PACIFIC SALMON COMMISSION

 SELECTIVE FISHERY EVALUATION COMMITTEEANALYSIS OF COHO SALMON
DOUBLE INDEX TAG (DIT) GROUPS
FOR BROOD YEARS 1998-2011

REPORT SFEC (21)-1

July 2021

Membership of the Selective Fishery Evaluation Committee ${ }^{1}$

Canadian Members	United States Members
Dr. Robert Houtman, SFEC Co-Chair, CDFO	Dr. Kristen Ryding, SFEC Co-Chair, WDFW
Ms. Cheryl Lynch, RCWG Co-Chair, CDFO	Mr. Ron Olson, RCWG Co-Chair, NWIFC
Ms. Ann-Marie Huang, SFAWG, CDFO	Ms. Marlene Bellman, SFAWG, NWIFC
	Ms. Jill Cady, RCWG, WDFW
	Mr. Trevor R. Clark, RCWG, ODFW
	Ms. Carrie Cook-Tabor, RCWG, USFWS
	Ms. Danielle Evenson, SFAWG, ADFG
	Mr. Tyler Garber, SFAWG, WDFW
	Mr. Ryan Lothrop, SFAWG, WDFW
	Ms. Marianne McClure, RCWG, CRITFC
	Dr. Gary S. Morishima, SFEC, QIN
	Mr. George Nandor, RCWG, PSMFC
	Dr. David Stormer, SFAWG, WDFW
	Ms. Michelle A. Varney, SFAWG, ODFW
	Ms. Lorraine Vercessi, RCWG, ADFG
	Other Steering Committee Members
Other Steering Committee Members	Mr. John Carlile, CTC Co-Chair, ADFG
Dr. Antonio Velez-Espino, CTC Co-Chair,	
CDFO	Mr. Jonathan Carey, CTC Co-Chair, NOAA
Dr. John Holmes, CoTC Co-Chair, CDFO	

[^0]
ACRONYMS \& INITIALISMS

ASFEC	Ad Hoc Selective Fishery Evaluation Committee
BC	British Columbia region
CDFO	Canadian Department of Fisheries and Oceans
COLR	Columbia River sub-region
CoTC	Coho Technical Committee
CR	Columbia River region
CWT	Coded Wire Tag
DIT	Double Index Tagging
ER	Exploitation Rate
ETD	Electronic Tag Detection
FRAM	Fishery Regulation Assessment Model
FRAS	Fraser River sub-region
GRAY	Gtrays Harbor sub-region
GST	Hood Canal sub-region
HC	Strait of Juan de Fuca sub-region (US)
JDF	Johnstone Strait sub-region
JNST	Mass Marking
MM	Mid Puget Sound sub-region
MPS	Mark Recognition Error
MRE	Mark-selective Fishery
MSF	Management Unit
MU	National Fish Hatchery
NFH	Northern Puget Sound sub-region
NPS	Non-selective Fishery
NSF	North Washington Coast sub-region
NWC	Pacific Fishery Management Council
PFMC	Paired-Ratio Method
PR	Puget Sound region
PS	Pacific Salmon Commission
PSC	Pacific Salmon Treaty
PST	Regional Mark Information System
RMIS	Selective Fishery Evaluation Technical Committee
SFEC	SFEC-Analytical Work Group
SFEC-AWG	Single Index Tagging
SIT	Unmarked Retention Error
URE	Washington Coast region
WC	West Coast Vancouver Island sub-region
WCVI	Washington Department of Fish and Wildlife
WDFW	Willapa Bay sub-region
WILP	

Table of Contents

Acronyms \& Initialisms iii
List of Figures vii
List of Tables $x i$
List of Appendices xvii
Executive Summary xix
1 Introduction 1
1.1 Retained Catch for Coho Salmon 2001-2014 3
1.2 Estimation of Retained Catch and Non-landed Mortalities in Coho Salmon Fisheries from CWT Recoveries. 6
1.3 Exploitation rates 7
1.4 DIT Groups for Coho Salmon for Brood Years 1998-2011 7
2 Impact of MSFs on Coho Salmon Stocks 9
2.1 Age Composition 9
2.2 Size of the Mark-Selective Fishery 9
2.3 Comparing Return Rates between Marked and Unmarked Components of DIT Groups 11
2.4 Results of the Comparison of Marked and Unmarked Return Rates 13
2.5 The Effect of Tag Release Numbers and Return Rates on the Power of the Test to Detect Differences Between p_{u} and p_{m} 16
2.6 Summary 18
3 Estimating Unmarked Fish Mortalities 20
3.1 Total Method 20
3.2 Paired-Ratio Method 22
3.3 Results: Estimates of Unmarked ER 24
3.4 Summary 27
4 Can We Estimate Unmarked Mortalities with a Single Index Tag Program? 29
4.1 Results: Estimates of Unmarked ER 30
4.2 Summary. 32
5 Comparison of DIT-Based Estimates of ER to Post-Season Coho FRAM Estimates 34
5.1 Results 36
5.2 Summary 40
6 Evaluation of DIT Programs by Region and Hatchery 43
6.1 British Columbia (BC) Region 44
6.1.1 Conclusions and Recommendations for British Columbia Hatchery DIT Groups 58
6.2 Puget Sound (PS) Region 61
6.2.1 Conclusions and Recommendations for Puget Sound Hatchery DIT Groups 77
6.3 Washington Coast (WC) Region 84
6.3.1 Conclusions and Recommendations for Washington Coast Hatchery DIT Groups 97
6.4 Columbia River (CR) Region 102
6.4.1 Conclusions and Recommendations for Columbia River Hatchery DIT Groups 113
7 Discussion and Conclusions 116
7.1 Evaluation of Estimation Methods for the Exploitation Rate of the Unmarked DIT- Group Component 116
7.2 Evaluation of DIT program results 118
7.2.1 Comparison of DIT Group Characteristics by Assessment Category 121
7.3 Evaluation of Fishery Sampling 130
7.4 Comparison of DIT ER Estimates to Post-season FRAM Estimates 132
7.5 Selective Fishery Mortality Rates and Data Quality Issues 133
7.5.1 Selective fishery mortality rates 134
7.5.2 Data quality issues 134
7.6 Are there Reliable Alternatives to the DIT Program for Estimating the Exploitation Rate on Unmarked Coho Stocks? 136
8 Framework for Evaluating DIT Programs 140
9 Recommendations 142
10 Literature Cited 144

List of Figures

Figure 1-1. Retained catch of Coho Salmon in mark-selective fisheries (MSF) and nonselective fisheries (NSF) from 2001-2014 in the Puget Sound, Washington Coast (including Grays Harbor and Willapa Bay), Columbia River, and Oregon Coast regions, by fishery type and catch year. For clarity, "mixed" fisheries catches are not shown.

Figure 2-1. Mean percentage of total fishery CWT recoveries of the marked DIT group occurring in mark-selective fisheries (MSF), non-selective fisheries (NSF), and mixed or unknown regulation fisheries (Mixed), for brood years 19982011, by hatchery11

Figure 2-2. Distribution of λR s by hatchery for brood years 1998-2011. The box-andwhiskers plots show the interquartile range ($25-75 \%$ range) in the box while the whiskers include all values within 1.5 of the interquartile range. The mean (x) and median (-) are shown in the box while outlier points $\left({ }^{\circ}\right)$ are shown outside of the whiskers.15

Figure 2-3. Percentage of significant tests $(P \leq 0.05)$ with a positive test statistic for the hypothesis that return rates to the escapement are equal for the marked and unmarked components of DIT groups released from a hatchery summarized for each brood year by region and across all regions combined (Appendix Table 4).

Figure 3-1. Comparison of DIT-group based estimates of unmarked exploitation rates (ER) from the Total method to the two Paired-Ratio (PR) methods (top panel PR using λ at release, bottom panel PR using λ at escapement). One-to-one line shown for reference25

Figure 3-2. Box-and-whiskers plot comparing estimates of total unmarked ER using three methods: Total method Paired-Ratio method (PR) using λ at release, and PR using λ at escapement, by hatchery26

Figure 3-3. Scatter plot showing λR and exploitation rate (ER) estimates for the marked component of a DIT group and whether the estimated ER for the associated unmarked DIT group using the Total method was negative or not.28

Figure 4-1. Box-and-whiskers plot comparing estimates of total unmarked ER from the Paired-Ratio method (PR) using λ at release to estimates from the SIT-based method, by hatchery.32

Figure 4-2. Scatter plot comparing exploitation rate (ER) estimates for the unmarked group from the Paired-Ratio (PR) method with λ at release to the SIT-based method. One-to-one line shown for reference.33

Figure 5-1. Distribution of the ratio of exploitation rates (ER) estimated using DIT over FRAM-based ER estimates for the marked group (upper plot) and unmarked group (lower plot), by hatchery. For the unmarked groups, extreme outlier ratios for Lower Elwha (20.0), Marblemount (14.4), Voights Creek (13.6), and Quilcene NFH (14.4) are not shown for scaling purposes; all these extreme outliers were associated with the 2001 brood year.

Figure 5-2. Scatter plot comparing exploitation rate (ER) estimates for the marked and unmarked groups from the Paired-Ratio (PR) with λ at release to the postseason FRAM estimates. One-to-one line shown for reference.
Figure 5-3. Box-and-whiskers plot comparing the ratios of unmarked-to-marked exploitation rates (ER) for the Paired-Ratio method using λ at release and from post-season FRAM, by hatchery
Figure 5-4. Plot showing exploitation rate (ER) differences between the Paired-Ratio with λ at release and the post-season FRAM estimates for the marked and unmarked DIT groups, for all brood years by hatchery. Mean difference indicated by42

Figure 6-1. $\quad \lambda R$ ratios with approximate 95% confidence intervals for DIT groups released by British Columbia hatcheries for brood years 1998-2011. Brood years with a significant $(P \leq 0.05) \mathrm{Z}$ test comparing the return rates to the escapement of the marked and unmarked components of a DIT group are indicated with an *49

Figure 6-2. Bar charts comparing average percentage, across brood years, of total estimated CWT recoveries in fisheries, by fishery type and location, for marked and unmarked DIT group releases from BC hatcheries.50

Figure 6-3. Comparison of estimates of exploitation rates (ER) for the marked and
unmarked components of DIT groups released by British Columbia
hatcheries for brood years 1998-2011 56

Figure 6-4. $\quad \lambda R$ ratios with approximate 95% confidence intervals for DIT groups released by Puget Sound hatcheries for brood years 1998-2011. Brood years with a significant $(P \leq 0.05) \mathrm{Z}$ test comparing the return rates to the escapement of the marked and unmarked components of a DIT group are indicated with an *.65

Figure 6-5. Bar charts comparing average percentage, across brood years, of total
estimated CWT recoveries in fisheries, by fishery type and location, for
marked and unmarked DIT group releases from PS hatcheries. 68

Figure 6-6. Comparison of estimates of exploitation rates (ER) for the marked and
unmarked components of DIT groups released by Puget Sound hatcheries for
brood years 1998-2011 74

Figure 6-7. $\quad \lambda R$ ratios with approximate 95% confidence intervals for DIT groups released by Washington Coast hatcheries for brood years 1998-2011. Brood years with a significant $(P \leq 0.05) \mathrm{Z}$ test comparing the return rates to the escapement of the marked and unmarked components of a DIT group are indicated with an *88

Figure 6-8. Bar charts comparing average percentage, across brood years, of total estimated CWT recoveries in fisheries, by fishery type and location, for marked and unmarked DIT group releases from WC hatcheries.
Figure 6-9. Comparison of estimates of exploitation rates (ER) for the marked and unmarked components of DIT groups released by WC hatcheries for brood years 1998-2011.

Figure 6-10. $\quad \lambda R$ ratios with approximate 95% confidence intervals for DIT groups released by Columbia River hatcheries for brood years 1998-2011. Brood years with a significant $(P \leq 0.05) \mathrm{Z}$ test comparing the return rates to the escapement of the marked and unmarked components of a DIT group are indicated with an *.

Figure 6-11. Bar charts comparing average percentage, across brood years, of total estimated CWT recoveries in fisheries, by fishery type and location, for marked and unmarked DIT group releases from CR hatcheries108

Figure 6-12. Comparison of estimates of exploitation rates (ER) for the marked and unmarked components of DIT groups released by Columbia River hatcheries for brood years 1998-2011.111

Figure 7-1. Percentage of brood years placed in each assessment category according to the results of three statistical tests performed on the data for DIT groups from each hatchery. The four assessment categories are: 1: at least one test was significant, but the result was in the opposite direction of what is expected from MSF impacts; 2 . None of the three tests had a significant result; 3 . One or two of the three tests were significant and in the direction of what is expected from DIT groups that are impacted by MSFs; 4. All three tests were significant and indicate MSF impacts120

Figure 7-2. Comparison by assessment category of the numbers of marked (upper plot)
and unmarked (lower plot) Coho released in the DIT groups analyzed. 123

Figure 7-3. Comparison by assessment category of the numbers of marked (upper plot) and unmarked (lower plot) Coho returning to the hatchery or escapement for the DIT groups analyzed.
Figure 7-4. Comparison by assessment category of the estimated return rates to the hatchery or escapement for the marked (upper plot) and unmarked (lower plot) components of the DIT groups analyzed.125

Figure 7-5. Comparison by assessment category of the estimated numbers of CWTs recovered in all fisheries (upper plot), estimated numbers of CWTs recovered in mark-selective fisheries (middle plot), and the proportion of all fishery recoveries in MSFs (lower plot) for the marked DIT group component.127

Figure 7-6. Comparison by assessment category of the estimated exploitation rates for the marked (upper plot) and unmarked (lower plot) components of the DIT groups analyzed.128

Figure 7-7. Comparison by assessment category of the differences between the estimated
return rates (upper plot) and exploitation rates (lower plot) for the marked
and unmarked components of the DIT groups analyzed. 129

Figure 7-8. Percentage of estimated CWT recoveries in fisheries by different sampling methods or regulation strata. Percentages are based on all CWT recoveries from the marked component of all DIT groups released from a hatchery for brood years 1998-2011131

List of Tables

Table 1-1. Percent of estimated total retained Coho salmon catch, by fishery type, in
Puget Sound (WA) fisheries from 2001-2014. 4
Table 1-2. Percent of estimated total retained Coho salmon catch, by fishery type, in Washington Coast fisheries (including Grays Harbor and Willapa Bay) from 2001-2014 4
Table 1-3. Percent of estimated total retained Coho salmon catch, by fishery type, in Columbia River fisheries from 2001-2014 5
Table 1-4. Percent of estimated total retained Coho salmon catch, by fishery type, in Oregon Coast fisheries from 2001-2014. 5
Table 1-5. Years with Coho salmon DIT groups analyzed for this report, by hatchery, for brood years 1998-2011 (see Appendix 1 for details). Grey cells indicate years that were not analyzed due to a lack of a DIT release or identified data issues (see footnotes).8
Table 2-1. Mean percent of brood-year return (of all ages) to escapement that was age-2 for DIT groups analyzed, by hatchery. Number of brood years and minimum and maximum percentages observed are shown, also. 10
Table 2-2. Percent of brood years where the Z test comparing the return rates of the marked and unmarked components of a DIT group to hatchery escapement is not significant (NS), significant ($P \leq 0.05$) and positive (+ YES), or significant and negative (-YES), and number of brood years tested, by hatchery, for brood years 1998-2011. 14
Table 2-3. The relative differences, λR, detectable under Type I and Type II errors of 5% and 20%, respectively, for the average release size (for each DIT group) and average return proportion of marked fish, p_{m}, from each hatchery. 18
Table 2-4. Percent of brood years with λR ratios (Eq. 8) less than 1.00 and greater than 1.00, by region. 19
Table 3-1. Summary of the percentage of DIT groups with $\lambda R \mathrm{~s} \geq 1.25$ and negative estimates of unmarked ER using the Total method, by region. 21
Table 3-2. Release mortality (sfm) and drop-off mortality ($D O$) rates for Coho salmon used in this report. 24
Table 3-3. \quad Average difference between the estimates of $E R u P R$ calculated by the twoPR methods (PR $\lambda^{\text {Rel }}-\mathrm{PR} \lambda^{E s c}$) for the unmarked component of a DIT groupacross brood years, by region.26
Table 3-4. Average percent standard error estimates (PSE) for the three methods ofestimating unmarked ER, by region. $\mathrm{PSE}=$ (standard error ofestimate/estimate) x 100%.27
Table 3-5. Average difference between the Total method and PR $\lambda^{\text {Rel }}$ method (Total method - PR $\lambda^{\text {Rel }}$) for estimates of the exploitation rate for the unmarked component of a DIT group, by region. This analysis excludes data pairs with a negative Total ER estimate. 28

Table 5-1. Comparison of mean exploitation rates (ER) for marked and unmarked groups (catch years 2001-2014) from DIT-based analysis and FRAM-based ER. The mean of the differences between DIT-based estimates and FRAMbased ERs and the percent of brood years where the DIT-based ER estimate was larger than the FRAM-based ER are shown, also. Regional totals are averages over all brood years for each hatchery and over all broods for each region. The DIT-based estimate reported is the PR method using λ at release. ... 38

Table 5-2. Mean unmarked-to-marked ER ratio for all DIT groups in a region for the
DIT-based and FRAM-based methods. 41

Table 6-1. Hatcheries in the British Columbia region with Coho salmon DIT groups
analyzed for this report, brood years 1998-2011. 45

Table 6-2. \quad Summary statistics for the number of Coho salmon with CWTs released in
the marked and unmarked components of British Columbia DIT groups, by
hatchery (averaged across brood years). 45

Table 6-3. Summary statistics for the percent of the escapement directly sampled (\%
Sampled) and the proportion of the sampled fish that were sampled
electronically (Prop ETD) for British Columbia DIT groups, by hatchery
(averaged across brood years). 46

Table 6-4. Summary statistics for the return rates of Coho salmon in the marked and
unmarked components of British Columbia DIT groups, by hatchery
(averaged across brood years). 47

Table 6-5. Percent of brood years where the Z test comparing return rates of marked and
unmarked DIT groups to escapement is significant $(P \leq 0.05)$ and positive
(+YES), significant and negative (-YES), or not significant (NS), and number
of brood years tested for British Columbia hatcheries and brood years 1998
2011. 47

Table 6-6. Average number of estimated CWT recoveries and general recovery location
for the marked and unmarked components of British Columbia hatchery DIT
groups (averaged across brood years). 48

Table 6-7. Percentage of all estimated CWT recoveries of marked fish associated with DIT groups released from BC hatcheries (brood years 1998-2011) by detection method (electronic or visual) and fishery type (NSF, MSF, Mixed). 53
Table 6-8. Percentage of DIT recoveries in fisheries with electronic sampling (ETD) and without electronic sampling (Visual), by fishery type. Unmarked recoveries in NSFs without electronic sampling are estimated (Estimated). Bold number is total number of estimated recoveries in fisheries for DIT groups released from BC hatcheries for the 1998-2011 brood years. 55
Table 6-9. Average difference between the estimated exploitation rates (ER) for the marked and unmarked components of BC DIT groups. Unmarked ER estimated using the PR method with λ at release. 57
Table 6-10. Hatcheries in the Puget Sound region with Coho salmon DIT groups analyzed for this report, brood years 1998-2011. 61
Table 6-11. Summary statistics for the number of Coho salmon with CWTs released in the marked and unmarked components of Puget Sound DIT groups, by hatchery (averaged across brood years). 62
Table 6-12. Summary statistics for the percent of the escapement directly sampled (\% Sampled) and the proportion of the sampled fish that were sampled electronically (Prop ETD) for Puget Sound DIT groups, by hatchery (averaged across brood years). 63
Table 6-13. Summary statistics for the return rates of Coho salmon in the marked and unmarked components of Puget Sound DIT groups, by hatchery (averaged across brood years). 63
Table 6-14. Percent of brood years where the Z test comparing return rates of marked and unmarked DIT groups to escapement is significant $(P \leq 0.05)$ and positive (+YES), significant and negative (-YES), or not significant (NS), and number of brood years tested for Puget Sound hatcheries and brood years 1998-2011. 64
Table 6-15. Average number of estimated CWT recoveries and general recovery location for the marked and unmarked components of Puget Sound hatchery DIT groups (averaged across brood years). 67
Table 6-16. Percentage of all estimated CWT recoveries of marked fish associated with DIT groups released from PS hatcheries (brood years 1998-2011) by detection method (electronic or visual) and fishery type (NSF, MSF, Mixed). 70
Table 6-17. Percentage of DIT recoveries in fisheries with electronic sampling (ETD) and without electronic sampling (Visual), by fishery type. Unmarked recoveries in NSFs without electronic sampling are estimated (Estimated). Bold number is total number of estimated recoveries in fisheries for DIT groups released from PS hatcheries for the 1998-2011 brood years. 71
Table 6-18. Average difference between the estimated exploitation rates (ER) for the marked and unmarked components of PS DIT groups. Unmarked ER estimated using the PR method with λ at release. 73
Table 6-19. Hatcheries in the Washington Coast sub-region with Coho salmon DIT groups analyzed for this report, brood years 1998-2011. Cells with X indicate years with recognized data issues. Grey cells indicate years that were not analyzed due to a lack of a DIT release or identified data issues 84
Table 6-20. Summary statistics for the number of Coho salmon with CWTs released in the marked and unmarked components of Washington Coast DIT groups, by hatchery (averaged across brood years).85

Table 6-21. Summary statistics for the percent of the escapement directly sampled
(\% Sampled) and the proportion of the sampled fish that were sampled
electronically (Prop ETD) for Washington Coast DIT groups, by hatchery
(averaged across brood years) 85

Table 6-22. Summary statistics for the return rates of Coho salmon in the marked and
unmarked components of Washington Coast DIT groups, by hatchery
(averaged across brood years). 86
Table 6-23. Percent of brood years where the Z test comparing return rates of marked and unmarked DIT groups to escapement is significant ($P \leq 0.05$) and positive (+YES), significant and negative (-YES), or not significant (NS), and number of brood years tested for Washington Coast hatcheries and brood years 1998-2011 87
Table 6-24. Average number of estimated CWT recoveries and general recovery location for the marked and unmarked components of Washington Coast hatchery DIT groups (averaged across brood years). 89
Table 6-25. Percentage of all estimated CWT recoveries of marked fish associated with DIT groups released from WC hatcheries (brood years 1998-2011) by detection method (electronic or visual) and fishery type (NSF, MSF, Mixed). 92
Table 6-26. Percentage of DIT recoveries in fisheries with electronic sampling (ETD) and without electronic sampling (Visual), by fishery type. Unmarked recoveries in NSFs without electronic sampling are estimated (Estimated). Bold number is total number of estimated recoveries in fisheries for DIT groups released from WC hatcheries for the 1998-2011 brood years.93
Table 6-27. Average difference between the estimated exploitation rates (ER) for the marked and unmarked components of WC DIT groups. Unmarked ER estimated using the PR method with λ at release. 96
Table 6-28. Hatcheries in the Columbia River region with Coho salmon DIT groups analyzed for this report, brood years 1998-2011 102
Table 6-29. Summary statistics for the number of Coho salmon with CWTs released in the marked and unmarked components of Columbia River DIT groups, by hatchery (averaged across brood years). 103
Table 6-30. Summary statistics for the percent of the escapement directly sampled (\% Sampled) and the proportion of the sampled fish that were sampled electronically (Prop ETD) for Columbia River DIT groups, by hatchery (averaged across brood years) 104
Table 6-31. Summary statistics for the return rates of Coho salmon in the marked and unmarked components of Columbia River DIT groups, by hatchery (averaged across brood years). 104

Table 6-32. Percent of brood years where the Z test comparing return rates of marked and unmarked DIT groups to escapement is significant ($P \leq 0.05$) and positive (+YES), significant and negative (-YES), or not significant (NS), and number of brood years tested for CR hatcheries and brood years 1998-2011
Table 6-33. Average number of estimated CWT recoveries and general recovery location for the marked and unmarked components of Columbia River hatchery DIT groups (averaged across brood years).107

Table 6-34. Percentage of all estimated CWT recoveries of marked fish associated with DIT groups released from CR hatcheries (brood years 1998-2011) by detection method (electronic or visual) and fishery type (NSF, MSF, Mixed). .. 109
Table 6-35. Percentage of DIT recoveries in fisheries with electronic sampling (ETD) and without electronic sampling (Visual), by fishery type. Unmarked recoveries in NSFs without electronic sampling are estimated (Estimated). Bold number is total number of estimated recoveries in fisheries for DIT groups released from CR hatcheries for the 1998-2011 brood years.
Table 6-36. Average difference between the estimated exploitation rates (ER) for the marked and unmarked components of CR DIT groups. Unmarked ER estimated using the PR method with λ at release.
Table 7-1. Percentage of DIT release groups placed in each assessment category according to the results of three statistical tests performed on the data for DIT groups from each hatchery.
Table 7-2. Summary of regression model results, including mean absolute difference (MAD), relating single index tag (SIT) and post-season FRAM based estimates of the exploitation rate on unmarked stocks to estimates using DITbased (PR $\lambda^{\text {Rel }}$) estimates, by hatchery. Refer to text for additional explanation

List OF Appendices

Appendix 1: CWT codes, number of unmarked and marked fish released, and unmarked- to-marked ratio (λ) for Coho salmon DIT groups by region, hatchery, and brood year. 147
Appendix 2: Estimated number and percent of all brood-year recoveries that were age 2 for the unmarked and marked components of each brood-year's DIT group, by hatchery 166
Appendix 3: Total number of all CWT recoveries for marked Coho salmon DIT groups and total number of CWT recoveries in fisheries for brood years 1998-2011 178
Appendix 4: Results for Z tests of the hypothesis that the hatchery return rate from release is equal for the unmarked and marked Coho DIT groups from brood years 1998-2011 185
Appendix 5. Why does the Total method sometimes result in negative exploitation rates? 197
Appendix 6: Estimates of marked and unmarked exploitation rate (ER) percentage, with percent standard error (PSE), based on three methods: Total method (Section 3.1); Paired-Ratio method (Section 3.2) with release ratio (λ^{Rel}); and Paired- Ratio method with escapement ratio ($\left.\lambda^{\mathrm{Esc}}\right)$. 198
Appendix 7: Estimating Total Unmarked Fishery Mortalities 210
Appendix 8. Alignment of hatcheries with Coho DIT group releases and stock structure represented in the Coho Fishery Regulation Assessment Model (FRAM). 212
Appendix 9: Comparison of DIT-based and Post-season FRAM-based (PS FRAM) exploitations rates (ERs) for the marked and unmarked components of DIT groups, by hatchery and brood year. ERs are for age-3 fish only and include drop-off mortalities. ERs for the unmarked component of DIT groups estimated using the Paired-Ratio method with release $\lambda\left(\mathrm{PR} \lambda^{\text {Rel }}\right)$. 215
Appendix 10: Comparisons of estimated annual total exploitation rates as estimated by the Paired-Ratio (PR) method and $\lambda^{\text {Rel }}$ (Section 3.2) for marked and unmarked DIT groups (with 95% confidence intervals) by region and brood year. 227
Appendix 11: Comparisons between estimated annual total exploitation rates as estimated by the Paired-Ratio (PR) method and $\lambda^{R e l}$ (Section 3.2) and the single index tag (SIT) method (Section 4). 232
Appendix 12: Summary statistics for DIT groups in each of the assessment categories defined by the results of the three hypothesis tests used to examine DIT groups for evidence of significant impact by mark-selective fisheries (Sections 7.2 and 7.2.1). Exploitation rate (ER) for the unmarked component of DIT groups estimated using the Paired-Ratio method with release λ ($\left.\lambda^{\text {Rel }}\right)$. ... 242
Appendix 13: Plots showing regression models relating SIT-based and FRAM-based estimates of the exploitation rate on unmarked fish to DIT-based estimates using the Paired-Ratio (PR) method and $\lambda^{\text {Rel }}$, by hatchery (see Section 7.6 for more details) 244

Appendix 14: Sensitivity and Power Analysis for Z Test Of Differences In Return Rates of marked and unmarked groups of a DIT pair

ExECUTIVE SUMMARY

Background

Prior to the advent of mark-selective fisheries (MSFs), which require anglers to release salmon with an intact adipose fin (unmarked), we could rely on estimates of exploitation rates (ERs) derived from recoveries of salmon having coded-wire tags (CWTs) and clipped adipose fins (marked) to infer fishery impacts on associated natural fish populations. With MSFs, the exploitation patterns of marked fish and unmarked fish are now different. A clipped adipose fin, which originally had been sequestered as a visual cue that a fish contained a CWT, is now used as a mass mark for many hatchery-reared Coho and Chinook salmon. In order to provide a method for estimating impacts of MSFs on natural stocks, the Ad Hoc Selective Fishery Evaluation Committee (ASFEC) developed a double index tag (DIT) system comprised of three main components:

1. The release of paired groups of indicator stocks (DIT groups) containing different CWT codes. Paired releases consist of two groups of salmon that are identical in brood stock and size/time of release. One group is comprised of fish with a CWT and an adipose fin clip (marked) while the other group has a separate CWT code and is released with the adipose fin intact (unmarked).
2. Because the adipose fin clip could no longer be relied upon as a visual indicator that a fish contained a CWT, electronic tag detection (ETD) methods were needed throughout the migratory range to recover CWTs from unmarked DIT groups in non-selective fisheries and escapements and to reduce costs of recovering CWTs ${ }^{1}$.
3. DIT groups are used to represent natural stocks with significant production and which have differences in distribution, migration, and fishery exploitation patterns.

Coded-wire-tag recoveries from DIT groups were anticipated to provide the data needed to estimate impacts of MSFs on marked and unmarked components of Coho and Chinook salmon DIT groups.

A 2003 Joint Coho DIT Analysis Workgroup comprised of representatives of the Northwest Indian Fisheries Commission (NWIFC) and Washington Department of Fish and Wildlife (WDFW) issued a report on the results of the DIT program for brood years 1995-1997 (JCDAW 2003). That report covered a period when MSFs were just starting to be implemented on a limited scale. Differential impacts on the marked and unmarked components of the DIT groups could not be reliably detected because of insufficient numbers of Coho DIT recoveries, except for some stocks from the Washington Coast sub-region.

[^1]The implementation of a DIT system as originally envisioned has encountered several significant challenges:
a) Electronic tag detection (ETD) equipment and associated sampling methods had to be developed and widely deployed.
b) Existing CWT sampling programs and reporting systems had to be revised to accommodate the additional information required for DIT programs and DIT analyses. Complete and accurate reporting of this new information has been a challenge to reporting agencies and is a continuing issue that was evident during the development of this report.
c) Agency budgets are under extreme pressure; consequently, some agencies are reluctant to appropriate the fiscal resources needed to acquire and deploy ETD equipment or continue releasing DIT groups.
d) Regulations for conducting MSFs have become increasingly complex and catch sampling and reporting systems are not fully aligned with the conduct of MSFs; these issues are described in greater detail in the annual reports issued by the PSC's Selective Fishery Evaluation Committee (SFEC).

For a variety of reasons, the DIT system envisioned by the ASFEC never fully came into being. Consequently, the estimation of ERs using DIT groups has substantial deficiencies in the information available and the quality of estimates provided by the DIT program varies considerably from hatchery to hatchery and region to region.

Questions regarding the need for and value of continuing the DIT program are increasing. If the DIT program were discontinued, what are the consequences for stock assessment and fishery management? Does the information provided by the DIT program justify continued investment in the cost of DIT marking and ETD? This report provides information for PSC panels, technical committees, and fishery management agencies to address these questions.

Contents of this Report Include:

- Analysis of DIT group returns for Coho Salmon from 22 different hatcheries in British Columbia, Washington, and Oregon covering brood years 1998-2011 (return years 20012014);
- Comparisons of estimated ERs of the marked and unmarked components of DIT groups and evaluation of different methods of estimating the ER for the unmarked component of a DIT group;
- Comparisons of ERs produced by the Fishery Regulation Assessment Model (FRAM), a bilateral tool developed by the PSC Coho Technical Committee for preseason planning and post-season estimation of ERs, to ERs estimated by analysis of DIT groups; and,
- Evaluation of DIT programs from each hatchery.

Major Conclusions from this Report:

The conclusions and recommendations in this report pertain only to Coho Salmon and should not be extended to other species such as Chinook salmon.

- The PSC SFEC and Coho technical committees should provide agencies with recommendations for regional DIT and SIT programs that should be maintained for assessment of MSF impacts. [Sections 4.2; 7.6].
- The Paired Ratio (PR) method using either $\lambda^{R e l}$ or $\lambda^{E s c}$ is the recommended method for estimating the ER for the unmarked component of a DIT group ${ }^{2}$. Compared to the other methods evaluated, the PR method provides the most consistent and relatively precise estimates of both total ER and fishery-specific ERs for the unmarked component of a DIT group when its assumptions are met. If PR estimates are produced using both $\lambda^{\text {Rel }}$ and $\lambda^{E s c}$, total and fishery-specific estimates of ER for the unmarked component of a DIT group can be bracketed. [Sections 3.2; 3.4; 7.1]
- Analyses of DIT group data show that MSF impacts on Coho stocks can differ substantially by region, among hatcheries in the same region, and among brood years from the same hatchery. [Sections 7.2; Appendices 4 and 6]
- For some DIT programs, estimated MSF impacts have been so consistently small, or uncertainty in the estimates so large, that it is unlikely that useful information can be obtained from a continuation of these programs as they are currently implemented. Program characteristics that can contribute to inconsistent results include:[Section 6; Section 7.2]
- The ability to detect differences in exploitation rate estimates between the marked and unmarked components of a DIT group depends on the proportion of the total mortality occurring in MSFs, the return rate (survival) of the DIT groups, and the quality of the sampling programs for fisheries impacting a DIT group.
- For some DIT groups, ER estimates were highly uncertain due to insufficient numbers of CWT recoveries.
- The sequence of MSFs and non-selective fisheries (NSFs) affects the ability to detect differences in ERs between marked and unmarked fish. For instance, differences in ERs resulting from MSFs can be offset by subsequent non-selective fisheries.
- The proportion of CWT recoveries associated with DIT groups that are occurring in visually-sampled (as opposed to electronically-sampled) fisheries or mixedregulation fishery sampling strata are potentially introducing substantial bias and uncertainty into the DIT program results for some hatcheries.

[^2]
Recommendations for DIT Programs

- Assuming that the magnitude and extent of MSFs impacting the brood years analyzed for this report will be indicative of what can be expected in the future, a system of regional DIT groups should be maintained to monitor MSF impacts. DIT groups with the following characteristics should be prioritized:
- The combination of the number of fish released in the DIT group and the expected return rate to the hatchery should result in at least $\mathbf{1 , 0 0 0}$ fish in the marked and unmarked components of the DIT group (individually) returning to the escapement (and to be available for sampling). [Section 7.2.1]
- The proportion of the estimated CWT recoveries from the marked component of a DIT group in MSFs should be at least one third (33\%) of all fishery recoveries. [Section 7.2.1]
- The difference between the expected ER for the marked and unmarked components of a DIT group should be $\geq+\mathbf{0 . 0 5}$. [Section 7.2.1]
- ETD and sampling programs should be in place for at least $\mathbf{8 0 \%}$ of the expected fishery recoveries, no more than 5% of the expected fishery recoveries should occur in mixed-regulation fishery strata, and no more than $\mathbf{5 \%}$ of the expected unmarked recoveries should occur in visually-sampled non-selective fisheries. [Section 7.3]
- Differences in return proportions between the marked and unmarked components of a DIT group that can be reliably detected will depend on the number of tagged fish released in each component and the survival and exploitation rates for the fish in each DIT group component. Larger release numbers will increase the probability that small but perhaps meaningful differences in return and exploitation rates between the DIT group components are detected when survival rates are low. For example, release sizes of 65,000 for both the marked and unmarked DIT group components and a return rate of 2% for marked fish would give the ability to detect a 0.2% difference in relative return proportions with Type I and II error rates of 5\% and 20%, respectively. The relative return proportion is directly related to exploitation rates of marked and unmarked fish. [Section 2.5]

If the pattern or intensity of MSFs changes substantially, these recommendations should be revisited.

Recommendations for Specific Hatchery Programs

$>$ The following DIT program(s) provide relatively consistent, reliable, and relatively precise estimates that can be used to evaluate the impacts of MSFs on the unmarked component of DIT groups:

British Columbia region [Section 6.1.1]
Inch Creek Hatchery
Puget Sound region [Section 6.2.1]
Marblemount Hatchery
Wallace River Hatchery
Soos Creek Hatchery
George Adams Hatchery
Quilcene National Fish Hatchery
Washington Coast region [Section 6.3.1]
Quinault National Fish Hatchery
Solduc Hatchery
Bingham Creek Hatchery
Forks Creek Hatchery

Columbia River region [Section 6.4.1]
Lewis River Hatchery - north-migrating group
Lewis River Hatchery - south-migrating group
Sandy River Hatchery
$>$ The following DIT program(s) have potential issues that decrease their effectiveness and require further review to determine if these issues can be addressed or if the DIT program(s) should be discontinued:

British Columbia region [Section 6.1.1]
Quinsam River Hatchery
Puget Sound region [Section 6.2.1]
Lower Elwha Hatchery
Kendall Creek Hatchery
Washington Coast region [Section 6.3.1]
Makah National Fish Hatchery
Salmon River Fish Culture

- The results for the following DIT program(s) are mixed and are difficult to categorize or there is an insufficient number of years of data to make a determination:

British Columbia region [Section 6.1.1]
Big Qualicum River Hatchery
Chilliwack River Hatchery
Robertson Creek Hatchery
$\xrightarrow{\text { Puget Sound region [Section 6.2.1] }}$
Voights Creek Hatchery
Columbia River region [Section 6.4.1]
Eagle Creek National Fish Hatchery

Recommendations Regarding Analytical Methods

- The results of the hypothesis tests used in this report to compare estimated ERs for the marked and unmarked components of a DIT group and evaluate MSF impacts are sensitive to (a) the selective fishing mortality ($s f m$) rates used for the MSFs and (b) uncertainty in the estimates of $s f m$ rates (which is currently assumed to be 0). Using different sfm rates and/or accounting for the uncertainty in the sfm rates would change the results for many of these hypotheses tests. A sensitivity analysis which examines the results of the hypothesis tests comparing the estimates of ERs for the marked and unmarked components of a DIT group to changes in sfm rates and to uncertainty in the sfin rates should be conducted. [Section 7.5.1]
- The single index tag (SIT)-based method may be an adequate method of estimating unmarked ERs for some hatcheries if expected ERs are relatively low (e.g., <40\%) and if survival rates and tagging levels are conducive to producing precise SIT-based estimates. However, further work is needed to determine the best statistical method to relate the SIT-based and DIT-based estimates (e.g., regression methods) and to compare SIT-based estimates of ER by fishery to those from the PR method. [Sections 4.2 and 7.6]
- For model-based estimates, interpretation of model-based estimates needs to account for the effects of average base-period ERs that are a key component of the models and uncertainty in CWT-based estimates of ERs. It is unreasonable to assume that the point estimates of annual ERs produced by the Coho FRAM are accurate and without error. Differences between post-season Coho FRAM and DIT-based ER estimates can be quite substantial and vary by stock. While there is relatively good correspondence between DIT-based and FRAM-based estimates of ER for the marked and/or unmarked components of DIT groups from many hatcheries, there are several hatcheries where the correspondence between the two is very poor. [Sections 5.2 and 7.6]
- Post-season estimates of ERs should not be based solely on post-season Coho FRAM. For fishery planning purposes, estimates of ERs should be accompanied by indications of confidence levels. Precautionary management principles would indicate that buffers or bias corrections for error should be considered and routinely employed as a best practice. [Sections 5.2 and 7.6]

Possible Consequences of SFEC Recommendations Regarding DIT Programs that Support Management of Coho Salmon under the PST (Pacific Salmon Treaty)

- Costs of DIT marking could be reduced because DIT groups would not be released from some regions and/or hatcheries.
- Uncertainty in ER estimates for marked fish could be reduced by increasing release sizes or increasing fishery sampling rates, which in turn would improve ER estimates for unmarked fish associated with DIT groups. This would increase the costs of some rearing and sampling programs.
- Given that use of ETD is not complete throughout the range of southern Coho Salmon, and budgetary constraints exist, it is questionable if agencies will make commitments to expand future coverage. Any reduction in ETD in non-selective fisheries will result in increased uncertainty in ER estimates for those unmarked stocks impacted by these fisheries.
- Data to provide an independent means to evaluate performance of assumption-based methods such as SIT and Coho FRAM would be unavailable for some stocks. Precautionary management approaches to reflect increased uncertainty, such as buffers for ERs, for planning and evaluation are advised.
- Due to reductions in fishery exploitation rates in response to conservation concerns for naturally-produced Coho, large numbers of coded-wire-tagged fish can return to hatchery facilities. Sub-sampling of fish detected by ETD as containing a CWT can be employed to reduce the costs of processing tag recoveries without appreciably affecting the quality of recovery estimates. Cost savings are achieved by reducing the number of fish with positive detections that are processed by CWT head laboratories. This sub-sampling requires that all fish returning to a hatchery are subjected to ETD and there is a total accounting of mark-status. This type of sub-sampling is currently conducted in Washington State hatchery facilities.

1 Introduction

Coded-wire tagged (CWT) groups of hatchery salmon are used as indicators for naturallyspawning stocks of salmon originating within the same region and river basin. The intent of the indicator stock program is to derive information on which fisheries are impacting stocks and to estimate exploitation rates in fisheries using cohort analysis methods under the assumption that the hatchery fish will exhibit the same migration timing and ocean distribution patterns as the natural-origin fish they represent once they have left the watershed (ASFEC 1997). CWT recoveries from sampled fisheries and escapements are used to estimate retained and nonretained mortalities (e.g., shaker mortality and catch-and-release mortality in species-selective fisheries) which are used as inputs to cohort analysis.

Prior to the mid-1990s, the adipose fin was removed in order to visually identify hatchery fish with a CWT. In the mid-1990s, fishery managers began removing the adipose fin from almost all hatchery-produced Chinook and Coho salmon, a practice called mass marking (MM). MM provided a means of visually distinguishing hatchery from wild origin fish upon capture in fisheries and provided fishery managers the tool necessary for implementing mark-selective fisheries (MSFs) which allow the retention of marked salmon only. However, because the adipose fin clip could no longer be relied upon as a visual indicator of a fish containing a CWT, the practice of MM also affected managers' ability to estimate fishery impacts and exploitation rates on indicator stocks. Consequently, electronic tag detection (ETD) technology was developed to enable detection of CWTs regardless of clip status and is now widely used in catch, hatchery, and escapement sampling to identify both marked and unmarked fish containing CWTs. In this report "marked" refers to adipose fin-clipped fish, while "unmarked" refers to fish with an adipose fin.

Mass-marked fish experience different exploitation patterns than unmarked fish in MSFs. Because of this, hatchery fish marked with both CWTs and adipose fin clips can no longer be relied upon to provide the data needed to directly estimate fishery impacts on the naturallyspawning stocks they represent. Furthermore, MSFs introduce additional sources of bias due to mark-recognition error which previous methods of cohort analysis did not address (ASFEC 1997, SFEC-AWG 2002).

The first MSFs were implemented on a limited scale in order to develop methods for fishery monitoring, reporting of data, and stock assessment. As interest in MSFs increased, an Ad-hoc Selective Fishery Evaluation Committee (ASFEC) was convened by the Pacific Salmon Commission (PSC) to develop methods for estimating the impacts of MSFs on indicator stocks. The ASFEC developed Double Index Tagging (DIT) to provide methods for estimating the impacts of MSFs on unmarked stocks of Chinook and Coho salmon (ASFEC 1995). Under DIT, differences in recoveries of paired-release CWT groups (one group with the adipose fin removed to represent mass-marked hatchery fish and the other group with the adipose fin intact to represent unmarked naturally-spawning fish) provide the data to estimate impacts of MSFs on unmarked fish. The marked and unmarked components of each DIT group are to be treated in an identical manner in rearing, tagging, release, and recovery. The PSC now has a permanent Selective Fishery Evaluation Committee (SFEC) to review proposals for MM and MSFs.

Methods that used DIT groups to estimate unmarked mortalities due to catch and release in MSFs were proposed by the SFEC - Analytical Work Group (SFEC-AWG 2002). Markselective fisheries have been directed at Coho salmon since 1998 and CWT data from DIT groups impacted by these fisheries are available for brood years 1995-2016. Methods proposed by the SFEC-AWG were evaluated using an empirical analysis of data from brood years 1995 to 1997 by the Joint Coho DIT Analysis Workgroup (JCDAW 2003). The analysis showed only one method of analysis was usable for those years. The analysis also showed that the total impact of MSFs during this period was not large enough to be detected for individual DIT groups. However, when averaged over all DIT group releases and all return years there was a statistically significant difference in the exploitation rates for the marked and unmarked components of the DIT groups representing stocks on the Washington Coast.

There is increasing concern regarding the ability to implement the DIT methodology as a tool to monitor MSF impacts on unmarked fish (SFEC 2016). Specifically, the inability of agencies to fully fund application of CWTs, CWT sampling, and tag recovery, combined with incomplete ETD coverage, reduces the ability of the DIT program to provide data that can be used to estimate and evaluate impacts of MSFs independent from model-based methods (SFEC 2016). Regardless of these challenges, DIT is currently the only analytical tool available to estimate and evaluate impacts of MSFs on unmarked stocks independently from model-based methods.

This report summarizes analyses of CWT data for DIT groups of Coho salmon released by British Columbia, Washington, and Columbia River hatcheries for brood years 1998-2011 (SFEC 2019, Appendix B). During this period, mark-selective fisheries expanded substantially both in geographic area and in magnitude. This report has the following objectives: (1) evaluate and compare methods for estimating total exploitation rates of MSFs on unmarked groups using DIT data; (2) evaluate the ability of DIT to estimate fishery-specific mortalities of unmarked fish when multiple MSFs impact the same brood; (3) compare DIT-derived estimates of exploitation rates for marked and unmarked stocks to those generated by the Coho FRAM; and, (4) provide recommendations on changes that would lead to improvements in the Coho DIT program as it is currently designed and implemented.

Sections $1-5$ of this report describe the analytical methods used to evaluate and compare DIT groups. These sections also provide a general summary of the results across the brood years analyzed for the DIT groups released by hatcheries in four regional areas: British Columbia (BC); Puget Sound (PS); Washington Coast (WC); and Columbia River (CR). Detailed estimates by brood year and hatchery are provided in the appendices. Section 6 provides a detailed review of the DIT program results for each of the hatcheries in a region and an overall assessment of each hatchery's DIT program. Sections 7-9 provide further discussion of the results, outline a framework for evaluating DIT programs, and provide recommendations for improving DIT programs in general.

1.1 Retained Catch for Coho Salmon 2001-2014

Mark-selective fisheries for Coho salmon have been prosecuted since catch year 1998.
Figure 1-1 compares annual numbers of Coho salmon retained by MSFs and non-selective fisheries (NSFs) during catch years 2001-2014 for the Puget Sound (WA), Washington Coast, Columbia River, and Oregon Coast regions. For the Puget Sound region, only 3-17\% of the total estimated retained catch was caught in MSFs during this period (Table 1-1). In contrast, $14-52 \%$ of the total estimated retained catch was caught in MSFs for the Washington Coast region (Table 1-2) and 5-37\% for the Columbia River region (Table 1-3). Oregon's ocean fisheries were not electronically sampled until 2011 resulting in no unmarked recoveries in any non-selective ocean fishery occurring 2001-2010 (see Table 1-4 for estimates of total retained catch). Due to misalignment of catch estimates and fishery regulations in some recreational fisheries and incomplete catch monitoring coverage, the catch information by fishery type (mark-selective and non-selective) is not available for British Columbia fisheries.

Figure 1-1. Retained catch of Coho Salmon in mark-selective fisheries (MSF) and nonselective fisheries (NSF) from 2001-2014 in the Puget Sound, Washington Coast (including Grays Harbor and Willapa Bay), Columbia River, and Oregon Coast regions, by fishery type and catch year. For clarity, "mixed" fisheries catches are not shown

Table 1-1. Percent of estimated total retained Coho salmon catch, by fishery type, in Puget Sound (WA) fisheries from 2001-2014.

Return Year	SPORT		NET	TROLL
2001	11.7%	28.2%	59.1%	1.0%
2002	8.1%	16.4%	75.5%	0.0%
2003	10.8%	25.3%	63.9%	0.1%
2004	6.4%	10.7%	80.5%	2.5%
2005	7.2%	15.9%	76.3%	0.6%
2006	3.2%	9.9%	86.6%	0.3%
2007	11.2%	19.1%	69.1%	0.6%
2008	4.4%	9.1%	86.2%	0.3%
2009	4.6%	25.1%	68.3%	1.9%
2010	6.2%	8.7%	85.0%	0.1%
2011	7.0%	24.8%	68.1%	0.0%
2012	12.1%	25.6%	62.2%	0.1%
2013	9.8%	24.3%	65.8%	0.1%
2014	16.6%	24.5%	58.9%	0.1%

Table 1-2. Percent of estimated total retained Coho salmon catch, by fishery type, in Washington Coast fisheries (including Grays Harbor and Willapa Bay) from 2001-2014.

Return	SPORT Year			MSF	Mix	NSF

Table 1-3. Percent of estimated total retained Coho salmon catch, by fishery type, in Columbia River fisheries from 2001-2014.

Return Year	SPORT		NET MSF		
2001	29.0%	16.1%	0.0%	0.0%	55.0%
2002	4.8%	12.2%	0.0%	0.0%	83.0%
2003	18.7%	4.2%	0.0%	0.0%	77.1%
2004	18.0%	2.7%	0.0%	0.0%	79.3%
2005	9.3%	2.9%	0.0%	0.0%	87.8%
2006	15.6%	2.4%	0.0%	0.0%	82.1%
2007	37.1%	2.9%	0.0%	0.0%	60.0%
2008	35.4%	2.1%	0.0%	0.0%	62.6%
2009	36.9%	2.3%	0.0%	0.0%	60.7%
2010	25.8%	1.9%	0.0%	0.0%	72.3%
2011	25.3%	2.2%	0.0%	0.0%	72.6%
2012	36.3%	5.9%	0.0%	0.0%	57.8%
2013	22.3%	10.1%	0.0%	8.1%	59.5%
2014	16.1%	14.3%	0.3%	11.0%	58.3%

Table 1-4. Percent of estimated total retained Coho salmon catch, by fishery type, in Oregon Coast fisheries from 2001-2014.

Return	SPORT		TROLL	
Year	MSF	NSF	MSF	NSF
2001	90.9%	0.0%	9.1%	0.0%
2002	95.9%	0.0%	4.1%	0.0%
2003	94.4%	0.0%	5.6%	0.0%
2004	88.5%	0.0%	2.9%	8.6%
2005	83.8%	0.0%	16.2%	0.0%
2006	91.6%	0.0%	8.4%	0.0%
2007	91.6%	0.0%	0.0%	8.4%
2008	100.0%	0.0%	0.0%	0.0%
2009	90.6%	0.0%	0.0%	9.4%
2010	100.0%	0.0%	0.0%	0.0%
2011	64.8%	35.2%	0.0%	0.0%
2012	27.0%	73.0%	0.0%	0.0%
2013	72.7%	27.3%	0.0%	0.0%
2014	61.3%	35.5%	0.0%	3.2%

1.2 Estimation of Retained Catch and Non-landed Mortalities in Coho Salmon Fisheries from CWT Recoveries

The number of CWT fish retained in a fishery or returning to escapement is estimated by:

$$
\begin{equation*}
\hat{R}=\frac{o b s}{s r} \tag{1}
\end{equation*}
$$

and the variance is estimated by,

$$
\begin{equation*}
\hat{V}(\hat{R})=\frac{\hat{R}}{s r}(1-s r) \tag{2}
\end{equation*}
$$

where \hat{R} is the estimated number of coded-wire tagged fish in the retained catch or escapement, $o b s$ is the number of tagged fish observed in the sample, and $s r$ is the sample rate (number of fish sampled / total retained catch or escapement) which can include adjustments due to factors such as lost tags. The large sample variance equation above (Eq. 2) assumes that estimated catch and escapements variances are either known without error, small relative to the sampling process, or unavailable (Bernard and Clark 1996).

Mortalities in non-selective fisheries include retained mortality and drop-off mortality. Drop-off mortality is typically estimated as 5% of retained catch in hook-and-line fisheries and 2% in commercial net fisheries (PFMC 2008). Drop-off mortality is used to account for total fisheryrelated mortalities when estimating fishery exploitation rates (ERs) in management forums (e.g., PFMC, PSC) and in the planning models used in these forums (e.g., FRAM). The mortality rates for released fish are assumed to be equal for marked and unmarked fish.

Mortalities in MSFs are comprised of:

- Release mortalities of unmarked fish that are volitionally released by fishers but later die due to injuries associated with the catch-and-release process. There are no tag samples from these fish to allow direct estimation of this mortality by stock. The DIT groups provide information used to estimate these mortalities (see Section 3).
- Drop-off mortalities of both marked and unmarked fish (see above).
- Mortalities due to the retention of unmarked fish by fishers in error (Unmarked Retention Error or URE). These fish are available for sampling and can be estimated from the sampled fish.
- Mortalities resulting from the release of marked fish by fishers (Mark Recognition Error or MRE). This includes the intentional release of marked fish by anglers (intentional catch and release). These mortalities cannot be estimated from samples and are assumed in this report to be zero. Estimates of total mortalities of marked and tagged fish will be underestimated if there are mortalities due to MRE or intentional catch and release.

Section 3 describes methods to estimate mortalities for unmarked fish using DIT groups.

1.3 Exploitation rates

Exploitation rates (ERs) are the ratio of fishery-related mortalities over the total cohort size of a tagged group. Cohort size is the sum of all fishery-related mortalities plus all escapement ${ }^{1}$. ER for one or more fisheries (f) is estimated by,

$$
\begin{equation*}
\widehat{E R}_{f}=\frac{\sum_{f}(\text { Retained }+ \text { Dropoff Mortalities }+ \text { Release Mortalities })}{\sum_{f}(\text { Retained }+ \text { Dropoff Mortalities }+ \text { Release Mortalities })+\text { Escapement }} \tag{3}
\end{equation*}
$$

and the variance of $\widehat{E R}_{f}$ can be approximated using the delta method by,

$$
\begin{equation*}
V\left(\widehat{E R}_{f}\right) \doteq\left(\widehat{E R}_{f}\right)^{2}\left[\frac{V(\text { Numerator })}{\text { Numerator }^{2}}+\frac{V(\text { Denominator })}{\text { Denominator }^{2}}\right] . \tag{4}
\end{equation*}
$$

Exploitation rate estimates will be unbiased under these assumptions:

1) Estimates of the number of CWTs in the retained catch and the escapement are unbiased;
2) Estimates of drop-off mortality are unbiased;
3) All landed fish are retained in NSFs and all landed marked fish are retained in MSFs (no MRE); and,
4) All unmarked fish are released (no URE) in visually-sampled fisheries.

1.4 DIT Groups for Coho Salmon for Brood Years 1998-2011

Double index tagging has been in place since 1995 for Coho salmon. For brood years 19982011, eight DIT groups were consistently released from hatcheries in Puget Sound, six DIT groups from Washington Coast hatcheries, and four DIT groups from Columbia River hatcheries (Table 1-5). In British Columbia, two hatcheries consistently released DIT groups during this period. There were three hatcheries in British Columbia that had DIT group releases only for brood years 1998-2002; these hatcheries are included in the analyses.

The majority of these hatcheries released DIT groups annually during the period covered by this report; three hatcheries did not have releases for one to four years at the end of the 1998-2011 period. The Lewis River Hatchery is one of three Columbia River hatcheries consistently releasing DIT groups and this hatchery releases two different DIT groups annually referred to as North-migrating and South-migrating groups.

The numbers of marked and unmarked fish in the DIT groups released from these hatcheries, their associated CWT codes, and the ratio of unmarked-to-marked fish released ($\lambda^{\text {Release }}$) for the 1998 through 2011 brood years are reported in Appendix Table 1.

[^3]Table 1-5. Years with Coho salmon DIT groups analyzed for this report, by hatchery, for brood years 1998-2011 (see Appendix 1 for details). Grey cells indicate years that were not analyzed due to a lack of a DIT release or identified data issues (see footnotes).

Region Sub-region		Hatchery	Brood Year															
		1998	1999	2000	2001	2002	200		004	2005	2006	2007	2008	2009	2010	2011		
BC	JNST		Quinsam River	X	X	X	X	X	X		X	X	X	X	X	X	X	X
	GST	Big Qualicum River	X	X	X	X	X											
	FRAS	Chilliwack River	X	X	X	X	X											
		Inch Creek	X	X	X	X	X	X		X	X	X	X	X	X	X	X	
	WCVI	Robertson Creek	X	X	X	X	X											
PS	JDF	Lower Elwha	X	X	X	X	X	X		X	X	X	X	X	X	X	X	
	NPS	Kendall Creek	X	X	X	X	X	X		X	X	X	X					
		Marblemount	X	X	X	X	X	X		X	X	X	X	X	X	X	X	
		Wallace River	X	X	X	X	X	X		X	X	X	X	X	X	X	X	
	MPS	Soos Creek	X	X	X	X	X	X		X	X	X	X	X	X	X	X	
		Voights Creek	X	X	X	X	X	X		X	X	X	X	X	X	X	X	
	HC	George Adams	X	X	X	X	X	X		X	X	X	X	X	X	X	X	
		Quilcene NFH	X	X	X	X	X	X		X	X	X	X	X	X	X	X	
WC	NWC	Makah NFH	X	X	X	X	X	X		X	X	X	X	X	X	X		
		Quinault NFH	X	X	X	X	X	X		X	X	X	X	X	X	X	X	
		Salmon R. Fish Culture	X	X	X	X	X	X		X	X	X	X	X	X^{2}	3	X	
		Solduc	X	X	X	X	X	X		X	X	X	X	X	X	X	X	
	GRAY	Bingham Creek	X	X	X	X	X	X		X	X	X	X	X	X	X	X	
	WILP	Forks Creek	X	X	X	X	X	X		X	X	X	X	X	X	X	X	
CR	COLR	Lewis River - North	X	X	X	X	X	X		X	X	X	X	X	X	X	X	
		Lewis River - South	X	X	X	X	X	X		X	X	X	X	X	X	X	X	
		Eagle Creek NFH	X	X	X	X	X	X		X	X	X	X	X	X	X	X	
		Sandy River	X	X	X	X	X	X		X	X	X	X	X				

${ }^{2}$ There were no estimated coded-wire-tagged 3-year olds reported as recovered in the hatchery or escapement from either the marked or the unmarked component of the DIT group representing the 2009 brood year release from the Salmon River Fish Culture Facility. However, estimates of 2-year old recoveries of CWTs were recorded in the hatchery escapement and this brood was included in the return rate or exploitation rate analyses.
${ }^{3}$ There were no estimated coded-wire-tagged fish reported as recovered in the hatchery or escapement from either the marked or the unmarked component of the DIT group representing the 2009 brood year release from the Salmon River Fish Culture Facility. While the fishery recovery data are reported, where appropriate, this brood year was not included in the return rate or exploitation rate analyses.

2 Impact of MSFs on Coho Salmon Stocks

2.1 Age Composition

The majority of the CWT recoveries for the analyzed DIT groups were from age-3 Coho salmon. However, for some DIT groups, there were relatively high numbers of Coho that returned to the hatchery at age 2 . While CWTs from some age- 2 fish were recovered in fisheries, these numbers were typically small in comparison to the age-3 fishery recoveries. Table 2-1 summarizes the average percentage contribution of age-2 fish to the brood year escapement across all brood years used for the DIT analyses. While there were some age-4 and age-5 Coho in the CWT recoveries, these age groups were consistently rare and very sporadic. Because age- 2 Coho are infrequently caught in fisheries, their contribution to brood year escapement tends to increase return rates to the escapement and reduce brood year ERs.

The average contributions of age- 2 Coho to the brood year escapement were very similar for both the marked and unmarked components of each hatchery's DIT groups. For some hatcheries, the average contribution of age-2 Coho to the brood year escapement for the DIT groups was > 20% (e.g., Quinsam Hatchery, Big Qualicum Hatchery, Lower Elwha Hatchery, and Salmon River Fish Culture). Conversely, some hatcheries had consistently low contribution rates of age-2 fish to the escapement (e.g., Kendall Creek, Marblemount, Wallace River, Soos Creek, and Voights Creek).

Summaries by hatchery and brood year, which include the percentage contribution of age-2 recoveries to all fishery recoveries for the marked and unmarked components of each DIT group, are reported in Appendix Table 2.

2.2 Size of the Mark-Selective Fishery

DIT groups include both marked-and-tagged and unmarked-and-tagged components. One indicator of the intensity or size of the MSF impact on a stock is the proportion of total fishery recoveries of marked fish from a DIT group in MSFs. The relative impacts of MSFs on DIT groups is calculated as the number of marked recoveries that occurred in mark-selective fisheries divided by the total number of marked recoveries in all fisheries.

On average, the percentage of the marked fish harvested in MSFs was higher for DIT groups from hatcheries in the British Columbia and Columbia River regions compared to the other regions (Figure 2-1). For British Columbia DIT-group releases, the average percentage ${ }^{1}$ of marked fish recovered from MSFs was > 39\% for all hatcheries except Robertson Creek Hatchery (28\%). For the Columbia River region, the average percentage of marked fish recovered from MSFs was \geq 68% for all hatcheries. Outside these two regions, the only other hatcheries where the average percentage recovered from MSFs was greater than 40% were the Wallace River (45\%), Makah NFH (65\%), and Solduc (47\%).

[^4]Appendix Table 3 provides estimates of the proportion of the marked recoveries that occurred in fisheries by fishery type (MSF, NSF, or Mixed) by hatchery and brood year. The fishery regulation type "Mixed" generally indicates a fishery sample stratum where an angler may retain different proportions of marked and unmarked fish, e.g., a maximum of two fish of which one can be unmarked are allowed to be retained (PSC 2016); Canada also uses the "Mixed" code for recoveries for which the regulation type they were caught under is unknown. The percent of all recoveries that were in the escapement is reported in Appendix Table 3, also.

Table 2-1. Mean percent of brood-year return (of all ages) to escapement that was age-2 for DIT groups analyzed, by hatchery. Number of brood years and minimum and maximum percentages observed are shown, also.

Region	Hatchery	\# of Brood Years	Unmarked		Max.	Marked		
BC	Quinsam River	14	22.4\%	5.7\%	34.3\%	21.9\%	4.5\%	33.8\%
	Big Qualicum River	5	20.3\%	7.9\%	39.3\%	15.7\%	3.2\%	33.7\%
	Chilliwack River	5	5.8\%	2.2\%	8.4\%	6.2\%	1.7\%	11.1\%
	Inch Creek	14	4.6\%	0.7\%	9.6\%	4.8\%	0.0\%	9.3\%
	Robertson Creek	5	6.9\%	4.2\%	8.5\%	6.8\%	5.5\%	7.5\%
PS	Lower Elwha	14	27.8\%	2.8\%	60.1\%	27.5\%	2.8\%	62.9\%
	Kendall Creek	10	0.8\%	0.0\%	2.6\%	1.8\%	0.0\%	6.3\%
	Marblemount	14	0.7\%	0.0\%	3.8\%	0.7\%	0.0\%	3.5\%
	Wallace River	14	0.4\%	0.0\%	0.9\%	0.3\%	0.0\%	1.5\%
	Soos Creek	14	1.0\%	0.0\%	2.4\%	1.0\%	0.1\%	3.6\%
	Voights Creek	14	1.8\%	0.0\%	9.6\%	1.5\%	0.0\%	5.8\%
	George Adams	14	6.9\%	1.1\%	19.1\%	7.7\%	0.9\%	23.9\%
	Quilcene NFH	14	7.9\%	0.0\%	20.3\%	9.2\%	0.8\%	20.9\%
WC	Makah NFH	13	11.6\%	0.0\%	31.2\%	11.7\%	0.0\%	31.0\%
	Quinault NFH	14	9.8\%	0.0\%	25.4\%	10.7\%	0.0\%	31.0\%
	Salmon River Fish Culture	13	22.3\%	0.0\%	100.0\%	25.6\%	0.0\%	100.0\%
	Solduc	14	12.5\%	2.0\%	40.9\%	12.0\%	1.8\%	22.6\%
	Bingham Creek	14	13.3\%	2.0\%	32.9\%	11.9\%	2.0\%	34.9\%
	Forks Creek	14	6.5\%	0.9\%	18.0\%	7.0\%	1.8\%	21.9\%
CR	Lewis River - North	14	10.3\%	2.9\%	19.4\%	12.6\%	2.6\%	24.9\%
	Lewis River - South	14	11.9\%	4.9\%	36.9\%	13.4\%	5.0\%	40.8\%
	Eagle Creek NFH	14	8.4\%	0.0\%	34.9\%	9.5\%	0.0\%	39.8\%
	Sandy River	11	4.1\%	0.6\%	13.1\%	5.6\%	0.0\%	12.2\%

Figure 2-1. Mean percentage of total fishery CWT recoveries of the marked DIT group occurring in mark-selective fisheries (MSF), non-selective fisheries (NSF), and mixed or unknown regulation fisheries (Mixed), for brood years 1998-2011, by hatchery.

2.3 Comparing Return Rates between Marked and Unmarked Components of DIT Groups

As a DIT group passes through mark-selective fisheries, the marked and unmarked groups will be subject to different impacts as unmarked encounters are released while marked fish are kept. As more unmarked fish survive the MSFs, a higher proportion of the unmarked component of a DIT group will enter the escapement.
Return rates of marked fish to the escapement (i.e., the estimated proportion of the marked fish at release that escape to the hatchery rack or spawning grounds, $\hat{p}_{m}=\frac{\text { Return Marked }}{\text { Release Marked }}$) were compared to the return rates of unmarked fish $\left(\hat{p}_{u}\right)$ to determine whether MSFs decreased the fishery mortality rate for the unmarked component of the DIT group relative to the marked component. A Z test (Fleiss 1981) is used to assess statistical significance:

$$
\begin{equation*}
Z=\frac{\hat{p}_{u}-\hat{p}_{m}}{\sqrt{\tilde{V}\left(\hat{p_{u}} u\right)+\hat{V}\left(\hat{p}_{m}\right)}} \tag{5}
\end{equation*}
$$

$V\left(\hat{p}_{u}\right)$ and $V\left(\hat{p}_{m}\right)$ are calculated to account for variation due to process error the number of fish surviving to escapement, given the number of fish released, was assumed to follow a binomial distribution) as well as variation due to sampling the escapement for coded wire tags.
$V\left(\hat{p}_{u}\right)$ is calculated as:

$$
\begin{equation*}
\hat{V}\left(\hat{p}_{u}\right)=\frac{\hat{p}_{u}\left(1-\hat{p}_{u}\right)}{N_{u}}+\frac{\hat{E}_{u}(1-s r)}{s r\left(N_{u}\right)^{2}} \tag{6}
\end{equation*}
$$

where \widehat{E}_{u} is the estimated escapement of unmarked but tagged fish, N_{u} is the total number released for an unmarked DIT group, and $s r$ is the sample rate at escapement to the hatchery. The same formula (substituting p_{m}, \widehat{E}_{m}, and N_{m}) is used to estimate $\widehat{V}\left(\hat{p}_{m}\right)$. See page 6 in JCDAW (2003) for the derivation of Eq. 6.

A negative test statistic occurs when a higher proportion of the marked component of a DIT group returns than the unmarked component which usually indicates: (1) unaccounted mortality for the unmarked component of the DIT group which may be due to fishery sampling problems;
(2) sampling problems in the hatchery; (3) imprecision of the estimates (i.e., small sample sizes); or, (4) a violation of the assumption that the two DIT groups were treated in an identical manner in rearing and release at the hatchery. Negative test statistics are a concern if they consistently occur for the DIT groups from a hatchery.

The ratio of the number of unmarked-to-marked fish in a DIT group is lambda $(\lambda=U / M)$, where U is the number of unmarked fish and M is the number of marked fish for a given DIT group ${ }^{2}$. This ratio is commonly measured accurately and precisely in the hatchery at release and at return to the hatchery escapement; fishery samples typically do not provide precise estimates of λ. The variance of λ (SFEC-AWG 2002) is estimated by:

$$
\begin{equation*}
\hat{V}(\hat{\lambda})=\left(\frac{1}{M}\right)^{2} \hat{V}(U)+\left(\frac{\widehat{\lambda}}{M}\right)^{2} \hat{V}(M) \tag{7}
\end{equation*}
$$

Because of the way smolts receiving a CWT at the hatchery are enumerated on release there is assumed to be no variance associated with $\lambda^{\text {Rel }}$. Similarly, because there is often 100% (or $>90 \%$) sampling of the return to the hatchery, the variance associated with $\lambda^{E s c}$ is usually relatively small. There are two assumptions related to the enumeration of DIT group fish returning to the escapement:

1) The number of fish in the marked and unmarked components of each DIT group are accurately counted or estimated; this requires the use of ETD to sample the escapement; And,
2) If only the escapement to the hatchery is included in $\lambda^{E s c}$, then stray rates to the spawning grounds are assumed to be equal for the marked and unmarked DIT-group components.

The ratio of these unmarked-to-marked ratios measured at release and escapement, λR, is another measure used to compare the return rates of the DIT groups and is calculated as,

$$
\begin{equation*}
\lambda R=\frac{\lambda^{E s c}}{\lambda^{\text {Rel }}} . \tag{8}
\end{equation*}
$$

[^5]A λR of 1.0 indicates that the ratio did not change from release to escapement while a λR larger than one indicates a higher removal of marked fish compared to the unmarked fish in the DIT group, which is assumed to be due to MSFs.

Expressed in terms of the number of tagged fish released in each group, N_{m} and N_{u}, and the probabilities of surviving natural sources of mortality, S, and not being caught in fisheries, ($1-E R$), the expected number fish in the escapement is,

$$
E_{x}=N_{x} S\left(1-\widehat{E R}_{x}\right)
$$

where $S=$ survival rate of a DIT group from release to recruitment to fisheries (assumed to be equal for the marked and unmarked components of a DIT group), and
$\begin{aligned} \widehat{E R}_{x}= & \text { exploitation rate estimate for the unmarked }(u) \text { or marked }(m) \text { component of a } \\ & \text { DIT group }(x) .\end{aligned}$
The proportion of fish returning from those released, p_{x}, is,

$$
\begin{gather*}
p_{x}=\frac{N_{x} S\left(1-E R_{x}\right)}{N_{x}}, \text { or } \\
p_{x}=S\left(1-E R_{x}\right) . \tag{9}
\end{gather*}
$$

Expressing $\lambda^{E s c}$ in the same way,

$$
\begin{equation*}
\lambda^{E s c}=\frac{E_{u}}{E_{m}}=\frac{N_{u} S\left(1-E R_{u}\right)}{N_{m} S\left(1-E R_{m}\right)}=\lambda^{R e l} \frac{\left(1-E R_{u}\right)}{\left(1-E R_{m}\right)}, \tag{10}
\end{equation*}
$$

and subsequently, λR is,

$$
\begin{equation*}
\lambda R=\frac{\lambda^{E s c}}{\lambda^{R e l}}=\frac{\left(1-E R_{u}\right)}{\left(1-E R_{m}\right)} . \tag{11}
\end{equation*}
$$

As defined, the variance for the estimated relative return ratio, λR, is:

$$
\begin{equation*}
\widehat{V}(\widehat{\lambda R})=\widehat{\lambda R}^{2}\left[\frac{1}{\widehat{E}_{u}}-\frac{1}{N_{u}}+\frac{1}{\widehat{E}_{m}}-\frac{1}{N_{m}}\right] \tag{12}
\end{equation*}
$$

(personal communication: K. Ryding, WDFW). This variance estimator accounts for the survival, fishing, and sampling processes leading to the hatchery returns. A λR that is significantly less than 1 indicates a higher proportion of the marked component of the DIT group returned relative to the unmarked component which is not expected in the presence of MSFs and indicates that one or more of the four issues that may cause a negative Z statistic (described above) in the comparison of return rates has occurred.

2.4 Results of the Comparison of Marked and Unmarked Return Rates

The results for the Z test (Eq. 5) comparing marked and unmarked return rates are summarized in Table 2-2; detailed results by hatchery and brood year are presented in Appendix Table 4. In Table 2-2, the number of brood years tested and the percentage of those tests that were nonsignificant (NS) are shown. The results for the tests that were significant $(P \leq 0.05)$ are summarized in two columns: a positive test statistic (+YES column) indicates a higher return rate for the unmarked component of a DIT group and a negative test statistic (-YES) indicates a higher
return rate for the marked component (which is not consistent with the expectation that only the marked component of a DIT group is experiencing substantial mortalities in MSFs).

Table 2-2. Percent of brood years where the Z test comparing the return rates of the marked and unmarked components of a DIT group to hatchery escapement is not significant (NS), significant ($P \leq 0.05$) and positive (+YES), or significant and negative (-YES), and number of brood years tested, by hatchery, for brood years 1998-2011.

Region	Hatchery	NS	+YES	-YES	\# of Broods
BC	Quinsam River	64%	36%	0%	14
	Big Qualicum River	40%	60%	0%	5
	Chilliwack River	20%	80%	0%	5
	Inch Creek	36%	64%	0%	14
	Robertson Creek	40%	60%	0%	5
PS	Lower Elwha	57%	29%	14%	14
	Kendall Creek	90%	10%	0%	10
	Marblemount	Wallace River	71%	29%	0%
	Soos Creek	50%	43%	7%	14
	Voights Creek	72%	21%	7%	14
	George Adams	72%	14%	14%	14
	Quilcene NFH	72%	14%	14%	14
WC	Makah NFH	64%	29%	7%	14
	Quinault NFH	Salmon River Fish Culture	77%	0%	23%
	Solduc	57%	36%	7%	13
	Bingham Creek	59%	8%	23%	13
	Forks Creek	43%	43%	7%	14
CR	Lewis River - North	Lewis River - South	50%	50%	0%
	Eagle Creek NFH	14%	86%	0%	14
	Sandy River	14%	86%	0%	14

For the British Columbia region, the majority of the test statistics were positive and significant at all hatcheries except Quinsam River. For the Puget Sound and Washington Coast regions, 50\% or more of the tests were not significant for all hatcheries. The DIT groups from the Columbia River hatcheries experienced consistently higher impacts in MSFs than in NSFs (Figure 2-1) and had significantly higher unmarked return rates to the hatchery escapement; more than 60% of the tests at each hatchery were significant and all of these tests were positive.

There were no significant Z tests with a negative test statistic (i.e., the return rate to the hatchery of the marked component of the DIT group was significantly greater than the return rate for the unmarked component) for hatcheries in the British Columbia and Columbia River regions. In the Puget Sound region, all hatcheries except Kendall Creek and Marblemount had one or two brood years with a significant negative Z statistic. In the Washington Coast region, all hatcheries except

Forks Creek had at least one brood year with a significant negative Z statistic. All of the significant Z tests for Makah NFH were negative and all but one of the tests for the Salmon River Fish Culture Facility were negative.

Figure 2-2 uses a box-and-whiskers plot to summarize the distributions of the $\lambda R \mathrm{~s}$ by hatchery for the 1998-2011 brood years. The distributions of the λR s for the British Columbia and Columbia River hatcheries lie almost entirely above 1.0, i.e., the unmarked-to-marked ratio increased from release to escapement consistent with substantial impacts from MSFs. While the medians of the distributions for the Puget Sound region are all > 1.0, 50\% of the brood years from the Soos Creek and Voights Creek hatcheries had $\lambda R \mathrm{~s}<1$. The medians of the distributions for the Washington Coast region are all > 1.0 except for the releases from Salmon River Fish Culture; the central 50% interquartile for Salmon River Fish Culture brood years was entirely below the $\lambda R=$ 1 line which is a strong indication of potential issues with rearing of the DIT groups, sampling issues at the hatchery, and reporting of releases and/or escapements. The majority of the central 50% interquartile for Makah NFH brood years was also < 1 . The λR s for the Sandy River Hatchery in the Columbia River region were generally the highest observed across all hatcheries and regions.

Figure 2-2. Distribution of $\lambda R \mathrm{~s}$ by hatchery for brood years 1998-2011. The box-and-whiskers plots show the interquartile range ($25-75 \%$ range) in the box while the whiskers include all values within 1.5 of the interquartile range. The mean (x) and median $(-)$ are shown in the box while outlier points $\left({ }^{\circ}\right)$ are shown outside of the whiskers.

2.5 The Effect of Tag Release Numbers and Return Rates on the Power of the Test to Detect Differences Between p_{u} and $\boldsymbol{p}_{\boldsymbol{m}}$

Across all brood years, 50% or more of the Z tests comparing the return rates of the marked and unmarked components of the DIT groups from each hatchery were not significant $(P>0.05)$. The exceptions were for hatcheries in the BC region (with the exception of Quinsam Hatchery) and the CR region (Appendix Table 4). However, the significance level only gives the probability of wrongfully detecting a difference in return rates when no difference exists but tells us nothing about the probability of making the wrong decision in not rejecting the null hypothesis, i.e., making the determination that no difference exists when one does in actuality. Interpreting Z tests that were not significant, requires some idea of the size of the difference that could be detected, and the associated probability of detecting that difference, for a given release size and expected return proportion of marked fish $\left(p_{m}\right)$. The probability of detecting a difference when one exists is the power of a test and is typically determined before fish are released. Its complement is failing to reject the null hypothesis when there is a significant difference or Type II error.

Relative difference is defined as,

$$
\begin{equation*}
\text { Rel Diff }=\frac{p_{u}-p_{m}}{p_{m}} \tag{13}
\end{equation*}
$$

Expressing p_{m} and p_{u} in terms of the survival and fishing processes of Eq. 9, the relative difference is,

$$
\begin{align*}
& \text { Rel Diff }=\frac{\left(1-E R_{u}\right)}{\left(1-E R_{m}\right)}-1 \\
& \text { Rel Diff }=\lambda R-1 \tag{14}
\end{align*}
$$

Hence, the relative difference is a way to relate the absolute difference to the relative return ratio, λR. Further, because the variance of Rel Diff is equal to the variance of λR, a hypothesis test of the form H_{0} : Rel Diff $=0$ is equivalent to a statement framed in terms of ERs, i.e, $\mathrm{H}_{0}: \lambda R=1$. Either statement can be used to determine release numbers that are based on the ability to detect meaningful differences that are based on expected ERs. Ideally, what constitutes a "meaningful" difference in return rates should be based on fishery management objectives.

Minimal detectable relative differences for Type I and II error rates of 5\% and 20\%, respectively, were calculated for release sizes and return proportions of marked fish that were within the range of those observed in this report (Table 2-3). The relative difference between 4.5% for the marked fish $\left(p_{m}=0.04\right)$ and 5% for the unmarked fish $\left(p_{u}=0.05\right)$ is $25 \%(\%$ Rel Diff $=25 \%$ or $\lambda R=$ 1.25). A relative difference of $20 \%(\lambda R=1.20)$ is detectable with a Type 1 and II error rates of 5% and 20%, respectively, for release sizes between 25,000 and 75,000 per group and marked return rates are 2% or 5% (Table 2-3). The same 20% relative difference, Type 1 error, and Type II error rates would be detectable only at the highest release number when return rates of marked fish are 0.5%. The releases sizes in Table 2-3 correspond to those observed in this study. In terms of returning fish, for a p_{m} of 0.01 (1% marked fish returning out of release) and a release size of 65,000 tagged fish for each group, we can say that anything less than a relative difference of 15.5% between p_{u} and p_{m} is not significantly different from 0 (return rates equal) and be correct
80% of the time. This translates into escapement returns of 751 unmarked and 650 marked fish for tag release sizes of 65,000 in each group.

For a given Type I and II error rate, minimum detectable differences, relative and absolute, will depend on both sample size and the expected return rates of marked and unmarked fish to escapement. Return proportions are dependent on natural survival and exploitation rates. Lower return proportions, whether from low survival or high exploitation rates, will require higher release numbers to detect small differences in return rates and reduce the probability of being wrong in saying no difference exists between the rates. Conversely, for lower DIT group release numbers, higher return proportions are required to detect small differences. Details of the power analysis are provided in the Appendix 13.

Currently, there is no guidance for quantifying relative differences in return rates that are important to fisheries management. However, we can look at the average release numbers of marked and unmarked fish, and the average p_{m} across the hatchery DIT programs in this report to calculate minimum relative differences between p_{u} and p_{m} that would satisfy Type I and II error rates of 5% and 20%, respectively (Table 2-5). A Type II error rate gives an 80% chance of being correct when no difference is detected and is useful in interpreting non-significant results. At the lowest average release size of approximately 24,000 fish (Eagle Creek NFH) the average p_{m} was $0.014(1.4 \%)$. For these values of Type 1 and II errors, release sizes, and p_{m}, the minimum detectable difference is 21.5%, or a λR of 1.22 (Eq. 14). A test that results in a relative difference (Rel Diff) equal to 21.5% not being significantly different from 0 , when a difference exists, would be correct less than 80% of the time (incorrect more than 20% of the time). If expected return rates of marked fish are less than those presented in Table 2-5, the number of marked and unmarked fish released should increase in order to achieve similar precision goals. Relative differences in Table 2-5 are expressed as λR to compare with results in Appendix 6.

Table 2-3. The minimum detectable relative difference in return rates between marked and unmarked DIT groups, for release sizes between 25,000 and 95,000 and marked return proportion ($p_{m}=0.5 \%, 1 \%, 2 \%$, and 5%) assuming Type I and Type II errors of 5% and 20%, respectively.

	Expected return proportion of marked fish $\left(p_{m}\right)$					
Release numbers for each DIT component	0.005 (0.5%)	0.01 (1%)	0.02	(2%)		0.05
:---:						
25,000						

Table 2-4. The relative differences, λR, detectable under Type I and Type II errors of 5% and 20%, respectively, for the average release size (for each DIT group) and average return proportion of marked fish, p_{m}, from each hatchery.

Region	Hatchery	Average Release Size	Average $\boldsymbol{p}_{\boldsymbol{m}}$	Relative Difference גR Detectable
	Quinsam River	43,600	0.012	1.18
	Big Qualicum River	40,575	0.013	1.18
	Chilliwack River	37,186	0.018	1.15
	Inch Creek	41,788	0.018	1.14
	Robertson Creek	40,171	0.056	1.08
PS	Lower Elwha	73,825	0.002	1.31
	Kendall Creek	47,683	0.007	1.22
	Marblemount	43,056	0.032	1.11
	Wallace River	43,273	0.044	1.09
	Soos Creek	44,136	0.025	1.11
	Voights Creek	45,173	0.015	1.15
	George Adams	45,766	0.026	1.11
	Quilcene NFH	40,303	0.018	1.15
WC	Makah NFH	38,895	0.018	1.15
	Makah NFH (2010)	64,410	0.020	1.11
	Quinault NFH	79,593	0.018	1.10
	Salmon River Fish Culture	75,951	0.009	1.15
	Solduc	76,214	0.024	1.09
	Bingham Creek	71,419	0.025	1.09
	Forks Creek	72,325	0.020	1.11
CR	Lewis River - North	72,068	0.022	1.10
	Lewis River - South	72,875	0.024	1.10
	Eagle Creek NFH	23,741	0.014	1.22
	Sandy River	27,117	0.011	1.23

2.6 Summary

Figure 2-3 shows the percentage of Z tests that were significant $(P \leq 0.05)$ and had a positive test statistic (i.e., indicate a significantly higher return rate for the unmarked component of the DIT group compared to the marked component which is attributed to the impact of MSFs) for each brood year. Separate lines are shown for the combined data from the hatcheries in each region (the BC region does not include data from the three hatcheries with only five years of data as they only covered brood years 1998-2002). The heavy black line shows the results across all regions combined. The regional trend lines are quite variable across the brood years and there is no trend over time. Similarly, there is no temporal trend for the combined data; the percentage of significant tests with a positive test statistic fluctuated around 40\% over the 1998-2011 brood years.

Figure 2-3. Percentage of significant tests $(P \leq 0.05)$ with a positive test statistic for the hypothesis that return rates to the escapement are equal for the marked and unmarked components of DIT groups released from a hatchery summarized for each brood year by region and across all regions combined (Appendix Table 4).

Across all hatcheries and brood years, 48% of the 286 tests comparing \hat{p}_{u} to \hat{p}_{m} were significant; 87% of the significant tests had a positive Z-test statistic indicating that \hat{p}_{u} was significantly greater than \hat{p}_{m} which is expected if MSFs are having greater impacts on the marked component of a DIT group than the unmarked component. Similarly, across all hatcheries and brood years 76% of the $286 \lambda R \mathrm{~s}$ (Eq. 8) calculated were ≥ 1.0, i.e., indicated a differential impact of MSFs on the marked and unmarked components of the DIT groups (Table 2-5).

Table 2-5. Percent of brood years with λR ratios (Eq. 8) less than 1.00 and greater than 1.00 , by region.

Region	$\lambda \boldsymbol{R}<\mathbf{1 . 0 0}$	$\lambda \boldsymbol{R} \geq \mathbf{1 . 0 0}$
British Columbia	9.3%	90.7%
Puget Sound	28.7%	71.3%
Washington	38.6%	61.4%
Columbia River	5.7%	94.3%
All	24.4%	75.6%

3 Estimating Unmarked Fish Mortalities

SFEC-AWG (2002) described several methods that can be used to estimate unmarked mortalities in MSFs using DIT group data. Two of the methods are used in this analysis, a version of a "Total method" and the "Paired-Ratio method". The Paired-Ratio method allows estimation of mortalities by fishery, whereas the Total method estimates the total exploitation rate (ER) across all fisheries.

For the exploitation rate estimates presented in Sections 3 and 4:

- CWT-recovery data from all ages (i.e., primarily age-2 and age-3 recoveries in fisheries and the escapement) are used. Therefore, the estimated ERs are for the entire cohort, not just the age-3 component of the cohort. Because of relatively large differences in the proportion of each hatchery release that returns as age- 2 among the hatcheries and regions, it is important to include the age-2 data.
- The estimated ERs do not include drop-off mortality in their calculation. The dropoff mortality rate is an assumed value depending upon the type of fishery (hook-andline or net). Omitting drop-off mortality from the analyses in these two sections was done to facilitate comparisons of estimates of unmarked ER from the different methods and for comparisons of unmarked ER to marked ER estimates. When dropoff mortality is not included in the ER estimates the effect of the selective fishery mortality rate ($s f m$), the mortality rate associated with the intentional release of unmarked fish in mark-selective fisheries, is more apparent.

Section 5 compares DIT-group based estimates of ER to the calculations of ER from Postseason Coho FRAM. Drop-off mortality is included in the DIT-group based estimates of marked and unmarked ERs in Section 5. Also, the ER estimates in Section 5 are based only on the age- 3 component of the DIT group return. This was done so that the DIT-based estimates of ER would be comparable to the calculations of ER from Post-season Coho FRAM.

3.1 Total Method

The Total method described here is based on the difference in release and escapement lambdas (λ) where the λR for a DIT group is used to estimate the ER for the unmarked component of a DIT group. From equations 8 and 11 in Section 2-3, λR is,

$$
\widehat{\lambda R}=\frac{\widehat{\lambda^{E s c}}}{\widehat{\lambda}^{\text {Rel }}}=\frac{\left(1-\widehat{E R} \widehat{x}_{u}\right)}{\left(1-\widehat{E R}_{m}\right)} .
$$

The ER for the marked component of a DIT group $\left(E R_{m}\right)$ is estimated as total fishery mortality over the total fishery mortality plus escapement (see Section 1.3). The ER for the unmarked component of a DIT group $(E R u)$ is then:

$$
\begin{equation*}
\widehat{E R}_{u}^{\text {Total }}=1-\left[\frac{\hat{\lambda}^{E s c}}{\hat{\lambda}^{\text {Rel }}}\left(1-\widehat{E R}_{m}\right)\right] \tag{15}
\end{equation*}
$$

and, based on Goodman (1960),

$$
\begin{equation*}
\widehat{V}\left(\widehat{E R}_{u}^{\text {Total }}\right)=\widehat{V}(\widehat{\lambda R})\left(1-\widehat{E R}_{m}\right)^{2}+\widehat{V}\left(\widehat{E R}_{m}\right)(\widehat{\lambda R})^{2}-\widehat{V}(\widehat{\lambda R}) \widehat{V}\left(\widehat{E R}_{m}\right) \tag{16}
\end{equation*}
$$

with

$$
\begin{equation*}
\widehat{V}\left(\widehat{E R}_{m}\right)=\widehat{E R}_{m}^{2}\left[\frac{\widehat{V}(\widehat{M})}{\widehat{M}^{2}}+\frac{\widehat{V}\left(C \widehat{\text { ohor }} t_{m}\right)}{\text { C } \widehat{\text { hor }} t_{m}^{2}}\right] \tag{17}
\end{equation*}
$$

where M is the estimated number of total fishery mortalities for the marked component of a DIT group and Cohortm is the sum of the estimated fishery mortalities plus escapement for the marked component. This method provides unbiased estimates of $E R_{u}$ under these assumptions:

1) Estimates of $\lambda^{R e l}$ and $\lambda^{E s c}$ are unbiased, i.e., the reported numbers of fish released for the marked and unmarked components of a DIT group are accurate and the estimated numbers of tagged fish in the escapement for the marked and unmarked components of a DIT group are based on unbiased sampling at the hatchery (and spawning grounds if applicable).
2) Survival from release to recruitment to fisheries is equal for the marked and unmarked components of a DIT group, so $\lambda^{\text {Rel }}$ is an unbiased estimate of λ for a DIT group entering the first mark-selective fishery.

Estimates of unmarked ER for a DIT group are sensitive to uncertainty in the estimates of the associated marked ER. With a low ER on the marked fish, and few CWT recoveries in the fishery, sampling errors can result in highly uncertain estimates of ER. Estimated marked ERs with high uncertainty can result in a negative estimate of the unmarked ER when using the Total method (Eq. 15). Further, when the quantity $\frac{\hat{\lambda}^{E s c}}{\frac{\hat{\lambda}^{\text {Rel }}}{}\left(1-\widehat{E R}_{m}\right) \text { is greater than one, as }{ }^{\text {E }} \text {. }}$ will be the case when λR is greater than $1 /\left(1-\widehat{E R}_{m}\right)$, estimates of the unmarked ER will be negative. For example, when λR is ≥ 1.25 and the marked ER is 0.20 , the estimate of unmarked ER will be negative (Appendix Table 5). Negative estimates of unmarked ER using the Total method were much more common in DIT groups released from hatcheries in British Columbia and the Columbia River regions where both of these conditions occurred more often than in the Puget Sound and Washington Coast regions (Table 3-1; Appendix Table 6).

Table 3-1. Summary of the percentage of DIT groups with negative estimates of unmarked ER using the Total method, by region.

Region	Percent of Brood Years with Negative Estimates of Unmarked ER
British Columbia	37.2%
Puget Sound	1.9%
Washington	1.2%
Columbia River	28.3%
All	11.9%

3.2 Paired-Ratio Method

For the Paired-Ratio (PR) method, the number of unmarked mortalities (U) can be calculated using an estimate of the unmarked-to-marked ratio (λ) for a specific DIT group that comes from a non-selective fishery that is close to the MSF in time and location (SFEC-AWG 2002). For mark-selective fishery i, the number of encounters of unmarked fish in the DIT group is estimated as the product $\hat{\lambda}_{i} \widehat{M}_{i}$ which is then multiplied by a fishery-specific release mortality rate ($s f m$) to estimate mortalities due to the release of unmarked fish. The total number of mortalities occurring in fisheries for the unmarked component of a DIT group is the sum of estimated landed mortalities occurring in NSFs, mortalities in MSFs due to release, and unmarked landed mortalities occurring in MSFs (due to URE). Totaling unmarked mortalities across all fisheries (based on CWT recoveries from the marked and unmarked components of a DIT group) provides an estimate of U. Visually-sampled (VS) NSFs present a complication when estimating the number of fish from the unmarked component of a DIT-group that are caught and kept in a VS NSF. Because of visual sampling, the unmarked component of a DIT group is rarely detected and sampled in these fisheries, therefore, these landings must be estimated. For VS NSFs, the number of unmarked fish from a DIT group landed by the fishery was calculated similarly to the estimate of unmarked release mortalities in MSFs, i.e., the number of unmarked mortalities were estimated as the product of the marked landed mortalities $\left(\widehat{M}_{i}\right)$ and $\hat{\lambda}_{i}$ with an assumed $s f m=1.0$. This gives:

$$
\begin{equation*}
\widehat{U}=\sum_{j}^{E T D} \widehat{U}_{j}+\sum_{k}^{V S} \widehat{M}_{k} \lambda_{k}+\sum_{i}\left(\lambda_{i} \widehat{M}_{i}-\widehat{U}_{i}\right) s f m_{i}+\sum_{i} \widehat{U}_{i} \tag{18}
\end{equation*}
$$

where M_{x} and U_{x} are the estimated numbers of marked and unmarked fish, respectively, for a given DIT group retained by fishery x with j indicating NSFs with ETD, k indicating NSFs with visual sampling, and i indicating MSFs ${ }^{1}$. The variance for the estimated number of total unmarked mortalities in all fisheries was estimated as:

$$
\begin{equation*}
\widehat{V}(\widehat{U})=\sum_{j}^{E T D} \widehat{V}\left(\widehat{U}_{j}\right)+\sum_{k}^{V S} \lambda_{k}^{2} \hat{V}\left(\widehat{M}_{k}\right)+\sum_{i}\left[\left(\lambda_{i} \operatorname{sfm}_{i}\right)^{2} \widehat{V}\left(\widehat{M}_{i}\right)+\left(1-s f m_{i}\right)^{2} \widehat{V}\left(\widehat{U}_{i}\right)\right] \tag{19}
\end{equation*}
$$

where λ_{k} and λ_{l} are assumed constant as discussed below.

See Appendix 7 for a more complete description of the derivation of equations 18 and 19. The variances of M_{i} and U_{i} are estimated using Equation 2 (Section 1.2). For the PR method, the ER for the unmarked component of the DIT group was estimated as:

$$
\begin{equation*}
\widehat{E R}_{u}^{P R}=\frac{\stackrel{\widehat{U}}{ }}{\widehat{E}_{u}+\widehat{U}} \tag{20}
\end{equation*}
$$

with variance estimated using Equation 17.
In practice, it is very difficult to find a non-selective fishery that provides an unbiased and precise estimate of λ_{i} to pair with a mark-selective fishery. If the non-selective fisheries occur after mark-selective fisheries, the λ in the non-selective fishery is expected to be higher relative to the mark-selective fishery preceding it. Also, the precision of any estimate of λ_{i} for

[^6]a DIT group depends on the number of tags used for that estimate and fishery recoveries are rarely sufficient to provide adequate precision for the estimate of λ_{i}.

Precise estimates of λ for a DIT group are available at release ($\left.\lambda^{\text {Rel }}\right)$ and at escapement ($\lambda^{E s c}$) to the hatchery. The ratio $\lambda^{\text {Rel }}$ is likely to be more appropriate for mark-selective fisheries that take place in the earlier portion of migration, whereas $\lambda^{E s c}$ may be more appropriate for MSFs later in the migration or in terminal areas. The $\lambda \mathrm{s}$ at release and escapement should represent the minimum (before any fisheries) and maximum values (after all fisheries), respectively, and we assume that estimates using these two ratios should reasonably bound the estimates of unmarked mortalities and unmarked ER. Using a constant λ in Equations 18 and 19 greatly simplifies calculations so that only fishery-specific values of M_{i} and $s f m_{i}$ are required to estimate \widehat{U}.

The Paired-Ratio method requires the following assumptions:

1) The number of fish in the marked (M) and unmarked (U) components of each DIT group are accurately estimated in each fishery sampled and in the escapement;
2) λ_{i} is an unbiased estimate of the λ_{i} for a DIT group entering mark-selective fishery i;
3) $s f m_{i}$ is known with certainty;
4) All marked fish are retained (no MRE);
5) An unmarked fish is not encountered on multiple occasions in a mark-selective fishery; and,
6) All fish can be adequately represented as a single population, i.e., there are not substocks experiencing different impacts (PSC 2005).

The last assumption refers to the Paired-Ratio method having to assume a single-pool model where the entire population is subject to the same impacts simultaneously. No methods have been developed that can estimate MSF impacts on sub-stocks of unmarked fish that may have experienced differential MSF impacts owing to migration routes with different fishing patterns. For example, a portion of a stock migrating outside Vancouver Island where there are no mark-selective fisheries while another portion of the same stock migrates inside Vancouver Island where a mark-selective fishery occurs (PSC 2005).

The Paired-Ratio method is vulnerable to bias if the values used for λ_{i} or the $s f m_{i}$ are biased. The values of $s f m_{i}$ used in this report are those provided by the management agencies for Coho salmon (Table 3-2; PFMC, 2008).

In NSFs where there is no electronic detection (i.e., visual sampling only) and unmarked-andtagged landed mortalities are not sampled, the Paired-Ratio method can be used to estimate the mortalities of the unmarked component of a DIT group based on the recoveries from the marked component of the DIT group.

Table 3-2. Release mortality ($s f m$) and drop-off mortality $(D O)$ rates for Coho salmon used in this report.

Region	Fishery	Release Mortality	Drop-off Mortality
All	Troll	0.26	0.05
All	Net	0.26	0.02
British Columbia	Sport	0.10	0.05
Washington Coast	Sport	0.14	0.05
Oregon Coast	Sport	0.14	0.05
Puget Sound	Sport	0.07	0.05
Columbia River	Sport	0.19	0.05

3.3 Results: Estimates of Unmarked ER

Appendix Table 6 compares estimates of unmarked ER for the Total method (Eq. 15) and the PR method (Eqs. 18 and 20) using either $\lambda^{\text {Rel }}$ or $\lambda^{E s c}$. The notation PR $\lambda^{\text {Rel }}$ and PR $\lambda^{E s c}$ is used to indicate when unmarked mortalities are calculated using either $\lambda^{\text {Rel }}$ or $\lambda^{E s c}$ in Eq. 18, respectively. Brood years where the Z test statistic was significant $(P \leq 0.05)$ for the null hypothesis of equal return rates to the hatchery escapement for the marked and unmarked components of a DIT group are indicated in Appendix Table 6.

Estimates of unmarked ER from all three methods are positively correlated with estimates of marked ER as expected and all correlations are significant ($P<0.001$). Estimates of unmarked ER from the two Paired-Ratio methods are highly correlated with each other ($r=$ $0.999, P<0.001$). For the DIT groups analyzed, estimates of unmarked ER from the Total method are generally higher than the estimates from either PR method (Figure 3-1) as shown by the majority of the points in Figure 3-1 being below the one-to-line line. The negative ER estimates from the Total method are included in Figure 3-1.

Figure 3-2 compares distributions of brood year estimates of total unmarked ER, by hatchery, for the three unmarked ER estimation methods. Note that:

- The central 50% interquartile range is almost always wider for the Total method than the two PR methods indicating the Total method estimates are less precise (see Table 3-4); this is especially true for the British Columbia and Columbia River regions.
- Negative ER estimates from the Total method for the unmarked component of a DIT group are also much more common for the British Columbia and Columbia River regions compared to the other two regions.
- For hatcheries in the Puget Sound and Washington Coast regions, the central 50\% interquartile ranges of ER estimates for the unmarked group are generally similar for all three methods but the estimates using the Total method are consistently higher than the estimates from the PR methods.

The average difference between the estimates of unmarked ER from the two PR methods was largest for hatcheries in the Columbia River region (Table 3-3) but the difference was small (\approx -0.01). Across all regions, the average difference between the PR estimates of unmarked ER was only -0.004 . PR estimates of unmarked ER using $\lambda^{E s c}$ tended to be slightly higher, on
average, than estimates using $\lambda^{\text {Rel }}$. The percent standard errors (PSE) of the ER estimates for the PR methods were consistently less that for the Total method. Across all hatcheries and brood years, the average PSE for the Total method was more than twice that of the average PSE for the PR methods (Table 3-4).

Figure 3-1. Comparison of DIT-group based estimates of unmarked exploitation rates (ER) from the Total method to the two Paired-Ratio (PR) methods (top panel PR using λ at release, bottom panel PR using λ at escapement). One-to-one line shown for reference.

Figure 3-2. Box-and-whiskers plot comparing estimates of total unmarked ER using three methods: Total method Paired-Ratio method (PR) using λ at release, and PR using λ at escapement, by hatchery.

Table 3-3. Average difference between the estimates of $\widehat{E R}_{u}^{P R}$ calculated by the two PR methods (PR $\lambda^{\text {Rel }}-\mathrm{PR} \lambda^{E s c}$) for the unmarked component of a DIT group across brood years, by region.

Region	Mean	Median	Minimum	Maximum
British Columbia	-0.007	-0.003	-0.034	0.001
Puget Sound	-0.001	0.000	-0.054	0.031
Washington Coast	0.001	-0.001	-0.013	0.095
Columbia River	-0.012	-0.011	-0.071	0.007
All	-0.004	-0.001	-0.071	0.095

Table 3-4. Average percent standard error estimates (PSE) for the three methods of estimating unmarked ER , by region. $\mathrm{PSE}=($ standard error of estimate/estimate $)$ $\mathrm{x} 100 \%$.

Region	Total $^{\text {A }}$	PR $\boldsymbol{\lambda}^{\text {Rel }}$	PR $\lambda^{\text {Esc }}$
British Columbia	110.8%	30.7%	30.7%
Puget Sound	17.2%	12.6%	12.7%
Washington Coast	36.4%	10.6%	10.7%
Columbia River	41.2%	17.4%	16.4%
All	37.0%	15.6%	15.5%

${ }^{\text {A }}$ Only valid ER estimates (ER estimates >0) were used for this calculation.

Examination of the results of comparing the return rates of the marked and unmarked fish in the DIT groups as described in Section 2.3 will indicate whether it is appropriate to estimate unmarked mortalities using the Total method. When the marked component of a DIT group has a significantly higher return rate to the escapement than the associated unmarked component, which is inconsistent with expectations if there are MSF impacts, the Total method should not be used. Figure 3-3 compares λR and exploitation rate estimates for the marked component of DIT groups where the ER estimate using the Total method was negative to DIT groups where the Total method ER was positive. The negative ER estimates from the Total method are usually associated with high values of λR and relatively low estimates of ER for the associated marked group, indicating a high level of uncertainty in expanded recovery estimates owing to sampling error, as discussed in Section 3.1.

3.4 Summary

The Total method supplied a valid (non-negative) estimate of unmarked ER in 88% of the 286 DIT groups examined (across all brood years and hatcheries). Excluding invalid data pairs (i.e., pairs where the Total method ER estimate was negative), the Total method estimates of unmarked ER were higher than the estimates from the PR method using $\lambda^{\text {Rel }}$ by about 0.06 on average (Table 3-5). The brood year differences between the estimates from the two methods ranged from -0.20 to +0.55 . The differences for the Columbia River region were, on average, larger than the differences for the other three regions. The estimates of unmarked ER from the Total method were also considerably less precise than the estimates from the two PR methods.

Figure 3-3. Scatter plot showing λR and exploitation rate (ER) estimates for the marked component of a DIT group and whether the estimated ER for the associated unmarked DIT group using the Total method was negative or not.

Table 3-5. Average difference between the Total method and PR $\lambda^{\text {Rel }}$ method (Total method - PR $\lambda^{\text {Rel }}$) for estimates of the exploitation rate for the unmarked component of a DIT group, by region. This analysis excludes data pairs with a negative Total ER estimate.

Region	Mean	Median	Minimum	Maximum
British Columbia	0.061	0.068	-0.071	0.235
Puget Sound	0.052	0.040	-0.196	0.547
Washington Coast	0.062	0.035	-0.128	0.461
Columbia River	0.081	0.063	-0.063	0.306
All	0.061	0.043	-0.196	0.547

4 Can We Estimate Unmarked Mortalities with a Single Index Tag Program?

If there is not a double index tag group, estimates of mortalities, and exploitation rate, for unmarked Coho need to be made using recoveries from a marked and tagged group assumed to be representative of the unmarked fish, i.e., from a single index tag (SIT) program. Under the assumption that legal-size marked Coho are not voluntarily released, the number of marked mortalities for a SIT group in pre-terminal fisheries (M_{P}) can be estimated for MSFs and NSFs as the sum,

$$
\begin{equation*}
\widehat{M}_{P}=\sum_{P} \widehat{M}^{M S F}+\sum_{P} \widehat{M}^{N S F} . \tag{21}
\end{equation*}
$$

The expected mortalities for the unmarked fish represented by the marked and tagged group in pre-terminal fisheries $\left(U_{P}\right)$ can be estimated as,

$$
\begin{equation*}
\widehat{U}_{P}=\sum_{P} \widehat{M}_{i}^{M S F} \lambda_{i} s f m_{i}+\sum_{P} \widehat{M}_{i}^{N S F} \lambda_{i} \tag{22}
\end{equation*}
$$

where $\lambda_{i}=$ the unmarked-to-marked ratio for the natural stock and the SIT group representing it in fishery i, (assumed to be 1.0), and

$$
s f m_{i}=\text { the release mortality rate for unmarked fish released in MSF } i
$$

Using a value of 1.0 for the unmarked-to-marked ratio $\left(\lambda_{i}\right)$ at recruitment to pre-terminal fisheries assumes equal cohort sizes ($N=N_{m}=N_{u}$) for marked and unmarked fish. A new ratio after the pre-terminal fisheries for fish entering the terminal fishery area $\left(\lambda^{T R}\right)$ can be calculated as,

$$
\begin{equation*}
\hat{\lambda}^{T R}=\frac{N-\widehat{U}_{P}}{N-\widehat{M}_{P}} \tag{23}
\end{equation*}
$$

This estimate of the terminal run unmarked-to-marked ratio can then be used to calculate unmarked mortalities in terminal fisheries (either MSF or NSF) by,

$$
\widehat{U}_{T R}=\left[\begin{array}{lll}
\widehat{M}_{T R} \hat{\lambda}^{T R} & s f m_{T R} \tag{24}
\end{array}\right]
$$

where $s f m_{T R}$ is the release mortality in any terminal fishery, which would be set to 1.0 for a NSF.

The unmarked-to-marked ratio at escapement would be estimated by subtracting the terminal mortalities from the terminal run cohort size,

$$
\begin{equation*}
\hat{\lambda}^{E s c}=\frac{N-\widehat{U}_{P}-\sum_{i} \widehat{U}_{T R}}{N-\widehat{M}_{P}-\sum_{i} \widehat{M}_{T R}} \tag{25}
\end{equation*}
$$

λR would be equal to $\lambda^{E s c}$ since the $\lambda^{\text {Rel }}$ at release is assumed to equal 1.0. ERs are estimated for an unmarked group as the sum of the estimated unmarked mortalities over the cohort size, which with a $\lambda^{\text {Rel }}$ equal to 1.0 is the same as the associated marked cohort size. For preterminal NSFs, the ERs will be the same for the marked and unmarked groups, but for MSFs they will be different. In terminal fisheries with a new estimate of lambda ($\hat{\lambda}^{T R}$), the ERs will be different for both types of fisheries.

The assumptions for this method of estimating the ER for unmarked fish are:

- the marked exploitation rate for the SIT group is an unbiased estimate of the encounter rate for the unmarked fish represented by the SIT group; and,
- $\quad s f m_{i}$ is an unbiased estimate of the release mortality rate in fishery i.

4.1 Results: Estimates of Unmarked ER

Table 4-1 summarizes the average total unmarked ER estimated with DIT (Eq. 18 and 20, Section 3.2) ${ }^{1}$ and using the SIT-based method, the average of the differences between the DIT-based and SIT-based estimates (DIT - SIT), and the percent of brood years where the DIT-based ER estimate was larger than the SIT-based estimate for each hatchery across all brood years. Across all hatcheries and brood years, the estimate of the ER for unmarked fish in the cohort from the DIT-based method was larger than the SIT-based method in 75% of the comparisons. The Puget Sound region had the highest percentage of comparisons where the unmarked ER estimated using the DIT method was greater than the SIT-based method (84\%) followed by the Washington Coast region (76%).

The average difference between the ER estimates was greatest for the Puget Sound region (0.047). The average differences between the two methods for the other three regions ranged from 0.017 to 0.037 (Table 4-1). In two hatcheries the average difference across brood years was negative (i.e., the SIT-based ER average was > DIT-based ER average); those hatcheries were Bingham Creek in the WC region and Eagle Creek NFH in the CR region.

Figure 4-1 compares distributions of brood year estimates of total unmarked ER, by hatchery, for the PR $\lambda^{\text {Rel }}$ method and the SIT-based method. Based on the similarities of the ER distributions as compared in Figure 4-1 in terms of the locations of the average and median estimates and the spread of the central 50% interquartile, and the summary statistics reported in Table 4-1, the SIT-based estimates were fairly similar to the DIT-based estimates for these hatcheries:

- BC region - Quinsam River and Inch Creek;
- PS region - Lower Elwha, Wallace River, and George Adams;
- WC region - Solduc, Bingham Creek, and Forks Creek; and,
- CR region - Lewis River (South) and Eagle Creek NFH.

[^7]Table 4-1. Comparison of DIT-based (Eq. 20, Section 3.2) and SIT-based estimates of unmarked ER showing mean total ER, the mean of the differences between DITbased and SIT-based estimates (DIT - SIT), and the percent of brood years where the DIT-based ER estimate was larger than the SIT-based estimate. Regional totals are averages over all brood years for each hatchery in the region. The DIT-based estimate reported is the PR method using λ at release.

Region	Hatchery	Mean Total ER		Mean of ER Differences	$\begin{array}{\|c} \hline \text { Percent Broods } \\ \text { DIT }>\text { SIT } \end{array}$
		DIT	SIT		
British Columbia	Quinsam River	0.140	0.130	0.010	57.1\%
	Big Qualicum River	0.073	0.056	0.017	60.0\%
	Chilliwack River	0.071	0.044	0.027	80.0\%
	Inch Creek	0.086	0.077	0.009	78.6\%
	Robertson Creek	0.098	0.047	0.051	80.0\%
British Columbia Total		0.102	0.084	0.017	69.8\%
Puget Sound	Lower Elwha	0.237	0.211	0.025	42.9\%
	Kendall Creek	0.697	0.602	0.095	100.0\%
	Marblemount	0.354	0.307	0.048	92.9\%
	Wallace River	0.141	0.128	0.013	78.6\%
	Soos Creek	0.495	0.422	0.073	100.0\%
	Voights Creek	0.519	0.462	0.057	100.0\%
	George Adams	0.275	0.246	0.028	78.6\%
	Quilcene NFH	0.494	0.441	0.053	85.7\%
Puget Sound Total		0.390	0.343	0.047	84.3\%
Washington Coast	Makah NFH	0.143	0.107	0.036	92.3\%
	Quinault NFH	0.554	0.520	0.034	85.7\%
	Salmon River FC	0.717	0.586	0.131	92.3\%
	Solduc	0.288	0.265	0.022	71.4\%
	Bingham Creek	0.183	0.197	-0.014	35.7\%
	Forks Creek	0.385	0.369	0.016	78.6\%
Washington Coast Total		0.377	0.341	0.037	75.6\%
Columbia River	Lewis River - North	0.250	0.186	0.064	92.9\%
	Lewis River - South	0.082	0.075	0.006	57.1\%
	Eagle Creek NFH	0.078	0.081	-0.003	35.7\%
	Sandy River	0.158	0.133	0.025	54.5\%
Columbia River Total		0.141	0.118	0.023	60.4\%

Figure 4-1. Box-and-whiskers plot comparing estimates of total unmarked ER from the Paired-Ratio method (PR) using λ at release to estimates from the SIT-based method, by hatchery.

4.2 Summary

Several assumptions are involved in using a SIT program to estimate the mortalities and ER for an unmarked surrogate stock, including: (1) legal-size marked fish are not voluntarily released; (2) cohort sizes of marked and unmarked fish recruited to pre-terminal fisheries are approximately equal, i.e., $\lambda_{i}=1$; (3) ERs in pre-terminal NSFs are the same for marked and unmarked fish; (4) the marked ER is an unbiased estimate of the encounter rate for unmarked fish in MSFs; (5) the $s f m_{i}$ is an unbiased estimate of the release mortality rate; and, (6) $\hat{\lambda}^{T R}$ is an unbiased estimate of the unmarked-to-marked ratio for the stock and the SIT group representing it.

In this analysis, the SIT-based ER estimates for the unmarked fish were less than the DITbased estimates using the PR $\lambda^{\text {Rel }}$ method 75% of the time. Average differences across hatcheries ranged from -0.014 to 0.131 and differences varied by region. Figure 4-2 compares estimates of unmarked ERs from the two methods by region. Estimates of unmarked ER from the PR method and the SIT-based method are highly correlated with each other $(r=0.956$, $P<0.001$). However, the unmarked ER estimate from the SIT-based method is more likely to be less than the PR-based estimate as the SIT-based ER increases. This was especially evident when estimates of unmarked ER from the SIT method were ≥ 0.40. When the SITbased estimate of unmarked ER was $\geq 0.40,93 \%$ of the comparisons (66 out of 71) had a DIT-based estimate greater than the SIT-based estimate and the DIT-based estimate was, on
average, +0.062 greater than the SIT-based estimate. For comparison, when the SIT-based estimate of ER was < $0.40,69 \%$ of the comparisons had a DIT-based estimate of unmarked ER greater than the SIT-based estimate and the DIT-based estimate was, on average, +0.026 greater than the SIT-based estimate.

Figure 4-2. Scatter plot comparing exploitation rate (ER) estimates for the unmarked group from the Paired-Ratio (PR) method with λ at release to the SIT-based method. One-to-one line shown for reference.

As a cost-saving measure, the SIT-based method may be an adequate method of estimating unmarked ERs for some hatcheries if expected ERs are relatively low (e.g., <40\%) and if survival rates and tagging levels are conducive to producing precise SIT-based estimates, as demonstrated by the power analysis in Section 2.5.

5 Comparison of DIT-Based Estimates of ER to Post-Season COHO FRAM Estimates

The Pacific Salmon Treaty (PST) Southern Coho Agreement is based on constraints of the total exploitation rate allowed on naturally-spawning Management Units (MUs). The Coho Fishery Regulation Assessment Model (FRAM) has been developed as a bilateral tool to provide a consistent basis for preseason fishery planning and post-season evaluation of exploitation rates on MUs resulting from various fishery regulations (PFMC 2008). Coho FRAM stock components must be aggregated into MUs. Coho FRAM contains a complex set of hatchery and natural, marked and unmarked stock components, and fishery-temporal strata. Coho FRAM also includes estimates of drop-off mortalities, release mortalities in markselective fisheries, and catch-non-retention mortalities (CNR) for fisheries where Coho may be caught but not retained (e.g., Chinook-only sport fisheries).

Coho FRAM is used for both preseason and post-season modeling. For preseason planning purposes, the model is used to project exploitation rates that will result from planned fishery regulations on forecasts of abundance. For post-season modeling, a post-season utility (Postseason Coho FRAM) reconstructs initial cohort sizes using estimates of landed catch and escapements (note that escapement estimates are only available for a single Canadian MU, Interior Fraser). The initial cohort sizes produced by post-season Coho FRAM are then used by the PSC Coho Technical Committee (CoTC) to calculate exploitation rates for the marked and unmarked component of each stock.

FRAM-based post-season exploitation rates were compared to the results of the DIT analyses. The DIT Paired-Ratio estimator using the unmarked-to-marked ratio at release for the DIT groups ($\lambda^{\text {Rel }}$) was used for these comparisons. To incorporate drop-off mortalities, unmarked mortalities (U) were estimated using a modification to equation 18:
$\widehat{U}=\sum_{j}^{E T D} \widehat{U}_{j}\left(1+D O_{j}\right)+\sum_{k}^{V S} \widehat{M}_{k} \hat{\lambda}_{k}\left(1+D O_{k}\right)+\sum_{i} \hat{\lambda}_{i} \widehat{M}_{i}\left(s f m_{i}+D O_{i}\right)+\sum_{i} \widehat{U}_{i}\left(1-s f m_{i}\right)$
where all notation is as previously defined and $D O$ is the drop-off mortality rate associated with fishery i, j, or k. See Appendix 7 for a more complete description of the derivation of Eq. 26.

In order to correspond to the Post-season FRAM-based ER estimates, only age-3 data for the DIT groups were used in these analyses. Fishery mortalities from both non-selective and mark-selective fisheries were summarized for each stock and included retained catch and catch-related mortalities (non-retention and drop-off). Exploitation rates for each stock were calculated as the total fishery mortalities divided by the total fishery mortalities plus escapement.

Exploitation rates from post-season FRAM for marked and unmarked DIT groups (which are surrogates for FRAM stocks) were compared to DIT-based ER estimates in four ways:

1) The ratio of ER estimated using DIT over FRAM-based ER was calculated for both the marked and unmarked components of a DIT group. A ratio of 1.0 indicates that the two ERs are the same, when the ratio is > 1.0 the DIT-based ER estimate is larger, and when the ratio is <1.0 the FRAM-based ER is larger.
2) Differences between the two different methods of estimating ERs were examined for both the marked and unmarked components of each DIT group.
3) Scatter plots comparing DIT-based ER estimates to corresponding Post-season FRAM ERs were constructed for both the marked and unmarked groups.
4) Finally, for the same method of estimation (DIT-based or FRAM-based), the ratio of the unmarked ER to the marked ER for a stock and brood year was calculated. When this ratio is < 1.0 it represents a measure of the relative reduction in the ER on the unmarked component relative to the marked component. It is assumed this reduction is the result of MSFs reducing the landed harvest of the unmarked component of the DIT group.

Differences between post-season Coho FRAM and DIT-based estimates of ERs are expected due to FRAM's reliance on average stock-fishery-time period exploitation rates during a referenced base period (1986-1992), the uncertainty associated with CWT-based estimates of exploitation rates, and uncertainty associated with other FRAM model parameters such as natural mortality rates, unmarked retention error, and mark recognition error. DIT program hatcheries may only represent a sub-component of more aggregate FRAM stocks. Consequently, FRAM results for individual years do not reflect annual deviations of stock distribution or migration patterns from base-period averages. Also, post-season Coho FRAM applies a bias-correction procedure in its calculation of fishery mortalities to account for possible multiple encounters of released unmarked Coho in a MSF; the PR method assumes an unmarked fish is not encountered on multiple occasions in a MSF. This effect on ER estimates is expected to be small.

Post-season Coho FRAM model runs for the calendar fishing years 2001-2014 (brood years 1998-2011) were obtained from the PSC Coho Technical Committee in a MS Access database file. The post-season FRAM ERs used in this report were based on model runs distributed September 30, 2019 (personal communication: Andy Rankis, Suquamish Tribe Fisheries Department and Coho Technical Committee). Model run values were obtained from the mortality and escapement tables for each year based on year and unique stock identifier. Post-season Coho FRAM marked and unmarked ERs were available for all hatcheries except the Chilliwack River Hatchery in British Columbia. Appendix Table 8 shows the alignment of FRAM stocks with the hatchery DIT programs analyzed for this report. FRAM stocks in the Columbia River region represent larger hatchery aggregates and thus DIT results from the Eagle Creek NFH, Lewis River - South, and Sandy River Hatcheries are all compared to a single FRAM stock.

Total ERs were compared for the Puget Sound and Washington Coast regions. Post-season Coho FRAM runs for the hatcheries in the British Columbia and Columbia River regions do not include all terminal-area fisheries. In these two regions, few terminal fisheries are modeled in post-season FRAM and thus excluded from this analysis. Terminal fisheries excluded were the Buoy 10 sport fishery in the Columbia River region and the Lower Fraser River Terminal and Upper Fraser River Terminal fisheries in the British Columbia region. Therefore, for these two regions the ER comparisons are of pre-terminal ERs.

5.1 Results

The distributions of the ratios of ER estimated for the marked and unmarked components of the DIT groups (calculated as DIT-based ER over FRAM-based ER) are shown in Figure 5-1, by hatchery.

For the marked DIT group components (Figure 5-1, upper plot):

- Hatcheries in the British Columbia region have the widest distribution of ratios ranging above 1.0 with the exception of Inch Creek.
- For the Puget Sound and Washington Coast regions, the distributions are relatively narrow for all hatcheries and the distributions for most hatcheries have a median near 1.0. The exceptions are the Voights Creek, George Adams, and Quilcene NFH hatcheries in Puget Sound and the Makah, Solduc, and Bingham Creek hatcheries in the Washington Coast region; with the exception of Voights Creek, the majority of the ratios for these hatcheries are < 1.0.
- In the Columbia River region, the Lewis River South and Eagle Creek NFH stocks are centered near 1.0. The majority of the ratios for DIT groups representing Lewis River North and Sandy River are > 1.0.

For the unmarked DIT group components (Figure 5-1, lower plot):

- In general, the distributions of ratios for the unmarked DIT groups are very similar to that of the marked DIT groups.
- Except for the Inch Creek and Lewis River North DIT groups, the central 50% interquartiles for the DIT groups in the British Columbia and Columbia River regions were relatively wide and wider than those seen for the marked group.

The average marked ER across brood years is shown in Table 5-1 for both methods of estimation, as well as the average difference between the two methods, and the percentage of broods where the DIT-based ER was larger than the FRAM-based ER. For marked ERs, the DIT-based ER estimate was greater than the FRAM-based ER estimate for 50% of the comparisons across all hatcheries and brood years (Appendix Table 9). There is no indication of consistent differences (relative bias) in either direction between the two methods of estimation except at the highest levels of exploitation (>0.80) where the DIT-based estimate of ER is usually greater than the FRAM-based estimate (Figure 5-2, upper plot). For nine of the 22 hatcheries examined, the average FRAM-based estimate of marked ER was greater than the average DIT-based estimate. There were eight hatcheries where the average difference in marked ER estimates was $> \pm 0.10$; all other average differences were within ± 0.10. The largest positive average difference (DIT ER > FRAM ER) in marked ERs was +0.16 for the Sandy River Hatchery; the largest negative average difference (DIT ER < FRAM ER) was -0.275 for the George Adams Hatchery.

Figure 5-1. Distribution of the ratio of exploitation rates (ER) estimated using DIT over FRAM-based ER estimates for the marked group (upper plot) and unmarked group (lower plot), by hatchery. For the unmarked groups, extreme outlier ratios for Lower Elwha (20.0), Marblemount (14.4), Voights Creek (13.6), and Quilcene NFH (14.4) are not shown for scaling purposes; all these extreme outliers were associated with the 2001 brood year.

Table 5-1. Comparison of mean exploitation rates (ER) for marked and unmarked groups (catch years 2001-2014) from DIT-based analysis and FRAM-based ER. The mean of the differences between DIT-based estimates and FRAM-based ERs and the percent of brood years where the DIT-based ER estimate was larger than the FRAM-based ER are shown, also. Regional totals are averages over all brood years for each hatchery and over all broods for each region. The DITbased estimate reported is the PR method using λ at release.

Region	Hatchery	Marked DIT Component ER Estimates				Unmarked DIT Component ER Estimates			
		Mean ER		Mean Difference	$\begin{gathered} \% \\ \text { DIT }>\text { Froods } \\ \text { DRAM } \end{gathered}$	Mean ER		Mean Difference	$\begin{gathered} \text { \% Broods } \\ \text { DIT > FRAM } \end{gathered}$
		DIT	FRAM			DIT	FRAM		
British Columbia (Pre-terminal ER)	Quinsam River	0.213	0.227	-0.013	57.1\%	0.167	0.139	0.028	57.1\%
	Big Qualicum River	0.155	0.090	0.065	80.0\%	0.084	0.056	0.028	60.0\%
	Chilliwack River								
	Inch Creek	0.178	0.214	-0.035	35.7\%	0.090	0.133	-0.042	21.4\%
	Robertson Creek	0.244	0.200	0.044	40.0\%	0.107	0.084	0.023	40.0\%
British Columbia Total		0.197	0.201	-0.004	50.0\%	0.120	0.119	0.001	42.1\%
Puget Sound (Terminal ER)	Lower Elwha	0.439	0.389	0.049	64.3\%	0.311	0.315	-0.003	50.0\%
	Kendall Creek	0.755	0.633	0.122	70.0\%	0.705	0.576	0.130	70.0\%
	Marblemount	0.437	0.373	0.064	50.0\%	0.366	0.298	0.067	57.1\%
	Wallace River	0.236	0.229	0.007	50.0\%	0.150	0.171	-0.021	21.4\%
	Soos Creek	0.530	0.582	-0.052	35.7\%	0.505	0.515	-0.010	42.9\%
	Voights Creek	0.582	0.465	0.117	64.3\%	0.532	0.406	0.126	57.1\%
	George Adams	0.361	0.636	-0.275	7.1\%	0.296	0.565	-0.269	14.3\%
	Quilcene NFH	0.582	0.701	-0.119	28.6\%	0.523	0.629	-0.106	28.6\%
Puget Sound Total		0.480	0.496	-0.016	45.4\%	0.413	0.429	-0.016	41.7\%
Washington Coast (Terminal ER)	Makah NFH	0.283	0.476	-0.193	30.8\%	0.178	0.394	-0.217	25.0\%
	Quinault NFH	0.648	0.566	0.083	92.9\%	0.586	0.544	0.042	78.6\%
	Salmon River FC	0.738	0.702	0.035	66.7\%	0.747	0.666	0.082	66.7\%
	Solduc	0.415	0.605	-0.189	7.1\%	0.321	0.594	-0.272	7.1\%
	Bingham Creek	0.266	0.353	-0.086	14.3\%	0.205	0.316	-0.111	14.3\%
	Forks Creek	0.521	0.466	0.054	64.3\%	0.410	0.437	-0.027	35.7\%
Washington Coast Total		0.475	0.524	-0.050	45.7\%	0.405	0.490	-0.085	37.5\%
Columbia River (Pre-terminal ER)	Lewis River - North	0.369	0.251	0.118	100.0\%	0.110	0.090	0.020	50.0\%
	Lewis River - South	0.200	0.182	0.018	42.9\%	0.088	0.067	0.021	50.0\%
	Eagle Creek NFH	0.181	0.182	-0.001	42.9\%	0.078	0.067	0.011	28.6\%
	Sandy River	0.337	0.179	0.158	90.9\%	0.126	0.059	0.067	63.6\%
Columbia River Total		0.268	0.200	0.068	67.9\%	0.099	0.071	0.028	47.2\%

For unmarked ERs, the DIT-based ER estimate was greater than the FRAM-based ER estimate for 42% of the comparisons across all hatcheries and brood years (Appendix Table 9). Similar to the marked groups, there is no indication of consistent differences in either direction between the two methods of estimation except at the highest levels of exploitation (>0.70) where the DIT-based estimate of ER is usually greater than the FRAMbased estimate (Figure 5-2, lower plot). For 10 of the 22 hatcheries examined, the average FRAM-based estimate of unmarked ER was greater than the average DIT-based estimate. There were seven hatcheries where the average difference in marked ER estimates was > ± 0.10, all other average differences were within ± 0.10. The largest positive average difference (DIT ER > FRAM ER) in unmarked ERs was +0.130 for the Kendall Creek Hatchery and the largest negative average difference (DIT ER < FRAM ER) was -0.272 for the Solduc Hatchery.

Figure 5-2. Scatter plot comparing exploitation rate (ER) estimates for the marked and unmarked groups from the Paired-Ratio (PR) with λ at release to the post-season FRAM estimates. One-to-one line shown for reference.

Figure 5-3 compares the distributions of U/M ER ratios for the two methods, by hatchery. For most hatcheries, the box plot means and medians of the ratios are relatively similar for the two methods of estimation. The ratios from the DIT-based method often are more variable compared to the FRAM-based ratios (e.g., in the WC and CR regions). The DIT-based estimates indicate a greater effect of MSFs (greater reduction in unmarked ER relative to marked ER) compared to the FRAM-based estimates for the Inch Creek, Wallace River, George Adams, Makah NFH, Solduc, Bingham Creek, Forks Creek, and Lewis River North DIT groups.

Figure 5-3. Box-and-whiskers plot comparing the ratios of unmarked-to-marked exploitation rates (ER) for the Paired-Ratio method using λ at release and from post-season FRAM, by hatchery.

5.2 Summary

The ER estimates from the DIT group analyses and the post-season FRAM are not as highly correlated as other ER comparisons reported earlier ($r>0.85$); for the marked component of the DIT groups $r=0.65(P<0.001)$ and for the unmarked component of the groups $r=0.69$ ($P<0.001$). Overall, about 30% of the ER differences between these two methods were within ± 0.05 for both the marked and unmarked DIT group components. In comparison, 50% of the differences between ERs were $\geq \pm 0.10$ for the marked component of the DIT groups and 44% for the unmarked component of the DIT groups.

Figure 5-4 shows the differences between the two ER estimates (DIT-based - post-season FRAM), by brood year, for each hatchery separately for the marked and unmarked components of each DIT group. It also shows the average differences reported in Table 5-1 relative to these brood-year differences. This figure illustrates that:

- While the average difference across brood years might be relatively small (<0.05) for some hatcheries, the differences between the estimates can be large (e.g., Quinsam River, Lower Elwha, and Soos Creek for both the marked and unmarked DIT group components).
- Consistent differences are evident for some groups. For example, the FRAM ER is consistently greater than the DIT-based estimate for both the marked and unmarked DIT group components from the George Adams, Makah NFH, Solduc, and Bingham Creek hatcheries. The FRAM ER is consistently less than the DIT-based estimate for both the marked and unmarked DIT group components from Kendall Creek and Quinault NFH and for the marked group DIT group component for Lewis River North and Sandy River hatcheries.
- There is generally good agreement between the DIT-based and FRAM-based estimates of ER for the marked DIT group from Wallace River and the unmarked component of the Big Qualicum River and Lewis River North DIT groups.

In general, average DIT-based and FRAM based U/M ER ratios were similar for DIT groups from British Columbia and Puget Sound hatcheries (Table 5-2). The DIT-based method estimated a much greater average reduction in unmarked ER relative to marked ER (assumed to be due to MSFs) for DIT groups from Washington Coast hatcheries. Conversely, the FRAM-based method estimated a greater reduction in unmarked ER relative to marked ER for DIT groups from Columbia River hatcheries.

Table 5-2. Mean unmarked-to-marked ER ratio for all DIT groups in a region for the DITbased and FRAM-based methods.

Region	DIT-Based U/M ER	FRAM-Based U/M ER
British Columbia	0.585	0.607
Puget Sound	0.843	0.814
Washington Coast	0.790	0.931
Columbia River	0.453	0.360
All	0.719	0.733

Figure 5-4. Plot showing exploitation rate (ER) differences between the Paired-Ratio with λ at release and the post-season FRAM estimates for the marked and unmarked DIT groups, for all brood years by hatchery. Mean difference indicated by $\boldsymbol{\Delta}$.

6 Evaluation of DIT Programs by Region and Hatchery

The precision of estimates of marked and unmarked ERs based on CWTs depends upon the number of tags recovered in fisheries and the escapement. The number of tags recovered from any DIT group is a function of:

- the number of marked and unmarked tagged fish released;
- the number of released fish surviving and entering fisheries;
- the intensity (size) of the intercepting fisheries;
- the catch sampling rate in those fisheries;
- the eventual return rate to the escapement; and,
- the sampling rate of fish in the escapement.

All these factors influence the number of CWTs recovered and the precision of the ER estimates.

The accuracy of the ER estimates depends upon how well the assumptions necessary for the estimates are met. Foremost of these assumptions is random sampling of the catch and escapement so that every fish (whether marked or unmarked) has an equal probability of being sampled and a CWT being detected, if present. This key assumption is violated by visual sampling, either in a fishery or the escapement; only ETD sampling assures an equal probability of CWT detection in both the marked and unmarked DIT-group components. It is also assumed that the size of the catch being sampled is accurately estimated so that catch sample expansion factors are accurate and unbiased. Finally, visually-sampled NSFs and mixed-regulation fisheries are another source of uncertainty and potential bias for the ER estimates because unmarked recoveries in these fisheries are estimated using methods similar to those used to estimate release mortalities in MSFs.

In this section, data summaries and analyses are presented to assess the DIT groups from each hatchery in a region relative to the factors and assumptions discussed above. Specifically, summaries and figures are presented examining:

1) The number of fish released in the marked and unmarked components of the DIT groups from each hatchery across the brood years analyzed.
2) The sampling rate ${ }^{1}$ of fish from a DIT group returning to the escapement (hatchery and spawning grounds where applicable).
3) The proportion of the fish that were directly sampled from the escapement and were screened using ETD to recover CWTs.
4) The estimated return rates to the escapement of the marked and unmarked components of the DIT groups from each hatchery.
5) A comparison of the estimated return rates (RR) to the hatchery of the marked and unmarked components of the DIT groups including an assessment of whether the difference in return rates between the two mark-status groups was consistently in the

[^8]direction expected (unmarked $R R>$ marked $R R$) and whether the differences were statistically significant.
6) The number of estimated CWT recoveries from the marked and unmarked components of the DIT groups from each hatchery in fisheries and the escapement.
7) The distribution of CWT recoveries from the marked component of DIT groups in MSFs, NSFs, mixed-regulation fisheries, and escapement.
8) The type of sampling in the major fisheries impacting DIT groups from a hatchery: electronic sampling (all coded wire tagged fish in a sample have an equal chance of being recovered whether marked or unmarked) or visual sampling (the adipose fin clip is used to subset catch to sample for detection of coded wire tagged fish and thus only marked fish are typically sampled).
9) An assessment of the impact of mark-selective fisheries on the marked and unmarked groups, i.e., measurable and statistically significant differences between the exploitation rate estimates for the marked and unmarked components of a DIT group and were those differences consistently in the direction expected (marked ER > unmarked ER). Non-overlapping 95\% confidence intervals for the estimated exploitation rates of the marked and unmarked components of a DIT group were used as a proxy for a test of significance. Non-overlapping 95\% CIs indicate a significant difference between the estimates with $P<0.05$. This is a conservative approach to assessing significant differences in ERs.
10) A temporal examination of the ER data for each hatchery's DIT groups for noticeable trends.

The appendices provide detailed results and estimates by hatchery and brood year. Appendix Table 1 summarizes the number of marked and unmarked fish released in each hatchery's DIT groups, by brood year. Appendix Table 2 presents age composition information for the marked and unmarked components of each hatchery's DIT groups, by brood year, based on CWT recoveries. For the marked group, Appendix Table 3 summarizes the percentage of fishery recoveries by fishery regulation (MSF, NSF, or mixed), percentage of all recoveries in the escapement, and the total number of CWT recoveries by brood year. Appendix Table 4 presents results of the hypothesis tests of no difference in return rates between the marked and unmarked components of the DIT groups. Appendix Table 6 provides ER estimates for the marked component of each DIT group and ER estimates for the unmarked component of each DIT group for each of the three estimation methods examined (Total, PR $\lambda^{\text {Rel }}$, and PR $\lambda^{E s c}$). Figures in Appendix 10 compare estimated total exploitation rates for the marked and unmarked components of the DIT groups (including 95\% confidence intervals) for each hatchery, by brood year.

6.1 British Columbia (BC) Region

There have been releases of Coho salmon DIT groups from two hatcheries for brood years 1998-2011 and three hatcheries for brood years 1998-2002 only (Table 6-1). Coded-wire-tag recoveries in fisheries were queried in November, 2019, from the Regional Mark Information System (RMIS, 2019) for these DIT groups. Data for DIT groups from BC hatcheries recovered during sampling in BC fisheries were supplied by CDFO with corrections to the
"adclip selective_fishery" data field in RMIS (which indicates the regulation type in the fishery). However, escapement recoveries have not been reported to RMIS since brood year 2001 and were provided by Cheryl Lynch (personal communication, Sept 2018: CDFO).

Table 6-1. Hatcheries in the British Columbia region with Coho salmon DIT groups analyzed for this report, brood years 1998-2011.

Hatchery	Brood Year													
	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
Quinsam River	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Big Qualicum River	X	X	X	X	X									
Chilliwack River	X	X	X	X	X									
Inch Creek	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Robertson Creek	X	X	X	X	X									

The numbers of Coho salmon released in the marked and unmarked components of the DIT groups from BC hatcheries were remarkably consistent across hatcheries and brood years. On average, about 40,000 fish were released in the marked and the unmarked components of DIT groups from BC hatcheries in most brood years (Table 6-2). Across all hatcheries and brood years, the minimum number released in a DIT group component was about 32,000 fish and the maximum about 50,000 fish. The consistency of the number of fish released is reflected by the coefficients of variation ${ }^{2}(\mathrm{CV})$ for the average numbers released which were $<11 \%$ for all hatcheries.

Table 6-2. Summary statistics for the number of Coho salmon with CWTs released in the marked and unmarked components of British Columbia DIT groups, by hatchery (averaged across brood years).

Hatchery	Mark Status	Mean	Minimum	Maximum	$\mathbf{C V}^{\mathbf{a}}$
Quinsam River	Marked	42,604	37,150	44,600	5.3%
	Unmarked	43,600	37,236	48,864	5.8%
Big Qualicum River	Marked	40,983	38,940	42,566	3.4%
	Unmarked	40,575	37,275	42,471	5.0%
Chilliwack River	Marked	37,916	35,162	42,795	8.0%
	Unmarked	37,186	31,851	42,643	10.8%
Inch Creek	Marked	41,802	39,035	50,004	9.6%
	Unmarked	41,788	39,161	50,024	9.3%
Robertson Creek	Marked	40,143	39,878	40,317	0.4%
	Unmarked	40,233	39,468	40,834	1.3%

${ }^{\mathrm{a}} \mathrm{CV}=$ coefficient of variation.

[^9]Because BC hatcheries inspect all of the return for CWTs, no expansion is required to account for sampling (Table 6-3). This eliminates one source of variation from the return rate estimates and the estimates of marked and unmarked ERs. ETD was used for all Coho salmon sampled in the escapements to BC hatcheries; there was no visual sampling of the returning fish in these escapements (Table 6-3), removing any potential bias associated with visual sampling of the unmarked component of the returning DIT groups.

Note that a small proportion of hatchery origin fish spawned in the Chilliwack, Robertson, Quinsam and Qualicum Rivers, and were unsampled. For that small proportion of hatcheryorigin fish that spawned in the rivers, the clipped and unclipped proportions are expected to be the same as for those that swam into the hatcheries.

Table 6-3. Summary statistics for the percent of the escapement directly sampled (\% Sampled) and the proportion of the sampled fish that were sampled electronically (Prop ETD) for British Columbia DIT groups, by hatchery (averaged across brood years).

Hatchery	Mark Status	Mean	Minimum	Maximum	CV
	\% Sampled	100.0%	100.0%	100.0%	0.0%
	Prop ETD	1.000	1.000	1.000	0.0%
Big Qualicum River	\% Sampled	100.0%	100.0%	100.0%	0.0%
	Prop ETD	1.000	1.000	1.000	0.0%
Chilliwack River	\% Sampled	100.0%	100.0%	100.0%	0.0%
	Prop ETD	1.000	1.000	1.000	0.0%
Inch Creek	\% Sampled	100.0%	100.0%	100.0%	0.0%
	Prop ETD	1.000	1.000	1.000	0.0%
Robertson Creek	\% Sampled	100.0%	100.0%	100.0%	0.0%
	Prop ETD	1.000	1.000	1.000	0.0%

Average return rates to the escapement for the marked and unmarked components of BC DIT groups varied by hatchery (Table 6-4). The expectation is that if MSFs are having a measurable impact on the unmarked component of a DIT group (i.e., reduction in the number of fishery-related mortalities), then the return rate to the hatchery will be higher for the unmarked component. Average return rates of the unmarked component were higher than the marked component for the DIT groups from all BC hatcheries. Average return rates to the Quinsam River and Big Qualicum River hatcheries were the lowest for both mark-status groups. Return rates to Robertson Creek Hatchery were relatively high and were between 3 and 9% for the five brood years analyzed. Minimum return rates for all other BC hatcheries were $<1 \%$. The return rates for DIT groups from Big Qualicum Hatchery were the most variable while the return rates for DIT groups from Robertson Creek Hatchery were the most consistent relative to the other hatcheries.

Table 6-4. Summary statistics for the return rates of Coho salmon in the marked and unmarked components of British Columbia DIT groups, by hatchery (averaged across brood years).

Hatchery	Mark Status	Mean	Minimum	Maximum	CV
	Marked	1.20%	0.25%	2.03%	42.8%
	Unmarked	1.32%	0.29%	2.03%	39.1%
Big Qualicum River	Marked	1.27%	0.10%	2.26%	75.3%
	Unmarked	1.58%	0.13%	2.96%	69.4%
Chilliwack River	Marked	2.02%	0.48%	3.35%	56.4%
	Unmarked	2.55%	0.49%	4.29%	60.5%
Inch Creek	Marked	1.84%	0.61%	4.42%	61.7%
	Unmarked	2.12%	0.71%	5.31%	64.3%
Robertson Creek	Marked	5.60%	3.47%	8.06%	37.2%
	Unmarked	6.25%	3.37%	8.60%	33.0%

The Z tests comparing the return rates of the marked and unmarked components of a DIT group to the escapement were significant and positive (a higher proportion of unmarked fish returned to the hatchery than marked fish) in 60% or more of the brood years for each hatchery, with the exception of DIT groups from Quinsam River Hatchery (Table 6-5). For all DIT groups examined from BC hatcheries, 56% of the 43 Z tests conducted were significant and all of the significant tests had λR ratios $\left(\frac{\lambda^{\text {Escapement }}}{\lambda^{\text {Release }}}\right)$ greater than 1.0.

Table 6-5. Percent of brood years where the Z test comparing return rates of marked and unmarked DIT groups to escapement is significant ($P \leq 0.05$) and positive (+YES), significant and negative (-YES), or not significant (NS), and number of brood years tested for British Columbia hatcheries and brood years 1998-2011.

Hatchery	NS	+YES	-YES	\# of Broods
Quinsam River	64%	36%	0%	14
Big Qualicum River	40%	60%	0%	5
Chilliwack River	20%	80%	0%	5
Inch Creek	36%	64%	0%	14
Robertson Creek	40%	60%	0%	5
Regional Total	$\mathbf{4 4 \%}$	$\mathbf{5 6 \%}$	$\mathbf{0 \%}$	$\mathbf{4 3}$

λR ratios with approximate 95% confidence intervals (CIs) are shown for each hatchery, by brood year, in Figure 6-1. A λR greater than one indicates a higher removal of the marked component of the DIT group compared to the unmarked component, which is assumed to be due to the impact of MSFs. Brood years with a significant $(P \leq 0.05) \mathrm{Z}$ test comparing the return rates to the escapement of the marked and unmarked components of a DIT group are
indicated with an *. For the two hatcheries with an extended series (>5) of brood year releases, only the Inch Creek DIT groups show relatively consistent λR ratios indicating measurable impact by MSFs across the range of brood years examined. The effect of the higher return rates for DIT groups from Robertson Creek Hatchery, resulting in higher numbers of CWTs recovered from fisheries and the escapement (Table 6-6), is reflected in the much narrower 95\% CIs for the corresponding λR ratios.

Table 6-6. Average number of estimated CWT recoveries and general recovery location for the marked and unmarked components of British Columbia hatchery DIT groups (averaged across brood years).

Hatchery	Mark Status	Fishery Location		Total Fishery		Escapement	Average Annual Total Recoveries
		PreTerminal	Terminal	\#	$\%$		
Quinsam River	Marked	113.1	33.8	146.9	21.7\%	509.3	656.2
	Unmarked	6.0	11.4	17.4	3.5\%	565.2	582.7
Big Qualicum River	Marked	81.0	32.1	113.1	17.9\%	520.4	633.6
	Unmarked	3.7	21.5	25.3	4.8\%	651.5	676.7
Chilliwack River	Marked	95.2	76.6	171.8	18.1\%	778.5	950.3
	Unmarked	11.4	14.4	25.7	4.8\%	987.6	1,013.3
Inch Creek	Marked	169.4	138.4	307.9	23.1\%	787.5	1,095.4
	Unmarked	30.5	20.6	51.2	5.2\%	906.6	957.7
Robertson Creek	Marked	846.1	52.5	898.6	25.8\%	2,248.1	3,146.7
	Unmarked	200.5	24.5	225.0	6.2\%	2,516.8	2,741.8

The average (across brood years) total number of estimated CWT recoveries for each mark status ranged from about 500-700 for the Quinsam River and Big Qualicum River hatcheries to more than 2,700 for the Robertson Creek Hatchery (Table 6-6). The average percent of total (fishery plus escapement) estimated recoveries that occurred in fisheries ranged from 18% to 26% for marked fish and 3% to 6% for unmarked fish. The majority of the fishery recoveries for the marked component of the DIT groups was in pre-terminal fisheries for each of the hatcheries.

Figure 6-1. $\quad \lambda R$ ratios with approximate 95% confidence intervals for DIT groups released by British Columbia hatcheries for brood years 1998-2011. Brood years with a significant $(P \leq 0.05) \mathrm{Z}$ test comparing the return rates to the escapement of the marked and unmarked components of a DIT group are indicated with an *.

Figure 6-2 shows the average percentage ${ }^{3}$ of estimated CWT recoveries in fisheries (across brood years) by location (pre-terminal or terminal), gear type (sport, troll, or net), and fishery type (NSF, MSF, or Mixed) for the marked and unmarked components of each hatchery's DIT groups. Three details to note in this figure are:

- There is a measurable percentage of the recoveries that occurred in "mixed" regulation, pre-terminal sport fisheries for the marked component of DIT groups from all BC hatcheries but the Chilliwack River Hatchery. This finding may introduce unknown bias and add to the uncertainty of estimates of unmarked ERs in these fisheries as some of the fish caught in the mixed-regulation category may actually be caught under partial NSF regulations. The majority of both marked and unmarked recoveries from Robertson Creek DIT groups occurred in mixed-regulation sport fishery strata.
- For the marked component of DIT groups, the majority of the CWT recoveries occurred in pre-terminal sport fisheries while most of the recoveries for the unmarked component occurred in terminal non-selective net fisheries (with the exception of DIT groups from Robertson Creek Hatchery).
- The potential impact of fisheries with visual sampling (i.e., no ETD) can be seen by comparing the percentage of the marked DIT group recoveries that occurred in NSF sport fisheries to the percentage of the corresponding unmarked DIT groups that occurred in these same fisheries. If a large percentage of the recoveries for the marked DIT group occurred in NSF sport fisheries but a relatively small percentage of the unmarked DIT group recoveries occurred in these same fisheries then this also may be a source of unknown bias and adds to the uncertainty of estimates of unmarked ERs in these fisheries (even though the methods estimated these impacts based on recoveries of the marked component of the DIT group in the same fishery). This issue is especially evident for DIT groups from the Quinsam River, Big Qualicum River, and Chilliwack River hatcheries.

Figure 6-2. Bar charts comparing average percentage, across brood years, of total estimated CWT recoveries in fisheries, by fishery type and location, for marked and unmarked DIT group releases from BC hatcheries.

[^10]

Figure 6-2. Bar charts comparing average percentage, across brood years, of total estimated CWT recoveries in fisheries, by fishery type and location, for marked and unmarked DIT group releases from BC hatcheries (continued).

Major fisheries impacting BC DIT groups were sampled both electronically and visually. For the marked component of the DIT groups, in total, 79% of the total estimated CWT recoveries from fisheries were from visually-sampled fisheries (Table 6-7) with visually-sampled (VS) BC sport fisheries accounting for 75% of the recoveries. Visual sampling was the dominant CWT detection method used in the major fisheries impacting BC DIT groups. This approach results in lower recoveries of CWTs from the unmarked component of DIT groups and potentially introduces bias. Also, approximately 30% of all marked DIT-group recoveries were in mixed-regulation, VS sport fisheries in BC, i.e., there was no information on whether a CWT was recovered in a MSF or NSF. This lack of information may also introduce unknown bias and add to the uncertainty of estimates of unmarked ERs in these fisheries ${ }^{4}$.

Table 6-7. Percentage of all estimated CWT recoveries of marked fish associated with DIT groups released from BC hatcheries (brood years 1998-2011) by detection method (electronic or visual) and fishery type (NSF, MSF, Mixed).

Region Fishery	Electronically Sampled			Visually Sampled			
	NSF	MSF	Total	NSF	MSF	Mixed	Total
Alaska							
Net	0.00\%	0.00\%	0.00\%	0.30\%	0.00\%	0.00\%	0.30\%
Sport	0.00\%	0.00\%	0.00\%	0.16\%	0.00\%	0.00\%	0.16\%
Troll	0.00\%	0.00\%	0.00\%	2.13\%	0.00\%	0.00\%	2.13\%
British Columbia							
Net	0.01\%	1.72\%	1.73\%	0.01\%	0.00\%	0.00\%	0.01\%
Sport	0.16\%	0.19\%	0.35\%	6.29\%	38.56\%	30.02\%	74.88\%
Troll	0.74\%	0.27\%	1.01\%	0.99\%	0.36\%	0.00\%	1.35\%
Puget Sound							
Net	3.14\%	0.00\%	3.14\%	0.00\%	0.00\%	0.00\%	0.00\%
Sport	0.57\%	5.42\%	5.99\%	0.00\%	0.00\%	0.00\%	0.00\%
Washington Coast							
Sport	0.11\%	5.02\%	5.13\%	0.00\%	0.00\%	0.00\%	0.00\%
Troll	3.37\%	0.00\%	3.37\%	0.00\%	0.00\%	0.00\%	0.00\%
Oregon Coast							
Sport	0.00\%	0.05\%	0.05\%	0.14\%	0.26\%	0.00\%	0.40\%
Troll	0.00\%	0.02\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%
Totals	8.09\%	12.69\%	20.78\%	10.02\%	39.18\%	30.02\%	79.22\%

[^11]A large percentage of DIT group recoveries from BC hatchery releases were taken in VS fisheries, including some VS NSFs. To estimate unmarked recoveries in NSFs with no ETD, recoveries for the associated marked component of the DIT group were multiplied by the unmarked-to-marked ratio at release (see Paired-Ratio method in Section 3.2). Table 6-8 shows that estimated unmarked recoveries in VS NSFs were a very large percentage of Quinsam River Hatchery recoveries (about 78\%), whereas in other BC hatcheries they represent $12-21 \%$ of all unmarked recoveries. More than 60% of the fishery recoveries for both the marked (66%) and unmarked (71%) DIT group components from Robertson Creek Hatchery occurred in VS, mixed-regulation fisheries. For other BC hatcheries, the percentage of fishery recoveries occurring in mixed-regulation fisheries ranged from 0 to 14% for the marked component of BC DIT groups. For the marked component of DIT groups from BC hatcheries, the percentage of total estimated CWT recoveries occurring in MSFs, across all brood years, ranged from 28% for Robertson Creek Hatchery to 88% for Chilliwack River Hatchery.

Figure 6-3 compares total exploitation rates estimated by the Paired-Ratio (PR) method and $\lambda^{\text {Rel }}$ (Section 3.2) for the marked and unmarked ${ }^{5}$ components of the DIT groups from each hatchery for each brood year. Years when the Z test comparing the return rates to the escapement of the marked and unmarked components of a DIT group was significant are indicated with an *. The proportion of the estimated unmarked ER occurring in MSFs is also shown. The estimated unmarked ER is always less than the marked ER across all hatcheries and brood years for BC DIT groups. Figure 10A in (Appendix 10) compares ER estimates for the marked and unmarked components of the BC DIT groups by hatchery and brood year (with approximate 95% confidence intervals for the estimates). For the two hatcheries with an extended time series of DIT group releases (Quinsam River and Inch Creek), there is no indication of long-term trends in ERs. Patterns in marked group ERs are similar for these two hatcheries with peaks for the 2001, 2004, 2006, and 2010 brood years. Peaks in unmarked ER did not always correspond to the peaks in the marked ER. Generally, a higher proportion of the unmarked ER was estimated to occur in MSFs for Inch Creek DIT groups compared to Quinsam River DIT groups.

The unmarked ER is consistently lower than the marked ER for all DIT groups and brood years. For a DIT group, differences between the marked and unmarked ER estimates ranged from +0.006 to +0.347 (Table 6-9). Across all hatcheries and brood years, the estimated ER for the marked component of the DIT groups was, on average, +0.116 greater than the ER for the unmarked component. For 100% of the DIT groups analyzed from the BC region, the estimated ER for the marked component was greater than the ER estimated for the unmarked component.

[^12]Table 6-8. Percentage of DIT recoveries in fisheries with electronic sampling (ETD) and without electronic sampling (Visual), by fishery type. Unmarked recoveries in NSFs without electronic sampling are estimated (Estimated). Bold number is total number of estimated recoveries in fisheries for DIT groups released from BC hatcheries for the 1998-2011 brood years.

Hatchery	Fishery Type	Marked Component			Unmarked Component			
		ETD Sample	Visual Sample	Total	ETD Sample	Visual Sample	Estimated	Total
Quinsam River								
	NSF	6.1\%	42.5\%	48.7\%	8.2\%	0.0\%	78.4\%	86.7\%
	MSF	3.5\%	37.2\%	40.7\%	2.1\%	10.8\%	0.0\%	13.0\%
	Mixed	0.0\%	10.7\%	10.7\%	0.0\%	0.4\%	0.0\%	0.4\%
	Total	9.6\%	90.4\%	2,056.7	10.4\%	11.2\%	78.4\%	1,132.5

Biq Qualicum River

	NSF	9.7%	6.1%	15.8%	43.9%	0.0%	21.2%	65.1%
	MSF	16.0%	53.9%	69.9%	6.4%	28.5%	0.0%	34.9%
	Mixed	0.0%	14.3%	14.3%	0.0%	0.0%	0.0%	0.0%
	Total	25.7%	74.3%	$\mathbf{5 6 5 . 7}$	50.3%	28.5%	21.2%	$\mathbf{1 6 0 . 2}$

Chilliwack River

	NSF	8.8%	3.0%	11.7%	73.6%	0.0%	16.0%	89.6%
	MSF	30.2%	58.1%	88.3%	4.0%	6.4%	0.0%	10.4%
	Mixed	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Total	39.0%	61.0%	$\mathbf{8 5 9 . 0}$	77.6%	6.4%	16.0%	$\mathbf{1 5 3 . 1}$	

Inch Creek

	NSF	15.2%	2.1%	17.4%	75.8%	0.5%	11.5%	87.8%
	MSF	17.3%	55.1%	72.4%	10.9%	1.3%	0.0%	12.2%
	Mixed	0.0%	10.3%	10.3%	0.0%	0.0%	0.0%	0.0%
	Total	32.5%	67.5%	$\mathbf{4 , 3 1 0 . 5}$	86.7%	1.8%	11.5%	$\mathbf{8 0 9 . 1}$

Robertson Creek

	NSF	1.9%	4.5%	6.4%	4.4%	0.0%	15.4%	19.9%
	MSF	8.7%	19.3%	28.0%	8.9%	0.0%	0.0%	8.9%
	Mixed	0.0%	65.6%	65.6%	0.0%	71.2%	0.0%	71.2%
Total	10.6%	89.4%	$\mathbf{4 , 4 9 2 . 9}$	13.4%	71.2%	15.4%	$\mathbf{1 , 3 3 0 . 2}$	

Figure 6-3. Comparison of estimates of exploitation rates (ER) for the marked and unmarked components of DIT groups released by British Columbia hatcheries for brood years 1998-2011.

Figure 6-3. Comparison of estimates of exploitation rates (ER) for the marked and unmarked components of DIT groups released by British Columbia hatcheries for brood years 1998-2011 (continued).

Table 6-9. Average difference between the estimated exploitation rates (ER) for the marked and unmarked components of BC DIT groups. Unmarked ER estimated using the PR method with λ at release.

	Number	Difference Marked ER - Unmarked ER		
Hatchery	of Years	Mean	Minimum	Maximum
Quinsam River	14	0.078	0.018	0.147
Big Qualicum River	5	0.106	0.006	0.154
Chilliwack River	5	0.111	0.045	0.170
Inch Creek	14	0.144	0.054	0.347
Robertson Creek	5	0.160	0.055	0.220
Regional Total	$\mathbf{4 3}$	$\mathbf{0 . 1 1 6}$	$\mathbf{0 . 0 0 6}$	$\mathbf{0 . 3 4 7}$

6.1.1 Conclusions and Recommendations for British Columbia Hatchery DIT Groups

- The CWT sampling of Coho returning to BC hatcheries was very rigorous. Virtually all returning Coho were directly sampled and all sampling was done using ETD.
- For all DIT groups examined from BC hatcheries, 56% of the 43 Z tests conducted were significant and all of the significant tests had λR ratios >1.0 (i.e., the return rate of the unmarked component was significantly greater than for the marked component indicating a measurable impact of MSFs).
- About 75% of the estimated CWT recoveries from fisheries for the marked component of British Columbia DIT groups were from visually-sampled sport fisheries in British Columbia. These fisheries were predominantly mark-selective (39\% of recoveries) and mixed-regulation (30% of recoveries) fisheries.
- Almost 80% of the fishery impacts to the unmarked component of the DIT group from Quinsam River Hatchery occurred in visually-sampled NSFs. Therefore, the impacts from these fisheries on the unmarked component must be estimated based on either $\lambda^{\text {Rel }}$ or $\lambda^{E s c}$ and recoveries from the marked component of the DIT group. This may be a potential source of bias and adds uncertainty to the estimates for these DIT groups.
- Fishery recoveries from Robertson Creek Hatchery DIT groups occurred primarily in sport fisheries identified as mixed regulation (66% of marked recoveries and 71% of unmarked recoveries) where it is unknown whether the recovery could be attributed to a MSF or NSF. These mixed-regulation fisheries are not sampled electronically. This again may be a potential source of bias and adds uncertainty to the estimates for these DIT groups.
- CWT recoveries from mixed-regulation fishery strata is a potential issue affecting almost all the BC DIT groups examined. Except for the DIT groups from the Chilliwack River Hatchery, more than 10% of the recoveries for the marked component of DIT groups from the other BC hatcheries was in mixed-regulation fishery strata.
- Although the ER for the marked component of the DIT groups from BC hatcheries was, on average, +0.116 greater than the ER for the unmarked component of the DIT group, this difference should be viewed with caution because of possible biases in the estimated ER of the unmarked component resulting from visual sampling in BC fisheries, and the large proportion of recoveries from mixed-regulation fishery strata in the BC region.
- MSFs appeared to be effective in decreasing the exploitation rate on unmarked Coho stocks represented by the DIT groups for the BC region. The ER for the unmarked component of the DIT group was consistently estimated to be less than the ER for the marked component for all the DIT groups.

Recommendations

It is difficult to fully evaluate the DIT programs from the Big Qualicum River, Chilliwack River, and Robertson Creek hatcheries because there were only five brood years of DIT group data available, and the brood years were in the early period of MSF implementation. However, because such a high proportion of the fishery recoveries from the Robertson Creek Hatchery occurred in mixed-regulation fisheries which were not electronically sampled, the ER estimates from that program should be viewed cautiously. For any future Robertson Creek DIT programs to be useful would require that this issue be addressed.

The following DIT program(s) provide relatively consistent, reliable, and relatively precise estimates that can be used to evaluate the impacts of MSFs on the unmarked component of DIT groups:

1. Data for the DIT groups from Inch Creek Hatchery provided the most consistent and reliable estimates of marked and unmarked ER in comparison to the other BC hatcheries.
a. The Z tests comparing the return rates of the marked and unmarked components of a DIT group to the escapement were significant and positive (a higher proportion of unmarked fish returned to the hatchery than marked fish) in 64\% of the brood years.
b. Estimated total recoveries averaged about 1,000 for each brood year for both the marked and unmarked components of the DIT groups.
c. λR ratios that were greater than 1.0 and had 95% CIs that did not include 1.0 occurred across the range of brood years analyzed.
d. The average difference between ERs for the marked and unmarked components of the DIT groups (+0.144) was the second largest of the BC DIT groups analyzed.
e. The ER for the marked component was higher than that of the unmarked component for all 14 of the brood years examined.
f. For seven of the 14 brood years analyzed, the estimated ER for the unmarked component of the DIT group was less than for the marked component and the two estimates had non-overlapping 95% confidence intervals.

The following DIT program(s) have potential issues that decrease their effectiveness and require further review to determine if these issues can be addressed or if the DIT program(s) should be discontinued:

1. Data and reliable estimates for the DIT groups from Quinsam River Hatchery are challenged by a number of issues.
a. Return rates for Quinsam River Hatchery DIT groups were, on average, the lowest of the BC hatcheries examined.
b. The Z tests comparing the return rates of the marked and unmarked components of a DIT group to the escapement were significant and positive (a higher proportion of unmarked fish returned to the hatchery than marked fish)
for only 36% of the brood years; this was the lowest percentage for any of the BC hatcheries examined.
c. There were relatively few λR ratios > 1.0 which had 95% CIs that did not include 1.0 and most of those that did occurred in the first half of the time series of brood years examined.
d. A very high percentage $(\approx 43 \%)$ of the fishery recoveries for the marked component of DIT groups from Quinsam River Hatchery occurred in visuallysampled NSFs. Therefore, the number of unmarked recoveries in these NSFs had to be estimated based on the marked recoveries. For Quinsam River Hatchery, 78% of the total recoveries of the unmarked component of DIT groups were estimated to occur in the visually-sampled NSFs. This is a potential source of bias and adds uncertainty to the estimates for these DIT groups.
e. The average difference between ERs for the marked and unmarked components of the DIT groups $(+0.078)$ was the smallest of the BC DIT groups analyzed.
f. While the estimated ER for the marked component was higher than that of the unmarked component for all 14 of the brood years examined, the 95% confidence intervals for the estimates always overlapped.

6.2 Puget Sound (PS) Region

There are eight hatcheries in the Puget Sound region which had DIT groups analyzed (Table 6-10). All hatcheries except Kendall Creek had DIT-group releases for brood years 19982011; Kendall Creek only had DIT-group releases for the 1998-2007 brood years.

Table 6-10. Hatcheries in the Puget Sound region with Coho salmon DIT groups analyzed for this report, brood years 1998-2011.

Hatchery	Brood Year													
	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
Lower Elwha	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Kendall Creek	X	X	X	X	X	X	X	X	X	X				
Marblemount	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Wallace River	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Soos Creek	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Voights Creek	X	X	X	X	X	X	X	X	X	X	X	X	X	X
George Adams	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Quilcene NFH	X	X	X	X	X	X	X	X	X	X	X	X	X	X

Average numbers of Coho salmon released in the marked and unmarked components of the DIT groups from PS hatcheries were generally similar across hatcheries and averaged $\approx 42,000-45,000$ fish (Table 6-11). The exception was the Lower Elwha Hatchery which averaged about 75,000 fish released each brood year for both the marked and unmarked groups. Across all hatcheries and brood years, the minimum number released in a DIT group component was about 20,000 fish (Quilcene NFH) and the maximum about 83,000 fish (Lower Elwha Hatchery). Fairly consistent numbers of fish were released annually for the DIT groups from all hatcheries (CVs for the average number released < 16\%) except for Quilcene NFH which had CVs of $\approx 25 \%$ and had a range of numbers released from 20,00070,000 fish.

Sub-sampling the escapement was common for PS hatcheries. Across brood years, the average percentage of the Coho in the escapement that were directly sampled ${ }^{6}$ ranged from $\approx 62 \%$ to 94% (Table 6-12). All PS hatcheries except the Lower Elwha and George Adams hatcheries had at least one brood year where less than half (50%) of the escapement was directly sampled. Sub-sampling the escapement requires expansion factors to expand observed CWTs recovered into total estimated CWTs in the escapement to the hatchery or spawning grounds. This adds variation to the estimates of the return rate and estimates of marked and unmarked ERs. ETD was used on more than 99.5% of the directly-sampled Coho

[^13](Table 6-12). This practice removes any potential bias associated with visual sampling of the unmarked component of the returning DIT groups.

Table 6-11. Summary statistics for the number of Coho salmon with CWTs released in the marked and unmarked components of Puget Sound DIT groups, by hatchery (averaged across brood years).

Hatchery	Mark Status	Mean	Minimum	Maximum	$\mathbf{C V}^{\mathbf{a}}$
Lower Elwha	Marked	75,229	62,465	82,395	8.1%
	Unmarked	73,825	51,084	83,081	11.8%
Kendall Creek	Marked	46,821	43,242	49,402	4.6%
	Unmarked	47,769	45,254	49,700	3.3%
Marblemount	Marked	45,817	39,635	69,844	15.9%
	Unmarked	43,056	32,421	47,206	8.4%
Wallace River	Marked	42,887	30,182	47,762	10.2%
	Unmarked	43,273	30,300	48,378	10.0%
Soos Creek	Marked	43,584	34,055	47,334	7.5%
	Unmarked	45,331	36,440	56,293	8.8%
Voights Creek	Marked	44,203	28,136	56,863	13.8%
	Unmarked	43,959	28,181	47,680	10.9%
George Adams	Marked	44,603	41,584	49,399	4.1%
	Unmarked	45,286	41,288	53,098	7.3%
Quilcene NFH	Marked	42,659	20,699	71,292	26.1%
	Unmarked	42,477	20,476	70,746	25.4%

${ }^{\mathrm{a}} \mathrm{CV}=$ coefficient of variation.

Average return rates to the escapement for the marked and unmarked components of PS DIT groups varied by hatchery (Table 6-13). The expectation is that if MSFs are having a measurable impact on the unmarked component of a DIT group (i.e., reduction in the number of fishery-related mortalities), the return rate to the hatchery will be higher for the unmarked component. Average return rates of the unmarked component were slightly higher than the marked component for the DIT groups from all PS hatcheries except the Soos Creek Hatchery. Average return rates to the Lower Elwha and Kendall Creek hatcheries were the lowest at < 1.0%. Average return rates to Wallace River Hatchery were relatively high at $\approx 4.5 \%$. Minimum return rates to Wallace River Hatchery were $>1.4 \%$; for all other PS hatcheries the minimum return rates were $<0.7 \%$. DIT group return rates to the Lower Elwha, Kendall Creek, and Voights Creek were highly variable with CVs $>75 \%$ relative to the averages.

Table 6-12. Summary statistics for the percent of the escapement directly sampled (\% Sampled) and the proportion of the sampled fish that were sampled electronically (Prop ETD) for Puget Sound DIT groups, by hatchery (averaged across brood years).

Hatchery	Mark Status	Mean	Minimum	Maximum	CV
	\% Sampled	93.9%	65.3%	99.9%	10.1%
	Prop ETD	1.000	0.999	1.000	0.0%
Kendall Creek	\% Sampled	74.0%	30.9%	100.0%	31.3%
	Prop ETD	1.000	1.000	1.000	0.0%
Marblemount	\% Sampled	71.5%	35.1%	100.0%	35.3%
	Prop ETD	1.000	0.998	1.000	0.1%
Wallace River	\% Sampled	73.4%	31.6%	99.8%	37.7%
	Prop ETD	1.000	1.000	1.000	0.0%
Soos Creek	\% Sampled	75.0%	45.7%	100.0%	23.3%
	Prop ETD	1.000	1.000	1.000	0.0%
Voights Creek	\% Sampled	72.8%	25.0%	98.0%	26.8%
	Prop ETD	1.000	1.000	1.000	0.0%
George Adams	\% Sampled	88.1%	67.4%	100.0%	12.2%
	Prop ETD	1.000	1.000	1.000	0.0%
Quilcene NFH	\% Sampled	61.9%	20.5%	95.5%	38.4%
	Prop ETD	1.000	1.000	1.000	0.0%

Table 6-13. Summary statistics for the return rates of Coho salmon in the marked and unmarked components of Puget Sound DIT groups, by hatchery (averaged across brood years).

Hatchery	Mark Status	Mean	Minimum	Maximum	CV
Lower Elwha	Marked	0.28%	0.03%	0.81%	85.3%
	Unmarked	0.29%	0.02%	0.80%	79.7%
Kendall Creek	Marked	0.72%	0.06%	2.49%	112.3%
	Unmarked	0.74%	0.07%	2.38%	101.3%
Marblemount	Marked	3.04%	0.46%	4.94%	38.7%
	Unmarked	3.21%	0.45%	5.25%	39.3%
Wallace River	Marked	4.50%	1.44%	7.65%	38.8%
	Unmarked	4.70%	1.57%	7.45%	38.5%
Soos Creek	Marked	2.48%	0.69%	4.69%	44.5%
	Unmarked	2.46%	0.64%	4.58%	50.2%
Voights Creek	Marked	1.61%	0.10%	4.28%	77.4%
	Unmarked	1.62%	0.08%	4.22%	80.4%
George Adams	Marked	2.61%	0.61%	5.02%	56.7%
	Unmarked	2.65%	0.58%	5.51%	62.1%
Quilcene NFH	Marked	1.90%	0.41%	3.76%	53.6%

| | Unmarked | 2.07% | 0.30% | 4.12% |
| :--- | :--- | :---: | :---: | :---: | group to the escapement were significant and positive (a higher proportion of unmarked fish returned to the hatchery than marked fish) in less than 30% of the brood years for each hatchery, with the exception of releases from Wallace River Hatchery where 43% of the tests were significant and positive (Table 6-2E). For all DIT groups examined from PS hatcheries, only 32% of the 108 Z tests conducted returned a significant result and only 24% of the test results were both significant and had a λR ratio >1.0.

Figure 6-4 shows λR ratios with approximate 95% confidence intervals (CIs) for each hatchery, by brood year. Brood years with a significant ($P \leq 0.05$) Z test comparing the return rates to the escapement of the marked and unmarked components of a DIT group are indicated with an *. The effect of the lower return rates for DIT groups from the Lower Elwha and Kendall Creek hatcheries, resulting in lower numbers of CWTs recovered in the escapement (Table 6-14), is reflected in the much wider 95% CIs for the corresponding λR ratios. In comparison, the 95% confidence interval widths for the Marblemount, Wallace River, Soos Creek, and George Adams hatcheries are narrower because their higher return rates result in larger number of CWTs recovered (> 1,000 tags recovered annually at the hatchery or on the spawning grounds on average). Based on λR ratios, there is little indication of annually consistent measurable impact by MSFs on Puget Sound DIT groups. The possible exception may be for DIT groups from Wallace River Hatchery where 6 of the 14 brood years had a significant Z test $(P \leq 0.05)$ with a λR ratio >1.0 and 50% of the λR ratios were >1.0 and had 95% CIs that did not include 1.0.

Table 6-14. Percent of brood years where the Z test comparing return rates of marked and unmarked DIT groups to escapement is significant ($P \leq 0.05$) and positive (+YES), significant and negative (-YES), or not significant (NS), and number of brood years tested for Puget Sound hatcheries and brood years 1998-2011.

Hatchery	NS	+YES	-YES	\# of Broods
Lower Elwha	57%	29%	14%	14
Kendall Creek	90%	10%	0%	10
Marblemount	71%	29%	0%	14
Wallace River	50%	43%	7%	14
Soos Creek	72%	21%	7%	14
Voights Creek	72%	14%	14%	14
George Adams	72%	14%	14%	14
Quilcene NFH	64%	29%	7%	14
Regional Total	68%	24%	8%	108

Figure 6-4. $\quad \lambda R$ ratios with approximate 95% confidence intervals for DIT groups released by Puget Sound hatcheries for brood years 1998-2011. Brood years with a significant ($P \leq 0.05$) Z test comparing the return rates to the escapement of the marked and unmarked components of a DIT group are indicated with an *.

Figure 6-4 $\quad \lambda R$ ratios with approximate 95% confidence intervals for DIT groups released by Puget Sound hatcheries for brood years 1998-2011 (continued).

The average number of estimated CWT recoveries (marked or unmarked) from individual PS hatchery DIT groups ranged from a low of 320 and 274, respectively, for Lower Elwha Hatchery releases to more than 2,000 recoveries for both marked and unmarked DIT groups from the Marblemount, Wallace River, and Soos Creek hatcheries (Table 6-15). The average percent of total (fishery plus escapement) estimated recoveries (across brood years) that occurred in fisheries ranged from 23% to 75% for marked fish and 13% to 69% for unmarked fish. The majority of the fishery recoveries for the marked component of the DIT groups was in pre-terminal fisheries for the Lower Elwha, Marblemount, Wallace River, and George Adams DIT groups. In contrast, the majority of the fishery recoveries for the marked component of the DIT groups was in terminal fisheries for the Kendall Creek, Soos Creek, Voights Creek, and Quilcene hatcheries.

Figure 6-5 shows the average percentage (across brood years) of estimated CWT recoveries in fisheries by location (pre-terminal or terminal), gear type (sport, troll, or net), and fishery type (NSF, MSF, or Mixed) for the marked and unmarked components of each hatchery's DIT groups. Three details to note in this figure are:

- There is a measurable but small percentage of the recoveries that occurred in "mixed" regulation, pre-terminal sport fisheries for the marked component of DIT groups from all PS hatcheries. Corresponding unmarked recoveries in mixed-regulation fisheries are estimated identically to those from MSFs for the analyses in this report. This approach may introduce unknown bias and add to the uncertainty of estimates of unmarked ERs in these fisheries as some of the fish caught in the mixed-regulation category may actually be caught under partial NSF regulations.
- For the marked component of the DIT groups, the majority of the CWT recoveries occurred in pre-terminal sport fisheries and terminal net fisheries while the majority ($>60 \%$) of the recoveries for the unmarked component occurred in terminal nonselective net fisheries for the DIT groups from all hatcheries except Wallace River.

For Wallace River Hatchery DIT groups, most of the recoveries from the unmarked component of the DIT groups were in pre-terminal non-selective sport fisheries followed by non-selective terminal net fisheries.

Table 6-15. Average number of estimated CWT recoveries and general recovery location for the marked and unmarked components of Puget Sound hatchery DIT groups (averaged across brood years).

Hatchery	Mark Status	Fishery Location		Total Fishery		Escapement	Total Recoveries
		Pre- Terminal	Terminal	\#	\%		
Lower Elwha	Marked	56.3	54.3	110.6	35.8\%	209.7	320.3
	Unmarked	10.5	49.5	60.0	19.4\%	214.2	274.2
Kendall Creek	Marked	171.7	597.8	769.5	74.7\%	322.2	1,091.7
	Unmarked	31.3	615.6	646.9	68.6\%	349.1	996.0
Marblemount	Marked	550.5	521.7	1,072.2	42.8\%	1,390.3	2,462.6
	Unmarked	201.3	473.2	674.5	34.5\%	1,369.8	2,044.3
Wallace River	Marked	483.7	88.1	571.8	22.8\%	1,907.9	2,479.7
	Unmarked	205.9	82.0	287.9	12.8\%	2,009.4	2,297.4
Soos Creek	Marked	447.9	789.6	1,237.6	52.1\%	1,063.1	2,300.6
	Unmarked	213.2	883.1	1,096.3	48.7\%	1,106.1	2,202.4
Voights Creek	Marked	317.0	495.8	812.9	57.2\%	681.4	1,494.3
	Unmarked	117.5	510.5	628.0	51.1\%	688.4	1,316.5
George Adams	Marked	263.9	256.1	520.0	33.7\%	1,167.2	1,687.2
	Unmarked	88.0	243.4	331.5	26.4\%	1,201.2	1,532.7
Quilcene NFH	Marked	357.6	581.3	938.9	55.3\%	786.2	1,725.1
	Unmarked	126.8	641.8	768.6	48.7\%	852.2	1,620.8

- The potential impact of fisheries with visual sampling (i.e., no ETD) can be seen by comparing the percentage of the marked DIT group recoveries that occurred in NSFs to the percentage of the corresponding unmarked DIT groups that occurred in these same fisheries. For PS DIT groups, the percentage of recoveries from the unmarked component of the DIT group is about equal to or greater than the percentage for the corresponding marked group. Therefore, potential bias due to visually-sampled fisheries does not appear to be an issue with PS DIT groups.

The major fisheries impacting PS DIT groups primarily used electronic sampling. For the marked component of these DIT groups, in total, 91% of the total estimated recoveries from fisheries were by sampling programs with ETD (Table 6-16); visually-sampled fisheries accounted for only 9% of the estimated recoveries. About 79% of all marked fish recoveries for Puget Sound DIT groups were in electronically sampled fisheries in Puget Sound; over 50% of these recoveries were in Puget Sound non-selective net fisheries. Only 4\% of the
recoveries from the marked component of PS DIT groups occurred in mixed-regulation fishery strata.

Figure 6-5. Bar charts comparing average percentage, across brood years, of total estimated CWT recoveries in fisheries, by fishery type and location, for marked and unmarked DIT group releases from PS hatcheries.

Figure 6-5. Bar charts comparing average percentage, across brood years, of total estimated CWT recoveries in fisheries, by fishery type and location, for marked and unmarked DIT group releases from PS hatcheries (continued).

Table 6-16. Percentage of all estimated CWT recoveries of marked fish associated with DIT groups released from PS hatcheries (brood years 1998-2011) by detection method (electronic or visual) and fishery type (NSF, MSF, Mixed).

Region Fishery	Electronically Sampled				Visually Sampled			
	NSF	MSF	Mixed	Total	NSF	MSF	Mixed	Total
Alaska								
Net	0.00\%	0.00\%	0.00\%	0.00\%	0.02\%	0.00\%	0.00\%	0.02\%
Sport	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Troll	0.00\%	0.00\%	0.00\%	0.00\%	0.12\%	0.00\%	0.00\%	0.12\%
British Columbia								
Net	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Sport	0.07\%	0.16\%	0.00\%	0.23\%	0.33\%	3.44\%	3.36\%	7.12\%
Troll	0.01\%	0.01\%	0.31\%	0.32\%	0.05\%	0.02\%	0.00\%	0.07\%
Puget Sound								
Net	54.56\%	0.00\%	0.00\%	54.56\%	0.00\%	0.00\%	0.00\%	0.00\%
Sport	13.15\%	11.10\%	0.00\%	24.25\%	0.00\%	0.00\%	0.00\%	0.00\%
Washington Coast								
Net	0.02\%	0.00\%	0.00\%	0.02\%	0.00\%	0.00\%	0.00\%	0.00\%
Sport	0.09\%	7.92\%	0.00\%	8.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Troll	3.26\%	0.56\%	0.00\%	3.82\%	0.00\%	0.00\%	0.00\%	0.00\%
Oregon Coast and Columbia River								
Net	0.00\%	0.01\%	0.00\%	0.01\%	0.00\%	0.00\%	0.00\%	0.00\%
Sport	0.03\%	0.18\%	0.00\%	0.21\%	0.01\%	1.09\%	0.00\%	1.09\%
Troll	0.02\%	0.00\%	0.00\%	0.02\%	0.13\%	0.02\%	0.00\%	0.15\%
Totals	71.19\%	19.93\%	0.31\%	91.43\%	0.65\%	4.57\%	3.36\%	8.57\%

About 90% percent or more of the estimated CWT recoveries in all fisheries, for both the marked and unmarked components of DIT groups, were in electronically-sampled fisheries for the Kendall Creek, Marblemount, Soos Creek, Voights Creek, George Adams, and Quilcene hatcheries (Table 6-17). For the PS region, DIT groups from the Lower Elwha Hatchery had the lowest percentage of recoveries in ETD fisheries with 76% for the marked and 84% for the unmarked component of the DIT groups. For the marked component of DIT groups from PS hatcheries, the percentage of the estimated CWT recoveries that occurred in mixed-regulation fisheries ranged from 1.6 to 6.4%. Estimated recoveries for unmarked DIT groups in VS NSFs were < 2.5% for all hatcheries except for the Lower Elwha Hatchery (14.2%). For the marked component of DIT groups from PS hatcheries, the percentage of total estimated CWT recoveries occurring in MSFs, across all brood years, ranged from 13% for Kendall Creek Hatchery to 47% for Wallace River Hatchery.

Table 6-17. Percentage of DIT recoveries in fisheries with electronic sampling (ETD) and without electronic sampling (Visual), by fishery type. Unmarked recoveries in NSFs without electronic sampling are estimated (Estimated). Bold number is
total number of estimated recoveries in fisheries for DIT groups released from PS hatcheries for the 1998-2011 brood years.

		Mark	d Comp	nent		marked	Compone	
Hatchery	Fishery Type	ETD Sample	Visual Sample		ETD Sample	Visual Sample	Estimated	Total
Lower Elwha								
	NSF	57.4\%	9.0\%	66.4\%	83.4\%	0.6\%	14.2\%	98.2\%
	MSF	18.9\%	8.3\%	27.1\%	0.9\%	0.0\%	0.0\%	0.9\%
	Mixed	0.0\%	6.4\%	6.4\%	0.0\%	0.8\%	0.0\%	0.8\%
	Total	76.3\%	23.7\%	1,548.8	84.4\%	1.4\%	14.2\%	979.1

Kendall Creek								
	NSF	80.5%	0.4%	80.9%	98.5%	0.0%	0.5%	98.9%
	MSF	11.5%	1.8%	13.3%	1.0%	0.1%	0.0%	1.1%
	Mixed	3.2%	2.6%	5.8%	0.0%	0.0%	0.0%	0.0%
	Total	95.2%	4.8%	$\mathbf{7 , 6 9 5 . 4}$	99.5%	0.1%	0.5%	$\mathbf{6 , 4 9 9 . 1}$

Marblemount								
	NSF	66.6%	0.1%	66.8%	98.4%	0.1%	0.2%	98.6%
	MSF	23.1%	5.3%	28.4%	1.2%	0.1%	0.0%	1.3%
	Mixed	0.0%	4.9%	4.9%	0.0%	0.1%	0.0%	0.1%
	Total	89.8%	10.2%	$\mathbf{1 5 , 0 1 1 . 3}$	99.6%	0.2%	0.2%	$\mathbf{9 , 4 5 8 . 4}$
Wallace River								
	$\mathbf{N S F}$	47.9%	0.8%	48.7%	95.1%	0.0%	1.5%	96.6%
	MSF	35.2%	11.6%	46.8%	2.8%	0.3%	0.0%	3.1%
	Mixed	0.0%	4.4%	4.4%	0.0%	0.4%	0.0%	0.4%
	Total	83.1%	16.9%	$\mathbf{8 , 0 0 5} .6$	97.9%	0.7%	1.5%	$\mathbf{4 , 0 9 0 . 9}$

Soos Creek								
	NSF	77.6%	0.6%	78.2%	97.4%	0.0%	0.7%	98.1%
	MSF	15.8%	3.1%	18.8%	1.7%	0.1%	0.0%	1.8%
	Mixed	0.0%	3.0%	3.0%	0.0%	0.1%	0.0%	0.1%
	Total	93.4%	6.6%	$\mathbf{1 7 , 3 2 6 . 1}$	99.1%	0.2%	0.7%	$\mathbf{1 5 , 4 5 8 . 2}$

Voights Creek								
	NSF	78.2%	0.5%	78.7%	98.7%	0.0%	0.6%	99.3%
	MSF	15.3%	3.2%	18.5%	0.6%	0.1%	0.0%	0.7%
	Mixed	0.0%	2.8%	2.8%	0.0%	0.0%	0.0%	0.0%
	Total	93.5%	6.5%	$\mathbf{1 1 , 3 8 0 . 3}$	99.3%	0.1%	0.6%	$\mathbf{8 , 8 4 9 . 9}$

George Adams								
	NSF	64.4%	1.5%	65.9%	95.0%	0.1%	2.3%	97.3%
	MSF	26.5%	3.5%	30.0%	2.7%	0.0%	0.0%	2.7%
	Mixed	0.0%	4.1%	4.1%	0.0%	0.0%	0.0%	0.0%
	Total	90.9%	9.1%	$\mathbf{7 , 2 7 9 . 7}$	97.6%	0.1%	2.3%	$\mathbf{4 , 7 4 9 . 9}$

Quilcene NFH

Quicene N								
	NSF	76.1%	0.1%	76.1%	99.2%	0.0%	0.1%	99.3%
	MSF	17.8%	4.4%	22.3%	0.7%	0.0%	0.0%	0.7%
	Mixed	0.0%	1.6%	1.6%	0.0%	0.0%	0.0%	0.0%
	Total	93.9%	6.1%	$\mathbf{1 3 , 1 4 4 . 2}$	99.9%	0.0%	0.1%	$\mathbf{1 0 , 7 7 1 . 6}$

Figure 6-6 compares total exploitation rates estimated by the Paired-Ratio (PR) method and $\lambda^{\text {Rel }}$ (Section 3.2) for the marked and unmarked components of the DIT groups from each hatchery for each brood year. Years when the Z test comparing the return rates to the
escapement of the marked and unmarked components of a DIT group was significant are indicated with an *. The proportion of the estimated unmarked ER occurring in MSFs is shown, also. While the estimated unmarked ER is usually lower than the marked ER across all hatcheries and brood years in Puget Sound, for 10% of the DIT groups analyzed (11 out of 108) the estimated ER for the unmarked component was greater than the estimate for the marked component - which is contrary to expectations. For eight of these 11 DIT groups, the unmarked ER was less than +0.05 greater than the marked ER. Differences of this size may be attributed to sampling error associated with small sample sizes from the fishery and/or escapement sampling resulting in relatively low numbers of CWTs recovered. For three of the 11 DIT groups, the unmarked ER was more than +0.15 greater than the marked ER. This observation is an indication of a more serious violation of the necessary assumptions such as:

- Unequal survival for the marked and unmarked groups after release;
- Biased sampling in the fisheries impacting these DIT groups; and,
- Incomplete tag recovery reporting, especially at the hatchery (i.e., recovered CWTs not being reported to RMIS).
There were two DIT groups where the marked ER estimate was lower and significantly different from the unmarked ER estimate, i.e., they had non-overlapping 95% confidence intervals (Figure 10B in Appendix10): Lower Elwha 1999 and Soos Creek 2010. There is no indication of similar long-term trends in ERs among the hatcheries. Peaks in unmarked ER generally corresponded to the peaks in the marked ER. The proportion of the unmarked ER estimated to occur in MSFs fluctuated greatly for Lower Elwha DIT brood years. In contrast, this proportion was relatively consistent across brood years for the DIT groups from Wallace River, Soos Creek, and Voights Creek hatcheries.

Differences between the ER estimates ranged from -0.202 to +0.386 (Table 6-18). Across all hatcheries and brood years, the ER for the marked component of the DIT groups was, on average, +0.067 greater than the ER for the unmarked component.

Table 6-18. Average difference between the estimated exploitation rates (ER) for the marked and unmarked components of PS DIT groups. Unmarked ER estimated using the PR method with λ at release.

	Number	Difference Marked ER - Unmarked ER		
Hatchery	of Years	Mean	Minimum	Maximum
Lower Elwha	14	0.122	-0.202	0.386
Kendall Creek	10	0.050	0.017	0.077
Marblemount	14	0.050	0.017	0.077
Wallace River	14	0.087	0.020	0.130
Soos Creek	14	0.027	-0.202	0.107
Voights Creek	14	0.053	-0.015	0.101
George Adams	14	0.062	-0.041	0.116
Quilcene NFH	14	0.059	-0.013	0.164
Regional Total	$\mathbf{1 0 8}$	$\mathbf{0 . 0 6 7}$	$\mathbf{- 0 . 2 0 2}$	$\mathbf{0 . 3 8 6}$

Figure 6-6. Comparison of estimates of exploitation rates (ER) for the marked and unmarked components of DIT groups released by Puget Sound hatcheries for brood years 1998-2011.

Figure 6-6. Comparison of estimates of exploitation rates (ER) for the marked and unmarked components of DIT groups released by Puget Sound hatcheries for brood years 1998-2011 (continued).

Figure 6-6. Comparison of estimates of exploitation rates (ER) for the marked and unmarked components of DIT groups released by Puget Sound hatcheries for brood years 1998-2011 (continued).

6.2.1 Conclusions and Recommendations for Puget Sound Hatchery DIT Groups

- Sub-sampling the escapement was common for PS escapements. Across brood years, the average percentage of the Coho in the escapement that were directly sampled ranged from $\approx 62 \%$ to 94%. All PS escapements except the Lower Elwha and George Adams hatcheries had at least one brood year where less than half (50\%) of the escapement was directly sampled. Sub-sampling the escapement requires expansion factors to expand observed CWTs recovered into total estimated CWTs in the escapement to the hatchery or spawning grounds. This adds variation to the estimates of the return rate and estimates of marked and unmarked ERs.
- Nearly all returning Coho that were directly sampled at PS hatcheries were screened for CWTs with ETD. This eliminates a source of potential bias for the estimates of the number of fish in the unmarked component of DIT groups.
- For all DIT groups examined from PS hatcheries, only 32% of the 108 Z tests conducted yielded significant results and only 24% of the tests were both significant and had a λR ratio greater than 1.0 (i.e., the return rate of the unmarked component was significantly greater than the rate for the marked component which is interpreted as a measurable impact of MSFs).
- More than 50% of the estimated CWT recoveries from fisheries for the marked component of Puget Sound DIT groups were in non-selective net fisheries in Puget Sound. About 24% of the estimated fishery recoveries for PS DIT groups occurred in non-selective (13\%) and mark-selective (11\%) sport fisheries in Puget Sound.
- 90% or more of the estimated CWT recoveries from fisheries for most DIT groups from Puget Sound hatcheries (both the marked and unmarked components) were in electronically-sampled fisheries. The exceptions were for the marked (76\%) and unmarked (84%) components for Lower Elwha Hatchery DIT groups and the marked component of Wallace River DIT groups (83\%).
- Across all hatcheries and brood years, the percentage of CWT recoveries in mixedregulation fisheries for the marked component of PS DIT groups ranged from about 2 to 6%.
- CWT recoveries from visually-sampled fisheries or mixed-regulation fisheries are generally not an issue with Puget Sound DIT groups. However, DIT groups from the Lower Elwha Hatchery had the largest percentage of CWT recoveries from fisheries that were either visually sampled and/or with mixed regulations. DIT groups from the Lower Elwha Hatchery also had a considerably higher estimated percentage of CWT tags for the unmarked component of its DIT groups recovered in NSFs that were not electronically sampled (14\%).
- While the estimated exploitation for the unmarked component of the Puget Sound DIT groups was estimated to be less than that of the marked component for 90% of the brood years, only the DIT groups from Kendall Creek, Marblemount, and Wallace River hatcheries had consistent differences where the marked ER was greater than the unmarked ER across all the brood years examined.

Even with the large majority of CWT recoveries for Puget Sound DIT groups occurring in NSFs and MSFs that are electronically sampled, the differences between estimated ERs for the marked and unmarked components of the DIT groups are quite variable between brood years and hatcheries. For the 108 brood year comparisons:

- 10% had an unmarked ER estimate > than the marked ER estimate;
- 25% had a difference in ER estimates (marked ER - unmarked ER) that were >0 and ≤ 0.05;
- 42% had a difference in ER estimates that were >0.05 and ≤ 0.10;
- 17% had a difference in ER estimates that were >0.10 and ≤ 0.15; and,
- 6.5% had a difference in ER estimates >0.15.

Although the ER for the marked component of the DIT groups from PS hatcheries was, on average, +0.067 greater than the ER for the unmarked component of the DIT group, this difference should be viewed with caution because for 10% of the brood years examined the estimated unmarked ER was greater than the marked ER. Some of the smaller differences that are contrary to expectations may be related to sample sizes and the precision of the associated estimates. However, the larger differences may indicate more serious violations of the necessary assumptions for the analyses such as:

- Unequal survival for the marked and unmarked groups after release;
- Biased sampling in the fisheries impacting these DIT groups; and,
- Incomplete tag recovery reporting, especially at the hatchery (i.e., recovered CWTs not being reported to RMIS).

Recommendations

The following DIT program(s) provide relatively consistent, reliable, and relatively precise estimates that can be used to evaluate the impacts of MSFs on the unmarked component of DIT groups:

1. Data for the DIT groups from Marblemount Hatchery provided relatively consistent and reliable estimates of marked and unmarked return rates and ERs.
a. Although there were only four brood years where the Z tests comparing the return rates of the marked and unmarked components of a DIT group to the escapement produced significant results, they were all positive (a significantly higher proportion of unmarked fish returned to the hatchery than marked fish).
b. Average return rate estimates for Marblemount DIT groups were the second highest in PS (> 3\%).
c. Estimated total recoveries averaged more than 2,000 for each brood year for both the marked and unmarked components of DIT groups from Marblemount Hatchery.
d. The estimates for the $\lambda \mathrm{R}$ ratio were relatively precise compared to other PS hatcheries; 12 of the 14λ R ratios were >1.0.
e. For Marblemount Hatchery, 28% of the total recoveries of the marked component of DIT groups were estimated to occur in MSFs.
f. CWT data for Marblemount Hatchery DIT groups had relatively small impacts from visually-sampled fisheries and mixed-regulation fisheries.
g. The average difference between estimated ERs for the marked and unmarked components of the DIT groups was +0.05 and the ER for the marked component was higher than that of the unmarked component for every brood year.
2. Data for the DIT groups from Wallace River Hatchery provided relatively consistent and reliable estimates of marked and unmarked return rates and ERs.
a. For PS DIT groups, Wallace River Hatchery had the highest percentage of Z test results comparing the return rates of the marked and unmarked components of a DIT group to the escapement that were significant and positive (43\%).
b. Average return rate estimates for Wallace River DIT groups were the highest in PS (> 4.5\%).
c. Estimated total recoveries averaged more than 2,000 for each brood year for both the marked and unmarked components of DIT groups from Wallace River Hatchery.
d. The estimates for the $\lambda \mathrm{R}$ ratio were relatively precise compared to other PS hatcheries; 11 of the $14 \lambda \mathrm{R}$ ratios were > 1.0.
e. $\lambda \mathrm{R}$ ratios that were greater than 1.0 and had 95% CIs that did not include 1.0 occurred across the range of brood years analyzed.
f. For Wallace River Hatchery, 47% of the total recoveries of the marked component of DIT groups were estimated to occur in MSFs; this was the highest percentage for any of the PS hatcheries.
g. CWT data for Wallace River Hatchery DIT groups had moderately small impacts from visually-sampled fisheries and mixed-regulation fisheries.
h. The average difference between estimated ERs for the marked and unmarked components of the DIT groups was +0.09 and the ER for the marked component was higher than that of the unmarked component for every brood year.
i. For nine of the 14 brood years analyzed, the estimated ER for the unmarked component of the DIT group was less than for the marked component and the two estimates had non-overlapping 95% confidence intervals.
3. Data for the DIT groups from Soos Creek Hatchery provided relatively consistent and reliable estimates of marked and unmarked return rates and ERs. However, the data were not as consistent when compared to the DIT groups from Marblemount and Wallace River hatcheries.
a. There were four brood years where the Z tests comparing the return rates of the marked and unmarked components of a DIT group to the escapement produced significant results and three of the four were positive (a significantly higher proportion of unmarked fish returned to the hatchery than marked fish).
b. Estimated total recoveries averaged more than 2,000 for each brood year for both the marked and unmarked components of DIT groups from Soos Creek Hatchery.
c. Soos Creek Hatchery had the highest average number of estimated recoveries in fisheries ($>1,000$ per brood year) for both the mark and unmarked components of its DIT groups compared to other PS DIT groups.
d. The estimates for the $\lambda \mathrm{R}$ ratio were relatively precise compared to other PS hatcheries.
e. $\lambda \mathrm{R}$ ratios that were greater than 1.0 and had 95% CIs that did not include 1.0 occurred across the range of brood years analyzed. However, half (7 of 14) of the $\lambda \mathrm{R}$ ratios were < 1.0.
f. About 19% of the total recoveries of the marked component of DIT groups were estimated to occur in MSFs.
g. CWT data for Soos Creek Hatchery DIT groups had relatively small impacts from visually-sampled fisheries and mixed-regulation fisheries.
h. The average difference between estimated ERs for the marked and unmarked components of the DIT groups was +0.03 and the ER for the marked component was higher than that of the unmarked component for 11 of the 14 brood years.
4. Data for the DIT groups from George Adams Hatchery provided relatively consistent and reliable estimates of marked and unmarked return rates and ERs and was similar to Soos Creek in that the data were not as consistent when compared to the DIT groups from Marblemount and Wallace River hatcheries.
a. There were four brood years where the Z test results comparing the return rates of the marked and unmarked components of a DIT group to the escapement were significant but only two of the four were positive (a significantly higher proportion of unmarked fish returned to the hatchery than marked fish).
b. Estimated total recoveries averaged more than 1,500 for each brood year for both the marked and unmarked components of DIT groups from George Adams Hatchery.
c. The estimates for the $\lambda \mathrm{R}$ ratio were relatively precise compared to other PS hatcheries. λ R ratios were greater than 1.0 for 12 of the 14 brood years analyzed.
d. About 30% of the total recoveries of the marked component of DIT groups were estimated to occur in MSFs; this was the second highest percentage for any of the PS hatcheries.
e. CWT data for George Adams Hatchery DIT groups had relatively small impacts from visually-sampled fisheries and mixed-regulation fisheries.
f. The average difference between estimated ERs for the marked and unmarked components of the DIT groups was +0.06 and the ER for the marked component was higher than that of the unmarked component for 12 of the 14 brood years.
5. Data for the DIT groups from Quilcene NFH provided relatively consistent and reliable estimates of marked and unmarked return rates and ERs and was similar to Soos Creek and George Adams Hatchery in that the data were not as consistent when compared to the DIT groups from Marblemount and Wallace River hatcheries.
a. Quilcene had the lowest rate of direct sampling of the escapement compared to other PS hatchery DIT groups (62%).
b. There were five brood years where the Z test results comparing the return rates of the marked and unmarked components of a DIT group to the escapement were significant and four of the five were positive (a significantly higher proportion of unmarked fish returned to the hatchery than marked fish).
c. Estimated total recoveries averaged more than 1,600 for each brood year for both the marked and unmarked components of DIT groups from Quilcene NFH.
d. The estimates for the $\lambda \mathrm{R}$ ratio were relatively precise compared to other PS hatcheries. λ R ratios were greater than 1.0 for 13 of the 14 brood years analyzed.
e. About 22% of the total recoveries of the marked component of DIT groups were estimated to occur in MSFs.
f. CWT data for Quilcene NFH DIT groups had relatively small impacts from visually-sampled fisheries and mixed-regulation fisheries.
g. The average difference between estimated ERs for the marked and unmarked components of the DIT groups was +0.06 and the ER for the marked component was higher than that of the unmarked component for 12 of the 13 brood years.

The following DIT program(s) have potential issues that decrease their effectiveness and require further review to determine if these issues can be addressed or if the DIT program(s) should be discontinued:
2. Data and reliable estimates for the DIT groups from the Lower Elwha Hatchery are challenged by a number of issues.
a. Very low average return rates ($<0.30 \%$) resulted in relatively low numbers of CWT recoveries for DIT groups from the Lower Elwha Hatchery (despite having average release numbers about 60% larger than the other Puget Sound DIT programs examined) which negatively impacts the precision of the return rate and ER estimates and reduces the effectiveness of this DIT program as an indicator of the impacts of MSFs on unmarked stocks.
b. The Z test results comparing the return rates of the marked and unmarked components of a DIT group to the escapement were significant and positive (a higher proportion of unmarked fish returned to the hatchery than marked fish) for only 29% of the brood years.
c. There were only two brood years that had a λR ratio > 1.0 with a 95% CI that did not include 1.0. In addition, there were two brood years with a λR ratio < 1.0 (i.e., the return rate of the marked component was higher than the
unmarked component of the DIT group) with a corresponding 95\% CI that did not include 1.0 .
d. Compared to other PS hatchery DIT groups, a relatively high percentage ($\approx 9 \%$) of the fishery recoveries for the marked component of DIT groups from the Lower Elwha Hatchery were in NSFs that were not electronically sampled. Therefore, the number of unmarked recoveries in these NSFs had to be estimated based on the marked recoveries. For the Lower Elwha Hatchery, 14% of the total recoveries of the unmarked component of DIT groups were estimated to occur in the visually-sampled NSFs. This is a potential source of bias and adds uncertainty to the estimates for these DIT groups.
3. Data and reliable estimates for the DIT groups from the Kendall Creek Hatchery are challenged by a number of issues.
a. Low average return rates ($<0.75 \%$) and average release sizes of $\approx 45,000$ fish resulted in relatively low numbers of CWT recoveries for DIT groups from the Kendall Creek Hatchery which negatively impacts the precision of the return rate and ER estimates and reduced the effectiveness of this DIT program as an indicator of the impacts of MSFs on unmarked stocks.
b. Average return rate estimates for Kendall Creek DIT groups were the second lowest in PS and highly variable (CVs $>100 \%$).
c. The Z test results comparing the return rates of the marked and unmarked components of a DIT group to the escapement were significant and positive (a higher proportion of unmarked fish returned to the hatchery than marked fish) for only one of the 10 brood years examined.
d. Only one brood year had a λR ratio >1.0 with a $95 \% \mathrm{CI}$ that did not include 1.0 .
e. For Kendall Creek Hatchery, only 14% of the total recoveries of the marked component of DIT groups were estimated to occur in MSFs.
f. The differences between estimates of ER for the marked and unmarked components of Kendall Creek DIT groups were all relatively small and were not statistically different.

The results for the following DIT program(s) are mixed and are difficult to categorize:

1. Data for the DIT groups from Voights Creek Hatchery provided results that are very similar to those for Soos Creek Hatchery.
a. The primary concern for the Voights Creek data is that the precision of the estimates of return rates, λR ratios, and marked and unmarked ERs has noticeably gotten worse over the last six to seven brood years examined.
b. Average return rate estimates for Voights Creek DIT groups were the third lowest in PS and highly variable (CVs $>75 \%$). For the 2005-2011 brood years, there was only one year which had return rates for the marked and unmarked components of the DIT groups that were > 1.0%.
c. Voights Creek Hatchery averaged relatively low numbers of total CWT recoveries for both the marked and unmarked components of its DIT groups $(1,500)$ and averaged less than 700 CWT recoveries in the escapement.

6.3 Washington Coast (WC) Region

There are six hatcheries in the Washington Coast sub-region which had DIT groups analyzed (Table 6-19). All hatcheries except Makah NFH had DIT-group releases for brood years 1998-2011; Makah NFH had DIT-group releases for the 1998-2010 brood years.

Returns to the Salmon River Fish Culture Facility for the 2009 brood year do not appear to be completely reported. There were also no estimated CWT recoveries reported for the escapement (hatchery and spawning grounds) from both the marked and unmarked DIT groups released for the 2010 brood year from the Salmon River Fish Culture Facility even though there were hundreds of recoveries reported for the terminal net fisheries in the river for that brood year; therefore, the 2010 brood year was not included in the return rate or ER analyses for this hatchery. CWT recoveries from a terminal in-river net fishery downstream of the Solduc Hatchery were not completely reported to RMIS for catch years 2001-2007 (brood years 1998-2004) and represent a known data deficiency affecting the Solduc Hatchery DIT analyses for these brood years.

Table 6-19. Hatcheries in the Washington Coast sub-region with Coho salmon DIT groups analyzed for this report, brood years 1998-2011. Cells with X indicate years with recognized data issues. Grey cells indicate years that were not analyzed due to a lack of a DIT release or identified data issues

| Hatchery | | Brood Year | | | | | | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | $\mathbf{1 9 9 9}$ | $\mathbf{2 0 0 0}$ | $\mathbf{2 0 0 1}$ | $\mathbf{2 0 0 2}$ | $\mathbf{2 0 0 3}$ | $\mathbf{2 0 0 4}$ | $\mathbf{2 0 0 5}$ | $\mathbf{2 0 0 6}$ | $\mathbf{2 0 0 7}$ | $\mathbf{2 0 0 8}$ | $\mathbf{2 0 0 9}$ | $\mathbf{2 0 1 0}$ | $\mathbf{2 0 1 1}$ |
| Makah NFH | X | X | X | X | X | X | X | X | X | X | X | X | X | |
| Quinault NFH | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
| Salmon R. Fish Culture | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
| Solduc | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
| Bingham Creek | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
| Forks Creek | X | X | X | X | X | X | X | X | X | X | X | X | X | X |

Average numbers of Coho salmon released in the marked and unmarked components of the DIT groups from WC hatcheries were generally similar across hatcheries and averaged $\approx 70,000-75,000$ fish (Table 6-20). The exceptions were Makah NFH which averaged about 40,000 fish released each brood year and Quinault NFH which averaged about 93,000 fish released each brood year for both the marked and unmarked DIT group components. Across all hatcheries and brood years, the minimum number released in a DIT group component was about 35,000 fish (Makah NFH) and the maximum about 140,000 fish (Quinault NFH). Fairly consistent numbers of fish were released annually for the DIT groups from the Salmon River Fish Culture, Solduc, Bingham Creek, and Forks Creek hatcheries (CVs for the average number released $<10 \%$). DIT group releases from Makah NFH and Quinault NFH were slightly more variable with CVs of $\approx 16 \%$ and 25%, respectively.

Sub-sampling the escapement was common for WC hatcheries and 100% of the Coho were rarely sampled. Across brood years, the mean percentage of the Coho in the escapement that were directly sampled ranged from $\approx 37 \%$ to 72% (Table 6-21). Makah NFH and Quinault NFH both had mean sampling rates less than 50%. Sub-sampling the escapement requires expansion factors to expand observed CWT tags recovered into total estimated tags recovered. This adds variation to the estimates of return rates and marked and unmarked ERs. More than 99.5% of the directly-sampled fish from all DIT groups were sampled with ETD by WC hatcheries (Table 6-21). This removes any potential bias associated with visual sampling of the unmarked component of the returning DIT groups.

Table 6-20. Summary statistics for the number of Coho salmon with CWTs released in the marked and unmarked components of Washington Coast DIT groups, by hatchery (averaged across brood years).

Hatchery	Mark Status	Mean	Minimum	Maximum	$\mathbf{C V}^{\mathbf{a}}$
	Marked	40,491	35,602	61,907	16.3%
	Unmarked	40,857	36,221	64,410	17.7%
Quinault NFH	Marked	93,087	73,686	139,154	26.2%
	Unmarked	93,659	73,190	143,988	26.0%
Salmon R. Fish Culture	Marked	73,592	68,440	80,105	5.3%
	Unmarked	76,333	71,602	81,407	4.8%
Solduc	Marked	75,953	70,389	96,400	8.7%
	Unmarked	74,055	64,087	80,185	5.1%
Bingham Creek	Marked	70,947	65,986	73,833	3.3%
	Unmarked	71,419	67,861	73,371	2.4%
Forks Creek	Marked	72,302	65,860	74,500	3.0%
	Unmarked	72,635	62,718	75,301	5.1%

${ }^{\text {a }} \mathrm{CV}=$ coefficient of variation.
Table 6-21. Summary statistics for the percent of the escapement directly sampled (\% Sampled) and the proportion of the sampled fish that were sampled electronically (Prop ETD) for Washington Coast DIT groups, by hatchery (averaged across brood years).

Hatchery	Mark Status	Mean	Minimum	Maximum	CV
	\% Sampled	39.2%	10.9%	77.8%	47.5%
	Prop ETD	1.000	0.998	1.000	0.1%
Quinault NFH	\% Sampled	36.9%	21.1%	70.0%	39.3%
	Prop ETD	1.000	1.000	1.000	0.0%
Salmon R. Fish Culture	\% Sampled	51.5%	12.4%	88.2%	45.2%
	Prop ETD	1.000	0.999	1.000	0.0%
Solduc	\% Sampled	72.2%	30.6%	99.3%	35.9%
	Prop ETD	1.000	1.000	1.000	0.0%
Bingham Creek	\% Sampled	61.5%	29.0%	97.1%	34.5%
	Prop ETD	1.000	1.000	1.000	0.0%

Forks Creek	\% Sampled	62.1%	33.7%	97.9%	29.1%
	Prop ETD	1.000	1.000	1.000	0.0%

Average return rates to the escapement for the marked and unmarked components of WC DIT groups varied by hatchery (Table 6-22). The expectation is that if MSFs are having a measurable impact on the unmarked component of a DIT group (i.e., reduction in the number of fishery-related mortalities), the return rate to the hatchery will be higher for the unmarked component. Average return rates of the unmarked component were higher than the marked component for the DIT groups from all WC hatcheries except for Makah NFH and Salmon River Fish Culture. The average return rates to the Salmon River Fish Culture Facility were the lowest at < 1.0%; average return rates to all other WC hatcheries were in the $1.7-2.5 \%$ range. DIT group return rates to Salmon River Fish Culture were the most variable with CVs $>90 \%$. DIT group return rates to Quinault NFH were the least variable with CVs $\approx 40 \%$.

Table 6-22. Summary statistics for the return rates of Coho salmon in the marked and unmarked components of Washington Coast DIT groups, by hatchery (averaged across brood years).

Hatchery	Mark Status	Mean	Minimum	Maximum	CV
Makah NFH	Marked	1.82%	0.19%	4.50%	70.0%
	Unmarked	1.71%	0.19%	4.07%	69.2%
Quinault NFH	Marked	2.01%	0.62%	3.59%	40.8%
	Unmarked	2.15%	0.59%	3.89%	44.8%
Salmon R. Fish Culture	Marked	0.90%	0.05%	4.76%	138.3%
	Unmarked	0.53%	0.03%	1.37%	93.1%
Solduc	Marked	2.45%	0.35%	4.50%	52.7%
	Unmarked	2.52%	0.47%	5.23%	55.5%
Bingham Creek	Marked	2.48%	0.67%	5.30%	60.8%
	Unmarked	2.64%	0.60%	5.88%	61.8%
Forks Creek	Marked	1.96%	0.60%	7.13%	93.6%
	Unmarked	2.21%	0.54%	7.34%	87.4%

The Z tests comparing the return rates of the marked and unmarked components of a DIT group to the escapement were significant $(P \leq 0.05)$ and positive (a higher proportion of unmarked fish returned to the hatchery than marked fish) in 50% or less of the brood years for each hatchery (Table 6-23). For all DIT groups examined from WC hatcheries, 43% of the 82 Z tests conducted were significant and only 31% of the tests were both significant and had a λR ratio > 1.0. For Makah NFH, none of the 13 brood years had a significant Z-test result when the λR ratio was >1.0. Similarly, for Salmon River FC only one of the 13 brood years had a significant Z-test result when the λR ratio was >1.0.

Table 6-23. Percent of brood years where the Z test comparing return rates of marked and unmarked DIT groups to escapement is significant $(P \leq 0.05)$ and positive (+YES), significant and negative (-YES), or not significant (NS), and number of brood years tested for Washington Coast hatcheries and brood years 1998-2011.

Hatchery	NS	+YES	-YES	\# of Broods
Makah NFH	77%	0%	23%	13
Quinault NFH	57%	36%	7%	14
Salmon R. Fish Culture	69%	8%	23%	13
Solduc	50%	43%	7%	14
Bingham Creek	43%	43%	14%	14
Forks Creek	50%	50%	0%	14
Regional Total	57%	31%	12%	82

Figure 6-7 shows λR ratios with approximate 95% confidence intervals for each hatchery, by brood year. Brood years with a significant $(P \leq 0.05) \mathrm{Z}$ test comparing the return rates of the marked and unmarked components of a DIT group to the escapement are indicated with an *. Both Makah NFH and Salmon River Fish Culture had λR ratios < 1.0 and the 95% CI did not include 1.0 (i.e., the marked component had a higher return rate to the hatchery than the unmarked component) for about one third of the brood years analyzed. Four of the WC hatcheries had return rate data that indicated a fairly consistent and measurable impact of MSFs, i.e., they had at least six brood years with significant ($P \leq 0.05$) Z tests with λR ratios > 1.0 and had 95% CIs that did not include 1.0: Quinault NFH; Solduc;, Bingham Creek; and Forks Creek hatcheries.

The average number of estimated CWT recoveries (marked or unmarked) from individual WC hatchery DIT groups ranged from a low of 962 and 777, respectively, for Makah NFH releases to more than 4,500 brood year recoveries for both marked and unmarked DIT groups from Quinault NFH (Table 6-24). The average percent of total (fishery plus escapement) estimated recoveries (across brood years) that occurred in fisheries ranged from 24% to 73% for marked fish and 11% to 72% for unmarked fish. The majority of the fishery recoveries for the marked component was in terminal fisheries for the DIT groups from all hatcheries except Makah NFH.

Figure 6-7. $\quad \lambda R$ ratios with approximate 95% confidence intervals for DIT groups released by Washington Coast hatcheries for brood years 1998-2011. Brood years with a significant $(P \leq 0.05) \mathrm{Z}$ test comparing the return rates to the escapement of the marked and unmarked components of a DIT group are indicated with an *.

Table 6-24. Average number of estimated CWT recoveries and general recovery location for the marked and unmarked components of Washington Coast hatchery DIT groups (averaged across brood years).

Hatchery	Mark Status	Fishery Location		Total Fishery		Escapement	Total Recoveries
		Pre-	Termina	\#	\%		
Makah NFH	Marked	186.5	29.4	215.9	25.3\%	745.6	961.5
	Unmarked	31.8	30.4	62.2	10.7\%	714.5	776.7
Quinault NFH	Marked	664.8	2,330.6	2,995.5	61.6\%	1,858.8	4,854.3
	Unmarked	97.9	2,428.8	2,526.7	54.3\%	2,013.6	4,540.3
Salmon R. Fish Culture	Marked	295.1	900.6	1,195.7	73.1\%	606.6	1,802.3
	Unmarked	41.8	771.3	813.2	72.1%	372.8	1,186.0
Solduc	Marked	526.0	864.1	1,390.2	38.2\%	1,854.8	3,244.9
	Unmarked	90.4	916.4	1,006.7	26.4\%	1,861.4	2,868.2
Bingham Creek	Marked	213.5	342.2	555.7	24.2\%	1,769.9	2,325.6
	Unmarked	80.3	307.4	387.8	16.8\%	1,897.3	2,285.0
Forks Creek	Marked	527.9	824.8	1,352.6	49.6\%	1,420.3	2,773.0
	Unmarked	90.2	852.7	942.9	36.5\%	1,596.6	2,539.6

Figure 6-8 shows the average percentage (across brood years) of estimated CWT recoveries in fisheries by location (pre-terminal or terminal), gear type (sport, troll, or net), and fishery type (NSF, MSF, or Mixed) for the marked and unmarked components of each hatchery's DIT groups. Three details to note in this figure are:

- There is a measurable but small percentage of the recoveries that occurred in "mixed" regulation, pre-terminal sport fisheries for the marked component of DIT groups from all WC hatcheries. The marked component of DIT groups from Makah NFH and the Solduc Hatchery show the highest percentage of recoveries in mixed-regulation fisheries. Corresponding unmarked recoveries in mixed-regulation fisheries are estimated identically to those from MSFs for the analyses in this report. This may introduce unknown bias and add to the uncertainty of estimates of unmarked ERs in these fisheries as some of the fish caught in the mixed-regulation category may actually be caught under partial NSF regulations.
- For the marked DIT groups, the majority of the CWT recoveries occurred in preterminal sport fisheries and terminal net fisheries while the majority ($\geq 60 \%$) of the recoveries for the unmarked component occurred in terminal non-selective net fisheries. The exception was for DIT groups from Makah NFH where pre-terminal troll fisheries had a higher percentage of the recoveries than terminal net fisheries for both the marked and unmarked components.
- The potential impact of fisheries with visual sampling (i.e., no ETD) can be seen by comparing the percentage of the marked DIT group recoveries that occurred in NSFs to the percentage of the corresponding unmarked DIT groups that occurred in these same fisheries. For WC DIT groups, the percentage of recoveries from the unmarked component of the DIT group is about equal to or greater than the percentage for the corresponding marked group. Therefore, potential bias due to visually-sampled fisheries does not appear to be an issue with WC DIT groups.

Figure 6-8. Bar charts comparing average percentage, across brood years, of total estimated CWT recoveries in fisheries, by fishery type and location, for marked and unmarked DIT group releases from WC hatcheries.

Figure 6-8. Bar charts comparing average percentage, across brood years, of total estimated CWT recoveries in fisheries, by fishery type and location, for marked and unmarked DIT group releases from WC hatcheries (continued).

The major fisheries impacting WC DIT groups primarily used electronic sampling. For the marked component of the DIT groups, in total, 92% of the total estimated CWT recoveries from fisheries were by electronic sampling programs (Table 6-25) with visually-sampled fisheries accounting for only 8% of estimated recoveries. About 89% of all CWT recoveries for the marked component of Washington Coast DIT groups were in electronically sampled fisheries in the Washington Coastal region. About 1% of the recoveries from the marked component of Washington Coast DIT groups were in mixed-regulation fishery strata. About 67% of the total estimated recoveries of the marked component of WC DIT groups were in non-selective net fisheries with ETD sampling in the Washington Coast region.

Approximately 90% or more of the estimated CWT recoveries in fisheries for both the marked and unmarked components of DIT groups from WC hatcheries were in electronicallysampled fisheries (Table 6-26). The exception was Makah NFH where 74% and 88% of the estimated CWT recoveries were in electronically-sampled fisheries for the marked and unmarked components of the DIT groups, respectively. For the marked component of DIT groups from WC hatcheries, less than 3\% of the estimated CWT recoveries from any hatchery occurred in mixed-regulation fisheries. Estimated recoveries for unmarked DIT groups in NSFs without electronic sampling were $\leq 4 \%$ for all hatcheries except Makah NFH (12%). For the marked component of DIT groups from WC hatcheries, the percentage of total
estimated CWT recoveries occurring in MSFs, across all brood years, ranged from 18\% for Quinault NFH to 66% for Makah NFH.
Table 6-25. Percentage of all estimated CWT recoveries of marked fish associated with DIT groups released from WC hatcheries (brood years 1998-2011) by detection method (electronic or visual) and fishery type (NSF, MSF, Mixed).

Region Fishery	Electronically Sampled				Visually Sampled			
	NSF	MSF	Mixed	Total	NSF	MSF	Mixed	Total
Alaska								
Net	0.00\%	0.00\%	0.00\%	0.00\%	0.03\%	0.00\%	0.00\%	0.03\%
Sport	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Troll	0.00\%	0.00\%	0.00\%	0.00\%	0.23\%	0.00\%	0.00\%	0.23\%
British Columbia								
Net	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Sport	0.02\%	0.06\%	0.00\%	0.07\%	0.35\%	2.01\%	0.78\%	3.14\%
Troll	0.09\%	0.01\%	0.06\%	0.15\%	0.16\%	0.07\%	0.01\%	0.24\%
Puget Sound								
Net	0.05\%	0.00\%	0.00\%	0.05\%	0.00\%	0.00\%	0.00\%	0.00\%
Sport	0.30\%	0.85\%	0.00\%	1.15\%	0.00\%	0.00\%	0.00\%	0.00\%
Troll	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Washington Coast								
Net	67.37\%	0.00\%	0.00\%	67.37\%	0.00\%	0.00\%	0.00\%	0.00\%
Sport	2.69\%	14.29\%	0.00\%	16.97\%	0.00\%	0.00\%	0.00\%	0.00\%
Troll	3.38\%	1.41\%	0.00\%	4.79\%	0.00\%	0.00\%	0.00\%	0.00\%
Oregon Coast and Columbia River								
Net	0.02\%	0.02\%	0.00\%	0.03\%	0.00\%	0.00\%	0.00\%	0.00\%
Sport	0.18\%	1.30\%	0.00\%	1.48\%	0.00\%	3.64\%	0.00\%	3.64\%
Troll	0.09\%	0.01\%	0.00\%	0.10\%	0.00\%	0.47\%	0.07\%	0.54\%
Totals	74.18\%	17.94\%	0.06\%	92.17\%	0.77\%	6.19\%	0.86\%	7.83\%

Figure 6-9 compares total exploitation rates estimated by the Paired-Ratio (PR) method and $\lambda^{\text {Rel }}$ (Section 3.2) for the marked and unmarked components of the DIT groups from each hatchery for each brood year. Years when the Z test comparing the return rates to the escapement of the marked and unmarked components of a DIT group was significant are indicated with an *. The proportion of the estimated unmarked ER occurring in MSFs is shown, also. Figure 10C in Appendix 10 compares ER estimates for the marked and unmarked components of the WC DIT groups by hatchery and brood year (with approximate 95% confidence intervals for the estimates). While the estimated unmarked ER is usually lower than the marked ER across all hatcheries and brood years for Washington Coast DIT groups (Figure 6-9), for 15% of the DIT groups analyzed (12 out of 82) the estimated ER for the unmarked component was greater than the estimate for the marked component - which is
contrary to expectations. For 10 of these 12 DIT groups, the unmarked ER was less than +0.03 greater than the marked ER. Differences of this size may be attributed to

Table 6-26. Percentage of DIT recoveries in fisheries with electronic sampling (ETD) and without electronic sampling (Visual), by fishery type. Unmarked recoveries in NSFs without electronic sampling are estimated (Estimated). Bold number is total number of estimated recoveries in fisheries for DIT groups released from WC hatcheries for the 1998-2011 brood years.

		Mark	ed Comp	onent		marked	ompone	
Hatchery	Fishery Type	$\begin{gathered} \text { ETD } \\ \text { Sample } \end{gathered}$	Visual Sample	Total	$\begin{gathered} \text { ETD } \\ \text { Sample } \\ \hline \end{gathered}$	Visual Sample	Estimated	Total
Makah NFH								
	NSF	27.8\%	3.8\%	31.6\%	83.0\%	0.0\%	11.8\%	94.8\%
	MSF	46.2\%	19.5\%	65.7\%	4.9\%	0.2\%	0.0\%	5.2\%
	Mixed	0.1\%	2.7\%	2.7\%	0.0\%	0.0\%	0.0\%	0.0\%
	Total	74.0\%	26.0\%	2,807.0	87.9\%	0.2\%	11.8\%	916.8
Quinault NFH								
	NSF	80.7\%	0.7\%	81.4\%	98.8\%	0.0\%	0.8\%	99.6\%
	MSF	13.8\%	4.3\%	18.1\%	0.3\%	0.0\%	0.0\%	0.4\%
	Mixed	0.0\%	0.6\%	0.6\%	0.0\%	0.0\%	0.0\%	0.0\%
	Total	94.5\%	5.5\%	41,936.4	99.1\%	0.1\%	0.8\%	35,659.2

Salmon River Fish Culture

	NSF	79.0%	0.9%	79.9%	97.7%	0.0%	1.4%	99.1%
	MSF	15.0%	4.6%	19.5%	0.7%	0.1%	0.0%	0.8%
	Mixed	0.0%	0.5%	0.5%	0.0%	0.1%	0.0%	0.1%
	Total	94.0%	6.0%	$\mathbf{1 6 , 7 4 0 . 4}$	98.4%	0.2%	1.4%	$\mathbf{1 1 , 5 4 2 . 4}$

Solduc

	NSF	69.5%	1.1%	70.6%	98.0%	0.0%	1.5%	99.5%
	MSF	21.1%	6.2%	27.3%	0.5%	0.0%	0.0%	0.5%
	Mixed	0.2%	1.9%	2.0%	0.0%	0.0%	0.0%	0.0%
	Total	90.8%	9.2%	$\mathbf{1 9 , 4 6 2 . 3}$	98.5%	0.0%	1.5%	$\mathbf{1 4 , 3 0 5 . 0}$

Bingham Creek

	NSF	75.0%	2.9%	78.0%	94.4%	0.1%	4.0%	98.5%
	MSF	17.7%	3.8%	21.5%	1.5%	0.0%	0.0%	1.5%
	Mixed	0.3%	0.2%	0.6%	0.0%	0.0%	0.0%	0.0%
	Total	93.0%	7.0%	$\mathbf{7 , 7 7 9 . 9}$	95.9%	0.1%	4.0%	$\mathbf{5 , 6 5 7 . 2}$

Forks Creek

	NSF	66.9%	1.8%	68.7%	96.2%	0.1%	2.5%	98.8%
	MSF	22.5%	8.5%	30.9%	1.0%	0.2%	0.0%	1.2%
	Mixed	0.0%	0.4%	0.4%	0.0%	0.0%	0.0%	0.0%
	Total	89.3%	10.7%	$\mathbf{1 8 , 9 3 6 . 9}$	97.2%	0.3%	2.5%	$\mathbf{1 3 , 5 3 9 . 3}$

Figure 6-9. Comparison of estimates of exploitation rates (ER) for the marked and unmarked components of DIT groups released by WC hatcheries for brood years 1998-2011.

Figure 6-9. Comparison of estimates of exploitation rates (ER) for the marked and unmarked components of DIT groups released by WC hatcheries for brood years 1998-2011 (continued).
sampling error associated with small sample sizes from fishery and/or escapement sampling resulting in relatively low numbers of CWT recovered. For two of the 12 DIT groups, the unmarked ER was more than +0.08 greater than the marked ER. Both of these DIT groups were from Salmon River Fish Culture (brood years 2002 and 2003). Differences of this size, with the estimated unmarked ER being higher than the estimated marked ER, indicate a more serious violation of the necessary assumptions such as:

- Unequal survival for the marked and unmarked groups after release,
- Biased sampling in the fisheries impacting these DIT groups, and
- Incomplete tag recovery reporting, especially at the hatchery (i.e., recovered CWTs not being reported to RMIS).

The Salmon River FC DIT groups also had four other brood years where the estimated ER for the unmarked component of the DIT group was slightly higher than the estimated ER for the marked component.

Differences between the ER estimates ranged from -0.299 to +0.442 (Table 6-27). Across all hatcheries and brood years, the ER for the marked component of the DIT groups was, on average, +0.072 greater than the ER for the unmarked component of the DIT group. Across brood years, the average ER for the unmarked component of Salmon River FC DIT groups was about 0.01 larger than the average ER for the marked component which is contrary to expectations.

Table 6-27. Average difference between the estimated exploitation rates (ER) for the marked and unmarked components of WC DIT groups. Unmarked ER estimated using the PR method with λ at release.

	Humber	Difference Marked ER - Unmarked ER		
Hatchery	of Years	Mean	Minimum	Maximum
Makah NFH	13	0.110	-0.014	0.306
Quinault NFH	14	0.061	-0.016	0.442
Salmon R. Fish Culture	13	-0.007	-0.299	0.120
Solduc	14	0.095	-0.002	0.253
Bingham Creek	14	0.059	-0.027	0.187
Forks Creek	14	0.111	0.038	0.374
Regional Total	82	0.072	-0.299	0.442

6.3.1 Conclusions and Recommendations for Washington Coast Hatchery DIT Groups

- The numbers of fish released in DIT groups from WC hatcheries were generally averaged more than 70,000 fish released in both the marked and unmarked components and the minimum numbers released in a DIT group in any brood year exceeding 60,000 fish. These release numbers would be adequate to detect differences in return proportions of marked and unmarked fish under low survival and/or sampling rates (Section 2.5). The exception was Makah NFH which averaged about 40,000 fish released per mark status group per brood year.
- Sub-sampling the escapement was common for WC hatcheries. Less than 50% of the returning Coho were directly sampled for about half the brood years analyzed for the WC region. For Makah NFH and Quinault NFH more than 70% of the brood years were sub-sampled at a rate $<50 \%$. Across brood years, the average percentage of the Coho in the escapement that were directly sampled was 39% for Makah NFH and 37% for Quinault NFH. Sub-sampling affects the power of the Z test that compares the return rates of the marked and unmarked components of a DIT group. Lower sampling rates result in decreased power for these tests.
- Nearly all returning Coho that were directly sampled at WC hatcheries were screened for CWTs with ETD. This eliminates a source of potential bias for the estimates of the number of fish in the unmarked component of DIT groups.
- For all DIT groups examined from WC hatcheries, 43% of the 82 Z tests conducted produced significant results and only 31% of the tests were both significant and had a λR ratio greater than 1.0 (i.e., the return rate of the unmarked component was significantly greater than for the marked component indicating a measurable impact of MSFs).
- The Z-test statistic result was significant and negative for 23% of the brood years from two hatcheries (Makah NFH and Salmon River Fish Culture) indicating that a higher proportion of the marked component of the DIT groups returned to the hatchery than the unmarked component. As this finding is against expectations, i.e., with MSFs a higher proportion of the unmarked component of the DIT groups should return, it points to an issue either in the release number, rearing and release strategy, or in the sampling of the hatchery return. These programs should be re-evaluated as to their value as DIT group programs.
- Relatively small numbers of CWT recoveries for DIT groups from Makah NFH and Salmon River Fish Culture impact the estimation precision and effectiveness of these DIT programs.
- About 90% or more of the estimated CWT recoveries from fisheries for most DIT groups from Washington Coast hatcheries (both the marked and unmarked components) were in electronically-sampled fisheries. The exception was the marked component of the DIT groups from Makah NFH (74\%).
- MSF impacts for DIT groups from the WC region are influenced by geographical location. A higher proportion of impacts on the marked component of the DIT groups from Makah NFH occurred in MSFs (> 65\% of fishery recoveries) compared to other hatcheries in the region ($\leq 31 \%$).
- Across all hatcheries and brood years, less than 3\% of the estimated CWT recoveries in fisheries for the marked component of Washington Coast DIT groups occurred in mixed-regulation fisheries.
- CWT samples from visually-sampled fisheries or mixed-regulation fisheries are generally not an issue with Washington Coast DIT groups. However, DIT groups from Makah NFH had the largest percentage of CWT recoveries from fisheries that were either visually sampled and/or with mixed regulations. DIT groups from Makah NFH also had a considerably higher estimated percentage of CWT recoveries for the unmarked component of its DIT groups occurring in NSFs that were not electronically sampled: 12% compared to $\leq 4 \%$ for all other WC hatcheries.
- While the exploitation on the unmarked component of the Washington Coast DIT groups was estimated to be less than that of the marked component for the majority of brood years (85%), only for DIT groups from Forks Creek Hatchery were the differences between marked and unmarked ER estimates consistently significant.

Even with the large majority of CWT recoveries for Washington Coast DIT groups occurring in NSFs and MSFs that are electronically sampled, the differences between estimated ERs for the marked and unmarked components of the DIT groups are quite variable between brood years and hatcheries. For the 82 brood year comparisons:

- 15% had an unmarked ER estimate $>$ than the marked ER estimate;
- 30% had a difference in ER estimates (marked ER - unmarked ER) that were >0 and ≤ 0.05;
- 32% had a difference in ER estimates that were >0.05 and ≤ 0.10;
- 8% had a difference in ER estimates that were >0.10 and ≤ 0.15; and,
- 15% of the differences were >0.15.

Although the ER for the marked component of the DIT groups from WC hatcheries was, on average, +0.072 greater than the ER for the unmarked component of the DIT group, this difference should be viewed with caution because for 15% of the brood years examined the estimated unmarked ER was greater than the marked ER. Some of the smaller differences that are contrary to expectations may be related to sample sizes and the precision of the associated estimates. However, the larger differences may be indicative of more serious violations of the necessary assumptions for the analyses such as:

- Unequal survival for the marked and unmarked groups after release;
- Biased sampling in the fisheries impacting these DIT groups; and;
- Incomplete tag recovery reporting, especially at the hatchery (i.e., recovered CWTs not being reported to RMIS).

Recommendations

The following DIT program(s) provide relatively consistent, reliable, and relatively precise estimates that can be used to evaluate the impacts of MSFs on the unmarked component of DIT groups:

1. Data for the DIT groups from Quinault NFH provided relatively consistent and reliable estimates of marked and unmarked return rates and ERs.
a. There were six brood years where the Z test results comparing the return rates of the marked and unmarked components of a DIT group to the escapement were significant and five of the six were positive (a significantly higher proportion of unmarked fish returned to the hatchery than marked fish).
b. The average size of the DIT groups released from Quinault NFH were the highest in the WC region ($\approx 93,000$ per brood year).
c. Estimated total recoveries averaged more than 4,500 for each brood year for both the marked and unmarked components of DIT groups from Quinault NFH.
d. The estimates for the λR ratio were relatively precise and 6 of the $14 \lambda R$ ratios were > 1.0 and had 95% CIs that did not include 1.0.
e. For Quinault NFH, 18% of the total recoveries of the marked component of DIT groups were estimated to occur in MSFs.
f. CWT data for Quinault NFH DIT groups had relatively small impacts from visually-sampled fisheries and mixed-regulation fisheries.
g. The average difference between estimated ERs for the marked and unmarked components of the DIT groups was +0.06 and the ER for the marked component was higher than that of the unmarked component for 11 of the 14 brood years examined.
2. Because of the possible data reporting issue associated with the CWT recovery data for the 1997 through 2004 brood years identified at the beginning of the Washington Coast section, the evaluation of the Solduc Hatchery should focus on the last seven brood years of data (2005-2011).
a. Four of the last seven brood years had Z test results that were significant and all four were positive (a significantly higher proportion of unmarked fish returned to the hatchery than marked fish).
b. Estimated total recoveries averaged more than 2,800 for each brood year for both the marked and unmarked components of DIT groups from Solduc Hatchery.
c. The estimates for the λR ratio were relatively precise and four of the last seven brood years had λR ratios that were > 1.0 and had 95% CIs that did not include 1.0 .
d. For Solduc Hatchery, 27% of the total recoveries of the marked component of DIT groups were estimated to occur in MSFs.
e. CWT data for Solduc Hatchery DIT groups had relatively small impacts from visually-sampled fisheries and mixed-regulation fisheries.
f. The average difference between estimated ERs for the marked and unmarked components of the DIT groups was +0.05 and the ER for the marked component was higher than that of the unmarked component for six of the last seven brood years.
3. Data for the DIT groups from Bingham Creek Hatchery provided relatively consistent and reliable estimates of marked and unmarked return rates and ERs.
a. There were eight brood years where the Z test results comparing the return rates of the marked and unmarked components of a DIT group to the escapement were significant and six of the eight were positive (a significantly higher proportion of unmarked fish returned to the hatchery than marked fish).
b. Estimated total recoveries averaged more than 2,200 for each brood year for both the marked and unmarked components of DIT groups from Bingham Creek Hatchery.
c. The estimates for the λR ratio were relatively precise and 7 of the $14 \lambda R$ ratios were > 1.0 and had 95% CIs that did not include 1.0.
d. For Bingham Creek Hatchery, 22% of the total recoveries of the marked component of DIT groups were estimated to occur in MSFs.
e. CWT data for Bingham Creek DIT groups had relatively small impacts from visually-sampled fisheries and mixed-regulation fisheries.
f. The average difference between estimated ERs for the marked and unmarked components of the DIT groups was +0.06 and the ER for the marked component was higher than that of the unmarked component for 13 of the 14 brood years examined.
4. Data for the DIT groups from Forks Creek Hatchery provided relatively consistent and reliable estimates of marked and unmarked return rates and ERs.
a. There were seven brood years where the Z test results comparing the return rates of the marked and unmarked components of a DIT group to the escapement were significant and all seven were positive (a significantly higher proportion of unmarked fish returned to the hatchery than marked fish).
b. Estimated total recoveries averaged more than 2,500 for each brood year for both the marked and unmarked components of DIT groups from Forks Creek Hatchery.
c. The estimates for the λR ratio were relatively precise and 8 of the $14 \lambda R$ ratios were > 1.0 and had 95% CIs that did not include 1.0.
d. For Forks Creek Hatchery, 31% of the total recoveries of the marked component of DIT groups were estimated to occur in MSFs.
e. CWT data for Forks Creek DIT groups had relatively small impacts from visually-sampled fisheries and mixed-regulation fisheries.
f. The average difference between estimated ERs for the marked and unmarked components of the DIT groups was +0.11 and the ER for the marked
component was higher than that of the unmarked component for all 14 of the brood years examined.

The following DIT program(s) have potential issues that decrease their effectiveness and require further review to determine if these issues can be addressed or if the DIT program(s) should be discontinued:

1. Data and reliable estimates for the DIT groups from Makah NFH are challenged by a number of issues.
a. Relatively small numbers released for both the marked and unmarked DITgroup components and a low average return rate ($<2 \%$) resulted in low numbers of total CWT recoveries for DIT groups from Makah NFH which negatively impacts the precision of the return rate and ER estimates and reduces the effectiveness of this DIT program as an indicator of the impacts of MSFs on unmarked stocks.
b. Makah NFH had an average sampling rate of the escapement of only 39%. The sampling rate of the return to escapement for 9 of the 13 brood years examined was < 50% and four brood years had sampling rates < 20\%. Subsampling the escapement requires expansion factors to expand observed CWT tags recovered into total estimated tags recovered and increases the uncertainty of the estimates of return rates.
c. None of the Z test results comparing the return rates of the marked and unmarked components of a DIT group to the escapement were significant and positive (a higher proportion of unmarked fish returned to the hatchery than marked fish) for the 13 brood years examined.
d. There were only two brood years that had a λR ratio >1.0 with a 95% CI that did not include 1.0. In addition, there were four brood years with a λR ratio $<$ 1.0 (i.e., the return rate of the marked component was higher than the unmarked component of the DIT group) with a corresponding 95% CI that did not include 1.0 .
e. Compared to other WC hatchery DIT groups, a relatively high percentage ($\approx 12 \%$) of the total fishery recoveries of the unmarked component of DIT groups were estimated to occur in the visually-sampled NSFs. This is a potential source of bias and adds uncertainty to the estimates for these DIT groups.
2. Data and reliable estimates for the DIT groups from the Salmon River Fish Culture Facility are challenged by a number of issues.
a. DIT groups from Salmon River FC had the lowest average return rate in the WC region ($<1 \%$) and were highly variable (CVs $>90 \%$).
b. Salmon River FC had an average sampling rate of the escapement of 51%. The sampling rate of the return to escapement for 6 of the 13 brood years examined was < 50% and one brood year had a sampling rate of only 12%. Sub-sampling the escapement requires expansion factors to expand observed

CWT tags recovered into total estimated tags recovered and increases the uncertainty of the estimates of return rates
c. The Z test results comparing the return rates of the marked and unmarked components of a DIT group to the escapement were significant and positive (a higher proportion of unmarked fish returned to the hatchery than marked fish) for only 1 of the 13 brood years examined.
d. There was only one brood year that had a λR ratio >1.0 with a $95 \% \mathrm{CI}$ that did not include 1.0. In addition, there were four brood years with a λR ratio <1.0 (i.e., the return rate of the marked component was higher than the unmarked component of the DIT group) with a corresponding 95\% CI that did not include 1.0.
e. The average difference between the estimated ERs for the marked and unmarked components of the DIT groups was -0.007, i.e., on average the estimated ER for the unmarked component of the DIT group was higher than for the marked component. The ER for the marked component was higher than that of the unmarked component for only 6 of the 13 brood years examined. There was little indication of measurable and consistent impact of MSFs on Salmon River Fish Culture DIT groups.

6.4 Columbia River (CR) Region

There are three hatcheries in the Columbia River region which had DIT groups analyzed (Table 6-28). Two DIT groups are released annually from the Lewis River Hatchery: a northmigrating group and a south-migrating group. All hatcheries except Sandy River had DITgroup releases for brood years 1998-2011; Sandy River only had DIT-group releases for the 1998-2008 brood years.

Table 6-28. Hatcheries in the Columbia River region with Coho salmon DIT groups analyzed for this report, brood years 1998-2011.

Hatchery	Brood Year													
	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
Lewis River - North	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Lewis River - South	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Eagle Creek NFH	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Sandy River	X	X	X	X	X	X	X	X	X	X	X			

Average numbers of Coho salmon released in the marked and unmarked components of the DIT groups from CR hatcheries varied by hatchery (Table 6-29). For the Lewis River hatchery, marked and unmarked DIT group releases averaged about 70,000 fish for each stock (north-migrating and south-migrating) for each brood year. Release numbers from Eagle Creek NFH and Sandy Creek Hatchery were generally in the 20,000-25,000 range for each of the DIT group components. Across all hatcheries and brood years, the minimum number
released in a DIT group component was about 18,000 fish (Eagle Creek NFH) and the maximum about 81,000 fish (Lewis River - North). Fairly consistent numbers of fish were released annually for the DIT groups from the Lewis River and Eagle Creek hatcheries (CVs $<10 \%$ for the average number released). There was one brood year with a relatively large number of fish released in the marked component from Sandy River Hatchery.

Sub-sampling the escapement was common for CR hatcheries and 100% of the Coho were rarely directly sampled. Across brood years, the mean percentage of the Coho in the escapement that were directly sampled ranged from $\approx 56 \%$ to 98% (Table 6-30). Lewis River DIT groups had the lowest mean sampling rates (<60\%). Sub-sampling the escapement requires expansion factors to expand observed CWT tags recovered into total estimated tags recovered and adds variation to the estimates of return rates and marked and unmarked ERs. In contrast, nearly all Coho returning in the escapement to Sandy River Hatchery were directly sampled (mean sample rate $=97.6 \%$). ETD was used on 99% or more of the directlysampled fish in the escapements to CR hatcheries (Table 6-30). This practice removes any potential bias associated with visual sampling of the unmarked component of the returning DIT groups.

Table 6-29. Summary statistics for the number of Coho salmon with CWTs released in the marked and unmarked components of Columbia River DIT groups, by hatchery (averaged across brood years).

Hatchery	Mark Status	Mean	Minimum	Maximum	$\mathbf{C V}^{\mathbf{a}}$
Lewis River - North	Marked	70,623	62,198	76,503	7.1%
	Unmarked	72,068	62,408	80,842	7.3%
Lewis River - South	Marked	71,744	66,831	76,668	4.3%
	Unmarked	72,875	68,702	75,818	3.3%
Eagle Creek NFH	Marked	23,898	17,825	25,069	7.7%
	Unmarked	23,741	18,733	24,925	6.6%
Sandy River	Marked	31,106	25,794	70,665	42.2%
	Unmarked	26,946	25,205	27,999	3.7%

${ }^{\text {a }} \mathrm{CV}=$ coefficient of variation.

Table 6-30. Summary statistics for the percent of the escapement directly sampled (\% Sampled) and the proportion of the sampled fish that were sampled electronically (Prop ETD) for Columbia River DIT groups, by hatchery (averaged across brood years).

Hatchery	Mark Status	Mean	Minimum	Maximum	CV
Lewis River - North	\% Sampled	58.1%	34.9%	81.1%	24.6%
	Prop ETD	1.000	0.997	1.000	0.1%
Lewis River South	\% Sampled	55.9%	33.5%	95.1%	30.7%
	Prop ETD	1.000	0.999	1.000	0.0%
Eagle Creek NFH	\% Sampled	74.0%	41.1%	99.2%	25.5%
	Prop ETD	0.996	0.990	1.000	0.3%
Sandy River	\% Sampled	97.6%	91.4%	99.6%	2.9%
	Prop ETD	0.998	0.993	1.000	0.2%

Average return rates to the escapement for the marked and unmarked components of CR DIT groups varied by hatchery (Table 6-31). The expectation is that if MSFs are having a measurable impact on the unmarked component of a DIT group (i.e., reduction in the number of fishery-related mortalities), the return rate to the hatchery will be higher for the unmarked component. Average return rates of the unmarked component were higher than the marked component for the DIT groups from all CR hatcheries. Average return rates for DIT groups to the Lewis River Hatchery were higher than those to Eagle Creek NFH and Sandy River Hatchery. Return rates for the DIT groups to Eagle Creek Hatchery were more variable with rates varying from $<0.3 \%$ to $\approx 4 \%$ and CVs for the average return rates $>65 \%$.

Table 6-31. Summary statistics for the return rates of Coho salmon in the marked and unmarked components of Columbia River DIT groups, by hatchery (averaged across brood years).

Hatchery	Mark Status	Mean	Minimum	Maximum	CV
Lewis River - North	Marked	2.15%	0.30%	4.00%	44.4%
	Unmarked	2.58%	0.38%	4.83%	44.9%
Lewis River - South	Marked	2.38%	0.08%	4.64%	53.5%
	Unmarked	3.01%	0.07%	5.78%	55.9%
Eagle Creek NFH	Marked	1.45%	0.27%	4.06%	76.8%
	Unmarked	1.82%	0.28%	4.10%	66.4%
Sandy River	Marked	1.22%	0.59%	2.71%	50.6%
	Unmarked	1.83%	0.63%	3.35%	44.3%

The Z test results comparing the return rates of the marked and unmarked components of a DIT group to the escapement were significant $(P \leq 0.05)$ and positive (a higher proportion of unmarked fish returned to the hatchery than marked fish) in more than 60% of the brood years for each hatchery (Table 6-32). For all DIT groups examined from CR hatcheries, 79% of the 53 Z tests conducted were significant and all of the significant tests had λR ratios > 1.0.

Table 6-32. Percent of brood years where the Z test results comparing return rates of marked and unmarked DIT groups to escapement is significant ($P \leq 0.05$) and positive (+YES), significant and negative (-YES), or not significant (NS), and number of brood years tested for CR hatcheries and brood years 1998-2011.

Hatchery	NS	+YES	-YES	\# of Broods
Lewis River - North	14%	86%	0%	14
Lewis River - South	14%	86%	0%	14
Eagle Creek NFH	36%	64%	0%	14
Sandy River	18%	82%	0%	11
Regional Total	21%	79%	0%	53

Figure 6-10 shows λR ratios with approximate 95% confidence intervals for each hatchery, by brood year. Brood years with a significant $(P \leq 0.05) \mathrm{Z}$ test comparing the return rates of the marked and unmarked components of a DIT group to the escapement are indicated with an *. The 95% confidence interval widths for the north-migrating and south-migrating DIT groups from the Lewis River Hatchery are relatively narrow because of the large number of CWTs recovered (>1,500 tags recovered annually at the hatchery or on the spawning grounds on average). The majority of brood years for each hatchery had λR ratios > 1.0 and the 95% CI did not include 1.0, i.e., they indicated a fairly consistent and measurable impact of MSFs. For CR hatcheries, there were only three DIT groups that had λR ratios <1.0.

Figure 6-10. λR ratios with approximate 95% confidence intervals for DIT groups released by Columbia River hatcheries for brood years 1998-2011. Brood years with a significant $(P \leq 0.05) \mathrm{Z}$ test comparing the return rates to the escapement of the marked and unmarked components of a DIT group are indicated with an *.

The average annual number of estimated CWT recoveries (marked or unmarked) from individual CR hatchery DIT groups ranged from a low about 460 for Eagle Creek NFH releases to more than 2,000 annually for both the marked and unmarked DIT groups released for the north-migrating and south-migrating stocks from Lewis River Hatchery (Table 6-33). The average percent of total (fishery plus escapement) estimated recoveries (across brood years) that occurred in fisheries ranged from 23% to 45% for marked fish and 4% to 21% for unmarked fish. The majority of the fishery recoveries for the marked component was in preterminal fisheries for the DIT groups from all hatcheries.

Table 6-33. Average number of estimated CWT recoveries and general recovery location for the marked and unmarked components of Columbia River hatchery DIT groups (averaged across brood years).

Hatchery	Mark Status	Fishery Location		Total Fishery		Escapement	Total Recoveries
		PreTerminal			\%		
Lewis River North	Marked	826.4	585.5	1,411.8	44.9\%	1,514.7	2,926.5
	Unmarked	49.2	501.4	550.6	20.7\%	1,844.2	2,394.8
Lewis River South	Marked	431.4	247.0	678.4	25.3\%	1,700.8	2,379.1
	Unmarked	24.8	75.2	100.0	4.5\%	2,190.2	2,290.2
Eagle Creek NFH	Marked	81.5	47.4	128.9	23.3\%	340.0	468.9
	Unmarked	9.6	22.6	32.2	5.7\%	422.9	455.1
Sandy River	Marked	193.9	97.3	291.2	40.2\%	357.7	648.9
	Unmarked	4.8	45.6	50.3	10.7\%	490.3	540.6

Figure 6-11 shows the average percentage (across brood years) of estimated CWT recoveries in fisheries by location (pre-terminal or terminal), gear type (sport, troll, or net), and fishery type (NSF, MSF, or Mixed) for the marked and unmarked components of each hatchery's DIT groups. Three details to note in this figure are:

- There is a measurable but small percentage of the recoveries that occurred in "mixed" regulation fisheries only for Lewis River North DIT groups. Corresponding unmarked recoveries in mixed-regulation fisheries are estimated identically to those from MSFs for the analyses in this report. This approach may introduce unknown bias and add to the uncertainty of estimates of unmarked ERs in these fisheries as some of the fish caught in the mixed-regulation category may actually be caught under partial NSF regulations.
- For the marked DIT groups, the majority of the CWT recoveries occurred in preterminal mark-selective sport fisheries while the majority of the recoveries for the unmarked component occurred in terminal non-selective net fisheries.
- The potential impact of fisheries with visual sampling (i.e., no ETD) can be seen by comparing the percentage of the marked DIT group recoveries that occurred in NSFs to the percentage of the corresponding unmarked DIT groups that occurred in these same fisheries. For CR DIT groups, the percentage of recoveries from the unmarked component of the DIT group is greater than the percentage for the corresponding marked group. Therefore, potential bias due to visually-sampled fisheries does not appear to be an issue with CR DIT groups.

The majority of fisheries impacting CR DIT groups were electronically sampled. For the marked DIT groups, in total, 74% of the total estimated CWT recoveries from fisheries were by electronic sampling programs (Table 6-34). However, 24% of the CWT recoveries were from visually-sampled mark-selective sport fisheries in Oregon. Other fisheries with a substantial proportion of the CWT recoveries of the marked component from CR DIT groups were electronically sampled included: Washington Coast sport (28% of recoveries) and

Columbia River net (22\%). Another 20\% of the recoveries occurred in electronically-sampled sport fisheries in the Oregon Coast and Columbia River region. Less than 1% of the recoveries from Columbia River marked DIT groups were in mixed-regulation fishery strata.

Figure 6-11. Bar charts comparing average percentage, across brood years, of total estimated CWT recoveries in fisheries, by fishery type and location, for marked and unmarked DIT group releases from CR hatcheries.

Table 6-34. Percentage of all estimated CWT recoveries of marked fish associated with DIT groups released from CR hatcheries (brood years 1998-2011) by detection method (electronic or visual) and fishery type (NSF, MSF, Mixed).

Region	Electronically Sampled				Visually Sampled			
Fishery	NSF	MSF	Mixed	Total	NSF	MSF	Mixed	Total
Alaska								
Net	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Sport	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Troll	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
British Columbia								
Net	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Sport	0.01\%	0.05\%	0.00\%	0.06\%	0.00\%	0.83\%	0.27\%	1.10\%
Troll	0.01\%	0.03\%	0.00\%	0.04\%	0.00\%	0.04\%	0.00\%	0.04\%
Puget Sound								
Net	0.07\%	0.00\%	0.00\%	0.07\%	0.00\%	0.00\%	0.00\%	0.00\%
Sport	0.07\%	0.70\%	0.00\%	0.77\%	0.00\%	0.00\%	0.00\%	0.00\%
Troll	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Washington Coast								
Net	0.24\%	0.00\%	0.00\%	0.24\%	0.00\%	0.00\%	0.00\%	0.00\%
Sport	0.63\%	27.44\%	0.00\%	28.06\%	0.00\%	0.00\%	0.00\%	0.00\%
Troll	1.16\%	0.91\%	0.00\%	2.07\%	0.00\%	0.00\%	0.00\%	0.00\%
Oregon Coast and Columbia River								
Net	17.10\%	5.03\%	0.04\%	22.18\%	0.01\%	0.00\%	0.00\%	0.01\%
Sport	2.77\%	17.26\%	0.03\%	20.06\%	0.08\%	23.76\%	0.00\%	23.84\%
Troll	0.04\%	0.01\%	0.00\%	0.05\%	0.90\%	0.38\%	0.00\%	1.29\%
California								
Sport	0.00\%	0.00\%	0.00\%	0.00\%	0.12\%	0.00\%	0.00\%	0.12\%
Totals	22.11\%	51.43\%	0.07\%	73.60\%	1.12\%	25.01\%	0.27\%	26.40\%

Approximately 81% of the estimated CWT recoveries in all fisheries for the marked component of the north-migrating DIT group from the Lewis River Hatchery were in electronically-sampled fisheries (Table 6-35). For the marked components of the other three CR hatcheries, only 58-73\% of the fishery recoveries occurred in electronically-sampled fisheries. The percentages of recoveries in ETD fisheries for the unmarked DIT groups from CR hatcheries were similar to their corresponding marked components. Less than 1% of the estimated CWT recoveries from any hatchery occurred in mixed-regulation fisheries. Estimated recoveries for unmarked DIT groups in NSFs without electronic sampling were $\leq 2.5 \%$ for all CR hatcheries. For the marked component of DIT groups from CR hatcheries, the percentage of total estimated CWT recoveries occurring in MSFs, across all brood years, ranged from 71% for Lewis River - North to 86% for Lewis River - South.

Table 6-35. Percentage of DIT recoveries in fisheries with electronic sampling (ETD) and without electronic sampling (Visual), by fishery type. Unmarked recoveries in NSFs without electronic sampling are estimated (Estimated). Bold number is total number of estimated recoveries in fisheries for DIT groups released from CR hatcheries for the 1998-2011 brood years.

Hatchery	Fishery Type	Marked Component			Unmarked Component			
		ETD Sample	Visual Sample	Total	ETD Sample	Visual Sample	Estimated	Total
Le wis River - North								
	NSF	27.6\%	0.8\%	28.4\%	27.3\%	0.8\%	0.8\%	28.9\%
	MSF	53.1\%	18.0\%	71.1\%	52.6\%	17.9\%	0.0\%	70.5\%
	Mixed	0.1\%	0.4\%	0.5\%	0.1\%	0.4\%	0.0\%	0.5\%
	Total	80.7\%	19.3\%	19,765.8	80.1\%	19.1\%	0.8\%	19,928.8

Lewis River - South

	NSF	12.1%	1.5%	13.6%	11.9%	1.4%	1.5%	14.8%
	MSF	52.1%	34.3%	86.4%	51.3%	33.8%	0.0%	85.2%
	Mixed	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Total	64.2%	35.8%	$\mathbf{9 , 4 9 7 . 3}$	63.3%	35.3%	1.5%	$\mathbf{9 , 6 3 8 . 7}$

Eagle Creek NFH

	NSF	20.0%	2.3%	22.3%	19.6%	2.2%	2.2%	24.0%
	MSF	52.5%	25.3%	77.7%	51.3%	24.7%	0.0%	76.0%
	Mixed	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Total	72.5%	27.5%	$\mathbf{1 , 8 0 4 . 7}$	70.9%	26.9%	2.2%	$\mathbf{1 , 8 4 5 . 1}$

Sandy River

	NSF	19.5%	1.4%	20.9%	19.2%	1.4%	1.2%	21.9%
	MSF	38.6%	40.3%	78.8%	38.1%	39.8%	0.0%	77.9%
	Mixed	0.0%	0.3%	0.3%	0.0%	0.3%	0.0%	0.3%
	Total	58.0%	42.0%	$\mathbf{3 , 2 0 2 . 8}$	57.3%	41.5%	1.2%	$\mathbf{3 , 2 4 2 . 9}$

Figure 6-12 compares total exploitation rates estimated by the Paired-Ratio (PR) method and $\lambda^{\text {Rel }}$ (Section 3.2) for the marked and unmarked components of the DIT groups from each hatchery for each brood year. Years when the Z test comparing the return rates to the escapement of the marked and unmarked components of a DIT group was significant are indicated with an $*$. The proportion of the estimated unmarked ER occurring in MSFs is shown, also. The estimated unmarked ER is always lower than the marked ER across all hatcheries and brood years for CR DIT groups (Figure 6-12) and the 95\% CIs for the two estimates usually do not overlap (Figure 10D, Appendix 10).

Figure 6-12. Comparison of estimates of exploitation rates (ER) for the marked and unmarked components of DIT groups released by Columbia River hatcheries for brood years 1998-2011.

Figure 6-12 Comparison of estimates of exploitation rates (ER) for the marked and unmarked components of DIT groups released by Columbia River hatcheries for brood years 1998-2011 (continued).

The unmarked ER is consistently lower than the marked ER for all DIT groups and brood years. For a DIT group, differences between the marked and unmarked ER estimates ranged from +0.018 to +0.405 (Table 6-36). Across all hatcheries and brood years, the estimated ER for the marked component of the DIT groups was, on average, +0.190 greater than the ER for the unmarked component. For 100% of the DIT groups analyzed from the CR region, the estimated ER for the marked component was greater than the ER estimated for the unmarked component.

Table 6-36. Average difference between the estimated exploitation rates (ER) for the marked and unmarked components of CR DIT groups. Unmarked ER estimated using the PR method with λ at release.

Hatchery	Number	Difference Marked ER - Unmarked ER		
of Year	Mean	Minimum	Maximum	
Lewis River - North	14	0.200	0.118	0.323
Lewis River - South	14	0.171	0.051	0.346
Eagle Creek NFH	14	0.155	0.018	0.254
Sandy River	11	0.244	0.091	0.405
Regional Total	53	0.190	0.018	0.405

6.4.1 Conclusions and Recommendations for Columbia River Hatchery DIT Groups

- Sub-sampling the escapement was fairly common for CR DIT groups. In about 25% of the CR DIT groups, less than 50% of the returning Coho were directly sampled. The average percentage of the Coho in the escapement that were directly sampled was < 60% for the DIT groups from the Lewis River Hatchery (both the north-migrating and south-migrating groups). For the Lewis River Hatchery, 5 out of 14 (northmigrating) and 6 out of 14 (south-migrating) brood years had sampling rates $<50 \%$. Sub-sampling affects the power of the Z test that compares the return rates of the marked and unmarked components of a DIT group. Lower sampling rates result in decreased power for these tests.
- Nearly all returning Coho that were directly sampled at CR hatcheries were screened for CWTs with ETD. This practice eliminates a source of potential bias for the estimates of the number of fish in the unmarked component of DIT groups.
- For all DIT groups examined from CR hatcheries, 79% of the 53 Z tests conducted were significant and all of the significant tests had λR ratios >1.0 (i.e., the return rate of the unmarked component was significantly greater than for the marked component indicating a measurable impact of MSFs).
- Relatively small numbers of CWT recoveries of Eagle Creek NFH and Sandy River Hatchery DIT groups result in more imprecision in ER estimates for these DIT groups compared to the Lewis River Hatchery DIT groups.
- Across all hatcheries and brood years, the percentage of CWT recoveries in mixedregulation fisheries for the marked component of CR DIT groups was less than 0.1%.
- Only the Lewis River North DIT groups had 80% or more their estimated CWT recoveries from electronically-sampled fisheries (both the marked and unmarked components). The marked component of the DIT groups from Lewis River South, Eagle Creek NFH, and Sandy River Hatchery had 64% to 73% of their fishery recoveries in electronically-sampled fisheries.
- Across all hatcheries and brood years, less than 0.1% of the estimated CWT recoveries in fisheries for the marked component of Columbia River DIT groups occurred in mixed-regulation fisheries.
- A moderately high percentage of CWT recoveries for the marked component of the CR DIT groups occurred in visually-sampled mark-selective fisheries (18% across all hatcheries and brood years). Visual sampling in Oregon sport fisheries increases the probability of bias in the estimation of unmarked ER.
- The exploitation on the unmarked component of the Columbia River DIT groups was estimated to be less than that of the marked component for all brood years (100%) and the difference between the two ER estimates was usually significant (85% of the brood years).
- MSFs appeared to be effective in decreasing the exploitation rate on unmarked Coho stocks represented by the DIT groups for the CR region. The ER for the unmarked component of the DIT group was consistently estimated to be less than the ER for the marked component for all the DIT groups.

For the 53 DIT group comparisons for the Columbia River region:

- 0\% had an unmarked ER estimate > than the marked ER estimate;
- 4% had a difference in ER estimates (marked ER - unmarked ER) that were > 0 and ≤ 0.05;
- 11% had a difference in ER estimates that were >0.05 and ≤ 0.10;
- 21% had a difference in ER estimates that were >0.10 and ≤ 0.15, and,
- 64% of the differences were >0.15.

Recommendations

The following DIT program(s) provide relatively consistent, reliable, and relatively precise estimates that can be used to evaluate the impacts of MSFs on the unmarked component of DIT groups:

1. Data for the DIT groups from Lewis River Hatchery provided relatively consistent and reliable estimates of marked and unmarked return rates and ERs for both the north-migrating and south-migrating groups.
a. The Z test results comparing the return rates of the marked and unmarked components of a DIT group to the escapement were significant and positive (a higher proportion of unmarked fish returned to the hatchery than marked fish) in 96% of the brood years for both the north-migrating and south-migrating groups.
b. Estimated total recoveries averaged about 2,000 for each brood year.
c. λR ratios that were greater than 1.0 and had 95% CIs that did not include 1.0 occurred across the range of brood years analyzed.
d. The average difference between ERs for the marked and unmarked components of the DIT groups were relatively large $(+0.20$ for north-migrating and 0.17 for south migrating groups).
e. The ER for the marked component was higher than that of the unmarked component for all 14 of the brood years examined for both the north-migrating and south-migrating groups.
f. For 13 of the 14 north-migrating brood years and 12 of the 14 south-migrating brood years analyzed, the estimated ER for the unmarked component of the DIT group was less than for the marked component and the two estimates had non-overlapping 95% confidence intervals.
2. Data for the DIT groups from Sandy River Hatchery provided relatively consistent and reliable estimates of marked and unmarked return rates and ERs.
a. The Z test results comparing the return rates of the marked and unmarked components of a DIT group to the escapement were significant and positive (a higher proportion of unmarked fish returned to the hatchery than marked fish) in 82% of the brood years.
b. Estimated average total recoveries averaged >500 for both the marked and unmarked DIT group components.
c. λR ratios that were greater than 1.0 and had 95% CIs that did not include 1.0 occurred across the range of brood years analyzed. There was only one brood year with a λR ratio < 1.0 .
d. The average difference between ERs for the marked and unmarked components of the DIT groups was relatively large (+0.24).
e. The ER for the marked component was higher than that of the unmarked component for all 11 of the brood years examined.
f. For 10 of the 11 brood years analyzed, the estimated ER for the unmarked component of the DIT group was less than for the marked component and the two estimates had non-overlapping 95\% confidence intervals.

The results for the following DIT program(s) are mixed and are difficult to categorize:

1. Data for the DIT groups from Eagle Creek NFH provided mixed.
a. The Z test results comparing the return rates of the marked and unmarked components of a DIT group to the escapement were significant and positive (a higher proportion of unmarked fish returned to the hatchery than marked fish) in 64% of the brood years; this is the lowest rate for CR DIT groups.
b. The precision of the estimates of return rates, λR ratios, and marked and unmarked ERs is more variable and often lower (worse) when compared to the other DIT groups in the CR region.
c. About a third of the λR ratios had 95% CIs that included 1.0, by far the highest percentage for CR hatcheries.
d. There were DIT group data only through brood year 2008 for Eagle Creek NFH.

7 DISCuSsion and Conclusions

The objective of the Coho Double Index Tagging (DIT) program is to provide data to estimate and evaluate the impacts of mark-selective fisheries (MSFs) on unmarked stocks of Coho salmon. MSFs are designed to reduce the impact on unmarked (usually naturally-produced) Coho salmon while supporting fisheries that target marked (hatchery-produced) Coho. This section of the report evaluates whether the data analyzed for DIT groups from British Columbia, Puget Sound, Washington Coast, and Columbia River hatcheries for the 19982011 brood years provide evidence consistent with meeting that objective. It includes: an examination of how well some of the assumptions related to fishery sampling are met and discusses the potential impacts of sampling deficits on the estimates (Section 7.3); an assessment of the exploitation rates for marked and unmarked Coho stocks produced by the Post-season Coho FRAM model to corresponding ER estimates for the marked and unmarked components of related DIT groups (Section 7.4); a discussion of issues related to the selective-fishery mortality ($s f m$) rates used for the analyses and DIT program data quality (Section 7.5); and finally, an assessment of whether there are alternatives to the DIT program that could provide the necessary information for fisheries management when there are MSFs (Section 7.6).

Three methods of estimating the exploitation rate for the unmarked component of a DIT group using CWT data were examined. Before evaluating the DIT programs, a brief discussion of the three methods is presented.

7.1 Evaluation of Estimation Methods for the Exploitation Rate of the Unmarked DIT-Group Component

The three analytical methods (as opposed to model-based methods) used to estimate the exploitation rate for the unmarked component of a DIT group were:

1) a Total ER method using DIT group release-and-recovery data;
2) a Paired-Ratio (PR) method using DIT group release-and-recovery data and either λ at release or λ estimated from hatchery and escapement sampling; and,
3) a method using only the release-and-recovery data from the marked component of the DIT group (i.e., SIT-based).

The Total method supplied non-negative estimates of unmarked ERs in 88% of the 286 DIT groups examined (across all brood years and hatcheries). Comparing the non-negative estimates from the Total method to their corresponding estimates from the PR method using $\lambda^{\text {Rel }}$:

- the Total method estimates of unmarked ER were higher than the estimates from the PR method using $\lambda^{\text {Rel }}$ in 78% of the comparisons;
- the average difference in ER estimates (Total - PR $\lambda^{\text {Rel }) ~ w a s ~}+0.061$ (median difference $=+0.043$); and,
- the estimates of unmarked ER from the Total method were also considerably less precise than the estimates from the PR method - the average percent standard error
(PSE) for the methods was 37% for the Total method compared to 14% for the PR $\lambda^{\text {Rel }}$ method.

The Total method is not recommended as a method for estimating the ER for the unmarked component of a DIT group because:

1. it can result in negative estimates of ER for the unmarked component - for the DIT groups examined in this report 12% of the estimates from the Total method were negative;
2. in comparison to either of the PR methods of estimation, the Total method appears to be biased and over-estimates the ER for the unmarked component of the DIT group;
3. the estimates of ER for the unmarked component from the Total method are considerably less precise than the estimates from either of the PR methods; and,
4. the Total method does not provide fishery-specific estimates of ER - only the total ER across all fisheries is estimated.

Estimates of unmarked ER from the PR method using λ at release and the SIT-based method were highly correlated with each other ($r=0.956, P<0.001$). The SIT-based estimates of unmarked ER were lower than the estimates from the PR method using λ at release in 75% of the comparisons; this was especially evident when estimates of unmarked ER were greater than 0.40. The average difference in ER estimates (SIT - PR $\lambda^{\text {Rel }}$) was -0.035 (median difference $=-0.022$). When the SIT-based ER estimate is <0.40, the average difference between the two methods is -0.026 compared to an average difference of -0.062 when the SIT-based ER estimate is ≥ 0.40. The SIT-based method of estimation can provide fisheryspecific estimates of ER. Relying on the SIT-based method would, on average, result in an underestimate of the ER on the unmarked component of DIT groups relative to either of the two PR methods. However, further work is needed to determine whether statistical methods that relate the SIT-based and DIT-based estimates (e.g., regression methods - see Section 7.6) may decrease the differences between the two methods of estimating unmarked ER and to compare SIT-based estimates of ER by fishery to those from the PR methods.

The PR method using either $\lambda^{\text {Rel }}$ or $\lambda^{E s c}$ can provide relatively precise, fishery-specific estimates of the ER for the unmarked component of a DIT group in addition to estimates of total ER. The average difference between estimates of the Total ER for the unmarked component of a DIT group using the PR method and $\lambda^{\text {Rel }}$ compared to the PR method using $\lambda^{E s c}$ was less than 0.005 (individual DIT group differences ranged from -0.071 to +0.095). The estimate of unmarked ER from the PR $\lambda^{E s c}$ method was greater than the estimate from PR $\lambda^{\text {Rel }}$ for 76% of the DIT groups analyzed; this is expected as $\lambda^{E s c}$ is expected to be greater than $\lambda^{\text {Rel }}$ if MSFs are impacting the DIT groups. If PR calculations are done using both $\lambda^{\text {Rel }}$ and $\lambda^{\text {Esc }}$, then total and fishery-specific estimates of ER for the unmarked component of a DIT group can be bracketed.

Although the estimates of the exploitation rate for the unmarked component of a DIT group from all three methods (Total, PR, and SIT-based) were significantly correlated with one another, only the PR method supplied consistently reliable and precise estimates of
unmarked ER when its assumptions were met. The PR method using either $\lambda^{\text {Rel }}$ or $\lambda^{\text {Esc }}$ (or both to bracket the range of ERs) is the recommended method for estimating the ER for the unmarked component of a DIT group. For the PR method, $\lambda^{\text {Rel }}$ is measured very precisely as the numbers of fish in the marked and unmarked components of DIT groups are essentially counted at most hatcheries. The precision of the estimates of $\lambda^{E s c}$ is a function of the degree of sub-sampling of returning fish done at the hatchery since there is very little spawning ground sampling conducted and almost 100% of most hatchery sampling is done using ETD. The degree of sub-sampling varies by hatchery but as the proportion of the return directly sampled decreases the variability associated with the estimate of $\lambda^{E s c}$ increases.

7.2 Evaluation of DIT program results

Three statistical procedures were used to compare estimates for the marked and unmarked components of each DIT group from each brood year for each hatchery. The purpose of these tests was to determine whether there was evidence of statistically significant impacts of markselective fisheries on the unmarked component of the DIT groups. Specifically, was there evidence of a significantly reduced exploitation rate (ER) on the unmarked component of the DIT group relative to the marked component? We addressed this question using the following three tests:

1) Z tests comparing the estimated return rates to the hatchery (number of fish returning to the hatchery or spawning ground / number of fish released) of the marked and unmarked components of each DIT group. Under MSFs, it is expected that the return rate of the unmarked component of a DIT group will be higher than for the marked component.
2) An assessment of whether the 95% confidence interval around the λR ratio $\left(\frac{\lambda^{\text {Escapement }}}{\lambda^{\text {Release }}}\right)$ for each DIT group included 1.0. Under MSFs, it is expected that this ratio will be greater than 1 .
3) Z tests comparing the estimated total exploitation rates of the marked and unmarked components of each DIT group. Under MSFs, it is expected that the exploitation rate on the marked component of a DIT group will be higher than on the unmarked component.

A significant result for either of these tests $(P \leq 0.05)$ provides non-subjective evidence that mark-selective fisheries reduced the impact on the unmarked component of a DIT group relative to the marked component. This applies when (1) the return rate of the unmarked component was higher than the marked component, (2) the λR ratio was >1.0, or (3) the estimated ER for the marked component was greater than the estimated ER for the unmarked component. These are the expected results if MSFs are having more impacts on the marked fish compared to the unmarked fish. There were some cases where a test was significant but in the opposite direction of our expectations (i.e., the return rate of the marked component of the DIT group was significantly higher than for the unmarked component, or the λR ratio was significantly less than 1.0 , or the unmarked component of the DIT group had a significantly higher ER than the marked component).

Based on the results from these three statistical tests, the results for each brood year's DIT group from each hatchery were categorized as follows:

1. Test result(s) counter to expectations - The results from at least one of the three tests was significant but in the opposite direction of what is expected from DIT groups that are impacted by MSFs (see paragraph above).
2. Test results not informative - None of the three tests had a significant result; there is no statistically significant evidence of differences between the marked and unmarked components of the DIT groups.
3. One or two test results significant - One or two of the three tests were significant and in the direction of what is expected from DIT groups that are impacted by MSFs.
4. All test results significant - All three of the tests were significant and in the direction of what is expected from DIT groups that are impacted by MSFs.

It is important to consider the power of the statistical tests for those DIT groups in category 2 above. The power of a test is the probability of detecting a difference when one exists. Nonsignificant tests may be a result of the low power for the test due to low sample sizes (e.g., a small number of CWTs recovered) and high variability in the estimates. For a proper assessment of the power of the tests, the size of the difference between estimates that is important to detect needs to be defined. Currently there is no guidance for selecting either absolute or relative differences in return rates or exploitation rates that are important to fisheries management.

There was a total of 286 DIT groups for which all three tests were conducted. Table 7-1 shows the results of the categorization by region. Figure 7-1 compares the percent of DIT release groups categorized as described above ($1,2,3$, or 4) for each hatchery. Over all hatcheries and brood years, 29% of the DIT groups were categorized as 4 and 34% as 3 (provided evidence of MSF impacts). Eight percent (8\%) of all DIT groups were categorized as 1 (had at least one significant test that was in the opposite direction of what was expected for a DIT group). None of the three tests were significant for 29% of the DIT groups (they supplied no evidence of significant effects of MSFs on the DIT group).

Table 7-1. Percentage of DIT release groups placed in each assessment category according to the results of three statistical tests performed on the data for DIT groups from each hatchery.

	Number of	Assessment Category			
Region DIT Release Groups	$\mathbf{1}$ Contrary	$\mathbf{2}$ No Sig.	$\mathbf{3}$ $\mathbf{1 - 2 ~ S i g . ~}$	All Tests Sig.	
British Columbia	43	0.0%	23.3%	39.5%	37.2%
Puget Sound	108	9.3%	44.4%	35.2%	11.1%
Washington Coast	82	14.6%	29.3%	36.6%	19.5%
Columbia River	53	0.0%	3.8%	22.6%	73.6%
Percent of Total	286	7.7%	29.4%	33.9%	29.0%
Number of Years		22	84	97	83

For the 180 DIT release groups that were categorized as either 3 or 4 (i.e., provided some evidence of MSF impacts), 83 (46%) were in category 4 - all three tests were significant and in the direction expected. For category 3, only the \mathbf{Z} test comparing estimated ERs for the marked and unmarked DIT group components was significant for $51(28 \%)$ of the release groups and there were 30 release groups (17%) where both the return rate Z test result was significant and the $95 \% \mathrm{CI}$ for the λR ratio did not include 1.

Figure 7-1. Percentage of brood years placed in each assessment category according to the results of three statistical tests performed on the data for DIT groups from each hatchery. The four assessment categories are: 1: at least one test was significant, but the result was in the opposite direction of what is expected from MSF impacts; 2 . None of the three tests had a significant result; 3. One or two of the three tests were significant and in the direction of what is expected from DIT groups that are impacted by MSFs; 4. All three tests were significant and indicate MSF impacts.

For the British Columbia (with the exception of Quinsam River Hatchery) and Columbia River regions, 80% or more the DIT groups from each hatchery were categorized as 3 or 4 . There were very few brood years from hatcheries in the CR region where at least one of the tests was not significant. There were no DIT groups placed into category 1 from these two regions. However, the results for these two regions, especially for BC, may be affected by the relatively high proportion of CWTs being recovered in visually-sampled fisheries and in mixed-regulation sampling strata.

The results for the Puget Sound and Washington Coast regions were more variable between hatcheries. The percentage of DIT groups from a hatchery categorized as 3 or 4 varied from about 20% or less for the Kendall Creek, Voights Creek, and Salmon River Fish Culture hatcheries to more than 70% for the Marblemount, Wallace River, Solduc, Bingham Creek, and Forks Creek hatcheries. About 44\% of the DIT groups from the Puget Sound region were categorized as 2, i.e., they supplied no evidence of significant effects of MSFs on the DIT groups. All the DIT groups placed into category 1 were from DIT groups from either the PS (9% of the PS DIT groups) or WC (15% of the WC DIT groups) regions.

Based on the above results, the DIT programs for several hatcheries in the Puget Sound and Washington Coast regions should undergo additional review to determine their continued value to the DIT program. These hatcheries are:

1) Lower Elwha Hatchery where only 36% of the DIT groups provided results that indicated some measurable impact of MSFs and 21% of the DIT groups were categorized as 1 as they had a significant test that was in the opposite direction of what was expected from a DIT group. The DIT programs for this hatchery were also recommended for further review in Section 6.2.
2) Kendall Creek Hatchery where only 20% of the DIT groups provided results that indicated some measurable impact of MSFs. The DIT programs for this hatchery were also recommended for further review in Section 6.2.
3) Soos Creek Hatchery where only 36% of the DIT groups provided results that indicated some measurable impact of MSFs. The DIT programs for this hatchery were recommended for continuation in Section 6.2.
4) Voights Creek Hatchery where only 21% of the DIT groups provided results that indicated some measurable impact of MSFs. The DIT programs for this hatchery were also recommended for further review in Section 6.2. The results from the DIT programs for this hatchery were viewed as mixed in Section 6.2.
5) Makah NFH where 31% of the DIT groups were categorized as 1 as they had a significant test that was in the opposite direction of what was expected from a DIT group. The DIT programs for this hatchery were also recommended for further review in Section 6.3.
6) Salmon River Fish Culture where only 8% of the DIT groups provided results that indicated some measurable impact of MSFs and 31% of the DIT groups were categorized as 1 as they had a significant test that was in the opposite direction of what was expected from a DIT group. The DIT programs for this hatchery were also recommended for further review in Section 6.3.

7.2.1 Comparison of DIT Group Characteristics by Assessment Category

Different characteristics of the DIT groups were compared across each of the assessment categories described above to examine whether some characteristics are consistently associated with the DIT groups that show the greatest evidence of significant effects of MSFs.

The characteristics examined were:

1) Number of fish released for the marked and unmarked components of the DIT group;
2) Number of fish in the marked and unmarked components of the DIT group that returned to the hatchery and escapement;
3) The estimated return rate of the marked and unmarked components of the DIT group (number of fish returning to the hatchery and escapement / number of fish released);
4) The estimated number of CWTs from the marked component of the DIT group recovered in all fisheries, estimated number of CWTs from the marked component of the DIT group recovered in mark-selective fisheries, and proportion of marked component CWT fishery recoveries that occurred in MSFs;
5) Estimated exploitation rates for the marked and unmarked components of the DIT group; and,
6) Difference between the estimated return rates for the marked and unmarked components of the same DIT group and difference between the estimated total exploitation rates for the marked and unmarked components of the same DIT group.

Appendix Table 11A summarizes the mean, median, minimum, and maximum values for each of the characteristics by assessment category.

There were no large differences among the four assessment categories in the numbers of fish released in the unmarked or marked components of the DIT groups (Figure 7-2). Median releases sizes for all assessment categories were between about 45,000 to 50,000 fish per component.

Generally, there were more fish returning to the hatchery or escapement for both the marked and unmarked components of the DIT groups (Figure 7-3) which had some evidence of impact by MSFs (categories 3 and 4). The median numbers of unmarked Coho in the escapement for categories 3 and $4(\approx 970$ and 1,600 , respectively) were about twice that as for categories 1 and 2 (≈ 335 and 535, respectively). However, there was considerable variability in these numbers. For example, in category 4 there were several DIT groups where the total number of unmarked CWTs in the return to escapement was < 300. Similarly, for the marked groups the median numbers of fish in the escapement for categories 3 and $4(\approx 900$ and 1,400 , respectively) was greater than that of categories 1 and 2 (≈ 625 and 525 , respectively). In category 4 there were several DIT groups where the total number of marked CWTs in the return to escapement was < 200 .

Median return rates for both the marked and unmarked components of DIT groups in assessment categories 3 and 4 were ≥ 0.018 compared to less than 0.01 for the other two assessment categories (Figure 7-4).

Figure 7-2. Comparison by assessment category of the numbers of marked (upper plot) and unmarked (lower plot) Coho released in the DIT groups analyzed.

Figure 7-3. Comparison by assessment category of the numbers of marked (upper plot) and unmarked (lower plot) Coho returning to the hatchery or escapement for the DIT groups analyzed.

Figure 7-4. Comparison by assessment category of the estimated return rates to the hatchery or escapement for the marked (upper plot) and unmarked (lower plot) components of the DIT groups analyzed.

There were no large differences among the four assessment categories in the estimated number of CWTs recovered in all fisheries for the marked component of the DIT groups (Figure 7-5, upper plot); median numbers of CWTs recovered in all fisheries ranged from 500-625. Not unexpectedly, the marked component of DIT groups in category 4 generally had a greater number of estimated tags recovered in MSFs relative to the other assessment categories (Figure $7-5$, middle plot: median ≈ 290). It also had a higher proportion of total fishery recoveries estimated to occur in MSFs (Figure 7-5, lower plot: median ≈ 0.63). In comparison, for the other assessment categories the medians for the number of estimated tags recovered in MSFs were less than 150 and all medians for the proportion of total fishery recoveries estimated to occur in MSFs were less than 0.35 (Table 11A Appendix 11).

Based on the comparisons summarized in Figures 7-2, 7-3, 7-4, and 7-5, to provide the sample sizes needed to consistently detect significant impacts by MSFs on the unmarked component of a DIT group the following guidelines are suggested:

- The combination of the number of fish released in the DIT group and the expected return rate to the hatchery should result in at least 1,000 fish in the marked and unmarked components of the DIT group (individually) returning to the escapement (and be available for sampling).
- For the marked component of a DIT group, at least one-third (33\%) of all estimated CWT recoveries in fisheries should be expected to occur in MSFs to reliably detect MSF impacts using the tests in this report.

Figure 7-6 compares estimated exploitation rates for the marked and unmarked components of the DIT groups for each assessment category. Note that the median estimated exploitation rates for both the marked and unmarked components of the DIT groups which had some evidence of impact by MSFs (categories 3 and 4) were actually less than those for the other two assessment categories which did not provide evidence of significant impacts by MSFs.

Finally, Figure 7-7 compares differences between the marked and unmarked components of a DIT group for the return rate to the escapement and for the estimated total exploitation rate. As expected, these differences tend to increase as the assessment category increases; category 4 (composed of DIT groups with the most evidence of significant impacts by MSFs) has the largest median difference between return rates (0.005%) and exploitation rates (0.15) for the marked and unmarked components of the DIT groups.

These figures emphasize that it is the differences in the return rates and the exploitation rates between the marked and unmarked components of the DIT groups that are important and that high return rates or exploitation rates by themselves are not the most important factor determining whether MSF impacts are detected.

One might expect that these two differences (difference between the marked and unmarked components of a DIT group in the estimated return rate and difference in the estimated exploitation rate) would be highly correlated. However, the correlation between these differences while significant ($P<0.001$) is not particularly high ($r=0.522$) and explains only 27% of the variability between the two differences.

Figure 7-5. Comparison by assessment category of the estimated numbers of CWTs recovered in all fisheries (upper plot), estimated numbers of CWTs recovered in mark-selective fisheries (middle plot), and the proportion of all fishery recoveries in MSFs (lower plot) for the marked DIT group component.

Figure 7-6. Comparison by assessment category of the estimated exploitation rates for the marked (upper plot) and unmarked (lower plot) components of the DIT groups analyzed.

Figure 7-7. Comparison by assessment category of the differences between the estimated return rates (upper plot) and exploitation rates (lower plot) for the marked and unmarked components of the DIT groups analyzed.

7.3 Evaluation of Fishery Sampling

Exploitation rate estimates provided by the DIT program are unbiased under these assumptions:

- Estimates of the number of CWTs in the return to the escapement (hatchery and spawning grounds) are unbiased.
- Estimates of the number of CWTs in the retained catch are unbiased for both the marked and unmarked components of a DIT group.
- All fish are retained in NSFs and all marked fish are retained in MSFs.
- All unmarked fish are released in visually-sampled fisheries.

When all, or nearly all, of the escapement to a hatchery is sampled, bias will not be an issue. As the rate of sub-sampling the escapement to the hatchery increases, the potential for bias increases unless very strict sub-sampling protocols are followed to ensure a random sample of the returning fish is collected.

The type of sampling used in the major fisheries impacting a DIT group determines how well the second critical assumption is met. Electronic sampling (all coded wire tagged fish in a NSF or MSF sample have an equal chance of being recovered) when properly implemented provides unbiased estimates of the number of CWT recoveries from both the marked and unmarked components of a DIT group. Visual sampling (the adipose fin clip is used to subset catch to sample for detection of coded wire tagged fish and thus only marked fish are sampled) provides biased CWT recovery data as there is no opportunity for unmarked fish with a CWT to be recovered. There were two issues with fishery sampling that potentially impacted the estimates for some DIT groups: (1) visually-sampled NSFs; and (2) mixedregulation fishery sample strata. The alignment of the fishery sample strata with fisheryregulation strata is critical to providing unbiased data for DIT analysis. If the type of fishery (NSF or MSF) is unknown, or the sample is composed of a mixture from both fishery types, then proper estimation of mortalities for the DIT group components is compromised. A description and evaluation of each year's proposed mark-selective fisheries that will impact Coho salmon is included in the annual reports issued by the PSC's Selective Fishery Evaluation Committee (SFEC 2019). This SFEC annual report highlights some of the detrimental issues related to MSF sampling discussed in this report.

This section summarizes three factors related to the overall quality of fishery sampling as it relates to DIT program estimates. The percentages of all CWT recoveries in fisheries for all DIT groups released from a hatchery (brood years 1998-2011) were calculated for three different sampling methods or regulation strata. They were:

1) The percentage of all estimated recoveries from the marked component of DIT groups from a hatchery that was recovered in electronically-sampled fisheries.
2) The percentage of all estimated recoveries from the marked component of DIT groups from a hatchery that was recovered in mixed-regulation fisheries.
3) The percentage of all estimated unmarked recoveries in fisheries that occurred in visually-sampled (non-electronically sampled) NS fisheries.

The majority of CWT recoveries from marked DIT groups in the BC region occur in visuallysampled fisheries (Figure 7-8). DIT groups in the BC region also have a consistently higher percentage of marked fish recoveries occurring in mixed-regulation sampling strata compared to the other regions. Estimates of unmarked ERs from the BC DIT groups should be interpreted with caution because of the additional uncertainty due to the prevalence of visual sampling in BC fisheries, the reliance on voluntary returns from BC sport fisheries, and the relatively high proportion of recoveries estimated from mixed-regulation fishery sampling strata in BC. The effects on DIT groups from other regions may not be as pronounced because the proportion of fish caught in BC fisheries is not as high.

Figure 7-8. Percentage of estimated CWT recoveries in fisheries by different sampling methods or regulation strata. Percentages are based on all CWT recoveries from the marked component of all DIT groups released from a hatchery for brood years 1998-2011.

More than 70% of the CWT recoveries of marked fish for DIT groups from the PS and WC regions occurred in electronically-sampled fisheries. Mixed-regulation sampling strata and unmarked recoveries in visually-sampled NSFs were generally not an issue with DIT groups from these two regions. With the exception of the DIT groups from the Lower Elwha Hatchery and Makah NFH, the proportion of CWT fishery recoveries for the unmarked DIT component that is estimated to occur in visually-sampled NSFs is low.

From 60 to 80% of the CWT recoveries of marked fish for DIT groups from the Columbia River region occurred in electronically-sampled fisheries. The proportion of unmarked recoveries estimated to occur in visually-sampled NSFs was small for all DIT groups from the CR region. Recoveries of CWTs for the mark component from mixed-regulation sampling strata were not an issue with DIT groups from the CR region.

A subset of hatcheries in the PS, WC, and CR regions that had a high proportion (> 65%) of DIT groups placed into assessment categories 3 and 4 were identified. Based on those hatcheries, it is recommended that for the fisheries expected to impact DIT groups released from a hatchery:

- ETD and sampling programs are in place for at least 80% of fishery recoveries for the marked component of the DIT group;
- no more than 5\% of the estimated fishery recoveries for the marked component of the DIT group occur in mixed-regulation fishery strata; and,
- no more than 5\% of the estimated recoveries for the unmarked component of the DIT group occur in visually-sampled, non-selective fisheries.

Data from hatcheries in the BC region were not used in this evaluation because of the potential biases that could result from the relatively high proportion of DIT group recoveries occurring in visually-sampled NSFs or fisheries with mixed-regulation sampling strata.

7.4 Comparison of DIT ER Estimates to Post-season FRAM Estimates

Exploitation rate estimates for both the marked and unmarked components of the DIT groups analyzed were compared to corresponding estimates from the Post-season Coho FRAM. The PR method using λ at release was used for the unmarked ER estimates. Drop-off mortality was included in the ER estimates for both the marked and unmarked components of the DIT groups and the DIT analysis was limited to age-3 fish to better align with FRAM ERs.

The correlations between the total brood year ER estimates were 0.65 ($P<0.001$) for the marked groups and $0.69(P<0.001)$ for the unmarked groups. Because FRAM uses average stock-fishery-time period exploitation rates during a referenced base period, it is more appropriate to compare mean ER estimates for stocks rather than focusing on year-to-year differences (Table 5-1). Overall, 30% of the ER differences between the methods were within ± 0.05 for the marked group. For the unmarked group, 32% of the ER differences between the methods were within ± 0.05.

Consistent biases were evident for some groups. For example:

- The FRAM ER was greater than the DIT-based estimate for $\geq 75 \%$ of the brood years for unmarked groups from Inch Creek, Wallace River, George Adams, Makah NFH, Solduc, and Bingham Creek hatcheries.
- The FRAM ER was less than the DIT-based estimate for $\geq 75 \%$ of the brood years for unmarked groups from Quinault NFH.
- The FRAM ER was greater than the DIT-based estimate for $\geq 75 \%$ of the brood years for marked groups from George Adams, Solduc, and Bingham Creek hatcheries.
- The FRAM ER was less than the DIT-based estimate for $\geq 75 \%$ of the brood years for marked groups from Big Qualicum River, Quinault NFH, Lewis River - North, and Sandy Creek hatcheries.

Using the following general criteria:

- the mean difference between the FRAM and DIT-based ER estimates was $\leq \pm 0.05$ (relatively small error); and,
- between 40-60\% of the brood years have a DIT-based ER estimate greater than the FRAM-based ER estimate (relatively unbiased),
DIT groups from these hatcheries are considered to be adequately modeled by the Post-season FRAM:
- Marked DIT groups from the following hatcheries meet both criteria: Quinsam River, Robertson Creek, Wallace River, Lewis River - South, and Eagle Creek NFH.
- Unmarked DIT groups from the following hatcheries meet both criteria: Quinsam River, Big Qualicum River, Robertson Creek, Lower Elwha, Soos Creek, Lewis River - North, and Lewis River - South.

The DIT-based method estimated a greater impact (a greater reduction in the estimated ER on the unmarked component of the DIT group when compared to the marked component of the DIT group) by mark-selective fisheries on the unmarked component of the DIT groups compared to Post-season FRAM estimates for DIT groups from the BC and WC regions (Table 5-1). For DIT groups from the PS and CR regions, the DIT-based method estimated a smaller impact by mark-selective fisheries on the unmarked component of the DIT groups. While there is relatively good correspondence between DIT-based and FRAM-based estimates of ER for the marked and/or unmarked components of DIT groups from many hatcheries, there are several hatcheries where the correspondence between the two is very poor: for marked groups - Kendall Creek, Voights Creek, George Adams, Quilcene NFH, Makah NFH, Solduc, Bingham Creek, Lewis River - North, and Sandy River hatcheries; for unmarked groups - Kendall Creek, Voights Creek, George Adams, Quilcene NFH, Makah NFH, Solduc, and Bingham Creek hatcheries.

7.5 Selective Fishery Mortality Rates and Data Quality Issues

The introduction of mass marking and the addition of DIT groups to the coastwide CWT system greatly increased the complexity of the system. Additional analytical methods are needed to estimate fishery impacts on unmarked groups of Coho salmon and these new analytical methods require additional assumptions. The complexity of the data management system also increased as two types of CWT groups are now being released from many facilities (DIT groups and SIT groups) and the type of fishery that a CWT is recovered in (NSF, MSF, or mixed) must be recorded for each recovery as well as the type of sampling associated with each CWT recovery (visual or electronic).

7.5.1 Selective fishery mortality rates

One new critical assumption under DIT is the selective fishery mortality (sfm) rate (release mortality rate) for mark-selective fisheries. These rates (Table 3-2) were based on studies conducted in the 1980s and 1990s (PFMC 2000) and are treated as constants with no associated uncertainty. Estimates of unmarked mortalities and the exploitation rate for the unmarked component of the DIT group are very sensitive to the selective-fishery mortality rate and its variability (Zhou 2002). If, on average, the actual sfm rates experienced by the unmarked fish are higher than assumed then unmarked mortalities will be underestimated and the differences between the ER estimates for the marked and unmarked components of the DIT group will be smaller than reported here. Conversely, if $s f m$ rates are, on average, lower than assumed then unmarked mortalities will be overestimated and the differences between the ER estimates for the marked and unmarked components of the DIT group will be larger than reported here.

Sfm rates are assumed to vary between fisheries of different types (e.g., sport, troll, net). Realistically, sfm rates may also vary between fisheries of the same type depending upon the predominant gear used and environmental conditions at the time of capture and also vary between years (for similar reasons). The results of the Z tests that were used in the evaluation of MSF impacts to Coho DIT groups (Section 7.2) which compared the estimated ERs for the marked and unmarked components of a DIT group are sensitive to:

- the $s f m$ rates used for the MSFs; and,
- the uncertainty in the estimates of $s f m$ rates (which is currently assumed to be 0).

Using different sfm rates and/or accounting for the uncertainty in the sfm rates could change the results for many of these hypothesis tests. E.g., tests that are now significant and indicate a differential impact on the marked and unmarked components of a DIT group and MSF impacts may become non-significant and the reverse may occur for tests that are currently non-significant. Further examination of this issue by a sensitivity analysis is recommended.

7.5.2 Data quality issues

Many issues related to the identification of the proper set of CWT data required to conduct a DIT analysis became apparent during the data compilation stages for the DIT analyses summarized in this report. Other data quality issues were also identified. Many of these same data quality issues were identified and discussed in JCDAW (2003). Details for the analyses in this report are discussed below.

Multiple groups of Coho that are part of a DIT group are often released from a hatchery and it is common for more than one CWT code to be used in tagging the marked and unmarked components of the DIT group released from a hatchery in a given year. When multiple CWT codes are used to tag the marked or unmarked components of a DIT group release, and other CWT codes for SIT groups are also released, identifying which group of CWT codes to use in a DIT analysis can be challenging. For example, during the development of this report, an
initial set of CWT codes was identified for the DIT analyses. A later review of these initial CWT codes (involving only DIT groups from the Puget Sound, Washington Coast, and Columbia River regions) after initial analyses had already been conducted identified the following issues:

- 16 CWT codes associated with the marked component of a DIT group were identified as not actually belonging to a DIT group;
- There were 5 instances where a CWT code associated with either the marked or unmarked component of a DIT group was omitted in the initial analysis:
- In three of these cases data from a CWT code associated with a marked component of a DIT group were missing; and,
- In two of these cases, data from a CWT code associated with an unmarked component of a DIT group were missing.
These issues were all addressed; the analyses presented in this report used these revised data.
Finally, a new data query to the RMIS CWT recovery data base was conducted for the final set of tag codes for the DIT groups included in the analysis; this new query was done only for DIT groups in the Puget Sound, Washington Coast, and Columbia River regions. This query was conducted approximately 18 months after the query used to draw data for the initial drafts of this report. This query added hundreds of tag recoveries to some DIT groups. It was clear that new data had been reported to RMIS after the original query and recovery data for some tags codes from brood years as far back as the early 2000s had been added. The timely reporting of recovery data, especially from some terminal areas, is a major issue challenging these types of analyses. This late-reporting problem affected multiple DIT groups from hatcheries in the Puget Sound and Washington Coast region.

The issues discussed above illustrate that an analyst cannot simply make a query to RMIS to retrieve data for a DIT analysis under the assumption that CWT recovery data are complete and correct. Careful review of all the data is needed and input from regional experts that are very familiar with the data is needed to identify potential data quality issues such as incomplete or incorrect release information, missing fishery and escapement recoveries, and/or misspecification of fishery type, i.e., NSF, MSF or mixed, or DIT groups that have not been correctly identified in RMIS as a DIT. The review should also include review of the data associated with the rearing of the DIT groups such as stock, average size at release, release date, release location, and mark status at recovery relative to release (see item 2 in the "Framework for Evaluating DIT Programs" in the following section of this report).

7.6 Are there Reliable Alternatives to the DIT Program for Estimating the Exploitation Rate on Unmarked Coho Stocks?

This section examines whether two alternative methods of producing estimates of the exploitation rates on unmarked Coho stocks examined earlier in the report might, under certain circumstances, be reliable substitutes for estimates from a DIT program:

- Single index tag (SIT) methods (Section 4); and,
- Post-season FRAM (FRAM) estimates (Section 5).

This section is predicated on the assumption that DIT program estimates using the PR method with $\lambda^{\text {Rel }}$ provide the "best available" estimates of the ER on unmarked stocks. This is probably a reasonable assumption for the majority of the DIT programs examined in this report. However, there are some DIT programs that were identified in Section 6 of this report that may not be providing robust and reliable estimates of the ER on the unmarked component of the DIT groups. Those programs are identified in the following analyses. The analyses in this section are not presented as final alternative models but rather as initial steps in identifying whether alternative methods could be used to produce estimates of the ER on unmarked stocks that are useful for management purposes. Further exploration and more in-depth analyses are required before any alternative method could be implemented as a substitute for a DIT program.

Ordinary least squares regression was used to relate the ER estimates for unmarked stocks from the alternative method (the independent X variable) to the DIT-based estimate of the ER on the corresponding unmarked component of the DIT group (the dependent Y variable).
Three statistics are used to summarize the regression results:

1. the coefficient of determination $\left(\mathrm{R}^{2}\right)$ for the regression model which is the percentage of the variation in the dependent variable that is explained by the regression model;
2. the significance (P) of the regression model based on the F statistic; and,
3. the mean absolute difference (MAD) between the DIT-based estimate of unmarked ER and the model based estimate of unmarked ER for the brood years used to estimate the regression model ${ }^{1}$.

There are distinct differences between the data used for the assessments of the two methods. For the comparison of SIT-based estimates to DIT-based estimates, both estimates are based on the data described in Section 4:

- the ER estimates are for all ages;
- the estimates do not include drop-out|drop-off mortalities; and,
- the estimates compared are for total ER across all fisheries.

[^14]For the comparison of FRAM-based estimates to DIT-based estimates, both estimates are based on the data described in Section 5:

- the ER estimates are for age-3 Coho only;
- the estimates include drop-out|drop-off mortalities; and,
- the estimates compared are for:
- pre-terminal ERs for hatcheries in the BC and CR regions; and,
- for total ER across all fisheries for hatcheries in the PS and WC regions.

Table 7-2 summarizes the results for the regressions models for each method, by hatchery. Hatchery names are shaded to indicate their classification in Section 6:

Green indicates hatcheries with DIT programs that provided relatively consistent, reliable, and relatively precise estimates that can be used to evaluate the impacts of MSFs on the unmarked component of DIT group.
Yellow indicates hatcheries with DIT programs that have potential issues that decrease their effectiveness and require further review to determine if these issues can be addressed or if the DIT programs should be discontinued.

Table 7-2. Summary of regression model results, including mean absolute difference (MAD), relating single index tag (SIT) and post-season FRAM based estimates of the exploitation rate on unmarked stocks to estimates using DIT-based (PR $\lambda^{\text {Rel }}$) estimates, by hatchery. Refer to text for additional explanation.

Hatchery	Method	$\mathbf{R}^{\mathbf{2}}$	Regression \boldsymbol{P} value	MAD
British Columbia Region				
	SIT	87.7%	$<\mathbf{0 . 0 0 1}$	0.023
	FRAM	4.3%	$\mathbf{0 . 0 4 3}$	0.088
Inch Creek	SIT	86.4%	$<\mathbf{0 . 0 0 1}$	0.012
	FRAM	3.1%	0.547	0.039

Puget Sound Region

Lower Elwha River	SIT	28.9\%	0.048	0.069
	FRAM	1.9\%	0.641	0.075
Kendall Creek	SIT	64.6\%	0.005	0.067
	FRAM	4.9\%	0.538	0.118
Marblemount	SIT	93.0\%	<0.001	0.027
	FRAM	10.6\%	0.255	0.101
Wallace River	SIT	72.3\%	<0.001	0.014
	FRAM	45.9\%	0.008	0.022
Soos Creek	SIT	68.3\%	<0.001	0.047
	FRAM	1.4\%	0.691	0.100
Voights Creek	SIT	92.5\%	<0.001	0.029
	FRAM	2.7\%	0.573	0.105
George Adams	SIT	96.2\%	<0.001	0.023
	FRAM	32.0\%	0.035	0.128
Quilcene	SIT	91.6\%	<0.001	0.043
	FRAM	37.2\%	0.021	0.119

Washington Coast Region

Makah NFH	SIT	87.2%	$<\mathbf{0 . 0 0 1}$	0.023
	FRAM	12.0%	0.271	0.095
Quinault NFH	SIT	34.2%	$\mathbf{0 . 0 2 8}$	0.061
	FRAM	0.3%	0.845	0.090
Salmon River Fish Culture	SIT	63.9%	$\mathbf{0 . 0 0 1}$	0.085
	FRAM	10.4%	0.307	0.149
Solduc	SIT	97.4%	$<\mathbf{0 . 0 0 1}$	0.028
	FRAM	27.4%	0.055	0.180
Bingham Creek	SIT	68.9%	$<\mathbf{0 . 0 0 1}$	0.032
	FRAM	3.6%	0.513	0.066
Forks Creek	SIT	57.7%	$\mathbf{0 . 0 0 2}$	0.056
	FRAM	10.5%	0.259	0.120

Columbia River Region

Lewis River - North	SIT	72.3%	$<\mathbf{0 . 0 0 1}$	0.049
	FRAM	19.3%	0.116	0.038
Lewis River - South	SIT	11.4%	0.237	0.025
	FRAM	1.8%	0.649	0.062
Eagle Creek	SIT	19.3%	0.116	0.034
	FRAM	15.2%	0.167	0.059
Sandy River	SIT	85.2%	$<\mathbf{0 . 0 0 1}$	0.034
	FRAM	7.6%	0.411	0.058

Unshaded indicates hatcheries with DIT programs that provided mixed results and were difficult to categorize.

See Appendix 12 for plots of the regression models presented in Table 7-2. The Big Qualicum River, Chilliwack River, and Robertson Creek hatcheries in the BC region were not analyzed because there were only five brood years with DIT estimates for each of these hatcheries.

There were 11 hatchery DIT programs (out of the 20 examined) that had R^{2} estimates > 70% for the simple linear regression models based on SIT-based ER estimates. The majority of these DIT programs had average ER estimates for the unmarked component of the DIT group $<40 \%$ (an ER level recommended in Section 4 as conducive to producing SIT-based estimates that are similar to DIT-based estimates). The following hatchery DIT programs meet those two criteria: Quinsam River; Inch Creek; Marblemount; Wallace River; George Adams; Makah NFH; Solduc; Lewis River (North); and Sandy River. For these nine hatcheries, the mean absolute difference (MAD) between the SIT-based and DIT-based estimates of unmarked ER ranged from 0.012 to 0.049 .

The highest R^{2} for any of the regression models relating FRAM-based ER to DIT-based ER was only 46% (Wallace River Hatchery). The regression model R^{2} for 16 of the 20 DIT programs was $<20 \%$. Mean absolute differences between the FRAM-based and DIT-based estimates of unmarked ER ranged from 0.022 to 0.180 for the FRAM-based regression models. As discussed earlier in this report, differences between Post-season Coho FRAM and DIT-based estimates of ERs are expected due to FRAM's reliance on average stock-fisherytime period exploitation rates during a referenced base period (1986-1992). Consequently, FRAM results for individual years do not reflect annual deviations of stock distribution or migration patterns from base-period averages. The results presented in Table 7-2 provide additional confirmation that Post-season Coho FRAM is not useful for assessing impacts on an annual basis but is best used to assess multi-year averages. Post-season assessments of annual ERs should not be based solely on post-season Coho FRAM.

8 Framework for Evaluating DIT Programs

An evaluation of the Coho salmon DIT programs providing information to the Pacific Salmon Commission for international management should be conducted on a regular basis. While this report supplies a major portion of the information needed for such an evaluation, it is not intended to be a complete review of each DIT program. The information in this report can be used to address items $2 \mathrm{~b}, 3 \mathrm{a}, 3 \mathrm{~b}, 3 \mathrm{c}, 4 \mathrm{a}, 4 \mathrm{c}$, and 5 a in the evaluation framework described below. Some of the items not addressed in this report are discussed in SFEC (2012).

1. Is there adequate coverage of DIT groups for important stock groups?
a) Does the DIT program provide information needed to support management of a Coho salmon stock(s) important to the Pacific Salmon Treaty?
b) Are there existing DIT programs already providing information on the stock(s) being represented?

2. Rearing and Release Conditions

a) Is the assumption that the only difference between the marked and unmarked components of a DIT group is their mark status valid?
i. Are the marked and unmarked components reared under identical conditions?
ii. Are the marked and unmarked components released at the same time and location?
b) Are the number of fish released in the marked and unmarked groups sufficient to estimate impacts given expected (average) survival rates to age 2 ?
c) Are the CWT tag codes for the marked and unmarked groups clearly and correctly associated in RMIS?
d) Are the number of fish released in the marked and unmarked components of each DIT group accurately enumerated?
e) Is all the release information being accurately reported to RMIS and verified for accuracy in RMIS after reporting?

3. Fishery Sampling

a) Is electronic sampling conducted in the major fisheries expected to impact this DIT group?
b) Are the non-selective and/or mixed-regulation fisheries that are expected to impact the DIT group electronically sampled?
i. If not, is there a reliable indirect estimate available using auxiliary information?
c) Are catch estimation strata, CWT sample strata, and fishery regulation strata aligned?
d) Is fishery recovery information properly expanded and reported to RMIS and verified for accuracy in RMIS after reporting?

4. Escapement Sampling

a) Is the escapement, hatchery and spawning grounds, electronically sampled?
b) Is escapement sampling conducted in a manner that provides unbiased estimates of the return rates for both the marked and unmarked groups?
i. Are fish that are passed upstream sampled?
c) Is escapement sampling sufficient to obtain sample sizes that provide accurate and precise estimates of the return rate for both the marked and unmarked groups?
d) Is escapement recovery information properly expanded and reported to RMIS and verified for accuracy in RMIS after reporting?

5. Fishery Impacts

a) Is the marked fish component of a DIT pair susceptible to current or potential MSFs that are large enough such that the return rate estimates for the marked and unmarked groups will be significantly different?
b) Is the marked fish component of a DIT pair susceptible to current or potential MSFs large enough such that the exploitation rate estimates for the marked and unmarked groups will be significantly different?

9 Recommendations

1. The Paired-Ratio method using either $\lambda^{\text {Rel }}$ or $\lambda^{\text {Esc }}$ is the recommended method for estimating the exploitation rate for the unmarked component of a DIT group.
2. The following guidelines are suggested to increase the probability that significant impacts by MSFs on the unmarked component of DIT groups will be consistently detected:

- The combination of the number of fish released in the DIT group and the expected return rate to the hatchery should result in at least 1,000 fish in the marked and unmarked components of the DIT group (individually) returning to the escapement (and to be available for sampling).
- For the marked component of a DIT group, at least one third (33\%) of all estimated CWT recoveries in fisheries should be expected to occur in MSFs.

3. For fisheries expected to impact DIT groups released from a hatchery, it is recommended that:

- ETD and sampling programs are in place for at least 80% of fishery recoveries;
- no more than 5\% of expected DIT group fishery recoveries occur in mixedregulation fishery strata; and,
- no more than 5\% of the estimated recoveries for the unmarked component of the DIT group occur in visually-sampled, non-selective fisheries.

4. A sensitivity analysis which examines the results of the hypothesis tests comparing the estimates of ERs for the marked and unmarked components of a DIT group to changes in sfm rates and to uncertainty in the sfm rates should be conducted.
5. The SIT-based method may be an adequate method of estimating unmarked ERs for some hatcheries if expected ERs are relatively low (e.g., < 40\%) and if survival rates and tagging levels are conducive to producing precise SIT-based estimates.
6. The comparisons of total ERs produced by Coho DIT and Coho FRAM presented in this report suggest that Coho DIT could provide a valuable source of data to evaluate the performance of Coho FRAM. Coho FRAM is the bilateral tool that is relied upon to produce fishery specific preseason and postseason estimates for ERs imparted by US and Canadian fisheries on individual coho management units included in the Southern Coho PST Agreement. Because Coho FRAM depends heavily on a variety of assumptions, including average stock distribution and harvest patterns derived from CWT groups that were released several decades ago for its reference base period, differences with ERs estimated from annual CWT recovery data are expected. It is recommended that a collaborative effort involving SFEC and CoTC be undertaken to investigate the ability to utilize CWT DIT and SIT recovery data to produce the stockfishery ERs needed for reporting of the Southern Coho Agreement and provide information to help interpret estimates produced by Coho FRAM.

Finally, the following recommendations are made for the DIT programs analyzed in this report (details for the basis of these recommendations are provided in Section 6):
$>$ The following DIT program(s) provide relatively consistent, reliable, and relatively precise estimates that can be used to evaluate the impacts of MSFs on the unmarked component of DIT groups:

British Columbia region Inch Creek Hatchery
Puget Sound region
Marblemount Hatchery
Wallace River Hatchery
Soos Creek Hatchery
George Adams Hatchery
Quilcene NFH
Washington Coast region
Quinault NFH
Solduc Hatchery
Bingham Creek Hatchery
Forks Creek Hatchery
Columbia River region
Lewis River Hatchery - north-migrating group
Lewis River Hatchery - south-migrating group
Sandy River Hatchery.
$>$ The following DIT program(s) have potential issues that decrease their effectiveness and require further review to determine if these issues can be addressed or if the DIT program(s) should be discontinued:

British Columbia region
Quinsam River Hatchery
Puget Sound region
Lower Elwha Hatchery
Kendall Creek Hatchery
Washington Coast region
Makah NFH
Salmon River Fish Culture.
$>$ The results for the following DIT program(s) are mixed and are difficult to categorize or there is an insufficient number of years of data to make a determination:

British Columbia region
Big Qualicum River Hatchery
Chilliwack River Hatchery
Robertson Creek Hatchery
Puget Sound region
Voights Creek Hatchery
Columbia River region
Eagle Creek NFH.

10 Literature Cited

ASFEC. 1995. Pacific Salmon Commission, Selective Fishery Evaluation. Ad-hoc Selective Fishery Evaluation Committee report to the Pacific Salmon Commission. ADHOC SFEC (95), June 1995.

ASFEC. 1997. Pacific Salmon Commission, Reliability and Feasibility of Using Electronic Detection for Recovery of Coded Wire Tags in Coho Salmon. Ad-hoc Selective Fishery Evaluation Committee report to the Pacific Salmon Commission. ASFEC (97)-1, February 1997.

Bernard, D. R. and J. E. Clark. 1996. Estimating salmon harvest with coded-wire tags. Canadian Journal of Fisheries and Aquatic Science 53:2323-2332.

Fleiss, J. L. 1981. Statistical Methods for Rates and Proportions. John Wiley and Sons. New York.

Goodman, L. A. 1960. On the exact variance of products. Journal of the American Statistical Association 55:708-713.

JCDAW. 2003. Analysis of Coho Salmon Double Index (DIT) Data for the Brood Years 1995 - 1997. Northwest Fishery Resource Bulletin Project Report Series No. 12.

PFMC (Pacific Fishery Management Council). 2002. STT Recommendations for Hooking Mortality Rates in 2000 Recreational Ocean Chinook and Coho Fisheries. STT Report B.2, report to the PFMC March 2000 meeting. PFMC. Portland, OR.

PFMC (Pacific Fishery Management Council). 2008. Fishery Regulation Assessment Model (FRAM): an overview for Coho and Chinook version 3.0. PFMC. Portland, OR.

PSC (Pacific Salmon Commission). 2005. Report of the Expert Panel on the Future of the Coded Wire Tag Program for Pacific Salmon. PSC Tech. Rep. No. 18. November 2005.

PSC (Pacific Salmon Commission). 2016. Lessons Learned Report: Mass Marking and MarkSelective Fisheries. PSC Tech. Rep. No. 34. January 2016.

RMIS. 2019. https://www.rmpc.org/

SFEC. 2012. Pacific Salmon Commission, Summary of Mass Marking Activities and MarkSelective Fisheries Conducted by Canada and the United States, 2005-2009. SFEC Report (12)-1, April 2012.

SFEC. 2016. Pacific Salmon Commission, Review of Mass Marking and Mark-Selective Fishery Activities Proposed to Occur in 2015. SFEC Report (16)-1, January 2016.

SFEC. 2019. Pacific Salmon Commission, Review of Mass Marking and Mark-Selective Fishery Activities Proposed to Occur in 2019. SFEC Report (19)-1, July 2019.

SFEC-AWG. 2002. Pacific Salmon Commission, Investigation of Methods to Estimate Mortalities of Unmarked Salmon in Mark-selective Fisheries through the Use of Double Index Tag Groups. SFEC Report (02)-1, February 2002.

Zhou, S. 2002. Uncertainties in estimating fishing mortality in unmarked salmon in markselective fisheries using double-index-tagging methods. North American Journal of Fisheries Management 22:480-493.

Appendices

Appendix 1: CWT codes, number of unmarked and marked fish released, and unmarked-to-marked ratio (λ) for Coho salmon DIT groups by region, hatchery, and brood year.

Appendix Table 1A. CWT codes, number of unmarked and marked fish released, and unmarked-to-marked ratio (λ) for Coho salmon DIT groups from the British Columbia region: by hatchery and brood year.

Hatchery	Brood Year	Tag code	Unmarked Released	Tag code	Marked Released	λ
Quinsam River	1998	184236	10,473	184232	10,532	
		184237	10,240	184233	10,562	
		184238	10,060	184234	10,463	
		184239	10,712	184235	10,795	
	1998 Total		41,485		42,352	0.980
	1999	182730	21,590	183026	21,528	
		183704	10,769	183703	10,751	
		183952	10,801	183705	10,717	
	1999 Total		$43,160$		42,996	1.004
	2000	182117	21,342	181633	21,163	
		184253	10,838	184252	10,772	
		184255	10,792	184254	10,730	
	2000 Total		42,972		42,665	1.007
	2001	183946	10,887	183945	10,861	
		185338	32,337	185337	32,053	
	2001 Total		43,224		42,914	1.007
	2002	184033	10,783	184136	10,806	
		184034	10,903	184137	10,874	
		184035	10,857	184149	10,849	
		184036	10,913	184150	10,869	
	2002 Total		43,456		43,398	1.001
	2003	182710	10,784	184115	10,738	
		184138	10,831	184139	10,900	
		184140	10,904	184141	10,906	
		184142	10,885	184153	5,454	
		184154	5,460	-	-	
	2003 Total		48,864		37,998	1.286
	2004	184314	10,905	181662	10,930	
		184315	10,918	181663	10,925	
		185332	10,919	184220	10,910	
		185333	10,932	184401	10,907	
	2004 Total		$43,674$		43,672	1.000
	2005	185846	10,809	185842	9,929	
		185847	11,604	185843	11,600	
		185848	12,018	185845	11,492	
		185849	11,861	185944	11,427	

Hatchery	Brood Year	Tag code	Unmarked Released	Tag code	Marked Released	λ
Quinsam River	2005 Total		46,292		44,448	1.041
	2006	185854	10,902	185851	10,994	
		185855	11,255	185852	11,030	
		185862	10,594	185853	11,187	
		185863	11,062	185901	11,059	
	2006 Total		43,813		44,270	0.990
	2007	186121	11,097	186117	10,943	
		186122	11,304	186118	10,953	
		186123	11,310	186119	11,415	
		186124	11,319	186120	11,289	
	2007 Total		45,030		44,600	1.010
	2008	180288	10,833	186127	10,747	
		180289	11,159	186128	10,399	
		180290	10,996	186129	11,374	
		180291	11,002	186130	10,874	
	2008 Total		$43,990$		43,394	1.014
	2009	180294	10,918	180768	11,041	
		180577	11,043	180978	10,618	
		180578	11,002	180979	11,485	
		186114	11,038	180980	11,003	
	2009 Total		44,001		44,147	0.997
	2010	185761	10,511	181920	10,190	
		185762	11,880	181921	10,690	
		185763	9,989	181922	10,820	
		185801	10,818	181923	10,756	
	2010 Total		43,198		42,456	1.017
	2011	182272	18,361	182271	18,339	
		182274	18,875	182273	18,811	
	2011 Total		37,236		37,150	1.002
Big Qualicum River	1998	184225	10,218	184224	10,426	
		184227	10,326	184226	10,218	
		184229	10,492	184228	10,362	
		184231	10,621	184230	9,830	
	1998 Total		41,657		40,836	1.020
	1999	183938	10,140	183937	10,118	
		183940	10,072	183939	10,119	
		183942	10,009	183941	9,980	
		183944	9,990	183943	10,379	
	1999 Total		40,211		40,596	0.991
	2000	184248	9,973	184009	10,102	

Hatchery	Brood Year	Tag code	Unmarked Released	Tag code	Marked Released	λ
Big Qualicum River		184249	10,328	184010	10,355	
		184250	10,461	184011	10,919	
		184251	10,498	184012	10,602	
	2000 Total		41,260		41,978	0.983
	2001	185311	42,471	185310	42,566	0.998
	2002	185512	37,275	185511	38,940	0.957
Chilliwack River	1998	183649	9,346	183648	9,271	
		184037	14,041	184038	13,850	
		184039	14,019	184040	13,855	
	1998 Total		37,406		36,976	1.012
	1999	184423	14,048	184424	14,221	
		184425	14,307	184426	14,229	
		184427	14,288	184428	14,345	
	1999 Total		42,643		42,795	0.996
	2000	184531	38,821	184530	38,726	1.002
	2001	184863	35,207	184862	35,162	1.001
	2002	185521	31,851	185520	35,923	0.887
Inch Creek	1998	183655	9,972	183651	9,900	
		183656	10,038	183652	10,125	
		183657	9,994	183653	10,080	
		183658	10,094	183654	10,096	
	1998 Total		40,098		40,201	0.997
	1999	184527	40,090	184526	39,911	1.004
	2000	184525	40,157	184901	39,998	1.004
	2001	185315	39,509	185314	39,819	0.992
	2002	185522	39,709	185523	39,595	1.003
	2003	185526	39,986	185525	39,986	1.000
	2004	184835	15,052	184834	15,085	
		185219	25,006	185218	24,639	
	2004 Total		40,058		39,724	1.008
	2005	185923	39,270	185922	39,035	1.006
	2006	185931	40,117	185930	40,117	1.000
	2007	180179	40,235	180178	40,306	0.998
	2008	180476	39,161	180181	39,197	0.999
	2009	181581	47,508	181580	47,802	0.994
	2010	182279	24,505	182277	24,838	
		182280	24,611	182278	24,697	
	2010 Total		49,116		49,535	0.992
	2011	181771	25,047	181770	25,023	

Appendix Table 1B. CWT codes, number of unmarked and marked fish released, and unmarked-to-marked ratio (λ) for Coho salmon DIT groups from the Puget Sound region: by hatchery and brood year.

Hatchery	Brood Year	Tag code	Unmarked Released	Tag code	Marked Released	λ
Lower Elwha	1998	631101	76,733	210220	79,438	0.966
	1999	631105	61,865	210171	62,465	0.990
	2000	210192	71,362	630965	70,742	1.009
	2001	210409	73,722	210222	72,867	1.012
	2002	210376	75,185	210426	74,683	1.007
	2003	632680	51,084	210549	63,274	0.807
	2004	632692	78,779	210587	77,661	1.014
	2005	633187	76,246	210676	76,159	1.001
	2006	210747	79,887	633980	78,303	1.020
	2007	634375	79,013	210785	78,972	1.001
	2008	635084	79,897	210839	79,575	1.004
	2009	635190	80,086	210904	80,405	0.996
	2010	635585	83,081	210956	82,395	1.008
	2011	636189	66,615	211025	76,261	0.874
Kendall Creek	1998	630813	46,455	630812	43,242	1.074
	1999	630472	30,169	630473	29,042	
		631348	7,537	631351	7,306	
		631353	7,548	631354	7,273	
	1999 Total		45,254		43,621	1.037
	2000	630382	9,731	630383	9,245	
		630384	9,891	630385	9,385	
		630983	29,370	630982	28,509	
	2000 Total		48,992		47,139	1.039
	2001	631261	9,739	631260	9,621	
		631262	9,822	631263	9,668	
		631568	29,941	631493	29,820	
	2001 Total		49,502		49,109	1.008
	2002	631689	29,140	631690	29,145	
		631697	9,279	631698	9,265	
		631699	9,182	631764	9,046	
	2002 Total		47,601		47,456	1.003
	2003	632670	47,738	632671	46,271	1.032
	2004	632695	46,335	633095	46,079	1.006
	2005	633576	49,402	633575	49,402	1.000
	2006	634169	49,700	634170	49,328	1.008
	2007	634492	46,713	634491	46,561	1.003

Hatchery	Brood Year	Tag code	Unmarked Released	Tag code	Marked Released	λ
Marblemount	1998	631108	40,525	631107	40,398	1.003
	1999	630298	45,052	630299	45,831	0.983
	2000	630386	10,988	630387	10,777	
		630945	10,988	630946	10,783	
		630947	10,969	630948	10,861	
		630949	10,935	630950	10,582	
	2000 Total		43,880		43,003	1.020
	2001	631069	6,887	631175	28,871	
		631254	7,472	631253	9,013	
		631256	9,063	631255	9,975	
		631258	8,999	631257	10,745	
		-	-	631259	11,240	
	2001 Total		32,421		69,844	0.464
	2002	632092	10,967	632088	10,781	
		632093	9,781	632089	6,947	
		632094	10,878	632090	11,046	
		632095	11,100	632091	10,861	
	2002 Total		42,726		39,635	1.078
	2003	632289	46,823	631997	46,348	1.010
	2004	633197	41,300	633099	47,305	0.873
	2005	633572	43,575	633571	43,100	1.011
	2006	633690	47,206	633691	47,072	1.003
	2007	634485	44,604	634484	44,174	1.010
	2008	634496	43,568	634495	43,359	1.005
	2009	635382	43,354	635381	44,465	0.975
	2010	635798	42,100	635799	41,840	1.006
	2011	636376	45,650	636377	45,068	1.013
Wallace River	1998	631236	22,524	631223	20,665	
		631238	23,049	631237	22,350	
	1998 Total		45,573		43,015	1.059
	1999	630467	21,154	630466	23,171	
		631052	21,698	631160	24,591	
	1999 Total		42,852		47,762	0.897
	2000	631284	19,384	631286	20,186	
		631285	19,960	631287	19,372	
	2000 Total		39,344		39,558	0.995
	2001	631575	22,377	631576	20,672	
		631577	21,263	631578	18,935	
	2001 Total		43,640		39,607	1.102

Hatchery	Brood Year	Tag code	Unmarked Released	Tag code	Marked Released	λ
Wallace River	2002	632197	23,280	632196	23,036	
		632198	23,379	632199	23,416	
	2002 Total		46,659		46,452	1.004
	2003	632678	43,575	632679	43,217	1.008
	2004	633267	30,300	633266	30,182	1.004
	2005	633681	48,378	633680	46,804	1.034
	2006	634175	45,883	634176	44,693	1.027
	2007	634494	45,310	634493	45,604	0.994
	2008	634893	42,077	634892	42,318	0.994
	2009	635896	42,508	635895	42,851	0.992
	2010	635990	45,293	635988	44,305	1.022
	2011	636384	44,425	636383	44,056	1.008
Soos Creek	1998	631218	13,161	631219	21,512	
		631220	21,296	631233	21,465	
		631232	21,836	-	-	
	1998 Total		56,293		42,977	1.310
	1999	631358	36,440	631357	34,055	1.070
		631265	22,075	631266	20,792	
		631268	21,700	631267	21,287	
	2000 Total		43,775		42,079	1.040
	2001	631485	45,242	631486	44,482	1.017
	2002	631995	44,415	631994	42,720	1.040
	2003	632674	44,922	632673	45,404	0.989
	2004	633269	45,000	633199	44,838	1.004
	2005	633685	44,927	633684	45,047	0.997
	2006	634174	45,472	634173	45,233	1.005
	2007	634489	45,487	634488	45,271	1.005
	2008	634891	44,403	634890	40,164	1.106
	2009	634895	47,225	634894	47,334	0.998
	2010	635865	45,608	635864	44,862	1.017
	2011	635992	45,428	636382	45,704	0.994
Voights Creek	1998	631222	14,319	631221	14,043	
		631235	13,862	631234	14,093	
	1998 Total		28,181		28,136	1.002
	1999	630295	44,105	630296	43,713	1.009
	2000	630590	41,580	630589	37,566	1.107
	2001	631483	47,233	631484	47,471	0.995
	2002	631525	45,881	631488	46,061	0.996
	2003	632669	45,257	632668	45,257	1.000

Hatchery	Brood Year	Tag code	Unmarked Released	Tag code	Marked Released	λ
Voights Creek	2004	633097	44,624	633098	44,328	1.007
	2005	633573	47,680	633574	56,863	0.839
	2006	633693	45,209	633692	44,668	1.012
	2007	634482	46,114	634483	45,674	1.010
	2008	634886	45,028	634885	44,484	1.012
	2009	635383	43,632	635384	44,302	0.985
	2010	635987	45,785	635986	45,001	1.017
	2011	636378	45,119	636379	45,314	0.996
George Adams	1998	630917	41,288	630918	42,496	0.972
	1999	630371	26,198	630372	24,221	
		630374	25,207	630373	25,178	
	1999 Total		51,405		49,399	1.041
	2000	630592	43,518	630591	43,686	0.996
	2001	631473	21,763	631517	22,260	
		631474	21,881	631518	21,359	
	2001 Total		43,644		43,619	1.001
	2002	632080	21,612	632078	21,650	
		632081	22,269	632079	22,036	
	2002 Total		43,881		43,686	1.004
	2003	632672	41,626	632290	41,584	1.001
	2004	633264	44,879	633265	44,965	0.998
	2005	633678	43,193	633679	43,785	0.986
	2006	634167	53,098	634168	45,482	1.167
	2007	634487	45,669	634486	45,669	1.000
	2008	634888	45,371	634887	44,613	1.017
	2009	635386	45,815	635385	45,698	1.003
	2010	635989	45,568	635985	45,259	1.007
	2011	636380	45,042	636381	44,504	1.012
Quilcene NFH	1998	055160	11,602	055159	12,031	
		055162	10,843	055161	12,061	
		055204	9,900	055163	11,978	
		055206	12,271	055205	12,123	
	1998 Total		44,616		48,193	0.926
	1999	050379	9,387	050378	12,468	
		050381	12,971	050380	10,611	
		050383	9,020	050382	11,113	
		050385	10,551	050384	12,077	
	1999 Total		$41,929$		46,269	0.906
	2000	050592	12,435	050591	12,564	

Hatchery	Brood Year	Tag code	Unmarked Released	Tag code	Marked Released	λ
Quilcene NFH		050594	11,863	050593	11,659	
		050596	11,870	050595	12,596	
		050598	12,625	050597	12,494	
	2000 Total		48,793		49,313	0.989
	2001	051077	12,790	051076	11,449	
		051079	12,017	051078	11,640	
		051081	12,158	051080	12,148	
	2001 Total		36,965		35,237	1.049
	2002	051669	11,785	051668	10,243	
		051671	11,728	051670	10,708	
		051673	11,118	051672	11,090	
		051675	10,450	051674	11,072	
	2002 Total		45,081		43,113	1.046
	2003	052297	11,145	052296	11,221	
		052299	10,117	052298	10,143	
		052365	10,272	052364	10,404	
		052367	7,043	052366	9,239	
	2003 Total		38,577		41,007	0.941
	2004	052764	11,591	052699	11,263	
		052766	12,816	052765	11,502	
		052768	13,144	052767	12,562	
		052770	11,540	052769	12,467	
	2004 Total		49,091		47,794	1.027
	2005	053279	11,345	053278	11,027	
		053281	12,160	053280	12,889	
		053283	10,616	053282	11,343	
		053285	6,408	053284	6,321	
	2005 Total		$40,529$		41,580	0.975
	2006	053966	6,923	053965	6,832	
		053973	8,469	053972	8,566	
		053975	9,445	053974	9,172	
		053977	9,510	053976	9,569	
	2006 Total		34,347		34,139	1.006
	2007	054474	9,578	054473	9,580	
		054476	10,006	054475	9,861	
		054478	9,647	054477	9,858	
		054480	9,717	054479	7,168	
	2007 Total		38,948		36,467	1.068
	2008	054766	9,961	054767	9,903	

Hatchery	Brood Year	Tag code	Unmarked Released	Tag code	Marked Released	λ
Quilcene NFH		054768	10,405	054769	9,919	
		054770	10,025	054771	9,691	
		054772	9,935	054765	8,422	
	2008 Total		40,326		37,935	1.063
	2009	055174	10,350	055173	10,249	
		055176	10,126	055175	10,450	
	2009 Total		20,476		20,699	0.989
	2010	055329	9,495	055328	9,429	
		055335	10,012	055334	9,817	
		055465	24,752	055464	24,936	
	2010 Total		44,259		44,182	1.002
	2011	055483	70,746	055484	71,292	0.992

Appendix Table 1C. CWT codes, number of unmarked and marked fish released, and unmarked-to-marked ratio (λ) for Coho salmon DIT groups from the Washington Coast region: by hatchery and brood year.

Hatchery	Brood Year	Tag code	Unmarked Released	Tag code	Marked Released	λ
Makah NFH Tsoo-Yes River	1998	055152	9,500	055151	9,489	
		055154	9,696	055153	9,394	
		055156	9,935	055155	9,349	
		055158	9,937	055157	9,620	
	1998 Total		39,068		37,852	1.032
	1999	050387	8,790	050386	8,682	
		050389	9,099	050388	8,510	
		050391	10,670	050390	10,012	
		050393	10,668	050392	10,762	
	1999 Total		$39,227$		37,966	1.033
	2000	050584	9,808	050583	9,362	
		050586	9,846	050585	10,296	
		050588	9,921	050587	9,892	
		050590	9,533	050589	9,972	
	2000 Total		39,108		39,522	0.990
	2001	050188	8,392	051084	9,360	
		051085	9,506	051086	9,482	
		051087	8,959	051088	8,557	
		051089	9,364	051090	8,203	
	2001 Total		$36,221$		35,602	1.017
	2002	051893	9,685	051892	9,190	
		051895	9,482	051894	9,420	
		051897	9,627	051896	9,111	
		051899	9,161	051898	8,893	
	2002 Total		37,955		36,614	1.037
	2003	052398	8,966	052397	9,046	
		052464	9,218	052399	9,514	
		052466	9,276	052465	10,896	
		052468	8,857	052467	9,114	
	2003 Total		36,317		38,570	0.942
	2004	052880	9,777	052469	9,973	
		052882	10,355	052881	10,460	
		052884	10,090	052883	10,192	
		052886	9,766	052885	9,926	
	2004 Total		39,988		40,551	0.986
	2005	053364	9,071	053299	9,182	

Hatchery	Brood Year	Tag code	Unmarked Released	Tag code	Marked Released	λ
Makah NFH Tsoo-Yes River		053366	9,605	053365	9,130	
		053368	9,728	053367	9,995	
		053370	9,445	053369	9,406	
	2005 Total		37,849		37,713	1.004
	2006	053894	9,725	053893	9,979	
		053896	9,786	053895	9,582	
		053898	10,158	053897	10,070	
		053964	10,147	053899	9,736	
	2006 Total		39,816		39,367	1.011
	2007	054495	9,932	054494	9,916	
		054497	10,211	054496	10,282	
		054499	10,169	054498	10,221	
		054565	10,447	054564	10,088	
	2007 Total		40,759		40,507	1.006
	2008	055094	10,214	055093	10,304	
		055096	10,128	055095	9,980	
		055098	10,235	055097	10,125	
		055164	9,854	055099	9,930	
	2008 Total		40,431		40,339	1.002
	2009	055321	9,587	055320	10,145	
		055323	10,047	055322	9,565	
		055325	9,791	055324	9,797	
		055327	10,571	055326	10,368	
	2009 Total		39,996		39,875	1.003
	2010	055467	64,410	055466	61,907	1.040
Quinault NFH Cook Creek	1998	055143	19,585	055142	19,480	
		055145	20,498	055144	20,210	
		055147	19,657	055146	19,997	
		055149	20,117	055148	20,310	
		055216	64,131	055215	59,157	
	1998 Total		143,988		139,154	1.035
	1999	050370	20,613	050369	20,344	
		050372	17,849	050371	17,965	
		050374	18,352	050373	18,832	
		050376	20,199	050375	20,010	
	1999 Total		$77,013$		77,151	0.998
	2000	050174	18,669	050173	16,947	
		050176	16,744	050175	16,353	
		050178	18,044	050177	16,565	

Hatchery	Brood Year	Tag code	Unmarked Released	Tag code	Marked Released	λ
Quinault NFH Cook Creek	2006 Total		78,329		78,359	1.000
	2007	054486	20,445	054485	20,534	
		054488	20,653	054487	20,442	
		054490	20,800	054489	20,601	
		054492	20,101	054491	19,328	
	2007 Total		81,999		80,905	1.014
	2008	054696	19,676	054695	20,090	
		054698	19,078	054697	20,890	
		054973	19,577	054972	20,091	
		054975	20,283	054974	20,686	
	2008 Total		78,614		81,757	0.962
	2009	055290	19,740	055289	19,696	
		055292	14,764	055291	14,728	
		055294	18,184	055293	18,943	
		055296	20,502	055295	20,319	
	2009 Total		$73,190$		73,686	0.993
	2010	055312	20,796	055311	20,180	
		055314	20,338	055313	19,913	
		055316	20,005	055315	20,117	
		055318	19,862	055317	19,840	
	2010 Total		81,001		80,050	1.012
	2011	055482	78,850	055481	79,407	0.993
Salmon River Fish Culture	1998	631103	72,008	210227	68,440	1.052
	1999	630575	72,796	210198	69,441	1.048
	2000	631190	71,602	210330	72,257	0.991
	2001	210395	73,408	631413	72,882	1.007
	2002	210499	40,719	210518	74,207	
		210505	33,721	-	-	
	2002 Total		74,440		74,207	1.003
	2003	632691	74,130	210572	70,869	1.046
	2004	633191	78,945	210635	79,912	0.988
	2005	210692	81,321	633175	73,041	1.113
	2006	210731	81,407	633481	72,133	1.129
	2007	634181	75,056	210772	68,967	1.088
	2008	634768	77,578	210854	73,581	1.054
	2009	635189	81,078	210924	80,105	1.012
	2010	635586	80,161	210965	79,280	1.011
	2011	636188	74,732	211003	75,171	0.994

Hatchery	Brood Year	Tag code	Unmarked Released	Tag code	Marked Released	λ

Solduc Hatchery	1998	631216	36,032	631217	34,895	
		631230	36,134	631231	36,858	
	1998 Total		72,166		71,753	1.006
	1999	630574	64,087	630291	71,348	0.898
	2000	631180	48,872	631181	47,890	
		631274	12,226	631275	12,501	
		631276	12,016	631277	12,140	
	2000 Total		73,114		72,531	1.008
	2001	631565	51,600	631303	10,369	
		631678	12,359	631304	10,189	
		631680	9,780	631564	50,964	
		-	-	631677	12,297	
		-	-	631679	12,581	
	2001 Total		73,739		96,400	0.765
	2002	631685	48,379	631988	47,031	
		632264	11,482	632265	11,580	
		632267	11,884	632266	11,778	
	2002 Total		71,745		70,389	1.019
	2003	632690	73,234	632684	73,248	1.000
	2004	633189	75,932	633188	72,097	1.053
	2005	633676	71,195	633677	72,242	0.986
	2006	634090	76,684	634091	76,439	1.003
	2007	633183	75,261	633184	75,208	1.001
	2008	634969	77,549	634968	77,081	1.006
	2009	635465	75,700	635464	77,397	0.978
	2010	635878	80,185	635877	80,757	0.993
	2011	635882	76,179	635881	76,456	0.996
Bingham Creek	1998	630915	72,076	630916	65,986	1.092
	1999	630288	67,861	630289	69,347	0.979
	2000	630964	71,016	630899	71,665	0.991
	2001	631531	69,866	631475	69,765	1.001
	2002	631874	71,462	631875	69,462	1.029
	2003	632481	72,242	632480	72,242	1.000
	2004	633090	71,973	632693	72,621	0.991
	2005	633499	71,752	633564	71,290	1.006
	2006	633674	73,371	633675	73,728	0.995
	2007	634572	73,326	634571	73,833	0.993
	2008	634966	72,179	634967	71,762	1.006

Hatchery	Brood Year	Tag code	Unmarked Released	Tag code	Marked Released	λ
Bingham Creek	2009	635468	67,954	635467	67,388	1.008
	2010	635880	71,753	635879	71,234	1.007
	2011	636394	73,041	636393	72,929	1.002
Forks Creek	1998	631214	37,323	631215	36,764	
		631228	37,978	631229	37,130	
	1998 Total		75,301		73,894	1.019
	1999	631106	62,718	631208	70,599	0.888
	2000	630966	73,402	630967	73,031	1.005
	2001	631534	71,350	631533	65,860	1.083
	2002	631987	66,048	631986	71,067	0.929
	2003	632681	73,576	632682	73,731	0.998
	2004	633091	73,465	633092	72,188	1.018
	2005	633192	74,669	633193	72,726	1.027
	2006	633672	72,880	633673	72,458	1.006
	2007	634580	74,810	634579	73,458	1.018
	2008	634971	75,029	634970	73,794	1.017
	2009	635398	74,496	635397	71,993	1.035
	2010	635399	74,139	635466	72,928	1.017
	2011	636395	75,008	636396	74,500	1.007

Appendix Table 1D. CWT codes, number of unmarked and marked fish released, and unmarked-to-marked ratio (λ) for Coho salmon DIT groups from the Columbia River region: hatchery; stock; and brood year.

Hatchery	Brood Year	Tag code	Unmarked Released	Tag code	Marked Released	λ
Lewis River Hatchery - North	1998	630913	66,425	630914	66,447	1.000
	1999	636233	40,672	636232	37,329	
		636335	40,170	636336	36,605	
	1999 Total		80,842		73,934	1.093
	2000	630898	73,267	630897	72,322	1.013
	2001	631191	74,479	631476	69,246	1.076
	2002	631563	72,713	631562	64,936	1.126
	2003	631985	62,408	631983	62,198	1.003
	2004	633088	71,146	633087	70,382	1.011
	2005	633581	70,576	633580	71,582	0.986
	2006	633668	76,165	633669	76,503	0.996
	2007	634577	75,755	634578	75,929	0.998
	2008	634899	75,767	634898	76,149	0.995
	2009	635393	76,178	635394	76,178	1.000
	2010	635875	63,141	635876	62,444	1.011
	2011	636193	70,088	636192	70,471	0.995
Lewis River	1998	630820	74,530	630823	73,830	1.009
Hatchery -	1999	631209	73,858	631104	66,831	1.105
South	2000	630577	73,940	630576	72,278	1.023
	2001	631366	73,603	631367	69,997	1.052
	2002	631536	73,258	631535	69,661	1.052
	2003	631984	71,255	631982	68,438	1.041
	2004	632983	69,677	632982	70,295	0.991
	2005	633566	69,716	633565	72,157	0.966
	2006	633670	74,700	633671	75,500	0.989
	2007	634575	75,818	634576	76,668	0.989
	2008	634965	75,306	634964	74,570	1.010
	2009	635396	75,411	635395	75,411	1.000
	2010	635873	68,702	635874	68,380	1.005
	2011	635883	70,476	635884	70,398	1.001
Eagle Creek	1998	054247	23,080	054248	23,095	0.999
	1999	050190	24,096	050189	24,947	0.966
	2000	054253	23,820	054249	24,128	0.987
	2001	054035	24,392	054036	24,366	1.001

Hatchery	Brood Year	Tag code	Unmarked Released	Tag code	Marked Released	λ
Eagle Creek NFH	2002	053354	22,955	053355	23,674	0.970
	2003	053353	24,702	054860	24,661	1.002
	2004	050483	23,753	050484	23,732	1.001
	2005	052587	24,290	052586	24,295	1.000
	2006	053775	18,733	053774	17,825	1.051
	2007	054183	24,925	054182	25,069	0.994
	2008	054372	24,825	054371	24,815	1.000
	2009	054388	24,834	054389	24,850	0.999
	2010	054582	24,312	054583	24,534	0.991
	2011	054589	23,656	054588	24,586	0.962
Sandy River Hatchery	1998	092639	6,979	092728	26,491	
		092938	18,226			
	1998 Total		25,205		26,491	0.951
	1999	093219	27,070	092748	70,665	0.383
	2000	093355	27,883	093354	26,889	1.037
	2001	093637	27,999	093463	27,936	1.002
	2002	093918	26,363	093734	27,597	0.955
	2003	094117	26,312	094116	26,909	0.978
	2004	094309	25,348	094308	25,794	0.983
	2005	094420	27,212	094503	26,813	1.015
	2006	094638	27,427	094637	27,075	1.013
	2007	090163	27,687	090162	27,830	0.995
	2008	090260	27,901	090261	28,169	0.990

Appendix 2: Estimated number and percent of all brood-year recoveries that were age 2 for the unmarked and marked components of each brood-year's DIT group, by hatchery.

Appendix Table 2A. Estimated number (\#) and percent (\%) of all brood-year recoveries that were age 2 for the unmarked and marked components of each broodyear's DIT group, by hatchery. Percent is the percentage of total escapement recoveries or total fishery recoveries of all ages.

BRITISH COLUMBIA REGION

Hatchery	Unmarked				Marked			
	Escapement		Fishery		Escapement		Fishery	
Brood Year	\#	\%	\#	\%	\#	\%	\#	\%
Quinsam River Hatchery								
1998	207.9	24.9\%			186.8	21.7\%		
1999	255.5	29.1\%			201.8	26.7\%		
2000	84.0	13.9\%			72.2	15.8\%		
2001	34.6	5.7\%			22.7	4.5\%		
2002	106.2	34.3\%			91.7	32.5\%		
2003	42.6	30.1\%			32.5	33.8\%		
2004	83.9	20.5\%	32.9	78.8\%	69.6	19.8\%	32.9	13.3\%
2005	82.5	19.2\%			76.5	20.5\%		
2006	45.3	6.0\%			48.3	6.6\%		
2007	168.5	29.8\%	10.1	72.0\%	134.4	28.3\%		
2008	124.4	21.6\%			107.1	20.7\%	18.3	10.4\%
2009	114.8	28.0\%	24.7	45.5\%	124.1	33.2\%	8.2	4.3\%
2010	201.7	29.4\%	40.7	51.8\%	156.4	23.5\%	40.9	9.1\%
2011	151.2	21.5\%			133.3	19.5\%	9.3	4.8\%
Big Qualicum River Hatchery								
1998	154.8	16.4\%			156.0	17.2\%		
1999	468.3	39.3\%			309.5	33.7\%		
2000	78.0	19.0\%			55.7	18.9\%		
2001	52.7	7.9\%			13.9	3.2\%		
2002	9.0	18.8\%			2.2	5.4\%		
Chilliwack River Hatchery								
1998	118.2	7.4\%			93.7	7.6\%		
1999	130.0	8.4\%			86.3	7.5\%		
2000	35.9	3.3\%			28.9	3.3\%		
2001	12.1	2.2\%			8.0	1.7\%		
2002	12.0	7.7\%			19.0	11.1\%		

Appendix Table 2A. Estimated number (\#) and percent (\%) of all brood-year recoveries that were age 2 for the unmarked and marked components of each broodyear's DIT group, by hatchery. Percent is the percentage of total escapement recoveries or total fishery recoveries of all ages.

BRITISH COLUMBIA REGION (continued)

Hatchery	Unmarked				Marked			
	Escapement		Fishery		Escapement		Fishery	
Brood Year	\#	\%	\#	\%	\#	\%	\#	\%
Inch Creek Hatchery								
1998	152.0	7.1\%			133.0	7.5\%		
1999	18.6	2.6\%	4.0	14.5\%	21.5	3.4\%		
2000	25.6	8.3\%			17.7	7.3\%		
2001	6.2	0.8\%			22.8	2.7\%		
2002	33.7	4.9\%			21.0	4.1\%		
2003	9.1	3.2\%			7.9	2.8\%		
2004	40.9	8.0\%			42.1	9.3\%		
2005	2.0	0.7\%			0.0	0.0\%		
2006	14.6	3.4\%			18.6	5.3\%	5.8	5.9\%
2007	27.5	2.2\%			22.4	2.0\%	27.2	21.0\%
2008	23.4	4.5\%			22.4	4.4\%		
2009	66.1	4.0\%			69.7	4.6\%		
2010	171.8	9.6\%			126.6	9.2\%	16.1	2.0\%
2011	60.1	4.5\%			53.9	4.6\%	5.7	1.3\%
Robertson Creek Hatchery								
1998	130.5	4.2\%			167.2	5.5\%		
1999	115.1	5.6\%			130.2	6.8\%		
2000	281.7	8.0\%			232.8	7.2\%		
2001	116.4	8.5\%			104.8	7.5\%		
2002	204.8	8.0\%			116.9	7.2\%		

Appendix Table 2B. Estimated number (\#) and percent (\%) of all brood-year recoveries that were age 2 for the unmarked and marked components of each broodyear's DIT group, by hatchery. Percent is the percentage of total escapement recoveries or total fishery recoveries of all ages.

PUGET SOUND REGION

Hatchery	Unmarked				Marked			
	Escapement		Fishery		Escapement		Fishery	
Brood Year	\#	\%	\#	\%	\#	\%	\#	\%
Lower Elwha Hatchery								
1998	14.0	2.8\%			15.0	2.8\%		
1999	43.0	12.7\%			38.0	11.1\%		
2000	17.0	8.8\%			17.0	11.2\%		
2001	28.0	10.1\%			39.0	14.6\%		
2002	53.5	21.4\%			50.5	23.7\%		
2003	27.5	41.4\%			79.5	48.0\%	1.6	1.5\%
2004	20.8	34.6\%			8.3	21.0\%	3.8	15.4\%
2005	4.5	36.1\%	1.6	15.2\%	11.2	42.7\%		
2006	15.0	16.3\%			10.0	11.6\%		
2007	196.2	31.2\%	2.9	2.2\%	171.4	26.9\%	3.1	1.4\%
2008	117.4	54.1\%			73.6	44.1\%		
2009	21.5	36.0\%			23.6	40.3\%	4.8	6.9\%
2010	35.0	24.1\%			30.0	23.8\%		
2011	97.0	60.1\%			68.7	62.9\%	14.6	28.4\%
Kendall Creek Hatchery								
1998	28.3	2.6\%	1.9	0.2\%	28.3	2.6\%		
1999	5.2	0.7\%			8.6	1.1\%		
2000	9.5	2.0\%			6.0	1.4\%		
2001	0.0	0.0\%			1.0	0.5\%		
2002	0.0	0.0\%	3.4	1.0\%	0.0	0.0\%		
2003	2.0	2.5\%			1.0	1.2\%		
2004	0.0	0.0\%			7.0	4.5\%		
2005	0.0	0.0\%			0.0	0.0\%		
2006	0.0	0.0\%			1.9	6.3\%		
2007	0.0	0.0\%			0.0	0.0\%		

Appendix Table 2B. Estimated number (\#) and percent (\%) of all brood-year recoveries that were age 2 for the unmarked and marked components of each broodyear's DIT group, by hatchery. Percent is the percentage of total escapement recoveries or total fishery recoveries of all ages.

PUGET SOUND REGION (continued)

Hatchery	Unmarked				Marked			
	Escapement		Fishery		Escapement		Fishery	
Brood Year	\#	\%	\#	\%	\#	\%	\#	\%
Marblemount Hatchery								
1998	2.0	0.1\%			4.0	0.2\%		
1999	2.0	0.1\%			0.0	0.0\%		
2000	7.0	1.1\%	2.5	0.3\%	8.0	1.3\%	6.1	0.4\%
2001	0.0	0.0\%	3.4	0.3\%	0.0	0.0\%		
2002	5.0	0.3\%			8.0	0.6\%		
2003	0.0	0.0\%	3.4	1.1\%	0.0	0.0\%		
2004	1.9	0.1\%			2.0	0.1\%	4.1	0.6\%
2005	1.1	0.1\%			6.8	0.5\%		
2006	15.3	1.0\%			10.1	0.7\%		
2007	3.3	0.4\%			1.7	0.2\%		
2008	25.8	1.7\%			33.0	2.3\%		
2009	7.8	0.5\%			5.2	0.4\%		
2010	6.0	0.3\%			2.0	0.1\%		
2011	55.9	3.8\%			48.2	3.5\%		
Wallace River Hatchery								
1998	10.0	0.3\%			7.0	0.2\%		
1999	0.0	0.0\%	3.5	1.4\%	0.0	0.0\%		
2000	21.5	0.8\%			10.2	0.4\%		
2001	25.8	0.9\%			35.9	1.5\%		
2002	7.0	0.2\%			6.1	0.2\%	4.7	0.5\%
2003	6.0	0.4\%	2.5	1.0\%	5.0	0.4\%		
2004	12.4	0.7\%			4.1	0.3\%		
2005	2.0	0.3\%			0.0	0.0\%		
2006	1.0	0.1\%	2.0	0.8\%	0.0	0.0\%		
2007	0.0	0.0\%			0.0	0.0\%		
2008	8.3	0.4\%			2.8	0.2\%		
2009	2.0	0.1\%			3.0	0.1\%		
2010	18.4	0.9\%			9.8	0.5\%		
2011	7.0	0.5\%			3.2	0.2\%		

Appendix Table 2B. Estimated number (\#) and percent (\%) of all brood-year recoveries that were age 2 for the unmarked and marked components of each broodyear's DIT group, by hatchery. Percent is the percentage of total escapement recoveries or total fishery recoveries of all ages.

PUGET SOUND REGION (continued)

HatcheryBrood Year	Unmarked				Marked			
	Escapement		Fishery		Escapement		Fishery	
	\#	\%	\#	\%	\#	\%	\#	\%
Soos Creek Hatchery								
1998	24.0	1.6\%	2.4	0.1\%	38.0	3.6\%		
1999	1.0	0.1\%			4.0	0.3\%		
2000	12.0	1.0\%			11.0	1.1\%	1.7	0.1\%
2001	0.0	0.0\%			2.8	0.1\%	2.4	0.1\%
2002	34.0	2.4\%			25.0	2.2\%	6.4	0.5\%
2003	4.0	0.9\%			5.0	1.6\%		
2004	7.9	0.8\%			1.0	0.1\%	5.2	0.5\%
2005	5.4	0.5\%			5.3	0.5\%		
2006	9.4	0.8\%	8.7	1.0\%	11.8	1.0\%	3.0	0.3\%
2007	1.5	0.4\%			6.0	1.4\%		
2008	17.3	1.5\%			2.9	0.3\%	3.6	0.4\%
2009	12.2	0.7\%	1.3	0.1\%	11.9	0.8\%	4.3	0.4\%
2010	5.8	2.0\%			8.2	0.9\%		
2011	7.3	1.2\%			4.7	0.7\%		
Voights Creek Hatchery								
1998	3.1	0.4\%			6.2	0.7\%		
1999	4.5	0.2\%			6.7	0.4\%		
2000	7.5	0.6\%			5.1	0.5\%		
2001	4.5	0.5\%			3.4	0.4\%		
2002	27.0	1.7\%	5.2	0.7\%	16.3	1.1\%	3.6	0.4\%
2003	8.0	2.4\%			8.2	2.0\%		
2004	12.2	2.1\%	3.9	0.5\%	3.2	0.7\%	8.3	0.9\%
2005	1.4	1.5\%			23.5	5.8\%		
2006	5.2	1.4\%	7.8	0.8\%	6.2	1.6\%	3.4	0.2\%
2007	0.0	0.0\%			0.0	0.0\%		
2008	11.0	2.7\%			4.0	1.0\%		
2009	72.8	9.6\%	3.1	0.7\%	37.6	5.0\%	14.4	2.3\%
2010	0.0	0.0\%			1.0	0.3\%		
2011	6.4	2.6\%			3.8	1.7\%	1.5	0.3\%

Appendix Table 2B. Estimated number (\#) and percent (\%) of all brood-year recoveries that were age 2 for the unmarked and marked components of each broodyear's DIT group, by hatchery. Percent is the percentage of total escapement recoveries or total fishery recoveries of all ages.

PUGET SOUND REGION (continued)

Hatchery	Unmarked				Marked			
	Escapement		Fishery		Escapement		Fishery	
Brood Year	\#	\%	\#	\%	\#	\%	\#	\%
George Adams Hatchery								
1998	73.0	4.1\%			89.0	4.9\%	19.1	2.6\%
1999	32.0	1.1\%			23.0	0.9\%		
2000	29.6	1.8\%	2.7	0.5\%	34.9	2.3\%	3.6	0.4\%
2001	82.0	4.2\%			69.9	4.0\%		
2002	107.5	5.5\%			100.6	5.2\%		
2003	46.3	19.1\%			73.3	23.9\%		
2004	56.9	4.8\%	5.4	3.2\%	69.6	6.2\%	1.4	0.4\%
2005	119.4	12.9\%			98.8	11.3\%		
2006	69.6	11.0\%	1.6	0.3\%	151.6	14.4\%	1.6	0.2\%
2007	16.7	6.0\%			20.5	7.4\%		
2008	61.0	5.5\%			66.0	6.3\%		
2009	82.0	13.0\%	8.6	2.5\%	57.0	10.1\%		
2010	29.5	2.1\%			33.6	2.6\%		
2011	18.0	6.1\%			23.0	8.0\%		
Quilcene Hatchery								
1998	6.4	0.5\%			19.1	1.4\%	2.8	0.2\%
1999	169.4	9.8\%			164.5	9.4\%		
2000	27.5	1.9\%			45.7	3.8\%		
2001	12.2	1.0\%			7.8	0.8\%		
2002	106.8	10.1\%			133.6	13.9\%		
2003	5.6	4.8\%			2.4	1.4\%		
2004	50.2	7.3\%			77.2	11.6\%	24.4	2.4\%
2005	15.0	4.0\%			8.0	2.5\%		
2006	39.8	8.2\%			29.2	6.9\%		
2007	43.9	14.7\%			56.7	20.4\%		
2008	219.3	20.3\%			196.7	20.9\%		
2009	102.7	16.9\%			117.5	20.5\%		
2010	96.0	11.7\%			118.3	14.5\%		
2011	0.0	0.0\%			7.6	1.4\%		

Appendix Table 2C. Estimated number (\#) and percent (\%) of all brood-year recoveries that were age 2 for the unmarked and marked components of each broodyear's DIT group, by hatchery. Percent is the percentage of total escapement recoveries or total fishery recoveries of all ages.

WASHINGTON COAST REGION

Hatchery	Unmarked				Marked			
	Escapement		Fishery		Escapement		Fishery	
Brood Year	\#	\%	\#	\%	\#	\%	\#	\%
Makah NFH								
1998	34.0	4.5\%			38.7	5.1\%		
1999	38.1	5.3\%			29.1	3.6\%		
2000	93.7	19.7\%			80.3	17.4\%		
2001	0.0	0.0\%			47.3	11.5\%		
2002	104.3	12.1\%			106.2	12.9\%		
2003	18.4	10.9\%			3.7	2.7\%		
2004	16.9	22.1\%			16.9	22.4\%		
2005	14.0	5.1\%	2.5	11.8\%	13.5	4.4\%	1.9	3.9\%
2006	436.3	26.9\%			409.1	27.5\%		
2007	97.6	12.5\%			138.2	13.7\%		
2008	0.0	0.0\%			0.0	0.0\%		
2009	68.9	31.2\%			99.3	31.0\%	2.9	4.4\%
2010	0.0	0.0\%	1.6	3.0\%	0.0	0.0\%		
Quinault NFH								
1998	522.4	10.9\%			426.5	11.2\%	10.3	0.2\%
1999	29.9	2.9\%			19.9	1.6\%		
2000	81.3	3.7\%	2.4	0.1\%	62.4	3.2\%		
2001	69.4	3.9\%			75.8	4.0\%		
2002	172.5	9.6\%			176.9	10.0\%		
2003	75.9	16.2\%			104.8	22.8\%		
2004	382.4	18.4\%			255.1	16.0\%	2.5	0.1\%
2005	114.2	7.1\%	4.0	0.2\%	79.7	6.0\%	5.0	0.2\%
2006	183.3	6.8\%	5.0	0.1\%	179.2	7.8\%	5.1	0.1\%
2007	187.7	10.3\%	4.1	0.1\%	178.4	10.0\%		
2008	774.9	25.4\%			742.0	25.3\%		
2009	168.3	22.5\%			236.1	31.0\%		
2010	0.0	0.0\%	4.5	0.3\%	0.0	0.0\%	4.5	0.2\%
2011	5.3	0.2\%	7.4	0.2\%	9.2	0.4\%	4.9	0.1\%

Appendix Table 2C. Estimated number (\#) and percent (\%) of all brood-year recoveries that were age 2 for the unmarked and marked components of each broodyear's DIT group, by hatchery. Percent is the percentage of total escapement recoveries or total fishery recoveries of all ages. ${ }^{1}$

WASHINGTON COAST REGION (continued)

Hatchery	Unmarked				Marked			
	Escapement		Fishery		Escapement		Fishery	
Brood Year	\#	\%	\#	\%	\#	\%	\#	\%
Salmon River Fish Culture								
1998	24.7	2.9\%	1.0	0.1\%	15.5	1.9\%	2.0	0.2\%
1999	0.0	0.0\%			0.0	0.0\%		
2000	14.3	66.1\%			21.4	65.0\%		
2001	0.0	0.0\%			0.0	0.0\%		
2002	10.4	8.2\%			4.6	0.1\%		
2003	0.0	0.0\%			131.3	54.5\%	2.1	0.2\%
2004	149.8	75.8\%			146.1	67.0\%	6.0	2.1\%
2005	11.3	5.7\%			16.4	8.4\%	3.0	0.7\%
2006	160.1	14.4\%	6.4	0.3\%	148.5	19.6\%	10.4	0.4\%
2007	13.2	2.5\%			9.9	1.8\%		
2008	149.0	14.9\%			142.3	14.2\%		
2009	44.3	100.0\%			44.3	100.0\%		
2010	0.0				0.0			
2011	0.0	0.0\%			0.0	0.0\%		
Solduc Hatchery								
1998	228.1	11.5\%	1.0	1.3\%	291.7	15.3\%		
1999	285.0	12.4\%			264.5	9.8\%		
2000	164.6	11.0\%			131.3	11.4\%		
2001	186.9	9.7\%			175.7	7.0\%		
2002	431.3	14.7\%			518.3	18.9\%	4.6	0.4\%
2003	46.2	8.4\%			35.8	7.5\%		
2004	69.2	8.6\%			131.1	8.6\%		
2005	23.9	2.0\%	7.0	0.7\%	21.8	1.8\%	7.0	0.6\%
2006	565.3	14.1\%	4.8	0.1\%	565.1	16.4\%	4.0	0.1\%
2007	68.8	3.7\%	3.0	0.2\%	93.5	5.4\%	5.9	0.4\%
2008	434.3	14.4\%			533.2	17.3\%	3.6	0.2\%
2009	144.4	40.9\%			61.8	22.6\%	1.6	0.3\%
2010	62.2	6.1\%			74.9	8.2\%	2.7	0.2\%
2011	439.4	17.1\%			398.4	17.3\%	3.2	0.1\%

[^15]Appendix Table 2C. Estimated number (\#) and percent (\%) of all brood-year recoveries that were age 2 for the unmarked and marked components of each broodyear's DIT group, by hatchery. Percent is the percentage of total escapement recoveries or total fishery recoveries of all ages.

WASHINGTON COAST REGION (continued)

Hatchery	Unmarked				Marked			
	Escapement		Fishery		Escapement		Fishery	
	\#	\%	\#	\%	\#	\%	\#	\%
Bingham Creek Hatchery								
1998	131.4	6.0\%	4.2	0.6\%	106.9	5.5\%	17.6	2.1\%
1999	93.8	3.9\%	101.8	24.3\%	99.9	4.3\%	79.8	14.8\%
2000	776.0	32.9\%	101.3	33.6\%	647.0	34.9\%	87.7	16.5\%
2001	66.5	10.4\%	3.8	1.5\%	75.1	12.7\%	3.8	1.7\%
2002	146.0	16.3\%	2.2	1.7\%	146.0	16.0\%	3.4	0.7\%
2003	175.8	16.6\%			174.5	19.2\%	15.5	5.4\%
2004	87.3	15.9\%			69.0	9.8\%	4.3	1.8\%
2005	16.0	3.7\%	10.1	17.4\%	12.0	2.5\%	2.6	2.6\%
2006	643.8	23.2\%	9.6	2.9\%	599.6	19.0\%	18.7	2.9\%
2007	76.4	2.0\%	12.8	11.6\%	68.9	2.0\%	10.8	3.0\%
2008	398.5	17.3\%			370.0	17.0\%	2.2	0.4\%
2009	84.6	7.9\%			105.0	11.8\%		
2010	190.3	10.3\%	17.8	4.4\%	62.4	3.9\%	4.0	0.8\%
2011	872.8	20.3\%	4.1	0.2\%	324.7	8.4\%	18.0	0.9\%
Forks Creek Hatchery								
1998	280.0	12.7\%	5.4	0.3\%	190.0	10.8\%	2.0	0.1\%
1999	34.0	2.3\%	1.9	0.1\%	35.0	2.4\%		
2000	219.0	8.3\%			188.0	8.7\%		
2001	91.0	9.1\%	3.3	0.7\%	82.0	9.1\%		
2002	277.0	8.7\%			205.0	6.7\%	7.0	0.3\%
2003	3.4	0.9\%			19.6	4.4\%		
2004	34.0	4.6\%			42.0	7.0\%	7.2	1.2\%
2005	11.0	2.0\%	1.0	0.4\%	9.0	1.8\%	2.9	1.1\%
2006	100.0	8.4\%	1.0	0.2\%	94.0	11.4\%	2.0	0.2\%
2007	90.9	6.1\%	2.0	14.3\%	74.7	6.7\%	14.0	1.8\%
2008	48.4	5.4\%			25.1	3.3\%		
2009	90.4	18.0\%			105.5	21.9\%	7.1	1.3\%
2010	12.0	2.2\%			11.0	2.3\%		
2011	150.7	2.7\%			117.2	2.2\%		

Appendix Table 2D. Estimated number (\#) and percent (\%) of all brood-year recoveries that were age 2 for the unmarked and marked components of each broodyear's DIT group, by hatchery. Percent is the percentage of total escapement recoveries or total fishery recoveries of all ages.

COLUMBIA RIVER REGION

HatcheryBrood Year	Unmarked				Marked			
	Escapement		Fishery		Escapement		Fishery	
	\#	\%	\#	\%	\#	\%	\#	\%
Lewis River - North								
1998	469.1	14.6\%	24.1	1.5\%	479.8	18.0\%	133.1	4.3\%
1999	55.5	7.5\%			59.6	8.3\%	51.0	6.7\%
2000	474.0	19.4\%	5.7	0.4\%	500.1	24.9\%	25.9	1.0\%
2001	227.1	14.9\%	8.2	0.7\%	216.0	18.8\%	3.1	0.1\%
2002	126.2	6.1\%			124.2	8.7\%		
2003	191.8	11.6\%			203.6	13.9\%	6.5	1.0\%
2004	247.1	14.7\%	1.2	0.2\%	240.1	17.4\%	26.7	1.4\%
2005	82.4	4.6\%	4.0	3.2\%	56.9	3.7\%	5.0	0.8\%
2006	393.5	14.5\%	13.3	1.9\%	365.2	16.2\%	225.8	7.2\%
2007	61.9	2.9\%	2.0	0.7\%	47.5	2.6\%	11.6	1.7\%
2008	173.9	9.0\%			180.8	12.0\%		
2009	26.4	9.2\%	19.1	41.0\%	41.4	18.0\%		
2010	77.1	8.2\%			56.0	7.9\%		
2011	185.0	6.8\%	10.0	1.7\%	154.0	6.8\%	76.6	4.2\%
Lewis River - South								
1998	628.8	14.6\%	1.0	0.5\%	559.3	17.4\%	26.1	1.7\%
1999	72.7	4.9\%			57.6	5.0\%	7.0	2.4\%
2000	568.0	13.3\%			649.0	19.3\%		
2001	154.0	6.2\%			152.0	8.5\%		
2002	173.6	9.5\%			161.5	10.2\%	7.4	4.5\%
2003	198.7	12.9\%	2.0	2.1\%	206.9	14.1\%		
2004	280.1	13.5\%			257.9	16.7\%	6.4	1.0\%
2005	200.8	8.3\%	26.0	23.2\%	168.5	9.1\%	68.4	21.4\%
2006	805.8	36.9\%	4.6	2.1\%	653.7	40.8\%	91.0	5.0\%
2007	103.6	7.1\%	1.0	3.5\%	92.9	7.9\%	28.1	9.6\%
2008	94.5	6.8\%			71.0	6.0\%		
2009	6.0	10.8\%			5.0	7.8\%		
2010	121.9	9.9\%			107.9	12.7\%	7.1	2.7\%
2011	471.3	12.0\%	4.2	1.6\%	367.2	12.3\%	29.7	2.2\%

Appendix Table 2D. Estimated number (\#) and percent (\%) of all brood-year recoveries that were age 2 for the unmarked and marked components of each broodyear's DIT group, by hatchery. Percent is the percentage of total escapement recoveries or total fishery recoveries of all ages.

COLUMBIA RIVER REGION (continued)

HatcheryBrood Year	Unmarked				Marked			
	Escapement		Fishery		Escapement		Fishery	
	\#	\%	\#	\%	\#	\%	\#	\%
Eagle Creek NFH								
1998	124.0	14.7\%	4.0	2.6\%	105.0	14.7\%		
1999	20.5	5.1\%			13.7	3.4\%		
2000	158.8	34.9\%			127.6	39.8\%		
2001	28.8	8.2\%			17.3	7.1\%	5.3	10.3\%
2002	13.5	3.9\%			9.8	3.1\%		
2003	47.3	18.2\%			68.5	32.2\%		
2004	26.3	3.4\%			28.3	5.4\%		
2005	21.8	7.4\%			13.1	8.8\%	1.0	2.6\%
2006	6.9	1.2\%			13.8	3.4\%	1.0	0.4\%
2007	6.3	5.3\%			6.3	8.2\%		
2008	3.0	1.5\%			0.0	0.0\%		
2009	2.0	2.9\%			0.0	0.0\%		
2010	29.6	10.7\%			16.3	6.8\%	4.7	11.9\%
2011	0.0	0.0\%			0.0	0.0\%		
Sandy River								
1998	11.0	1.5\%	1.0	0.9\%	11.0	2.4\%	1.0	0.2\%
1999	1.0	0.6\%			8.2	1.7\%		
2000	7.1	2.5\%			8.1	4.4\%		
2001	15.3	3.3\%			20.4	4.4\%		
2002	7.1	1.4\%			4.0	1.3\%		
2003	13.0	3.0\%			15.0	6.2\%		
2004	65.7	13.1\%			29.8	10.6\%		
2005	2.0	0.7\%			0.0	0.0\%	1.0	1.1\%
2006	40.4	4.4\%	2.0	2.7\%	89.9	12.2\%	8.7	1.7\%
2007	43.4	8.6\%	6.0	28.1\%	21.2	7.1\%		
2008	34.0	5.9\%			35.0	11.2\%		

Appendix 3: Total number of all CWT recoveries for marked Coho salmon DIT groups and total number of CWT recoveries in fisheries for brood years 1998-2011.

Appendix Table 3A. Total number of all CWT recoveries for marked Coho salmon DIT groups (\# Total) and total number of CWT recoveries in fisheries (\#F) for brood years 1998-2011. Percent of the fishery recoveries by fishery regulation type are shown, also. Type $\% \mathrm{~S}=$ mark-Selective fishery, $\% \mathrm{~N}=$ Non-selective fishery, $\% \mathrm{M}=$ mixed MSF/NSF. $\% \mathrm{E}=$ percent of total CWT recoveries in the escapement. Recoveries are expanded for sampling rates.

BRITISH COLUMBIA REGION

Region	Hatchery	Type	Brood Year														
			98	99	00	01	02	03	04	05	06	07	08	09	10	11	Average
$\begin{gathered} \text { BC } \\ \text { JNST } \end{gathered}$	Quinsam River Hatchery	\%S	89.1\%	43.0\%	10.7\%	41.7\%	14.0\%	7.2\%	27.4\%	67.6\%	59.6\%	47.4\%	21.8\%	17.6\%	63.1\%	39.6\%	39.3\%
		\%N	10.9\%	46.3\%	89.3\%	48.8\%	86.0\%	92.8\%	72.6\%	32.4\%	40.4\%	52.6\%	38.3\%	54.0\%	34.1\%	34.3\%	52.3\%
		\%M	0.0\%	10.7\%	0.0\%	9.5\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	39.8\%	28.4\%	2.8\%	26.1\%	8.4\%
		\# F	34.1	157.8	109.1	154.6	49.6	32.5	247.2	37.1	178.3	45.9	175.3	191.7	448.1	195.4	146.9
		\% E	96.2\%	82.7\%	80.7\%	76.5\%	85.0\%	74.7\%	58.7\%	91.0\%	80.5\%	91.2\%	74.7\%	66.1\%	59.7\%	77.8\%	78.3\%
	\# Total		894.8	913.6	565.7	659.0	331.4	128.7	598.5	410.0	914.7	520.6	692.9	565.3	1,112.0	879.5	656.2
$\begin{gathered} \text { BC } \\ \text { GST } \end{gathered}$	Big Qualicum River Hatchery	\%S	90.7\%	68.4\%	63.5\%	46.8\%	74.1\%										68.7\%
		\%N	1.5\%	4.4\%	36.5\%	32.9\%	25.9\%										20.2\%
		\%M	7.8\%	27.2\%	0.0\%	20.2\%	0.0\%										11.1\%
		\# F	190.1	141.1	92.8	136.4	5.3										113.1
		\% E	82.7\%	86.7\%	76.1\%	76.3\%	88.5\%										82.1\%
	\# Total		1,098.3	1,059.2	388.1	576.2	46.1										633.6
$\begin{gathered} \text { BC } \\ \text { FRAS } \end{gathered}$	Chilliwack River Hatchery	\%S	90.9\%	91.5\%	87.4\%	74.2\%	78.1\%										84.4\%
		\%N	9.1\%	8.5\%	12.6\%	25.8\%	21.9\%										15.6\%
		\%M	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%										0.0\%
		\# F	307.9	305.7	110.7	82.8	52.0										171.8
		\% E	80.1\%	79.0\%	88.8\%	84.7\%	76.7\%										81.9\%
	\# Total		1,548.1	1,453.5	984.8	542.2	222.9										950.3
$\begin{gathered} \text { BC } \\ \text { FRAS } \end{gathered}$	Inch Creek Hatchery	\%S	97.4\%	70.8\%	70.9\%	57.4\%	60.4\%	28.5\%	60.1\%	88.7\%	59.6\%	84.5\%	44.4\%	51.2\%	78.0\%	43.4\%	64.0\%
		\%N	2.6\%	29.2\%	29.1\%	42.6\%	23.3\%	71.5\%	39.9\%	11.3\%	30.4\%	15.5\%	9.2\%	17.4\%	11.1\%	32.3\%	26.1\%
		\%M	0.0\%	0.0\%	0.0\%	0.0\%	16.3\%	0.0\%	0.0\%	0.0\%	10.0\%	0.0\%	46.4\%	31.4\%	11.0\%	24.2\%	9.9\%
		\# F	1,352.6	63.8	55.0	286.3	97.6	98.1	193.0	42.0	98.8	129.6	115.9	544.8	809.4	423.4	307.9
		\% E	56.8\%	90.8\%	81.6\%	74.7\%	83.9\%	74.4\%	70.0\%	86.3\%	78.0\%	89.4\%	81.3\%	73.7\%	63.0\%	73.4\%	76.9\%
	\# Total		3,129.6	692.4	298.4	1,131.0	606.3	382.9	644.1	305.9	449.4	1,225.5	620.9	2,068.6	2,187.6	1,592.5	1,095.4
$\begin{gathered} \text { BC } \\ \text { WCVI } \end{gathered}$	Robertson Creek Hatchery	\%S	22.3\%	16.0\%	36.8\%	27.2\%	39.8\%										28.4\%
		\%N	1.5\%	12.7\%	8.8\%	4.2\%	19.3\%										9.3\%
		\%M	76.2\%	71.3\%	54.4\%	68.6\%	41.0\%										62.3\%
		\# F	2,263.7	167.8	816.0	532.4	712.9										898.6
		\% E	57.3\%	92.0\%	79.9\%	72.4\%	69.5\%										74.2\%
	\# Total		5,305.5	2,095.2	4,063.8	1,929.1	2,339.9										3,146.7

Appendix Table 3B. Total number of all CWT recoveries for marked Coho salmon DIT groups (\# Total) and total number of CWT recoveries in fisheries (\#F) for brood years 1998-2011. Percent of the fishery recoveries by fishery regulation type are shown, also. Type $\% \mathrm{~S}=$ mark-Selective fishery, $\% \mathrm{~N}=$ Non-selective fishery, $\% \mathrm{M}=$ mixed MSF/NSF. $\% \mathrm{E}=$ percent of total CWT recoveries in the escapement. Recoveries are expanded for sampling rates.

PUGET SOUND REGION

Region	Hatchery	Type	Brood Year														
			98	99	00	01	02	03	04	05	06	07	08	09	10	11	Average
$\begin{aligned} & \text { PS } \\ & \text { JDF } \end{aligned}$	Lower Elwha Hatchery	\%S	12.2\%	15.8\%	53.8\%	9.2\%	25.2\%	48.9\%	29.3\%	30.3\%	61.4\%	12.9\%	49.1\%	67.3\%	35.3\%	59.4\%	36.4\%
		\%N	87.8\%	84.2\%	46.2\%	83.4\%	66.8\%	40.5\%	70.7\%	69.7\%	38.6\%	87.1\%	32.3\%	14.9\%	28.5\%	40.6\%	56.5\%
		\%M	0.0\%	0.0\%	0.0\%	7.4\%	8.0\%	10.6\%	0.0\%	0.0\%	0.0\%	0.0\%	18.6\%	17.8\%	36.3\%	0.0\%	7.0\%
		\# F	308.9	40.2	78.4	232.5	198.8	104.7	24.6	11.5	51.5	225.0	65.5	70.3	85.6	51.3	110.6
		\% E	63.7\%	89.5\%	66.0\%	53.5\%	51.8\%	61.2\%	61.6\%	69.5\%	62.6\%	73.9\%	71.8\%	45.5\%	59.5\%	68.0\%	64.2\%
	\# Total		851.9	383.4	230.7	499.7	412.3	270.2	64.1	37.7	137.6	863.3	232.6	128.9	211.6	160.6	320.3
$\begin{gathered} \text { PS } \\ \text { NPS } \end{gathered}$	Kendall Creek Hatchery	\%S	16.1\%	15.2\%	29.6\%	13.0\%	19.4\%	4.7\%	14.4\%	6.6\%	13.9\%	5.4\%					13.8\%
		\%N	83.0\%	80.7\%	67.0\%	84.5\%	74.9\%	30.8\%	77.2\%	93.4\%	83.5\%	93.4\%					76.9\%
		\%M	0.9\%	4.1\%	3.4\%	2.5\%	5.7\%	64.5\%	8.4\%	0.0\%	2.6\%	1.2\%					9.3\%
		\# F	1,433.5	1,037.4	477.0	1,353.3	394.6	399.9	401.3	266.9	526.9	1,404.5					769.5
		\% E	42.9\%	42.3\%	46.6\%	13.1\%	17.7\%	17.4\%	28.0\%	19.7\%	5.3\%	19.6\%					25.3\%
	\# Total		2,511.9	1,798.5	893.1	1,556.5	479.5	484.3	557.1	332.3	556.6	1,747.5					1,091.7
PS NPS	Marblemount Hatchery	\%S	45.6\%	32.5\%	37.1\%	33.0\%	18.0\%	21.4\%	34.9\%	17.7\%	31.0\%	21.0\%	18.3\%	27.4\%	17.8\%	27.0\%	27.3\%
		\%N	51.5\%	66.1\%	59.0\%	65.5\%	79.3\%	75.7\%	53.9\%	82.3\%	61.0\%	79.0\%	78.1\%	66.1\%	66.8\%	69.6\%	68.1\%
		\%M	2.9\%	1.4\%	3.9\%	1.5\%	2.7\%	2.9\%	11.2\%	0.0\%	8.0\%	0.0\%	3.6\%	6.5\%	15.4\%	3.4\%	4.5\%
		\# F	762.3	701.4	1,483.9	3,303.0	1,083.0	379.6	713.1	439.3	1,066.9	332.4	1,180.2	1,168.5	1,557.5	840.0	1,072.2
		\% E	68.6\%	76.3\%	28.8\%	41.3\%	56.7\%	36.1\%	67.4\%	75.7\%	58.6\%	67.9\%	54.5\%	54.8\%	52.7\%	61.9\%	57.2\%
	\# Total		2,428.3	2,964.4	2,084.9	5,623.3	2,502.3	594.3	2,188.7	1,804.7	2,574.6	1,033.9	2,593.8	2,585.0	3,290.5	2,207.1	2,462.6
$\begin{gathered} \text { PS } \\ \text { NPS } \end{gathered}$	Wallace River Hatchery	\%S	51.2\%	55.1\%	61.6\%	57.3\%	47.5\%	46.1\%	37.2\%	30.2\%	49.9\%	32.1\%	45.0\%	36.5\%	41.4\%	33.5\%	44.6\%
		\%N	48.1\%	41.9\%	38.4\%	40.3\%	47.5\%	49.3\%	58.5\%	61.5\%	41.0\%	67.9\%	50.6\%	58.0\%	52.0\%	58.4\%	51.0\%
		\%M	0.7\%	3.0\%	0.0\%	2.3\%	5.0\%	4.6\%	4.3\%	8.3\%	9.2\%	0.0\%	4.4\%	5.6\%	6.6\%	8.2\%	4.4\%
		\# F	849.6	590.0	582.1	838.0	898.5	442.0	426.6	210.0	641.2	90.1	569.5	594.2	638.3	635.6	571.8
		\% E	79.5\%	81.6\%	80.7\%	73.6\%	75.0\%	75.1\%	78.3\%	76.3\%	70.9\%	89.4\%	75.2\%	79.1\%	75.1\%	71.0\%	77.2\%
	\# Total		4,141.6	3,201.4	3,010.6	3,180.2	3,600.6	1,776.3	1,963.7	884.7	2,204.5	851.9	2,296.4	2,847.0	2,562.7	2,194.7	2,479.7
PS MPS	Soos Creek Hatchery	\%S	22.4\%	12.6\%	22.2\%	23.9\%	16.9\%	11.0\%	14.8\%	17.9\%	22.8\%	21.4\%	14.8\%	19.9\%	19.1\%	21.3\%	18.6\%
		\%N	76.8\%	86.9\%	74.3\%	75.6\%	78.1\%	87.9\%	78.9\%	80.4\%	70.8\%	78.6\%	84.2\%	74.3\%	72.9\%	73.7\%	78.1\%
		\%M	0.8\%	0.5\%	3.4\%	0.5\%	4.9\%	1.1\%	6.3\%	1.7\%	6.5\%	0.0\%	1.0\%	5.9\%	8.0\%	5.0\%	3.3\%
		\# F	1,823.1	1,548.3	1,648.6	2,678.7	1,217.8	1,733.2	1,027.6	553.1	965.1	210.5	819.8	1,208.1	1,021.7	870.5	1,237.6
		\% E	36.4\%	50.8\%	38.5\%	41.4\%	48.3\%	15.2\%	46.9\%	65.6\%	56.3\%	67.4\%	55.9\%	56.7\%	48.4\%	42.8\%	47.9\%
	\# Total		2,865.1	3,144.3	2,682.4	4,567.5	2,357.3	2,044.3	1,934.7	1,606.8	2,209.5	645.6	1,859.5	2,791.7	1,979.7	1,520.7	2,300.6

Appendix Table 3B. Total number of all CWT recoveries for marked Coho salmon DIT groups (\# Total) and total number of CWT recoveries in fisheries (\#F) for brood years 1998-2011. Percent of the fishery recoveries by fishery regulation type are shown, also. Type $\% \mathrm{~S}=$ mark-Selective fishery, $\% \mathrm{~N}=$ Non-selective fishery, $\% \mathrm{M}=$ mixed MSF/NSF. $\% \mathrm{E}=$ percent of total CWT recoveries in the escapement. Recoveries are expanded for sampling rates.

PUGET SOUND REGION (continued)

Region	Hatchery	Type	Brood Year														
			98	99	00	01	02	03	04	05	06	07	08	09	10	11	Average
PS MPS	Voights Creek Hatchery	\%S	11.2\%	10.8\%	21.1\%	27.4\%	22.3\%	12.2\%	18.3\%	9.1\%	22.3\%	13.8\%	17.5\%	16.4\%	22.2\%	18.6\%	17.4\%
		\%N	88.8\%	89.2\%	78.9\%	70.0\%	75.5\%	85.1\%	80.3\%	90.9\%	75.0\%	81.3\%	66.9\%	74.9\%	71.1\%	75.0\%	78.8\%
		\%M	0.0\%	0.0\%	0.0\%	2.6\%	2.2\%	2.7\%	1.4\%	0.0\%	2.7\%	4.9\%	15.6\%	8.7\%	6.6\%	6.4\%	3.8\%
		\# F	1,062.7	1,053.7	1,027.5	1,467.3	976.2	886.8	959.6	364.0	1,399.7	102.1	387.9	626.5	524.3	542.2	812.9
		\% E	43.8\%	63.9\%	51.5\%	36.2\%	60.6\%	31.5\%	32.1\%	52.9\%	21.3\%	31.0\%	51.5\%	54.4\%	39.3\%	29.2\%	42.8\%
	\# Total		1,892.3	2,922.5	2,116.8	2,298.7	2,478.3	1,294.0	1,413.7	772.3	1,779.1	148.0	799.9	1,374.5	863.8	766.0	1,494.3
$\begin{aligned} & \text { PS } \\ & \text { HC } \end{aligned}$	George Adams Hatchery	\%S	35.4\%	41.3\%	34.6\%	48.3\%	38.4\%	17.8\%	32.9\%	16.9\%	16.6\%	19.8\%	25.9\%	26.6\%	29.4\%	20.1\%	28.9\%
		\%N	64.6\%	58.4\%	62.4\%	45.1\%	52.6\%	81.9\%	58.3\%	83.1\%	79.3\%	80.2\%	70.0\%	67.8\%	59.4\%	77.1\%	67.2\%
		\%M	0.0\%	0.2\%	3.1\%	6.5\%	9.0\%	0.3\%	8.8\%	0.0\%	4.1\%	0.0\%	4.1\%	5.6\%	11.2\%	2.8\%	4.0\%
		\# F	736.5	412.4	899.7	711.6	599.9	615.9	352.0	384.1	908.6	90.1	278.2	446.7	504.7	339.4	520.0
		\% E	71.1\%	85.8\%	63.1\%	71.0\%	76.2\%	33.2\%	76.2\%	69.4\%	53.7\%	75.4\%	79.1\%	55.9\%	72.2\%	46.0\%	66.3\%
	\# Total		2,544.5	2,894.3	2,440.3	2,457.2	2,516.6	922.7	1,479.2	1,255.4	1,961.4	366.5	1,329.3	1,012.8	1,812.2	628.0	1,687.2
PSHC	Quilcene NFH	\%S	28.4\%	27.5\%	63.0\%	31.2\%	25.7\%	27.3\%	21.5\%	8.1\%	14.7\%	2.1\%	16.2\%	12.9\%	12.7\%	44.1\%	24.0\%
		\%N	70.3\%	72.5\%	37.0\%	66.4\%	74.3\%	69.9\%	76.7\%	91.9\%	80.7\%	97.9\%	82.4\%	87.1\%	82.4\%	55.9\%	74.7\%
		\%M	1.3\%	0.0\%	0.0\%	2.4\%	0.0\%	2.8\%	1.8\%	0.0\%	4.6\%	0.0\%	1.4\%	0.0\%	4.9\%	0.0\%	1.4\%
		\# F	1,161.2	352.3	706.6	1,301.6	1,381.7	709.3	1,015.4	1,401.1	1,239.8	407.4	1,565.7	719.4	926.7	256.1	938.9
		\% E	53.9\%	83.2\%	63.1\%	43.4\%	41.1\%	19.3\%	39.7\%	18.5\%	25.3\%	40.6\%	37.5\%	44.4\%	46.8\%	68.5\%	44.7\%
	\# Total		2,518.4	2,093.4	1,913.2	2,300.2	2,344.2	879.4	1,683.0	1,719.9	1,660.4	685.4	2,506.8	1,293.3	1,741.7	811.8	1,725.1

Appendix Table 3C. Total number of all CWT recoveries for marked Coho salmon DIT groups (\# Total) and total number of CWT recoveries in fisheries (\#F) for brood years 1998-2011. Percent of the fishery recoveries by fishery regulation type are shown, also. Type $\% \mathrm{~S}=$ mark-Selective fishery, $\% \mathrm{~N}=$ Non-selective fishery, $\% \mathrm{M}=$ mixed MSF/NSF. $\% \mathrm{E}=$ percent of total CWT recoveries in the escapement. Recoveries are expanded for sampling rates. ${ }^{19}$

WASHINGTON COAST REGION

Region	Hatchery	Type	Brood Year														
			98	99	00	01	02	03	04	05	06	07	08	09	10	11	Average
WC NWC	Makah NFH	\%S	66.6\%	68.4\%	40.1\%	88.6\%	81.3\%	55.4\%	52.9\%	43.5\%	74.2\%	70.2\%	68.0\%	70.1\%	66.2\%		65.0\%
		\%N	33.4\%	25.1\%	59.5\%	11.4\%	15.3\%	44.6\%	30.5\%	56.5\%	22.2\%	29.8\%	27.0\%	29.9\%	33.8\%		32.2\%
		\%M	0.0\%	6.4\%	0.4\%	0.0\%	3.4\%	0.0\%	16.6\%	0.0\%	3.6\%	0.0\%	5.0\%	0.0\%	0.0\%		2.7\%
		\# F	100.4	151.7	509.1	144.1	520.6	65.8	106.9	48.0	272.0	101.6	391.0	65.1	330.9		215.9
		\% E	88.4\%	84.4\%	47.6\%	74.1\%	61.3\%	67.6\%	41.3\%	86.4\%	84.6\%	90.8\%	82.3\%	83.1\%	79.3\%		74.7\%
	\# Total		865.3	969.7	970.9	557.2	1,345.8	202.8	182.2	352.2	1,760.2	1,107.5	2,206.1	385.3	1,594.6		961.5
WC NWC	Quinault NFH	\%S	26.1\%	18.2\%	21.8\%	16.8\%	19.3\%	19.2\%	38.0\%	3.9\%	18.1\%	7.4\%	15.9\%	10.8\%	25.0\%	12.6\%	18.1\%
		\%N	73.7\%	81.8\%	78.0\%	82.0\%	80.2\%	80.6\%	60.3\%	96.1\%	81.6\%	92.4\%	83.8\%	85.4\%	73.8\%	87.0\%	81.2\%
		\%M	0.2\%	0.0\%	0.2\%	1.2\%	0.5\%	0.2\%	1.8\%	0.0\%	0.4\%	0.3\%	0.3\%	3.8\%	1.3\%	0.4\%	0.7\%
		\# F	5,002.1	1,982.5	3,655.0	2,837.8	2,932.3	1,172.2	2,123.8	2,013.7	5,447.8	3,560.9	3,104.2	1,189.2	1,844.6	5,070.1	2,995.5
		\% E	43.3\%	38.8\%	34.8\%	40.2\%	37.5\%	28.2\%	42.8\%	39.8\%	29.7\%	33.4\%	48.6\%	39.0\%	51.4\%	30.4\%	38.4\%
	\# Total		8,816.5	3,238.3	5,608.3	4,745.2	4,695.4	1,632.5	3,714.6	3,346.0	7,746.3	5,345.7	6,042.7	1,949.9	3,799.1	7,279.8	4,854.3
WC NWC	Salmon River Fish Culture	\%S	23.8\%	13.7\%	33.3\%	20.2\%	15.9\%	14.8\%	47.5\%	11.9\%	16.4\%	7.7\%	26.3\%	10.8\%	33.4\%	27.4\%	21.6\%
		\%N	76.2\%	86.3\%	66.7\%	79.8\%	82.9\%	85.2\%	52.5\%	88.1\%	82.1\%	92.3\%	71.2\%	89.2\%	66.6\%	72.6\%	78.0\%
		\%M	0.0\%	0.0\%	0.0\%	0.0\%	1.2\%	0.0\%	0.0\%	0.0\%	1.4\%	0.0\%	2.6\%	0.0\%	0.0\%	0.0\%	0.4\%
		\# F	1,130.2	1,980.9	1,263.0	684.3	2,680.9	1,011.7	284.7	405.0	2,335.3	1,450.6	994.1	322.3	301.8	1,895.6	1,195.7
		\% E	41.8\%	8.5\%	2.5\%	34.4\%	56.9\%	19.2\%	43.3\%	32.5\%	24.5\%	27.6\%	50.2\%	12.1\%	0.0\%	22.8\%	26.9\%
	\# Total		1,942.4	2,165.0	1,295.9	1,042.7	6,216.6	1,252.5	502.6	600.0	3,092.4	2,003.4	1,994.8	366.7	301.8	2,455.8	1,802.3
WC NWC	Solduc Hatchery	\%S	80.9\%	76.1\%	86.8\%	62.1\%	76.3\%	77.8\%	72.1\%	13.5\%	18.2\%	18.7\%	19.4\%	11.4\%	24.1\%	14.6\%	46.6\%
		\%N	19.1\%	17.8\%	13.2\%	29.6\%	18.5\%	20.5\%	16.1\%	86.5\%	79.9\%	80.7\%	79.8\%	88.6\%	70.7\%	85.1\%	50.4\%
		\%M	0.0\%	6.2\%	0.0\%	8.3\%	5.3\%	1.7\%	11.7\%	0.0\%	1.8\%	0.5\%	0.8\%	0.0\%	5.2\%	0.3\%	3.0\%
		\# F	332.1	350.5	320.6	610.7	1,060.5	244.9	438.2	1,111.3	6,101.9	1,547.9	1,644.5	591.4	1,321.3	3,786.4	1,390.2
		\% E	85.1\%	88.5\%	78.3\%	80.5\%	72.1\%	66.1\%	77.8\%	52.1\%	36.0\%	52.8\%	65.2\%	31.6\%	40.8\%	37.8\%	61.8\%
	\# Total		2,235.9	3,042.0	1,477.0	3,134.0	3,797.2	721.4	1,970.6	2,318.4	9,541.7	3,278.4	4,729.4	864.5	2,231.0	6,087.4	3,244.9
WC GRAY	Bingham Creek Hatchery	\%S	17.5\%	18.0\%	38.9\%	12.2\%	19.3\%	22.6\%	29.1\%	9.1\%	56.8\%	48.2\%	27.0\%	4.5\%	20.8\%	6.8\%	23.6\%
		\%N	82.5\%	82.0\%	59.5\%	87.8\%	75.6\%	74.4\%	70.9\%	90.9\%	43.2\%	51.8\%	73.0\%	95.5\%	79.2\%	93.2\%	75.7\%
		\%M	0.0\%	0.0\%	1.6\%	0.0\%	5.1\%	3.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.7\%
		\# F	823.3	539.9	530.5	223.1	491.3	288.4	240.4	100.6	653.0	366.2	564.8	429.8	484.9	2,043.8	555.7
		\% E	70.1\%	81.0\%	77.7\%	72.6\%	65.0\%	75.9\%	74.4\%	82.6\%	82.9\%	90.3\%	79.4\%	67.5\%	76.8\%	65.4\%	75.8\%
	\# Total		2,751.6	2,840.6	2,383.3	815.3	1,401.9	1,195.5	940.6	577.5	3,815.5	3,768.4	2,743.1	1,323.1	2,091.8	5,910.2	2,325.6

[^16]Appendix Table 3C. Total number of all CWT recoveries for marked Coho salmon DIT groups (\# Total) and total number of CWT recoveries in fisheries (\#F) for brood years 1998-2011. Percent of the fishery recoveries by fishery regulation type are shown, also. Type $\% \mathrm{~S}=$ mark-Selective fishery, $\% \mathrm{~N}=$ Non-selective fishery, $\% \mathrm{M}=$ mixed MSF/NSF. $\% \mathrm{E}=$ percent of total CWT recoveries in the escapement. Recoveries are expanded for sampling rates.

WASHINGTON COAST REGION (continued)

Region	Hatchery	Type	Brood Year														
			98	99	00	01	02	03	04	05	06	07	08	09	10	11	Average
WC WILP	Forks Creek Hatchery	\%S	24.0\%	23.6\%	41.2\%	29.4\%	29.7\%	26.2\%	50.4\%	17.2\%	46.2\%	16.5\%	15.7\%	27.0\%	29.7\%	34.4\%	29.4\%
		\%N	76.0\%	75.6\%	58.8\%	70.6\%	68.7\%	73.8\%	46.8\%	82.8\%	53.8\%	82.9\%	84.3\%	73.0\%	70.3\%	65.6\%	70.2\%
		\%M	0.0\%	0.8\%	0.0\%	0.0\%	1.6\%	0.0\%	2.9\%	0.0\%	0.0\%	0.6\%	0.0\%	0.0\%	0.0\%	0.0\%	0.4\%
		\# F	1,924.8	2,594.8	3,170.7	711.0	2,008.8	928.0	607.4	268.9	962.2	776.8	842.5	532.9	391.1	3,217.0	1,352.6
		\% E	47.8\%	36.3\%	40.4\%	56.0\%	60.4\%	32.3\%	49.7\%	65.0\%	46.2\%	58.9\%	47.5\%	47.5\%	55.1\%	62.3\%	50.4\%
		\# Total	3,690.8	4,073.9	5,321.7	1,615.0	5,071.7	1,370.6	1,208.0	768.7	1,789.5	1,892.1	1,606.2	1,015.3	871.7	8,526.4	2,773.0

Appendix Table 3D. Total number of all CWT recoveries for marked Coho salmon DIT groups (\# Total) and total number of CWT recoveries in fisheries (\#F) for brood years 1998-2011. Percent of the fishery recoveries by fishery regulation type are shown, also. Type $\% \mathrm{~S}=$ mark-Selective fishery, $\% \mathrm{~N}=$ Non-selective fishery, $\% \mathrm{M}=$ mixed MSF/NSF. $\% \mathrm{E}=$ percent of total CWT recoveries in the escapement. Recoveries are expanded for sampling rates.

COLUMBIA RIVER REGION

Region	Hatchery	Type	Brood Year														
			98	99	00	01	02	03	04	05	06	07	08	09	10	11	Average
$\begin{gathered} \text { CR } \\ \text { COLR } \end{gathered}$	Lewis River Hatchery - North	\%S	92.5\%	33.0\%	57.2\%	61.2\%	54.8\%	57.2\%	74.9\%	71.1\%	79.5\%	59.9\%	86.7\%	79.5\%	84.2\%	66.8\%	68.5\%
		\%N	7.5\%	67.0\%	42.3\%	38.8\%	42.6\%	39.6\%	25.1\%	24.6\%	20.5\%	40.1\%	13.3\%	15.0\%	13.6\%	32.7\%	30.2\%
		\%M	0.0\%	0.0\%	0.5\%	0.0\%	2.6\%	3.1\%	0.0\%	4.3\%	0.0\%	0.0\%	0.0\%	5.4\%	2.2\%	0.5\%	1.3\%
		\# F	3,064.9	760.8	2,629.4	2,228.4	601.8	667.8	1,878.0	614.7	3,131.5	699.6	862.9	158.9	648.7	1,818.4	1,411.8
		\% E	46.5\%	48.7\%	43.3\%	34.0\%	70.4\%	68.8\%	42.4\%	71.6\%	41.9\%	72.7\%	63.5\%	59.2\%	52.3\%	55.5\%	55.1\%
	\# Total		5,724.7	1,482.7	4,636.3	3,378.7	2,032.3	2,137.9	3,261.7	2,161.5	5,389.9	2,561.3	2,366.1	389.1	1,360.6	4,088.7	2,926.5
$\begin{gathered} \text { CR } \\ \text { COLR } \end{gathered}$	Lewis River Hatchery - South	\%S	97.3\%	47.8\%	96.4\%	96.1\%	62.0\%	76.8\%	92.2\%	89.4\%	94.3\%	84.0\%	81.2\%	100.0\%	54.2\%	63.9\%	81.1\%
		\%N	2.7\%	52.2\%	3.6\%	3.9\%	38.0\%	23.2\%	7.8\%	10.6\%	5.7\%	16.0\%	18.8\%	0.0\%	45.8\%	36.1\%	18.9\%
		\%M	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
		\# F	1,556.7	288.3	1,425.6	835.4	164.6	260.3	645.3	319.7	1,811.0	293.9	283.1	20.8	262.4	1,330.2	678.4
		\% E	67.4\%	80.1\%	70.2\%	68.1\%	90.6\%	84.9\%	70.5\%	85.3\%	46.9\%	80.0\%	80.7\%	75.4\%	76.3\%	69.2\%	74.7\%
	\# Total		4,773.1	1,449.8	4,780.6	2,614.8	1,750.7	1,727.3	2,190.5	2,169.7	3,411.3	1,470.0	1,463.9	84.6	1,108.8	4,313.2	2,379.1

Appendix Table 3D. Total number of all CWT recoveries for marked Coho salmon DIT groups (\# Total) and total number of CWT recoveries in fisheries (\#F) for brood years 1998-2011. Percent of the fishery recoveries by fishery regulation type are shown, also. Type $\% \mathrm{~S}=$ mark-Selective fishery, $\% \mathrm{~N}=$ Non-selective fishery, $\% \mathrm{M}=$ mixed MSF/NSF. $\% \mathrm{E}=$ percent of total CWT recoveries in the escapement. Recoveries are expanded for sampling rates.

COLUMBIA RIVER REGION (continued)

Region	Hatchery	Type	Brood Year														
			98	99	00	01	02	03	04	05	06	07	08	09	10	11	Average
$\begin{gathered} \text { CR } \\ \text { COLR } \end{gathered}$	Eagle Creek NFH	\%S	98.7\%	48.0\%	77.5\%	81.7\%	62.0\%	63.8\%	86.2\%	80.7\%	84.3\%	81.9\%	95.1\%	75.9\%	84.8\%	57.3\%	77.0\%
		\%N	1.3\%	52.0\%	22.5\%	18.3\%	38.0\%	36.2\%	13.8\%	19.3\%	15.7\%	18.1\%	4.9\%	24.1\%	15.2\%	42.7\%	23.0\%
		\%M	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
		\# F	425.1	76.7	47.1	51.6	43.4	79.1	224.8	37.8	250.1	24.4	20.5	24.3	39.5	460.2	128.9
		\% E	62.6\%	84.0\%	87.2\%	82.4\%	88.0\%	72.9\%	70.0\%	79.6\%	61.7\%	75.7\%	82.4\%	73.5\%	85.8\%	68.5\%	76.7\%
	\# Total		1,137.2	479.9	367.7	293.7	360.7	292.0	749.7	185.4	653.4	100.3	116.4	91.6	278.1	1,458.8	468.9
$\begin{gathered} \text { CR } \\ \text { COLR } \end{gathered}$	Sandy River Hatchery	\%S	99.0\%	47.0\%	76.8\%	91.7\%	63.4\%	82.4\%	87.6\%	85.5\%	85.8\%	94.5\%	57.6\%				79.2\%
		\%N	1.0\%	53.0\%	21.4\%	8.3\%	36.6\%	17.6\%	12.4\%	14.5\%	14.2\%	5.5\%	42.4\%				20.6\%
		\%M	0.0\%	0.0\%	1.8\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%				0.2\%
		\# F	518.3	603.9	452.6	370.4	58.3	79.7	319.8	88.4	517.4	73.8	120.3				291.2
		\% E	46.9\%	44.7\%	29.1\%	55.4\%	84.3\%	75.3\%	46.8\%	64.1\%	58.7\%	80.2\%	72.3\%				59.8\%
	\# Total		976.7	1,092.9	638.2	830.1	371.4	322.6	601.0	245.9	1,251.6	373.0	434.0				648.9

Appendix 4: Results for Z tests of the hypothesis that the hatchery return rate from release is equal for the unmarked and marked Coho DIT groups from brood years 1998-2011.

Appendix Table 4A. Results for Z tests of the hypothesis that the hatchery return rate from release is equal for the unmarked and marked Coho DIT groups from brood years 1998-2011.

Appendix Table 4A. Results for Z tests of the hypothesis that the hatchery return rate from release is equal for the unmarked and marked Coho DIT groups from brood years 1998-2011.

BRITISH COLUMBIA REGION (continued)

Hatchery	Brood Year	Unmarked		Marked		U-M	Hypothesis Test Result			λR
		\# Returned	\% Return	\# Returned	\% Return	Difference	Z-Stat.	Sig. (P)	$P \leq 0.05$	
Inch Creek Hatchery	1998	2,131.0	5.31\%	1,777.0	4.42\%	0.894\%	5.888	<0.001	Yes	1.20
	1999	729.2	1.82\%	628.6	1.57\%	0.244\%	2.646	0.008	Yes	1.15
	2000	308.6	0.77\%	243.3	0.61\%	0.160\%	2.742	0.006	Yes	1.26
	2001	787.9	1.99\%	844.7	2.12\%	-0.127\%	-1.261	0.207	-	0.94
	2002	685.8	1.73\%	508.7	1.28\%	0.442\%	5.116	<0.001	Yes	1.34
	2003	282.8	0.71\%	284.9	0.71\%	-0.005\%	-0.086	0.931	-	0.99
	2004	512.1	1.28\%	451.0	1.14\%	0.143\%	1.849	0.064	-	1.13
	2005	285.5	0.73\%	263.9	0.68\%	0.051\%	0.855	0.393	-	1.08
	2006	429.3	1.07\%	350.6	0.87\%	0.196\%	2.830	0.005	Yes	1.22
	2007	1,237.5	3.08\%	1,095.8	2.72\%	0.357\%	3.020	0.003	Yes	1.13
	2008	520.7	1.33\%	505.0	1.29\%	0.041\%	0.509	0.611	-	1.03
	2009	1,656.4	3.49\%	1,523.7	3.19\%	0.299\%	2.570	0.010	Yes	1.09
	2010	1,788.6	3.64\%	1,378.2	2.78\%	0.859\%	7.654	<0.001	Yes	1.31
	2011	1,336.5	2.67\%	1,169.1	2.34\%	0.334\%	3.379	0.001	Yes	1.14
Robertson Creek Hatchery	1998	3,104.2	7.71\%	3,041.8	7.57\%	0.140\%	0.748	0.454	-	1.02
	1999	2,056.7	5.21\%	1,927.4	4.81\%	0.401\%	2.590	0.010	Yes	1.08
	2000	3,512.0	8.60\%	3,247.7	8.06\%	0.545\%	2.811	0.005	Yes	1.07
	2001	1,364.6	3.37\%	1,396.7	3.47\%	-0.099\%	-0.777	0.437	-	0.97
	2002	2,546.7	6.35\%	1,627.0	4.08\%	2.272\%	14.469	<0.001	Yes	1.56

Appendix Table 4B. Results for Z tests of the hypothesis that the hatchery return rate from release is equal for the unmarked and marked Coho DIT groups from brood years 1998-2011.

	Brood	Unmarked		Marked		$U-M$ Difference	Hypothesis Test Result			λR
Hatchery	Year	\# Returned	\% Return	\# Returned	\% Return		Z-Stat.	Sig. (P)	$P \leq 0.05$	
	1998	495.0	0.65\%	543.0	0.68\%	-0.038\%	-0.935	0.350	-	0.94
	1999	337.6	0.55\%	343.2	0.55\%	-0.004\%	-0.086	0.931	-	0.99
	2000	193.6	0.27\%	152.3	0.22\%	0.056\%	2.142	0.032	Yes	1.26
	2001	277.5	0.38\%	267.2	0.37\%	0.010\%	0.283	0.777	-	1.03
	2002	250.5	0.33\%	213.5	0.29\%	0.047\%	1.646	0.100	-	1.17
	2003	66.5	0.13\%	165.5	0.26\%	-0.131\%	-5.063	<0.001	Yes	0.50
Lower Elwha	2004	59.9	0.08\%	39.5	0.05\%	0.025\%	1.969	0.049	Yes	1.50
Hatchery	2005	12.5	0.02\%	26.2	0.03\%	-0.018\%	-2.142	0.032	Yes	0.48
	2006	92.2	0.12\%	86.1	0.11\%	0.005\%	0.322	0.748	-	1.05
	2007	629.7	0.80\%	638.3	0.81\%	-0.011\%	-0.242	0.809	-	0.99
	2008	217.2	0.27\%	167.0	0.21\%	0.062\%	2.031	0.042	Yes	1.30
	2009	59.5	0.07\%	58.7	0.07\%	0.001\%	0.096	0.924	-	1.02
	2010	145.1	0.17\%	126.0	0.15\%	0.022\%	1.093	0.274	-	1.14
	2011	161.4	0.24\%	109.2	0.14\%	0.099\%	4.171	<0.001	Yes	1.69
	1998	1,105.2	2.38\%	1,078.4	2.49\%	-0.115\%	-1.009	0.313	-	0.95
	1999	756.2	1.67\%	761.1	1.74\%	-0.074\%	-0.630	0.529	-	0.96
	2000	485.2	0.99\%	416.1	0.88\%	0.108\%	1.725	0.085	-	1.12
	2001	227.9	0.46\%	203.2	0.41\%	0.047\%	0.941	0.347	-	1.11
Kendall Creek	2002	114.1	0.24\%	84.8	0.18\%	0.061\%	2.047	0.041	Yes	1.34
Hatchery	2003	81.6	0.17\%	84.4	0.18\%	-0.011\%	-0.330	0.741	-	0.94
	2004	204.6	0.44\%	155.7	0.34\%	0.104\%	1.403	0.161	-	1.31
	2005	95.4	0.19\%	65.5	0.13\%	0.061\%	1.726	0.084	-	1.46
	2006	34.2	0.07\%	29.7	0.06\%	0.009\%	0.491	0.623	-	1.14
	2007	387.0	0.83\%	343.0	0.74\%	0.092\%	1.591	0.112	-	1.12

Appendix Table 4B. Results for Z tests of the hypothesis that the hatchery return rate from release is equal for the unmarked and marked Coho DIT groups from brood years 1998-2011.

PUGET SOUND REGION (continued)

Hatchery	Brood	Unmarked		Marked		U-M Difference	Hypothesis Test Result			λR
	Year	\# Returned	\% Return	\# Returned	\% Return		Z-Stat.	Sig. (P)	$P \leq 0.05$	
Marblemount Hatchery	1998	1,822.0	4.50\%	1,666.0	4.12\%	0.372\%	2.606	0.009	Yes	1.09
	1999	2,365.0	5.25\%	2,263.0	4.94\%	0.312\%	2.137	0.033	Yes	1.06
	2000	657.0	1.50\%	601.0	1.40\%	0.100\%	1.230	0.219	-	1.07
	2001	1,186.0	3.66\%	2,320.3	3.32\%	0.336\%	2.687	0.007	Yes	1.10
	2002	1,593.0	3.73\%	1,419.3	3.58\%	0.148\%	1.116	0.264	-	1.04
	2003	209.0	0.45\%	214.7	0.46\%	-0.017\%	-0.277	0.782	-	0.96
	2004	1,352.3	3.27\%	1,475.6	3.12\%	0.155\%	1.202	0.229	-	1.05
	2005	1,363.1	3.13\%	1,365.4	3.17\%	-0.040\%	-0.281	0.778	-	0.99
	2006	1,531.6	3.24\%	1,507.7	3.20\%	0.041\%	0.284	0.776	-	1.01
	2007	751.2	1.68\%	701.5	1.59\%	0.096\%	0.799	0.424	-	1.06
	2008	1,521.5	3.49\%	1,413.6	3.26\%	0.232\%	1.184	0.236	-	1.07
	2009	1,517.8	3.50\%	1,416.5	3.19\%	0.315\%	2.018	0.044	Yes	1.10
	2010	1,854.0	4.40\%	1,733.0	4.14\%	0.262\%	1.195	0.232	-	1.06
	2011	1,454.3	3.19\%	1,367.1	3.03\%	0.152\%	0.775	0.438	-	1.05
Wallace River Hatchery	1998	3,397.0	7.45\%	3,292.0	7.65\%	-0.199\%	-1.120	0.263	-	0.97
	1999	2,476.2	5.78\%	2,611.4	5.47\%	0.311\%	1.891	0.059	-	1.06
	2000	2,625.5	6.67\%	2,428.6	6.14\%	0.534\%	2.856	0.004	Yes	1.09
	2001	2,751.2	6.30\%	2,342.2	5.91\%	0.391\%	2.198	0.028	Yes	1.07
	2002	2,833.0	6.07\%	2,702.1	5.82\%	0.255\%	1.599	0.110	-	1.04
	2003	1,344.8	3.09\%	1,334.2	3.09\%	-0.001\%	-0.010	0.992	-	1.00
	2004	1,671.2	5.52\%	1,537.1	5.09\%	0.423\%	2.276	0.023	Yes	1.08
	2005	761.1	1.57\%	674.7	1.44\%	0.132\%	1.649	0.099	-	1.09
	2006	1,504.2	3.28\%	1,563.3	3.50\%	-0.220\%	-1.532	0.126	-	0.94
	2007	944.7	2.08\%	761.8	1.67\%	0.414\%	2.569	0.010	Yes	1.25
	2008	1,964.2	4.67\%	1,727.0	4.08\%	0.587\%	2.409	0.016	Yes	1.14
	2009	2,446.7	5.76\%	2,252.8	5.26\%	0.499\%	2.592	0.010	Yes	1.09
	2010	2,018.7	4.46\%	1,924.4	4.34\%	0.113\%	0.458	0.647	-	1.03
	2011	1,393.5	3.14\%	1,559.1	3.54\%	-0.402\%	-1.973	0.049	Yes	0.89

Appendix Table 4B. Results for Z tests of the hypothesis that the hatchery return rate from release is equal for the unmarked and marked Coho DIT groups from brood years 1998-2011.

PUGET SOUND REGION (continued)

	Brood Year	Unmarked		Marked		U-M Difference	Hypothesis Test Result			λR
Hatchery		\# Returned	\% Return	\# Returned	\% Return		Z-Stat.	Sig. (P)	$P \leq 0.05$	
Soos Creek Hatchery	1998	1,464.0	2.60\%	1,042.0	2.42\%	0.176\%	1.761	0.078	-	1.07
	1999	1,618.0	4.44\%	1,596.0	4.69\%	-0.246\%	-1.566	0.117	-	0.95
	2000	1,159.9	2.65\%	1,033.8	2.46\%	0.193\%	1.524	0.127	-	1.08
	2001	2,073.0	4.58\%	1,888.8	4.25\%	0.336\%	2.295	0.022	Yes	1.08
	2002	1,431.0	3.22\%	1,139.6	2.67\%	0.554\%	4.341	<0.001	Yes	1.21
	2003	440.6	0.98\%	311.1	0.69\%	0.296\%	4.055	<0.001	Yes	1.43
	2004	942.2	2.09\%	907.0	2.02\%	0.071\%	0.696	0.486	-	1.04
	2005	989.8	2.20\%	1,053.7	2.34\%	-0.136\%	-1.297	0.195	-	0.94
	2006	1,198.1	2.63\%	1,244.4	2.75\%	-0.116\%	-0.951	0.342	-	0.96
	2007	405.2	0.89\%	435.0	0.96\%	-0.070\%	-0.802	0.423	-	0.93
	2008	1,137.5	2.56\%	1,039.7	2.59\%	-0.027\%	-0.195	0.845	-	0.99
	2009	1,717.6	3.64\%	1,583.6	3.35\%	0.292\%	1.763	0.078	-	1.09
	2010	291.2	0.64\%	957.9	2.14\%	-1.497\%	-15.413	<0.001	Yes	0.30
	2011	616.8	1.36\%	650.2	1.42\%	-0.065\%	-0.562	0.574	-	0.95
Voights Creek Hatchery	1998	786.2	2.79\%	829.6	2.95\%	-0.158\%	-1.079	0.280	-	0.95
	1999	1,859.9	4.22\%	1,868.8	4.28\%	-0.058\%	-0.398	0.691	-	0.99
	2000	1,304.5	3.14\%	1,089.3	2.90\%	0.238\%	1.789	0.074	-	1.08
	2001	864.2	1.83\%	831.4	1.75\%	0.078\%	0.806	0.420	-	1.04
	2002	1,589.3	3.46\%	1,502.1	3.26\%	0.203\%	1.618	0.106	-	1.06
	2003	332.0	0.73\%	407.2	0.90\%	-0.166\%	-2.218	0.027	Yes	0.82
	2004	565.8	1.27\%	454.1	1.02\%	0.244\%	2.903	0.004	Yes	1.24
	2005	89.8	0.19\%	408.3	0.72\%	-0.530\%	-6.301	<0.001	Yes	0.26
	2006	371.3	0.82\%	379.4	0.85\%	-0.028\%	-0.320	0.749	-	0.97
	2007	38.8	0.08\%	45.9	0.10\%	-0.016\%	-0.812	0.417	-	0.84
	2008	413.6	0.92\%	412.0	0.93\%	-0.008\%	-0.106	0.915	-	0.99
	2009	758.2	1.74\%	748.0	1.69\%	0.049\%	0.470	0.638	-	1.03
	2010	421.9	0.92\%	339.5	0.75\%	0.167\%	2.165	0.030	Yes	1.22
	2011	242.7	0.54\%	223.8	0.49\%	0.044\%	0.726	0.468	-	1.09

Appendix Table 4B. Results for Z tests of the hypothesis that the hatchery return rate from release is equal for the unmarked and marked Coho DIT groups from brood years 1998-2011.

PUGET SOUND REGION (continued)

	Brood	Unma	ked	Mar		U-M	Hyp	hesis Te	sult	
Hatchery	Year	\# Returned	\% Return	\# Returned	\% Return	Difference	Z-Stat.	Sig. (P)	$P \leq 0.05$	
	1998	1,799.0	4.36\%	1,808.0	4.25\%	0.103\%	0.732	0.464	-	1.02
	1999	2,832.3	5.51\%	2,481.9	5.02\%	0.486\%	3.420	0.001	Yes	1.10
	2000	1,622.0	3.73\%	1,540.6	3.53\%	0.201\%	1.454	0.146	-	1.06
	2001	1,931.3	4.43\%	1,745.6	4.00\%	0.423\%	2.721	0.007	Yes	1.11
	2002	1,954.5	4.45\%	1,916.8	4.39\%	0.066\%	0.385	0.700	-	1.02
	2003	243.1	0.58\%	306.8	0.74\%	-0.154\%	-2.455	0.014	Yes	0.79
George Adams	2004	1,188.6	2.65\%	1,127.3	2.51\%	0.141\%	1.236	0.216	-	1.06
Hatchery	2005	923.8	2.14\%	871.3	1.99\%	0.149\%	1.517	0.129	-	1.07
	2006	631.2	1.19\%	1,052.8	2.31\%	-1.126\%	-11.401	<0.001	Yes	0.51
	2007	278.7	0.61\%	276.5	0.61\%	0.005\%	0.087	0.931	-	1.01
	2008	1,104.0	2.43\%	1,051.1	2.36\%	0.077\%	0.759	0.448	-	1.03
	2009	632.6	1.38\%	566.0	1.24\%	0.142\%	1.865	0.062	-	1.11
	2010	1,379.9	3.03\%	1,307.5	2.89\%	0.139\%	1.225	0.221	-	1.05
	2011	295.9	0.66\%	288.7	0.65\%	0.008\%	0.148	0.883	-	1.01
Quilcene NFH	1998	1,387.5	3.11\%	1,357.2	2.82\%	0.294\%	1.317	0.188	-	1.10
	1999	1,728.3	4.12\%	1,741.1	3.76\%	0.359\%	1.202	0.229	-	1.10
	2000	1,458.2	2.99\%	1,206.6	2.45\%	0.542\%	3.130	0.002	Yes	1.22
	2001	1,185.5	3.21\%	998.5	2.83\%	0.373\%	2.508	0.012	Yes	1.13
	2002	1,053.8	2.34\%	962.6	2.23\%	0.105\%	0.824	0.410	-	1.05
	2003	116.7	0.30\%	170.1	0.41\%	-0.112\%	-2.327	0.020	Yes	0.73
	2004	688.2	1.40\%	667.7	1.40\%	0.005\%	0.045	0.964	-	1.00
	2005	373.6	0.92\%	318.8	0.77\%	0.155\%	2.166	0.030	Yes	1.20
	2006	482.7	1.41\%	420.6	1.23\%	0.173\%	1.479	0.139	-	1.14
	2007	297.8	0.76\%	277.9	0.76\%	0.002\%	0.038	0.970	-	1.00
	2008	1,079.7	2.68\%	941.1	2.48\%	0.197\%	1.614	0.107	-	1.08
	2009	606.5	2.96\%	574.0	2.77\%	0.189\%	1.101	0.271	-	1.07
	2010	822.3	1.86\%	815.1	1.84\%	0.013\%	0.104	0.917	-	1.01
	2011	650.3	0.92\%	555.7	0.78\%	0.140\%	2.150	0.032	Yes	1.18

Appendix Table 4C. Results for Z tests of the hypothesis that the hatchery return rate from release is equal for the unmarked and marked Coho DIT groups from brood years 1998-2011.

WASHINGTON COAST REGION

Hatchery	Brood Year	Unmarked		Marked		U-M	Hypothesis Test Result			λR
		\# Returned	\% Return	\# Returned	\% Return	Difference	Z-Stat.	Sig. (P)	$P \leq 0.05$	
Makah NFH	1998	762.3	1.95\%	764.9	2.02\%	-0.070\%	-0.299	0.765	-	0.97
	1999	724.2	1.85\%	817.9	2.15\%	-0.308\%	-0.997	0.319	-	0.86
	2000	475.4	1.22\%	461.8	1.17\%	0.047\%	0.267	0.790	-	1.04
	2001	439.1	1.21\%	413.1	1.16\%	0.052\%	0.399	0.690	-	1.04
	2002	864.9	2.28\%	825.2	2.25\%	0.025\%	0.158	0.874	-	1.01
	2003	168.3	0.46\%	137.1	0.36\%	0.108\%	1.561	0.119	-	1.30
	2004	76.4	0.19\%	75.3	0.19\%	0.005\%	0.154	0.877	-	1.03
	2005	271.5	0.72\%	304.3	0.81\%	-0.090\%	-0.850	0.395	-	0.89
	2006	1,619.2	4.07\%	1,488.3	3.78\%	0.286\%	1.178	0.239	-	1.08
	2007	783.2	1.92\%	1,005.9	2.48\%	-0.562\%	-2.407	0.016	Yes	0.77
	2008	1,503.0	3.72\%	1,815.0	4.50\%	-0.782\%	-4.038	<0.001	Yes	0.83
	2009	221.0	0.55\%	320.1	0.80\%	-0.250\%	-3.109	0.002	Yes	0.69
	2010	1,380.4	2.14\%	1,263.7	2.04\%	0.102\%	0.920	0.357	-	1.05
Quinault NFH	1998	4,793.9	3.33\%	3,814.3	2.74\%	0.588\%	4.939	<0.001	Yes	1.21
	1999	1,040.7	1.35\%	1,255.8	1.63\%	-0.276\%	-2.619	0.009	Yes	0.83
	2000	2,225.9	1.75\%	1,953.3	1.53\%	0.222\%	2.418	0.016	Yes	1.15
	2001	1,767.4	1.34\%	1,907.4	1.41\%	-0.069\%	-0.810	0.418	-	0.95
	2002	1,802.3	1.57\%	1,763.1	1.54\%	0.029\%	0.333	0.739	-	1.02
	2003	467.9	0.59\%	460.3	0.62\%	-0.033\%	-0.523	0.601	-	0.95
	2004	2,078.8	2.42\%	1,590.8	2.00\%	0.426\%	2.684	0.007	Yes	1.21
	2005	1,611.2	2.03\%	1,332.3	1.63\%	0.397\%	3.795	<0.001	Yes	1.24
	2006	2,694.0	3.44\%	2,298.4	2.93\%	0.506\%	2.690	0.007	Yes	1.17
	2007	1,831.0	2.23\%	1,784.8	2.21\%	0.027\%	0.178	0.859	-	1.01
	2008	3,055.5	3.89\%	2,938.5	3.59\%	0.293\%	1.511	0.131	-	1.08
	2009	747.4	1.02\%	760.7	1.03\%	-0.011\%	-0.178	0.858	-	0.99
	2010	1,936.1	2.39\%	1,954.5	2.44\%	-0.051\%	-0.498	0.618	-	0.98
	2011	2,138.7	2.71\%	2,209.7	2.78\%	-0.070\%	-0.634	0.526	-	0.97

Appendix Table 4C. Results for Z tests of the hypothesis that the hatchery return rate from release is equal for the unmarked and marked Coho DIT groups from brood years 1998-2011.

WASHINGTON COAST REGION (continued)

	Brood	Unmarked		Marked		U-M	Hypothesis Test Result			λR
Hatchery	Year	\# Returned	\% Return	\# Returned	\% Return	Difference	Z-Stat.	Sig. (P)	$P \leq 0.05$	
	1998	841.4	1.17\%	812.2	1.19\%	-0.018\%	-0.254	0.800	-	0.98
	1999	131.5	0.18\%	184.1	0.27\%	-0.084\%	-2.418	0.016	Yes	0.68
	2000	21.7	0.03\%	32.9	0.05\%	-0.015\%	-1.291	0.197	-	0.66
	2001	327.6	0.45\%	358.4	0.49\%	-0.046\%	-0.846	0.397	-	0.91
	2002	127.9	0.17\%	3,535.6	4.76\%	-4.593\%	-37.624	<0.001	Yes	0.04
	2003	75.7	0.10\%	240.9	0.34\%	-0.238\%	-7.107	<0.001	Yes	0.30
Salmon River Fish	2004	197.6	0.25\%	217.9	0.27\%	-0.022\%	-0.817	0.414	-	0.92
Culture	2005	200.4	0.25\%	195.0	0.27\%	-0.021\%	-0.724	0.469	-	0.92
	2006	1,114.2	1.37\%	757.1	1.05\%	0.319\%	4.365	<0.001	Yes	1.30
	2007	536.1	0.71\%	552.7	0.80\%	-0.087\%	-0.924	0.355	-	0.89
	2008	999.3	1.29\%	1,000.7	1.36\%	-0.072\%	-0.638	0.523	-	0.95
	2009	44.3	0.05\%	44.3	0.06\%	-0.001\%	-0.020	0.984	-	0.99
	2010									
	2011	602.0	0.81\%	560.2	0.75\%	0.060\%	0.617	0.538	-	1.08
	1998	1,990.3	2.76\%	1,903.7	2.65\%	0.105\%	1.221	0.222	-	1.04
	1999	2,298.9	3.59\%	2,691.5	3.77\%	-0.185\%	-1.313	0.189	-	0.95
	2000	1,498.8	2.05\%	1,156.4	1.59\%	0.456\%	6.469	<0.001	Yes	1.29
	2001	1,925.0	2.61\%	2,523.2	2.62\%	-0.007\%	-0.088	0.930	-	1.00
	2002	2,931.3	4.09\%	2,736.8	3.89\%	0.198\%	1.860	0.063	-	1.05
	2003	547.4	0.75\%	476.5	0.65\%	0.097\%	2.156	0.031	Yes	1.15
	2004	808.8	1.07\%	1,532.4	2.13\%	-1.060\%	-15.894	<0.001	Yes	0.50
Solduc Hatchery	2005	1,211.1	1.70\%	1,207.2	1.67\%	0.030\%	0.398	0.691	-	1.02
	2006	4,008.5	5.23\%	3,439.8	4.50\%	0.727\%	4.252	<0.001	Yes	1.16
	2007	1,870.1	2.48\%	1,730.5	2.30\%	0.184\%	1.613	0.107	-	1.08
	2008	3,019.9	3.89\%	3,084.8	4.00\%	-0.108\%	-0.625	0.532	-	0.97
	2009	352.6	0.47\%	273.1	0.35\%	0.113\%	2.902	0.004	Yes	1.32
	2010	1,022.8	1.28\%	909.6	1.13\%	0.149\%	2.137	0.033	Yes	1.13
	2011	2,574.2	3.38\%	2,301.0	3.01\%	0.370\%	2.244	0.025	Yes	1.12

Appendix Table 4C. Results for Z tests of the hypothesis that the hatchery return rate from release is equal for the unmarked and marked Coho DIT groups from brood years 1998-2011.

WASHINGTON COAST REGION (continued)

Hatchery	Brood Year	Unmarked		Marked		U-M	Hypothesis Test Result			λR
		\# Returned	\% Return	\# Returned	\% Return	Difference	Z-Stat.	Sig. (P)	$P \leq 0.05$	
Bingham Creek Hatchery	1998	2,200.5	3.05\%	1,928.3	2.92\%	0.131\%	1.406	0.160	-	1.04
	1999	2,401.8	3.54\%	2,300.7	3.32\%	0.222\%	1.826	0.068	-	1.07
	2000	2,358.0	3.32\%	1,852.8	2.59\%	0.735\%	5.992	<0.001	Yes	1.28
	2001	640.5	0.92\%	592.1	0.85\%	0.068\%	1.215	0.224	-	1.08
	2002	894.2	1.25\%	910.5	1.31\%	-0.059\%	-0.859	0.390	-	0.95
	2003	1,058.3	1.46\%	907.1	1.26\%	0.209\%	2.716	0.007	Yes	1.17
	2004	548.0	0.76\%	700.2	0.96\%	-0.203\%	-3.058	0.002	Yes	0.79
	2005	433.4	0.60\%	476.9	0.67\%	-0.065\%	-1.380	0.167	-	0.90
	2006	2,776.7	3.78\%	3,162.5	4.29\%	-0.505\%	-2.806	0.005	Yes	0.88
	2007	3,734.7	5.09\%	3,402.2	4.61\%	0.485\%	3.824	<0.001	Yes	1.11
	2008	2,303.6	3.19\%	2,178.3	3.04\%	0.156\%	0.889	0.374	-	1.05
	2009	1,074.7	1.58\%	893.3	1.33\%	0.256\%	2.628	0.009	Yes	1.19
	2010	1,843.0	2.57\%	1,606.9	2.26\%	0.313\%	2.208	0.027	Yes	1.14
	2011	4,294.5	5.88\%	3,866.4	5.30\%	0.578\%	2.919	0.004	Yes	1.11
Forks Creek Hatchery	1998	2,212.3	2.94\%	1,766.0	2.39\%	0.548\%	6.504	<0.001	Yes	1.23
	1999	1,454.0	2.32\%	1,479.0	2.09\%	0.223\%	1.930	0.054	-	1.11
	2000	2,652.0	3.61\%	2,151.0	2.95\%	0.668\%	4.880	<0.001	Yes	1.23
	2001	1,005.5	1.41\%	904.0	1.37\%	0.037\%	0.396	0.692	-	1.03
	2002	3,200.3	4.85\%	3,062.8	4.31\%	0.536\%	3.179	0.001	Yes	1.12
	2003	397.5	0.54\%	442.6	0.60\%	-0.060\%	-1.289	0.197	-	0.90
	2004	741.3	1.01\%	600.6	0.83\%	0.177\%	3.360	0.001	Yes	1.21
	2005	563.0	0.75\%	499.8	0.69\%	0.067\%	1.180	0.238	-	1.10
	2006	1,189.0	1.63\%	827.3	1.14\%	0.490\%	6.836	<0.001	Yes	1.43
	2007	1,486.8	1.99\%	1,115.2	1.52\%	0.469\%	3.901	<0.001	Yes	1.31
	2008	892.0	1.19\%	763.7	1.03\%	0.154\%	2.163	0.031	Yes	1.15
	2009	502.4	0.67\%	482.5	0.67\%	0.004\%	0.086	0.931	-	1.01
	2010	553.9	0.75\%	480.6	0.66\%	0.088\%	1.495	0.135	-	1.13
	2011	5,502.7	7.34\%	5,309.4	7.13\%	0.209\%	1.114	0.265	-	1.03

Appendix Table 4D. Results for Z tests of the hypothesis that the hatchery return rate from release is equal for the unmarked and marked Coho DIT groups from brood years 1998-2011.

COLUMBIA RIVER REGION

	Brood	Unmarked		Marked		U-M	Hypothesis Test Result			λR
Hatchery	Year	\# Returned	\% Return	\# Returned	\% Return	Difference	Z-Stat.	Sig. (P)	$P \leq 0.05$	
	1998	3,209.2	4.83\%	2,659.8	4.00\%	0.828\%	5.289	<0.001	Yes	1.21
	1999	739.4	0.91\%	721.9	0.98\%	-0.062\%	-0.987	0.324	-	0.94
	2000	2,437.4	3.33\%	2,006.9	2.77\%	0.552\%	4.127	<0.001	Yes	1.20
	2001	1,522.2	2.04\%	1,150.2	1.66\%	0.383\%	3.601	<0.001	Yes	1.23
	2002	2,057.8	2.83\%	1,430.5	2.20\%	0.627\%	6.099	<0.001	Yes	1.28
	2003	1,650.3	2.64\%	1,470.1	2.36\%	0.281\%	2.597	0.009	Yes	1.12
Lewis River	2004	1,680.7	2.36\%	1,383.7	1.97\%	0.396\%	3.846	<0.001	Yes	1.20
Hatchery - North	2005	1,794.1	2.54\%	1,546.8	2.16\%	0.381\%	3.841	<0.001	Yes	1.18
	2006	2,710.0	3.56\%	2,258.4	2.95\%	0.606\%	3.887	<0.001	Yes	1.21
	2007	2,153.9	2.84\%	1,861.7	2.45\%	0.391\%	2.874	0.004	Yes	1.16
	2008	1,936.8	2.56\%	1,503.2	1.97\%	0.582\%	5.024	<0.001	Yes	1.29
	2009	287.0	0.38\%	230.2	0.30\%	0.075\%	1.929	0.054	-	1.25
	2010	934.9	1.48\%	711.8	1.14\%	0.341\%	4.771	<0.001	Yes	1.30
	2011	2,705.1	3.86\%	2,270.3	3.22\%	0.638\%	5.807	<0.001	Yes	1.20
	1998	4,311.3	5.78\%	3,216.3	4.36\%	1.428\%	8.957	<0.001	Yes	1.33
	1999	1,478.7	2.00\%	1,161.5	1.74\%	0.264\%	2.464	0.014	Yes	1.15
	2000	4,274.5	5.78\%	3,355.0	4.64\%	1.139\%	6.024	<0.001	Yes	1.25
	2001	2,468.1	3.35\%	1,779.4	2.54\%	0.811\%	6.326	<0.001	Yes	1.32
	2002	1,834.1	2.50\%	1,586.1	2.28\%	0.227\%	2.307	0.021	Yes	1.10
	2003	1,546.1	2.17\%	1,467.0	2.14\%	0.026\%	0.243	0.808	-	1.01
Lewis River	2004	2,082.0	2.99\%	1,545.2	2.20\%	0.790\%	6.866	<0.001	Yes	1.36
Hatchery - South	2005	2,416.4	3.47\%	1,850.0	2.56\%	0.902\%	6.535	<0.001	Yes	1.35
	2006	2,186.4	2.93\%	1,600.4	2.12\%	0.807\%	5.723	<0.001	Yes	1.38
	2007	1,460.5	1.93\%	1,176.1	1.53\%	0.392\%	3.625	<0.001	Yes	1.26
	2008	1,390.2	1.85\%	1,180.8	1.58\%	0.263\%	3.135	0.002	Yes	1.17
	2009	55.6	0.07\%	63.8	0.08\%	-0.011\%	-0.730	0.466	-	0.87
	2010	1,231.6	1.79\%	846.3	1.24\%	0.555\%	6.070	<0.001	Yes	1.45
	2011	3,927.8	5.57\%	2,983.0	4.24\%	1.336\%	10.644	<0.001	Yes	1.32

Appendix Table 4D. Results for Z tests of the hypothesis that the hatchery return rate from release is equal for the unmarked and marked Coho DIT groups from brood years 1998-2011.

	Brood	Unmarked		Marked		U-M	Hypothesis Test Result			λR
Hatchery	Year	\# Returned	\% Return	\# Returned	\% Return	Difference	Z-Stat.	Sig. (P)	$P \leq 0.05$	
Eagle Creek NFH	1998	844.2	3.66\%	712.1	3.08\%	0.574\%	3.098	0.002	Yes	1.19
	1999	401.4	1.67\%	403.1	1.62\%	0.050\%	0.337	0.736	-	1.03
	2000	455.4	1.91\%	320.6	1.33\%	0.583\%	4.090	<0.001	Yes	1.44
	2001	350.6	1.44\%	242.1	0.99\%	0.444\%	4.138	<0.001	Yes	1.45
	2002	347.7	1.51\%	317.3	1.34\%	0.174\%	1.369	0.171	-	1.13
	2003	260.4	1.05\%	212.9	0.86\%	0.191\%	2.025	0.043	Yes	1.22
	2004	767.8	3.23\%	524.8	2.21\%	1.021\%	6.169	<0.001	Yes	1.46
	2005	292.9	1.21\%	147.6	0.61\%	0.598\%	4.300	<0.001	Yes	1.98
	2006	570.4	3.04\%	403.3	2.26\%	0.782\%	2.944	0.003	Yes	1.35
	2007	117.4	0.47\%	75.9	0.30\%	0.168\%	2.386	0.017	Yes	1.55
	2008	195.9	0.79\%	95.9	0.39\%	0.403\%	5.846	<0.001	Yes	2.04
	2009	69.3	0.28\%	67.3	0.27\%	0.008\%	0.175	0.861	-	1.03
	2010	277.6	1.14\%	238.6	0.97\%	0.169\%	1.751	0.080	-	1.17
	2011	969.4	4.10\%	998.6	4.06\%	0.036\%	0.154	0.878	-	1.01
Sandy River Hatchery	1998	756.4	3.00\%	458.4	1.73\%	1.270\%	9.443	<0.001	Yes	1.73
	1999	169.7	0.63\%	489.0	0.69\%	-0.065\%	-1.129	0.259	-	0.91
	2000	279.4	1.00\%	185.5	0.69\%	0.312\%	3.968	<0.001	Yes	1.45
	2001	468.8	1.67\%	459.7	1.65\%	0.029\%	0.263	0.793	-	1.02
	2002	492.1	1.87\%	313.0	1.13\%	0.732\%	6.960	<0.001	Yes	1.65
	2003	428.4	1.63\%	242.9	0.90\%	0.725\%	7.141	<0.001	Yes	1.80
	2004	503.0	1.98\%	281.2	1.09\%	0.894\%	7.925	<0.001	Yes	1.82
	2005	289.8	1.07\%	157.6	0.59\%	0.478\%	6.121	<0.001	Yes	1.81
	2006	920.1	3.35\%	734.2	2.71\%	0.643\%	4.350	<0.001	Yes	1.24
	2007	505.4	1.83\%	299.2	1.08\%	0.750\%	7.380	<0.001	Yes	1.70
	2008	580.4	2.08\%	313.8	1.11\%	0.966\%	9.100	<0.001	Yes	1.87

Appendix 5. Why does the Total method sometimes result in negative exploitation rates?

Estimates of unmarked exploitation rate (ER) are sensitive to uncertainty in the estimate of marked ER. When the marked ER is small, leading to a small number of recoveries, sampling error results in high uncertainty in the estimate of marked ER. When marked ER is low and the λR ratio $\left[\frac{\lambda^{E s c}}{\lambda^{R e l}}\right]$ is large, the value of $\left[\frac{\bar{\lambda}^{E s c}}{\hat{\lambda}^{\text {Rel }}}\left(1-\widehat{E R}_{m}\right)\right]$ can be larger than one and the resulting estimate of unmarked ER from equation (15) is negative. The table below shows the relationship of the unmarked ER estimate to the λR ratio and marked ER. For any value of the marked ER, the unmarked estimate of ER decreases as the λR ratio increases and can become negative. An unmarked estimate of ER will be negative if, for example, the marked ER is 0.20 and the λR ratio is over 1.25 .

Estimates of unmarked exploitation rate using the Total method versus the λR ratio for values of marked ER ranging from 0.10 to 0.50 .

$\lambda \boldsymbol{R}$ Ratio	Marked Component											Estimated							
	$\mathbf{0 . 1 0}$	$\mathbf{0 . 1 5}$	$\mathbf{0 . 2 0}$	$\mathbf{0 . 2 5}$	$\mathbf{0 . 3 0}$	$\mathbf{0 . 3 5}$	$\mathbf{0 . 4 0}$	$\mathbf{0 . 4 5}$	$\mathbf{0 . 5 0}$										
1.00	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50										
1.05	0.05	0.11	0.16	0.21	0.27	0.32	0.37	0.42	0.48										
1.10	0.01	0.06	0.12	0.18	0.23	0.29	0.34	0.40	0.45										
1.15	-0.04	0.02	0.08	0.14	0.20	0.25	0.31	0.37	0.43										
1.20	-0.08	-0.02	0.04	0.10	0.16	0.22	0.28	0.34	0.40										
1.25	-0.13	-0.06	0.00	0.06	0.13	0.19	0.25	0.31	0.38										
1.30	-0.17	-0.11	-0.04	0.02	0.09	0.16	0.22	0.29	0.35										
1.35	-0.22	-0.15	-0.08	-0.01	0.05	0.12	0.19	0.26	0.33										
1.40	-0.26	-0.19	-0.12	-0.05	0.02	0.09	0.16	0.23	0.30										
1.45	-0.31	-0.23	-0.16	-0.09	-0.02	0.06	0.13	0.20	0.28										
1.50	-0.35	-0.28	-0.20	-0.13	-0.05	0.02	0.10	0.18	0.25										
1.55	-0.40	-0.32	-0.24	-0.16	-0.09	-0.01	0.07	0.15	0.23										
1.60	-0.44	-0.36	-0.28	-0.20	-0.12	-0.04	0.04	0.12	0.20										
1.65	-0.49	-0.40	-0.32	-0.24	-0.16	-0.07	0.01	0.09	0.18										
1.70	-0.53	-0.45	-0.36	-0.28	-0.19	-0.11	-0.02	0.06	0.15										
1.75	-0.58	-0.49	-0.40	-0.31	-0.23	-0.14	-0.05	0.04	0.13										
1.80	-0.62	-0.53	-0.44	-0.35	-0.26	-0.17	-0.08	0.01	0.10										
1.85	-0.67	-0.57	-0.48	-0.39	-0.30	-0.20	-0.11	-0.02	0.07										
1.90	-0.71	-0.62	-0.52	-0.43	-0.33	-0.24	-0.14	-0.05	0.05										
1.95	-0.76	-0.66	-0.56	-0.46	-0.37	-0.27	-0.17	-0.07	0.02										
2.00	-0.80	-0.70	-0.60	-0.50	-0.40	-0.30	-0.20	-0.10	0.00										

Appendix 6: Estimates of marked and unmarked exploitation rate (ER) percentage, with percent standard error (PSE), based on three methods: Total method (Section 3.1); Paired-Ratio method (Section 3.2) with release ratio ($\left.\lambda^{\text {Rel }}\right)$; and Paired-Ratio method with escapement ratio ($\left.\lambda^{\mathrm{Esc}}\right)$.

Appendix Table 6A. Estimates of marked and unmarked exploitation rate (ER) percentage, with percent standard error (PSE), based on three methods: Total method (Section 3.1); Paired-Ratio method (Section 3.2) with release ratio ($\lambda^{\text {Rel }) \text {; and }}$ PR method with escapement ratio $\left(\lambda^{E s c}\right)$. ($\mathrm{PSE}=$ estimate standard error/estimate $\mathrm{x} 100 \%$).

BRITISH COLUMBIA REGION

	$\begin{gathered} \text { Z test } \\ P \leq 0.05 \end{gathered}$	λR	$\begin{gathered} \text { Mar } \\ \text { ER } \end{gathered}$	ER PSE	Estimates of Unmarked Total ER	Unmarked Unmarked ER PSE	oitation Ra Unmarked $\text { PR } \lambda^{\text {Rel }} \text { ER }$	(ER) and P Unmarked ER PSE	nt Standard Unmarked $\operatorname{PR} \lambda^{E s c} \mathrm{ER}$	Error (PSE) Unmarked ER PSE
Quinsam River Hatchery										
1998	-	0.991	0.038	44.1\%	0.047	103.6\%	0.010	41.7\%	0.010	41.7\%
1999	Yes	1.157	0.173	42.5\%	0.043	228.0\%	0.089	52.9\%	0.100	53.7\%
2000	Yes	1.312	0.193	46.6\%	-0.059	-228.6\%	0.144	50.0\%	0.178	51.0\%
2001	Yes	1.204	0.235	27.0\%	0.078	120.0\%	0.109	38.4\%	0.127	38.8\%
2002	-	1.098	0.150	70.4\%	0.066	208.6\%	0.131	74.0\%	0.142	74.5\%
2003	-	1.142	0.253	56.6\%	0.146	134.8\%	0.217	59.6\%	0.241	59.9\%
2004	Yes	1.165	0.413	36.4\%	0.316	57.4\%	0.335	40.5\%	0.363	41.2\%
2005	-	1.106	0.090	35.6\%	-0.006	-1358.1\%	0.034	34.6\%	0.038	34.6\%
2006	-	1.038	0.195	20.7\%	0.164	36.5\%	0.078	27.9\%	0.080	27.8\%
2007	Yes	1.180	0.088	34.1\%	-0.076	-99.2\%	0.053	37.4\%	0.059	36.3\%
2008	-	1.096	0.253	20.1\%	0.182	41.0\%	0.113	26.6\%	0.123	26.7\%
2009	-	1.102	0.339	20.4\%	0.271	33.9\%	0.272	20.5\%	0.285	20.7\%
2010	-	1.015	0.403	13.8\%	0.394	16.5\%	0.256	16.0\%	0.258	16.0\%
2011	-	1.024	0.222	18.1\%	0.204	29.0\%	0.113	20.4\%	0.116	20.4\%
Big Qualicum River Hatchery										
1998	-	1.016	0.173	31.4\%	0.160	42.1\%	0.032	26.5\%	0.032	26.5\%
1999	Yes	1.310	0.133	40.0\%	-0.135	-63.0\%	0.054	61.2\%	0.057	58.0\%
2000	Yes	1.416	0.239	42.5\%	-0.077	-214.0\%	0.090	61.1\%	0.115	65.3\%
2001	Yes	1.519	0.237	23.4\%	-0.159	-68.9\%	0.082	16.3\%	0.095	17.9\%
2002	-	1.217	0.115	43.3\%	-0.077	-306.9\%	0.108	35.9\%	0.110	35.3\%
Chilliwack River Hatchery										
1998	Yes	1.279	0.199	27.7\%	-0.025	-325.4\%	0.035	19.8\%	0.040	20.2\%
1999	Yes	1.362	0.210	31.4\%	-0.075	-131.5\%	0.040	22.9\%	0.049	22.3\%
2000	Yes	1.224	0.112	25.6\%	-0.086	-69.8\%	0.030	20.7\%	0.033	20.4\%
2001	Yes	1.190	0.153	17.5\%	-0.009	-810.4\%	0.061	22.4\%	0.064	22.1\%
2002	-	1.029	0.233	43.9\%	0.211	64.6\%	0.188	46.7\%	0.189	46.5\%

Appendix Table 6A. Estimates of marked and unmarked exploitation rate (ER) percentage, with percent standard error (PSE), based on three methods: Total method (Section 3.1); Paired-Ratio (PR) method (Section 3.2) with release ratio ($\lambda^{\text {Rel }}$); and PR method with escapement ratio ($\lambda^{E s c}$). (PSE = estimate standard error/estimate $\times 100 \%$).

BRITISH COLUMBIA REGION (continued)

	Z test	λR	Marked		Estimates of Unmarked Exploitation Rate (ER) and Percent Standard Error (PSE)					
Hatchery					Unmarked	Unmarked	Unmarked	Unmarked	Unmarked	marked
Brood Year	≤ 0.05		ER	ER PSE	Total ER	ER PSE	PR $\lambda^{\text {Rel }}$ ER	ER PSE	PR $\lambda^{\text {Esc }}$ ER	ER PSE
Inch Creek Hatchery										
1998	Yes	1.202	0.432	38.7\%	0.317	63.7\%	0.086	25.5\%	0.096	26.7\%
1999	Yes	1.155	0.092	23.8\%	-0.048	-127.9\%	0.039	23.6\%	0.040	23.2\%
2000	Yes	1.263	0.184	22.3\%	-0.030	-338.1\%	0.037	31.8\%	0.040	29.9\%
2001	-	0.940	0.253	14.2\%	0.298	16.2\%	0.130	11.4\%	0.129	11.5\%
2002	Yes	1.344	0.161	36.0\%	-0.128	-79.6\%	0.044	19.2\%	0.047	19.9\%
2003	-	0.993	0.256	25.2\%	0.261	34.0\%	0.184	38.1\%	0.184	38.0\%
2004	-	1.126	0.300	17.3\%	0.212	36.5\%	0.160	26.0\%	0.168	26.7\%
2005	-	1.075	0.137	25.0\%	0.072	120.4\%	0.072	35.9\%	0.074	35.4\%
2006	Yes	1.224	0.220	31.7\%	0.045	243.6\%	0.094	32.4\%	0.105	32.5\%
2007	Yes	1.131	0.106	19.3\%	-0.012	-406.9\%	0.031	27.3\%	0.033	26.5\%
2008	-	1.032	0.187	21.3\%	0.161	41.3\%	0.055	19.4\%	0.055	19.3\%
2009	Yes	1.094	0.263	11.1\%	0.194	21.9\%	0.078	14.2\%	0.081	13.8\%
2010	Yes	1.309	0.370	11.2\%	0.175	35.1\%	0.080	9.8\%	0.091	9.6\%
2011	Yes	1.143	0.266	10.1\%	0.161	28.0\%	0.116	10.3\%	0.119	10.1\%
Robertson Creek Hatchery										
1998	-	1.019	0.427	26.5\%	0.416	27.9\%	0.249	26.3\%	0.250	26.3\%
1999	Yes	1.083	0.080	29.6\%	0.003	1166.0\%	0.025	45.1\%	0.026	44.3\%
2000	Yes	1.068	0.201	10.8\%	0.147	20.9\%	0.069	18.9\%	0.072	19.2\%
2001	-	0.971	0.276	19.8\%	0.297	20.0\%	0.062	18.6\%	0.061	18.6\%
2002	Yes	1.557	0.305	12.4\%	-0.082	-82.2\%	0.085	12.3\%	0.118	12.1\%

Appendix Table 6B. Estimates of marked and unmarked exploitation rate (ER) percentage, with percent standard error (PSE), based on three methods: Total method (Section 3.1); Paired-Ratio (PR) method (Section 3.2) with release ratio ($\lambda^{\text {Rel }}$); and PR method with escapement ratio $\left(\lambda^{E s c}\right)$. (PSE $=$ estimate standard error/estimate $\times 100 \%$).

PUGET SOUND REGION

Hatchery Brood Year	$\begin{gathered} Z \text { test } \\ P \leq 0.05 \end{gathered}$	λR		ER PSE	Estimates of Unmarked Total ER	Unmarked Unmarked ER PSE	oitation Ra Unmarked PR $\boldsymbol{\lambda}^{\text {Rel }} \mathrm{ER}$	(ER) and P Unmarked ER PSE	nt Standard Unmarked PR $\lambda^{E s c} E R$	Error (PSE) Unmarked ER PSE
Marblemount Hatchery										
1998	Yes	1.090	0.314	8.7\%	0.252	12.7\%	0.235	9.6\%	0.236	9.6\%
1999	Yes	1.063	0.237	5.4\%	0.188	8.2\%	0.177	5.5\%	0.178	5.5\%
2000	-	1.071	0.712	5.2\%	0.691	8.4\%	0.607	5.2\%	0.609	5.2\%
2001	Yes	1.101	0.587	3.7\%	0.546	6.0\%	0.523	5.2\%	0.524	5.2\%
2002	-	1.041	0.433	5.4\%	0.409	7.1\%	0.340	4.7\%	0.340	4.7\%
2003	-	0.964	0.639	10.0\%	0.652	13.1\%	0.607	8.9\%	0.607	8.9\%
2004	-	1.050	0.326	8.0\%	0.292	10.4\%	0.246	9.0\%	0.247	8.9\%
2005	-	0.987	0.243	7.8\%	0.253	8.3\%	0.222	8.9\%	0.222	8.9\%
2006	-	1.013	0.414	7.3\%	0.407	8.4\%	0.272	7.8\%	0.272	7.8\%
2007	-	1.061	0.321	8.5\%	0.280	12.1\%	0.291	8.3\%	0.291	8.3\%
2008	-	1.071	0.455	5.8\%	0.416	8.0\%	0.404	5.8\%	0.405	5.8\%
2009	Yes	1.099	0.452	7.6\%	0.398	10.6\%	0.362	7.9\%	0.363	7.8\%
2010	-	1.063	0.473	6.2\%	0.440	8.0\%	0.393	6.0\%	0.394	5.9\%
2011	-	1.050	0.381	7.4\%	0.349	9.5\%	0.282	9.2\%	0.282	9.2\%
Wallace River Hatchery										
1998	-	0.974	0.205	7.2\%	0.226	6.7\%	0.133	10.8\%	0.132	10.8\%
1999	-	1.057	0.184	9.4\%	0.138	13.8\%	0.109	13.7\%	0.111	13.9\%
2000	Yes	1.087	0.193	7.4\%	0.123	13.5\%	0.098	10.2\%	0.100	10.1\%
2001	Yes	1.066	0.264	6.3\%	0.215	9.0\%	0.134	8.9\%	0.135	8.8\%
2002	-	1.044	0.250	7.5\%	0.217	9.6\%	0.137	7.0\%	0.137	7.0\%
2003	-	1.000	0.249	11.2\%	0.249	11.8\%	0.170	9.2\%	0.170	9.2\%
2004	Yes	1.083	0.217	10.0\%	0.152	16.3\%	0.131	12.1\%	0.131	12.0\%
2005	-	1.091	0.237	15.7\%	0.168	25.5\%	0.137	17.0\%	0.137	16.9\%
2006	-	0.937	0.291	10.3\%	0.335	8.8\%	0.166	11.1\%	0.164	11.1\%
2007	Yes	1.248	0.106	19.6\%	-0.116	-22.9\%	0.086	24.5\%	0.087	24.2\%
2008	Yes	1.144	0.248	10.1\%	0.140	21.4\%	0.142	11.6\%	0.143	11.5\%
2009	Yes	1.095	0.209	10.8\%	0.134	19.1\%	0.122	15.7\%	0.123	15.6\%
2010	-	1.026	0.249	10.1\%	0.229	11.8\%	0.193	12.8\%	0.193	12.8\%
2011	Yes	0.886	0.290	9.4\%	0.370	6.9\%	0.212	13.1\%	0.210	13.2\%

Appendix Table 6B. Estimates of marked and unmarked exploitation rate (ER) percentage, with percent standard error (PSE), based on three methods: Total method (Section 3.1); Paired-Ratio (PR) method (Section 3.2) with release ratio ($\lambda^{\text {Rel }}$); and PR method with escapement ratio $\left(\lambda^{E s c}\right)$. (PSE = estimate standard error/estimate $\times 100 \%$).

PUGET SOUND REGION (continued)

Appendix Table 6B. Estimates of marked and unmarked exploitation rate (ER) percentage, with percent standard error (PSE), based on three methods: Total method (Section 3.1); Paired-Ratio (PR) method (Section 3.2) with release ratio ($\lambda^{\text {Rel }}$); and PR method with escapement ratio $\left(\lambda^{E s c}\right)$. (PSE = estimate standard error/estimate $\times 100 \%$).

PUGET SOUND REGION (continued)

Hatchery	Z test		Marked		Estimates of Unmarked Exploitation Rate (ER) and Percent Standard Error (PSE)					
			Unmarked Total ER	Unmarked ER PSE	Unmarked PR $\boldsymbol{\lambda}^{\text {Rel }} \mathrm{ER}$	Unmarked ER PSE	Unmarked PR $\lambda^{E s c} E R$	Unmarked ER PSE		
Brood Year $P \leq 0.05$		λR							ER	ER PSE
Soos Creek Hatchery										
1998	-	1.073	0.636	4.8\%	0.610	7.0\%	0.602	4.5\%	0.602	4.5\%
1999	-	0.947	0.492	4.0\%	0.519	4.7\%	0.464	4.1\%	0.464	4.1\%
2000	-	1.078	0.615	5.0\%	0.584	7.4\%	0.508	4.8\%	0.509	4.8\%
2001	Yes	1.079	0.586	4.2\%	0.554	6.0\%	0.541	4.3\%	0.541	4.3\%
2002	Yes	1.208	0.517	7.7\%	0.416	13.0\%	0.445	7.5\%	0.449	8.1\%
2003	Yes	1.431	0.848	6.4\%	0.782	15.1\%	0.802	5.6\%	0.802	5.6\%
2004	-	1.035	0.531	6.8\%	0.515	8.8\%	0.452	7.0\%	0.453	7.0\%
2005	-	0.942	0.344	10.0\%	0.382	9.2\%	0.339	10.9\%	0.338	10.9\%
2006	-	0.958	0.437	7.5\%	0.461	7.7\%	0.438	6.2\%	0.438	6.3\%
2007	-	0.927	0.326	11.3\%	0.375	10.7\%	0.298	12.4\%	0.297	12.4\%
2008	-	0.990	0.441	7.1\%	0.447	8.0\%	0.459	6.8\%	0.459	6.8\%
2009	-	1.087	0.433	6.5\%	0.383	9.1\%	0.345	6.9\%	0.346	6.9\%
2010	Yes	0.299	0.516	6.9\%	0.855	1.7\%	0.718	7.5\%	0.711	7.6\%
2011	-	0.954	0.572	7.7\%	0.592	8.8\%	0.513	7.7\%	0.512	7.7\%
Voights Creek Hatchery										
1998	-	0.946	0.562	7.4\%	0.585	8.0\%	0.515	7.8\%	0.515	7.8\%
1999	-	0.986	0.361	4.6\%	0.369	5.4\%	0.373	4.2\%	0.373	4.2\%
2000	-	1.082	0.485	6.9\%	0.443	9.4\%	0.428	5.6\%	0.429	5.6\%
2001	-	1.045	0.638	6.1\%	0.622	8.4\%	0.561	4.9\%	0.562	4.9\%
2002	-	1.062	0.394	7.6\%	0.356	9.8\%	0.321	6.7\%	0.321	6.7\%
2003	Yes	0.815	0.685	7.3\%	0.743	7.8\%	0.700	6.3\%	0.700	6.3\%
2004	Yes	1.238	0.679	6.3\%	0.602	12.4\%	0.578	5.4\%	0.580	5.4\%
2005	Yes	0.262	0.471	16.6\%	0.861	2.9\%	0.457	37.3\%	0.451	38.1\%
2006	-	0.967	0.787	11.2\%	0.794	12.7\%	0.733	16.1\%	0.733	16.1\%
2007	-	0.836	0.690	13.6\%	0.741	19.9\%	0.663	12.1\%	0.663	12.1\%
2008	-	0.992	0.485	11.7\%	0.489	13.4\%	0.443	10.6\%	0.443	10.6\%
2009	-	1.029	0.456	8.6\%	0.440	10.7\%	0.368	8.2\%	0.368	8.2\%
2010	Yes	1.222	0.607	9.5\%	0.520	17.0\%	0.513	7.8\%	0.515	7.8\%
2011	-	1.089	0.708	9.0\%	0.682	14.5\%	0.608	7.4\%	0.609	7.4\%

Appendix Table 6B. Estimates of marked and unmarked exploitation rate (ER) percentage, with percent standard error (PSE), based on three methods: Total method (Section 3.1); Paired-Ratio (PR) method (Section 3.2) with release ratio ($\lambda^{\text {Rel }}$); and PR method with escapement ratio $\left(\lambda^{E s c}\right)$. (PSE = estimate standard error/estimate $\times 100 \%$).

PUGET SOUND REGION (continued)

Appendix Table 6C. Estimates of marked and unmarked exploitation rate (ER) percentage, with percent standard error (PSE), based on three methods: Total method (Section 3.1); Paired-Ratio (PR) method (Section 3.2) with release ratio ($\lambda^{\text {Rel }}$); and PR method with escapement ratio $\left(\lambda^{E s c}\right)$. (PSE $=$ estimate standard error/estimate $\times 100 \%$).

WASHINGTON COAST REGION

Hatchery	Z test$P \leq 0.05$	λR	Marked		Estimates of Unmarked Exploitation Rate (ER) and Percent Standard Error (PSE)					
					Unmarked	Unmarked	Unmarked	Unmarked	Unmarked	Unmarked
Brood Year			ER	ER PSE	Total ER	ER PSE	PR $\lambda^{\text {Rel }}$ ER	ER PSE	PR $\lambda^{\text {Esc }}$ ER	ER PSE
Makah NFH										
1998	-	0.966	0.116	16.9\%	0.146	13.5\%	0.085	18.1\%	0.084	18.1\%
1999	-	0.857	0.156	16.0\%	0.277	8.1\%	0.086	21.3\%	0.083	21.8\%
2000	-	1.040	0.524	11.7\%	0.505	14.4\%	0.350	15.1\%	0.351	15.0\%
2001	-	1.045	0.259	19.9\%	0.225	25.1\%	0.105	19.7\%	0.106	19.5\%
2002	-	1.011	0.387	12.7\%	0.380	13.9\%	0.137	10.6\%	0.138	10.6\%
2003	-	1.304	0.324	29.7\%	0.119	112.8\%	0.225	31.7\%	0.239	30.9\%
2004	-	1.029	0.587	27.5\%	0.575	33.2\%	0.280	26.3\%	0.283	26.2\%
2005	-	0.889	0.136	23.3\%	0.232	12.9\%	0.124	28.0\%	0.119	27.5\%
2006	-	1.076	0.154	10.4\%	0.091	20.2\%	0.075	15.4\%	0.076	15.1\%
2007	Yes	0.774	0.092	18.9\%	0.297	4.7\%	0.062	29.5\%	0.057	30.2\%
2008	Yes	0.826	0.177	11.5\%	0.320	5.5\%	0.080	18.9\%	0.073	18.6\%
2009	Yes	0.688	0.169	25.0\%	0.428	7.2\%	0.184	25.9\%	0.177	26.8\%
2010	-	1.050	0.207	10.2\%	0.168	14.1\%	0.065	15.7\%	0.067	15.7\%
Quinault NFH										
1998	Yes	1.215	0.567	3.3\%	0.475	5.7\%	0.485	3.5\%	0.488	3.5\%
1999	Yes	0.830	0.612	5.1\%	0.678	4.9\%	0.602	5.7\%	0.600	5.8\%
2000	Yes	1.146	0.652	3.9\%	0.601	6.1\%	0.589	4.2\%	0.591	4.2\%
2001	-	0.951	0.598	5.4\%	0.618	5.8\%	0.596	5.5\%	0.595	5.5\%
2002	-	1.019	0.625	5.2\%	0.617	6.3\%	0.183	10.9\%	0.183	10.9\%
2003	-	0.947	0.718	6.1\%	0.733	8.3\%	0.734	5.6\%	0.733	5.6\%
2004	Yes	1.213	0.572	4.8\%	0.481	8.4\%	0.437	4.9\%	0.443	4.9\%
2005	Yes	1.243	0.602	4.5\%	0.505	8.6\%	0.556	4.4\%	0.556	4.4\%
2006	Yes	1.173	0.703	3.8\%	0.652	5.9\%	0.668	3.8\%	0.669	3.8\%
2007	-	1.012	0.666	3.6\%	0.662	4.9\%	0.673	3.5\%	0.673	3.5\%
2008	-	1.081	0.514	3.8\%	0.474	5.4\%	0.519	3.6\%	0.519	3.6\%
2009	-	0.989	0.610	5.7\%	0.614	7.5\%	0.593	5.4\%	0.593	5.4\%
2010	-	0.979	0.486	3.8\%	0.496	4.7\%	0.456	3.6\%	0.455	3.6\%
2011	-	0.975	0.696	3.1\%	0.704	4.2\%	0.670	3.4\%	0.670	3.4\%

Appendix Table 6C. Estimates of marked and unmarked exploitation rate (ER) percentage, with percent standard error (PSE), based on three methods: Total method (Section 3.1); Paired-Ratio (PR) method (Section 3.2) with release ratio ($\lambda^{\text {Rel }}$); and PR method with escapement ratio $\left(\lambda^{E s c}\right)$. (PSE = estimate standard error/estimate $\times 100 \%$).

WASHINGTON COAST REGION (continued)

		λR	Marked		Estimates of Unmarked Exploitation Rate (ER) and Percent Standard Error (PSE)					
Hatchery	Z test				Unmarked	Unmarked	Unmarked	Unmarked	Unmarked	Unmarked
Brood Year	≤ 0.05		ER	ER PSE	Total ER	ER PSE	PR $\boldsymbol{\lambda}^{\text {Rel }}$ ER	ER PSE	PR $\lambda^{\text {Esc }}$ ER	ER PSE
Salmon River Fish Culture										
1998	-	0.985	0.582	7.8\%	0.588	9.0\%	0.583	7.7\%	0.583	7.7\%
1999	Yes	0.681	0.915	5.2\%	0.942	8.3\%	0.930	5.5\%	0.929	5.6\%
2000	-	0.664	0.975	6.1\%	0.983	18.6\%	0.975	8.0\%	0.974	8.2\%
2001	-	0.907	0.656	12.8\%	0.688	12.8\%	0.628	13.9\%	0.627	13.9\%
2002	Yes	0.036	0.431	19.1\%	0.979	0.3\%	0.730	28.6\%	0.635	34.3\%
2003	Yes	0.300	0.808	10.3\%	0.942	4.3\%	0.890	6.9\%	0.888	7.0\%
2004	-	0.918	0.567	10.6\%	0.602	12.4\%	0.514	11.6\%	0.509	11.2\%
2005	-	0.923	0.675	8.5\%	0.700	11.7\%	0.692	7.2\%	0.692	7.2\%
2006	Yes	1.304	0.755	4.5\%	0.681	9.4\%	0.635	4.7\%	0.638	4.7\%
2007	-	0.891	0.724	6.6\%	0.754	7.6\%	0.692	6.9\%	0.692	6.9\%
2008	-	0.947	0.498	6.3\%	0.525	6.9\%	0.471	5.9\%	0.470	5.9\%
2009	-	0.988	0.879	10.2\%	0.881	23.1\%	0.866	10.3\%	0.866	10.3\%
2010										
2011	-	1.081	0.772	4.3\%	0.753	8.0\%	0.719	4.5\%	0.720	4.5\%
Solduc Hatchery										
1998	-	1.040	0.149	8.0\%	0.115	11.5\%	0.063	12.7\%	0.064	12.6\%
1999	-	0.951	0.115	10.7\%	0.159	7.7\%	0.033	13.9\%	0.032	14.0\%
2000	Yes	1.286	0.217	8.4\%	-0.007	-386.4\%	0.046	14.5\%	0.056	14.1\%
2001	-	0.997	0.195	8.6\%	0.197	9.0\%	0.088	9.3\%	0.088	9.3\%
2002	-	1.051	0.279	6.7\%	0.243	8.7\%	0.085	7.1\%	0.087	7.1\%
2003	Yes	1.149	0.339	14.2\%	0.241	25.1\%	0.087	14.8\%	0.094	14.7\%
2004	Yes	0.501	0.222	9.1\%	0.610	1.8\%	0.149	9.8\%	0.121	11.0\%
2005	-	1.018	0.479	5.8\%	0.470	7.3\%	0.449	5.5\%	0.449	5.5\%
2006	Yes	1.162	0.640	3.7\%	0.581	5.6\%	0.558	4.1\%	0.559	4.1\%
2007	-	1.080	0.472	7.0\%	0.430	9.1\%	0.465	7.3\%	0.466	7.2\%
2008	-	0.973	0.348	6.1\%	0.365	6.1\%	0.350	6.5\%	0.350	6.5\%
2009	Yes	1.320	0.684	11.1\%	0.583	21.1\%	0.582	11.6\%	0.584	11.6\%
2010	Yes	1.132	0.592	5.5\%	0.538	8.8\%	0.508	5.3\%	0.511	5.3\%
2011	Yes	1.123	0.622	5.4\%	0.576	7.4\%	0.563	5.6\%	0.564	5.5\%

Appendix Table 6C. Estimates of marked and unmarked exploitation rate (ER) percentage, with percent standard error (PSE), based on three methods: Total method (Section 3.1); Paired-Ratio (PR) method (Section 3.2) with release ratio ($\lambda^{\text {Rel }}$); and PR method with escapement ratio $\left(\lambda^{E s c}\right)$. (PSE = estimate standard error/estimate $\times 100 \%$).

WASHINGTON COAST REGION (continued)

		λR	Marked		Estimates of Unmarked Exploitation Rate (ER) and Percent Standard Error (PSE)					
Hatchery	Z test				Unmarked	Unmarked	Unmarked	Unmarked	Unmarked	marked
Brood Year	≤ 0.05		ER	ER PSE	Total ER	ER PSE	PR $\boldsymbol{\lambda}^{\text {Rel }}$ ER	ER PSE	PR $\lambda^{\text {Esc }}$ ER	ER PSE
Bingham Creek Hatchery										
1998	-	1.045	0.299	6.2\%	0.268	8.1\%	0.248	6.5\%	0.248	6.5\%
1999	-	1.067	0.190	8.2\%	0.136	12.9\%	0.163	8.9\%	0.164	9.1\%
2000	Yes	1.284	0.223	8.9\%	0.002	1736.4\%	0.129	9.9\%	0.134	9.9\%
2001	-	1.080	0.274	10.8\%	0.216	16.7\%	0.300	10.0\%	0.301	10.0\%
2002	-	0.955	0.350	9.3\%	0.380	9.2\%	0.164	12.9\%	0.162	12.9\%
2003	Yes	1.167	0.241	10.7\%	0.115	28.5\%	0.204	11.7\%	0.207	11.7\%
2004	Yes	0.790	0.256	10.3\%	0.412	5.7\%	0.220	14.0\%	0.214	14.1\%
2005	-	0.903	0.174	15.6\%	0.254	10.5\%	0.133	22.8\%	0.131	22.9\%
2006	Yes	0.882	0.171	7.6\%	0.269	4.5\%	0.123	10.6\%	0.121	10.8\%
2007	Yes	1.105	0.097	10.1\%	0.002	532.1\%	0.037	14.7\%	0.038	14.6\%
2008	-	1.051	0.206	11.6\%	0.165	15.7\%	0.129	13.1\%	0.130	13.0\%
2009	Yes	1.193	0.325	10.8\%	0.194	23.2\%	0.232	11.0\%	0.233	11.1\%
2010	Yes	1.139	0.232	8.5\%	0.125	19.2\%	0.188	9.5\%	0.189	9.4\%
2011	Yes	1.109	0.346	6.5\%	0.274	9.6\%	0.293	6.6\%	0.294	6.6\%
Forks Creek Hatchery										
1998	Yes	1.229	0.522	3.3\%	0.412	7.2\%	0.459	2.8\%	0.461	2.8\%
1999	-	1.107	0.637	3.7\%	0.598	6.1\%	0.599	4.0\%	0.600	4.0\%
2000	Yes	1.227	0.596	3.4\%	0.504	6.5\%	0.486	3.9\%	0.491	3.9\%
2001	-	1.027	0.440	6.4\%	0.425	8.3\%	0.341	6.6\%	0.341	6.6\%
2002	Yes	1.124	0.396	5.6\%	0.321	8.5\%	0.306	6.7\%	0.309	6.8\%
2003	-	0.900	0.677	10.1\%	0.709	10.5\%	0.635	10.5\%	0.633	10.1\%
2004	Yes	1.213	0.503	7.0\%	0.397	13.6\%	0.297	7.7\%	0.309	7.8\%
2005	-	1.097	0.350	10.0\%	0.287	15.7\%	0.297	10.9\%	0.298	10.9\%
2006	Yes	1.429	0.538	7.8\%	0.339	20.3\%	0.380	9.6\%	0.390	9.4\%
2007	Yes	1.309	0.411	7.8\%	0.228	20.6\%	0.037	17.9\%	0.045	18.4\%
2008	Yes	1.149	0.525	8.6\%	0.454	13.1\%	0.459	8.3\%	0.460	8.3\%
2009	-	1.006	0.525	7.2\%	0.522	9.7\%	0.486	7.8\%	0.486	7.8\%
2010	-	1.134	0.449	11.6\%	0.375	17.8\%	0.316	13.7\%	0.318	13.6\%
2011	-	1.029	0.377	3.6\%	0.359	4.4\%	0.298	4.1\%	0.299	4.0\%

Appendix Table 6D. Estimates of marked and unmarked exploitation rate (ER) percentage, with percent standard error (PSE), based on three methods: Total method (Section 3.1); Paired-Ratio (PR) method (Section 3.2) with release ratio ($\lambda^{\text {Rel }}$); and PR method with escapement ratio $\left(\lambda^{E s c}\right)$. (PSE = estimate standard error/estimate $\times 100 \%$).

COLUMBIA RIVER REGION

Hatchery	Z test		Marked		Estimates of Unmarked Exploitation Rate (ER) and Percent Standard Error (PSE)							
			Unmarked	Unmarked	Unmarked	Unmarked	Unmarked	Unmarked				
Brood Year	$P \leq 0.05$	λR			ER	ER PSE	Total ER	ER PSE	PR $\lambda^{\text {Rel }}$ ER	ER PSE	PR $\lambda^{\text {Esc }}$ ER	ER PSE
Lewis River - North												
1998	Yes	1.207	0.535	5.7\%	0.439	9.1\%	0.354	3.0\%	0.369	3.0\%		
1999	-	0.937	0.513	7.7\%	0.544	8.2\%	0.390	6.4\%	0.389	6.4\%		
2000	Yes	1.199	0.567	3.4\%	0.481	6.4\%	0.402	4.1\%	0.409	4.0\%		
2001	Yes	1.230	0.660	3.2\%	0.581	7.0\%	0.467	2.8\%	0.476	2.7\%		
2002	Yes	1.285	0.296	5.0\%	0.096	23.9\%	0.159	4.6\%	0.165	4.5\%		
2003	Yes	1.119	0.312	8.4\%	0.231	13.8\%	0.194	6.9\%	0.198	6.9\%		
2004	Yes	1.202	0.576	4.1\%	0.490	7.6\%	0.336	3.2\%	0.349	3.2\%		
2005	Yes	1.176	0.284	10.0\%	0.158	22.4\%	0.100	7.3\%	0.106	7.5\%		
2006	Yes	1.205	0.581	4.3\%	0.495	7.2\%	0.287	4.9\%	0.302	4.7\%		
2007	Yes	1.160	0.273	5.9\%	0.157	13.4\%	0.135	4.6\%	0.138	4.6\%		
2008	Yes	1.295	0.365	7.6\%	0.177	22.2\%	0.115	9.3\%	0.130	8.9\%		
2009	-	1.247	0.408	13.6\%	0.262	31.4\%	0.179	26.6\%	0.190	24.9\%		
2010	Yes	1.299	0.477	7.6\%	0.320	17.4\%	0.154	9.8\%	0.175	9.0\%		
2011	Yes	1.198	0.445	5.0\%	0.335	9.1\%	0.223	4.7\%	0.232	4.6\%		
Lewis River - South												
1998	Yes	1.328	0.326	4.7\%	0.105	21.4\%	0.095	5.5\%	0.113	5.0\%		
1999	Yes	1.152	0.199	10.4\%	0.077	32.9\%	0.102	9.5\%	0.105	9.6\%		
2000	Yes	1.245	0.298	4.4\%	0.126	14.5\%	0.077	7.3\%	0.088	6.8\%		
2001	Yes	1.319	0.319	6.0\%	0.102	27.7\%	0.069	12.3\%	0.085	12.5\%		
2002	Yes	1.100	0.094	11.1\%	0.004	315.4\%	0.043	12.7\%	0.044	12.5\%		
2003	-	1.012	0.151	18.0\%	0.140	19.9\%	0.077	23.6\%	0.077	23.5\%		
2004	Yes	1.359	0.295	6.5\%	0.041	71.1\%	0.070	14.2\%	0.088	12.9\%		
2005	Yes	1.352	0.147	16.4\%	-0.153	-21.8\%	0.058	22.5\%	0.064	20.8\%		
2006	Yes	1.381	0.531	6.3\%	0.352	14.8\%	0.185	7.1\%	0.217	6.6\%		
2007	Yes	1.256	0.200	12.4\%	-0.005	-691.6\%	0.047	13.1\%	0.054	12.7\%		
2008	Yes	1.166	0.193	13.7\%	0.060	53.9\%	0.053	19.4\%	0.057	18.5\%		
2009	-	0.872	0.246	37.5\%	0.343	25.8\%	0.128	51.4\%	0.122	53.8\%		
2010	Yes	1.448	0.237	11.6\%	-0.106	-40.4\%	0.051	14.0\%	0.058	12.9\%		
2011	Yes	1.315	0.308	9.4\%	0.090	43.4\%	0.091	11.9\%	0.100	11.4\%		

Appendix Table 6D. Estimates of marked and unmarked exploitation rate (ER) percentage, with percent standard error (PSE), based on three methods: Total method (Section 3.1); Paired-Ratio (PR) method (Section 3.2) with release ratio ($\lambda^{\text {Rel }}$); and PR method with escapement ratio $\left(\lambda^{E s c}\right)$. (PSE $=$ estimate standard error/estimate $\times 100 \%$).

COLUMBIA RIVER REGION (continued)

Appendix 7: Estimating Total Unmarked Fishery Mortalities

This appendix provides a more detailed description of the derivation of the equations used to estimate total unmarked fishery-related mortalities using the Paired-Ratio estimators described in Sections 3.2 and 5 of the report.

Equations that do not include drop-off mortality (report Section 3.2):

For the unmarked component of a DIT group, the estimate of total mortalities (\widehat{U}) due to both NSFs and MSFs has four components:

1. Landed mortalities of unmarked fish in NSFs that have ETD sampling (under the assumption that no fish are released),
2. Landed mortalities of unmarked fish in NSFs that have visual sampling (under the assumption that no fish are released),
3. Mortalities due to the release of unmarked fish in MSFs (which is the product of estimated encounters and the sfim rate for a fishery), and
4. Landed mortalities in MSFs due to unmarked retention error (URE).

Therefore,

$$
\begin{equation*}
\widehat{U}=\overbrace{\sum_{j}^{E T D} \widehat{U}_{j}}^{1}+\overbrace{\sum_{k}^{V S} \widehat{M}_{k} \hat{\lambda}_{k}}^{2}+\overbrace{\sum_{i}\left[\left(\hat{\lambda}_{i} \widehat{M}_{i}\right)-\widehat{U}_{i}\right] s f m_{i}}^{3}+\overbrace{\sum_{i} \widehat{U}_{i}}^{4} \tag{A7-1}
\end{equation*}
$$

where M_{x} and U_{x} are the estimated numbers of marked and unmarked fish, respectively, for a given DIT group retained by fishery x with j indicating NSFs with ETD, k indicating NSFs with visual sampling, and i indicating MSFs. Component 3 of Eq. A7-1 estimates the unmarked mortalities due to the release of unmarked fish in MSFs. The estimate of the number of unmarked encounters for a DIT group in $\operatorname{MSF}_{i}\left(\hat{\lambda}_{i} \widehat{M}_{i}\right)$ must be adjusted to account for unmarked fish retained due to URE before the sfm rate can be applied to estimate unmarked mortalities due to the release of fish. Eq. A7-1 can be re-arranged as:

$$
\begin{equation*}
\widehat{U}=\sum_{j}^{E T D} \widehat{U}_{j}+\sum_{k}^{V S} \widehat{M}_{k} \lambda_{k}+\sum_{i}\left[\left(\lambda_{i} \widehat{M}_{i}\right) \operatorname{sfm}_{i}+\widehat{U}_{i}\left(1-\operatorname{sfm}_{i}\right)\right] \tag{A7-2}
\end{equation*}
$$

with estimated variance:

$$
\begin{equation*}
\widehat{V}(\widehat{U})=\sum_{j}^{E T D} \widehat{V}\left(\widehat{U}_{j}\right)+\sum_{k}^{V S} \lambda_{k}^{2} \hat{V}\left(\widehat{M}_{k}\right)+\sum_{i}\left[\left(\lambda_{i} s f m_{i}\right)^{2} \widehat{V}\left(\widehat{M}_{i}\right)+\left(1-\operatorname{sfm_{i}}\right)^{2} \widehat{V}\left(\widehat{U}_{i}\right)\right] . \tag{A7-3}
\end{equation*}
$$

where λ_{k} and λ_{l} are assumed constant.

Equations that include drop-off mortality (report Section 5):

FRAM-based post-season exploitation rates were compared to the results of the DIT analyses. Post-season Coho FRAM includes calculations of drop-off mortalities in all fisheries in its calculations of ERs. Post-season Coho FRAM calculates drop-off mortalities as either:

1. the product of landed catch and a drop-off mortality rate in NSFs, or the
2. the product of unmarked encounters and the drop-off mortality rate in MSFs.

Drop-off mortalities were incorporated into the DIT-based estimates of unmarked fishery mortalities by modifying Eq. A7-1 to:

$$
\begin{equation*}
\widehat{U}=\overbrace{\sum_{j}^{E T D} \widehat{U}_{j}\left(1+D O_{j}\right)}^{1}+\overbrace{\sum_{k}^{V S} \widehat{M}_{k} \lambda_{k}\left(1+D O_{k}\right)}^{2}+\overbrace{\sum_{i}\left[\left(\lambda_{i} \widehat{M}_{i}\right)-\widehat{U}_{i}\right] s f m_{i}}^{3}+\overbrace{\sum_{i} \widehat{U}_{i}}^{4}+\overbrace{\sum_{i}\left(\lambda_{i} \widehat{M}_{i}\right) D O_{i}}^{5} \tag{A7-4}
\end{equation*}
$$

where all notation is as previously defined and $D O$ is the drop-off mortality rate associated with fishery i, j, or k. For the unmarked component of a DIT group, the estimate of total mortalities (\widehat{U}) due to both NSFs and MSFs has five components:

1. Landed mortalities of unmarked fish in NSFs that have ETD sampling (under the assumption that no fish are released) plus drop-off mortalities,
2. Landed mortalities of unmarked fish in NSFs that have visual sampling (under the assumption that no fish are released) plus drop-off mortalities,
3. Mortalities due to the release of unmarked fish in MSFs (which is the product of estimated encounters and the $s f m$ rate for a fishery),
4. Landed mortalities in MSFs due to unmarked retention error (URE), and
5. Drop-off mortalities in MSFs which are function of unmarked encounters.

Eq. A7-4 can be re-arranged as:

$$
\widehat{U}=\sum_{j}^{E T D} \widehat{U}_{j}\left(1+D O_{j}\right)+\sum_{k}^{V S} \widehat{M}_{k} \lambda_{k}\left(1+D O_{k}\right)+\sum_{i} \lambda_{i} \widehat{M}_{i}\left(s f m_{i}+D O_{i}\right)+\sum_{i} \widehat{U}_{i}\left(1-s f m_{i}\right) .
$$

Appendix 8. Alignment of hatcheries with Coho DIT group releases and stock structure represented in the Coho Fishery Regulation Assessment Model (FRAM).

RMIS Hatchery	DIT release location names in RMIS	FRAM Stock	FRAM Stock ID
GEORGE ADAMS HATCHERY	PURDY CR 16.0005	George Adams Hatchery Unmarked	57
		George Adams Hatchery Marked	58
KENDALL CR HATCHERY	KENDALL CR 01.0406	Kendall Creek Hatchery UnMarked	3
		Kendall Creek Hatchery Marked	4
LOWER ELWHA HATCHERY; LOWER ELWHA HATCH - HOUSE	ELWHA R 18.0272; LOWER ELWHA HATCH HOUSE; LOWER ELWHA HATCHERY;	Elwha Hatchery UnMarked	113
		Elwha Hatchery Marked	114
MARBLEMOUNT HATCHERY	CASCADE R 03.1411	Skagit River Hatchery UnMarked	19
		Skagit River Hatchery Marked	20
QUILCENE NFH	BIG QUILCENE 17.0012	Quilcene Hatchery UnMarked	47
		Quilcene Hatchery Marked	48
SOOS CREEK HATCHERY	BIG SOOS CR 09.0072	Green River Hatchery UnMarked	95
		Green River Hatchery Marked	96
VOIGHTS CRHATCHERY; PUYALLUP HATCHERY	VOIGHT CR 10.0414	Puyallup River Hatchery UnMarked	83
		Puyallup River Hatchery Marked	84
WALLACE R HATCHERY	WALLACE R 07.0940	Snohomish River Hatchery UnMarked	37
		Snohomish River Hatchery Marked	38
BINGHAM CR HATCHERY	SATSOP R -EF 22.0360	Chehalis River Hatchery UnMarked	151
		Chehalis River Hatchery Marked	152
EAGLE CR NFH	EAGLE CR (CLACKAMAS)	Columbia River Early Hatchery UnMarked	165
		Columbia River Early Hatchery Marked	166
FORKS CREEK HATCHERY	FORK CR $24.0356 ;$ WILLAPA R 24.0251	Willapa Bay Hatchery UnMarked	163

$\left.\begin{array}{|l|l|l|c|}\hline \text { RMIS Hatchery } & \begin{array}{c}\text { DIT release location names } \\ \text { in RMIS }\end{array} & \begin{array}{c}\text { FRAM Stock }\end{array} & \begin{array}{c}\text { FRAM } \\ \text { Stock ID }\end{array} \\ \hline \text { H-Big Qualicum River H } & \text { R-Big Qualicum R } & \begin{array}{c}\text { Willapa Bay Hatchery } \\ \text { Marked }\end{array} & 164 \\ \hline & \text { R-Chilliwack R } & \begin{array}{c}\text { Georgia Strait Vanc. } \\ \text { Isl. Hatchery } \\ \text { UnMarked }\end{array} & 209 \\ \hline \text { H-Chilliwack River H } & \text { R-Inch Cr } & \begin{array}{c}\text { Georgia Strait Vanc. } \\ \text { Isl. Hatchery Marked }\end{array} & 210 \\ \hline \text { H-Inch Creek H } & \begin{array}{c}\text { Lower Fraser River } \\ \text { Hatchery UnMarked }\end{array} & 225 \\ \hline \text { H-Quinsam River H } & \text { R-Quinsam R } & \begin{array}{c}\text { Lower Fraser River } \\ \text { Hatchery UnMarked }\end{array} & 226 \\ \hline \text { H-Robertson Creek H } & \text { R-Robertson Cr } & \begin{array}{c}\text { Lower Fraser River } \\ \text { Hatchery UnMarked }\end{array} & 225 \\ \hline & \text { Lower Fraser River } \\ \text { Hatchery Marked }\end{array}\right] 226$

RMIS Hatchery	DIT release location names in RMIS	FRAM Stock	FRAM Stock ID
SANDY HATCHERY	CEDAR CR \#1 (SANDY R; BAY	Columbia River Early Hatchery UnMarked	165
SOLDUC HATCHERY	SOL DUC R 20.0096	Columbia River Early Hatchery Marked	166
	Quillayute River Fall Hatchery UnMarked	133	

Appendix 9: Comparison of DIT-based and Post-season FRAM-based (PS FRAM) exploitations rates (ERs) for the marked and unmarked components of DIT groups, by hatchery and brood year. ERs are for age-3 fish only and include drop-off mortalities. ERs for the unmarked component of DIT groups estimated using the Paired-Ratio method with release $\lambda\left(\mathrm{PR} \lambda^{R e l}\right)$.

Appendix Table 9A. Comparison of DIT-based and Post-season FRAM-based (PS FRAM) exploitations rates (ERs) for the marked and unmarked components of DIT groups, by hatchery and brood year. ERs are for age-3 fish only and include drop-off mortalities. ERs for the unmarked component of DIT groups estimated using the PairedRatio method with release $\lambda\left(\mathrm{PR} \lambda^{\text {Rel }}\right)$.

BRITISH COLUMBIA REGION

Hatchery Brood Year	Marked Exploitation Rate			Unmarked Exploitation Rate		
	PR $\lambda^{\text {Rel }}$	PS FRAM	Difference	PR $\lambda^{\text {Rel }}$	PS FRAM	Difference
Quinsam River Hatchery						
1998	0.054	0.058	-0.004	0.015	0.053	-0.038
1999	0.159	0.051	0.108	0.122	0.046	0.076
2000	0.181	0.060	0.120	0.170	0.025	0.145
2001	0.219	0.038	0.181	0.124	0.009	0.116
2002	0.204	0.160	0.044	0.195	0.120	0.076
2003	0.257	0.146	0.111	0.295	0.086	0.209
2004	0.409	0.217	0.192	0.360	0.138	0.222
2005	0.043	0.490	-0.447	0.038	0.164	-0.126
2006	0.158	0.469	-0.311	0.082	0.139	-0.057
2007	0.095	0.150	-0.055	0.057	0.097	-0.040
2008	0.247	0.241	0.006	0.146	0.196	-0.050
2009	0.382	0.241	0.141	0.304	0.182	0.123
2010	0.383	0.421	-0.038	0.290	0.285	0.005
2011	0.199	0.434	-0.235	0.140	0.415	-0.275
Big Qualicum River Hatchery						
1998	0.161	0.083	0.078	0.041	0.068	-0.027
1999	0.121	0.071	0.050	0.035	0.054	-0.019
2000	0.177	0.098	0.079	0.111	0.036	0.075
2001	0.188	0.022	0.166	0.097	0.010	0.087
2002	0.125	0.175	-0.050	0.136	0.113	0.023
Chilliwack River Hatchery						
1998	0.107			0.034		
1999	0.082			0.036		
2000	0.080			0.033		
2001	0.139			0.069		
2002	0.275			0.213		

Appendix Table 9A. Comparison of DIT-based and Post-season FRAM-based (PS FRAM) exploitations rates (ERs) for the marked and unmarked components of DIT groups, by hatchery and brood year. ERs are for age-3 fish only and include drop-off mortalities. ERs for the unmarked component of DIT groups estimated using the PairedRatio method with release $\lambda\left(\mathrm{PR} \lambda^{\text {Rel }}\right)$.

BRITISH COLUMBIA REGION (continued)

Hatchery Brood Year	Marked PR $\lambda^{\text {Rel }}$	Marked Exploitation Rate	ate Difference	Unmark PR $\lambda^{\text {Rel }}$	Unmarked Exploitation Rate	Rate Difference
Inch Creek Hatchery						
1998	0.130	0.117	0.012	0.051	0.086	-0.035
1999	0.086	0.119	-0.033	0.043	0.076	-0.033
2000	0.169	0.167	0.001	0.047	0.079	-0.032
2001	0.276	0.080	0.196	0.141	0.049	0.092
2002	0.109	0.176	-0.067	0.047	0.095	-0.047
2003	0.273	0.183	0.090	0.199	0.093	0.106
2004	0.265	0.253	0.012	0.177	0.117	0.060
2005	0.100	0.199	-0.099	0.076	0.095	-0.019
2006	0.154	0.293	-0.139	0.089	0.130	-0.041
2007	0.048	0.105	-0.057	0.028	0.072	-0.043
2008	0.156	0.237	-0.081	0.060	0.194	-0.134
2009	0.214	0.217	-0.003	0.085	0.145	-0.060
2010	0.277	0.385	-0.108	0.091	0.224	-0.133
2011	0.238	0.459	-0.221	0.127	0.401	-0.274
Robertson Creek Hatchery						
1998	0.444	0.111	0.334	0.277	0.105	0.172
1999	0.083	0.108	-0.025	0.029	0.101	-0.072
2000	0.175	0.192	-0.016	0.056	0.058	-0.002
2001	0.291	0.115	0.175	0.081	0.018	0.063
2002	0.229	0.476	-0.247	0.089	0.139	-0.049

Appendix Table 9B. Comparison of DIT-based and Post-season FRAM-based (PS FRAM) exploitations rates (ERs) for the marked and unmarked components of DIT groups, by hatchery and brood year. ERs are for age- 3 fish only and include drop-off mortalities. ERs for the unmarked component of DIT groups estimated using the PairedRatio method with release $\lambda\left(\mathrm{PR} \lambda^{\text {Rel }}\right)$.

PUGET SOUND REGION

Hatchery Brood Year	Marked Exploitation Rate			Unmarked Exploitation Rate		
	PR $\lambda^{\text {Rel }}$	PS FRAM	Difference	PR $\lambda^{\text {Rel }}$	PS FRAM	Difference
Lower Elwha Hatchery						
1998	0.375	0.470	-0.095	0.299	0.445	-0.145
1999	0.119	0.449	-0.330	0.342	0.398	-0.056
2000	0.375	0.317	0.058	0.148	0.213	-0.065
2001	0.513	0.249	0.264	0.425	0.015	0.410
2002	0.558	0.486	0.071	0.431	0.426	0.005
2003	0.555	0.551	0.004	0.268	0.492	-0.224
2004	0.408	0.539	-0.131	0.273	0.441	-0.168
2005	0.441	0.400	0.041	0.541	0.368	0.172
2006	0.413	0.626	-0.213	0.295	0.556	-0.262
2007	0.329	0.348	-0.019	0.272	0.326	-0.054
2008	0.422	0.347	0.075	0.339	0.306	0.033
2009	0.662	0.189	0.473	0.271	0.126	0.145
2010	0.484	0.203	0.281	0.207	0.131	0.076
2011	0.488	0.275	0.213	0.246	0.162	0.084
Kendall Creek Hatchery						
1998	0.583	0.584	-0.001	0.511	0.557	-0.047
1999	0.586	0.489	0.097	0.556	0.457	0.100
2000	0.545	0.535	0.010	0.482	0.474	0.008
2001	0.873	0.372	0.501	0.840	0.149	0.690
2002	0.827	0.511	0.316	0.754	0.455	0.299
2003	0.833	0.639	0.194	0.767	0.584	0.183
2004	0.735	0.715	0.020	0.657	0.652	0.005
2005	0.807	0.831	-0.024	0.772	0.833	-0.062
2006	0.951	0.840	0.111	0.931	0.795	0.137
2007	0.807	0.809	-0.002	0.783	0.800	-0.017

Appendix Table 9B. Comparison of DIT-based and Post-season FRAM-based (PS FRAM) exploitations rates (ERs) for the marked and unmarked components of DIT groups, by hatchery and brood year. ERs are for age-3 fish only and include drop-off mortalities. ERs for the unmarked component of DIT groups estimated using the PairedRatio method with release $\lambda\left(\mathrm{PR} \lambda^{\text {Rel }}\right)$.

PUGET SOUND REGION (continued)

Hatchery Brood Year	Marked Exploitation Rate			Unmarked Exploitation Rate		
	PR $\lambda^{\text {Rel }}$	PS FRAM	Difference	PR $\boldsymbol{\lambda}^{\text {Rel }}$	PS FRAM	Difference
Marblemount Hatchery						
1998	0.324	0.360	-0.036	0.247	0.311	-0.064
1999	0.243	0.266	-0.022	0.185	0.208	-0.024
2000	0.721	0.313	0.408	0.623	0.204	0.419
2001	0.595	0.080	0.515	0.533	0.037	0.496
2002	0.441	0.387	0.054	0.348	0.307	0.041
2003	0.646	0.378	0.268	0.615	0.289	0.326
2004	0.334	0.451	-0.118	0.257	0.318	-0.060
2005	0.249	0.320	-0.071	0.227	0.268	-0.041
2006	0.425	0.433	-0.008	0.287	0.284	0.003
2007	0.329	0.420	-0.091	0.301	0.394	-0.093
2008	0.468	0.419	0.049	0.417	0.376	0.041
2009	0.463	0.380	0.082	0.376	0.306	0.070
2010	0.482	0.476	0.007	0.404	0.400	0.004
2011	0.398	0.543	-0.145	0.301	0.476	-0.175
Wallace River Hatchery						
1998	0.213	0.221	-0.009	0.142	0.192	-0.050
1999	0.191	0.170	0.021	0.117	0.130	-0.013
2000	0.201	0.164	0.037	0.108	0.086	0.021
2001	0.275	0.139	0.136	0.146	0.050	0.096
2002	0.257	0.214	0.043	0.147	0.153	-0.007
2003	0.257	0.200	0.057	0.180	0.128	0.052
2004	0.225	0.288	-0.063	0.140	0.190	-0.051
2005	0.244	0.222	0.022	0.144	0.184	-0.040
2006	0.300	0.303	-0.003	0.178	0.201	-0.022
2007	0.110	0.120	-0.010	0.091	0.097	-0.006
2008	0.257	0.216	0.041	0.152	0.181	-0.030
2009	0.217	0.282	-0.066	0.131	0.238	-0.107
2010	0.259	0.333	-0.074	0.205	0.290	-0.084
2011	0.299	0.340	-0.041	0.225	0.281	-0.055

Appendix Table 9B. Comparison of DIT-based and Post-season FRAM-based (PS FRAM) exploitations rates (ERs) for the marked and unmarked components of DIT groups, by hatchery and brood year. ERs are for age-3 fish only and include drop-off mortalities. ERs for the unmarked component of DIT groups estimated using the PairedRatio method with release $\lambda\left(\mathrm{PR} \lambda^{\text {Rel }}\right)$.

PUGET SOUND REGION (continued)

Hatchery Brood Year	Marked Exploitation Rate			Unmarked Exploitation Rate		
	PR $\lambda^{\text {Rel }}$	PS FRAM	Difference	PR $\boldsymbol{\lambda}^{\text {Rel }}$	PS FRAM	Difference
Soos Creek Hatchery						
1998	0.652	0.703	-0.051	0.614	0.684	-0.070
1999	0.499	0.454	0.045	0.472	0.409	0.063
2000	0.624	0.425	0.199	0.520	0.336	0.184
2001	0.594	0.444	0.150	0.549	0.079	0.470
2002	0.529	0.438	0.090	0.460	0.372	0.088
2003	0.853	0.478	0.376	0.807	0.412	0.396
2004	0.538	0.704	-0.166	0.464	0.642	-0.178
2005	0.350	0.649	-0.299	0.345	0.628	-0.283
2006	0.447	0.687	-0.240	0.448	0.624	-0.176
2007	0.336	0.571	-0.235	0.307	0.556	-0.249
2008	0.447	0.569	-0.121	0.471	0.542	-0.070
2009	0.443	0.630	-0.187	0.357	0.596	-0.240
2010	0.527	0.703	-0.177	0.731	0.673	0.058
2011	0.583	0.699	-0.116	0.527	0.659	-0.132
Voights Creek Hatchery						
1998	0.572	0.339	0.233	0.525	0.296	0.228
1999	0.367	0.227	0.140	0.380	0.164	0.216
2000	0.495	0.245	0.251	0.439	0.129	0.310
2001	0.647	0.152	0.495	0.573	0.042	0.531
2002	0.403	0.461	-0.057	0.332	0.397	-0.065
2003	0.695	0.308	0.388	0.712	0.222	0.489
2004	0.685	0.426	0.259	0.591	0.305	0.286
2005	0.492	0.586	-0.094	0.470	0.558	-0.088
2006	0.793	0.785	0.008	0.740	0.741	-0.002
2007	0.696	0.403	0.293	0.671	0.381	0.289
2008	0.496	0.519	-0.023	0.462	0.489	-0.027
2009	0.470	0.571	-0.101	0.401	0.531	-0.130
2010	0.617	0.824	-0.207	0.525	0.806	-0.281
2011	0.718	0.661	0.056	0.623	0.616	0.007

Appendix Table 9B. Comparison of DIT-based and Post-season FRAM-based (PS FRAM) exploitations rates (ERs) for the marked and unmarked components of DIT groups, by hatchery and brood year. ERs are for age-3 fish only and include drop-off mortalities. ERs for the unmarked component of DIT groups estimated using the PairedRatio method with release $\lambda\left(\mathrm{PR} \lambda^{\text {Rel }}\right)$.

PUGET SOUND REGION (continued)

Hatchery Brood Year	Marked Exploitation Rate			Unmarked Exploitation Rate		
	PR $\lambda^{\text {Rel }}$	PS FRAM	Difference	PR $\boldsymbol{\lambda}^{\text {Rel }}$	PS FRAM	Difference
George Adams Hatchery						
1998	0.304	0.431	-0.127	0.230	0.380	-0.149
1999	0.149	0.344	-0.195	0.102	0.270	-0.168
2000	0.381	0.376	0.005	0.274	0.249	0.025
2001	0.307	0.448	-0.141	0.199	0.175	0.024
2002	0.256	0.482	-0.226	0.158	0.395	-0.237
2003	0.731	0.869	-0.138	0.756	0.845	-0.089
2004	0.257	0.622	-0.365	0.148	0.506	-0.358
2005	0.338	0.784	-0.446	0.220	0.764	-0.544
2006	0.508	0.788	-0.279	0.519	0.720	-0.201
2007	0.259	0.791	-0.532	0.200	0.781	-0.580
2008	0.227	0.679	-0.452	0.181	0.650	-0.469
2009	0.476	0.794	-0.319	0.400	0.765	-0.365
2010	0.291	0.718	-0.427	0.210	0.675	-0.465
2011	0.568	0.781	-0.213	0.546	0.735	-0.188
Quilcene Hatchery						
1998	0.474	0.748	-0.274	0.334	0.726	-0.391
1999	0.188	0.378	-0.191	0.186	0.305	-0.119
2000	0.388	0.322	0.067	0.224	0.184	0.040
2001	0.577	0.384	0.193	0.482	0.033	0.448
2002	0.632	0.909	-0.277	0.611	0.878	-0.266
2003	0.814	0.781	0.033	0.691	0.714	-0.023
2004	0.634	0.845	-0.211	0.642	0.765	-0.123
2005	0.822	0.806	0.016	0.784	0.783	0.001
2006	0.765	0.789	-0.024	0.720	0.714	0.006
2007	0.653	0.680	-0.028	0.579	0.663	-0.084
2008	0.683	0.812	-0.128	0.623	0.794	-0.171
2009	0.618	0.840	-0.223	0.563	0.818	-0.254
2010	0.578	0.805	-0.227	0.552	0.773	-0.220
2011	0.327	0.718	-0.391	0.325	0.658	-0.333

Appendix Table 9C. Comparison of DIT-based and Post-season FRAM-based (PS FRAM) exploitations rates (ERs) for the marked and unmarked components of DIT groups, by hatchery and brood year. ERs are for age-3 fish only and include drop-off mortalities. ERs for the unmarked component of DIT groups estimated using the PairedRatio method with release $\lambda\left(\mathrm{PR} \lambda^{\text {Rel }}\right)$.

WASHINGTON COAST REGION

Hatchery Brood Year	Marked Exploitation Rate			Unmarked Exploitation Rate		
	PR $\lambda^{\text {Rel }}$	PS FRAM	Difference	PR $\lambda^{\text {Rel }}$	PS FRAM	Difference
Makah NFH						
1998	0.126	0.529	-0.403	0.094	0.504	-0.410
1999	0.168	0.589	-0.421	0.099	0.555	-0.456
2000	0.580	0.681	-0.101	0.415	0.637	-0.222
2001	0.292	0.359	-0.066	0.119	0.288	-0.169
2002	0.432	0.658	-0.226	0.178	0.619	-0.441
2003	0.341	0.340	0.001	0.261	0.249	0.011
2004	0.658	0.650	0.008	0.367	0.571	-0.205
2005	0.143	0.786	-0.644			
2006	0.209	0.518	-0.309	0.109	0.416	-0.307
2007	0.109	0.346	-0.237	0.076	0.322	-0.245
2008	0.184	0.138	0.046	0.091	0.083	0.007
2009	0.228	0.203	0.025	0.251	0.145	0.106
2010	0.215	0.393	-0.177	0.073	0.342	-0.269
Quinault NFH						
1998	0.602	0.416	0.186	0.523	0.369	0.153
1999	0.622	0.487	0.135	0.616	0.460	0.156
2000	0.664	0.654	0.011	0.606	0.620	-0.015
2001	0.614	0.507	0.107	0.612	0.623	-0.010
2002	0.655	0.659	-0.005	0.213	0.638	-0.426
2003	0.771	0.518	0.252	0.772	0.489	0.283
2004	0.622	0.527	0.094	0.500	0.473	0.027
2005	0.621	0.575	0.046	0.579	0.560	0.018
2006	0.725	0.667	0.058	0.690	0.623	0.067
2007	0.694	0.673	0.020	0.701	0.659	0.042
2008	0.592	0.567	0.025	0.598	0.543	0.055
2009	0.699	0.659	0.040	0.660	0.635	0.024
2010	0.492	0.476	0.017	0.464	0.436	0.028
2011	0.703	0.533	0.170	0.676	0.490	0.186

Appendix Table 9C. Comparison of DIT-based and Post-season FRAM-based (PS FRAM) exploitations rates (ERs) for the marked and unmarked components of DIT groups, by hatchery and brood year. ERs are for age- 3 fish only and include drop-off mortalities. ERs for the unmarked component of DIT groups estimated using the PairedRatio method with release $\lambda\left(\mathrm{PR} \lambda^{\text {Rel }}\right)$.

WASHINGTON COAST REGION (continued)

Hatchery Brood Year	Marked Exploitation Rate			Unmarked Exploitation Rate		
	PR $\lambda^{\text {Rel }}$	PS FRAM	Difference	PR $\boldsymbol{\lambda}^{\text {Rel }}$	PS FRAM	Difference
Salmon River Fish Culture						
1998	0.593	0.635	-0.042	0.598	0.583	0.015
1999	0.917	0.886	0.031	0.931	0.875	0.056
2000	0.991	0.728	0.263	0.992	0.677	0.315
2001	0.662	0.587	0.075	0.635	0.694	-0.058
2002	0.438	0.774	-0.336	0.763	0.737	0.026
2003	0.904	0.718	0.186	0.893	0.669	0.224
2004	0.801	0.637	0.164	0.821	0.521	0.300
2005	0.697	0.615	0.082	0.710	0.588	0.122
2006	0.797	0.776	0.021	0.676	0.694	-0.018
2007	0.732	0.733	-0.001	0.703	0.710	-0.008
2008	0.544	0.685	-0.141	0.520	0.650	-0.130
2009						
2010						
2011	0.777	0.655	0.123	0.727	0.589	0.137
Solduc Hatchery						
1998	0.178	0.612	-0.435	0.079	0.596	-0.516
1999	0.132	0.409	-0.277	0.045	0.390	-0.345
2000	0.247	0.660	-0.413	0.066	0.640	-0.573
2001	0.215	0.447	-0.232	0.107	0.501	-0.394
2002	0.333	0.580	-0.247	0.111	0.566	-0.455
2003	0.368	0.654	-0.286	0.112	0.641	-0.529
2004	0.247	0.563	-0.315	0.183	0.527	-0.345
2005	0.488	0.502	-0.015	0.459	0.494	-0.034
2006	0.686	0.892	-0.206	0.603	0.882	-0.280
2007	0.492	0.545	-0.054	0.482	0.536	-0.055
2008	0.398	0.513	-0.115	0.393	0.498	-0.105
2009	0.741	0.692	0.049	0.708	0.681	0.027
2010	0.620	0.680	-0.060	0.534	0.663	-0.129
2011	0.671	0.714	-0.042	0.615	0.693	-0.078

Appendix Table 9C. Comparison of DIT-based and Post-season FRAM-based (PS FRAM) exploitations rates (ERs) for the marked and unmarked components of DIT groups, by hatchery and brood year. ERs are for age-3 fish only and include drop-off mortalities. ERs for the unmarked component of DIT groups estimated using the PairedRatio method with release $\lambda\left(\mathrm{PR} \lambda^{\text {Rel }}\right)$.

WASHINGTON COAST REGION (continued)

Hatchery	Mark	xploitation		Unmark	Exploitatio	Rate
Brood Year	PR $\boldsymbol{\lambda}^{\text {Rel }}$	PS FRAM	Difference	PR $\boldsymbol{\lambda}^{\text {Rel }}$	PS FRAM	Difference
Bingham Creek Ha						
1998	0.314	0.291	0.024	0.266	0.254	0.012
1999	0.178	0.248	-0.069	0.142	0.226	-0.084
2000	0.276	0.294	-0.018	0.144	0.252	-0.108
2001	0.305	0.121	0.184	0.328	0.065	0.263
2002	0.398	0.417	-0.019	0.198	0.395	-0.197
2003	0.278	0.424	-0.145	0.242	0.393	-0.151
2004	0.279	0.382	-0.104	0.260	0.322	-0.062
2005	0.179	0.319	-0.140	0.121	0.280	-0.158
2006	0.206	0.390	-0.184	0.162	0.314	-0.152
2007	0.100	0.228	-0.128	0.038	0.202	-0.164
2008	0.244	0.383	-0.139	0.159	0.359	-0.200
2009	0.359	0.479	-0.119	0.253	0.460	-0.207
2010	0.242	0.486	-0.244	0.204	0.455	-0.251
2011	0.371	0.480	-0.109	0.350	0.449	-0.100
Forks Creek Hatche						
1998	0.556	0.371	0.186	0.500	0.296	0.204
1999	0.648	0.426	0.222	0.612	0.380	0.232
2000	0.625	0.479	0.147	0.518	0.394	0.125
2001	0.472	0.319	0.153	0.371	0.717	-0.346
2002	0.420	0.475	-0.055	0.334	0.431	-0.097
2003	0.693	0.552	0.141	0.646	0.506	0.141
2004	0.528	0.462	0.066	0.323	0.344	-0.021
2005	0.358	0.364	-0.006	0.307	0.320	-0.013
2006	0.576	0.670	-0.094	0.413	0.577	-0.164
2007	0.429	0.304	0.126	0.043	0.258	-0.215
2008	0.539	0.567	-0.028	0.480	0.532	-0.052
2009	0.590	0.558	0.032	0.545	0.517	0.028
2010	0.462	0.433	0.029	0.331	0.368	-0.038
2011	0.391	0.547	-0.157	0.314	0.479	-0.165

Appendix Table 9D. Comparison of DIT-based and Post-season FRAM-based (PS FRAM) exploitations rates (ERs) for the marked and unmarked components of DIT groups, by hatchery and brood year. ERs are for age-3 fish only and include drop-off mortalities. ERs for the unmarked component of DIT groups estimated using the PairedRatio method with release λ ($\mathrm{PR} \lambda^{\text {Rel })}$.

COLUMBIA RIVER REGION

$\begin{array}{\|l\|} \hline \text { Hatchery } \\ \text { Brood Year } \end{array}$	Marked Exploitation Rate			Unmarked Exploitation Rate		
	PR $\lambda^{\text {Rel }}$	PS FRAM	Difference	PR $\lambda^{\text {Rel }}$	PS FRAM	Difference
Lewis River - North						
1998	0.439	0.271	0.168	0.131	0.082	0.050
1999	0.288	0.245	0.044	0.086	0.087	-0.001
2000	0.516	0.337	0.179	0.147	0.098	0.049
2001	0.622	0.253	0.370	0.230	0.040	0.190
2002	0.230	0.197	0.034	0.050	0.063	-0.013
2003	0.218	0.206	0.012	0.061	0.084	-0.024
2004	0.550	0.403	0.147	0.190	0.179	0.012
2005	0.164	0.097	0.067	0.035	0.038	-0.003
2006	0.512	0.371	0.142	0.156	0.119	0.037
2007	0.183	0.162	0.021	0.038	0.054	-0.017
2008	0.292	0.201	0.091	0.060	0.065	-0.005
2009	0.389	0.238	0.150	0.100	0.119	-0.019
2010	0.438	0.274	0.163	0.130	0.110	0.020
2011	0.322	0.262	0.060	0.124	0.114	0.010
Lewis River - South						
1998	0.304	0.183	0.120	0.256	0.056	0.200
1999	0.101	0.178	-0.077	0.152	0.062	0.090
2000	0.319	0.263	0.056	0.021	0.079	-0.058
2001	0.318	0.141	0.176	0.112	0.042	0.069
2002	0.065	0.126	-0.060	0.084	0.044	0.040
2003	0.081	0.150	-0.069	0.022	0.065	-0.043
2004	0.319	0.320	-0.001	0.037	0.106	-0.069
2005	0.080	0.071	0.009	0.048	0.028	0.020
2006	0.521	0.277	0.244	0.036	0.088	-0.052
2007	0.138	0.118	0.020	0.131	0.037	0.093
2008	0.076	0.137	-0.062	0.030	0.045	-0.015
2009	0.136	0.175	-0.039	0.244	0.094	0.149
2010	0.155	0.196	-0.041	0.016	0.084	-0.069
2011	0.190	0.216	-0.026	0.041	0.105	-0.065

Appendix Table 9D. Comparison of DIT-based and Post-season FRAM-based (PS FRAM) exploitations rates (ERs) for the marked and unmarked components of DIT groups, by hatchery and brood year. ERs are for age- 3 fish only and include drop-off mortalities. ERs for the unmarked component of DIT groups estimated using the PairedRatio method with release $\lambda\left(\mathrm{PR} \lambda^{\text {Rel }}\right)$.

COLUMBIA RIVER REGION (continued)

Hatchery Brood Year	Marked Exploitation Rate			Unmarked Exploitation Rate		
	PR $\lambda^{\text {Rel }}$	PS FRAM	Difference	PR $\lambda^{\text {Rel }}$	PS FRAM	Difference
Eagle Creek NFH						
1998	0.287	0.183	0.104	0.249	0.056	0.193
1999	0.080	0.178	-0.099	0.117	0.062	0.056
2000	0.124	0.263	-0.139	0.030	0.079	-0.049
2001	0.133	0.141	-0.008	0.038	0.042	-0.005
2002	0.081	0.126	-0.044	0.013	0.044	-0.031
2003	0.267	0.150	0.117	0.047	0.065	-0.018
2004	0.287	0.320	-0.033	0.043	0.106	-0.063
2005	0.139	0.071	0.068	0.120	0.028	0.092
2006	0.343	0.277	0.066	0.015	0.088	-0.073
2007	0.207	0.118	0.089	0.265	0.037	0.227
2008	0.113	0.137	-0.024	0.031	0.045	-0.013
2009	0.140	0.175	-0.034	0.032	0.094	-0.062
2010	0.120	0.196	-0.076	0.004	0.084	-0.081
2011	0.216	0.216	0.000	0.089	0.105	-0.016
Sandy River						
1998	0.417	0.183	0.234	0.344	0.056	0.288
1999	0.381	0.178	0.203	0.142	0.062	0.080
2000	0.649	0.263	0.386	0.190	0.079	0.112
2001	0.430	0.141	0.289	0.134	0.042	0.092
2002	0.107	0.126	-0.019	0.128	0.044	0.084
2003	0.220	0.150	0.069	0.017	0.065	-0.047
2004	0.517	0.320	0.197	0.073	0.106	-0.033
2005	0.231	0.071	0.160	0.151	0.028	0.123
2006	0.396	0.277	0.119	0.012	0.088	-0.076
2007	0.170	0.118	0.053	0.150	0.037	0.112
2008	0.185	0.137	0.048	0.042	0.045	-0.002

Appendix 10: Comparisons of estimated annual total exploitation rates as estimated by the Paired-Ratio (PR) method and $\lambda^{\text {Rel }}$ (Section 3.2) for marked and unmarked DIT groups (with 95\% confidence intervals) by region and brood year.

Appendix Figure 10A. Comparison of estimated total exploitation rates (ER) for marked and unmarked DIT groups (with 95\% confidence intervals) for British Columbia region hatcheries, by brood year.

Appendix Figure 10B. Comparison of estimated total exploitation rates (ER) for marked and unmarked DIT groups (with 95\% confidence intervals) for Puget Sound region hatcheries, by brood year.

Appendix Figure 10C. Comparison of estimated total exploitation rates (ER) for marked and unmarked DIT groups (with 95\% confidence intervals) for Washington Coast region hatcheries, by brood year.

Appendix Figure 10D. Comparison of estimated total exploitation rates (ER) for marked and unmarked DIT groups (with 95% confidence intervals) for Columbia River region hatcheries, by brood year.

Appendix 11: Comparisons between estimated annual total exploitation rates as estimated by the Paired-Ratio (PR) method and $\lambda^{R e l}$ (Section 3.2) and the single index tag (SIT) method (Section 4).

Appendix Table 11A Comparison of DIT-based (PR method using λ at release) and SIT-based estimates of unmarked ER.

BRITISH COLUMBIA REGION

Hatchery Brood Year	$\begin{aligned} & \text { PR } \lambda^{\mathrm{Rel}} \\ & \text { DIT ER } \end{aligned}$	SIT ER	Difference DIT-SIT
Quinsam River Hatchery			
1998	0.010	0.007	0.002
1999	0.089	0.089	0.000
2000	0.144	0.174	-0.031
2001	0.109	0.127	-0.018
2002	0.131	0.131	0.001
2003	0.217	0.237	-0.020
2004	0.335	0.311	0.023
2005	0.034	0.036	-0.001
2006	0.078	0.091	-0.013
2007	0.053	0.051	0.003
2008	0.113	0.113	0.001
2009	0.272	0.199	0.073
2010	0.256	0.164	0.092
2011	0.113	0.091	0.023

Big Qualicum River Hatchery			
1998	0.032	0.020	0.012
1999	0.054	0.019	0.035
2000	0.090	0.104	-0.014
2001	0.082	0.095	-0.013
2002	0.108	0.042	0.067

Chilliwack River Hatchery

1998	0.035	0.036	-0.001
1999	0.040	0.038	0.003
2000	0.030	0.025	0.005
2001	0.061	0.051	0.009
2002	0.188	0.070	0.118

Appendix Table 11A. Comparison of DIT-based (PR method using λ at release) and SIT-based estimates of unmarked ER.

BRITISH COLUMBIA REGION (continued)

Hatchery Brood Year	$\begin{aligned} & \text { PR } \lambda^{\mathrm{Rel}} \\ & \text { DIT ER } \end{aligned}$	SIT ER	Difference DIT-SIT
Inch Creek Hatchery			
1998	0.086	0.053	0.032
1999	0.039	0.032	0.006
2000	0.037	0.066	-0.030
2001	0.130	0.124	0.006
2002	0.044	0.050	-0.006
2003	0.184	0.191	-0.007
2004	0.160	0.139	0.021
2005	0.072	0.027	0.045
2006	0.094	0.083	0.012
2007	0.031	0.026	0.006
2008	0.055	0.034	0.021
2009	0.078	0.068	0.011
2010	0.080	0.075	0.005
2011	0.116	0.106	0.009
Robertson Creek Hatchery			
1998	0.249	0.048	0.200
1999	0.025	0.017	0.008
2000	0.069	0.043	0.026
2001	0.062	0.039	0.023
2002	0.085	0.089	-0.004

Appendix Table 11B. Comparison of DIT-based (PR method using λ at release) and SIT-based estimates of unmarked ER.

PUGET SOUND REGION

$\left.$| Hatchery
 Brood Year | PR $\lambda^{\text {Rel }}$
 DIT ER | SIT ER |
| ---: | ---: | ---: | ---: | | Difference |
| :---: |
| DIT-SIT | \right\rvert\,

Kendall Creek Hatchery			
1998	0.497	0.485	0.011
1999	0.547	0.479	0.068
2000	0.467	0.377	0.090
2001	0.836	0.753	0.082
2002	0.751	0.637	0.115
2003	0.749	0.396	0.353
2004	0.649	0.575	0.074
2005	0.768	0.755	0.013
2006	0.930	0.810	0.120
2007	0.779	0.758	0.022

Marblemount Hatchery			
1998	0.235	0.178	0.057
1999	0.177	0.166	0.012
2000	0.607	0.456	0.151
2001	0.523	0.412	0.110
2002	0.340	0.353	-0.013
2003	0.607	0.502	0.105
2004	0.246	0.192	0.053
2005	0.222	0.205	0.017
2006	0.272	0.272	0.001
2007	0.291	0.262	0.029
2008	0.404	0.367	0.037
2009	0.362	0.315	0.047
2010	0.393	0.334	0.059
2011	0.282	0.278	0.003

Appendix Table 11B. Comparison of DIT-based (PR method using λ at release) and SIT-based estimates of unmarked ER.

PUGET SOUND REGION (continued)

Hatchery Brood Year	PR $\lambda^{\text {Rel }}$ DIT ER	SIT ER	$\begin{gathered} \text { Difference } \\ \text { DIT-SIT } \\ \hline \end{gathered}$
Wallace River Hatchery			
1998	0.133	0.111	0.022
1999	0.109	0.089	0.021
2000	0.098	0.088	0.010
2001	0.134	0.126	0.008
2002	0.137	0.131	0.005
2003	0.170	0.138	0.033
2004	0.131	0.137	-0.006
2005	0.137	0.157	-0.020
2006	0.166	0.139	0.027
2007	0.086	0.076	0.010
2008	0.142	0.138	0.003
2009	0.122	0.130	-0.008
2010	0.193	0.144	0.048
2011	0.212	0.183	0.029
Soos Creek Hatchery			
1998	0.602	0.506	0.096
1999	0.464	0.436	0.028
2000	0.508	0.476	0.031
2001	0.541	0.463	0.077
2002	0.445	0.416	0.029
2003	0.802	0.759	0.043
2004	0.452	0.433	0.019
2005	0.339	0.283	0.055
2006	0.438	0.324	0.115
2007	0.298	0.265	0.033
2008	0.459	0.380	0.080
2009	0.345	0.333	0.013
2010	0.718	0.394	0.324
2011	0.513	0.436	0.076
Voights Creek Hatchery			
1998	0.515	0.506	0.009
1999	0.373	0.326	0.047
2000	0.428	0.395	0.033
2001	0.561	0.471	0.090
2002	0.321	0.307	0.014
2003	0.700	0.595	0.106
2004	0.578	0.560	0.018
2005	0.457	0.433	0.025
2006	0.733	0.613	0.121
2007	0.663	0.574	0.089
2008	0.443	0.341	0.103
2009	0.368	0.352	0.015
2010	0.513	0.451	0.062
2011	0.608	0.548	0.060

Appendix Table 11B. Comparison of DIT-based (PR method using λ at release) and SIT-based estimates of unmarked ER.

PUGET SOUND REGION (continued)

Hatchery Brood Year	$\begin{aligned} & \hline \text { PR } \lambda^{\text {Rel }} \\ & \text { DIT ER } \end{aligned}$	SIT ER	Difference DIT-SIT
George Adams Hatchery			
1998	0.213	0.197	0.015
1999	0.096	0.089	0.007
2000	0.261	0.245	0.016
2001	0.182	0.148	0.034
2002	0.141	0.136	0.005
2003	0.708	0.561	0.148
2004	0.137	0.150	-0.013
2005	0.190	0.260	-0.070
2006	0.481	0.380	0.101
2007	0.188	0.204	-0.016
2008	0.165	0.153	0.012
2009	0.363	0.317	0.046
2010	0.199	0.177	0.022
2011	0.522	0.431	0.091

Quilcene Hatchery			
1998	0.321	0.338	-0.017
1999	0.165	0.126	0.039
2000	0.206	0.163	0.042
2001	0.467	0.398	0.068
2002	0.577	0.455	0.121
2003	0.667	0.591	0.075
2004	0.616	0.478	0.138
2005	0.773	0.757	0.016
2006	0.696	0.621	0.075
2007	0.534	0.584	-0.050
2008	0.561	0.529	0.032
2009	0.510	0.492	0.018
2010	0.513	0.450	0.064
2011	0.316	0.190	0.126

Appendix Table 11C. Comparison of DIT-based (PR method using λ at release) and SIT-based estimates of unmarked ER.

WASHINGTON COAST REGION

Hatchery Brood Year	$\begin{aligned} & \text { PR } \lambda^{\mathrm{Rel}} \\ & \text { DIT ER } \end{aligned}$	SIT ER	Difference DIT-SIT
Makah NFH			
1998	0.085	0.050	0.034
1999	0.086	0.054	0.031
2000	0.350	0.343	0.007
2001	0.105	0.057	0.048
2002	0.137	0.096	0.041
2003	0.225	0.167	0.059
2004	0.280	0.226	0.054
2005	0.124	0.086	0.038
2006	0.075	0.052	0.023
2007	0.062	0.037	0.025
2008	0.080	0.065	0.016
2009	0.184	0.064	0.119
2010	0.065	0.088	-0.023
Quinault NFH			
1998	0.485	0.443	0.043
1999	0.602	0.519	0.083
2000	0.589	0.531	0.058
2001	0.596	0.508	0.088
2002	0.183	0.518	-0.335
2003	0.734	0.598	0.135
2004	0.437	0.378	0.059
2005	0.556	0.582	-0.026
2006	0.668	0.599	0.069
2007	0.673	0.624	0.049
2008	0.519	0.444	0.075
2009	0.593	0.533	0.060
2010	0.456	0.379	0.077
2011	0.670	0.623	0.046
Salmon River Fish Culture			
1998	0.583	0.466	0.118
1999	0.930	0.810	0.120
2000	0.975	0.700	0.275
2001	0.628	0.543	0.086
2002	0.730	0.368	0.361
2003	0.890	0.706	0.184
2004	0.514	0.336	0.178
2005	0.692	0.606	0.087
2006	0.635	0.643	-0.008
2007	0.692	0.677	0.015
2008	0.471	0.375	0.096
2009	0.866	0.797	0.069
2010			
2011	0.719	0.595	0.124

Appendix Table 11C. Comparison of DIT-based (PR method using λ at release) and SIT-based estimates of unmarked ER.

WASHINGTON COAST REGION (continued)

| Hatchery
 Brood Year | PR $\lambda^{\text {Rel }}$
 DIT ER | SIT ER |
---:	---:	---:	---:		Difference	
DIT-SIT	$	$	Solduc Hatchery			
---:	---:	---:	---:			
1998	0.063	0.045	0.017			
1999	0.033	0.033	0.000			
2000	0.046	0.056	-0.010			
2001	0.088	0.077	0.011			
2002	0.085	0.082	0.003			
2003	0.087	0.107	-0.020			
2004	0.149	0.061	0.088			
2005	0.449	0.423	0.026			
2006	0.558	0.537	0.021			
2007	0.465	0.396	0.070			
2008	0.350	0.289	0.061			
2009	0.582	0.617	-0.035			
2010	0.508	0.446	0.063			
2011	0.563	0.547	0.016			

Bingham Creek Hatchery			
1998	0.248	0.255	-0.007
1999	0.163	0.161	0.002
2000	0.129	0.146	-0.016
2001	0.300	0.245	0.055
2002	0.164	0.279	-0.115
2003	0.204	0.189	0.015
2004	0.220	0.191	0.029
2005	0.133	0.161	-0.028
2006	0.123	0.088	0.035
2007	0.037	0.057	-0.020
2008	0.129	0.158	-0.028
2009	0.232	0.312	-0.080
2010	0.188	0.191	-0.003
2011	0.293	0.327	-0.034

Forks Creek Hatchery			
1998	0.459	0.416	0.042
1999	0.599	0.506	0.093
2000	0.486	0.390	0.095
2001	0.341	0.329	0.012
2002	0.306	0.290	0.016
2003	0.635	0.523	0.112
2004	0.297	0.272	0.025
2005	0.297	0.299	-0.001
2006	0.380	0.326	0.054
2007	0.037	0.351	-0.314
2008	0.459	0.454	0.005
2009	0.486	0.404	0.082
2010	0.316	0.336	-0.020
2011	0.298	0.269	0.029

Appendix Table 11D. Comparison of DIT-based (PR method using λ at release) and SIT-based estimates of unmarked ER.

COLUMBIA RIVER REGION

Hatchery Brood Year	$\begin{aligned} & \text { PR } \lambda^{\text {Rel }} \\ & \text { DIT ER } \end{aligned}$	SIT ER	Difference DIT-SIT
Lewis River - North			
1998	0.354	0.138	0.217
1999	0.390	0.368	0.022
2000	0.402	0.290	0.112
2001	0.467	0.316	0.151
2002	0.159	0.150	0.009
2003	0.194	0.152	0.042
2004	0.336	0.210	0.126
2005	0.100	0.105	-0.004
2006	0.287	0.196	0.091
2007	0.135	0.134	0.000
2008	0.115	0.099	0.017
2009	0.179	0.113	0.067
2010	0.154	0.132	0.022
2011	0.223	0.197	0.026
Lewis River - South			
1998	0.095	0.063	0.031
1999	0.102	0.119	-0.017
2000	0.077	0.055	0.021
2001	0.069	0.059	0.010
2002	0.043	0.045	-0.002
2003	0.077	0.055	0.022
2004	0.070	0.063	0.007
2005	0.058	0.038	0.020
2006	0.185	0.116	0.069
2007	0.047	0.060	-0.013
2008	0.053	0.064	-0.011
2009	0.128	0.044	0.084
2010	0.051	0.128	-0.078
2011	0.091	0.145	-0.054

Appendix Table 11D. Comparison of DIT-based (PR method using λ at release) and SIT-based estimates of unmarked ER.

COLUMBIA RIVER REGION (continued)

Hatchery Brood Year	$\begin{aligned} & \text { PR } \lambda^{\mathrm{Rel}} \\ & \text { DIT ER } \end{aligned}$	SIT ER	Difference DIT-SIT
Eagle Creek NFH			
1998	0.195	0.080	0.116
1999	0.142	0.095	0.047
2000	0.079	0.045	0.035
2001	0.039	0.056	-0.018
2002	0.043	0.056	-0.013
2003	0.046	0.123	-0.077
2004	0.069	0.081	-0.012
2005	0.034	0.067	-0.033
2006	0.129	0.113	0.017
2007	0.051	0.073	-0.022
2008	0.055	0.035	0.020
2009	0.045	0.100	-0.055
2010	0.030	0.041	-0.012
2011	0.132	0.165	-0.033
Sandy River			
1998	0.190	0.104	0.086
1999	0.411	0.332	0.079
2000	0.371	0.237	0.134
2001	0.131	0.099	0.032
2002	0.066	0.073	-0.007
2003	0.066	0.070	-0.004
2004	0.127	0.139	-0.012
2005	0.099	0.105	-0.006
2006	0.136	0.116	0.020
2007	0.057	0.040	0.018
2008	0.083	0.144	-0.061

Appendix 12: Summary statistics for DIT groups in each of the assessment categories defined by the results of the three hypothesis tests used to examine DIT groups for evidence of significant impact by mark-selective fisheries (Sections 7.2 and 7.2.1). Exploitation rate (ER) for the unmarked component of DIT groups estimated using the Paired-Ratio method with release $\lambda\left(\lambda^{\text {Rel }}\right)$.

Appendix Table 12A. Summary statistics for DIT groups in each of the assessment categories defined by the results of the three hypothesis tests used to examine DIT groups for evidence of significant impact by mark-selective fisheries (Sections 7.2 and 7.2.1). Exploitation rate (ER) for the unmarked component of DIT groups estimated using the Paired-Ratio method with release $\lambda\left(\lambda^{R e l}\right)$.

		Number Released			Number in Escapement			Return Rate to Escapement				Estimated Recoveries in Fisheries			Estimated ER		
Assessment Category	Summary Statistic	Unmarked	Marked	$\lambda^{\text {Rel }}$	Unmarked	Marked	$\lambda^{E S C}$	Unmarked	Marked		λR	All Fisheries	MSF Fisheries Only	Proportion in MSF	Marked	Unmarked	Differ. (Mrk Unmrk)
1. Test(s) Counter to Expectations$(n=22)$	Mean	57,300	57,217	1.002	581.4	932.7	0.655	0.0107	0.0167	-0.0059	0.651	747.5	164.9	0.334	0.4287	0.4366	-0.008
	Median	52,091	59,664	1.003	334.8	626.5	0.746	0.0068	0.0093	-0.0027	0.752	625.8	130.9	0.232	0.4094	0.4585	0.012
	Minimum	38,577	37,966	0.810	12.5	26.2	0.040	0.0002	0.0003	-0.0459	0.040	11.5	3.5	0.080	0.0917	0.0618	-0.299
	Maximum	77,013	77,151	1.170	2,776.7	3,535.6	0.980	0.0378	0.0476	0.0000	0.990	2,680.9	426.7	0.720	0.9150	0.9297	0.239
2. Tests Not Informative$(n=84)$	Mean	54,756	53,866	1.019	732.6	714.3	1.036	0.0146	0.0145	0.0001	1.016	788.4	146.6	0.254	0.4833	0.4367	0.047
	Median	45,965	45,293	1.006	532.7	521.4	1.019	0.0093	0.0091	0.0001	1.008	537.6	101.9	0.196	0.4890	0.4540	0.037
	Minimum	20,476	20,699	0.890	21.7	29.7	0.660	0.0003	0.0005	-0.0025	0.660	5.3	2.3	0.020	0.0382	0.0095	-0.027
	Maximum	131,619	135,143	1.310	3,104.2	3,084.8	1.470	0.0771	0.0757	0.0024	1.460	5,070.1	639.3	1.000	0.9746	0.9749	0.306
3. 1 or 2 Tests Significant ($\mathrm{n}=97$)	Mean	52,545	53,561	0.987	1,214.5	1,154.4	1.113	0.0232	0.0216	0.0016	1.127	818.6	227.1	0.409	0.3665	0.2580	0.109
	Median	44,922	45,259	1.003	969.4	908.2	1.088	0.0203	0.0184	0.0015	1.079	491.3	152.3	0.330	0.3155	0.1794	0.099
	Minimum	22,955	23,674	0.380	59.5	39.5	0.350	0.0007	0.0005	-0.0022	0.910	20.5	7.2	0.040	0.0881	0.0296	-0.005
	Maximum	127,273	127,942	1.090	5,502.7	5,309.4	2.040	0.0745	0.0765	0.0070	2.040	5,447.8	1,107.2	0.950	0.8478	0.8016	0.442
4. All Tests Significant$(n=83)$	Mean	55,054	54,593	1.007	1,715.6	1,398.1	1.297	0.0314	0.0257	0.0057	1.290	882.3	481.5	0.628	0.3321	0.1642	0.168
	Median	51,405	50,004	1.001	1,604.6	1,378.2	1.253	0.0294	0.0228	0.0051	1.224	569.5	285.9	0.630	0.2982	0.1019	0.154
	Minimum	18,733	17,825	0.870	161.4	109.2	1.040	0.0024	0.0014	0.0010	1.060	37.8	19.6	0.050	0.0801	0.0253	0.047
	Maximum	143,988	139,154	1.130	4,793.9	3,814.3	1.980	0.0860	0.0806	0.0227	1.980	6,101.9	2,834.3	0.990	0.7552	0.6349	0.405
$\begin{gathered} \text { Total } \\ (\mathrm{n}=286) \end{gathered}$	Mean	54,288	54,231	1.003	1,169.7	1,078.8	1.108	0.0221	0.0203	0.0018	1.105	822.8	272.5	0.422	0.3956	0.2970	0.099
	Median	45,800	45,701	1.003	885.1	845.5	1.088	0.0187	0.0167	0.0014	1.082	528.7	171.4	0.334	0.3599	0.2122	0.080
	Minimum	18,733	17,825	0.380	12.5	26.2	0.040	0.0002	0.0003	-0.0459	0.040	5.3	2.3	0.020	0.0382	0.0095	-0.299
	Maximum	143,988	139,154	1.310	5,502.7	5,309.4	2.040	0.0860	0.0806	0.0227	2.040	6,101.9	2,834.3	1.000	0.9746	0.9749	0.442

Appendix 13: Plots showing regression models relating SIT-based and FRAM-based estimates of the exploitation rate on unmarked fish to DIT-based estimates using the Paired-Ratio (PR) method and $\lambda^{\text {Rel }}$, by hatchery (see Section 7.6 for more details).

Appendix 14: Sensitivity and Power Analysis for Z Test Of Differences In Return Rates of marked and unmarked groups of a DIT pair

Tests for differences in the returning proportion of marked and unmarked fish in a DIT group, i.e., p^{m} and p^{u}, respectively, is one method used to assess impacts of mark-selective fisheries. The ability to detect meaningful differences in return rates is governed by the precision of proportion estimates. Higher variances (less precision) will reduce the power of tests differential return rates. The total variance for the proportion of group i fish (marked or unmarked) returning to the hatchery, p^{i}, out of the number released from group I, N^{i}, is,

$$
\operatorname{Var}\left(p^{i}\right)=\frac{p^{i}\left(1-p^{i}\right)}{N^{i}}+\frac{E^{i}\left(1-s^{H}\right)}{s^{H}},
$$

where $N^{i}=$ the number of tagged released in group $i(i=$ marked or unmarked $)$,
$E^{m}=$ the number of expected tags returning to the hatchery from group i out of N^{i} releases,
$p_{i}=$ the proportion of marked fish returning to the hatchery in group i.
The first term of the variance is the process error, which should not change under subsampling. The second term is the contribution from sampling and lowering s^{H} from 1 will increase $\operatorname{Var}\left(p_{i}\right)$. Consequently, sub-sampling of hatchery escapement will reduce the ability to detect small but potentially important differences in the proportions of marked and unmarked fish returning to the hatchery from double index tagged (DIT) groups.

To examine the effects of reduced hatchery sampling on being able to detect the absolute difference in proportions of marked and unmarked fish returning to the hatchery, we looked reductions in the power of a test for different values of the sampling effort. The power equation for a two-tailed significance test is a follows,

$$
\text { Power }=P\left(Z_{\beta / 2}<\frac{\left(Z_{\alpha / 2} \sqrt{\operatorname{Var}\left(d_{0}\right)}\right)-d^{a b s}}{\sqrt{\operatorname{Var}\left(d_{a}\right)}}\right)+P\left(Z_{1-\beta / 2}>\frac{\left(Z_{1-\alpha / 2} \sqrt{\operatorname{Var}\left(d_{0}\right)}\right)-d^{a b s}}{\sqrt{\operatorname{Var}\left(d_{a}\right)}}\right),
$$

where $d^{a b s}$ is the minimum detectable difference between the null and alternative hypotheses,
$d_{0}=p^{u}-p^{m}$ under the null hypothesis H_{o},
$d_{a}=p^{u}-p^{m}$ under the alternative hypothesis, H_{a},
$Z=$ the standard normal random variate.
The term is $d_{a}-d_{0}$ is the detectable difference, or $d^{a b s}$, for the test. If we are testing for equal proportions then $d_{0}=0$. By formulating the detectable difference in this manner any differences of interest can be examined. For example, one could test a predicted difference
based on pre-season modeling results against an expected difference based on in-season fishery sampling.
The variance of the absolute difference is,

$$
\operatorname{Var}\left(p^{u}-p^{\prime}\right)=\frac{p^{u}\left(1-p^{u}\right)}{N^{u}}+\frac{p^{m}\left(1-p^{m}\right)}{N^{m}}+\left[\left(\frac{E^{u}}{\left(N^{u}\right)^{2}}+\frac{E^{m}}{\left(N^{m}\right)^{2}}\right) \frac{\left(1-s^{H}\right)}{s^{H}}\right]
$$

If we let $N^{u}=N^{m}=N, d^{a b s}=p^{u}-p^{m}, E^{u}=N p^{u}$, and $E^{m}=N p^{m}=N\left(p^{u}-d\right)$,then variance of the difference is,

$$
\operatorname{Var}(d)=\frac{p^{u}\left(1-p^{u}\right)}{N}+\frac{\left(p^{u}-d^{a b s}\right)\left(1-p^{u}+d^{a b s}\right)}{N}+\frac{\left(p^{u}+\left(p^{u}-d^{a b s}\right)\right)\left(1-s^{H}\right)}{N s^{H}} .
$$

Sampling at 100% the last term, the contribution to the variance from sampling error is 0 .
Sub-sampling will increase variances and decrease power for a given alpha level, release size, N, p^{u}, and $d^{a b s}$.
An alternative test statistic is the relative difference of the proportion of marked and unmarked returns, expressed as follows,

$$
d^{\text {rel }}=\frac{p_{u}-p_{m}}{p_{m}} .
$$

The variance of the relative difference calculated as,

$$
\operatorname{Var}\left(\frac{\left(p_{u}-p_{m}\right)}{p_{m}}\right)=\left[\frac{p_{u}}{p_{m}}\right]^{2}\left[\left(\frac{p_{u}\left(1-p_{u}\right)}{N_{u} p_{u}^{2}}+\frac{E_{u}\left(1-s^{H}\right)}{p_{u}^{2} N_{u}^{2} s^{H}}\right)+\left(\frac{p_{m}\left(1-p_{m}\right)}{N_{m} p_{m}^{2}}+\frac{E_{m}\left(1-s^{H}\right)}{p_{m}^{2} N_{u}^{2} s^{H}}\right)\right] .
$$

and the power to detect relative difference, $d^{r e l}$, is calculated as follows,

$$
\text { Power }=P\left(Z_{\beta / 2}<\frac{\left(Z_{\alpha / 2} \sqrt{\operatorname{Var}\left(d_{0}\right)}\right)-d^{r e l}}{\sqrt{\operatorname{Var}\left(d_{a}\right)}}\right)+P\left(Z_{1-\beta / 2}>\frac{\left(Z_{1-\alpha / 2} \sqrt{\operatorname{Var}\left(d_{0}\right)}\right)-d^{\text {rel }}}{\sqrt{\operatorname{Var}\left(d_{a}\right)}}\right)
$$

Essential to either analysis is obtaining a value either p^{m} and p^{u}. For the purposes of this analysis we calculated p^{m} as the proportion of returns averaged across all available brood years as a guide for what the proportions might be expected for a given hatchery. As yet, there is no guidance for selecting either absolute or relative differences that are important to fisheries management. For the purposes of this analysis in Section 2.5, a Type 1 error rate $5 \%(a=0.05)$ and a desired power is approximately 80% (Type II error of 0.2) to obtain relative differences achievable with the range of average release sizes and return rates observed in the DIT groups analyzed

[^0]: ${ }^{1}$ Past committee members who greatly contributed to this report include Ms. Marianna Alexandersdottir, Mr. Robert Conrad, Mr. Tommy Garrison, and Mr. Joel Sawada.

[^1]: ${ }^{1}$ Increased costs that are incurred by unnecessarily collecting and processing heads from ad-clipped fish that do not have a CWT.

[^2]: ${ }^{2} \lambda$ is the ratio of the number of unmarked fish to marked fish in a DIT group measured either at release from the hatchery or in escapement (hatchery and spawning ground samples).

[^3]: ${ }^{1}$ Escapement consists primarily of returns to the hatchery but, in some cases, includes recoveries from sampling on the spawning grounds and strays.

[^4]: ${ }^{1}$ Averages calculated across brood years.

[^5]: ${ }^{2} \lambda^{R e l}$ is used to specify lambda at release from the hatchery and $\lambda^{E s c}$ is used to specify lambda of the escapement.

[^6]: ${ }^{1}$ In this report, CWT recoveries from mixed-regulation fisheries, i.e., recoveries where the "Adclip Selective Fishery" field in the recovery record were coded as "M", were treated as mark-selective fisheries.

[^7]: ${ }^{1}$ The Paired-Ratio method using $\lambda^{\text {Rel }}$ was used for the DIT ER estimate. These DIT and SIT estimates do not include drop-off mortality.

[^8]: ${ }^{1}$ Sampling at the hatchery (or on the spanning grounds) means directly handling a fish and assessing its mark and tag status.

[^9]: ${ }^{2}$ The coefficient of variation $($ or CV $)=($ standard error of mean/mean $) \times 100 \%$. .

[^10]: ${ }^{3}$ Percentages are based on total fishery recoveries and do not include escapement recoveries in the denominator.

[^11]: ${ }^{4}$ Mixed-regulation fisheries were treated as mark-selective fisheries for the analyses.

[^12]: ${ }^{5}$ Unmarked ER estimates include estimates of mortalities due to the release of unmarked fish in MSFs.

[^13]: ${ }^{6}$ Directly sampled means a fish was physically examined, either by ETD or visually.

[^14]: ${ }^{1}$ We acknowledge that this is a minimal estimate of expected average error since the model is being assessed using the same data used to estimate the model and that a jackknife assessment of model performance is more appropriate. However, for this initial investigation, we used the naïve assessment and recommend that future assessments use more robust estimation procedures, investigate alternative estimation models, and use additional model assessment methods.

[^15]: ${ }^{1}$ For brood years 2009 and 2010, Salmon River Fish Culture, only some escapement recoveries were reported to RMIS. See notes in Table 1-5.

[^16]: ${ }^{19}$ For brood years 2009 and 2010, Salmon River Fish Culture, only some escapement recoveries were reported to RMIS. See notes in Table 1-5; pg. 8.

