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Abstract 

Canada’s Wild Salmon Policy requires the biological assessment of conservation units (CUs) of 
Pacific salmon to ensure their conservation for future generations. A “stop light” approach has 
been adopted that uses stock-recruitment models to calculate benchmarks and assign green, 
amber, or red status to CUs. Data limitations for many CUs require the exploration of alternative 
benchmarks to ensure conservation objectives are achieved when stock-recruitment data are not 
available. In this study we compare the performance of alternative lower and upper benchmarks 
for data-limited CUs based on 25th and 75th percentiles of observed abundances, using 
prospective simulation modelling and retrospective analyses of empirical data for Chum Salmon 
in southern BC. In retrospective analyses, we found that benchmarks based on percentiles of 
escapement time series were generally more precautionary than previously adopted stock-
recruitment based benchmarks for the 9 CUs and 5 stock management units of Chum Salmon 
analyzed here. The simulation study yielded similar results. However, when population 
productivity was moderate to low and harvest rates were high, percentile-based lower 
benchmarks tended to be below “true” lower benchmarks. In those cases, we recommend a 
higher percentile be applied as lower benchmark, such as 50th percentile, instead of the 25th 
percentile. We further provide recommendations on when percentile benchmarks should not be 
applied, based on estimates of productivity and harvest rates. 

Introduction 

The Pacific Salmon Treaty (PST) Chum Annex requires biological benchmarks to inform the 
development of fishery reference points for PST related fisheries; including the lower fishery 
reference point for the Johnstone Strait fisheries and subsequent terminal fisheries.  Biological 
benchmarks for data-limited populations have been proposed and are currently being applied to 
Conservation Units (CUs; population units of biological assessment under Canada’s Wild 
Salmon Policy) of Chum Salmon in southern BC.  

In the first year of this two-year project, we evaluated benchmarks for data-limited, percentile-
based benchmarks against data-rich benchmarks for CUs of Chum Salmon on the Inner South 
Coast of BC. Specifically, we identified data-limited percentilebased benchmarks and data-rich 
Ricker-based benchmarks (which require stock-recruitment data) for those CUs, and evaluated 
their performance in a retrospective analysis. We further evaluated performance in a prospective 
simulation model under various hypotheses about productivity (among other sources of 
uncertainty). In that analysis, we found that percentile-based benchmarks tended to be more 
precautionary than data-rich benchmarks, except at low productivity and high initial harvest 
rates. However, that analysis was limited to one region (excluding West Coast of Vancouver 
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Island and Fraser River), and had two technical limitations in the simulation model related to 
back-transformation bias associated with log-normal error distributions and application of 
harvest rates. In this report we describe updated modelling results with the new data. We provide 
context and model description as in Year 1’s report for completeness. 

Reference points that are currently being used for management are 20-35 years out of date, and 
do not reflect current trends in productivity, stock status, or other ecosystem considerations. 
Benchmarks of biological status (and revised versions developed here for southern BC CUs) can 
be used to inform reference points and resulting management decisions (Holt  and Irvine 2013). 
Certain fisheries in both countries are known to impact Chum Salmon originating from the other 
country (Pacific Salmon Commission Joint Chum Technical Committee 2013). 

To address these gaps, our research objectives were to: 

(1) Develop hierarchal models of stock-recruitment data that combine information across 
numerous CUs within the west coast of Vancouver Island and Fraser River areas. This 
approach can be robust to uncertainties in underlying data than standard single-CU stock-
recruitment analyses.  

(2) Compare performance of percentile-based benchmarks with single-CU and multi-CU 
(hierarchical) stock-recruitment based benchmarks using (a) retrospective analyses of empirical 
data and (b) simulation modelling that accounts for the high uncertainties chum spawner, catch, 
and recruitment abundance estimates.  

(3) Provide recommendations on the application of benchmarks to chum management units 
(through component CUs within management units) and Chum Salmon Genetic Units, GUs (as 
identified by a project funded by the PSC SEF on genetic stock identification, J. Candy) on the 
west coast of Vancouver Island on in the Fraser River within the context of the PST Chum 
Annex.  

To implement objective 1, we considered deriving recruitment estimates for Fraser River and 
Inner South Coast from a new run reconstruction model ChumGEM developed by SFU and the 
PSC Chum Technical Committee. The goal for that model was to generate return size estimates 
that are more rigorous than those currently available from a spread-sheet based backwards run 
reconstruction. We reviewed this model, revised several components, and explored sensitivity of 
run sizes to various input parameters (details below). Sensitivities of run size estimates to input 
parameters and several questionable assumptions precluded us from using this model further. 

Genetic Units are informed by microsatellite DNA data from limited sampling of Chum Salmon 
in BC, focusing primarily on Strait of Georgia, and tend to be coarser in resolution than CUs for 
Chum Salmon in southern BC. With limited sampling in more northern areas, differentiation of 
GUs on the west coast of Vancouver Island was not possible, nor was resolution north of the 
Strait of Georgia for the Inner South Coast. Although Genetic units are the basis for run 
reconstruction model, ChumGEM, this model was not used for stock-recruitment modelling here, 
and so we have focused our results on CUs, the unit of biological diversity recommended under 
Canada’s Wild Salmon Policy. 

After reviewing data availability for Fraser River further, those CUs were removed from the 
retrospective analyses due to insufficient information on spawner counts and recruitment. We 
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focused instead on the west coast of Vancouver Island CUs (Southwest Vancouver Island and 
Northwest Vancouver Island CUs) and 5 component stock management units within the 
Southwest Vancouver Island CU. The stock management units we considered within Southwest 
Vancouver Island CU were: Barkley, Clayoquot, Nootka, Esperanza, and Kyuquot. The 
simulation modelling results, however, are generic for Chum Salmon CUs, including Fraser 
River. 

We first describe the application of hierarchical stock-recruitment models to both Inner South 
Coast (from year 1 of this study) and West Coast of Vancouver Island (year 2), in the context of 
retrospective analysis evaluating data-rich and data-limited benchmarks. In this way, we have 
combined the Methods and Results for Objectives 1 and 2a in this report. We follow with a 
description Methods and Results for Objectives 3, simulation evaluation of benchmarks, and 
conclude with recommendations on application of these benchmarks. 

Context: Canada’s Wild Salmon Policy and biological benchmarks 

Canada’s Wild Salmon Policy (2005) outlines strategies to ensure the conservation of 
wild Pacific Salmon for future generations. The policy requires the biological assessment of CUs 
into one of three status zones: green, amber and red. The lower benchmark, delineating red and 
amber zones, is to be established at a level ensuring the CUs is buffered from being considered at 
risk of extinction under COSEWIC, the Committee on the Status of Endangered Wildlife in 
Canada, taking into account data uncertainties and harvest management. The upper benchmark, 
delineating amber and green zones is the escapement level associated with the maximum average 
annual catch, under current environmental conditions. While this policy lays out a basic 
framework for the assessment of conservation status of CUs, it does not require a single set of 
benchmarks for all CUs. Rather, it states that benchmarks will be determined on a “case-by case 
basis, and depend on available information and the risk tolerance applied” (DFO 2005).  

 For populations with time-series of stock-recruitment data, benchmarks were identified 
by  Holt  et al. (2009) to be robust to uncertainties in underlying stock productivity. These 
benchmarks are based on the Ricker stock-recruitment relationship, which is widely used for 
pacific salmon populations (Ricker 1975). The lower benchmark, Sgen, is the number of spawners 
required to rebound to SMSY within one generation, under equilibrium conditions, in the absence 
of fishing. The upper benchmark is 80% of SMSY, the number of spawners required to achieve 
maximum sustainable yield (MSY). Alternatively, for those CUs with limited or uncertain stock-
recruitment data, alternative benchmarks are being developed. Percentile-based approaches have 
been proposed for determining sustainable escapement goals (SEGs) or conservation benchmarks 
under Canada’s Wild Salmon Policy (Clark et al. 2014, Holt  and Folkes 2015). These methods 
require escapement data only, and simply compare current escapement levels with the percentiles 
of historical observations. The Alaska Department of Fish and Game (ADF&G) compared 
various percentiles as a basis for SEGs (intended to approximate ܵெௌ௒) in a simulation evaluation 
and retrospective analysis (Clark et al. 2014). Based on this work, a multi-tier system was 
recommended, where percentile values for SEGs are chosen based on data contrast, data 
uncertainty, and harvest rates. In particular, Clark et al. (2014) recommend that percentile-based 
SEGs not be used when harvest rates are high (> 40%), or spawner and recruitment data show 
little contrast over time, and measurement error is high. Our evaluation differs from Clark et al. 
(2014) in that we evaluated the extent to which percentile-benchmarks are consistent with 
biological benchmarks already identified under the Wild Salmon Policy, instead of applying (and 
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evaluating) them as escapement goals for management at MSY levels. For data-limited Chum 
Salmon CUs in southern BC, percentile benchmarks at the 25th and 75th percentiles have been 
proposed and provisionally implemented as lower and upper benchmarks, respectively (Hilborn 
et al. 2013). These percentiles are higher, and therefore more conservative, or precautionary, than 
SEGs proposed by ADFG (Clark et al. 2014).   

In this report, we have combined Methods and Results for Objective 1 and 2a, the development 
of standard Ricker and hierarchical stock-recruitment models for Westcoast Vancouver Island 
CU and component stock management units, and the retrospective evaluation of data-limited 
benchmarks against data-rich versions that use stock-recruitment data (both standard Ricker and 
hierarchical models). This is followed by Methods and Results for Objective 2b, an evaluation of 
data-limited against data-rich benchmarks in simulation. We further describe updated analyses of 
benchmarks that use truncated data under scenarios of time-varying productivity (i.e., only recent 
data to reflect current conditions or only historical data to avoid shifting baseline). We conclude 
with recommendations of applications of data-limited benchmarks under gradients in 
productivity and harvest rates (Objective 3), and a discussion of impacts of time-varying 
productivity. 
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Objective 1. Development of hierarchical stock-recruitment models for West 
Coast of Vancouver Island and Objective 2a. Evaluating benchmarks using 
retrospective analyses  

The goal of our retrospective analysis was to compare status reached under both data-rich and 
data-limited biological benchmarks. For the data-rich scenarios, we compared benchmarks 
derived from two different forms of the Ricker model: the standard model which estimates 
parameters independently for each CU, and a hierarchical model where CUs or CU components 
are assumed to have productivity values which are “drawn” from a shared distribution, centered 
on an overall mean productivity rate. Hierarchical models may reduce uncertainties and biases in 
parameter estimation mentioned above by sharing information on productivity across 
populations, given evidence for spatial covariation in productivity among populations within 
regions (Pyper et al. 2002). Following the results of Holt and Folkes (2015) who investigated the 
impacts of temporal changes in productivity, we further identified temporal trends in 
productivity over time using a recursive Bayes modelling approach. Although results for Inner 
South Coast Chum Salmon CUs were presented in the Final Report for Year 1 of this project, 
they are provided again here to compare against new results for the West Coast of Vancouver 
Island. 
 
Data 
Inner South Coast (ISC) Chum Salmon data  
Historical time-series of escapement and returns were available for seven CUs of Inner South 
Coast Chum Salmon. Escapement data, identified as either wild or hatchery, were available for 
these CUs from 1953-2012, while CU-specific return data were reconstructed from exploitation 
rates, migration timing and patterns, spawner abundances, and age distributions, for brood years 
1955-2006 (P. van Will pers. comm. 2016). Time series’ of returns were generated from a run 
reconstruction model that used catch data and information about migration timing and patterns of 
fish from specific CUs through different fisheries to estimate the number of returning fish 
originating from each CU (Van Will 2014). Wild recruitment was estimated by assuming that 
proportions of wild fish in catches were equal to the proportion in observed escapement. 
Historical genetic composition of the catches was not available to identify the wild and hatchery 
contribution to the catches.  

In years where spawner abundances (escapement) were missing, data have been infilled 
using standard approaches assuming covariation in abundance trends across sites within CUs 
(Van Will 2014). On average, across CUs and years, 45% of sampling sites were surveyed 
(ranging from 27% for the Howe Sound–Burrard Inlet CU to 57% for the Bute Inlet CU). 
Infilling occurred at the CU level for 2 CUs in years where no sites were surveyed (17 of 61 
years for the Upper Knight CU and 8 of 61 years for the Bute Inlet CU), assuming covariation in 
abundance trends among CUs. Infilled escapement and return data were combined with age-
composition data to create brood tables – from which a stock-recruitment time series was 
formulated. 

Fitting the Ricker model to uncertain data can lead to biased parameter estimates because 
of observation errors in escapement (i.e., errors-in-variables) and time-series biases (Walters and 
Martell 2004). These time-series are relatively long (51 years) and contrast in escapement 
observations is high (ratio of maximum to minimum spawner abundances ranged from 8-2600, 
mean=481), which should ameliorate these biases (Walters and Martell 2004). However, caution 
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in the interpretation of results is warranted, and these results should be considered in conjunction 
with those from simulation model that incorporates multiple sources of data uncertainties (See 
Objective 2b for a more thorough description of time-series biases). 
 
West Coast of Vancouver Island, WCVI, Chum Salmon 
Time series of escapement and returns from 1953-2015 were available for both the Southern and 
Northern West Coast Vancouver Island CUs (SWVI, NWVI), with the SWVI CU being split into 
five stock management units (SMUs). Brood tables were constructed based on yearly age 
composition data at the SMU level. When gaps were found in aging data, they were infilled 
based on surrounding SMU’s with data for that year. Aging data begins in 1959, with a gap in 
the mid-1960’s resulting in stock-recruitment data from 1956-2010, with a 6-year gap in the 
1960’s. There has been hatchery production in this area since the 1970’s, and the data used in 
this analysis excludes these hatchery populations. Nitinat (Area 22) and Tlupana (Area 25) were 
removed, as they are dominated by hatchery populations. The proportion that Tlupana 
contributed to catches in Areas 25 was estimated from marking data and terminal fisheries. 
Nitinat is the only population within Area 22. Similar to the ISC data set described above, the 
WCVI CUs and SMUs have relatively long time-series (~50 years, after accounting for gaps) 
and show considerable contrast (max/min spawner ratio ranged from 9-26, mean=18), which 
may ameliorate  biases associated with errors in spawner abundances and time-series biases. 
However, due to infilling and assumptions made in run reconstruction, caution should be taken in 
the interpretation of results. 
 
Fraser River 
Current recruitment estimates for Fraser River Chum Salmon (both Fraser, and Fraser Canyon 
CUs) are not available. Although historical stock- recruitment time-series have been published 
for the Fraser River (Ryall et al. 1999, brood years 1959-1994), experts familiar with the system 
deem those data unreliable (J. Tadey, pers. comm. 2016), despite their use in at least one peer-
reviewed study (Malick and Cox, 2016). Additionally, the model used to generate the 
recruitment time-series has not been maintained in recent years. 
 
Chum Genetic and Environmental Management model, ChumGEM 
Weexplored a forward run reconstruction model developed for Chum Salmon in southern BC 
and Washington (the Chum Genetic and Environmental Management model, ChumGEM) as 
source of recruitment time-series for Fraser River CUs and to validate recruitment time series for 
ISC CUs. ChumGEM was developed by Simon Fraser University under the direction of the 
Pacific Salmon Commission Chum Technical Committee in 2015. ChumGEM was built using R 
and ADMB code, imbedded within a graphic user interface (GUI). The application also serves as 
a data repository for escapement, catch (commercial/test), and genetic stock identification (GSI) 
data. Despite being delivered to DFO in 2005, the model has not yet been validated, limiting its 
value in providing recruitment estimates.  Here we briefly describe the mode, and our evaluation 
of the sensitivity of model outputs (recruitment estimates) to uncertainties in input parameters, as 
a way of validating the model. 
 
The ChumGEM model uses data on catch (commercial and test fisheries), recent genetic stock 
identification of catch, test fishery CPUE, and escapement by stock to estimate return size by 
stock. Due to constraints of genetic stock identification (GSI) data, populations are modeled at 
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the Genetic Unit scale (GU) instead of at the CU scale. GUs for ISC, WCVI, Fraser River, as 
well as Washington state, USA, are modelled during their return migration from the northern tip 
of Vancouver Island, through fisheries on either the west or east coast of Vancouver Island, to 
their entry into freshwater by sequentially moving fish southward through numerous spatial 
fishing areas (Fig. 1). Arrival timing to the northern tip of Vancouver Island is modelled with a 
normal distribution, with informative priors on associated parameters. Fish are then stepped 
through fishing areas with one-day increments. Fish move according to pre-determined 
probabilities of migrating along either east coast of Vancouver Island (diversion rate), and pre-
determined swim speeds. Probabilities of moving from one fishing area to another in a given day 
are estimated using an ordered multinomial logit model based on swim speeds. These 
probabilities are calculated prior to model fitting. Catches are removed from return abundances 
in proportions informed by observed GSI data.  
 
In our preliminary review of the model, we identified at least four assumptions that are likely 
violated or unrealistic. We briefly describe our review here; more details are available in Davis 
(2016).  

(1) In the model, after fish are directed around either side of Vancouver Island according to 
given diversion rates, abundances are divided equally among remaining migration routes 
from each fishing area. However, the proportion of fish assigned to each migration route 
likely varies as some routes are more well-used than others (i.e., they are not equally 
used). The probability associated with each migration route could instead be informed by 
expert opinion and/or available data.  

(2) Additionally, we found that model estimates of GU-specific recruitments were extremely 
sensitive to assumptions about the diversion rate. Currently, the diversion rate is assumed 
to be constant over GUs and time, and does not reflect our current understanding of 
variability in that rate. 

(3) The model applies informative priors on recruitment. We found that the posterior 
estimates of recruitment (model outputs) were sensitive to the form of the priors, at least 
for some GUs. Further efforts to identify plausible GU-specific priors and/or a model re-
formulation are required to reduce model sensitivity to prior assumptions. 

(4) The model, in its current form is also limited to years with existing GSI data (2008-
present). The model was designed as a tool for post-season run reconstruction, and 
therefore fits years individually. An extended, multi-year version of this model could be 
developed to generate historical time series of recruitment. A multi-year model may also 
improve parameter estimates by borrowing information across years. For example, 
migration timing is likely similar across years, and a multi-year model could use 
migration timing estimates from years with high quality data to inform years with low 
quality data. Additionally, if estimates of average migration timing across years could be 
estimated, it may be possible to use catch and escapement data to estimate returns for 
years without GSI data to reconstruct recruitment time series.  

 
Due to unrealistic assumptions and priors that require more scrutiny, we were unable to develop 
reliable recruitment estimates from ChumGEM. Based on our analyses and recommendations 
presented to the PSC Chum Technical Committee (Davis 2017), the committee has expressed 
their commitment to continue revising and validating the run reconstruction model. However, 
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reconstructed run sizes for Fraser River will not be available to use as a case study for this 
project. 
 
Therefore, we focused our analyses, on the 7 Inner South Coast CU’s and two West Coast 
Vancouver Island CUs described above. As an additional case study on finer scale data, we 
implemented the same retrospective analysis on 5 component SMUs within the Southwest 
Vancouver Island CU.  

 
  
Methods 
 
We first identified benchmarks and assessed status in the most recent year using all available 
data. The retrospective analysis was then carried out by sequentially calculating benchmarks 
using all available data up to a given year. For both stock-recruitment based and percentile 
benchmarks, we assumed that 10 years of data were required to estimate the first benchmark, and 
benchmarks were re-estimated every year after that. Since recruitment information is required for 
the stock-recruitment based benchmarks, and recruitment from a given brood year cannot be 
calculated until the oldest age class has recruited to the fishery, data used to calculate Ricker 
benchmarks lag behind percentile benchmarks by 5 or 6 years (for ISC and WCVI, respectively), 
depending on the stock. Therefore, stock-recruitment based benchmarks and statuses were 
calculated for years 1970-2012 for ISC, and 1976/1977-2015 for WCVI. These benchmarks were 
calculated using parameters from Ricker models fit using data from brood years 1964-2006 for 
ISC, and 1957-1958, 1965/1966-2010, for WCVI. Lower and upper benchmarks were compared 
to generational mean escapements to determine status. Generational mean escapement was 
estimated as the four-year running geometric average. 
 
 
Standard Ricker Model 
The standard Ricker and Hierarchical models were developed in Year 1 of the project, and are 
described below. For each year with sufficient data, a standard Ricker model (Eqn. 1) was fit in a 
Bayesian context, using Markov Chain Monte Carlo (MCMC) methods. 
 

(1) ܴ ൌ  ,ఉௌି݁ܵߙ
 
where R is the abundance of adult recruits from a given spawning event, S is the number of 
spawners that generated those recruits (also referred to as escapement). The parameter	ߙ	 (also 
referred to as productivity) is recruits-per-spawner at low spawner abundances, and ߚ	is the 
reciprocal of the number of spawners that produce maximum recruits (ܵெ௔௫ ). We linearized the 
equation and incorporated normally distributed process error, where ߬௩ represents precision of 
process error (precision is the reciprocal of variance). 
 

(2) ܴ ൌ logሺߙሻ ൅ logሺܵሻ െ ܵߚ ൅ ,ߥ ,൫0݈ܽ݉ݎ݋݊~ߥ 	߬ఔ൯. 
 

We put a weakly informative prior on ߙ to ensure values greater than zero and within the bounds 
of observed productivity values for Chum Salmon (Dorner et al. 2008) (See Appendix A for 
plots of priors and posteriors of ߙ parameter), 
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(3) log	ሺߙሻ~݈݊ܽ݉ݎ݋ሺ1,1ሻ. 

 
The prior for beta was set indirectly by applying a prior on its reciprocal, ܵெ௔௫. We had no prior 
information on  ܵெ௔௫, so we applied a uniform distribution bounded by 1 and twice the 
maximum observed spawner value (Eqn 4a). In a sensitivity analyses, we also considered a 
diffuse log-normal distribution for the prior (Eqn 4b), where		߬ௌ is the precision of the log-
normal prior, calculated using a standard transformation of the coefficient of variation, CV, in 
normal space to log-normal space. See Appendix B for details on the parameterization of priors 
on Smax. 
 

(4a) ܵ௠௔௫	~	݉ݎ݋݂݅݊ݑሺ1,݉ܽݔሺܵ௢௕௦ሻ ∗ 2ሻ 
(4b) ܵ௠௔௫~݈݈ܽ݉ݎ݋݊݃݋൫݈݃݋൫݉݁ܽ݊ሺܵ௢௕௦ሻ൯ , 	߬ௌ൯, 		߬ௌ ൌ 1/log	ሺܸܥଶ ൅ 1ሻ 

 
Uninformative gamma priors were used for ߬ parameters, 

(5) ߬௩, ߬ௌ, ~	݃ܽ݉݉ܽሺ0.01, 0.001ሻ. 
 
Hierarchical Ricker Model 
We estimated Ricker parameters using a hierarchical version of the standard Ricker model (Eqns. 
1 and 2), where parameters from CU’s within the two groupings (ISC and WCVI) were 
estimated simultaneously. CU-specific ߙ௜ values were drawn from a common, normal 
distribution,  
 

(6a) ܴ ൌ ,௜ܵ݁ିఉ೔ௌ݁௩ߙ ,ሺ0݈ܽ݉ݎ݋݊~ݒ ߬௩ሻ, 
(6b) ߙ௜~݈݊ܽ݉ݎ݋ሺߤఈ, 	߬ఈሻ, 
 

where  ߤఈ is the mean of the normal distribution and ߬ఈ is precision.  
The same prior distributions were used as for the standard Ricker model (Eqns. 3-5), with the 
addition of a prior on the global mean and variance of alpha, ߤఈ.	 
 

(7) log	ሺߤఈሻ~݈݊ܽ݉ݎ݋ሺ1,1ሻ 
 

To impose an uninformative prior on ߬ఈ we put an uninformative prior on variance ߪఈ, where 
ఈߪ ൌ 1/߬ఈ, 
 

,ሺ0݉ݎ݋݂ܷ݅݊	~	ఈߪ (8) 100ሻ  
 

The Southwest Vancouver Island CU, the hierarchical model was also run for SMUs within that 
CU, assuming productivity parameters for each SMU were drawn from a common distribution. 
Models were fit using MCMC runs using JAGS (Plummer 2003) interfaced through R version 
3.2.0  (R Development Core Team 2016) using package “R2jags” (Su and Yajima 2012). Model 
convergence was assessed using Gelman-Rubin statistics and visual inspection of trace plots.  
 
Benchmarks 



10 
 

For Ricker-based benchmarks, the lower benchmark, ௚ܵ௘௡, was calculated numerically, 
according to the following equation (Holt  et al. 2009), 
 

(9) ܵெௌ௒ ൌ ௚ܵ௘௡	ߙ	݁
ିఉௌ೒೐೙ 

 
The upper benchmark was calculated using an approximation developed by Hilborn and Walters 
(1992), 
 

(10) 0.8	ܵெௌ௒ ൌ 	0.8 ୪୭୥ሺఈሻ

ఉ
ሺ0.5 െ 0.07 logሺߙሻሻ 

 
Percentile benchmarks were calculated as the 25th and 75th percentile of observed spawner 
abundances ranked from lowest to highest, for the lower and upper benchmarks respectively 
(ܵଶହ௧௛, ܵ଻ହ௧௛). Holt and Ogden (2013) recommended against using stock-recruitment benchmarks 
when Ricker ߙ falls below 1.5. We have removed years when 1.5> ߙ from our retrospective 
analysis. 
 
Retrospective Analysis 
Retrospective analysis was carried out by stepping through each year with sufficient data (at least 
10-year time-series) and then estimating benchmarks and assessing status using all available data 
up until that year. This mimics the analysis that would have been carried out, and the status 
reached if these benchmarks had been used in the past. Since percentile benchmarks are defined 
as the 25th and 75th percentiles of historical spawner abundances (which are provided as “data”), 
these values do not have associated uncertainties. However, Ricker-based benchmarks are 
calculated based on model parameters, and have associated uncertainties. We used two slightly 
different approaches to characterize the uncertainty in benchmarks, and the resulting uncertainty 
in status assessments. In order to properly assess uncertainty, and to account for the widely 
documented negative correlation between Ricker parameters, we estimate Ricker benchmarks for 
each MCMC “draw”. This allows the estimation of benchmarks based on pairs of Ricker 
parameters from each MCMC draw, rather than the median and bounds of each, calculated over 
all MCMC draws. From these draws we can express each benchmark as a median, with 95% 
credible intervals, estimated as the 2.5% and 97% posterior densities of each benchmark. In the 
second approach, we estimated benchmarks for each sample from the posterior distribution of 
parameters, and a corresponding generates a status assessment against those benchmarks. This 
means that for each year, we generated a probability estimate associated with each status (red, 
amber, green). In other words, we estimated the probability that the CU has each of the three 
statuses for each year. 
 
Changes in productivity 
To identify changes in productivity over time for Chum Salmon CUs and assess how those 
changes affect benchmark performance, we fit a recursive Bayes model to stock-recruitment 
data, which allowed for ߙ to vary over time for each CU individually (Malick and Cox 2016). 
We fit this model using all available data for each site. It follows the standard Ricker form, but 
with a time-varying ߙ parameter, 
 

(11) 	ܴ ൌ ,௧ܵ݁ିఉௌ݁௩ߙ ,ሺ0݈ܽ݉ݎ݋݊~ݒ ߬௩ሻ, 
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where ߙ௧ is productivity in brood year ݐ. The model assumes that ߙ changes over time following 
a Gaussian random walk, 
 

(12) log	ሺߙ௧ሻ ൌ log	ሺߙ௧ିଵሻ ൅ ,ݓ ,ሺ0݈ܽ݉ݎ݋݊~ݓ 	߬௪ሻ	 
 
The same prior distributions were applied as for the standard Ricker model (Eqns. 3-5), with the 
addition of a normally distributed prior on ߙ in year 1, and a uniform prior on the variance 
associated with the Gaussian random walk ߪ௪, where ߪ௪ ൌ 1/߬௪, 
 

(13a)  log	ሺߙଵሻ~݈݊ܽ݉ݎ݋ሺ1,1ሻ, and  
(13b)  ߪ௪	~	ܷ݂݊݅݉ݎ݋ሺ0, 100ሻ. 

 
Results 
 
Effect of priors on parameter estimates 
For all CUs and SMUs, using the standard Ricker model, estimates of ܵ௠௔௫ were slightly lower 
when a weakly informative lognormal prior was used for ܵ௠௔௫ compared with uniform prior. 
However, these differences were small and estimates consistently fell within the range of 
uncertainty under the alternate assumption (Figs. 2 and 3 show the most recent parameter 
estimates and CUs and SMUs, respectively). Furthermore, when comparing statuses, models fit 
with either prior matched between 85-100% of years depending on CU/SMU, and therefore do 
not appear to make a significant difference in the assignment of status. We report results using 
uninformative uniform priors here.  
 
Current benchmarks and status 
Lower percentile benchmarks (ܵଶହ௧௛) tended to be similar or higher in value to lower Ricker-
based benchmarks ( ௚ܵ௘௡), whereas upper percentile benchmarks (ܵ଻ହ௧௛) were generally much 
higher than the Ricker-based upper benchmarks (80% ܵெௌ௒) (Figs. 4 and 5, for CUs and SMUs 
respectively, Table 1). The Ricker-based benchmark, Sgen, has the characteristic of being 
relatively high when productivity is low (i.e., is precautionary when conditions are poor) and 
being low when productivity is high (Holt and Folkes 2015). Our results support this finding. In 
particular, we found that the S25th benchmark tended to be much higher than Sgen when 
productivity was high, and this difference was reduced when productivity was low (Appendix 
C).  
 
Stock-recruitment benchmarks varied slightly between the standard and hierarchical Ricker 
models (comparing Fig. 4, top and bottom panels for each CU), but these differences were small 
compared with the large uncertainties in benchmark estimates (Table 2). The posterior 
distributions of the upper and lower benchmarks, Sgen and 80% SMSY, overlapped, and in some 
cases were nearly indistinguishable, e.g., Southern Coastal Streams and North East Vancouver 
Island (Fig. 4a and b).  
 
In retrospective analyses of the hierarchical model compared with the standard Ricker model, we 
found that uncertainties in estimates of ߙ	and Smax (Ricker parameters) were reduced slightly for 
the hierarchal model in some CUs on the Inner South Coast. The hierarchical Ricker model 
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tended to reduce uncertainties for those CUs and years where productivity estimates were similar 
across CUs (Fig. 2). Alternatively, when productivity estimates from a CU differed from 
neighbouring CUs, uncertainty bounds tended to increase (e.g., Southern Coastal Streams and 
Northeast Vancouver Island CUs, Fig. 2). For the WCVI CUs, uncertainty around productivity 
estimates did not differ between hierarchical and basic Ricker models (Fig. 2).  
 
Statuses for the most recent year for which status could be assessed (2012 for ISC CUs, 2015 for 
WCVI CUs and SMUs) determined using all data available up to that return year (and using 
brood years up to 2006/2010) are shown in Table 3. Percentile-based statuses were the same or 
more precautionary than Ricker-based statuses in that year. For the two Ricker-based benchmark 
models, final status matched for all CUs.  
 
Retrospective analyses 
In retrospective analyses, percentile benchmarks tended to vary more over time than Ricker-
based benchmarks for ISC CUs due to high contrast in time-series (Fig. 6, bottom row compared 
to first two rows of panels). For WCVI CUs and SMUs, which did not exhibit large contrast, 
percentile benchmarks were more consistent over time (Fig. 6 for WCVI CUs and Fig. 7 for 
SMUs).  
 
Stock-recruitment benchmarks tended to remain relatively consistent over time for four CUs 
(Upper Knight, Loughborough, SWVI, NWVI), exhibited divergent trends between upper and 
lower benchmarks (Southern Coastal Streams), or increased over time (North East Vancouver 
Island, Bute Inlet, Georgia Strait, and Howe Sound to Burrard Inlet). The standard Ricker and 
hierarchical Ricker benchmarks were nearly indistinguishable from each other over time 
(comparing first and second row of panels Fig. 6).  Uncertainties in stock-recruitment 
benchmarks tended to decline over time for  3 ISC CUs (Southern Coastal Streams, Upper 
Knight, and Lougborough) and all WCVI CUs and SMUs, but remained approximately 
consistent over time for three CUs (North East Vancouver Island, Georgia Strait, and Howe 
Sound to Burrard Inlet), and increased and then declined for Bute Inlet.  
 
For three CUs, percentile benchmarks tended to decline over time (Southern Coastal Streams, 
North East Vancouver Island, and Upper Knight); the others remained constant (Loughborough, 
SWVI, NWVI, all WCVI SMUs) or increased over time (Bute Inlet, Georgia  Strait, and Howe 
Sound to Burrard Inlet).  The observed declines in percentile benchmarks for 3 CUs were 
associated with declines in abundance over the entire time series (Southern Coastal Streams), or 
just the beginning of the time series (North East Vancouver Island and Upper Knight). Although 
percentile benchmarks decreased over time for some CUs, they tended to be higher (i.e., more 
precautionary) than stock-recruitment benchmarks. 
 
Large uncertainties in stock-recruitment benchmarks resulted in uncertainties in status 
assessments, which we present in two ways, as described above. First, benchmarks are 
represented as the median and 95% posterior densities, representing the expected value and the 
95% credible interval (Fig 8, light bars above and below colored status bars for Ricker 
benchmarks). For example, for Northeast Vancouver Island, in the early 2000’s, the assessed 
status was amber based on best estimate of the standard Ricker benchmarks, but green based on 
the upper credible interval and red based on the lower credible interval of those benchmarks (Fig. 
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8a).  The probability of a CU having each status, in each year can be seen in Figures 10 and 11 
(colours on vertical bars depicting probability of each status). Each probability is associated with 
the proportion of MCMC draws which yielded that status, in that given year. 
 
 
Comparing Benchmarks 
Percentile benchmarks were found to provide the same, or more precautionary status compared 
to Ricker-based benchmarks (Figs 8 and 9, Tables 3,4). The proportion of years where the two 
types of benchmarks gave the same status varied across CUs, but averaged 37 and 39% for the 
standard Ricker and hierarchical Ricker model, respectively for ISC CUS (Table 4). 
Alternatively, for WCVI CUs and SMUs, percentile and Ricker-based benchmarks rarely 
matched (0-10%). On average, the percentile benchmark provided the same or more 
precautionary status in 94% of years for both model types across CUs (Table 4). For SWVI 
SMUs, status assessed from percentile benchmarks were the same or more precautionary 100% 
of the time. The relatively few years when percentile benchmarks were lower (less 
precautionary) than stock-recruitment based benchmarks were associated with either periods of 
consistently low escapement resulting in declining S25th benchmarks, paired with relatively 
constant Sgen values (e.g., Upper Knight from 1999-2001, see Fig. 4c), or with an abrupt increase 
in escapement, productivity, and Sgen values, and relatively consistent or slowly increasing ܵଶହ௧௛ 
values (e.g., Bute Inlet 1991, 1999-2000, Fig. 4e).  
 
The two Ricker-based benchmarks (standard and hierarchical Ricker) gave the same status 98% 
of years when averaging across CUs, and 100% of years for SWVI SMUs.  
 
Productivity over Time 
Temporal patterns in productivity varied across CUs and SMUs (Fig. 12). Declines in 
productivity over time were observed in three CUs (Southern Coastal Streams and 
Loughborough, SWVI, Fig. 12a,d, and h), increases followed by declines in three CUs (North 
East Vancouver Island, Bute Inlet, and Georgia Strait, Fig. 12b, e, and f) and consistent levels 
followed by a small increase in Howe Sound to Burrard Inlet and NWVI (Fig. 12g and i). 
Estimates of productivity for Upper Knight (Fig. 12c), were highly variable and uncertain. 
WCVI SMUs all show slight declines over time, though declines are small compared with 
uncertainty in annual productivity estimates (Fig. 13). There was considerable uncertainty in 
productivity for all CUs and SMUs, indicated by wide error bounds. Using data to estimate 
stock-recruitment parameters and benchmarks that spans decades where ߙ has changed 
considerably may lead to poor Ricker model fits and large uncertainty in parameter estimates.   
 
Discussion 

Our retrospective analysis of Chum Salmon CUs on the Inner South Coast and West Coast of 
Vancouver Island indicates that 25th and 75th percentile benchmarks are generally higher than 
Ricker-based benchmarks adopted under the Wild Salmon Policy, and are therefore a 
precautionary choice in data-limited situations. The few exceptions in our analyses were for 
Inner South Coast CUs, did not occur in the most recent year (i.e., occurred in retrospective 
assessments that used shorter time-series) and were associated with either long periods of very 
low escapement or large, abrupt increases in productivity or escapement. Upper percentile 
benchmarks (S75th) were considerably higher than upper stock-recruitment based benchmarks 
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(>>80% SMSY). When using percentile benchmarks green status occurred in only14% of years for 
CUs (9% for SMUs), but green status occurred in 79% of years for CUs (94% for SMUs) when 
Ricker benchmarks were used. If upper percentile benchmarks are used to inform fisheries 
management targets, these will likely lie above SMSY levels resulting in harvests below MSY.  

For the CUs analyzed here, benchmarks derived from hierarchical Ricker models were virtually 
indistinguishable from those estimated using standard Ricker models. In the retrospective 
analysis, the standard Ricker model and hierarchical Ricker model gave the same status for 98% 
of CU-year combinations. However, benchmarks derived from the hierarchical Ricker model 
were more certain than those from the standard model in cases where productivity was similar 
across associated population units (CUs and SMUs). Given large uncertainties in stock-
recruitment data and inconsistent time-series for Chum Salmon in BC, a hierarchical approach is 
recommended over standard Ricker model when there is support for the assumption of similar 
productivities among CUs. 
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Objective 2b. Evaluating benchmarks using simulation analyses  

Methods 

We modified the simulation model developed in year 1 of the PSC funded project to evaluate 
performance of percentile-based benchmarks. That model was adapted from Holt and Folkes 
(2015) to evaluate data-limited benchmarks, described briefly here. Performance was measured 
as deviations between estimated lower benchmarks (25th percentile of observed spawner 
abundances and estimated Sgen) and “true” lower benchmarks (“true” Sgen). As in Holt and Folkes 
(2015), the model included five components representing population dynamics, observations of 
abundances, management (including the derivation of benchmarks), harvest, and performance 
evaluation (Fig. 14). In particular, the model included natural variability in adult recruitment 
based on a Ricker spawner-recruitment relationship with variable age at maturity, errors in 
observations of abundances, assessments of biological status relative to benchmarks, the 
application of a harvest control rule, and uncertainties in the outcomes from implementing 
management decisions. A full description of model modifications from Holt and Folkes (2015) 
and parameterization is available in Appendix D. We made several revisions to the model from 
the first year of the project. 

 A back-transformation bias correction for log-normally distributed variables was 
included with removed a positive bias in true and observed abundances. 

 Sensitivity analyses on harvest rates were applied over the entire time-series of the 
simulation instead of only over the initialization period. This assumption more clearly 
reflects impacts of harvesting at those levels over the long-term, and reflects continued 
higher exploitation on some CUs (Georgia Strait) relative to others (Loughborough). 

 Model results were evaluated in the context of West Coast Vancouver Island and Inner 
South Coast CUs. Specifically, performance of S25th and Sgen benchmarks was evaluated 
for the CUs and stock management Units in those areas given estimates productivities 
and harvest rates. Due to the first two revisions, a re-examination of Inner South Coast 
CUs relative to the simulation modelling results was warranted. 

 For the CUs for which our results suggested that the S25th percentile benchmark was not 
precautionary compared with “true” estimates of the lower benchmark (“true” Sgen), we 
further evaluated performance of alternative percentiles for lower benchmark, ranging 
from 30th-50th percentile in increments of 5%. 

 

Sensitivity analyses 
Similar to analyses performed in the first year of the analyses, to assess the strength and direction 
of effects of input parameters on benchmark performance, we varied each input parameters 
individually while all others were held constant in a sensitivity analysis (Appendix D, Table D1). 
These sensitivity analyses did not assess the sensitivity of performance to interactions among 
input variables. To further consider interactions among all input variables, we performed a global 
sensitivity analysis, using the Morris method. Similar to univariate analyses, the Morris method 
varies each input parameter one at time, but in contrast to univariate analyses, this is done at 
different points of the factor input space (i.e., at different combinations of other variables) 
(Morris et al. 2014). The mean elemental effect of an input parameter from the Morris method is 
an index of the sensitivity of benchmark performance to uncertainty in that parameter. The 
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standard deviation of the elemental effects is an index of sensitivity of benchmark performance 
to interactions of that variable with other variables. The Morris method was run using the R 
package, sensitivity, v.1.11.1 (Pujol et al. 2015).  

For two parameters that had a relatively large effect on performance, productivity and initial 
harvest rates, a bivariate sensitivity analysis was performed to assess their combined effect on 
benchmark performance. We further evaluated the impacts of variability in productivity and 
harvest rates on assessment errors when estimating Ricker stock-recruitment parameters (which 
are used to derive data-rich benchmarks) and on resulting contrast in observed spawner data.  

Data contrast has been used by Alaska Department and Fish and Game to identify the level of 
precaution (i.e., percentile of observed abundances) that should be afforded when identifying 
sustainable escapement goals (Clark et al. 2014). In particular, when the contrast in observed 
spawner time-series is high (maximum escapement/minimum escapement >8), they recommend 
a range covering the 15th to 60th percentiles of observed escapement for the sustainable 
escapement goal. When contrast is low, they recommend a wider range with a lower bottom limit 
(5th -65th percentiles). However, contrast in time-series will depend in part on historical harvest 
rates and productivity. We evaluated the impact of variability in harvest rates and productivity on 
data contrast in our simulation model, to assess covariation in those variables. 

Given large uncertainties in underlying data and concerns about potential impacts of observation 
errors and biases in spawner numbers (e.g., due to incomplete sampling), we also explored 
bivariate sensitivity analyses of magnitude and bias of observation errors on benchmark 
performance.  

We focused univariate and global sensitivity analyses on lower benchmarks (25th percentile and 
Sgen), but also considered sensitivity of upper benchmarks (75th percentile and 80% SMSY) in our 
bivariate sensitivity analyses on productivity and harvest rates.  

Time-varying productivity 
We also evaluated impacts of temporal variability in productivity on benchmark performance, in 
the form of a step-like regime shift from a predominantly high productivity to a predominantly 
low productivity regime. Similar to the year 1 of the project, we evaluated one method to account 
for that variability by truncating the data used to estimate benchmarks to either the most recent 
low-productivity period to capture current conditions, or the historic high-productivity period to 
avoid a shifting baseline. This data-truncation approach was adopted by Grant et al. (2011) to 
evaluate biological status of sockeye salmon on the Fraser River using biological benchmarks 
under the Wild Salmon Policy. Specifically, Grant et al. (2011) found that benchmarks estimated 
using spawner and recruitment data from only the recent low-productivity period were larger 
(i.e., more precautionary) than those that were estimated from the entire time-series. This 
approach has not yet been applied to other species or regions, where the data required for 
assessing changes in productivity are often lacking. In contrast to the analysis applied in year 1 
of the project, the model for evaluating benchmarks under temporal variability in productivity 
included the revisions in the bullets above. 
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Results 

Simulation model outputs for an example CU are presented in Fig. 15. Harvest rates during the 
initialization period were drawn at random from the historical time-series of exploitation rates 
for that CU, and the productivity parameter was estimated from the historical data using a 
hierarchical Ricker model (from Objective 1). Mean percent error between estimated and “true” 
benchmarks was generally greater than zero, especially for percentile benchmarks (Fig 15, right 
panel). For this CU, percentile benchmarks tended to be precautionary (i.e., deviations between 
25th percentile benchmark and true Sgen were positive), whereas the stock-recruitment 
benchmarks tended be negatively biased (i.e., deviations between estimate of Sgen and true value 
were negative). Estimates of stock-recruitment benchmarks differed from the “true” values 
because estimates were based on observed data (black line in Fig 15, left panel, and solid dots in 
Fig. 15, middle panel) rather than “true” data (grey line in Fig 15, left panel, and hollow dots in 
Fig. 15, middle panel). The assessed stock-recruitment model (black curve, Fig. 15, middle 
panel) differed from the “true” underlying model (grey curve, Fig. 15, middle panel) due to those 
errors in spawner abundance and time-series biases (Walters and Martell 2004). 

Similar to results from Year 1 of the project, we found that performance of lower benchmarks 
(both Sgen and S25th) was more sensitive to uncertainty in productivity than to other input 
parameters (Fig. 16a and b, respectively). Low productivity values (leftmost black bar) were 
associated with negative deviations from the base case (i.e., benchmarks that were less 
precautionary than the base case); high productivities (leftmost white bar) were associated with 
positive deviations (i.e., benchmarks that were more precautionary). For the lower benchmark, 
Sgen, Ricker autocorrelation had moderate impacts on performance and the remaining input 
parameters had relatively weak effects on performance (<50%). For the lower percentile 
benchmark, S25th, harvest rates had a strong effect on benchmark performance, and the remaining 
input parameters had relatively weak effects on performance (<50%). Similar patterns of results 
were found for the differences in mean raw error of estimated benchmark from the true value 
(not shown). 

The global sensitivity analyses showed similar patterns as the univariate and bivariate sensitivity 
analyses, and similar to results from Year 1 of the project despite model changes. The mean 
elemental effects (magnitude of sensitivity, x-axis of Fig. 17) were greatest for productivity for 
both S25th and Sgen benchmarks. Harvest rates were secondarily important for the S25th benchmark 
(Fig. 17b). Parameters that ranked high on the standard deviation in elemental effect (y-axis of 
Fig. 17, e.g., observation errors in spawner) were influential for benchmark performance only in 
combination with other input parameters. 

We further explored bivariate sensitivity analyses of the effects of variability in productivity and 
initial harvest rates on benchmark MPEs. At moderate to high productivity and low initial 
harvest rates, both S25th and Sgen benchmarks are precautionary (i.e., estimated benchmarks are 
equal to or higher than “true” Sgen lower benchmark) (Fig. 18, top left portion of panels; 
productivities are depicted as loge(), Eqn. 2). At low productivity and high harvest rates, neither 
benchmark is precautionary (Fig. 18 bottom right portion of panels), and this true for Sgen even at 
low harvest rates (Fig. 18b, bottom left corner). These results differ from results from the 1st year 
of the project due to model changes described above.  
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When we superimposed CU-specific productivities and harvest rates for Inner South Coast Chum 
Salmon, the S25th lower benchmarks were near the true Sgen benchmark for all CUs except Upper 
Knight, UK (Fig. 18a, symbols lie near the zero contour line, except UK). The S25th benchmarks 
for 4 CUs was slightly (~25%) lower than true values (SCS= Southern Coast Streams, 
HSBI=Howe Sound and Burrard Inlet, NEVI= Northeast Vancouver Island, and GS=Georgia 
Strait). For Upper Knight, the S25th benchmark was 100% greater than the true Sgen. We also 
evaluated CU-specific performance of alternative percentile benchmarks ranging for 30th – 50th 
in increments of 5%. We found that 50th percentile benchmark tended to higher than true 
estimate Sgen for all ISC CUs (Fig. 19; performance of Sgen is same as in Fig 18b, but is shown 
here for comparison). Plots of performance of remaining percentiles benchmarks are provided in 
the Appendix E. 

For the West Coast of Vancouver Island, the S25th benchmarks were equal to or higher than the 
true Sgen benchmarks for both CUs (SWVI =Southwest Vancouver Island and NWVI=Northwest 
Vancouver Island), and all five stock management units within SWVI (Fig. 20a). However, 
uncertainty bounds in productivity crossed the zero contour line for SWVI and 4 of the 5 stock 
management units within SWVI. In contrast, estimates of the Sgen benchmark were below the 
true lower benchmark (i.e., below the zero contour line) for SWVI and 3 stock management units 
within SWVI (Fig. 20b). Uncertainties bounds crossed the zero contour line for all stock 
management units and CUs except NWVI, which had estimates of Sgen that were higher than the 
true value.  

For the upper benchmarks, for the Inner South Coast CUs, the S75th benchmarks were higher than 
the true 80% SMSY upper benchmark, but the uncertainty bounds for two CUs crossed the zero 
contour line (Fig. 21a). The estimates of 80% of SMSY were below the true benchmark values for 
all Inner South Coast CUs (Fig. 21b). Similar trends were observed for the West Coast of 
Vancouver Island CUs. The S75th benchmark tended to be higher than the true upper benchmark, 
but the estimated 80% SMSY value tend to be lower than true values (Fig 22).  

We found similar patterns in deviations in estimated Ricker parameters from the true values, as 
for Sgen deviations, though the direction of effects varied (Fig. 23).  The estimated Ricker loge( 
parameter (productivity parameter) tended to be higher and estimated Ricker b parameter 
(carrying capacity) tended to be lower than the true values at low productivity and high harvest 
rates (Fig. 23, bottom right corner of both panels). The opposite occurred at high productivity 
and low harvest rates. 

In addition, we found that contrast in observed time-series of spawner abundances (maximum 
escapement/minimum escapement) was minimized at low productivity and high harvest rates and 
maximized at high productivity and low harvest rates, ranging from 2-20) (Fig. 24). 

The effects of the magnitude of observation errors in spawner abundances were small compared 
with the effects of biases in spawner abundances (Fig. 25), but both were smaller than the effects 
of productivity and harvest rates (Fig. 25 compared with Fig. 18). 

Our model assumed spawner abundances at equilibrium, Seq, remained constant as productivity 
varied in sensitivity analyses (as in Holt  and Bradford 2011). When we considered an alternate 
assumption where Smax remained constant, but Seq declined as productivity declined, we found 
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similar patterns in the results (within ~10% MPE). This alternate assumption represents a 
scenario of simultaneous declines in capacity and productivity. 

Time-varying productivity 
As expected, regime shifts from high to low productivity were associated with increases in “true” 
(i.e., deterministic) Sgen, 80% of SMSY, and Smax when Seq was assumed constant (Fig. 26a-e). In 
contrast, when Smax	was assumed constant, declines in productivity were associated with declines 
in “true” 80% of SMSY and increases in “true” Sgen and Seq (Fig. 26f-j). The latter assumption 
incorporates a decline in total capacity of the CU to sustain a population as well as a decline in 
recruits/spawner at low spawner abundances (see Fig. 3 in Holt  and Folkes 2015). 

Truncating time-series data used to estimate benchmarks to the recent low-productivity period 
resulted in lower estimates of productivity (Fig. 27a) and higher estimates of Sgen (i.e., more 
precautionary) (Fig. 27c) under constant Seq, compared to when the historical period was used. 
However, median estimates of Sgen were below the “true” value regardless of choice of data for 
inclusion (dashed line Fig. 27c), though the confidence intervals covered the “true” value in all 
three scenarios. The upper benchmark, 80% of SMSY, did not change consistently with data 
truncation (Fig. 27e). Both S25th and S75th percentile benchmarks declined (i.e., became less 
precautionary) when data were truncated to the recent period, but these values were consistently 
higher than the “true” Sgen and 80% of SMSY benchmarks, respectively. Although Sgen became 
more precautionary as data were truncated to the recent period and percentile benchmarks 
became less precautionary, percentile benchmarks were still consistently greater than true values 
(mean percent errors for S25th and S75th were >> zero) (Fig. 28a). These results are similar to those 
presented in Year 1 of the project. 

Similar patterns were observed under the assumption of constant Smax with an abrupt decline in 
productivity and Seq (Fig. 28b and 29), with two exceptions. When only the recent data were 
used, the estimate of productivity did not decline compared with using the entire data set (Fig. 
29a), though the estimate of Seq did decline (Fig. 29b). Confounding between estimates of 
productivity and Seq results in a relatively low (instead of high) value for Sgen when only recent 
data are used (Fig. 29c).  

 

Discussion 

We found that performance of percentile-based benchmarks was more sensitive to uncertainties 
in productivity and variability in harvest rates than to other model parameters, including 
observation errors in spawner abundances, catch, and age-at-maturity.  Both S25th and estimates 
of Sgen tend to be below the “true” lower benchmarks (“true” Sgen) when harvest on unproductive 
CUs is high. As CUs are depleted, the time-series of observed abundances are dominated by low 
values, ratcheting the S25th benchmark downward over time. The opposite occurs for highly 
productive CUs with low harvest where time-series are dominated by high abundances, pushing 
S25th benchmark upwards.  

Estimates of Sgen tend to be negatively biased when productivity is low due to time-series biases 
on stock-recruitment parameters. Time-series biases occur when the independent variable in 
stock-recruitment relationship (spawner abundances) depends on the recruitment (dependent 
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variable) in the previous generation, and are well documented for salmon populations (Walters 
and Martell 2004). The lack of independence between spawners and recruitment results in over 
estimates of productivity and under estimates in carrying capacity (e.g., as documented for 
Skeena River salmon in BC, Korman and English 2012), effects which are accentuated at low 
productivity (Korman et al. 1995) (as shown on the contours in Fig. 18). These parameter biases 
results in underestimates of Sgen (Fig. 30). Although state-space versions of stock-recruitment 
model that account for uncertainty in spawner abundances have been proposed as a way to 
address time-series biases, the performance of these methods against standard stock-recruitment 
models has been equivocal (Su and Peterman 2012).  Alternatively, hierarchical models such as 
the models presented in Objective 1 have been suggested as a method to reduce these biases 
(Korman and English 2012), but a thorough evaluation of those methods under different 
scenarios of productivity and data quality is lacking. Further work evaluating impacts of 
hierarchical formulations of stock-recruitment models (and other Bayesian models with 
informative priors) on time-series biases and benchmark performance is warranted. 

For the CUs we evaluated on the West coast of Vancouver Island, the percentile benchmarks 
tended to be more precautionary than the true Sgen benchmarks, but this was not the case for 
Inner South Coast because of low productivity and high harvest rates of several CUs in that 
region. We found that benchmarks based on the 50th percentile of observed spawner abundances, 
S50th tended to be more precautionary than true Sgen benchmark (including all CUs evaluated 
here), except when productivities were between 1-1.2 and harvest rates were ≥0.5, productivities 
were between 0.8-1 and harvest rates were ≥0.4, or productivity was <0.8 and harvest rates were 
≥0.2. Under those scenarios, higher percentiles would be warranted to match the level of 
precaution provided by “true” Sgen benchmarks.  

Under scenarios of time-varying productivity, we found values of percentile benchmarks were 
highest (most precautionary) when only historical data on high-productivity regime was used to 
avoid shifting baseline during CU depletion. In contrast, the performance of Sgen benchmarks 
depended on whether Seq or Smax remained constant as productivity changed. Overall, under a 
scenario of step-like declines in productivity, our results suggest that estimates of Sgen are least 
biased when the entire times is used to estimate benchmarks instead of either historical or recent 
years due to strong time-series biases and confounding between stock-recruitment parameters 
that occur when time-series are short. 

Comparison to Sustainable Escapement Goals developed by ADFG (Clark et al. 2014) 

Clark et al. (2014) outlined sustainable escapement goals based on percentiles of observed 
spawner abundances using 4 tiers: 

 Tier 1 – for high escapement contrast (greater than 8) and at least moderate harvest rate, 
the central 50-percentile range (25th to 75th percentiles) 

 Tier 2 – for medium escapement contrast (4 to 8) and at most low harvest rate, the 15th 
percentile to the 75th percentile 

 Tier 3 – for medium escapement contrast (4 to 8), the central 70-percentile range (15th to 
85th percentiles) 

 Tier 4 – for low escapement contrast (less than 4), the 15th percentile to maximum 
observed escapement (100th percentile). 
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Our evaluation differed from that of Clark et al. (2014) because we were interested in evaluating 
percentile benchmarks in context of Wild Salmon Policy benchmarks, and not escapement goals 
based on MSY. The lower bounds of the sustainable escapement goals represent a lower bound 
of the escapement goals, which we focused our comparison against. 

Similar to the results of Clark et al. (2014), we recommend higher percentiles be considered 
when harvest rates are high. In contrast to Clark et al. (2014), we found that contrast in 
escapement data was correlated with stock productivity, and we recommend higher percentiles 
under low productivity and low contrast, instead of low percentiles (as in Clark et al. (2014)). 
These different results may be explained in part by the smaller range in productivities considered 
by Clark et al. (2014) in their simulation evaluation of percentile-based escapement goals 
(loge()=1-2), compared with the range considered here (loge()=0.5-2). 
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Objective 3: Recommendations on application of benchmarks 

Our retrospective analysis shows that for Chum Salmon CUs examined here status determined 
using percentile-based benchmarks were consistently more precautionary than Ricker-based 
benchmarks, and are therefore may be a viable choice for use in sites where Ricker-based 
benchmarks cannot be calculated or are highly uncertain. However, we recommend caution when 
using percentile benchmarks when productivity is moderate-low (loge() < 1.2) and and/or 
harvest rates are moderate-high (>0.2) based on results from our simulation modelling. In these 
cases, the performance of benchmarks depends on the combination of productivity and harvest 
rates. Even if S25th benchmarks are higher than then estimates of the data-rich, Sgen benchmark, 
S25th may be lower than the “true” Sgen benchmark resulting in possible overestimates of status. 
To avoid overestimates of status in these cases, benchmarks based higher percentiles of spawner 
time-series (e.g. S50th instead of S25th for the lower benchmark) may be warranted. Therefore, the 
choice of percentile for the lower benchmark should vary among CUs depending on productivity 
and harvest rates. When productivity and/or harvest rates are highly uncertain, a precautionary 
approach would be to adopt a relatively high percentile (S50th = median of spawner time-series) 
as a lower benchmark. We note, however, that there is a level of productivity below which, and 
harvest rates above which, S50th benchmark will no longer be precautionary (below zero contour 
line in Fig. 19a), and percentile-based benchmarks are not recommended. One caveat on the 
application of percentile-based benchmarks is that uncertainties in benchmarks are not provided. 

Our simulation results found that for 4 CUs (Southern Coast Streams, Georgia Strait, Howe 
Sound/Burrard Inlet, and Northeast Vancouver Island), S25th benchmarks were lower than the 
true underlying benchmarks and therefore may fail to detect conservation concerns. For these 
CUs, S50th benchmarks were larger than true benchmarks, and therefore may better detect 
conservation concerns when they exist. These 4 CUs were characterized by recent declines in 
productivity (Southern Coastal Streams and Northeast Vancouver Island) or high harvest rates 
(Georgia Strait and Howe Sound/Burrard Inlet). For the remaining CUs on Inner South Coast 
and West Coast of Vancouver Island (including component stock management units), values of 
S25th were equal to or greater than true underlying lower benchmark. However, uncertainties in 
productivity and variability in harvest rates for these CUs are high, and so status above S25th may 
not necessarily protect CUs against conservation risks given that a large portion of the 
distributions are associated with enhanced risks. 

These results can be applied to other CUs of Chum Salmon in BC, including Fraser River. Where 
productivity and harvest rates are known to be low, S25th percentile benchmarks are 
recommended for lower benchmarks of biological status. Where productivity estimates and/or 
harvest rates are low or highly uncertain, a higher benchmark, such as S50th may be warranted.  
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General Discussion: Time-varying Productivity 

Our retrospective analyses assumed constant productivity over time, but observed temporal 
variability in productivity (measured in Ricker ߙ) for south coast Chum Salmon CUs suggests 
that the Ricker stock-recruit relationships may vary through time (here and documented in 
Malick and Cox 2016). Indeed, there is widespread evidence for abrupt regime shifts in salmon 
productivity followed by relatively constant periods (Beamish et al. 1999, Hare et al. 1999).  
Given widespread changes in productivity, a data-truncation approach that uses data from recent 
period or historical base-line period of relatively consistent productivity may result in 
benchmarks that are more precise and in some cases more precautionary. Although truncation of 
time-series data to the most recent time period has been suggested as a method to account for 
declines in productivity in a precautionary manner (Grant et al. 2011), this approach may result 
in a “shifting baseline” for percentile-based benchmarks since they tend to decline with 
abundances. In other words, declines in productivity affect Sgen and percentile-based benchmarks 
in opposite directions.  

Our simulation model suggests that when regime-like shifts in productivity occur and percentile-
based benchmarks are used, truncating data to a historical high-productivity period avoids the 
shifting baseline phenomenon that occurs when the entire time-series or only the most recent 
data are used. However, for stock-recruitment based benchmark, Sgen, performance is improved 
by using the entire time-series, as that benchmark is influenced more strongly by time-series 
biases and confounding between Ricker parameter which occur especially in short time-series.  

Any changes to benchmarks in response to changes in productivity (i.e., data truncation) will 
require careful consideration of strength of evidence, causal mechanisms, and reversibility of 
changes, among other factors, and should be implemented on a case-by-case basis, If the 
observed decline in abundances is due to density-independent changes in productivity that are 
reversible, then precautionary (i.e., relatively high) benchmarks are warranted to maintain 
resilience of the CU. If the observed decline is due to density-dependent changes in capacity that 
are well understood and irreversible (i.e., a persistent shift to a low-production regime), 
reductions in benchmarks may be warranted in rare cases to reflect this decline in production. 
Duplisea and Cadigan (2012) provide recommendations on the conditions that would be required 
to make such adjustments.  

One limitation in our data truncation analysis is that it assumes that shifts in productivity are 
detected accurately, and data are truncated to within a specific regime. The results of our time-
varying productivity parameter analyses from section 1 of this report demonstrate that temporal 
estimates of productivity are highly uncertainty, making regime shifts challenging to identify. 
Developing improved methods for detecting regime shifts within these data sets is an area for 
future investigation. 
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Table 1a ‐ Parameter and benchmark estimates and upper/lower credible interval bounds delineated as 2.5th and 97.5th posterior densities for most recent year. 

 

 

 

 

   South Coast Streams  Northeast Vancouver Island  Upper Knight 
Model  Standard  Hierarchical  Standard  Hierarchical  Standard  Hierarchical 
Statistic  Estimate  UCL/LCL  Estimate  UCL/LCL  Estimate UCL/LCL Estimate UCL/LCL Estimate UCL/LCL  Estimate  UCL/LCL 
Ricker 
 

1.39 
2.23 

1.60 
2.43 

1.53 
2.23 

1.70 
2.43 

2.22 
4.04 

2.18 
3.56 

0.92  1.02  1.05  1.14  1.19  1.34 

Smax  80,275 
218,015 

67,219 
183,913 

115,696 
313,299 

101,040 
284,140 

16,523 
62,829 

16,756 
57,175 

43,303  41,050  68,614  63,165  9,410  9,804 

Sgen  9,636 
19,263 

9,994 
18,702 

16,506 
31,386 

16,292 
31,635 

2,944 
9,167 

3,089 
9,365 

2,131  4,292  7,927  10,155  1,485  1,736 

 80% 
SMSY 

10,372 
20,370 

11,711 
20,687 

18,503 
33,262 

19,494 
34,620 

4,581 
11,619 

4,578 
12,270 

1,734  3,647  6,688  9,098  1,980  2,429 

                                      

   Loughborough  Bute Inlet  Georgia Strait 
Model  Standard  Hierarchical  Standard  Hierarchical  Standard  Hierarchical 
Statistic  Estimate  UCL/LCL  Estimate  UCL/LCL  Estimate UCL/LCL Estimate UCL/LCL Estimate UCL/LCL  Estimate  UCL/LCL 
Ricker 
 

2.30 
3.23 

2.24 
3.06 

2.46 
3.77 

2.32 
3.44 

3.08 
4.77 

2.67 
4.19 

1.59  1.66  1.62  1.64  2.05  1.97 

Smax  62,730 
123,151 

64,033 
116,832 

106,264 
246,135 

111,430 
278,742 

493,198 
1,083,934 

608,911 
1,143,835 

43,696  44,811  69,179  73,740  301,072  336,236 

Sgen  11,992 
21,103 

12,227 
20,857 

20,222 
44,095 

21,257 
47,248 

90,983 
206,206 

116,883 
216,737 

8,095  8,440  12,203  13,489  44,872  53,905 

  80% 
SMSY 

18,401 
27,404 

18,194 
27,109 

33,348 
60,030 

33,484 
62,854 

186,802 
303,619 

203,327 
313,297 

13,671  13,628  23,044  22,782  141,661  146,895 

                                      

   Howe Sound to Burrard Inlet  North West Coast Vancouver Island  South West Coast Vancouver Island 
Model  Standard  Hierarchical  Standard  Hierarchical  Standard  Hierarchical 
Statistic  Estimate  UCL/LCL  Estimate  UCL/LCL  Estimate UCL/LCL Estimate UCL/LCL Estimate UCL/LCL  Estimate  UCL/LCL 
Ricker 
 

2.63 
3.75 

2.47 
3.49 

2.50 
3.75 

2.51 
3.76 

2.81 
4.55 

2.78 
4.56 

1.81  1.79  1.66  1.65  1.69  1.64 

Smax  511,173 
1,657,672 

559,155 
1,837,905 

62,398 
108,771 

62,597 
110,640 

344,426 
731,855 

348,571 
746,969 

308,310  333,798  44,590  44,742  232,644  235,912 

Sgen  97,554 
310,845 

107,571 
344,097 

11,995 
18,845 

11,997 
18,841 

65,109 
124,899 

66,202 
125,382 

54,892  60,229  7,754  7,724  35,981  36,558 

  80% 
SMSY 

171,126 
410,187 

177,421 
453,338 

19,871 
25,247 

19,921 
25,492 

120,726 
161,752 

121,273 
160,359 

119,131  120,094  15,779  15,671  99,282  99,754 



Table 1b ‐ Parameter and benchmark estimates and upper/lower credible interval bounds delineated as 2.5th and 97.5th posterior densities for most recent year 

    Esperanza   Barkley  Clayoquot 

Model  Standard  Hierarchical  Standard  Hierarchical  Standard  Hierarchical 

Statistic  Estimate  UCL/LCL  Estimate  UCL/LCL  Estimate  UCL/LCL  Estimate  UCL/LCL  Estimate  UCL/LCL  Estimate  UCL/LCL 

Ricker   3.53 
5.55 

3.47 
5.48 

1.95 
3.02 

2.09 
3.24 

2.28 
3.59 

2.43 
3.72 

2.15  2.19  1.24  1.32  1.44  1.53 

Smax  39,262 
67,922 

39,663 
65,859 

157,925 
377,062 

147,015 
339,015 

80,019 
168,738 

74,678 
147,162 

28,526  28,732  102,715  97,110  52,782  50,454 

Sgen  6,874 
12,879 

6,993 
12,604 

28,400 
47,412 

27,393 
45,047 

15,300 
25,683 

14,344 
24,327 

3,947  3,973  18,834  17,564  9,328  8,750 

ૡ૙%16,227  ࢅࡿࡹࡿࡿ 
21,087 

16,224 
20,746 

38,056 
53,280 

38,650 
52,026 

23,037 
31,325 

23,072 
30,609 

13,322  13,390  23,582  26,743  17,396  18,105 

                                      

   Kyuquot  Nootka    

Model  Standard  Hierarchical  Standard  Hierarchical 

Statistic  Estimate  UCL/LCL  Estimate  UCL/LCL  Estimate  UCL/LCL  Estimate  UCL/LCL 

Ricker   4.65 
7.05 

4.38 
6.82 

3.71 
6.09 

3.59 
5.89 

2.89  2.85  2.22  2.23 

Smax  47,709 
67,775 

49,044 
68,769 

41,043 
68,610 

41,959 
68,734 

38,042  38,454  29,942  30,531 

Sgen  7,185 
12,632 

7,648 
12,744 

7,035 
13,068 

7,307 
13,096 

4,325  4,569  3,849  4,035 

 ૡ૙%ࢅࡿࡹࡿࡿ  22,836 
27,065 

22,950 
27,153 

17,465 
23,059 

17,596 
22,875 

20,086  20,019  14,489  14,395 

                          
 

 

 

 

 



Table 2a. Benchmark values across three methods used: standard Ricker model, hierarchical Ricker model ( ௚ܵ௘௡	and 80% ܵெௌ௒) and percentiles (25th 
and 75th). 

  Southern Coastal Streams 

Method  Standard Ricker  Hierarchical Ricker  Percentile 

Upper Benchmark  10,372  11,711 54,350 

Lower Benchmark  9,636  9,994 5,425 

North East Vancouver Island 

Upper Benchmark  18,503  19,494 75,136 

Lower Benchmark  16,506  16,292 16,519 

Upper Knight 

Upper Benchmark  4,600  4,572  11,191 

Lower Benchmark  2,991  3,086  2,006 

Loughborough 

Upper Benchmark  18,219  18,301  46,303 

Lower Benchmark  12,002  12,316  17,313 

Bute Inlet 

Upper Benchmark  33,752  33,247  85,517 

Lower Benchmark  20,528  21,155  11,275 

Georgia Strait 

Upper Benchmark  187,546  201,020  445,139 

Lower Benchmark  91,724  113,305  202,269 

Howe Sound to Burrard Inlet 

Upper Benchmark  171,126  177,421  303,280 

Lower Benchmark  97,554  107,571  85,394 

  North West Coast Vancouver island 

Upper Benchmark  19,871  19,921  73,650 

Lower Benchmark  11,995  11,997  24,811 

  South West Coast Vancouver Island 

Upper Benchmark  120,726  121,273  433,640 

Lower Benchmark  65,109  66,202  204,065 



 

Table 2b. Benchmark values across three methods used: standard Ricker model, hierarchical Ricker model ( ௚ܵ௘௡	and 80% ܵெௌ௒) and percentiles (25th 
and 75th). 

  Esperanza 

Method  Standard Ricker  Hierarchical Ricker  Percentile 

Upper Benchmark  16,227  16,224 54,242 

Lower Benchmark  6,874  6,993 25,390 

Barkley 

Upper Benchmark  38,056  38,650 145,222 

Lower Benchmark  28,400  27,393 48,106 

Clayoquot 

Upper Benchmark  23,037  23,072 76,239 

Lower Benchmark  15,300  14,344 34,656 

Kyuquot 

Upper Benchmark  22,836  22,950 84,739 

Lower Benchmark  7,185  7,648 36,590 

Nootka 

Upper Benchmark  17,465  17,596 50,502 

Lower Benchmark  7,035  7,307 24,654 

 

 

 

 

 

 

 

 



Table 3a. Conservation status for each CU for the most recent year of analysis, 2012 for ISC, 2015 for WCVI. Statuses are calculated using all data available for 
the Ricker-based benchmarks, and use all escapement data for the percentile-based benchmark. 

Conservation Unit  Percentile Status  Standard Ricker Status  Hierarchical 
Ricker Status 

South Coast Streams  Red  Red  Red 

Northeast Vancouver Island  Amber  Green  Green 

Upper Knight  Amber  Green  Green 

Loughborough  Amber  Green  Green 

Bute Inlet  Amber  Green  Green 

Georgia Strait  Green  Green  Green 

Howe Sound to Burrard Inlet  Green  Green  Green 

North West Coast Vancouver 
island  Red  Green  Green 

South West Coast Vancouver 
Island  Green  Green  Green 

 

 

Table 3b. Conservation status for each WCVI SMU for the most recent year of analysis, 2015. Statuses are calculated using all data available for the Ricker-based 
benchmarks, and use all escapement data for the percentile-based benchmark. 

Conservation Unit  Percentile Status  Standard Ricker Status  Hierarchical 
Ricker Status 

Barkley  Red  Amber  Amber 

Clayoquot  Red  Green  Green 

Nootka  Amber  Green  Green 

Esperanza  Amber  Green  Green 

Kyuquot  Amber  Green  Green 

 



Table 4a.  Proportion of years where Ricker-based status and percentile-based status match, by CU and Ricker Model (standard Ricker model in column 1 and 
hierarchical Ricker model in column 2). Columns 3 and 4 show the proportion of years where the percentile-based status matched OR was more precautionary than 
Ricker-based status. 

Conservation unit 

Standard Ricker 
match with 
percentile 
benchmarks 

Hierarchical 
Ricker match 

with 
percentile 
benchmarks 

Standard Ricker 
match or more 
precautionary 

Hierarchical 
Ricker match 

or more 
precautionary

South Coast Streams  0.27  0.41  1.00  1.00 

Northeast Vancouver Island  0.14  0.19  0.96  0.97 

Upper Knight  0.51  0.49  0.79  0.77 

Loughborough  0.21  0.23  1.00  1.00 

Bute Inlet  0.58  0.58  0.77  0.77 

Georgia Strait  0.28  0.28  1.00  1.00 

Howe Sound to Burrard Inlet  0.56  0.56  1.00  1.00 

North West Coast Vancouver 
island  0.08  0.08  1.00  1.00 

South West Coast Vancouver 
Island  0  0  1.00  1.00 

 

Table 4b.  Proportion of years where Ricker-based status and percentile-based status match, by WCVI SMU and Ricker Model (standard Ricker model in column 1 
and hierarchical Ricker model in column 2). Columns 3 and 4 show the proportion of years where the percentile-based status matched OR was more precautionary 
than Ricker-based status. 

Conservation unit 

Standard Ricker 
match with 
percentile 
benchmarks 

Hierarchical 
Ricker match 

with 
percentile 
benchmarks 

Standard Ricker 
match or more 
precautionary 

Hierarchical 
Ricker match 

or more 
precautionary

Barkley  0 0 1.00 1.00

Clayoquot  0.10 0.10 1.00 1.00

Nootka  0.08 0.08 1.00 1.00

Esperanza   0.03 0.03 1.00 1.00

Kyuquot  0.13 0.13 1.00 1.00

 

 



Figures 

Fig. 1. Schematic of ChumGEM model for reconstruction return abundances of Chum Salmon in 
southern BC and Washington State (Cox and Rossi, unpublished presentation). 

 

  



Fig. 2. Model estimates for Ricker ߙ (top row) and ܵ௠௔௫ (bottom row) across prior distributions (uniform and lognormal) for  ܵ௠௔௫ 
and standard and hierarchical Ricker model structures (solid and dotted lines, respectively) for each CU in 2012. Circles indicate 
posterior medians, and lines indicate 95% credible intervals of estimates.  

 



Fig. 2. cont. 

 

 



Fig. 3. Model estimates for Ricker ߙ (top row) and ܵ௠௔௫ (bottom row) across prior distributions (uniform and lognormal) for  ܵ௠௔௫ 
and standard and hierarchical Ricker model structures (solid and dotted lines, respectively) for each SMU in 2012. Circles indicate 
posterior medians, and lines indicate 95% credible intervals of estimates.  

 



Fig. 4. Observed spawner-recruit data over time, with fitted Ricker curves and associated 
benchmarks for (i) the standard Bayesian Ricker model, and (ii) the Bayesian hierarchical Ricker 
model for CUs. Shaded regions indicate 95% credible intervals, delineated by 2.5th and 97.5th 
posterior densities. Red and green circles on x-axis identify percentile-based benchmarks (S25th 
and S75th, respectively). Cross indicates most recent data point, for brood year 2006. Colours of 
points increase in darkness as years progress towards the current year. 
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Fig. 5. Observed spawner-recruit data over time, with fitted Ricker curves and associated 
benchmarks for (i) the standard Bayesian Ricker model, and (ii) the Bayesian hierarchical Ricker 
model for SMUs. Shaded regions indicate 95% credible intervals, delineated by 2.5th and 97.5th 
posterior densities. Red and green circles on x-axis identify percentile-based benchmarks (S25th 
and S75th, respectively). Cross indicates most recent data point, for brood year 2006. Colours of 
points increase in darkness as years progress towards the current year. 
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Fig. 6. Raw and generational average escapement over time for CUs, with retrospective conservation benchmarks overlaid for three 
benchmarks types: (i) standard Ricker model; (ii) hierarchical Ricker model; and (iii) percentile. Shaded regions indicate 95% credible 
intervals, delineated by 2.5th and 97.5th posterior densities. Retrospective benchmarks use all available data up to that year to estimate 
benchmark values. 
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Fig. 7. Raw and generational average escapement over time for SMUs, with retrospective conservation benchmarks overlaid for three 
benchmarks types: (i) standard Ricker model; (ii) hierarchical Ricker model; and (iii) percentile. Shaded regions indicate 95% credible 
intervals, delineated by 2.5th and 97.5th posterior densities. Retrospective benchmarks use all available data up to that year to estimate 
benchmark values. 

 



Fig. 8. Standardized raw and generational average escapements across CUs, with status indicated by coloured bars below. Transparent 
bars indicate upper and lower credible interval bounds, based on 2.5th and 97.5th percentiles of posterior distribution of estimated 
parameters. Gaps exist for Southern Coastal Streams and North East Vancouver Island because status was not assessed when α values 
were < 1.5, as suggested by Holt and Ogden (2013). 

 



 

Fig. 9 Standardized raw and generational average escapements across SMUs, with status indicated by coloured bars below. 
Transparent bars indicate upper and lower credible interval bounds, based on 2.5th and 97.5th percentiles of posterior distribution of 
estimated parameters. Gaps exist for Southern Coastal Streams and North East Vancouver Island because status was not assessed 
when α values were < 1.5, as suggested by Holt and Ogden (2013). 

 



Fig. 10. Standardized raw and generational average escapements across CUs, with status as measured by percentile benchmarks 
indicated by horizontal coloured bars, and status as measured by standard Ricker benchmarks model indicated by vertical coloured 
bars. The coloured proportions of each vertical bar represent the probability that status falls within each zone. The location of the 
amber zone is constant over years resulting in shift in location of the bar upwards when there is a high probability of green status, and 
downwards when there is a high probability of red status.  

 

 

  



Fig. 11. Standardized raw and generational average escapements across SMUs, with status as measured by percentile benchmarks 
indicated by horizontal coloured bars, and status as measured by standard Ricker benchmarks model indicated by vertical coloured 
bars. The coloured proportions of each vertical bar represent the probability that status falls within each zone. The location of the 
amber zone is constant over years resulting in shift in location of the bar upwards when there is a high probability of green status, and 
downwards when there is a high probability of red status.  

 



Fig. 12. Estimated Ricker ߙvalues for CUs using a recursive Bayes model, which allows ߙ to vary over time within a given CU. Grey 
shaded polygons indicate 95% credible intervals based on posterior distribution of estimated ߙvalues.  

 

  



 

Fig. 13. Estimated Ricker ߙvalues for SMUs using a recursive Bayes model, which allows ߙ to vary over time within a given CU. 
Grey shaded polygons indicate 95% credible intervals based on posterior distribution of estimated ߙvalues. 

 

 



 

Fig. 14. Schematic of simulation model used to evaluate benchmark performance. 
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Year1 300 250 410  ‐   ‐ 

2 120 800 360  ‐   ‐ 

3 510 369 481  ‐   ‐ 

50 years 
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Fig. 15 Time-series of observed spawner abundances (black line) and “true” spawner abundances (grey line) and benchmarks for one 
Monte Carlo trial of an example CU. Benchmarks are estimated annually base on all data up until that year: annual estimates of 80% 
SMSY (upper benchmark, green dashed line), annual estimates of Sgen (lower benchmark, red dashed line), the 75th percentile benchmark 
(green dotted line), and the 25th percentile (red dotted line). 95% confidence intervals are shown for estimates of stock-recruitment 
based benchmarks (green and red shading for the upper and lower benchmarks, respectively). Vertical dashed line indicates the end of 
the 20-year initialization period. (b) Observed spawner and recruitment data (solid black dots) and “true” data (grey hollow dots) for 
the final year of one Monte Carlo trial. The “true” underlying stock-recruitment relationship is shown with the grey curve and the 
estimate based on observed data is shown with the black curve. (c) Mean percent error between estimated and “true” benchmark 
averaged over all Monte Carlo trials. Red bars are the mean percent error from the “true” Sgen (lower benchmark), and green bars the 
mean percent error from the “true” 80% SMSY.  

 



Fig. 16. Difference in the mean percent error, MPE, of estimated lower benchmark (Sgen, (a), and S25th (b)) and the “true” lower 
benchmarks (“true” Sgen), between sensitivity analyses listed on the x-axis and the base case scenario. Black bars are analyses where 
the input parameter was increased relative to the base case (see Table 1); white bars are analyses where the input parameter was 
reduced relative to the base case. Positive values indicate sensitivity analyses where MPE increased under that change in input 
parameter from the base case; negative values indicate analyses where the MPE declined under that change in input parameter. 
Asterisks denote values higher than the limit of the y-axis: 132% (a) and 586% (b).  

   



Fig. 17. Sensitivity indices of the effects of individual variables (mean elemental effect, x-axis) and interactions among variables 
(standard deviation in elemental effects, y-axis). Indices were derived from the Morris method, a global sensitivity analyses for the 
mean percent error of estimated lower benchmarks (Sgen (a), and S25th (b)) from “true” benchmarks. Input variables with values >100 
on either axis are labelled. 

 

   



Fig. 18. Mean percent error, MPE, of the estimated lower benchmark (either S25th (a), and Sgen 
(b)) from the “true” lower benchmark, Sgen along a gradient in harvest rates (x-axis) and 
productivities (y-axis) derived from a simulation model of a hypothetical Chum Salmon CU. 
Symbols indicate MPE of Inner South Coast CUs assuming productivities estimated from 
hierarchical Ricker models and mean harvest rates over available time-series for each CU. Y-
error bars represent the 95% credible intervals of the estimate of productivity. X-error bars are 
the standard deviation of historical harvest rates. SCS is Southern Coastal Streams, NEVI is 
North East Vancouver Island, UK is Upper Knight, LB is Loughborough, GS is Georgia Strait, 
and HSBI is Howe Sound/Burrard Inlet. 

 

   



Fig. 19. Mean percent error, MPE, of the estimated lower benchmark based on the 50th percentile 
of observed abundances, S50th, (a), and Sgen (b), from the “true” lower benchmark, Sgen along a 
gradient in harvest rates (x-axis) and productivities (y-axis), derived from a simulation model of 
a hypothetical Chum Salmon CU. See the caption for Fig. 18 for an explanation of symbols, 
lines, and abbreviations. 

 

   



Fig. 20. Mean percent error, MPE, of the estimated lower benchmark (S25th (a), and Sgen (b)) from 
the “true” Sgen lower benchmark along a gradient in harvest rates (x-axis) and productivities (y-
axis) derived from a simulation model of a hypothetical Chum Salmon CU. Symbols indicate 
MPE of West Coast of Vancouver Island CUs and SMUs assuming productivities estimated from 
hierarchical Ricker models and mean harvest rates over available time-series for each CU and 
SMU. Y-error bars represent the 95% credible intervals of the estimate of productivity. X-error 
bars are the standard deviation of historical harvest rates. SWVI is the Southwest Vancouver 
Island CU and NWVI is the Northwest Vancouver Island CU, which are indicated with dark 
black error bars. The remaining stocks are SMUs, indicated with grey error bars. 

. 

   



Fig. 21. Mean percent error, MPE, of the estimated upper benchmark (S75th (a), and 80% SMSY 
(b)) from the “true” upper benchmark, 80% SMSY value along a gradient in harvest rates (x-axis) 
and productivities (y-axis) derived from a simulation model of a hypothetical Chum Salmon CU. 
Symbols indicate MPE of Inner South Coast CUs assuming productivities estimated from 
hierarchical Ricker models and mean harvest rates over available time-series for each CU. Y-
error bars represent the 95% credible intervals of the estimate of productivity. X-error bars are 
the standard deviation of historical harvest rates. SCS is Southern Coastal Streams, NEVI is 
North East Vancouver Island, UK is Upper Knight, LB is Loughborough, GS is Georgia Strait, 
and HSBI is Howe Sound/Burrard Inlet. 

 

   



Fig. 22. Mean percent error, MPE, of the estimated upper benchmark (S75th (a), and 80% SMSY 
(b)) from the “true” upper benchmark, 80% SMSY value along a gradient in harvest rates (x-axis) 
and productivities (y-axis) derived from a simulation model of a hypothetical Chum Salmon CU. 
Symbols indicate MPE of West Coast of Vancouver Island CUs and SMUs assuming 
productivities estimated from hierarchical Ricker models and mean harvest rates over available 
time-series for each CU. Y-error bars represent the 95% credible intervals of the estimate of 
productivity. X-error bars are the standard deviation of historical harvest rates. SWVI is the 
Southwest Vancouver Island CU and NWVI is the Northwest Vancouver Island CU, which are 
indicated with dark error bars. The remaining stocks are SMUs, indicated with grey error bars. 

 

   



Fig. 23. Mean raw error of estimated Ricker loge() values (left panel, labeled MRE in Ricker a) 
and carrying capacity values (right panel, labelled MRE in Ricker b) along gradients in true 

loge() values (productivity) and harvest rates derived from a simulation model of a hypothetical 
Chum Salmon CU. 

 

  



Fig. 24. Contrast in spawner escapement data (maximum escapement/minimum escapement) 

over gradients in true  loge() values (productivity) and harvest rates derived from a simulation 
model of a hypothetical Chum Salmon CU. 

 

  



Fig. 25. Mean percent error, MPE, of the estimated lower benchmark (S25th (a), and Sgen (b)) from 
the “true” Sgen value along a gradient in bias in estimated spawner abundance (x-axis) and 
observation errors in spawner abundances (SD, y-axis) derived from a simulation model of a 
hypothetical Chum Salmon CU.  

 

  



Fig. 26. “True” values of Ricker parameters and benchmarks under assumption of constant 
spawners at equilibrium, Seq, (a-e) or constant spawner abundances at maximum recruitment Smax 
(f-j), with abrupt changes in productivity in year 35 of simulation. 



Fig. 27. Box plots of parameter and benchmark values in final year of the simulation averaged 
over all Monte Carlo trials, using either the first 30 years of data (dark grey boxes), all 70 years 
of data (light grey boxes), or the most recent 30 years of data (white boxes). Boxes represent the 
lower quartiles, medians, and upper quartiles of the parameter distribution. Whiskers are the 95% 
confidence intervals. Dashed lines represent the “true” value for each parameter. For the 
percentile benchmarks, the dashed lines represent the “true” Sgen (e) and “true” 80% of SMSY (f). 
Seq was held constant in simulations as productivity varied. 

 



Fig. 28. Mean percent error of estimated Ricker parameters and lower and upper benchmarks 
from the “true” values, using only the first 30 years of data (black bars), all 70 years (grey bars), 
and the most recent 30 years (white bars) under the assumption that Seq remained constant over 
time (a), or Smax remained constant (b). 

 



Fig. 29. Caption as for Fig. 27, except Smax was held constant and Seq declined in simulations as 
productivity varied. 

 

  



Fig.30. Stock-recruitment curves for a hypothetical CU under a base case of moderate 
productivity (black curve), and scenario where productivity is over-estimated and carrying 
capacity is underestimated, as occurs for time-series biases (red curve). Dashed lines represent 
Sgen benchmarks for the base case (black) and biased parameter estimates (red). 

 

 

 



APPENDICES 

Appendix A 

Fig. A1. Priors and posteriors for Ricker ߙ	parameters for both the basic and hierarchical Ricker model, 
for CUs. 

 



Fig. A2. Priors and posteriors for Ricker ߙ	parameters for both the basic and hierarchical Ricker model, 
for Southwest Coast Vancouver Island SMU’s 

 

 

 

 

 

 



Appendix B 

Two prior formulations on Ricker ߚ, via its reciprocal: ܵ௠௔௫,  were used, as described in equations 4a 
and 4b:  

(4a) ܵ௠௔௫	~	݉ݎ݋݂݅݊ݑሺ1,݉ܽݔሺܵ௢௕௦ሻ ∗ 2ሻ 
(4b) ܵ௠௔௫~݈݈ܽ݉ݎ݋݊݃݋൫݈݃݋൫݉݁ܽ݊ሺܵ௢௕௦ሻ൯ , 	߬ௌ൯, 		߬ௌ ൌ 1/log	ሺܸܥଶ ൅ 1ሻ 

 
For the parameterization of the uniform prior we assumed that Smax was less than twice the maximum 
observed spawner value, which is likely given the observed low to moderate harvest rates on average 
for most Chum Salmon CUs in southern BC, with the possible exception of Georgia Strait. For 
parameterization of the log-normal prior, we set the width of lognormal prior by using a CV of 5, 
which we found to produce priors in which the highest probability values occurred in approximately 
the same range of Smax as the uniform distribution. The lognormal prior is weakly informative, as it 
pulls posterior distributions of Smax towards mean observed escapement. Although most of the weight 
of the prior distribution lies within the same range as the uniform distribution, it also includes values of 
Smax far greater than the observed spawner levels. Therefore, using a log-normal prior distribution, 
some posterior estimates of Smax may be far higher than the range of historically observed escapement, 
which may be the case if the CU had been long supressed far below historical levels. A comparison of 
estimates using either prior can be seen in Fig 2. 



Appendix C 
 
We explored an alternative way to compare Ricker-based and percentile-based benchmarks by 
comparing the ratio of the percentile-based benchmark to the Ricker benchmark. If this number 
is above one (dashed line in Fig. C1) the percentile benchmark is higher (and therefore more 
precautionary) than the Ricker-based benchmark. These figures show that the upper percentile 
benchmark is always higher than the Ricker-based lower benchmark ( ௚ܵ௘௡), while at 
low/moderate productivities, percentile lower benchmarks can dip below ௚ܵ௘௡.  There is an 
interesting relationship between and the Ricker ߙ parameter and these ratios. For the lower 
benchmarks, higher productivity is associated with much more precautionary percentile 
benchmarks, compared to Ricker based benchmarks. While for upper benchmarks, both very low 
and very high productivity values are associated with cases where percentile benchmarks tend to 
be precautionary; percentile and Ricker-based upper benchmarks tend to be most similar at 
intermediate productivity levels.   
 
Fig. C1. Ricker ߙ (productivity) parameters vs. ratios of percentile-based benchmarks to Ricker-
based benchmarks for ISC and WCVI CUs. Left plot shows ratio for lower benchmarks 
(ܵଶହ	: ௚ܵ௘௡ሻ, right plot shows ratio for upper benchmarks (ܵ଻ହ: 0.8ܵெௌ௒). Points lying above the 
dashed line at ratio=1 identify cases where the percentile benchmark is larger (and therefore 
more precautionary) than the Ricker-based benchmark. The empty circles indicate points with 
ߙ ൏ 1.5, which would not have been used to assess status, based on advice from Holt and Ogden 
(2013).   
 
 
Appendix B 

Parameterization of priors on Smax for the standard Ricker model 

For the parameterization of the uniform prior we assumed that Smax was less than twice the 
maximum observed spawner value, which is likely given the observed low to moderate harvest 
rates on average for most Chum Salmon CUs in southern BC, with the possible exception of 
Georgia Strait. For parameterization of the log-normal prior, we set the width of lognormal prior 
by using a CV of 5, which we found to produce priors in which the highest probability values 
occurred in approximately the same range of Smax  as the uniform distribution. The lognormal 
prior is weakly informative, as it pulls posterior distributions of Smax towards mean observed 
escapement. Although most of the weight of the prior distribution lies within the same range as 
the uniform distribution, it also includes values of Smax far greater than the observed spawner 
levels. Therefore, using a log-normal prior distribution, some posterior estimates of Smax may be 
far higher than the range of historically observed escapement, which may be the case if the CU 
had been long supressed far below historical levels 

  



Appendix D 
 
Adaptations of simulation model and parameterization 
Our model differed from that of Holt and Folkes (2015) in 8 ways: 

 The population dynamics sub-model included covariance in Ricker residuals among 
subpopulations within a CU, instead of assuming sub-populations varied independently. 

 The observation sub-model was more realistic in that catches (or, alternately exploitation 
rates) were observed with observation errors, and recruitment by brood year was then 
calculated using estimated ages-at-maturity, instead of applying observation error directly 
to “true” recruits by brood year. Annual observation errors in age-at-maturity were 
simulated using a multivariate logistic distribution (as in natural variability in age-at-
maturity). 

 In the observation sub-model, we evaluated scenarios where spawner abundances were 
observed with a consistent negative (or positive) bias that was not corrected for in the 
assessment. 

 In the assessment sub-model, we evaluated scenarios where only a portion of 
subpopulations were sampled within a CU and a constant expansion factor was applied to 
derive escapement estimates for the entire CU. The expansion factor was estimated from 
observed complete sampling in a 3-year initialization period. 

 The assessment sub-model model focused on percentile-based benchmarks and stock-
recruitment benchmarks applied under the Wild Salmon Policy (Sgen and 80% of SMSY for 
the lower and upper benchmarks, respectively) 

 In the harvest sub-model, a constant harvest rate (0-60%, varied in sensitivity analyses) 
was applied instead of a harvest control rule with limit and/or target reference points.  

 In the performance module, benchmarks were evaluated based on the deviations between 
benchmark estimates and the “true” underlying values. In the case of percentile 
benchmarks, we evaluated deviations between 25th percentile (lower benchmark) and the 
“true” Sgen value, and between the 75th percentile (upper benchmark) and the “true” 80% 
of SMSY value. Specifically, we evaluated, mean percent error and mean raw error because 
we were interested in the direction of bias (i.e., if the estimated benchmark was above or 
below the “true” benchmark) which are reflected in these metrics. We focused our results 
on mean percent error, MPE, as this metric is scale independent, making comparisons in 
sensitivity across benchmarks more intuitive. Results for mean raw error showed similar 
patterns and are not shown here. 

 The model was run over 50 years, instead of 100 to provide a more realistic time-series 
length for estimating benchmarks. The model was run over 5000 MC trials, the number 
of trials required to stabilize output metrics at (standard error <=3% in performance 
metrics). The model was initialized for 20 years after a 5-year pre-initialization period 
necessary to generate the first recruitment by brood year. 

  
Parameterization 

The population dynamics sub-model was parameterized based on previous empirical studies in 
the primary literature and governmental reports on chum salmon, or other species of Pacific 
salmon where data on chum were not available. See Holt and Folkes (2015; Appendix) for model 
equations. The productivity parameter of the spawner-recruitment relationship, a (defined as 



loge(recruits/spawner) at low spawner abundance, and referred to simply as productivity here) 
and the range considered in sensitivity analyses (Table D1, see details below) were chosen to 
bound productivities observed for six chum salmon stocks from across BC (Dorner et al. 2008; 
ranging from 0.99-1.94), and three stocks in the Skeena watershed, BC (Korman J. et al. 2013; 
ranging from 0.7-1.05).  Productivity and spawner abundances at equilibrium abundances, Seq 
(set at 10 000 fish) were assumed to be equal among subpopulations.  

We assumed an autocorrelation coefficient of 0.6, based on coefficients estimated for three CUs 
of chum salmon (ranging 0.54-0.68) from Skeena River, BC (Korman J. et al. 2013), and 
considered a range of plausible autocorrelation coefficients (0 and 0.9) in sensitivity analyses 
(Table D1). The standard deviation in recruitment residuals (in log-space) was set to 0.75, within 
the range of values estimated from the same Skeena River, BC data (0.68-0.90), and within the 
range estimated for sockeye salmon in BC and Alaska (Korman Josh et al. 1995, Peterman et al. 
2003).  The average proportions of mature adults at ages 3, 4, and 5 were estimated for 22 chum 
salmon stocks in BC and Alaska (0.24, 0.67, and 0.09, respectively, Pyper et al. 2002). The 
variance in the proportions of ages at maturity was estimated from empirical time series data for 
age-specific returns of chum salmon in southern BC (1959-2012; Johnstone Strait test fishery 
and commercial harvest to Statistical Area 12; P. Van Will pers. comm. 2016).  The probability 
of straying among adult recruits was set at 5% based on a review of published stray rates for 
chum salmon in British Columbia (McElhany et al. 2000).  

In the observation sub-model, we assumed the standard deviation in estimates of spawner 
abundances around the true values (observation errors) was equal to 0.5 (in log-space), which 
corresponds to an upper estimate of the uncertainty in spawner abundance derived from various 
visual surveys of Pacific salmon (Cousens 1982, Szerlong and Rundio 2008). Chum salmon 
abundance is largely estimated from visual surveys, which typically produce relatively imprecise 
estimates of abundances. We also considered a lower estimate of observation errors of 0.2 in a 
sensitivity analysis. In the absence of quantitative estimates of uncertainty in catch estimates 
(commercial, recreational and First Nations subsistence catch), we assumed the same standard 
deviation in observed catch (0.5 in log-space), and a sensitivity analysis with a lower estimate of 
0.2. Although errors in observations of commercial catch are likely less than observation errors 
in spawner abundance, uncertainties in reporting and estimation of recreational and subsistence 
harvest are relatively high (Collie et al. 2012, Fleischman et al. 2013).  

The standard deviation of outcome uncertainty was estimated at 0.3 using methods described in 
Collie et al. (2012) by modelling the relationship between catch and total recruitment from two 
DFO Fishery Statistical Areas of chum salmon on the west coast of Vancouver Island, BC 
(Dobson et al. 2009). Because the standard deviation of outcome uncertainty is not widely 
estimated for Pacific salmon and likely varies widely among stocks and management 
approaches, we also considered an upper value of 0.5 in a sensitivity analysis. 

  



Table D1. Parameters used as base case, univariate sensitivity analyses, and global sensitivity 
analyses of simulation model to evaluate lower benchmarks. 

Sub‐model  Parameter  Base‐case 
Value 

Values 
considered 
in 
univariate 
sensitivity 
analyses 

Range 
considered 
in global 
sensitivity 
analyses 

Population 
dynamics sub‐
model 

Ricker productivity parameter  1  0.5 (low) 
and 2.0 
(high) 

0.5‐2.0 

Ricker autocorrelation 
coefficient 

0.6  0 (low) and 
0.9 (high) 

0‐0.9 

Standard deviation in Ricker 
residuals 

0.75  0.6 (low) 
and 1.0 
(high) 

0.6‐1.0 

Average proportions at age‐of‐
maturity 

Age 3=24%; 
Age 4=67% 
Age 5=9% 

   

Natural variability in age‐at‐
maturity, �n , specified in a 
multivariate logistic distribution 

0.8  0.1 (low) 
and 0.9 
(high) 

0.1‐0.9 

Correlation in recruitment 
residuals among subpopulations 
within a CU 

0.4  0 (low) and 
1.0 (high) 

0‐1.0 

Initial spawner abundances  0.2×Seq, 
where Seq is 
spawner 
abundances 
at 
equilibrium 

0.1×Seq 
(low) and 
0.3×Seq 
(high) 

0.1×Seq‐
0.3×Seq 

Stray rate  0.05     

Observation sub‐
model 

Variability in observed age‐at‐
maturity, �n, specified in a 
multivariate logistic distribution 

0.1  0 (low) and 
0.9 (high) 

0.1‐0.9 

Standard deviation in 
observation errors of spawner 
abundances 

0.5  0.2 (low)  0‐1.0 

Standard deviation in 
observation errors of catches 

0.5  0.2 (low)  0‐1.0 

Multiplicative bias in observed 
spawner abundances not 
accounted for in assessment 

1  0.8 
(negative 
bias) and 
1.2 
(positive 
bias) 

0.8‐1.2 



Assessment sub‐
model 

Proportion of subpopulations 
sampled within a CU 

100%  50% (low)  50%‐100% 

Proportion of years that CU is 
sampled 

100%  60% (low)  60%‐100% 

Harvest sub‐
model 

Harvest rate during initialization 
period 

20%  10% (low) 
and 50% 
(high) 

10%‐60% 

Outcome uncertainty (standard 
deviation in differences 
between target and realized 
harvest rates) 

0.3  0.5 (high)  0‐0.9 

 

 

 
  



Appendix E 

Fig. E1. Mean percent error, MPE, of the alternative lower benchmark, 30th percentile of 
observed spawner time-series, S30th (a), and Sgen (b) from the “true” Sgen lower benchmark along a 
gradient in harvest rates (x-axis) and productivities (y-axis) derived from a simulation model of a 
hypothetical Chum Salmon CU. Symbols indicate MPE of Inner South Coast CUs assuming 
productivities estimated from hierarchical Ricker models and mean harvest rates over available 
time-series for each CU. Y-error bars represent the 95% credible intervals of the estimate of 
productivity. X-error bars are the standard deviation of historical harvest rates. SCS is Southern 
Coastal Streams, NEVI is North East Vancouver Island, UK is Upper Knight, LB is 
Loughborough, GS is Georgia Strait, and HSBI is Howe Sound/Burrard Inlet. 

 

 



Fig. E2. Same as Fig. E1 except panel (a) depicts performance of the lower benchmark based on 
the 35th percentile of the observed spawner time-series. Panel (b) is the same as in Fig. E1, but is 
shown here for comparison. 

 

  



Fig. E3. Same as Fig. E1 except panel (a) depicts performance of the lower benchmark based on 
the 40th percentile of the observed spawner time-series. Panel (b) is the same as in Fig. E1, but is 
shown here for comparison. 

 

 

  



Fig. E4. Same as Fig. E1 except panel (a) depicts performance of the lower benchmark based on 
the 45th percentile of the observed spawner time-series. Panel (b) is the same as in Fig. E1, but is 
shown here for comparison. 

 


