but observed temporal 
variability in productivity (measured in Ricker ߙ) for south coast chum salmon CUs suggests 
that the Ricker stock-recruit relationships may vary through time (here and documented in 
Malick and Cox 2016). Indeed, there is widespread evidence for abrupt regime shifts in salmon 
productivity followed by relatively constant periods (Beamish et al. 1999, Hare et al. 1999).  
Given widespread changes in productivity, a data-truncation approach that uses data from recent 
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period or historical base-line period of relatively consistent productivity may result in 
benchmarks that are more precise and in some cases more precautionary. Although truncation of 
time-series data to the most recent time period has been suggested as a method to account for 
declines in productivity in a precautionary manner (Grant et al. 2011), this approach may result 
in a “shifting baseline” for percentile-based benchmarks since they tend to decline with 
abundances. In other words, declines in productivity affect Sgen and percentile-based benchmarks 
in opposite directions.  

Our simulation model suggests that truncating data to a recent low-productivity period only 
results in Sgen values that are more precautionary and percentile-based benchmarks that are less 
precautionary under the scenario of constant Seq. When Seq also declines with productivity 
(simultaneous decline in production), then both Sgen and S25th benchmarks become less 
precautionary, but this change is greatest for S25th benchmark.  Despite these divergent trends 
with data truncation, percentile-based benchmarks remain more precautionary overall (with 
caveats from Objective 1 of this study described above). 

Any changes to benchmarks in response to changes in productivity (i.e., data truncation) will 
require careful consideration of strength of evidence, causal mechanisms, and reversibility of 
changes, among other factors, and should be implemented on a case-by-case basis, If the 
observed decline in abundances is due to density-independent changes in productivity that are 
reversible, then precautionary (i.e., relatively high) benchmarks are warranted to maintain 
resilience of the CU. If the observed decline is due to density-dependent changes in capacity that 
are well understood and irreversible (i.e., a persistent shift to a low-production regime), 
reductions in benchmarks may be warranted in rare cases to reflect this decline in production. 
Duplisea and Cadigan (2012) provide recommendations on the conditions that would be required 
to make such adjustments.  

One limitation in our data truncation analysis is that it assumes that shifts in productivity are 
detected accurately, and data are truncated to within a specific regime. The results of our Ricker 
model with time-varying productivity in Objective 1a demonstrate that temporal estimates of 
productivity are highly uncertainty, making regime shifts challenging to identify. Developing 
improved methods for detecting regime shifts within these data sets is an area for future 
investigation. 
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Figures: 

Fig. 1. Prior distribution of Ricker ߙ parameter (productivity).  

 



Fig. 2. Model estimates for Ricker ߙ (top row) and ܵ௠௔௫ (bottom row) across prior distributions (uniform and lognormal) for  ܵ௠௔௫ and standard 
and hierarchical Ricker model structures (solid and dotted lines, respectively) for each CU in 2012. Circles indicate posterior medians, and lines 
indicate 95% credible intervals of estimates.  

 

 



Fig. 3. Observed spawner-recruit data over time, with fitted Ricker curves and associated benchmarks for (i) the 
standard Bayesian Ricker model, and (ii) the Bayesian hierarchical Ricker model. Shaded regions indicate 95% 
credible intervals, delineated by 2.5th and 97.5th posterior densities. Red and green circles on x-axis identify 
percentile-based benchmarks (ܵଶହ௧௛ and ܵ଻ହ௧௛, respectively). Cross indicates most recent data point, for brood year 
2006. Colours of points increase in darkness as years progress towards the current year. 



 



Fig. 4. Raw and generational average escapement over time, with retrospective conservation benchmarks overlaid for three benchmarks types: (i) 
standard Ricker model; (ii) hierarchical Ricker model; and (iii) percentile. Shaded regions indicate 95% credible intervals, delineated by 2.5th and 
97.5th posterior densities. Retrospective benchmarks use all available data up to that year to estimate benchmark values. 

 

  



 

  



Fig. 5. Standardized raw and generational average escapements across CUs, with conservation status indicated by coloured bars below. Transparent 
bars indicate upper and lower credible interval bounds, based on 2.5th and 97.5th posterior densities of estimated parameters. Gaps exist for Southern 
Coastal Streams and North East Vancouver Island because status was not assessed when α values were < 1.5, as suggested by Holt and Ogden (2013).  

 



Fig. 6. Estimated Ricker ߙvalues using a recursive Bayes model, which allows ߙ to vary over time, within a given CU. Grey shaded polygons 
indicate 95% credible intervals based on posterior densities of estimated ߙvalues.  

 

 



Fig. 7. Schematic of simulation model used to evaluate benchmark performance. 
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Fig 8(a). Time-series of observed spawner abundances (black line) and “true” spawner abundances (grey line) and benchmarks for one Monte Carlo 
trial. Benchmarks are estimated annually base on all data up until that year: annual estimates of 80% SMSY (upper benchmark, green dashed line), 
annual estimates of Sgen (lower benchmark, red dashed line), the 75th percentile benchmark (green dotted line), and the 25th percentile (red dotted 
line). 95% confidence intervals are shown for estimates of stock-recruitment based benchmarks (green and red shading for the upper and lower 
benchmarks, respectively). Vertical dashed line indicates the end of the 20-year initialization period. (b) Observed spawner and recruitment data 
(solid black dots) and “true” data (grey hollow dots) for the final year of one Monte Carlo trial. The “true” underlying stock-recruitment relationship 
is shown with the grey curve and the estimate based on observed data is shown with the black curve. (c) Mean percent error between estimated and 
“true” benchmark averaged over all Monte Carlo trials. Red bars are the mean percent error from the “true” Sgen (lower benchmark), and green bars 
the mean percent error from the “true” 80% SMSY. * is mean percent error =229% for the S75th benchmark. 

(a)                                                                           (b)                                                              (c) 



Fig. 9. Difference in the mean percent error, MPE, of estimated lower benchmark (Sgen, (a), and S25th (b)) and the “true” lower benchmarks (“true” 
Sgen), between sensitivity analyses listed on the x-axis and the base case scenario. Black bars are analyses where the input parameter was increased 
relative to the base case (see Table 1); white bars are analyses where the input parameter was reduced relative to the base case. Positive values 
indicate sensitivity analyses where MPE increased under that change in input parameter from the base case; negative values indicate analyses where 
the MPE declined under that change in input parameter. Asterisks denote values higher than the limit of the y-axis: 144% (a) and 780% (b).  

 



 

Fig. 10. Mean percent error, MPE, of the estimated lower benchmark (S25th (a), and Sgen (b)) from 
the “true” Sgen value along a gradient in initial harvest rates (x-axis) and productivities (y-axis) 
derived from a simulation model of a hypothetical salmon CU. Symbols indicate MPE of CUs 
assuming productivities estimated from hierarchical Ricker models and mean harvest rates over 
available time-series for each CU. Y-error bars represent the 95% credible intervals of the 
estimate of productivity. X-error bars are the standard deviation of historical harvest rates. SCS 
is Southern Coastal Streams, NEVI is North East Vancouver Island, UK is Upper Knight, LB is 
Loughborough, GS is Georgia Strait, and HSBI is Howe Sound/Burrard Inlet. 

 

 

  



 

 Fig. 11. Mean percent error of the estimated upper benchmark (S75th percentile (a), and 80% 
SMSY (b)) from the “true” 80% SMSY value along a gradient in initial harvest rates (x-axis) and 
productivities (y-axis) derived from a simulation model of a hypothetical salmon CU. Symbols 
indicate MPE of CUs assuming productivities estimated from hierarchical Ricker models and 
mean harvest rates over available time-series for each CU. Y-error bars represent the 95% 
credible intervals of the estimate of productivity. X-error bars are the standard deviation of 
historical harvest rates. See caption to Fig. 10 for CU definitions. 

 

 

 



Fig. 12. Sensitivity indices of the effects of individual variables (mean elemental effect, x-axis) and interactions among variables 
(standard deviation in elemental effects, y-axis). Indices were derived from the Morris method, a global sensitivity analyses for the 
mean percent error of estimated lower benchmarks (Sgen (a), and S25th (b)) from “true” benchmarks. Input variables with values >100 
on either axis are labelled. 

 

 

  



Fig. 13. “True” values of Ricker parameters and benchmarks under assumption of constant 
spawners at equilibrium, Seq, (a-e) or constant spawner abundances at maximum recruitment Smax 
(f-j), with abrupt changes in productivity in year 35 of simulation. 

  



Fig. 14. Box plots of parameter and benchmark values in final year of the simulation averaged 
over all Monte Carlo trials, using either the first 30 years of data (dark grey boxes), all 70 years 
of data (light grey boxes), or the most recent 30 years of data (white boxes). Boxes represent the 
lower quartiles, medians, and upper quartiles of the parameter distribution. Whiskers are the 95% 
confidence intervals. Dashed lines represent the “true” value for each parameter. For the 
percentile benchmarks, the dashed lines represent the “true” Sgen (e) and “true” 80% of SMSY (f). 
Seq was held constant in simulations as productivity varied. 

 

 



 

Fig. 15. Mean percent error of estimated Ricker parameters and lower and upper benchmarks 
from the “true” values, using only the first 30 years of data (black bars), all 70 years (grey bars), 
and the most recent 30 years (white bars) under the assumption that Seq remained constant over 
time (a), or Smax remained constant (b). 

  

  



Fig. 16. Caption as for Fig. 14, except Smax was held constant and Seq declined in simulations as 
productivity varied. 

 

 

 



Tables 

Table 1. Parameter and benchmark estimates and upper/lower credible interval bounds delineated as 2.5th and 97.5th posterior densities for most 
recent year, 2012. 

   South Coast Streams  Northeast Vancouver Island  Upper Knight 
Model  Standard  Hierarchical  Standard  Hierarchical  Standard  Hierarchical 
Statistic  Estimate  UCL/LCL  Estimate  UCL/LCL  Estimate  UCL/LCL  Estimate  UCL/LCL  Estimate UCL/LCL  Estimate  UCL/LCL 

Ricker   1.39 
2.23 

1.59 
2.35 

1.54 
2.28 

1.66 
2.51 

2.20 
4.06 

2.14 
3.53 

0.92  1.03  1.06  1.24  1.22  1.30 

Smax  80,350 
225,841 

68,054 
191,642 

117,170 
317,526 

104,053 
190,717 

16,675 
61,095 

16,950 
61,125 

43,576  41,660  67,393  60,788  9,468  9,885 

Sgen  9,665 
20,254 

10,018 
18,720 

16,589 
32,035 

16,386 
25,983 

2,991 
8,944 

3,086 
9,711 

1,925  3,939  7,668  10,848  1,521  1,712 

   10,400 
20,580 

11,553 
20,915 

18,631 
32,969 

19,455 
30,422 

4,600 
11,844 

4,572 
12,322 

1,572  3,302  6,458  10,879  2,133  2,273 
                                      

   Loughborough  Bute Inlet  Georgia Strait 
Model  Standard  Hierarchical  Standard  Hierarchical  Standard  Hierarchical 
Statistic  Estimate  UCL/LCL  Estimate  UCL/LCL  Estimate  UCL/LCL  Estimate  UCL/LCL  Estimate UCL/LCL  Estimate  UCL/LCL 

Ricker   2.27 
3.26 

2.24 
3.10 

2.47 
3.67 

3.45 
3.55 

3.07 
4.80 

2.71 
4.29 

1.55  1.61  1.59  1.74  2.06  1.96 

Smax  62,852 
124,314 

64,706 
121,123 

107,752 
266,610 

267,472 
194,547 

496,295 
1,074,352 

593,563 
1,128,389 

43,882  44,356  70,210  69,239  297,467  327,131 

Sgen  12,002 
21,221 

12,316 
21,481 

20,528 
47,014 

48,072 
35,976 

91,724 
203,578 

113,305 
214,955 

8,118  8,308  12,420  12,474  44,305  52,284 

   18,219 
26,700 

18,301 
28,150 

33,752 
61,523 

64,063 
52,345 

187,546 
302,108 

201,020 
316,844 

13,411  13,599  23,483  23,013  141,771  147,089 
                                      

   Howe Sound to Burrard Inlet    

Model  Standard  Hierarchical    
Statistic  Estimate  UCL/LCL  Estimate  UCL/LCL 

Ricker   2.63 
3.75 

2.47 
3.49 

  
1.81  1.79 

Smax  511,173 
1,657,672 

559,155 
1,837,905 

  
308,310  333,798 

Sgen  97,554 
310,845 

107,571 
344,097 

  
54,892  60,229 

   171,126 
410,187 

177,421 
453,338 

  
119,131  120,094 



Table 2. Benchmark values across three methods used: standard Ricker model, hierarchical 
Ricker model ( ௚ܵ௘௡	and 80% ܵெௌ௒) and percentiles (25th and 75th). 

  Southern Coastal Streams 

Method  Standard Ricker  Hierarchical Ricker  Percentile 

Upper Benchmark  10,400  11,553  54,350 

Lower Benchmark  9,665  10,018  5,425 

North East Vancouver Island 

Upper Benchmark  18,631  19,455  75,136 

Lower Benchmark  16,589  16,386  16,519 

Upper Knight 

Upper Benchmark  4,600  4,572  11,191 

Lower Benchmark  2,991  3,086  2,006 

Loughborough 

Upper Benchmark  18,219  18,301  46,303 

Lower Benchmark  12,002  12,316  17,313 

Bute Inlet 

Upper Benchmark  33,752  33,247  85,517 

Lower Benchmark  20,528  21,155  11,275 

Georgia Strait 

Upper Benchmark  187,546  201,020  445,139 

Lower Benchmark  91,724  113,305  202,269 

Howe Sound to Burrard Inlet 

Upper Benchmark  171,126  177,421  303,280 

Lower Benchmark  97,554  107,571  85,394 

 

 

 

 

 

 

 

  



Table 3. Conservation status for each CU for the most recent year of analysis, 2012. Statuses are 
calculated using all data available up to return year 2012 (brood years 1955-2006) for the Ricker-based 
benchmarks, and use all escapement data (1953-2012) for the percentile-based benchmark. 

Conservation Unit  Percentile Status  Standard Ricker Status  Hierarchical 
Ricker Status 

South Coast Streams  Red  Red  Red 

Northeast Vancouver Island  Amber  Green  Green 

Upper Knight  Amber  Green  Green 

Loughborough  Amber  Green  Green 

Bute Inlet  Amber  Green  Green 

Georgia Strait  Green  Green  Green 

Howe Sound to Burrard Inlet  Green  Green  Green 

 

Table 4.  Proportion of years where Ricker-based status and percentile-based status match, by CU and 
Ricker Model (standard Ricker model in column 1 and hierarchical Ricker model in column 2). Columns 
3 and 4 show the proportion of years where the percentile-based status matched OR was more 
precautionary than Ricker-based status. 

Conservation unit 

Standard Ricker 
match with 
percentile 
benchmarks 

Hierarchical 
Ricker match 

with 
percentile 
benchmarks 

Standard Ricker 
match or more 
precautionary 

Hierarchical 
Ricker match 

or more 
precautionary

South Coast Streams  0.27  0.41  1.00  1.00 

Northeast Vancouver Island  0.19  0.19  0.96  0.97 

Upper Knight  0.49  0.51  0.77  0.77 

Loughborough  0.21  0.21  1.00  1.00 

Bute Inlet  0.58  0.58  0.77  0.77 

Georgia Strait  0.28  0.28  1.00  1.00 

Howe Sound to Burrard Inlet  0.56  0.56  1.00  1.00 

 

 

 

 

 

 

 

 

  



Table 5. Parameters used as base case, univariate sensitivity analyses, and global sensitivity 
analyses of simulation model to evaluate lower benchmarks. 

Sub‐model  Parameter  Base‐case 
Value 

Values 
considered 
in 
univariate 
sensitivity 
analyses 

Range 
considered 
in global 
sensitivity 
analyses 

Population 
dynamics sub‐
model 

Ricker productivity parameter  1  0.5 (low) 
and 2.0 
(high) 

0.5‐2.0 

Ricker autocorrelation 
coefficient 

0.6  0 (low) and 
0.9 (high) 

0‐0.9 

Standard deviation in Ricker 
residuals 

0.75  0.6 (low) 
and 1.0 
(high) 

0.6‐1.0 

Average proportions at age‐of‐
maturity 

Age 3=24%; 
Age 4=67% 
Age 5=9% 

   

Natural variability in age‐at‐
maturity, �n , specified in a 
multivariate logistic distribution 

0.8  0.1 (low) 
and 0.9 
(high) 

0.1‐0.9 

Correlation in recruitment 
residuals among subpopulations 
within a CU 

0.4  0 (low) and 
1.0 (high) 

0‐1.0 

Initial spawner abundances  0.2×Seq, 
where Seq is 
spawner 
abundances 
at 
equilibrium 

0.1×Seq 
(low) and 
0.3×Seq 
(high) 

0.1×Seq‐
0.3×Seq 

Stray rate  0.05     

Observation sub‐
model 

Variability in observed age‐at‐
maturity, �n, specified in a 
multivariate logistic distribution 

0.1  0 (low) and 
0.9 (high) 

0.1‐0.9 

Standard deviation in 
observation errors of spawner 
abundances 

0.5  0.2 (low)  0‐1.0 

Standard deviation in 
observation errors of catches 

0.5  0.2 (low)  0‐1.0 

Multiplicative bias in observed 
spawner abundances not 
accounted for in assessment 

1  0.8 
(negative 
bias) and 
1.2 
(positive 
bias) 

0.8‐1.2 

Assessment sub‐
model 

Proportion of subpopulations 
sampled within a CU 

100%  50% (low)  50%‐100% 

Proportion of years that CU is 
sampled 

100%  60% (low)  60%‐100% 



Harvest sub‐
model 

Harvest rate during initialization 
period 

20%  10% (low) 
and 50% 
(high) 

10%‐60% 

Outcome uncertainty (standard 
deviation in differences 
between target and realized 
harvest rates) 

0.3  0.5 (high)  0‐0.9 

 

 



Appendix  

Objective 1a: Parameterization of priors on Smax for the standard Ricker model 

For the parameterization of the uniform prior we assumed that ܵ௠௔௫ was less than twice the 
maximum observed spawner value, which is likely given the observed low to moderate harvest 
rates on average for most Inner South Coast chum salmon CUs, with the possible exception of 
Georgia Strait. For parameterization of the log-normal prior, we set the width of lognormal prior 
by using a CV of 5, which we found to produce priors in which the highest probability values 
occurred in approximately the same range of ܵ௠௔௫	as the uniform distribution. The lognormal 
prior is weakly informative, as it pulls posterior distributions of ܵ௠௔௫	towards mean observed 
escapement. Although most of the weight of the prior distribution lies within the same range as 
the uniform distribution, it also includes values of ܵ௠௔௫ far greater than the observed spawner 
levels. Therefore, using a log-normal prior distribution, some posterior estimates of  ܵ௠௔௫ may 
be far higher than the range of historically observed escapement, which may be the case if the 
CU had been long supressed far below historical levels.                                                                                           

 

  



Objective 1b: Evaluation benchmarks using simulation analyses- results assuming Smax 
constant given variability in productivity 

Fig. A1. Difference in the mean raw error, MRE, of estimated lower benchmark (Sgen, (a), and 
S25th (b)) and the “true” lower benchmarks (“true” Sgen), between sensitivity analyses listed on the 
X-axis and the base case scenario. Black bars are analyses where the input parameter was 
increased relative to the base case (see Table 1); white bars are analyses where the input 
parameter was reduced relative to the base case. Positive values indicate sensitivity analyses 
where MRE increased under that change in input parameter from the base case; negative values 
indicate analyses where the MRE declined under that change in input parameter.  
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