PACIFIC SALMON COMMISSION TRANSBOUNDARY TECHNICAL COMMITTEE REPORT
 ESTIMATES OF TRANSBOUNDARY RIVER SALMON PRODUCTION, HARVEST AND ESCAPEMENT, 1995 REPORT TCTR (97)-2

ACRONYMS

ADF\&G	Alaska Department of Fish and Game
CPUE	Catch per unit effort
DFO	Department of Fisheries and Oceans (Canadian)
DIPAC	Douglas Island Pink and Chum (Hatchery)
ESSR	Excess Salmon to Spawning Requirement (surplus fishery license)
IHN	Infectious Hematopoietic Necrosis
MEF	Mid-Eye-Fork
POH	Post-Obital-Hyperal
SMM	Stikine Management Model
TAC	Total Allowable Catch
TRTFN	Taku River Tlingit First Nation
TBR	Transboundary River
TTC	Transboundary Technical Committee
PSC	Pacific Salmon Commission

ACRONYMS ii
LIST OF TABLES iv
LIST OF FIGURES v
LIST OF APPENDICES vi
EXECUTIVE SUMMARY 1
Stikine
Taku 2
Alsek 3
INTRODUCTION 4
STIKINE RIVER 4
Harvest Regulations and the Joint Management Model 6
U.S. Fisheries 8
Canadian Fisheries 12
Lower Stikine Commercial Fishery 12
Upper Stikine Commercial Fishery 14
Aboriginal Fishery 14
Escapement 14
Sockeye 14
Chinook 15
Coho 15
Sockeye Run Reconstruction 18
TAKU RIVER 20
Harvest Regulations 20
U.S. Fisheries 20
Canadian Fisheries 25
Escapement 28
Sockeye 28
Chinook 31
Coho 31
Pink 31
Chum 32
Steelhead 32
Sockeye Run Reconstruction 32
ALSEK RIVER 33
Harvest Regulations 35
U.S. Fisheries 35
Canadian Fisheries 39
Escapement 40
Sockeye 40
Chinook 40
Coho 41
Run Reconstruction. 41
APPENDICES 44

LIST OF TABLES

PageTable 1. Weekly forecasts of run size and total allowable catch for Stikine River sockeye salmon as determined inseason by the Stikine Management Model, 1995. 7
Table 2. Run reconstruction for Stikine sockeye salmon, 1995 19
Table 3. Canadian inseason forecasts of run size, TAC, and spawning escapement of Taku sockeye salmon, 1995. 27
Table 4. Taku and Snettisham sockeye salmon run reconstruction, 1995. 33
Table 5. Inseason U.S. forecasts of the 1995 Alsek River sockeye salmon catch, Klukshu River weir count, and index run size (catch + Klukshu weir count) 37
Table 6. Catch and Klukshu index escapement data for Alsek sockeye, chinook, and coho salmon for 1995 41

LIST OF FIGURES

Page
Figure 1. The Stikine River and principal US and Canadian fishing areas 5
Figure 2. Average catches and fishing efforts compared with 1995 for the Alaskan Districts 106 and 108 and for the Canadian commercial fisheries in the Stikine River. 9
Figure 3. Sockeye catches for the Alaskan Districts 106 and 108 and the combined Canadian fisheries in the Stikine River and Stikine sockeye escapements, 1979-1995. 10
Figure 4. Catches of chinook, coho, pink, and chum salmon in the combined Canadian fisheries in the Stikine River, 1979-1995 16
Figure 5. Chinook salmon weir counts and index escapement estimates for major spawning areas and for the entire Stikine River, 1979-1995. 17
Figure 6. The Taku River and principal U.S. and Canadian fishing areas. 21
Figure 7. Average catches and fishing efforts compared with 1995 values for the Alaskan District 111 commercial fishery and the Canadian commercial fishery in the Taku River. 23
Figure 8. Sockeye catches for the Alaskan District 111, the Icy and Chatham Straits, the combined Canadian commercial and food fisheries in the Taku River, and Taku sockeye escapements, 1979-1995. 29
Figure 9. Taku River chinook index escapement counts, 1975-1995. 30
Figure 10. The Alsek River and principal U.S. and Canadian fishing areas. 34
Figure 11. Average catches and fishing efforts compared with 1995 values for the Alaskan Dry Bay commercial fishery and the Canadian combined aboriginal and sport fisheries in the Alsek River. 36
Figure 12. Alsek sockeye catches and weir counts, 1979-1995. 38
Figure 13. Alsek chinook catches and weir counts, 1979-1995. 42
Figure 14. Alsek coho catches and weir counts, 1979-1995 43

LIST OF APPENDICES

Page
Appendix A.1. Weekly salmon catch and effort in the Alaskan Subdistrict 106-41 and 106-42 (Sumner Strait) commercial drift gillnet fishery, 1995. 45
Appendix A.2. Weekly stock proportions and catches of sockeye salmon harvested in the Alaskan Subdistrict 106-41\& 106-42 (Sumner Strait) commercial drift gillnet fishery, 1995 46
Appendix A.3. Weekly salmon catch and effort in the Alaskan Subdistrict 106-30 (Clarence Strait) commercial drift gillnet fishery, 1995. 47
Appendix A.4. Weekly stock proportions and catches of sockeye salmon harvested in the Alaskan Subdistrict 106-30 (Clarence Strait) commercial drift gillnet fishery, 1995 48
Appendix A.5. Weekly salmon catch in the Alaskan District 106 commercial drift gillnet fisheries, 1995 49
Appendix A.6. Weekly stock proportions of sockeye salmon harvested in the Alaskan District 106 commercial drift gillnet fisheries, 1995 50
Appendix A.7. Weekly salmon catch and effort in the Alaskan District 108 commercial drift gillnet fishery, 1995 51
Appendix A.8. Weekly stock proportions and stock-specific catch of sockeye salmon in the Alaskan District 108 commercial drift gillnet fishery, 1995 52
Appendix A.9. Weekly salmon and steelhead trout catch and effort in the Canadian commercial fishery in the lower Stikine River, 1995 53
Appendix A.10. Weekly sockeye salmon stock proportions and catch by stock in the Canadian commercial fishery in the lower Stikine River, 1995 54
Appendix A.11. Weekly salmon and steelhead trout catch and effort in the Canadian commercial fishery in the upper Stikine River, 1995 55
Appendix A.12. Weekly salmon and steelhead trout catch and effort in the Canadian Aboriginal fishery located at Telegraph Creek, on the Stikine River, 1995 56
Appendix A.13. Weekly salmon and steelhead trout catch and effort in the Canadian test fishery in the Stikine River, 1995 57
Appendix A.14. Weekly catch, CPUE, and migratory timing of Tahltan and non-Tahltan sockeye stocks in the Stikine River test fishery, 1995 58
Appendix A.15. Daily counts of adult sockeye salmon passing through Tahltan Lake weir, 1995 59
Appendix A.16. Daily counts of sockeye salmon smolt migrating through Tahltan Lake smolt weir, 1995 60
Appendix A.17. Daily counts of adult chinook salmon passing through Little Tahltan weir, 1995 61
Appendix B.1. Salmon catch and effort in the Alaskan Subdistrict 106-41 and 106-42 (Sumner Strait) commercial drift gillnet fishery, 1964-1995. 62
Appendix B.2. Stock proportions and catches of sockeye salmon in the Alaskan Subdistrict 106-41 and 106-42 (Sumner Strait) commercial drift gillnet fishery, 1985- 1995 63
Appendix B. 3 Salmon catch and effort in the Alaskan Subdistrict 106-30 (Clarence Strait) commercial drift gillnet fishery, 1964-1995 64

LIST OF APPENDICES (Continued)

Page
Appendix B.4. Stock proportions and catches of sockeye salmon in the Alaskan Subdistrict 106-30 (Clarence Strait) commercial drift gillnet fishery, 1985-1995 65
Appendix B.5. Salmon catch and effort in the Alaskan District 106 commercial drift gillnet fisheries, 1964-1995 66
Appendix B.6. Stock proportions and catches of sockeye salmon in the Alaskan District 106 commercial drift gillnet fisheries, 1982-1995 67
Appendix B.7. Salmon catch and effort in the Alaskan District 108 commercial drift gillnet fishery, 1964-1995 68
Appendix B.8. Stock proportions and catches of sockeye salmon in the Alaskan District 108 commercial drift gillnet fishery, 1985-1995 69
Appendix B.9. Salmon catch in the Alaskan Subdistrict 106-41 (Sumner Strait) test fishery, 1984-1995. 70
Appendix B.10. Stock proportions and catches of sockeye salmon in the Alaskan Subdistrict 106-41 and 106-42 (Sumner Strait) test fishery, 1984-1995 71
Appendix B.11. Salmon catch in the Alaskan Subdistrict 106-30 (Clarence Strait) test fishery, 1986-1995 72
Appendix B.12. Stock proportions and catches of sockeye salmon in the Alaskan Subdistrict 106-30 (Clarence Strait) test fishery, 1986-1995 73
Appendix B.13. Salmon catch and effort in the Alaskan District 106 test fisheries 1984-1995. 74
Appendix B.14. Stock proportions and catches of sockeye salmon in the Alaskan District 106 test fisheries, 1984-1995 75
Appendix B.15. Salmon catch and effort tin the Alaskan District 108 test fishery, 1984-1995 76
Appendix B.16. Stock proportions and catches of sockeye salmon in the Alaskan District 108 test fishery, 1985-1995 77
Appendix B.17. Salmon and steelhead trout catch and effort in the Canadian commercial fishery in the lower Stikine River, 1979-1995 78
Appendix B.18. Sockeye salmon stock proportions and catch by stock in the Canadian commercial fishery in the lower Stikine River, 1979-1995 79
Appendix B.19. Salmon and steelhead trout catch and effort in the Canadian commercial fishery in the upper Stikine River, 1975-1995 80
Appendix B.20. Salmon and steelhead trout catch in the Canadian aboriginal fishery located at Telegraph Creek, on the Stikine River, 1972-1995 81
Appendix B.21. Catch by stock for sockeye salmon harvested in the Canadian upper river commercial and aboriginal fisheries in the Stikine River, 1972-1995. 82
Appendix B.22. Salmon and steelhead trout catch in the combined Canadian net fisheries in the Stikine River, 1972-1995 83
Appendix B.23. Salmon catches in the Stikine River harvested under Canadian ESSR licenses, 1992-1995 84
Appendix B.24. Salmon and steelhead trout catches and effort in Canadian test fisheries in the Stikine River, 1985-1995. 85
Appendix B.25. Sockeye salmon stock proportions and catch by stock in the test fishery in the lower Stikine River, 1985-1995 86
Appendix B.26. Estimated proportion of inriver run comprised of Tahltan Lake and non- Tahltan sockeye stocks, 1979-1995 87

LIST OF APPENDICES (Continued)

Page
Appendix B.27. Counts of adult sockeye salmon migrating through Tahltan Lake weir, 1959- 1995 88
Appendix B.28. Aerial survey counts of non-Tahltan sockeye stocks in the Stikine River drainage, 1984-1995. 89
Appendix B.29. Estimates of sockeye salmon smolt migrating through Tahltan Lake smolt weir, 1984-1995 90
Appendix B.30. Weir counts of chinook salmon at Little Tahltan River, 1985-1995. 91
Appendix B.31. Index counts of Stikine chinook escapements, 1979-1995 92
Appendix B.32. Index counts of Stikine coho salmon escapements, 1984-1995 93
Appendix B.33. Stikine River sockeye salmon run size, 1979-1995. 94
Appendix C.I. Weekly salmon catch and effort in the Alaskan District 111 and Subdistrict 111-32 (Taku Inlet), commercial drift gillnet fishery, 1995 96
Appendix C.2. Estimate of the proportion of natural and planted sockeye salmon stock groups harvested in the Alaskan District 111 commercial drift gillnet fishery by week, 1995 98
Appendix C.3. Weekly stock-specific catch of wild and planted Taku River and Port Snettisham sockeye salmon harvested in the Alaskan District 111 commercial drift gillnet fishery, 1995. 99
Appendix C.4. Weekly salmon and steelhead trout catch and effort in the Canadian commercial fishery in the Taku River, 1995. 100
Appendix C.5. Weekly stock proportions of sockeye salmon harvested in the Canadian commercial fishery in the Taku River, 1995. 101
Appendix C.6. Weekly stock-specific catch of sockeye salmon in the Canadian commercial fishery in the Taku River, 1995. 102
Appendix C.7. Mark-recapture estimate of above border run of sockeye and coho salmon in the Taku River, 1995 103
Appendix C.8. Daily counts of adult salmon passing through Tatsamenie weir, 1995 104
Appendix C.9. Daily counts of adult sockeye salmon passing through Little Trapper Lake weir, 1995 105
Appendix C.10. Daily counts of adult salmon passing through the Nahlin River weir, 1995 106
Appendix C.11. Daily counts of adult sockeye salmon passing through the Kuthai Lake weir, 1995 108
Appendix D.1. Salmon catches and effort in the Alaskan District 111 and Subdistrict 111-32 (Taku Inlet) commercial drift gillnet fishery, 1964-1995 109
Appendix D.2. Stock proportions and catches of sockeye salmon in the Alaska District 111 commercial drift gillnet fishery, 1983-1995 111
Appendix D.3. Proportion of wild Taku River sockeye salmon in the Alaskan District 111 commercial drift gillnet catch by week, 1983-1995 112
Appendix D.4. Salmon catch in the U.S. subsistence and personal use fisheries in the Taku River, 1967-1995. 113
Appendix D.5. Salmon and steelhead trout catch and effort in the Canadian commercial fishery in the Taku River, 1979-1995 114
Appendix D.6. Sockeye salmon stock proportions and catch by stock in the Canadian commercial fishery on the Taku River, 1986-1995 115

LIST OF APPENDICES (Continued)

PageAppendix D.7. Salmon catches in the Canadian Aboriginal fishery on the Taku River, 1980- 1995 116
Appendix D.8. Salmon and steelhead trout catch in the Canadian test fishery in the Taku River, 1987-1995 117
Appendix D.9. Taku River sockeye salmon run size, 1984-1996. Run estimate does not include spawning escapements below the U.S./Canada border. 118
Appendix D.10. Sockeye salmon escapement estimates of Taku River and Port Snettisham sockeye stocks, 1979-1995 119
Appendix D.11. Aerial survey index escapement counts of large (3-ocean and older) Taku River chinook salmon, 1975-1995 120
Appendix D.12. Taku River (above border) coho salmon run size, 1987-1995 121
Appendix D.13. Escapement counts of Taku River coho salmon, 1984-1995 122
Appendix D.14. Canyon Island fish wheel salmon counts and periods of operation on the Taku River, 1983-1995 123
Appendix E.1. Weekly salmon catch and effort in the U.S. commercial fishery in the Alsek River, 1995 124
Appendix E.2. Weekly salmon catch and effort in the Canadian aboriginal and sport fisheries in the Alsek River, 1995 125
Appendix E.3. Daily counts of salmon passing through Klukshu River weir, 1995 126
Appendix E.4. Salmon catch and effort in the U.S. commercial fishery in the Alsek River, 1964-1995 129
Appendix E.5. Salmon catch in the U.S. subsistence and personal use fisheries in the Alsek River, 1976-1995 130
Appendix E.6. Salmon catches in the Canadian aboriginal and sport fisheries in the Alsek River, 1976-1995 131
Appendix E.7. Klukshu River weir counts of chinook, sockeye, and coho salmon, 1976-1995 132
Appendix E.8. Alsek River sockeye counts from U.S. and Canadian aerial surveys and from the electronic counter at Village Creek, 1985-1995. 133
Appendix E.9. Aerial survey index counts of Alsek chinook salmon escapements, 1984-1995 134
Appendix E.10. Aerial survey counts of coho salmon from U.S. lower Alsek River tributaries, 1984-1995 135

EXECUTIVE SUMMARY

Estimates of catches and escapements of Pacific salmon returning to the transboundary Stikine, Taku, and Alsek rivers for 1995 are presented and compared with historical patterns. Relevant information pertaining to the management of appropriate U.S. and Canadian fisheries is presented and the use of inseason management models is discussed.

Stikine

The 1995 Stikine sockeye run is estimated at 218,700 fish, of which an estimated 143,200 fish were harvested in various fisheries, 4,900 were used for brood stock, and 70,600 escaped to spawn. The catch was the second highest recorded since 1982 when stock identification techniques were first used for marine catches. The run was the third highest since 1979 and was above the 1985-1994 average of 141,100 sockeye salmon. The estimated U.S. commercial catch of Stikine sockeye salmon in Districts 106 and 108 was 76,400 fish; the Canadian inriver commercial, aboriginal, spawning surplus, and test fishery catches were $48,000,5,500,10,700$ and 2,600 fish, respectively. Sockeye salmon from outplants into Tahltan and Tuya lakes contributed an estimated 27,300 fish to the U.S. harvests and 15,700 fish to Canadian catches. The postseason estimate of 218,700 sockeye salmon was above the preseason forecasts by Canada $(169,000)$ and the U.S. $(171,000)$. The Stikine Management Model correctly predicted a larger than average sockeye run, consisting of a strong Tahltan component and a weak mainstem component. Weekly inseason model forecasts ranged from 164,800 to 265,900 sockeye salmon; the final inseason model predictions were 164,800 (Canada) and 214,700 (U.S.). Canadian and U.S. final inseason estimates were different due to the U.S. using the commercial CPUE and Canada, the test fishery CPUE. Using the inseason estimates, both countries were harvesting just below their 50% of the TAC by their estimates. Using the postseason estimate of run size and total allowable catch, Canada harvested 35% of the total allowable catch and the U.S. harvested 47% of the total allowable catch. The brood stock take and terminal surplus escapement fishery removed 4,900 and 10,700 sockeye salmon, respectively, from the escapement to Tahltan Lake leaving a spawning escapement of 26,700 fish, 11% above the goal of 24,000 fish. The estimated spawning escapement of 42,800 non-Tahltan Stikine sockeye salmon was above the upper end of the escapement goal range (20,000 to 40,000 fish) for this stock group.

The catch of chinook salmon in Canadian commercial and aboriginal fisheries in the Stikine River was 1,600 large fish and 860 jacks, 15% below and 77% above the respective 1985-1994 averages. An additional 430 chinook salmon were taken in the Canadian inriver test fishery. The U.S. marine catch of chinook salmon in the District 106 and 108 mixed stock gillnet fisheries was 2,700 fish, approximately 23% above the 1985-1994 average catch. The spawning escapement of 3,100 chinook adults through the Little Tahltan River weir in 1995 was 45% below the 1985-1994 average and 42% below the joint U.S./Canada escapement goal of 5,300 fish. Surveys of other Stikine tributaries also showed below average escapements.

The U.S. marine harvest of Stikine River coho salmon is unknown since there is no stock identification program for this species; however, total mixed-stock coho catches of 170,600 and 17,800 fish in Districts 106 and 108 , respectively, were 8% and 48% above the $1985-1994$ averages. Alaskan hatchery fish comprised approximately 15% (28,400 fish) of the coho harvest from the two districts. The Canadian inriver coho catch of 3,400 fish was 4% above the previous 10 -year average. The estimated coho above-
border escapement of 21,200 fish was below the escapement goal range of 30,000 to 50,000 coho salmon; however, coho survey counts were above average.

Taku

The 1995 Taku sockeye run estimate was 239,500 fish and included an estimated catch of 125,800 fish and an above-border spawning escapement of 113,700 fish. The run size, catch, and escapement were 14%, 19%, and 8% above the respective 1985-1994 averages. The estimated spawning escapement exceeded the upper level of the escapement goal range of 71,000 to 80,000 fish. An estimated 91,000 Taku sockeye salmon were taken in the District 111 commercial fishery and 2,100 sockeye salmon in the U.S. inriver personal use fisheries. Canadian inriver commercial and aboriginal fishery catches were 32,600 and 70 sockeye salmon, respectively. Since the escapement goal is expressed as a range, the resulting total allowable catch is also expressed as a range. In 1995, Canada harvested an estimated 19% to 21% and the U.S. took 55% to 58% of the total allowable catch.

The catch of large chinook salmon in the Canadian commercial fishery in the Taku River was 1,600 fish, 1.6 times the 1985-1994 average; in addition, 300 jack chinook were caught compared to an average of 170 fish. The chinook catch in the District 111 mixed stock gillnet fishery was 4,700 fish, 1.5 times the 1985-1994 average. Forty-one percent of the catch was estimated to be of Alaska hatchery origin. Escapements observed in six Taku River chinook index tributaries were evenly split between above and below average. The combined aerial survey count of the index tributaries was 8,760 fish, which was 8% below the 19851994 average of 9,500 fish, and 33% below the index escapement goal of 13,200 fish.

The Taku coho run was average in 1995. The U.S. harvest of 83,600 coho salmon in the District 111 mixed stock fishery was equal to the previous 10 -year average. Alaskan hatcheries contributed an estimated 16% of the District 111 harvest, or approximately 13,700 fish. The Canadian inriver commercial and food fishery catch was 13,700 coho salmon, roughly three times the previous 10 -year average. The above-border inriver run size is estimated at 69,400 coho salmon. After upriver Canadian catches are subtracted from the inriver run, the above-border spawning escapement is estimated at 55,700 coho salmon, which exceeds the interim escapement goal range of 27,500 to 35,000 fish.

The catch of pink salmon in District 111 was 41,300 fish, 79% below the $1985-1994$ average catcb. The Canadian commercial inriver harvest of pink salmon was only two fish. The escapement of pink salmon to the Taku River was very poor as evidenced by the fish wheel catch of 1,712 pink salmon, the second lowest catch since fish-wheel counts were started in 1985.

The catch of chum salmon in the District 111 fishery was 350,100 fish, composed of 339,200 summer run fish (prior to mid-August) and 10,900 fall run fish. The catch of summer chum salmon, primarily Alaskan hatchery stocks, was 1.7 times the 1994 record catch. The catch of fall chum salmon, composed of wild Taku River and Port Snettisham stocks, was 64\% below the 1985-1994 average. The reported Canadian inriver catch of only one chum salmon was below average. Escapement appeared to be poor; the Canyon Island fish wheel catch of 218 chum salmon was 72% below average.

Abstract

Alsek

For the Alsek River, the U.S. commercial catch of 33,100 Alsek sockeye salmon was more than double the 1985-1994 average. Canadian catches of 1,700 sockeye salmon in the aboriginal fishery and 680 in the sport fishery were 8% below and 107% above average, respectively. The escapement to the Klukshu River weir of 20,700 fish was 13% above the 1985-1994 average. The Klukshu weir counts of 2,300 early run (count through August 15) and 18,400 late run sockeye salmon were 27% below and 21% above the 1985 1994 averages, respectively.

The chinook run to the Alsek River was well above average. The U.S. Dry Bay catch of 670 fish was double the 1985-1994 average. The combined Canadian sport and aboriginal fishery catch of 1,600 fish was over three times the 1985-1994 average. The 5,700 chinook count through the Klukshu River weir was the highest count recorded since the weir was installed in 1976 and was more than double the 1985-1994 average of 2,400 fish. The Klukshu River escapement goal is 4,700 chinook salmon. Aerial survey index counts of other spawning systems were generally above average in spite of surveys being conducted a week later than normal.

The coho run to the Alsek River was well above average, but current stock assessment programs prevent an accurate comparison with historical runs. The U.S. Dry Bay catch of 14,200 coho salmon was almost four times the 1985-1994 average, while the combined Canadian inriver aboriginal and sport fishery catch of 600 fish was 4.8 times the 1985-1994 average. Operation of the Klukshu weir does not provide a complete enumeration of coho salmon into this system since it is removed before the run is over, however, the count of 3,600 coho salmon was the second highest count on record.

INTRODUCTION

This report presents estimates of the 1995 catch and escapement data for Pacific salmon runs to the transboundary Stikine, Taku, and Alsek rivers and discusses management actions taken during the season. Catch and effort data are presented by week (U.S. management statistical week) for each river for both U.S. and Canadian fisheries. Spawning escapement data for most species are reported from weir counts or other escapement monitoring techniques. Joint enhancement activities on the Stikine and Taku rivers are also summarized in this report.

Run reconstruction analyses are conducted on the sockeye runs to the three rivers for the purpose of evaluating the stocks and the fisheries managed for these stocks. No estimates of marine catch are made for Alaskan fisheries outside of District 106 and 108 for Stikine stocks, District 111 for Taku stocks, and Subdistrict $182-30 \& 182-31$ for Alsek stocks. Therefore, the total catches of transboundary stocks made for this report will not match estimates made for the Joint Interception Committee Report.

STIKINE RIVER

Stikine River salmon are harvested by U.S. gillnet fisheries in Alaskan Districts 106 and 108, by Canadian commercial gillnet fisheries located in the lower and upper Stikine River, and by a Canadian aboriginal fishery in the upper portion of the river (Figure 1). In 1994, a U.S. personal use fishery was established in the lower Stikine River. Additional catches of unknown quantity are taken in U.S. commercial troll and seine fisheries, and in sport fisheries near Wrangell and Petersburg. A small sport fishery also exists in the Canadian portion of the Stikine drainage. In 1992 a process to allow the issuance of an "Excess Salmon To Spawning Requirements" (ESSR) license was instigated by Canada to permit the terminal harvest of sockeye salmon at Tahltan Lake in years when escapement exceeded the escapement goal.

Figure 1. The Stikine River and principal US and Canadian fishing areas.

Harvest Regulations and the Joint Management Model

Harvest arrangements for Stikine salmon were not negotiated by the Pacific Salmon Commission or Canadian and United States governments for the 1995 season. As a result, the Parties unilaterally developed the following management plans for the 1995 season:

1. Canada developed a fishing plan for the Stikine River that adopted the Treaty arrangements for sockeye and Chinook salmon (which had not expired) but excluded the 4,000 piece catch ceiling for coho salmon that had expired in 1993. The harvest sharing objective for the sockeye season was to share the total allowable catch (TAC) of Stikine River sockeye salmon, 50% to Canada and 50% to the United States. In the event that there was sockeye surplus to spawning requirements at Tahltan Lake, attempts would be made to harvest some of the surplus.
2. The United States management plan was to abide by the harvest sharing provisions that were in effect in 1993: to harvest 50% of the TAC of Stikine sockeye salmon, to incidentally harvest chinook salmon, and to provide for a Canadian harvest of 4,000 coho salmon.

The Transboundary Technical Committee met prior to the season to develop preliminary run forecasts and expectations, to update joint management and enhancement plans, and to determine new parameters for input into the inseason run forecast model, referred to as the Stikine Management Model (SMM). A joint management plan is being published for 1995 .

In 1995, the preseason forecasts were used during statistical week 24 (June 11 to June 17) through statistical week 27 (July 2 to July 8). Begiming the first week of July inseason forecasts of run size and TAC, produced by the SMM and based on catch-per-unit-effort (CPUE) data, were used to assist in determining weekly fishing plans (Table 1). The weekly inputs to the model included the catch, effort, and stock composition (proportion Tahltan) in the Canadian lower-river test and commercial fisheries; the upper river catch in the aboriginal fishery and upper-river commercial fishery; the catch, effort, and average historical stock composition in Subdistrict 106-41; and the catch and average historical stock composition in District 108 and Subdistrict 106-30. Inseason otolith sampling was conducted to estimate the contribution of enhanced Stikine sockeye salmon to catches in these areas.

While the preseason forecasts of the Stikine sockeye run were done jointly, the actual values used by U.S. and Canada in the SMM differed slightly due to different updates of the smolt input data. Canada used a preseason forecast of 169,000 and U.S., 170,816 sockeye salmon (Table 1); both these estimates represent a run size substantially above the 1985-1994 average run size of 141,124 fish (Appendix B.32). Inseason predictions of the run size from the SMM ranged from 164,800 (Canadian estimate for statistical week 35) to 265,899 (U.S. estimate for statistical week 29) sockeye salmon (Table 1). The inseason forecasts indicated an above-average run and most were above the preseason estimates. U.S. and Canadian weekly predictions differed due to different updates of catch and stock composition being used by the two managers when they made their model runs and due to use of test fishery versus commercial CPUE as the input variable. Canada used the lesser of the two forecasts based on test fishery CPUE and lower Stikine commercial fishery CPUE; the United States consistently used the lower Stikine commercial fishery CPUE. The differences in the forecasts used are summarized in Table 1. By the end of the fishing season, the SMM predicted a run size of 164,800 sockeye salmon based on inriver test fishery CPUE and 214,728 sockeye salmon based on inriver commercial CPUE. Final estimates of the TAC ranged from 110,800 to 160,728 fish, with an allowable harvest of 55,400 to 80,364 sockeye salmon for each Party.

The SMM also predicts the Tahltan portion of the run independently from the total Stikine run forecasts. Estimates of the Tahltan run ranged from 103,200 (statistical week 35) to 138,900 (statistical week 28) sockeye salmon compared to the preseason forecasts of 155,000 (Canada) and 156,368 (U.S.). The final Canadian inseason forecast of the Tahltan Lake weir count (inriver run forecast minus inriver catch) was 25,940 sockeye salmon, compared to the actual Tahltan Lake weir count of 42,317 fish.

Table 1. Weekly forecasts of run size and total allowable catch for Stikine River sockeye salmon as determined inseason by the Stikine Management Model, 1995. ${ }^{\text {ab }}$

Statistical Week	Start Date	Forecasts		$\begin{gathered} \text { U.S. } \\ \text { TAC } \end{gathered}$	Canada TAC	Cumulative Catch	
		Run Size	TAC			U.S.	Canada
Model Runs Generated by the U.S.							
24	11-Jun	170,816	116,816	58,408	58,408	0	0
25	18-Jun	170,816	116,816	58,408	58,408	6,059	0
26	25-Jun	170,816	116,816	58,408	58,408	12,155	3,524
27	02-Jul	170,816	116,816	58,408	58,408	20,272	4,338
28	$09-\mathrm{Jul}$	241,577	187,577	93,788	93,788	49,900	18,650
29	16 -Jul	265,899	211,899	105,949	105,949	63,047	33,372
30	23-Jul	252,421	198,421	99,210	99,210	69,998	42,204
31	30-Jul	232,514	178,514	89,257	89,257	73,482	47,096
32	06-Aug	226,259	172,259	86,129	86,129	74,609	48,868
33	13-Aug	214,728	160,728	80,364	80,364		
Model Runs Generated by Canada ${ }^{\text {a }}$							
25	18-Jun	169,000	115,000	57,500	57,500	:	0
26	25-Jun	169,000	115,000	57,500	57,500		4,300
27	02-Jul	204,600	150,600	75,300	75,300	30,400	13,600
28	09-Jul	245,900	191,900	96,000	96,000	54,100	25,400
29	16-Jul	262,500	208,500	104,300	104,300	64,300	36,200
30	23-Jul	255,200	201,200	100,600	100,600	70,000	45,100
31	30-Jul	220,100	166,100	83,100	83,100	73,500	48,600
32	06-Aug	198,100	144,100	72,100	72,100	73,500	49,000
33	13-Aug	168,600	114,600	57,300	57,300	78,800	51,700
34	20-Aug	167,700	113,700	56,900	56,900	79,500	52,900
35	27-Aug	164,800	110,800	55,400	55,400		

a Inseason weekly U.S. forecasts were the preseason forecast for statistical weeks 24, 25, 26, and 27 and the model forecasts based on inriver commercial fishery CPUE for the remainder of the sockeye season.
b Inseason weekly Canadian forecasts were the preseason forecast for statistical weeks 25 and 26 and the lesser of the model forecasts based on the lower river test fishery and commercial fishery CPUE for the remainder of the season.

U.S. Fisheries

The 1995 harvest in the District 106 commercial gillnet fishery included 951 chinook, 207,298 sockeye, 170,561 coho, 448,163 pink, and 300,078 chum salmon (Appendix A.5). In the District 108 fishery, 1,702 chinook, 76,756 sockeye, 17,834 coho, 37,788 pink, and 54,296 chum salmon were harvested (Appendix A.7). District 106 catch of chinook salmon was below the 1985-1994 average, while the catches of all other species were above the average. The chum salmon catch was the highest on record, and the sockeye catch was the third highest (Appendix B.5). District 108 catches of all salmon species were above the 1985-1994 average with the chum catch being the highest on record and the sockeye catch being the third highest on record following the 1993 and 1994 seasons (Figure 2). No test fishery was conducted in District 108 this year. The season was opened on the second Monday in June, as was done in 1994. Annual commercial and test fishery catches from 1964 to 1995 for these fisheries are provided in Appendix B. 1 through B. 16. Catches of each species in Districts 106 and 108 consist of fish of mixed stock origin; the contribution of Stikine River stocks is estimated only for sockeye salmon. Scales were sampled from the various subdistricts and were used for making postseason catch estimates. The proportion of the District 106 and 108 sockeye catch of Stikine River origin was estimated inseason using the historical proportions of each stock. Harvests of enhanced Tuya and Tahltan sockeye salmon were estimated by week and subdistrict from recovery and analysis of thermally marked otoliths.

The final estimate of the contribution of Stikine sockeye salmon to Districts 106 and 108 was 76,420 or 27% of the sockeye catch (Appendix B. 6 and B.8, Figure 3). The Sumner Strait fishery (Subdistricts 106-41 \& 106-42) harvested 19,865 Stikine sockeye salmon (Appendix A.2), 15% of the total sockeye harvest in that subdistrict; the Clarence Strait fishery (Subdistrict 106-30) harvested 5,814 Stikine sockeye salmon (Appendix A.4), 8% of the catch in that subdistrict; and the District 108 fishery, harvested 50,741 Stikine sockeye salmon (Appendix A.8), 66% of the District 108 catch (Appendix B.8).

The 1995 fishing season in District 108 began on June 12 (statistical week 24) and continued through September 19 (statistical week 38), while the District 106 fishing season began on June 18 (statistical week 25) and continued through September 25 (statistical week 39). The District 108 fishery was open for one day during the initial opening (statistical week 24; June 11 to June 17); the opening was based on the preseason expectation of a U.S. TAC of 58,408 Stikine River sockeye salmon. The initial opening in District 106 is normally two days and any decision to extend fishing is based on fishery catch rates estimated by management biologists on site in the fishery. During statistical weeks 25 to 29,31 to 32, and 37 to 38 (June 18 to July 18, July 30 to August 8, and September 10 to 22, respectively), District 106 was restricted to a two-day per week fishery. District 108 was also open concurrently for two days with District 106 during the same weeks, and for three days during statistical weeks 30 and 33 to 36° (July 23 to 29, and August 13 to September 9). The following additional fishing times were permitted in District 108: a 2-day mid-week opening in statistical week 25 (June 18 to June 24); a 3.5-day mid-week openings in statistical weeks 26 through 28 (June 25 to July 15); a 2-day mid-week opening in statistical week 29 (July 16 to 22); and a 1 -day mid-week opening in statistical week 30 (July 23 to July 29). During this time period the SMM indicated a U.S. TAC of between 58,400 and 105,949 sockeye salmon based on the sockeye CPUE in the inriver commercial fishery (Table 1). The management approach of providing extra time in District 108 was used to regulate the harvest of the local island sockeye stocks in District 106 while maximizing the harvest of Stikine sockeye salmon in District 108. Effort was high and sockeye catches were not strong enough to warrant additional time in District 106 during the early weeks.

Figure 2. Average catches and fishing efforts compared with 1995 for the Alaskan Districts 106 and 108 and for the Canadian commercial fisheries in the Stikine River.

Figure 3. Sockeye catches for the Alaskan Districts 106 and 108 and the combined Canadian fisheries in the Stikine River and Stikine sockeye escapements, 1979-1995.

Area restrictions were used around the mouth of the Stikine River for the first two weeks (statistical weeks 24 and 25) and in portions of Frederick Sound each week during the sockeye and pink fisheries to protect adult chinook salmon returning to the Stikine River. During July and the first week of August the closure line for District 108 was moved in to the Point Rothsay to Indian Point line to avoid areas of known high chinook abundance.

The management emphasis changed from sockeye to pink salmon during statistical week 33 (August 8 to 14). This season there were 448,163 and 37,788 pink salmon harvested in District 106 and 108, respectively. The District 106 catch is 14% below the 1985-1993 odd-year average of 520,064 pink salmon, while District 108 catch is 2.2 times the respective average of 17,381 pink salmon. Pink catches in both districts are not always a true reflection of the pink salmon abundance in the area because the low pink salmon price, along with the high abundance of sockeye and coho salmon, affect the fishing patterns and methods. Three-day fishing periods were allowed during the two weeks of pink salmon management in both districts. The pink salmon escapements throughout Districts 106 and 108 were above average.

Coho salmon management in both the District 106 and 108 gillnet fisheries usually commences during late August or early September. During statistical week 35 (August 27 to September 2) the management emphasis changed from pink to coho salmon. Early gillnet catches of coho salmon were above or at average levels and the inseason outside troll fishery indicated an above average run. Prior to the change to coho management, the sockeye and pink salmon fisheries harvested approximately 50% of the total District 106 coho catch and about 38% of the total District 108 coho catch. Both districts were open for three days during statistical weeks 35 and 36 (August 27 to September 9), two days during statistical weeks 37 and 38 (September 10 to 23), and District 106 was open for one day during statistical week 39 (September 24 to 30). Effort and coho catch were higher than average through statistical week 36 while the CPUE was generally about average or below average each week. Normally the percentage of hatchery coho salmon starts to increase by mid-August and by the end of season makes up a high percentage of the weekly catch; however, this season the hatchery contribution did not increase until close to the end of the season and the proportion was slightly below the 1985-1994 average. The District 106 coho catch of 170,561 is the sixth highest on record and is 8% above the 1985-1994 average of 158,592 coho salmon. The District 108 coho catch of 17,834 is the tenth highest on record and is 50% higher than the 1985-1994 average of 12,006 fish. Fishing effort in both districts was higher than normal. The Alaska hatchery coho salmon contribution to the District 106 fishery is estimated at 27,330 fish (16\%) (Appendix A.5) and the contribution to the District 108 fishery is estimated at 1,085 fish (6\%) (Appendix A.7).

During the 1995 season, the gillnet fishery in District 106 was open for a total of 34 days (Appendix A.5), and in District 108 for 49.5 days (Appendix A.7); these were above the 1985-1994 average of 32.9 and 32.7 days, respectively. District 106 fishing effort in numbers of vessels was near the average for the first eight weeks (statistical weeks 25 to 32), above average for the following four weeks (statistical weeks 33 to 36), and below average for the last three weeks (statistical weeks 37 to 39) of the season. During the month of August and the first week of September the fishing effort in District 106 was 30% above average. The District 108 weekly fishing pressure was about average during the regular openings but increased to three times the average during the mid-week extensions. After the mid-week extensions were suspended the effort remained near average. The greatest number of boat-days in District 106 (429) and the greatest number of boats fishing (143) occurred in statistical week 34, which is the end of August. The effort of 3,657 boat-days in District 106 was 13\% higher than the 1985-1994 average of 3,247 boat-days (Figure 2, Appendix B.5). The District 108 effort was higher than average due to the extended fishing time allowed to harvest the large run of Stikine River sockeye salmon. The 1,214 boat-days fished in District 108 was 64% higher than the 1985-1994 average of 742 boat-days (Appendix B.7). Most of the boats fishing during the mid-week openings in District 108 did not fish the entire opening so the effort in boat-days was adjusted to better reflect the time actually fished during these openings. For this reason the boat-days given in

Appendix B. 7 are less than that obtained by multiplying the number of permits fished by the number of days the fishery was open.

While there was some effort in the U.S. personal use fishery in the lower Stikine River, there was no reported catch. In the U.S. recreational fishery, based on coded wire tag sampling in Wrangell and the creel survey in Petersburg, an estimated 2,011 chinook salmon were taken from May 1 to July 16, 1995. An estimated 812 of these were Alaska hatchery and 34 non-Alaskan hatchery chinook salmon.

Canadian Fisheries

Catches from the combined Canadian commercial and aboriginal gillnet fisheries in the Stikine River in 1995 included 1,646 large chinook, 860 jack chinook, 53,467 sockeye, 3,418 coho, 48 pink, 263 chum salmon, and 270 steelhead (Appendix A. 9 to A.12). The sockeye catch was the highest on record and was 2.2 times the 1985-1994 average of 24,720 sockeye salmon. Catches of jack chinook, coho, and steelhead were also above average; whereas, the catches of large chinook, pink, and chum salmon were below average. In addition to these catches, 10,740 sockeye salmon were harvested terminally at Tahltan Lake in the ESSR fishery.

A test fishery was conducted again in the lower Stikine River, just upstream from the Canada/U.S. border, to determine migratory timing and stock composition of the sockeye run for use in the postseason estimations of the inriver sockeye and coho run sizes. Test fishery catches included 248 large chinook, 184 jack chinook, 2,570 sockeye, 227 coho, 10 pink, and 62 chum salmon, and 19 steelhead (Appendix A. 13 to A.14).

Lower Stikine Commercial Fishery

Canadian commercial fishers in the lower Stikine harvested 1,067 large chinook, 599 jack chinook, 45,622 sockeye, 3,418 coho, 48 pink, 256 chum salmon, and 208 steelhead in 1995 (Appendix A.9). The sockeye catch exceeded the previous record of 38,464 sockeye salmon in 1993, and was 133% above the 1985-1994 average of 19,564 sockeye salmon (Appendix B.17). Catches of coho salmon and steelhead were also above average, whereas pink and chum catches were below average. A very strong Tahltan Lake sockeye run combined with relatively low fishing effort resulted in the fishery being open continuously from July 9 through July 29.

The fishery commenced at noon on Sunday, June 25 (statistical week 26), for a three day opening. Daily catches of sockeye salmon over the initial 48 hours were at record levels and the CPUE was more than 200% above average. Increasing sockeye catches, relatively low effort (i.e., thirteen fishers) and a projected catch shortfall for the week led to a 24 -hour extension.

In statistical week 27, the fishery opened for four days commencing Sunday, July 2. Test fishery catches of sockeye salmon were well above average just prior to the opening. Preliminary SMM outputs generated midweek indicated a run size forecast greater than 235,000 sockeye salmon and a shortfall in the catch was
indicated relative to weekly guidelines. As a result of these factors and the fact that the CPUE was approximately 70% above average, the fishery was extended 24 hours.

The sockeye run strength remained high over the next three weeks and SMM forecasts ranged from 245,900 to 262,500 sockeye salmon (Table 1). Decisions to increase the fishing times in statistical weeks 28-30 from the scheduled four days to seven days were made based on the above average run forecasts, above average CPUE, and a lagging of the cumulative catch relative to weekly guideline levels. A record weekly catch of 10,332 sockeye salmon occurred in statistical week 28 .

After July 30, weekly fishing times were reduce to five days (statistical weeks 31 and 32), and then to three days (statistical weeks 33 and 34) to conserve the weaker mainstem sockeye run. The weekly CPUE in the fishery during the latter half of the season dropped to average to below-average levels and model forecasts declined to below 200,000 sockeye salmon (Table 1).

Management emphasis switched to coho salmon as sockeye abundance dropped off after statistical week 34 (week ending August 26). The fishery was open for four days per week in each of statistical weeks 35 and 36 in light of average to above average coho CPUE and decreasing effort. The maximum coho catches of the season occurred during these weeks.

In statistical week 37, a four-day fishery was scheduled; however, fishing ceased after two days because of extremely high water. Effort continued to fall off in succeeding weeks and only one day was fished in statistical weeks 38-40.

The final inseason sockeye forecast indicated a Canadian TAC of 55,400 to 76,400 sockeye salmon. Accounting for the combined aboriginal and commercial harvest in the upper river, i.e., 7,845 sockeye salmon, the final inseason estimates translated into a lower river target range of approximately 47,600 to 68,600 sockeye salmon, which was above the actual lower river commercial catch of 45,622 sockeye salmon.

When comparing the sockeye CPUE for statistical weeks in 1995 with those of other years, the sockeye run timing appeared to be about one week earlier than normal. However, when the timing was adjusted for calendar dates, the run timing was about average. The maximum sockeye CPUE occurred in statistical week 28 , the third week of the fishery. Tahltan Lake sockeye salmon dominated the catch through the third week in July (statistical week 29); thereafter, the mainstem sockeye stock component made up the majority of the sockeye catch. Of the total lower river sockeye catch, an estimated 30,148 sockeye salmon were of Tahltan Lake origin (68% of the catch) and an estimated 14,581 sockeye salmon originated from the nonTahltan Stikine sockeye stock conglomerate.

Nineteen licensed fishers participated in the fishery throughout the season with an average of nine fishers present each week. The total effort in terms of boat-days was $534,74 \%$ above the 1985-1994 average of 307.6 boat-days (Appendix B.17). The above average effort level in 1995 was due to two factors: above average early sockeye run strength which resulted in extended fishing periods throughout July; and a coho fishery which lasted into October. Each fisher was allowed the use of two gillnets, one of which could be a drift net. This was the first year that additional gear was permitted throughout the entire season. In 1994, a second piece of fishing gear was allowed after the first 48 hours of fishing in each week. A delayed opening to June 25 and a maximum mesh size restriction of 150 mm through mid-July was implemented to reduce the incidental catch of chinook salmon.

It was evident by mid-July that the number of sockeye salmon reaching the Tahltan Lake weir would exceed escapement requirements. This prompted the issuance of an ESSR license which permitted the terminal harvest of sockeye salmon at Tahltan Lake. A total of 10,740 sockeye salmon was harvested under this license.

Upper Stikine Commercial Fishery

A small commercial fishery has existed near Telegraph Creek on the upper Stikine River since 1975. The catch recorded in 1995 included nine large chinook salmon, far below the 1985-1994 average of 85 large fish; 17 jack chinook; and 2,355 sockeye salmon, the second highest catch on record and 149% above the 1985-1994 average of 945 sockeye salmon (Appendices A. 11 and B.19). The fishing effort was above average with one to three fishers fishing up to seven days per week. The fishery was open a total of 25 days and the total effort in terms of boat-days was 59 boats-days. For comparison, the previous 10 -year average fishing time was 13 days with an average effort of 26 boat-days (Appendix B.19). The additional time fished during the season was the result of the excellent run of Tahltan Lake sockeye salmon.

Aboriginal Fishery

The Stikine aboriginal fishery centered around Telegraph Creek and harvested 570 large chinook, 244 jack chinook, 5,490 sockeye, and 7 chum salmon and 62 steelhead. The catch of sockeye salmon was 30% above the 1985-1994 average of 4,211 sockeye salmon, whereas, the harvest of large chinook salmon was 38% below the average of 918 chinook salmon. As in past years, fishing times were not restricted in this fishery. Weekly catches in 1995 and annual catches since 1972 are listed in Appendices A. 12 and B.20, respectively.

Escapement

Sockeye

A total of 42,317 sockeye salmon was counted through the Tahltan Lake weir in 1995 which was 28% above the 1985-1994 average of 33,011 sockeye salmon (Appendix B.25). Based on analysis of otoliths collected from the ESSR fishery, 15,997 fish (37.8\%) of the return originated from the 1990-1991 enhancement program. Of the total number of fish enumerated through the weir, 2,425 females and 2,425 males were collected for hatchery brood stock. In addition to the brood stock collection, 10,740 sockeye salmon were harvested under the ESSR license, leaving a spawning escapement of 26,727 fish. This is within the escapement range of 18,000 to 30,000 fish (Appendix B.25). The final inseason SMM indication of Tahltan weir count was 25,940 sockeye salmon, 39% below the actual weir count.

The total spawning escapement for the non-Tahltan stock group is estimated indirectly by computing the ratio of Tahltan to non-Tahltan components in the total inriver sockeye run from stock identification data collected in the lower river commercial and test fisheries. The ratio is applied to the estimated inriver Tahltan run size to develop an estimate of the total inriver non-Tahltan run size. The non-Tahltan escapement is estimated by subtracting the estimated catches of non-Tahltan sockeye salmon in the Canadian fisheries. The postseason estimate of non-Tabltan escapement is 41,662 sockeye salmon based on egg diameter data to estimate inriver stock composition of catches, and inriver commercial fishery CPUE data to give run timing. This estimate was 57% below the 1985-1994 average non-Tahltan escapement of 44,969 fish (Appendix B.32).

Aerial surveys of non-Tahltan sockeye escapement index areas indicated below average numbers of spawners in 1995 (Appendix B.27). The 1995 cumulative index count of 434 sockeye salmon was 45.1% of the 1985-1994 average of 963 fish. The 1995 survey conditions were fair to good. These surveys do not include all spawning populations; the index represents the combined counts from up to seven spawning areas.

Chinook

This was the eleventh consecutive year of the operation of an adult chinook enumeration weir on the Little Tahltan River. The 1995 count of 3,072 large chinook salmon was 55% of the 1985-1994 average of 5,611 large fish. The 1995 escapement was below the Little Tahltan escapement goal of 5,300 chinook salmon (Appendix B.30). The count of jack chinook salmon was 135, 48\% of the 1985-1994 average of 282 fish. Daily counts from the 1995 program are presented in Appendix A. 17.

Results from aerial and foot surveys conducted on Stikine River tributaries indicated a below average chinook escapement in 1995. Survey counts for Little Tahltan River were 1,117 chinook salmon compared to the 1985-1994 average of 2,516 fish; for Beatty Creek, 152 chinook compared to the average of 336 fish; for Tahltan River, 696 chinook salmon compared to the average of 1,931 fish; and for Andrew Creek, 338 chinook salmon compared to the average of 638 fish (Figure 5, Appendix B.30).

Coho

The lower Stikine River test fishery ended on statistical week 35 (week ending September 2), which precluded complete coverage of the coho run. From historical test fishery catch records, 1986 to 1990, approximately 75% of the coho run migrates through the lower river by statistical week 35 . The cumulative coho test fishery CPUE was expanded accordingly (1.57/0.75) and the resultant projected CPUE (2.09) was calculated to be 17.5% of the total 11.99 cumulative sockeye CPUE. The inriver coho run then was estimated to be 17.5% of the inriver sockeye run size of 142,308 fish, or 24,852 coho salmon. Subtracting the combined inriver catch of 3,418 coho salmon in the Canadian commercial fishery and 227 coho salmon taken in the inriver test fishery gives an estimated total coho escapement of 21,207 fish, which is well below the interim escapement goal range of 30,000 to 50,000 coho salmon; however, aerial surveys of six coho spawning index sites indicated above average spawning escapement (Appendix B.31).

Figure 4. Catches of chinook, coho, pink, and chum salmon in the combined Canadian fisheries in the Stikine River, 1979-1995.

Figure 5. Chinook salmon weir counts and index escapement estimates for major spawning areas and for the entire Stikine River, 1979-1995.

Sockeye Run Reconstruction

The postseason estimate of the Stikine sockeye run size is 218,718 fish, of which 133,955 are of Tahltan Lake origin, 2,802 are of Tuya origin, and 81,971 are non-Tahltan fish (Table 2). These estimates are based on scale-pattern stock-composition estimates for U.S. Districts 106 and 108 catches; egg-diameter and otolith stock-composition estimates for inriver catches; Canadian commercial, aboriginal, ESSR, and test fishery catches; and escapement data. A Stikine run size of this magnitude is 55% above the 1985-1994 average run size of 141,124 sockeye salmon. The 1985-1994 average run sizes of Tahltan and non-Tahltan fish are 67,266 and 73,858 sockeye salmon, respectively (Appendix B.32).

The postseason estimate of the run size is 29% above the preseason forecast of 169,000 fish. This forecast was composed of a Tahltan component of 155,000 sockeye and a non-Tahltan component of 14,000 sockeye salmon. The Tahltan component of the run was estimated by averaging a smolt-based and a sibling-based forecast, 148,200 and 161,600 , respectively. The smolt-based forecast was closest (11% above) to the postseason estimate of 133,955 Tahltan sockeye. For the non-Tahltan sockeye component, the preseason sibling forecast of 14,000 sockeye salmon was 17% of the postseason non-Tahltan run size estimate of 81,971 fish.

Based on weekly random sampling of otoliths collected in District 106 and District 108 commercial fisheries, the contribution from Stikine sockeye fry plants consisted of approximately 27,961 sockeye salmon, 27,259 sockeye of Tahltan Lake origin, and 586 sockeye of Tuya Lake origin. Enhanced returns contributed 10,952 Tahltan and 1,092 Tnya fish to the combined commercial and aboriginal catches; 4,060 Tahltan fish to the ESSR fishery; and 729 Tahltan and 22 Tuya fish to the test fishery. These results are based on otolith sampling conducted in the Canadian fisheries and at Tahltan Lake.

For the Canadian analysis, the SMM appeared to underestimate the run size this season. The final inseason forecast of the run size derived from the SMM (164,800 sockeye) was 25% below the postseason estimate of the total run (218,718 sockeye). For the U.S. analysis, the final inseason forecast of 214,728 sockeye salmon was 2% below the postseason estimate. The SMM will be reviewed and updated to include 1995 data in making predictions for the 1996 season.

The Tahltan Lake smolt count in 1995 totaled 822,284 fish; these originated primarily from the 1993 spawning escapement of 47,104 sockeye salmon and the 1994 fry plant of 0.9 million fish. Otoliths extracted from a random portion of smolts from the 1995 emigration provide an estimate of the wild and hatchery contributions (767,027 and 55,257 , respectively). The estimate of wild smolt production was about what was expected; however, the number of enhanced smolts was much lower than expected. Possible causes for this apparent shortfall will be investigated.

Table 2. Run reconstruction for Stikine sockeye salmon, 1995.

	Tahltan	Tuya	non- Tahltan	Total	Tahltan	
					Wild	Hatchery
Escapement	42,317	1,105	42,849	85,166	26,320	15,997
Brood stock	4,902				3,049	1,853
ESSR	10,740				6,680	4,060
Spawning	26,675	1,105	42,849	70,629	16,591	10,084
Canadian Harvest						
Indian Food	4,941	139	410	5,490	3,514	1,427
Upper Commercial	2,120	60	176	2,355	1,507	612
Lower Commercial	30,848	893	13,881	45,622	21,936	8,912
Total	37,909	1,092	14,467	53,467	26,957	10,952
\% Harvest	42.3\%	65.1%	37.4\%	41.2\%		
Test Fishery Catch	2,064	20	486	2,570	1335	729
Inriver Run	82,290	2,216	57,802	142,308	54,612	27,678
U.S. Harvest ${ }^{\text {a }}$						
106-41\& 106-42	13,292	125	6,448	19,865	6,514	6,778
106-30	3,423	0	2,391	5,814	2,668	755
108	34,950	461	15,330	50,741	15,224	19,726
Total	51,665	586	24,169	76,420	24,406	27,259
\% Harvest	57.7\%	34.9\%	62.6\%	58.8\%		
Test Fishery Catch	0	0	0	0		
Total Run	133,955	2,802	81,971	218,728	79,018	54,937
Escapement Goal	24,000		30,000	54,000		
TAC	109,955	2,802	51,971	164,728		
Canada TAC	54,977	1,401	25,986	82,364		
Actual Catch	37,909	1,092	14,467	53,467		
\% of TAC	34.5\%	39.0\%	27.8\%	32.5\%		
U.S. TAC	54,977	1,401	25,986	82,364		
Actual Catch	51,665	586	24,169	76,420		
\% of TAC	47.0\%	20.9\%	46.5\%	46.4\%		

a Estimates of U.S. harvest differ from Joint Interception Committee estimates because the estimates here are made only for District 106 and 108 gillnet fishery catches.

TAKU RIVER

Taku River salmon are harvested in the U.S. gillnet fishery in Alaskan District 111, in northern Southeast Alaska seine and troll fisheries, and in the Juneau area sport fishery and inriver personal use fishery (Figure 6). Canadian fisheries for Taku River salmon include a commercial gillnet fishery located in the river near the U.S./Canada border, a sport fishery, and an aboriginal fishery.

Harvest Regulations

As with Stikine River issues, efforts to renegotiate harvest shares of Taku River salmon during the Pacific Salmon Commission and government-to-government negotiations in the spring and summer of 1995 were not successful. As a result, the Parties unilaterally developed fishing plans for Taku River salmon stocks.

As in 1994, the Canadian 1995 management plan did not numerically constrain Canadian harvests of sockeye and coho salmon since provisions to do so had expired in 1993. The basic objective of the management plan for each species was to manage according to the conservation requirements, i.e., escapement goals established for each species. In agreement with unexpired portions of Annex IV, the plan did not permit targeting on chinook salmon in the Taku River since both Parties had previously agreed to rebuild chinook salmon by 1995.

The U.S. management plan reflected the provisions that were in effect for 1993, namely to provide for Canadian harvests of 18% of the TAC of wild Taku River sockeye salmon, 50% of the enhanced sockeye TAC, and 3,000 coho salmon. As with the Canadian management plan, targeting on chinook salmon was not permitted.

U.S. Fisheries

The District 111 commercial drift gillnet fishery was opened June 18 and closed on September 27, for a total of 49 fishing days (Appendix C.1). Forty-five days were allowed in Taku Inlet (Subdistrict 111-32), 49 days in Stephens Passage (Subdistrict 111-31), and 12 days in Port Snettisham (Subdistricts 111-33 and 111-34). Lower Stephens Passage (Subdistrict 111-20) was not opened because of extremely poor local pink salmon runs. Fishing time in District 111 was 11% above the 1985-1994 average of 44.3 days. Fishing time in Taku Inlet was 13\% above the 1985-1994 average of 39.8 days. Fishing effort in the district, as measured by the maximum number of boats delivering fish each week times the number of days fished, totaled 4,034 boat-days and was 22% above the 1985-1994 average of 3,296 (Appendix D.1).

Figure 6. The Taku River and principal U.S. and Canadian fishing areas.

The 1995 commercial salmon harvest totaled 4,660 chinook, 103,377 sockeye, 83,626 coho, 41,269 pink, and 350,098 chum salmon (Figure 7, Appendix C.1). The catch of summer chum salmon was an all-time record, and chinook and sockeye catches were above average. The harvest of coho salmon was average, while catches of pink and fall chum salmon were below average. Hatchery stocks contributed significantly to catches of chinook, sockeye, coho, and summer chum salmon.

The chinook harvest of 4,660 fish was 47% above the 1985-1994 average of 3,172 , but the lowest harvest since 1992. Alaska hatchery fish comprised 41% (1,901 fish) of the catch (CWT estimate). Management actions taken for chinook conservation were implemented during the first week of the season when Taku Inlet was closed north of the latitude of Jaw Point. Chinook salmon non-retention was in place from August 11 through the end of the gillnet season as a result of an injunction issued by United States District Court Judge Barbara Rothstein.

The majority (79\%) of the sockeye harvest in District 111 occurred in Taku Inlet, with the remaining catch from Stephens Passage. Port Snettisham was closed to fishing during the summer season to continue rebuilding of Snettisham sockeye stocks. The contributions of Taku River sockeye salmon to the weekly commercial harvests were estimated by applying results of scale pattern analysis and the incidence of the brain parasite Myxobolus arcticus to the weekly sockeye catches. Contribution of enhanced sockeye resulting from domestic and joint U.S./Canada transboundary river projects were estimated inseason and reevaluated postseasonally by analysis of thermal otolith marks. Approximately 91,008 (88%) of the total catch was estimated as Taku River stocks, 9,642 as Snettisham stocks, and 2,727 as U.S. enhanced stock. The U.S. enhanced stock catch was primarily five and six-ear-old returns from fry releases into Sweetheart Lake. The first five-year-old returns from the joint Taku River fry stocking project occurred in 1995; estimated totals of 1,017 Trapper Lake and 3,049 Tatsamenie Lake enhanced sockeye salmon were harvested in the District 111 gillnet fishery this year. The contribution of enhanced Tatsamenie fish is expanded based on an estimated readability index of 40% (U.S. otolith lab's best estimate based on voucher, i.e., juvenile baseline, and adult samples).

The summer chum catch (i.e., the District 111 chum harvest through statistical week 33; August 19) of 339,178 fish was a record, over 3.5 times the 1985-1994 average of 95,599 . The catch exceeded the previous record of 198,002 taken in 1994, and marked the third consecutive year the summer chum catch record has been broken. Quantitative contribution estimates of enhanced chum salmon are not available, but chum salmon returning from DIPAC fry releases are believed to have contributed to the majority of the catch. Stephens Passage catches comprised 43% (146,621 fish) of the total summer chum catch.

In contrast to the summer chum run, the fall chum run was again poor in 1995. The total fall chum harvest (chum salmon caught from August 20, statistical week 34, through the end of the season) was 10,920 fish. This is 35% of the 1985-1994 average of 30,789 fish. Chum salmon taken in the fall in District 111 are believed to be almost exclusively wild chum salmon stocks from the Taku and Whiting rivers.

The pink salmon catch of 41,269 in the District 111 gillnet fishery was just 21% of the 1985-1994 average of 198,995 fish. This was a result of the very poor returns to Taku River and Stephens Passage pink salmon systems, which were expected because of extremely poor escapements in the 1993 parent year. A total of 22,800 pink salmon (55% of the pink harvest) came from Stephens Passage. Returns of DIPAC hatchery pink salmon were greatly reduced because the last large production level release of pink salmon was in 1992; contribution rates of enhanced pink salmon is unknown.

Figure 7. Average catches and fishing efforts compared with 1995 values for the Alaskan District 111 commercial fishery and the Canadian commercial fishery in the Taku River.

The total catch of 83,626 coho salmon was approximately equal to the 10 -year average of 83,869 fish. This catch includes a combination of wild coho runs to the Taku River, Port Snettisham, Stephens Passage, and local Juneau area streams as well as Alaskan hatchery fish. The estimate of contribution of U.S. hatchery coho salmon to the fishery was 13,666 fish, or 16% of the total coho catch. Approximately 99% of the hatchery fish were from DIPAC Hatchery releases. The majority of the coho catch ($85 \% ; 70,826$ fish) occurred in Taku Inlet.

Weekly fishing time in Taku Inlet during the summer season varied from two to four days. Sockeye fishing success was generally below that of the last five years but about equal to the 1985-1994 average. Management decisions for Taku Inlet were made based on sockeye abundance despite outstanding catches of chum salmon during the entire summer season. During statistical weeks 25 to 27 three days of fishing were allowed in Taku Inlet. Fishing time was extended to four days during statistical week 28 (July 9 through 15) because of excellent sockeye catches and adequate inriver run size estimates generated from the Canyon Island tagging program. Three days of fishing were allowed in Taku Inlet during statistical weeks 29 and 30 (July 16 through July 29), but catches and CPUE were well below average. During this time some of the better catches occurred in outer portions of Taku Inlet such as Pt. Arden, as well as Stephens Passage, which can be indicative of strong contributions of Snettisham sockeye salmon. Fishing time in Taku Inlet was, therefore, reduced to two days during statistical week 31 (July 30 through August 5). Despite continued below average catches in Taku Inlet again in statistical week 31, fishing time was increased to three days for the last two weeks of the summer season because excellent Canadian inriver harvests and inriver escapement estimates indicated improved run strength. Sockeye catches in statistical week 32 were slightly above average but catches in statistical week 33, particularly within Taku Inlet, were well below average.

Given the estimates available for Taku and Snettisham sockeye run sizes it is surprising that better sockeye catches and CPUE were not experienced in the District 111 fishery. It is possible that catch rates were negatively affected by the strong contributions of two-ocean sockeye salmon apparent in the catch as well as among Taku River and Port Snettisham escapements; these small fish are less susceptible to capture in the commonly used gillnet mesh sizes (5.25 to 5.38 inches) in District 111. The unprecedented harvests of summer chum salmon may also have reduced fishing success for other species. Additionally, postseason analysis of detailed stock assessment data will indicate whether the small fish size may have caused upward bias in mark-recapture estimates of Taku River sockeye abundance.

Sockeye and chum catches were well above average throughout the summer season in Stephens Passage. An extra 24 hours of fishing time was allowed south of Circle Point (Subdistrict 111-31) each week from July 5 through August 5 (statistical weeks 27 through 31) to target on Limestone Inlet enhanced chum salmon returns; a six-inch minimum mesh restriction was employed during the final 24 hours of fishing in statistical weeks 27 through 30 to limit the harvest of Snettisham sockeye salmon. A mesh restriction was not implemented during statistical week 31 because by then returns were composed primarily of three-yearold chum salmon, which were not easily catchable in the larger mesh gear, and initial aerial surveys of Crescent Lake indicated the sockeye escapement to this system was doing well. Chum catches in Stephens Passage dropped off in statistical week 31. Fishing time in Stephens Passage during statistical weeks 32 and 33 was limited to three days to ensure an adequate escapement of sockeye salmon to Speel Lake, the brood source for the developing Snettisham Hatchery sockeye salmon enhancement program.

Fall management was initiated on August 20 (statistical week 34); Port Snettisham was reopened to fishing for the fall season. Three days of fishing were allowed each week in the district through the end of September (statistical week 39). Coho catches were above average through statistical week 36 (September 3 to 9), but dropped off to well below average in statistical week 37, when only 4,319 coho salmon were taken. As a result, a two-day fishery was announced for statistical week 38 but due to the dramatically improved catches the fishery was extended to three days. Port Snettisham was closed in statistical week 39 due to lagging coho escapements to Crescent Lake noticed during sockeye egg-take operations at this location. Coho catches declined in statistical week 39 and the district was closed, along with all other drift gillnet fishing districts in Southeast Alaska. Catches of fall chum salmon were below average throughout the fall season.

Several other fisheries in the Juneau area harvested transboundary river stocks in 1995. Estimates of harvest in the U.S. personal use fishery in the lower Taku River are 37 chinook, 2,058 sockeye, 202 coho, 83 pink, and 12 chum salmon (Appendix D.4). The spring Juneau-area sport fishery harvested an estimated 3,988 chinook salmon. An estimated 1,920 (48\%) were mature wild spawners and additional $2,011(50 \%)$ were of Alaskan hatchery origin (coded-wire-tag estimate). The July Hawk Inlet purse seine fishery in northern Chatham Strait was not opened this year due to very poor runs of pink salmon to the Taku River and the Stephens Passage and Lymn Canal systems.

Canadian Fisheries

Taku River commercial fishers harvested 32,640 sockeye, 13,629 coho, 1,577 large chinook, 298 jack chinook (fish less than 2.27 kg), 2 pink, and 1 chum salmon, and 205 steelhead in 1995 (Appendix C.4). Catches of sockeye, coho, and chinook salmon were above average. The sockeye catch was the second highest on record and was 55% above the 1985-1994 average of 21,071 sockeye salmon. The coho catch was also the second highest on record and was more than three times the previous 10 -year average of 4,341 coho salmon. The catch of large chinook salmon was 62% above the previous 10 -year average of 974 fish, and the catch of jack chinook salmon was 81% above the previous 10 -year average of 165 jack chinook salmon. With the exception of steelhead, the catches of other species were below average (Figure 7, Appendix D.5). The fishery was open for a total of 51 days, well above the previous 10 -year average of 29 days and the seasonal fishing effort was 428 boat-days, 53% above the 1985-1994 average of 279 boat-days. The above average fishing time and effort along with the above average catch of coho salmon was reflected in the existence of a fall fishery which in many previous years had been curtailed by Treaty restrictions.

In addition to the commercial catches, the aboriginal fishery harvested 70 chinook, 71 sockeye, 109 coho, 7 chum salmon, and 4 steelhead in 1995.

The Taku River Tlingit First Nation (TRTFN), in cooperation with the Department of Fisheries and Oceans (DFO), conducted a creel census of the Nakina River in 1995. A total of 33 non-guided fishers have returned completed questionnaires; information from the returns was expanded to provide the an estimate of 1,518 chinook salmon landed, including 1,422 released and 96 retained.

The Canadian preseason forecast predicted a run size of $211,300^{2}$ sockeye salmon, which was close to the 1984-1994 average run size of 205,718 sockeye salmon.

The commercial fishery commenced at noon on Sunday, June 18 (statistical week 25) for a scheduled opening of two days. The sockeye CPUE was approximately double the average value for this week; however, low water levels, which may have increased catchability, and concerns about potential effects on increasing incidental chinook catches lead to the decision to close the fishery after two days.

Fishing time was increased to three days per week in the following week and remained at that level through July 22 (statistical week 29). Above average sockeye CPUE persisted until statistical week 29 when the CPUE dipped below average.

The fishery in the early part of statistical week 30 (July 23 to 30) was seriously impacted by flooding conditions which caused catches and effort to drop significantly. The fishery closed on Wednesday after the scheduled three days. By Thursday, fishing conditions had improved enough to warrant providing additional fishing time to compensate for the lost fishing opportunity earlier in the week. The fishery was reopened for an additional 27 hours commencing 09:00 Thursday during which time catches improved greatly.

Above average CPUE in the first 48 hours of fishing in statistical week 31 (July 30 to August 5) prompted a 24 -hour extension over the scheduled three-day opening. This became the peak sockeye fishing week of the season and, compared to previous years, both the catch of 6,781 sockeye salmon and the CPUE of 144 sockeye salmon per boat-day were the second highest on record for this week. Inseason population estimates from the Canada/U.S. mark-recapture program at Canyon Island indicated that the sockeye escapement goal of 71,000 to 80,000 fish was surpassed by this time in the season.

The statistical week 32 (August 6 to 12) fishery was extended by 24 hours over the scheduled three days, again in response to above average run strength. Thereafter, fishing times remained at three days per week through mid-September and the end of the sockeye season. With the exception of statistical week 33, the sockeye CPUE was well above average for the latter half of the season.

Throughout the season, the weekly catches and CPUE of coho salmon were well above average with the exception of statistical week 37 (September 10 to 16) which was washed out by a Tulsequah flood. By the end of August, the cumulative coho CPUE was the highest on record and was 48% above average. The cumulative catch through statistical week 34 was also a record high, 6,753 pieces. These factors indicated a strong early component to the coho run. The maximum catch of coho salmon occurred in statistical week 36 (September 3 to 9), one week later than in 1994. Fishing time was increased to four days commencing statistical week 37 (September 10) as the number of fishers active in the fishery declined.

The inseason forecasts of the sockeye run ranged from approximately 163,300 fish in statistical week 27 to 248,900 fish in statistical week 35 (Table 3). The forecasts were derived from inseason harvest data and estimates of the cumulative inriver run from the Canada/U.S. mark-recapture program. Expansions of the data to project total-season run forecasts were conducted utilizing historical run timing data; it was assumed that the run timing was average to one week earlier than normal. This assumption was made to account for

[^0]the relative lateness of weeks in 1995 relative to actual calendar dates. For example, statistical week 35 in 1995 was the week of August 27 to September 2, whereas in 1994, statistical week 35 occurred August 21 to August 27. Generally, greater emphasis was placed on the forecasts developed under the early run timing scenario.

Forecasts of the sockeye salmon spawning escapement were also made and ranged from approximately 101,800 fish (statistical week 28) to 144,100 sockeye salmon (statistical week 26). The final inseason forecast indicated a run size of approximately 248,800 sockeye salmon and a spawning escapement of approximately 117,400 fish. According to the postseason run size estimate of 239,516 sockeye salmon, the total Canadian catch of 32,711 sockeye salmon represented approximately 19% to 21% of the TAC.

As in recent years, both set and drift gillnetting techniques were utilized with the majority of the catch taken in drift gillnets. Mesh sizes were restricted to less than 150 mm through mid-July to minimize the incidental catch of chinook salmon.

Contribution of enhanced sockeye in the Canadian catch was estimated from analysis of otolith marks. The harvest of 1,334 fish, 4% of the catch of 32,640 fish, consisted of 331 and 1,003 from Trapper and Tatsamenie lake outplants, respectively.

Table 3. Canadian inseason forecasts of run size, TAC, and spawning escapement of Taku sockeye salmon, 1995.

Statistical Week	Run Size Forecast	TAC a	Spawning Esc. Forecast
preseason	211,300	136,300	75,000
25	211,300	136,300	75,000
26	211,300	136,300	144,100
27	163,300	88,300	122,300
28	181,600	106,600	101,800
29	183,700	108,700	113,500
30	210,500	135,500	109,200
31	213,400	138,400	121,200
32	232,500	157,500	102,200
33	236,400	161,400	111,200
34	236,400	161,400	111,200
35	248,800	173,800	117,400

a The TAC is calculated by subtracting the midpoint of the escapement goal range $(75,000)$ from the run size forecast.

Escapement

Sockeye

Spawning escapement of sockeye salmon in the Canadian portion of the Taku River drainage is estimated from the joint Canada/U.S. mark-recapture program. Counting weirs operated by DFO at Little Trapper and Tatsamenie lakes provide information on the distribution and abundance of discrete spawning stocks within the watershed. The weir at Little Tatsamenie Lake was relocated to Tatsamenie Lake in 1995. Additional sockeye enumeration programs were conducted at Kuthai Lake and the Nahlin River by the TRTFN in 1995.

A mark-recapture program has been operated annually from 1984 to 1995 to estimate the above-border inriver run size (i.e., border escapement); spawning escapement may then be estimated by subtracting the inriver catch. The 1995 estimate of border escapement is 146,450 sockeye salmon and the spawning escapement, 113,739 fish (Appendix D.9). This spawning escapement is 8% above the 1984-1994 average of 105,001 fish and is 42% higher than the upper limit of the interim escapement goal range of 71,000 to 80,000 sockeye salmon (Figure 8).

The escapement through the Little Trapper Lake weir was 11,524 sockeye salmon, 13.1% lower than the 1983-1994 average of 13,256 fish (Appendix D.9).

Prior to 1995, weir counts for the Tatsamenie system were made at Little Tatsamenie Lake and included fish which spawn between Little Tatsamenie and Tatsamenie lakes as well as fish which spawn in Tatsamenie Lake and its outlet stream. In 1995 the weir was moved upstream to Tatsamenie Lake. The escapement count through the Tatsamenie Lake weir was 5,780 sockeye salmon. To be comparable with earlier spawning estimates, it needed to be expanded to represent the entire Tatsamenie system. In addition, the weir was installed late in relation to the run timing so the weir count was first expanded to include the missed portion of the upper Tatsamenie run (approximately 12\%). In 1994 weirs were operated at both Little Tatsamenie and Tatsamenie lakes; approximately 40% of the fish counted at the Little Tatsamenie weir did not migrate as far as the upper weir site at Tatsamenie Lake. Since this was from only one year and seemed high to the biologist working on the system, the upper Tatsamenie estimate was expanded by $1 / 0.8$ rather than $1 / 0.6$. The resulting escapement to the entire Tatsamenie system, rounded to the nearest thousand, was 8,000 fish. A total of 1,393 sockeye salmon were taken for brood stock leaving a spawning escapement of 6,607 sockeye salmon for 1995 , the third highest spawning escapement since 1985 when estimates were first recorded

The sockeye count through the Kuthai Lake weir was 3,310 fish, the third highest recorded for the weir and close to the average count of 3,431 sockeye salmon.

The sockeye count through the Nablin weir was 3,711 fish, the highest recorded since counts were started in 1988 and nearly twice the average count of 1,275 fish.

Figure 8. Sockeye catches for the Alaskan District 111, the Icy and Chatham Straits, the combined Canadian commercial and food fisheries in the Taku River, and Taku sockeye escapements, 1979-1995.

Taku Drainage Index Counts

Figure 9. Taku River chinook index escapement counts, 1975-1995.

Chinook

Aerial surveys of the large chinook salmon (three-ocean and larger) to the six escapement index areas annually surveyed by the Alaska Department of Fish and Game (ADF\&G) were as follows: Nakina, 3,943; Kowatua, 550; Tatsamenie, 678; Dudidontu, 731; Tseta, 786; Nahlin, 2,069 fish (Appendix D.10). The total of 8,757 large chinook salmon observed was below the record count of 13,204 in 1993 and 8% below the 10 -year average of 9,515 fish. The interim index escapement goal for the Taku drainage is 13,200 large chinook salmon to the six index areas.

The number of chinook carcasses counted at the Nakina River weir in 1995 was 2,012 fish. A total of 3,401 chinook salmon was counted through the Nahlin River weir.

Coho

Spawning escapement of coho salmon in the Canadian portion of the Taku drainage was estimated from the joint Canada/U.S. mark-recapture program. Tags were applied though statistical week 39 and tag recovery occurred until statistical week 40 (October 1 to 7). Since the mark-recapture data used did not cover the full migration period, District 111 CPUE information was fit to a normal curve to provide an estimate of the proportion of the run that was missed; the estimate of 61,739 was subsequently expanded by 0.889 . The above-border escapement was estimated to be 69,448 fish and the spawning escapement was 55,710 fish (Appendix D.11). The spawning escapement is below the 1987-1994 average of 80,256 coho salmon; however, it is well above the interim escapement goal of 27,500 to 35,000 coho salmon.

A total of 14 coho salmon was counted from August $8-10$ at a weir located on the Nahlin River which was operated by the TRTFN; this count is incomplete and, therefore, not comparable to the previous average (1988 and 1992-1994) of 1,183 coho salmon. The Tatsamenie Lake weir was not in operation long enough to achieve a meaningful coho estimate.

Pink

A total of 1,712 pink salmon was counted at the Canyon Island fish wheels (Appendix D.14). There was no program in place to estimate the escapement of pink salmon to the Taku River in 1995 due to the low expected run. Pink salmon runs on the Taku were previously strong in odd years (1985-1991 odd-year average $=31,300$ fish $)$ until 1993, which was the year with the lowest catch (1,625 fish). The 1994 catch was 27,100 pink salmon compared with the 1984-1992 even-year average of 10,920 fish.

Chum

There was no program in place to estimate the system-wide escapement of chum salmon. Low catch and CPUE information from the Canyon Island fish wheels and inriver commercial fishery (Appendix D.5) indicated that there was a below average chum salmon run in 1995. A total of 218 chum salmon was captured in the fish wheels, 72% below the 1985-1994 average catch of 744 chum salmon (Appendix D.14). Chum salmon were observed in only three of the five index areas which are aerial surveyed by the TRTFN; the count in these areas was 87 chum salmon. Aerial surveys of Canadian mainstem spawning areas conducted by ADF\&G reported more fish than the TRTFN surveys; however, the escapement was still considered poor.

The Taku River fall chum run has continually declined since 1989. It is unlikely that the spawning escapement goal of 50,000 to 80,000 chum salmon was achieved.

Steelhead

There was no program in place to estimate the system-wide steelhead escapement. An escapement goal has not been set for this species.

Sockeye Run Reconstruction

The estimated U.S. harvest of Taku River sockeye salmon in the District 111 fishery is 91,008 fish (86,942 wild fish, and 1,017 and 3,049 from Trapper and Tatsamenie outplants, respectively). An additional 2,058 sockeye salmon was estimated to have been taken in the U.S. inriver personal use fishery (Table 4).

The estimate of the magnitude of the above-border sockeye run in 1995, based on the joint Canada/U.S. mark-recapture program, was 146,450 fish. Subtracting the Canadian inriver catch of 32,711 sockeye salmon in the commercial and aboriginal fisheries from the above-border run estimate results in an aboveborder escapement estimate of 113,739 fish.

The run size estimate, determined by summing the estimated U.S. harvest (91,008 commercial and 2,058 personal use fish) and the above-border run (146,450), was 239,516 sockeye salmon, which was 14% above the 1984-1994 average run size of 210,918 fish (Appendix D.13). Based on the escapement goal range of 71,000 to 80,000 fish, the TAC was 159,516 to 168,516 sockeye salmon, of which the U.S. harvested 55% to 58% and Canada harvested 19% to 21% (Table 4). The overall exploitation rate was estimated to be 53% in 1995.

Table 4. Taku and Snettisham sockeye salmon run reconstruction, 1995. Estimates do not include Taku spawning escapements below the U.S./Canada border or Taku sockeye salmon harvested in marine areas outside District 111.

	Taku	Snettisham Stocks
Escapement	113,739	Not Available
Canadian Harvest		
Commercial		
Wild	31,306	
Enhanced	1,334	
Food Fishery	71	
Total	32,711	
\% Harvest	26.0\%	
Test Fishery Catch	0	
Above Border Run	146,450	
U.S. Harvest ${ }^{\text {a }}$		
District 111		
Wild	86,942	9,642
Enhanced	4,066	2,727
Personal Use	2,058	
Total	93,066	
\% Harvest	74.0\%	
Test Fishery Catch	0	
Total Run	239,516	
Taku Harvest Plan	Minimum	Maximun
Escapement Goal	71,000	80,000
TAC	168,516	159,516
Canadian portion	19.4\%	20.5\%
U.S. Portion	55.2\%	58.3\%

[^1]
ALSEK RIVER

Alsek River salmon stocks contribute to the U.S. commercial gillnet fisheries located in Dry Bay, at the mouth of the Alsek River (Figure 10). An unknown quantity of Alsek origin fish are also taken in the U.S. commercial gillnet and troll fisheries in the Yakutat area. No commercial fishery exists in the Canadian portions of the Alsek River drainage, although aboriginal and recreational fisheries occur in the Tatshenshini River and some of its headwater tributaries (Figure 10).

Figure 10. The Alsek River and principal U.S. and Canadian fishing areas.

Harvest Regulations

Although catch sharing of Alsek salmon stocks between Canada and the U.S. has not been specified, Annex IV does call for a cooperative attempt to rebuild depressed chinook and early-run sockeye stocks. Interim escapement goal ranges for Alsek sockeye and coho salmon have been set by the Transboundary Technical Committee at 33,000 to 58,000 sockeye salmon, and 5,400 to 25,000 coho salmon. Instead of a system-wide chinook escapement goal, a revised goal, expressed in terms of the Klukshu stock only, has been established at 4,700 chinook salmon which is currently under review. The revision made in the fall of 1991 reflected the desire to reduce the uncertainty over expansion factors which had no scientific backing.

U.S. Fisheries

The Dry Bay commercial set gillnet fishery harvested 670 chinook, 33,112 sockeye, 14,184 coho, 13 pink, and 347 chum salmon (Appendix E.1). The fishery was open for 53.5 days, 29% longer than the 1985-1994 average of 41 days (Appendix E.4). The majority of fishing time (34 days) occurred late in the season (August through early October) after the sockeye run had largely passed through the fishery. Effort remained high into September as a result of the two week closure of the East Alsek River. The total effort expended in the fishery was 926 boat-days, which exceeded the 1985-1994 average of 398 boat-days by 132% (Figure 11).

Preseason expectations were for an average run of early sockeye salmon, a below average run of late run sockeye and an average run of chinook salmon. These expectations were based on parent-year escapements to the Klukshu River.

The Alsek River was opened to commercial fishing on statistical week 23, the first Monday in June (June 4). This marked the second year in a row that the Alsek was opened on the earliest date allowed by regulation. The initial opening was limited to 12 hours in order to evaluate the effectiveness of chinook conservation measures. Fishery performance indicated that the early segment of the sockeye run was not strong and that the chinook harvest was above expected levels. Fishing time was not extended during the initial opening. CPUE was slightly above average during the second week of the season, and fishing time was increased to two days during this time. Fishing time was maintained at one day during the third week (statistical week 25; June 18 to 24) of the season, and was increased to three days for statistical week 26. Two days were allowed for the next two statistical weeks (27 and 28; July 2 to July 15) of the season. Both the management model and the CPUE figures continued to indicate a strong run, and in statistical weeks 29 and 30 (July 16 to 29) fishing time was increased to three and four days, respectively. Fifty-three percent (17,496 sockeye), were caught during these last two weeks of July. Fishery performance was used to adjust fishing time during the last three weeks of the sockeye season (statistical weeks 31 to 33; July 30 to August 19) when openings were set for two days, one day, and three days, respectively. The East Alsek River sockeye run did not develop as expected, and the East Alsek River remained on reduced fishing time through the second week of August. The East Alsek River was then closed from August 8 through August 28. Effort that normally would have been directed towards the East Alsek River remained on the Alsek, and effort levels were above average throughout the sockeye season. The effort of 926 boat-days was the fifth highest since 1963.

Figure 11. Average catches and fishing efforts compared with 1995 values for the Alaskan Dry Bay commercial fishery and the Canadian combined aboriginal and sport fisheries in the Alsek River.

As a reflection of the strong area-wide coho run, fishing times were maintained at four days for statistical weeks 35 to 40 before being dropped to three days for statistical week 41 (October 8 to 14) the final week of the season. The coho harvest of 14,184 was the highest since 1959 and was almost four times the 19851994 average of 3,622 . A survey on October 10 revealed average to above average escapement in Dry Bay area local creeks. The Alsek was closed for the season on October 12.

Historically, a set gillnet fishery targeting on chinook salmon was conducted during May and early June. Due to depressed runs, the directed fishery has been closed since 1962 and chinook salmon are now harvested only incidentally during the sockeye fishery in early June. In 1995, the early June periods were limited in time in order to reduce the impact on chinook salmon. Commercial fishers were encouraged to reduce the harvest of chinook salmon by remaining at the fishing site and releasing live fish. This voluntary program has been used with some success on the Situk River under similar circumstances. As in recent years, gillnet mesh size was restricted to a maximum of six inches through July 1. The chinook harvest of 670 fish was more than double the 1985-1994 average of 308 fish, but was below the 1961-1994 average of 858 chinook salmon. Seventy-six percent of the chinook catch (511 fish), was taken during the first two weeks of the season.

The Alsek River sockeye harvest of 33,112 fish was 113% above the $1985-1994$ average of 15,546 , and was the highest catch since 1979 (Figure 12). The majority of the harvest ($92 \%, 30,595$ sockeye) was taken in the river, with the remainder of the catch coming from the surf area. Adjustments to the weekly fishing periods during the sockeye season relied heavily on fishery performance data; the decision of whether or not to extend any given period was generally based on catch and CPUE figures gathered inseason during that particular period. Parent-year escapement information and the Alsek management model projections were also factors in determining the weekly fishing periods. The management model uses multiple regression analysis of fishery catch and effort data to generate weekly projections of the U.S. Alsek River catch, the Klukshu River escapement, and total index run size (U.S. catch + Klukshu weir count). Model results tend to get more accurate as the season progresses; early season projections are of limited use for management purposes. In 1995, model projections were quite accurate, with catch, escapement, and index run size all being slightly underestimated (Table 5). Various factors affect the accuracy of the model, including the relative strengths of early and late runs to Klukshu, the abundance of stocks not represented in the model (e.g., Village Creek stock), and the accuracy of manager's projections of effort levels.

Table 5. Inseason U.S. forecasts of the 1995 Alsek River sockeye sahmon catch, Klukshu River weir count, and index run size (catch + Klukshu weir count).

	Start			
Statistical Week	Date	Total Catch	Klukshu Count	Index Run
26	25-Jun	23,268	18,729	41,997
27	2-Jul	20,229	17,581	37,810
28	9-Jul	18,381	17,358	35,739
29	16-Jul	21,990	17,647	39,637
30	23-Jul	29,231	19,022	48,253
31	30-Jul	30,113	18,769	48,882
Actual				

Figure 12. Alsek sockeye catches and weir counts, 1979-1995.

Canadian Fisheries

The center of aboriginal fishing activity in the Alsek drainage occurs at the Champagne/Aishihik Indian village of Klukshu, on the Haines Road, about 60 km south of Haines Junction. Salmon are harvested by means of gaff and traditional fish traps as the fish migrate up the Klukshu River into Klukshu Lake. Gaff fisheries also exist on Village Creek, Goat Creek, and the Blanchard River.

As in recent years, management actions were taken to conserve chinook and early run sockeye stocks. The fishing plan for the aboriginal fishery for the period prior to August 13 allowed only elders to fish by means of fish traps for 1.25 days per week. From this date on, fishing by traps was allowed 3.25 days per week.

The gaff fishery was open seven days per week in all areas to September 5; however, gaffing for sockeye salmon in the Klukshu River was prohibited prior to August 13, except by elders. Gaffing for chinook salmon was prohibited in the waters of Goat Creek, Stanley Creek, and the Parton River.

The aboriginal food fishery harvested an estimated 580 chinook, 1,745 sockeye, and 83 coho salmon. The Klukshu chinook weir count of 5,678 was approximately 136% above average (1985-1994) and the aboriginal catch of 580 chinook salmon was almost twice average. The sockeye catch was 8% below the 1985-1994 average of 1,901 fish (Appendix E.6), while the weir count of 20,696 sockeye salmon was 13% above the 1985-1994 average of 18,337 fish. The food fishery catch data was summarized weekly from daily catch statistics gathered inseason. Weekly catches and annual comparisons appear in Appendices E. 2 and E. 6.

The majority of the sport fishing effort on this drainage occurs on the Tatshenshini River, at and just downstream of the mouth of the Klukshu River in the vicinity of the abandoned settlement of Dalton Post. Retention of sockeye salmon in the recreational fishery was prohibited prior to August 15 to protect early runs. The chinook daily catch and possession limits were one and two, respectively; the overall daily catch and possession limits for salmon were two and four, respectively. Sport fishing in the Dalton Post area was open from 6:00 a.m. Saturday to 12:00 noon Tuesday each week until July 27 when the area was opened seven days per week as a result of the record chinook salmon run. On August 15 the original restrictions, 6:00 am Saturday to 12:00 noon Tuesday, were reinstated in the Dalton Post area. After September 31, the fishery was open seven days per week and extended to include the Klukshu River. The headwater areas within the drainage, upstream of the British Columbia/Yukon border, were closed for the season to protect spawning chinook salmon.

The recreational fishery harvested an estimated 1,044 chinook, 682 sockeye, and 527 coho salmon. Compared to 1985-1994 average sport catches, the chinook catch was 2.8 times the average of 272 fish, the sockeye catch was 2.1 times the average of 330 fish, and the coho catch was 3.4 times the average of 120 fish. The catch data were derived from a creel census program conducted in the Dalton Post area by the Klukshu weir personnel. Additional catch data were collected in other tributaries by DFO fishery officers. Weekly estimates and annual comparisons are listed in Appendices E. 2 and E.6.

Escapement

It is currently not possible to accurately assess whether the system-wide escapement goals for Alsek sockeye and coho salmon are being met because total drainage enumeration programs are not established. A large, but unknown, and presumably variable proportion of the escapement of each species is enumerated at the weir on the Klukshu River. Current escapement monitoring programs including the Klukshu weir, Village Creek electronic counter, and aerial surveys do, however, allow annual comparisons of escapement indices. The most reliable comparative escapement index for Alsek drainage salmon stocks is the Klukshu River weir count

Sockeye

A total of 20,696 sockeye salmon was counted through the Klukshu weir in 1995 and consisted of a below average (1985-1994) early run count of 2,289 (count through August 15), and an above average late run of 18,407 fish. The early run count was 27% below the 1985-1994 average of 3,140 fish. The late run count, however, was 21% above the 1985-1994 average of 15,197 sockeye salmon (Appendix E.7). The estimated Village Creek sockeye escapement was 4,041 sockeye salmon, 19% below the 1986-1994 average of 5,018 fish (Appendix E.8).

Comparative counts for other Alsek index tributaries appear in Appendix E.8. A count of 2,700 sockeye salmon for Basin Creek was well above the 1985-1994 average count of 1,133 fish. The maximum count for the Tanis River was 350 sockeye salmon, 75% below the 1985-1994 average of 1,408 fish. Cabin Creek was not surveyed in 1995.

Chinook

The most reliable comparative escapement chinook salmon index for the Alsek drainage is the Klukshu weir count. The chinook weir count in 1995 of 5,678 fish was 136% above the 1985-1994 average of 2,408 fish (Figure 13, Appendix E.7). The 1995 count was the highest count recorded since the start of the weir program in 1976, and marks the first year that the interim escapement goal of 4,700 Klukshu chinook salmon was achieved.

Due to poor weather conditions, aerial chinook surveys were delayed approximately one week from the estimated peak spawning period in 1995. Counts, therefore, are lower than expected. The count of 260 chinook salmon in the Takhanne River was above the 1985-1994 average of 228 fish by 14%. Aerial counts of 338 chinook salmon at the Blanchard River were close to the 1985-1994 averages of 337 chinook salmon. The survey at Goat Creek was too late for a meaningful count (Appendix E.9). The aerial survey count of 1,053 Klukshu chinook salmon was 19% of the weir count of 5,678 fish.

Coho

Although it is understood that the Klukshu weir count of coho salmon is incomplete and does not include fish that migrate after mid-October, the 1995 count of 3,614 fish was 105% above the 1985-1994 average of 1,764 fish.

Escapement counts for coho salmon on the U.S. side of the border were generally average. The combined systems coho salmon survey count of 1,050 fish was essentially equal to the 1985-1994 average of 1,043 fish.

Run Reconstruction

Estimates of the Klukshu contribution to the sockeye salmon run to the Alsek drainage vary from 37\%, as estimated from an ADF\&G mark-recapture study conducted in 1983, to 60%, based on Canadian fishery managers' professional judgment. The Klukshu weir count divided by the estimated proportion of Klukshu fish that constitute the total Alsek run, minus the recreational and aboriginal fishery catches, yields an escapement estimate for the Alsek River. The estimated escapement added to the U.S. commercial and subsistence catches yields an estimate of the entire Alsek run. Using the 37% to 60% contribution range, the estimated 1995 sockeye salmon escapement in the Alsek River was on the order of 32,000 (Canada) to 54,000 (U.S.) fish and the estimated Alsek sockeye salmon run was on the order of 65,000 (Canada) to 87,000 (U.S.) sockeye salmon. The interim sockeye salmon escapement goal for the Alsek River is from 33,000 (U.S.) to 58,000 (Canada) fish.

Table 6. Catch and Klukshu index escapement data for Alsek sockeye, chinook, and coho salmon for 1995.

	Sockeye	Chinook	Coho
Escapement Index			
Klukshu Weir Count			
Klukshu Escapement	20,696	5,678	3,614
	19,817	5,394	3,564
Harvest $^{\text {b }}$			
U.S. Commercial	33,112	670	14,184
U.S. Subsistence	167	51	53
Canadian Sport	682	1,044	527
Canadian Aboriginal	1,745	580	83
Total	35,706	2,345	14,847

a Klukshu River salmon stocks represent an assumed large and variable portion of the total Alsek River salmon escapement.
b U.S. harvest estimate differs from Joint Interception Committee estimate because no estimates are made for catches other than the listed fisheries.

Figure 13. Alsek chinook catches and weir counts, 1979-1995.

Figure 14. Alsek coho catches and weir counts, 1979-1995. The weir count for coho is incomplete because the weir is dismantled before the entire coho run has passed.

APPENDICES

Appendix A.1. Weekly salmon catch and effort in the Alaskan Subdistrict 106-41 and 106-42 (Sumner Strait) commercial drift gillnet fishery, 1995.

Week	Start	Catch					Effort		
									Permit
	Date	Chinook	Sockeye	Coho	Pink	Chum	Permits	Days	Days
25	18-Jun	243	6,359	706	322	14,789	59	2	118
26	25-Jun	155	11,232	2,178	6,669	16,135	77	2	154
27	2-Jul	75	8,184	1,769	6,412	19,291	67	2	134
28	9-Jul	121	17,357	2,765	9,565	20,618	78	2	156
29	16 -Jul	24	12,403	2,429	5,284	16,006	81	2	162
30	23-Jul	25	28,565	5,529	16,335	24,371	76	3	228
31	30-Jul	11	15,630	5,932	18,865	13,329	82	2	164
32	6-Aug	9	13,363	7,563	25,430	15,709	68	2	136
33	13-Aug	0	11,768	13,746	28,832	18,639	67	3	201
34	20-Aug	0	6,824	16,632	26,058	13,326	88	3	264
35	27-Aug	0	1,678	22,267	7,119	7,738	81	3	243
36	3-Sep	0	284	16,236	2,874	5,016	70	3	210
37	10-Sep	0	39	7,786	180	2,059	50	2	100
38	17-Sep	0	27	4,019	58	2,281	37	2	74
39	24-Sep	0	0	56	1	62	5	1	5
Total		663	133,713	109,613	154,004	189,369	986	34	2,349

Appendix A.2. Weekly stock proportions and catches of sockeye salmon harvested in the Alaskan Subdistrict 106-41\& 106-42 (Sumner Strait) commercial drift gillnet fishery, 1995. Data based on scale pattern analysis.

Week	Alaska	Canada	Stikine				Thermal Marked Tahltan	CPUE of Stikine Fish			
			$\begin{array}{r} \text { All }^{\alpha} \\ \text { Tahltan } \end{array}$	Tuya	$\begin{array}{r} \text { non- } \\ \text { Tahltan } \end{array}$	Total		$\begin{array}{r} \mathrm{All}^{\mathrm{a}} \\ \text { Tahltan } \end{array}$	Tuya	$\begin{array}{r} \text { Non- } \\ \text { Tahltan } \end{array}$	$\begin{array}{r} \mathrm{All} \\ \text { Stikine } \end{array}$
Proportions											
25	0.193	0.376	0.390	0.000	0.040	0.431	0.185	0.225	0.000	0.062	0.179
26	0.195	0.327	0.424	0.000	0.053	0.477	0.225	0.330	0.000	0.111	0.268
27	0.303	0.306	0.391	0.000	0.000	0.391	0.130	0.255	0.000	0.000	0.184
28	0.294	0.559	0.130	0.000	0.016	0.147	0.054	0.155	0.000	0.051	0.126
29	0.485	0.473	0.018	0.010	0.014	0.042	0.030	0.015	1.000	0.031	0.025
30	0.294	0.631	0.003	0.000	0.072	0.075	0.005	0.005	0.000	0.254	0.072
31	0.370	0.605	0.005	0.000	0.020	0.025	0.020	0.005	0.000	0.055	0.018
32	0.214	0.694	0.003	0.000	0.089	0.092	0.010	0.003	0.000	0.247	0.069
33	0.233	0.719	0.013	0.000	0.034	0.048	0.010	0.008	0.000	0.057	0.021
34	0.174	0.692	0.000	0.000	0.134	0.134	0.000	0.000	0.000	0.098	0.027
35	0.174	0.692	0.000	0.000	0.134	0.134	0.000	0.000	0.000	0.026	0.007
36	0.174	0.692	0.000	0.000	0.134	0.134	0.000	0.000	0.000	0.005	0.001
37	0.174	0.692	0.000	0.000	0.134	0.134	0.000	0.000	0.000	0.001	0.000
38	0.174	0.692	0.000	0.000	0.134	0.134	0.000	0.000	0.000	0.001	0.000
Total	0.287	0.565	0.099	0.001	0.048	0.149	0.051				
Catches											
25	1,229	2,392	2,481	0	257	2,738	1,177	21.0	0.0	2.2	23.2
26	2,195	3,678	4,759	0	600	5,359	2,527	30.9	0.0	3.9	34.8
27	2,477	2,507	3,200	0	0	3,200	1,064	23.9	0.0	0.0	23.9
28	5,102	9,711	2,264	0	280	2,544	929	14.5	0.0	1.8	16.3
29	6,018	5,863	221	125	176	522	374	1.4	0.8	1.1	3.2
30	8,401	18,022	98	0	2,044	2,142	143	0.4	0.0	9.0	9.4
31	5,780	9,460	73	0	317	390	312	0.4	0.0	1.9	2.4
32	2,864	9,276	40	0	1,183	1,223	134	0.3	0.0	8.7	9.0
33	2,741	8,467	156	0	404	560	118	0.8	0.0	2.0	2.8
34	1,184	4,725	0	0	915	915	0	0.0	0.0	3.5	3.5
35	291	1,162	0	0	225	225	0	0.0	0.0	0.9	0.9
36	49	197	,	0	38	38	0	0.0	0.0	0.2	0.2
37	7	27	0	0	5	5	0	0.0	0.0	0.1	0.1
38	5	19	0	0		4	0	0.0	0.0	0.0	0.0
Total	38,343	75,505	13,292	125	6,448	19,865	6,778	93.6	0.8	35.2	129.6

All Tahltan includes wild and thermally marked fish.

Appendix A.3. Weekly salmon catch and effort in the Alaskan Subdistrict 106-30 (Clarence Strait) commercial drift gillnet fishery, 1995.

Week	Start	Catch					Effort		
									Permit
	Date	Chinook	Sockeye	Coho	Pink	Chum	Permits	Days	Days
25	18-Jun	43	366	109	74	814	8	2	16
26	25-Jun	53	991	381	1,070	3,637	12	2	24
27	2-Jul	67	5,927	2,115	8,264	10,310	31	2	62
28	$9-\mathrm{Jul}$	56	5,404	1,140	4,320	8,574	44	2	88
29	16-Jul	27	6,097	1,374	5,928	16,094	45	2	90
30	23-Jul	17	11,066	2,140	8,661	11,215	45	3	135
31	30-Jul	7	12,400	3,649	21,706	15,939	53	2	106
32	6-Aug	18	11,499	3,810	62,848	11,897	54	2	108
33	13-Aug	0	12,027	6,486	68,070	12,827	68	3	204
34	20-Aug	0	5,004	4,602	62,357	4,687	59	3	177
35	27-Aug	0	2,338	11,363	38,729	4,923	47	3	141
36	3-Sep	0	428	18,442	11,580	6,849	56	3	168
37	10-Sep	0	17	2,764	516	1,523	20	2	40
38	17-Sep	0	20	2,416	36	1,361	29	2	58
39	24-Sep	0	1	157	0	59	5	1	5
Total		288	73,585	60,948	294,159	110,709	576	34	1,422

Appendix A.4. Weekly stock proportions and catches of sockeye salmon harvested in the Alaskan Subdistrict 106-30 (Clarence Strait) commercial drift gillnet fishery, 1995. Data based on scale pattern analysis.

Week	Alaska	Canada	Stikine				Thermal Marked Tahltan	CPUE of Stikine Fish			
			$\begin{gathered} \text { All }^{\mathrm{a}} \\ \text { Tahltan } \end{gathered}$	Tuya	non- Tahltan	Total		$\begin{gathered} \text { All }^{\mathrm{a}} \\ \text { Tahltan } \end{gathered}$	Tuya	Non- Tahltan	All Stikine
Proportions											
25	0.480	0.310	0.193	0.000	0.018	0.211	0.000	0.081	0.000	0.019	0.063
26	0.480	0.310	0.193	0.000	0.018	0.211	0.110	0.146	0.000	0.034	0.115
27	0.332	0.357	0.299	0.000	0.012	0.311	0.040	0.524	0.000	0.054	0.392
28	0.495	0.359	0.111	0.000	0.035	0.146	0.020	0.125	0.000	0.100	0.118
29	0.462	0.426	0.010	0.000	0.102	0.111	0.010	0.012	0.000	0.323	0.099
30	0.466	0.487	0.032	0.000	0.015	0.047	0.000	0.048	0.000	0.056	0.050
31	0.338	0.599	0.029	0.000	0.034	0.063	0.010	0.062	0.000	0.186	0.097
32	0.364	0.634	0.001	0.000	0.001	0.002	0.010	0.002	0.000	0.003	0.002
33	0.344	0.607	0.000	0.000	0.048	0.048	0.000	0.000	0.000	0.133	0.037
34	0.181	0.779	0.000	0.000	0.040	0.040	0.000	0.000	0.000	0.053	0.015
35	0.181	0.779	0.000	0.000	0.040	0.040	0.000	0.000	0.000	0.031	0.009
36	0.181	0.779	0.000	0.000	0.040	0.040	0.000	0.000	0.000	0.005	0.001
37	0.181	0.779	0.000	0.000	0.040	0.040	0.000	0.000	0.000	0.001	0.000
38	0.181	0.779	0.000	0.000	0.040	0.040	0.000	0.000	0.000	0.001	0.000
39	0.181	0.779	0.000	0.000	0.040	0.040	0.000	0.000	0.000	0.000	0.000
Total	0.370	0.551	0.047	0.000	0.032	0.079	0.010				
Catches											
25	176	113	71	0	6	77	0	4.4	0.0	0.4	4.8
26	475	307	191	0	18	209	109	8.0	0.0	0.7	8.7
27	1,969	2,113	1,774	0	71	1,845	238	28.6	0.0	1.1	29.8
28	2,674	1,940	601	0	189	790	108	6.8	0.0	2.1	9.0
29	2,819	2,599	58	0	621	679	61	0.6	0.0	6.9	7.5
30	5,160	5,388	355	0	163	518	0	2.6	0.0	1.2	3.8
31	4,190	7,427	361	0	422	783	124	3.4	0.0	4.0	7.4
32	4,186	7,293	12	0	8	20	115	0.1	0.0	0.1	0.2
33	4,142	7,305	0	0	580	580	0	0.0	0.0	2.8	2.8
34	904	3,900	0	0	201	201	0	0.0	0.0	1.1	1.1
35	422	1,822	0	0	94	94	0	0.0	0.0	0.7	0.7
36	77	334	0	0	17	17	0	0.0	0.0	0.1	0.1
37	3	13	0	0	1	1	0	0.0	0.0	0.0	0.0
38	4	16	0	0	1	1	0	0.0	0.0	0.0	0.0
39	0	1	0	0	0	0	0	0.0	0.0	0.0	0.0
Total	27,201	40,570	3,423	0	2,391	5,814	755	54.6	0.0	21.4	76.0

All Tahltan includes wild and thermally marked fish.

Appendix A.5. Weekly salmon catch in the Alaskan District 106 commercial drift gillnet fisheries, 1995. Catches do not include blind Slough terminal area harvests. Effort may be less than the sum of effort from 106-41\& 106-42 and 106-30 because some boats fished in more than one subdistrict.

Week	Start Date	Catch					Effort		
									Permit
		Chinook	Sockeye	Coho	Pink ${ }^{3}$	Chum	Permits	Days	Days
25	18-Jun	286	6,725	815	396	15,603	67	2	134
26	$25-\mathrm{Jon}$	208	12,223	2,559	7,739	19,772	88	2	176
27	2-JuI	142	14,11]	3,884	14,676	29,601	95	2	190
28	$9 . \mathrm{Jul}$	177	22,761	3,905	13,885	29,192	114	2	228
29	$16-\mathrm{Jul}$	51	18,500	3,803	11,212	32,100	122	2	244
30	23-Jul	42	39,631	7,669	24,996	35,586	116	3	348
31	30-Jul	18	28,030	9,581	40,571	29,268	131	2	262
32	6-Aug	27	24,862	11,373	88,278	27,606	121	2	242
33	13-Aug	0	23,795	20,232	96,902	31,466	127	3	381
34	20-Aug	0	11,828	21,234	88,415	18,013	143	3	429
35	27-Aug	0	4,016	33,630	45,848	12,661	126	3	378
36	3-Scp	0	712	34,678	14,454	11,865	121	3	363
37	10-Sep	0	56	10,550	696	3,582	70	2	140
38	17-Sep	0	47	6,435	94	3,642	66	2	132
39	24-Sep	0	1	213	1	121	10	1	10
Total		951	207,298	170,561	448,163	300,078	1,517	34	3,657
Alaska Hatchery Contribution									
25	18-Jun	154	0	130		6,955			
26	25-Jun	84	34	442		6,870			
27	$2-\mathrm{Jul}$	85	21	595		7,789			
28	9 -Jul	0	83	325		14,900			
29	16-Jul	15	605	166		12,313			
30	$23-\mathrm{Jul}$	0	1,053	160		7,353			
31	30-Jul	7	1,264	138		8,027			
32	6-Aug	8	853	15		7,378			
33	13-Aug	0	555	1,019		0			
34	20-Aug	0	79	2,842		832			
35	27-Aug	0	0	4,442		0			
36	3-Sep	0	6	10,263		0			
37	10-Sep	0	0	4,098		0			
38	17-Sep	0	0	2,695		0			
39	24-Sep	0	0	0		0			
40	1-Oct								
41	8-Oct								
Total		353	4,553	27,330		72,417			
Catches not including Alaska hatchery contributions									
25	18-Jun	132	6,725	685	396	8,648	67	2	134
26	25-Jun	124	12,189	2,117	7,739	12,902	88	2	176
27	$2-\mathrm{Jul}$	57	14,090	3,289	14,676	21,812	95	2	190
28	9-Jul	177	22,678	3,580	[3,885	14,292	114	2	228
29	16-Jul	36	17,895	3,6,37	11,212	19,787	122	2	244
30	23-Jul	42	38,578	7,509	24,996	28,233	116	3	348
31	30-Jul	I!	26,766	9,443	40,571	21,241	131	2	262
32	6-Aug	19	24,009	11,358	88,278	20,228	121	2	242
33	13-Aug	0	23,240	19,213	96,902	31,466	127	3	381
34	20-Aug	0	11,749	18,392	88,415	17,181	143	3	429
35	27-Autg	0	4,016	29,188	45,848	12,661	126	3	378
36	3-Sep	0	706	24,415	14,454	11,865	[2]	3	363
37	10-Sep	0	56	6,452	696	3,582	70	2	140
38	17-Sep	0	47	3,740	94	3,642	66	2	132
39	24-Sep	0	1	213	1	121	10	1	10
Total		598	202,745	143,231	448,163	227,661	1,517	34	3,657

[^2]Appendix A.6. Weekly stock proportions of sockeye salmon harvested in the Alaskan District 106 commercial drift gillnet fisheries, 1995. Data based on SPA.

Week	Alaska	Canada	Stikine				Thermal Marked Tahltan	CPUE of Stikine Fish			
			All ${ }^{\text {a }}$ Tahltan	Tuy ${ }^{\text {a }}$	$\begin{array}{r} \text { non- } \\ \text { Tahltan } \\ \hline \end{array}$	Total		All ${ }^{\text {a }}$ Tahltan	Tuya		All Stikine
Proportions											
25	0.209	0.373	0.379	0.000	0.039	0.419	0.175	0.210	0.000	0.062	0.171
26	0.218	0.326	0.405	0.000	0.051	0.456	0.216	0.310	0.000	0.111	0.258
27	0.315	0.327	0.352	0.000	0.005	0.358	0.092	0.289	0.000	0.012	0.216
28	0.342	0.512	0.126	0.000	0.021	0.146	0.046	0.139	0.000	0.065	0.119
29	0.478	0.457	0.015	0.007	0.043	0.065	0.024	0.013	1.000	0.104	0.040
30	0.342	0.591	0.011	0.000	0.056	0.067	0.004	0.014	0.000	0.201	0.062
31	0.356	0.602	0.015	0.000	0.026	0.042	0.016	0.018	0.000	0.090	0.036
32	0.284	0.666	0.002	0.000	0.048	0.050	0.010	0.002	0.000	0.156	0.042
33	0.289	0.663	0.007	0.000	0.041	0.048	0.005	0.005	0.000	0.082	0.024
34	0.177	0.729	0.000	0.000	0.094	0.094	0.000	0.000	0.000	0.083	0.021
35	0.178	0.743	0.000	0.000	0.079	0.079	0.000	0.000	0.000	0.027	0.007
36	0.178	0.745	0.000	0.000	0.078	0.078	0.000	0.000	0.000	0.005	0.001
37	0.176	0.719	0.000	0.000	0.106	0.106	0.000	0.000	0.000	0.001	0.000
38	0.177	0.729	0.000	0.000	0.094	0.094	0.000	0.000	0.000	0.001	0.000
39	0.181	0.779	0.000	0.000	0.040	0.040	0.000	0.000	0.000	0.000	0.000
Total	0.316	0.560	0.081	0.001	0.043	0.124	0.036				
Catches											
25	1,405	2,505	2,552	0	263	2,815	1,177	19.0	0.0	2.0	21.0
26	2,670	3,985	4,950	0	618	5,568	2,636	28.1	0.0	3.5	31.6
27	4,446	4,620	4,974	0	71	5,045	1,302	26.2	0.0	0.4	26.6
28	7,776	11,651	2,865	0	469	3,334	1,037	12.6	0.0	2.1	14.6
29	8,837	8,462	279	125	797	1,201	435	1.1	0.5	3.3	4.9
30	13,561	23,410	453	0	2,207	2,660	143	1.3	0.0	6.3	7.6
31	9,970	16,887	434	0	739	1,173	436	1.7	0.0	2.8	4.5
32	7,050	16,569	52	0	1,191	1,243	249	0.2	0.0	4.9	5.1
33	6,883	15,772	156	0	984	1,140	118	0.4	0.0	2.6	3.0
34	2,088	8,625	0	0	1,116	1,116	0	0.0	0.0	2.6	2.6
35	713	2,984	0	0	319	319	0	0.0	0.0	0.8	0.8
36	127	530	0	0	55	55	0	0.0	0.0	0.2	0.2
37	10	40	0	0	6	6	0	0.0	0.0	0.0	0.0
38	8	34	0	0	4	4	0	0.0	0.0	0.0	0.0
39	0	1	0	0	0	0	0	0.0	0.0	0.0	0.0
Total	65,544	116,075	16,715	125	8,839	25,679	7,533	90.6	0.5	31.5	122.7

Numbers may not sum due to rounding error.
a All Tahltan includes wild and thermally marked fish.

Appendix A.7. Weekly salmon catch and effort in the Alaskan District 108 commercial drift gillnet fishery, 1995. Catches do not include Ohmer Creek terminal area harvests. The permit days are adjusted for boats which did not fish the entire opening and are less than the sum of the permits times the days open.

Week	Start	Catch					Effort		
		Chinook	Sockeyc	Coho	Pink	Chum	Permits	Days	Days
24	11-Jun	73	219	6	0	50	17	1.0	17
25	18-Jun	273	6,373	351	31	945	46	4.0	83
26	25-Jun	379	23,976	348	1,909	7,356	87	5.5	212
27	2-Jul	365	19,426	895	4,572	11,194	114	5.5	168
28	$9-\mathrm{Jul}$	285	12,793	324	2,856	7,103	78	5.5	177
29	16-Jul	194	6,896	732	8,423	14,629	75	4.0	135
30	23-Jul	74	4,871	508	7,771	6,794	59	4.0	114
31	30-Jul	25	871	329	4,875	1,980	13	2.0	26
32	6-Aug	34	321	670	2,623	1,800	9	2.0	18
33	13-Aug	0	344	1,394	3,169	1,143	15	3.0	45
34	20-Aug	0	236	1,122	645	348	11	3.0	33
35	27-Aug	0	368	5,079	446	396	23	3.0	69
36	3-Sep	0	59	5,507	460	477	27	3.0	81
37	10-Scp	0	1	358	8	23	12	2.0	24
38	17-Sep	0	2	211	0	58	7	2.0	14
Total		1,702	76,756	17,834	37,788	54,296	593	49.5	1,214
Alaska Hatchery Contribution									
24	11-Jun	20	0	4		0			
25	18-Jun	117	0	0		0			
26	25-Jun	147	0	35		3,891			
27	2-Jul	98	0	118		6,446			
28	$9-\mathrm{Jul}$	191	0	26		1,671			
29	16-Jul	93	59	16		4,489			
30	23-Jul	85	126	11		1,148			
31	30-Jul	3	24	0		171			
32	6-Aug	4	15	0		254			
33	13-Aug	0	44	0		263			
34	20-Aug	0	0	230		0			
35	27-Aug	0	0	15		0			
36	3-Sep	0	0	198		0			
37	10-Sep	0	0	392		0			
38	17-Sep	0	0	40		0			
Total		758	268	1,085		18,333			
Catches not including Alaska hatchery contributions									
24	11-Jun	53	219	2	0	50	17	1	17
25	18-Jun	156	6,373	351	31	945	46	4	83
26	25-Jun	232	23,976	313	1,909	3,465	87	6	212
27	2-JuI	267	19,426	777	4,572	4,748	114	6	168
28	9 -Jul	94	12,793	298	2,856	5,432	78	6	177
29	16-Jul	101	6,837	716	8,423	10,140	75	4	135
30	23-JuI	-11	4,745	497	7,771	5,646	59	4	114
31	30-Jul	22	847	329	4,875	1,809	13	2	26
32	6-Aug	30	306	670	2,623	1,546	9	2	18
33	13-Aug	0	300	1,394	3,169	880	15	3	45
34	20-Aug	0	236	892	645	348	11	3	33
35	27-Aug	0	368	5,064	446	396	23	3	69
36	3-Scp	0	59	5,309	460	477	27	3	81
37	10-Sep	0	1	-34	8	23	12	2	24
38	17-Sep	0	2	171	0	58	7	2	14
Total		944	76,488	16,749	37,788	35,963	593	50	1,214

Appendix A.8. Weekly stock proportions and stock-specific catch of sockeye salmon in the Alaskan District 108 commercial drift gillnet fishery, 1995. Catches do not include Ohmer Creek terminal area harvests. Data based on SPA.

Week	Alaska	Canada	Stikine				Thermal Marked Tahltan	CPUE of Stikine Fish			
			$\mathrm{All}^{\mathrm{a}}$ Tahltan	Tuya	Tahltan	Total		Tahltan	Tuya	Non- Tahltan	
Proportions											
24	0.256	0.265	0.374	0.000	0.105	0.479	0.210	0.022	0.000	0.009	0.017
25	0.051	0.145	0.636	0.000	0.167	0.804	0.391	0.218	0.000	0.088	0.166
26	0.084	0.265	0.546	0.004	0.101	0.651	0.343	0.277	0.176	0.078	0.198
27	0.106	0.237	0.508	0.014	0.135	0.657	0.308	0.263	0.615	0.107	0.205
28	0.124	0.181	0.458	0.008	0.229	0.694	0.152	0.148	0.209	0.114	0.135
29	0.339	0.103	0.236	0.000	0.321	0.557	0.106	0.054	0.000	0.113	0.077
30	0.309	0.087	0.065	0.000	0.539	0.604	0.047	0.012	0.000	0.158	0.069
31	0.206	0.044	0.025	0.000	0.726	0.751	0.060	0.004	0.000	0.167	0.068
32	0.237	0.144	0.008	0.000	0.612	0.619	0.017	0.001	0.000	0.075	0.030
33	0.237	0.144	0.008	0.000	0.612	0.619	0.017	0.000	0.000	0.032	0.013
34	0.237	0.144	0.008	0.000	0.612	0.619	0.017	0.000	0.000	0.030	0.012
35	0.237	0.144	0.008	0.000	0.612	0.619	0.017	0.000	0.000	0.022	0.009
36	0.237	0.144	0.008	0.000	0.612	0.619	0.017	0.000	0.000	0.003	0.001
37	0.237	0.144	0.008	0.000	0.612	0.619	0.017	0.000	0.000	0.000	0.000
38	0.237	0.144	0.008	0.000	0.612	0.619	0.017	0.000	0.000 .	0.001	0.000
Total	0.135	0.204	0.455	0.006	0.200	0.661	0.257				
Catch											
24	56	58	82	0	23	105	46	4.8	0.0	1.4	6.2
25	325	926	4,056	0	1,066	5,122	2,489	48.9	0.0	12.8	61.7
26	2,004	6,364	13,101	97	2,410	15,608	8,235	61.9	0.5	11.4	73.8
27	2,057	4,609	9,875	268	2,617	12,760	5,979	59.0	1.6	15.6	76.2
28	1,592	2,318	5,862	96	2,925	8,883	1,942	33.2	0.5	16.6	50.3
29	2,339	713	1,627	0	2,217	3,844	731	12.1	0.0	16.5	28.6
30	1,506	424	315	0	2,626	2,941	229	2.8	0.0	23.0	25.8
31	179	38	22	0	632	654	52	0.8	0.0	24.3	25.2
32	76	46	2	0	196	199	6	0.1	0.0	10.9	11.0
33	82	49	3	0	210	213	6	0.1	0.0	4.7	4.7
34	56	34	2	0	144	146	4	0.1	0.0	4.4	4.4
35	87	53	3	0	225	228	6	0.0	0.0	3.3	3.3
36	14	8	0	0	36	37	1	0.0	0.0	0.4	0.5
37	0	0	0	0	1	1	0	0.0	0.0	0.0	0.0
38	0	0	0	0	1	1	0	0.0	0.0	0.1	0.1
Total	10,374	15,641	34,950	461	15,330	50,741	19,726	223.8	2.6	145.4	371.8

All Tahltan includes wild and thermally marked fish.

Appendix A.9. Weekly salmon and steelhead trout catch and effort in the Canadian commercial fishery in the lower Stikine River, 1995.

Week	Start Date	Catch					Effort				
		Chinook		Sockeye	Coho	Pink	Chum $\begin{array}{r}\text { Steel- } \\ \text { head }\end{array}$		Permits	Days	Permit Days
		Jacks	Large								
26	25-Jun	315	468	4,312	0	0	2	0	13.50	4.0	54.0
27	2-Jul	145	281	8,750	0	1	17	0	14.20	5.0	71.0
28	$9-\mathrm{Jul}$	71	144	10,332	0	5	30	0	11.71	7.0	82.0
29	16-Jul	53	129	9,124	8	16	57	0	10.86	7.0	76.0
30	23-Jul	10	26	6,603	39	22	48	1	8.86	7.0	62.0
31	30-Jul	4	12	2,923	113	2	15	10	6.80	5.0	34.0
32	6-Aug	1	6	2,102	319	2	8	40	8.20	5.0	41.0
33	13-Aug	0	1	500	185	0	32	8	6.33	3.0	19.0
34	20-Aug	0	0	517	578	0	16	46	9.00	3.0	27.0
35	27-Aug	0	0	350	1,097	0	24	58	7.50	4.0	30.0
36	3-Sep	0	0	108	978	0	3	43	6.50	4.0	26.0
37	10-Sep	0	0	1	57	0	1	1	4.00	2.0	8.0
38	17-Sep	0	0	0	17	0	2	0	2.00	1.0	2.0
39	24-Sep	0	0	0	15	0	1	1	1.00	1.0	1.0
40	1-Oct	0	0	0	12	0	0	0	1.00	1.0	1.0
Total		599	1,067	45,622	3,418	48	256	208		59.0	534.0

Appendix A.10. Weekly sockeye salmon stock proportions and catch by stock in the Canadian commercial fishery in the lower Stikine River, 1995. Sex specific age compositions were calculated and the stock composition of the females sampled for egg diameters was expanded to the catch by age.

Week	$\begin{aligned} & \text { Prop. } \\ & \text { Tahltan } \end{aligned}$	Prop. Tuya	Catch			Thermal Marked Tahltan	CPUE			
			Tahltan	Tuya	$\begin{aligned} & \text { Non- } \\ & \text { Tahiltan } \end{aligned}$		Tahitan	Tuya	$\begin{aligned} & \text { non- } \\ & \text { Tahltan } \end{aligned}$	Total
26	0.970	0.000	4,183	0	129	1,602	77.463	0.000	2.389	79.852
27	0.921	0.030	8,056	262	432	2,345	113.465	3.690	6.085	123.239
28	0.814	0.044	8,410	457	1,465	2,527	102.599	5.581	17.867	126.046
29	0.665	0.012	6,065	110	2,949	1,689	79.782	1.444	38.795	120.021
30	0.440	0.010	2,908	64	3,631	581	46.888	1.032	58.546	106.466
31	0.261	0.000	762	0	2,161	103	22.412	0.000	63.559	85.971
32	0.157	0.000	330	0	1,772	65	8.049	0.000	43.220	51.268
33	0.134	0.000	67	0	433	0	3.528	0.000	22.801	26.330
34	0.130	0.000	67	0	450	0	2.481	0.000	16.667	19.148
35	0.000	0.000	0	0	350	0	0.000	0.000	11.667	11.667
36	0.000	0.000	0	0	108	0	0.000	0.000	4.154	4.154
37	0.000	0.000	0	0	1	0	0.000	0.000	0.125	0.125
38	0.000	0.000	0	0	0	0	0.000	0.000	0.000	0.000
39	0.000	0.000	0	0	0	0	0.000	0.000	0.000	0.000
Total			30,848	893	13,881	8,912	456.666	11.747	285.873	754.286
Proportion			0.676	0.020	0.304	0.195	0.605	0.016	0.379	

Appendix A.11. Weekly salmon and steelhead trout catch and effort in the Canadian commercial fishery in the upper Stikine River, 1995. It is assumed that 90% of the sockeye catch is of Tahltan Lake origin and the ratio of Tahltan to Tuya is the same as in the lower river commercial fishery.

Appendix A.12. Weekly salmon and steelhead trout catch and effort in the Canadian Aboriginal fishery located at Telegraph Creek, on the Stikine River, 1995. 90\% of the sockeye catch is assumed to be of Tahltan Lake origin and the ratio of Tahltan to Tuya is the same as in the lower river commercial fishery.

Week	Start Date	Chinook		Catch				Effort			
				Sockeye	Coho	Pink	Chum	Steelhead	Permits	Days	Permit Days
		Jacks	Large								
21	21-May	2	19	0	0	0	0	55	1.6	11	17.1
22	28-May	10	23	0	0	0	0	3	1.9	7	13.0
23	4-Jun	31	103	4	0	0	0	2	4.7	7	33.0
24	11-Jun	15	59	1	0	0	0	2	2.8	6	17.0
25	18-Jun	47	111	20	0	0	0	0	3.6	7	25.0
26	25-Jun	32	48	360	0	0	0	0	3.6	7	25.0
27	2-Jul	30	40	507	0	0	0	0	4.7	7	33.0
28	$9-\mathrm{Jul}$	24	52	1,661	0	0	0	0	11.1	7	78.0
29	16 -Jul	30	50	1,560	0	0	0	0	13.6	7	95.0
30	23-Jul	7	17	548	0	0	0	0	6.3	7	44.0
31	30-Jul	13	24	441	0	0	0	0	4.9	7	34.0
32	6-Aug	2	17	221	0	0	0	0	2.9	7	20.0
33	13-Aug	1	4	65	0	0	0	0	1.7	7	11.9
34	20-Aug	0	3	102	0	0	7	0	1.8	4	7.0
Total		244	570	5,490	0	0	7	62	65.0	98	452.9

Appendix A.13. Weekly salmon and steelhead trout catch and effort in the Canadian test fishery in the Stikine River, 1995.

Week	Start Date	Catch							\# Drifts/ Set Hours
		Chinook		Sockeyc	Coho	Pink	Chum	Steelhead	
		Jacks	Adults						
Drift gillnet									
25	18-Jun	10	15	40	0	0	0	0	60
26	25-Jun	2	1	57	0	0	0	0	30
27	2-JuI	0	2	79	0	0	0	0	25
28	9 -Jul	1	0	22	0	1	2	0	15
29	16-Jul	0	0	20	0	0	0	0	15
30	23-Jul	0	0	15	1	0	0	0	15
31	30-Jul	0	0	24	2	0	2	1	25
32	6-Aug	0	0	15	6	0	4	0	25
33	13-Aug	0	0	14	10	1	4		40
34	20-Aug	0	0	11	8	2	0	2	20
35	27-Aug	0	0	0	8	0	0	0	15
Total		13	18	297	35	4	12	4	285
Set gillnet									
25	18-Jun	25	42	211	0	0	1	0	264
26	25-Jun	8	15	276	0	0	0	0	120
27	2-Jul	2	1	132	0	0	1	0	72
28	$9-\mathrm{Jul}$	0	1	35	0	1	0	0	24
29	16-JuI								
30	23-Jul								
31	30-Jul	0	1	38	5	0	5	0	48
32	6-Aug	0	1	58	17	2	8	1	72
33	13-Aug	0	0	69	78	2	17	8	168
34	20-Aug	0	0	21	34	0	7	3	72
35	27-Aug	0	0	10	32	0	2	2	48
Total		35	61	850	166	5	41	14	888
Additional Drifts									
25	18-Jun	115	141	437	0	0	0	0	102
26	25-Jun	11	23	512	0	0	3	0	54
27	2-Jul	10	4	391	0	0	2	0	34
28	9 9-Jul								
29	16-Jul								
30	23-Jul								
31	30-Jul	0	0	42	5	1	2	0	15
32	6-Aug	0	1	36	18	0	2	1	14
33	13-Aug	0	0	5	3	0	0	0	3
Total		136	169	1,423	26	1	9	1	222
Total Test Fishery Catch									
25	18-Jun	150	198	688	0	0	1	0	
26	25-Jun	21	39	845	0	0	3	0	
27	2-JuI	12	7	602	0	0	3	0	
28	$9-\mathrm{Jul}$	1	1	57	0	2	2	0	
29	16-Jul	0	0	20	0	0	0	0	
30	23-Jul	0	0	15	1	0	0	0	
31	30-Jul	0	1	104	12	1	9	1	
32	6-Aug	0	2	109	41	2	14	2	
33	13-Aug	0	0	88	91	3	21	9	
34	20-Aug	0	0	32	42	2	7	5	
35	27-Aug	0	0	10	40	0	2	2	
Total Tcst Catch		184	248	2,570	227	10	62	19	

Appendix A.14. Weekly catch, CPUE, and migratory timing of Tahltan and non-Tahltan sockeye stocks in the Stikine River test fishery, 1995. Sex specific age composition were calculated and the smoothed stock compositions of the females sampled for egg diameters was expanded to the catch by age.

	Proportions			Catch			CPUE				Migratory Timing		
Week	Tahltan	Tuya	non- Tahltan	Tahltan	Tuya	non- Tahtan	Tahltan	Tuya	non- Tahltan	Total	Tahltan	Tuya	Tahltan
Drift gillnet													
25	0.900	0.000	0.100	36	0	4	0.600	0.000	0.067	0.667	0.050	0.000	0.006
26	0.910	0.009	0.080	52	[5	1.729	0.018	0.153	1.900	0.144	0.002	0.013
27	0.905	0.015	0.080	72	I	6	2.861	0.047	0.252	3.160	0.239	0.004	0.021
28	0.891	0.055	0.055	20	1	1	1.307	0.080	0.080	1.467	0.109	0.007	0.007
29	0.400	0.000	0.600	8	0	12	0.533	0.000	0.800	1.333	0.044	0.000	0.067
30	0.438	0.000	0.563	7	0	8	0.438	0.000	0.563	1.000	0.036	0.000	0.047
31	0.291	0.000	0.709	7	0	17	0.280	0.000	0.680	0.960	0.023	0.000	0.057
32	0.218	0.000	0.782	3	0	12	0.131	0.000	0.469	0.600	0.011	0.000	0.039
33	0.135	0.000	0.865	2	0	12	0.047	0.000	0.303	0.350	0.004	0.000	0.025
34	0.000	0.000	1.000	0	0	I1	0.000	0.000	0.550	0.550	0.000	0.000	0.046
35	0.000	0.000	1.000	0	0	0	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Total				206	3	88	7.925	0.145	3.917	11.987			
Proportion				0.693	0.010	0.298			Proportio	n of rim	0.661	0.012	0.327
Set gillnet													
25	0.900	0.000	0.100	190	0	21	0.719	0.000	0.080	0.799	0.081	0.000	0.009
26	0.910	0.009	0.080	251	3	22	2.093	0.022	0.185	2.300	0.235	0.002	0.021
27	0.905	0.015	0.080	120	2	11	1.660	0.027	0.146	1.833	0.187	0.003	0.016
28	0.891	0.055	0.055	31	2	2	1.299	0.080	0.080	1.458	0.146	0.009	0.009
$29 \sim$													
30													
31	0.291	0.000	0.709	11	0	27	0.231	0.000	0.561	0.792	0.026	0.000	0.063
32	0.218	0.000	0.782	13	0	45	0.176	0.000	0.630	0.806	0.020	0.000	0.071
33	0.135	0.000	0.865	9	0	60	0.055	0.000	0.355	0.411	0.006	0.000	0.040
34	0.000	0.000	1.000	0	0	21	0.000	0.000	0.292	0.292	0.000	0.000	0.033
35	0.000	0.000	1.000	0	0	10	0.000	0.000	0.208	0.208	0.000	0.000	0.023
Total				62.5	6	219	6.233	0.129	2.537	8.899	0.700	0.014	0.285
Proportion				0.735	0.008	0.257							
Additional Drifts ${ }^{\text {a }}$													
25	0.900	0.000	0.100	393	0	44	3.855	0.000	0.430	4.284	0.119	0.000	0.013
26	0.910	0.009	0.080	466	5	41	8.629	0.090	0.763	9.481	0.267	0.003	0.024
27	0.905	0.015	0.080	354	6	31	10.411	0.172	0.917	11.500	0.322	0.00 .5	0.028
28													
29													
30													
31	0.291	0.000	0.709	12	0	30	0.816	0.000	1.984	2.800	0.025	0.000	0.061
32	0.218	0.000	0.782	8	0	28	0.561	0.000	2.010	2.571	0.017	0.000	0.062
33	0.135	0.000	0.865	1	0	4	0.225	0.000	1.442	1.667	0.007	0.000	0.045
Total				1,234	11	178	24.496	0.262	7.546	32.304	0.758	0.008	0.234
Proportion				0.867	0.008	0.125							
Total test fishery catches													
25	0.900	0.000	0.100	619	0	69							
26	0.910	0.009	0.080	769	8	68							
27	0.905	0.015	0.080	545	9	48							
28	0.891	0.055	0.055	51	3	3							
29	0.400	0.000	0.600	8	0	12							
30	0.438	0.000	0.563	7	0	8							
31	0.291	0.000	0.709	30	0	74							
32	0.218	0.000	0.782	24	0	85							
33	0.135	0.000	0.865	12	0	76							
34	0.000	0.000	1.000	0	0	32							
35	0.000	0.000	1.000	0	0	10							
Total				2,064	20	486							
Proportion				0.803	0.008	0.189							

a Catch was appontioned based on samples from standard drift catch.

Appendix A.15. Daily counts of adult sockeye salmon passing through Tabltan Lake weir, 1995.

Date	Count	Cumulative		Date	Count	Cumulative	
		Count	Percent			Count	Percent
8-Jut	0	0	0.0	15-Aug	152	39,039	92.3
9-Jul	430	430	1.0	16-Aug	278	39,317	92.9
10-JuI	1,099	1,529	3.6	17-Aug	140	39,457	93.2
\|1-Jul	541	2,070	4.9	18-Aug	146	39,603	93.6
[2-Jul	229	2,299	5.4	19-Aug	190	39,793	94.0
[3-Jul	204	2,503	5.9	20-Aug	515	40,308	95.3
$14-\mathrm{Jug}$	163	2,666	6.3	21-Aug	240	40,548	95.8
[5-Jul	54	2,720	6.4	22-Aug	303	40,85I	96.5
16-Jul	1,333	4,053	9.6	23-Aug	146	40,997	96.9
17-Ju1	2,827	6,880	16.3	24-Aug	165	41,162	97.3
18-JuI	1,962	8,842	20.9	25-Aug	65	41,227	97.4
19-JuI	2,403	11,245	26.6	26-Aug	109	41,336	97.7
20-Jul	2,099	13,344	31.5	27-Aug	46	41,382	97.8
21-Jul	2,587	15,931	37.6	28-Aug	92	41,474	98.0
22-Jul	1,656	17,587	41.6	29-Aug	44	41,518	98.1
23-Jul	1,512	19,099	45.1	30-Aug	9	41,527	98.1
24-Jul	2,228	21,327	50.4	31-Aug	53	41,580	98.3
25 -Jul	1,023	22,350	52.8	1-Sep	167	41,747	98.7
$26-\mathrm{Jul}$	1,740	24,090	56.9	2-Sep	81	41,828	98.8
27-Jul	898	24,988	59.0	3-Sep	86	41,914	99.0
28-Jul	1,287	26,275	62.1	4-Sep	9	41,923	99.1
29-JuI	811	27,086	64.0	5-Sep	171	42,094	99.5
30-Jul	497	27,583	65.2	6 -Sep	117	42,211	99.7
31-Jul	590	28,173	66.6	7 -Sep	70	42,281	99.9
1-Aug	1,400	29,573	69.9	8 -Sep	22	42,303	100.0
2-Aug	1,157	30,730	72.6	$9-\mathrm{Scp}$	1	42,304	100.0
3-Aug	1,125	31,855	75.3	10-Sep	1	42,305	100.0
4-Aug	1,444	33,299	78.7	11-Sep	5	42,310	100.0
5-Aug	486	33,785	79.8	12-Sep	1	42,311	100.0
6-Aug	1,055	34,840	82.3	13-Sep	1	42,312	100.0
7-Aug	490	35,330	83.5	14-Sep	0	42,312	100.0
8-Aug	747	36,077	85.3	15-Sep	4	42,316	100.0
9-Aug	747	36,824	87.0	16-Sep	1	42,317	100.0
10-Atg	497	37,321	88.2	17-Scp	0	42,317	100.0
11-Aug	690	38,011	89.8	18-Sep	0	42,317	100.0
12-Aug	353	38,364	90.7	19-Sep	0	42,317	100.0
13-Aug	181	38,545	91.1	20-Sep	0	42,317	100.0
14-Aug	342	38,887	91.9				
Total Counted				42,317			
Fish removed for brood stock				$-4,902^{3}$			
Fish removed for ESSR				$-10,740^{\text {b }}$			
Total Spawners				26,675			
Wild Spawners				16,591			
Spawners from fry plants				10,084			

A total of 2,451 femates and 2,451 males were taken for brood stock.
h Fish were harvested with an Excess to Salmon Spawning Requirements (ESSR) license.

Appendix A.16. Daily counts of sockeye salmon smolt migrating through Tahltan Lake smolt weir, 1995.

Date	Count	Cumulative		Date	Count	Cumulative	
		Count	Percent			Count	Percent
5-May	0	0	0.0	4-Jun	5,013	496,081	60.3
6-May	1	1	0.0	5-Jun	3,279	499,360	60.7
7-May	10	11	0.0	6-Jun	5,569	504,929	61.4
8-May	48	59	0.0	7-Jun	29,326	534,255	65.0
9-May	320	379	0.0	8-Jun	41,446	575,701	70.0
10-May	577	956	0.1	9 -Jun	73,894	649,595	79.0
11-May	619	1,575	0.2	10-Jun	88,000	737,595	89.7
12-May	2,493	4,068	0.5	11-Jun	7,366	744,961	90.6
13-May	3,115	7,183	0.9	12-Jun	1,042	746,003	90.7
14-May	79,404	86,587	10.5	13-Jun	4,638	750,641	91.3
15-May	26,932	113,519	13.8	14-Jun	2,343	752,984	91.6
16-May	54,526	168,045	20.4	15-Jun	2,023	755,007	91.8
17-May	51,961	220,006	26.8	16-Jun	511	755,518	91.9
18-May	53,606	273,612	33.3	17-Jun	1,351	756,869	92.0
19-May	17,962	291,574	35.5	18-Jun	1,380	758,249	92.2
20-May	13,382	304,956	37.1	19-Jun	3,030	761,279	92.6
21-May	9,376	314,332	38.2	20-Jun	6,262	767,541	93.3
22-May	12,794	327,126	39.8	21-Jun	22,545	790,086	96.1
23-May	15,260	342,386	41.6	22-Jun	7,000	797,086	96.9
24-May	7,312	349,698	42.5	23-Jun	11,314	808,400	98.3
25-May	4,513	354,211	43.1	24-Jun	1,962	810,362	98.6
26-May	2,749	356,960	43.4	$25-\mathrm{Jun}$	2,518	812,880	98.9
27-May	80,071	437,031	53.1	26-Jun	3,953	816,833	99.3
28-May	28,498	465,529	56.6	27-Jun	1,754	818,587	99.6
29-May	16,114	481,643	58.6	28-Jun	3,004	821,591	99.9
30-May	2,166	483,809	58.8	29-Jun	375	821,966	100.0
31-May	1,745	485,554	59.0	30-Jun	318	822,284	100.0
1-Jun	1,534	487,088	59.2				
2-Jun	2,230	489,318	59.5	Wild	767,027		
3-Jun	1,750	491,068	59.7	Hatchery	55,257		

Appendix A. 17.	Daily counts of adult chinook salmon passing through Little Tathltan weir, 1995.					
	Large Chinook			Chinook Jacks		
	Cumulative			Cumulative		
Date	Count	Count	Percent	Count	Comnt	Percent
17-Jun	--...	eir installed	.-..........			
18-Jun	0	0	0.0	0	0	0.0
19-Jun	0	0	0.0	0	0	0.0
20-Jun	3	3	0.1	0	0	0.0
21-Jun	0	3	0.1	0	0	0.0
22-Jun	28	31	1.0	1	I	0.7
23-Jun	16	47	1.5	0	1	0.7
24-Jun	0	47	1.5	0	1	0.7
25-Jun	4	51	1.7	0	1	0.7
26-Jun	0	51	1.7	0	1	0.7
27-Jun	11	62	2.0	0	I	- 0.7
28-Jun	64	126	4.1	0		0.7
29-Jın	114	240	7.8	0	1	0.7
30-Jtn	29	269	8.8	4	5	3.7
T-Jul	76	345	11.2	1	6	4.4
2-Jul	157	502	16.3	3	9	6.7
3-Jul	108	610	19.9	3	12	8.9
4-Jul	24	634	20.6	I	13	9.6
5-Jul	0	634	20.6	0	13	9.6
6-Jul	15	649	21.1	2	15	11.1
7-Jul	150	799	26.0	6	21	15.6
8-JuI	154	953	31.0	5	26	19.3
$9-\mathrm{JuI}$	0	953	31.0	0	26	19.3
10-Jul	91	1,044	34.0	0	26	19.3
11-Jul	198	1,242	40.4	9	35	25.9
12-JuI	0	1,242	40.4	0	35	25.9
13-Jul	49	1,291	42.0	0	35	25.9
14-Jul	139	1,430	46.5	2	37	27.4
15-Jul	10	1,440	46.9	0	37	27.4
16-Jul	68	1,508	49.1	1	38	28.1
17-Jul	59	1,567	51.0	0	38	28.1
18-Jul	24	1,591	51.8	0	38	28.1
19-Jul	60	1,651	53.7	3	4 L	30.4
20-Jul	72	1,723	56.1	5	46	34.1
21-Jul	22.3	1,946	63.3	10	56	41.5
22-Jul	66	2,012	65.5	2	58	43.0
23-JuI	74	2,086	67.9	1	59	43.7
24-Jul	45	2,131	69.4	2	61	45.2
25-Jul	55	2,186	71.2	1	62	45.9
26-Jul	58	2,244	73.0	3	65	48.1
27-Jul	21	2,265	73.7	2	67	49.6
28-Jul	61	2,326	75.7	2	69	51.1
29-Jul	100	2,426	79.0	3	72	53.3
30-Jul	111	2,537	82.6	4	76	56.3
31-Jul	88	2,625	85.4	9	85	63.0
1-Aug	2	2,627	85.5	1	86	63.7
2-Aug	12	2,639	85.9	0	86	63.7
3-Aug	61	2,700	87.9	2	88	65.2
4-Aug	100	2,800	91.1	4	92	68.1
5-Aug	78	2,878	93.7	5	97	71.9
6-Allg	0	2,878	93.7	0	97	71.9
7-Aug	56	2,934	95.5	4	101	74.8
8-Aug	21	2,955	96.2	3	104	77.0
9-Aug	38	2,993	97.4	8	112	83.0
10-Aug	43	3,036	98.8	18	1.30	96.3
11-Aug	35	3,071	100.0	4	134	99.3
12-Aug	0	3,071	100.0	0	134	99.3
13-Aug	1	3,072	100.0	1	135	100.0
14-Aug	0	3,072	100.0	0	135	100.0
15-Aug	0	3,072	100.0	0	135	100.0
Total Counted		3,072			135	
Adjustments		0				
Total Spawners		3,072			135	

Appendix B.1. Salmon catch and effort in the Alaskan Subdistrict 106-41 and 106-42 (Sumner Strait) commercial drift gillnet fishery, 1964-1995.

Year	Catch					Effort	
						Permit Days	$\begin{aligned} & \text { Days } \\ & \text { Open } \end{aligned}$
	Chinook	Sockeye	Coho	Pink	Chum		
1960	24	9,005	277	1,103	362	251	17.0
1961	75	9,488	1,851	26,435	9,657	359	48.0
1962	131	19,692	6,548	45,987	9,544	811	44.0
1963	308	45,364	15,702	134,974	50,301	2,311	47.0
1964	316	52,943	27,338	183,402	22,913	2,344	49.0
1965	679	58,736	30,570	162,271	15,763	1,658	50.8
1966	690	65,721	30,792	96,287	24,235	2,080	74.3
1967	668	60,148	10,573	52,284	19,626	1,463	27.0
1968	1,010	50,212	46,111	82,012	39,001	2,997	52.0
1969	607	46,258	6,094	92,075	6,393	1,147	31.0
1970	420	26,812	15,153	29,102	18,092	905	41.0
1971	671	33,991	24,727	283,739	19,329	1,619	50.0
1972	1,747	74,745	60,827	40,644	46,511	2,152	41.0
1973	1,540	55,254	24,921	160,297	62,486	2,253	26.0
1974	1,342	46,760	28,889	57,296	38,045	1,579	28.0
1975	467	19,319	4,650	29,340	7,762	515	17.0
1976	237	9,319	10,367	20,251	2,301	366	19.0
1977	202	47,408	1,819	51,038	4,240	447	17.0
1978	274	1,422	26,762	9,546	3,142	389	26.5
1979	458	34,807	12,087	176,395	16,816	952	25.0
1980	205	48,434	10,894	17,072	15,162	596	16.0
1981	598	132,293	13,161	220,194	25,682	1,732	25.0
1982	648	121,556	21,376	10,338	11,911	1,083	22.0
1983	268	28,153	41,208	74,347	13,001	875	32.0
1984	136	27,372	19,124	99,807	28,461	587	32.0
1985	548	172,088	50,577	319,379	45,566	1,726	38.0
1986	421	85,247	104,328	105,347	48,471	1,896	32.0
1987	441	79,165	17,776	117,059	25,877	978	20.0
1988	452	57,337	6,349	10,894	42,210	815	18.0
1989	581	107,886	55,671	418,044	40,156	1,716	34.0
1990	759	104,922	94,526	84,543	42,474	1,827	34.0
1991	857	88,723	136,798	64,182	84,970	2,118	39.0
1992	743	146,608	190,885	38,483	100,666	2,630	40.0
1993	458	129,859	134,902	296,986	96,995	2,728	38.0
1994	456	157,526	191,664	66,225	125,818	2,988	43.0
Averages							
60-94	555	64,416	42,151	105,068	33,255	1,454	34.1
85-94	572	112,936	98,348	152,114	65,320	1,942	33.6
1995	663	133,713	109,613	154,004	189,369	2,349	34.0

Appendix B.2. Stock proportions and catches of sockeye salmon in the Alaskan Subdistrict 106-41 and 106-42 (Sumner Strait) commercial drift gillnet fishery, 1985-1995. Data based on SPA.

Year	Alaska	Canada	Stikine				Thermal Marked Tahltan	$\begin{aligned} & \text { Wild } \\ & \text { Tahltan } \end{aligned}$
			All 2 Tahltan	Tuya	non- Tahltan	Total		
Proportions								
1985	0.480	0.401	0.109		0.010	0.119		
1986	0.662	0.308	0.024		0.006	0.030		
1987	0.816	0.166	0.015		0.003	0.018		
1988	0.868	0.112	0.019		0.001	0.020		
1989	0.653	0.303	0.009		0.036	0.044		
1990	0.579	0.395	0.008		0.018	0.026		
1991	0.460	0.377	0.129		0.034	0.163		
1992	0.582	0.241	0.088		0.089	0.177		
1993	0.369	0.327	0.134		0.169	0.304		
1994	0.531	0.271	0.166		0.032	0.198	0.040	0.127
Averages								
85-94	0.600	0.290	0.070		0.040	0.110		
1995	0.287	0.565	0.099	0.001	0.048	0.149	0.051	0.049
Catches								
1985	82,563	68,962	18,801		1,762	20,563		
1986	56,462	26,214	2,070		501	2,571		
1987	64,582	13,170	1,155		258	1,413		
1988	49,776	6,426	1,071		64	1,135		
1989	70,436	32,663	957		3,830	4,787		
1990	60,795	41,415	801		1,911	2,712		
1991	40,832	33,406	11,459		3,026	14,485		
1992	85,364	35,277	12,961		13,005	25,967		
1993	47,970	42,450	17,446		21,992	39,438		
1994	83,692	42,620	26,164		5,050	31,214	6,230	19,934
A verages								
85-94	64,247	34,260	9,289		5,140	14,429		
1995	38,343	75,505	13,292	125	6,448	19,865	6,778	6,514

Numbers do not sum due to rounding.
a All Tahltan includes wild and thermally marked fish.

Appendix B. 3 Salmon catch and effort in the Alaskan Subdistrict 106-30 (Clarence Strait) commercial drift gillnet fishery, 1964-1995.

Year	Catch					Effort	
						Permit Days	$\begin{aligned} & \text { Days } \\ & \text { Open } \end{aligned}$
	Chinook	Sockeye	Coho	Pink	Chum		
1960	22	1,349	59	143	140	118	13.0
1961	341	11,126	13,083	97,801	54,822	1,378	57.0
1962	1,177	27,341	35,728	210,633	49,575	3,882	52.0
1963	1,250	35,462	36,376	379,093	39,723	3,278	51.0
1964	1,766	23,598	37,316	259,684	21,305	3,039	49.0
1965	1,123	29,013	45,158	463,577	11,895	2,849	50.8
1966	975	24,126	32,031	304,645	16,521	2,898	74.3
1967	650	26,237	7,097	39,325	6,744	1,048	27.0
1968	306	14,459	21,040	87,095	22,365	1,968	52.0
1969	270	24,060	4,186	104,998	4,510	1,026	31.0
1970	365	15,966	20,317	65,790	14,139	1,025	41.0
1971	665	19,211	23,358	244,236	18,351	1,517	50.0
1972	826	26,593	32,600	48,823	25,871	1,276	41.0
1973	391	16,741	13,526	143,324	25,243	1,303	26.0
1974	584	10,586	16,762	47,107	12,264	712	28.0
1975	2,120	12,732	26,312	173,675	16,206	1,159	8.5
1976	147	6,162	8,759	119,188	4,567	527	21.0
1977	469	19,615	6,582	368,069	9,060	940	21.0
1978	2,408	40,152	28,816	215,169	13,403	1,148	16.0
1979	2,262	31,566	15,996	471,817	18,691	1,848	25.0
1980	375	58,988	5,772	28,594	11,115	749	25.0
1981	967	49,708	9,453	217,379	8,614	1,321	26.0
1982	1,000	72,140	10,288	15,141	6,719	647	21.0
1983	299	20,689	21,234	133,943	7,143	589	37.0
1984	756	64,281	22,235	243,448	41,797	1,236	24.0
1985	1,141	92,899	40,565	265,567	24,095	1,372	36.0
1986	1,283	60,462	90,584	203,137	33,818	1,664	31.0
1987	395	57,262	16,758	126,423	16,148	799	20.0
1988	652	35,192	6,754	58,665	27,410	682	19.0
1989	963	84,848	36,714	683,150	27,195	1,583	34.0
1990	1,349	80,883	69,709	234,643	30,758	1,676	34.0
1991	1,209	54,389	61,005	68,557	38,760	1,505	39.0
1992	612	56,547	108,050	55,765	39,802	1,603	40.0
1993	534	76,096	96,136	240,974	37,606	1,646	38.0
1994	298	53,522	76,167	113,769	50,200	1,606	43.0
Averages							
64-94	876	40,604	32,622	188,570	20,720	1,386	33.2
85-94	844	65,210	60,244	205,065	32,579	1,414	33.4
1995	288	73,585	60,948	294,159	110,709	1,422	34.0

Appendix B.4. Stock proportions and catches of sockeye salmon in the Alaskan Subdistrict 106-30 (Clarence Strait) commercial drift gillnet fishery, 1985-1995. Data based on SPA.

Year	Alaska	Canada	Stikine				Thermal Marked Tahltan	$\begin{array}{r} \text { Wild } \\ \text { Tahltan } \end{array}$
			$\mathrm{All}^{\mathrm{II}}$ Tahltan	Tuya	$\begin{array}{r} \text { non- } \\ \text { Tahltan } \end{array}$	Total		
Proportions								
1985	0.477	0.453	0.056		0.013	0.070		
1986	0.726	0.272	0.000		0.002	0.002		
1987	0.844	0.140	0.004		0.012	0.016		
1988	0.883	0.095	0.021		0.000	0.021		
1989	0.662	0.322	0.002		0.015	0.016		
1990	0.645	0.340	0.001		0.013	0.015		
1991	0.683	0.257	0.052		0.008	0.060		
1992	0.630	0.211	0.022		0.138	0.159		
1993	0.451	0.357	0.036		0.156	0.192		
1994	0.718	0.207	0.069		0.006	0.075	0.015	0.055
Average								
85-94	0.672	0.265	0.026		0.036	0.063		
1995	0.370	0.551	0.047	0.000	0.032	0.079	0.010	0.036
Catch								
1985	44,351	42,053	5,244		1,251	6,495		
1986	43,875	16,471	11		105	116		
1987	48,311	8,020	221		710	931		
1988	31,092	3,358	742		0	742	-	
1989	56,167	27,296	154		1,231	1,385	\because	
1990	52,188	27,506	114		1,075	1,189		
1991	37,164	13,971	2,804		450	3,255		
1992	35,613	11,930	1,226		7,778	9,004		
1993	34,330	27,167	2,758		11,841	14,599		
1994	38,426	11,063	3,712		321	4,033	789	2,923
Average								
85-94	42,152	18,883	1,699		2,476	4,175		
1995	27,201	40,570	3,423	0	2,391	5,814	755	2,668

All Tahltan includes wild and thermally marked fish.

Appendix B.5. Salmon catch and effort in the Alaskan District 106 commercial drift gillnet fisheries, 19641995. Catches do not include Blind Slough terminal area harvests. Effort maybe less than the sum of effort from 106-41/106-42 and 106-30 since some boats fished in more than one subdistrict.

Year	Catch					Effort	
	Chinook	Sockeye	Coho	Pink	Chum	Permit Days	$\begin{aligned} & \text { Days } \\ & \text { Open } \end{aligned}$
1960	46	10,354	336	1,246	502		
1961	416	20,614	14,934	124,236	64,479		
1962	1,308	47,033	42,276	256,620	59,119		
1963	1,558	80,826	52,078	514,067	90,024		
1964	2,082	76,541	64,654	443,086	44,218	5,383	49.0
1965	1,802	87,749	75,728	625,848	27,658	4,507	50.8
1966	1,665	89,847	62,823	400,932	40,756	4,978	74.3
1967	1,318	86,385	17,670	91,609	26,370	2,511	27.0
1968	1,316	64,671	67,151	169,107	61,366	4,965	52.0
1969	877	70,318	10,280	197,073	10,903	2,112	31.0
1970	78.5	42,778	35,470	94,892	32,231	1,863	41.0
1971	1,336	53,202	48,085	527,975	37,680	2,774	47.0
1972	2,573	101,338	93,427	89,467	72,382	3,311	41.0
1973	1,931	71,995	38,447	303,621	87,729	3,300	26.0
1974	1,926	57,346	45,651	104,403	50,309	2,177	28.0
1975	2,587	32,051	30,962	203,015	23,968	1,781	18.0
1976	384	15,48I	19,126	139.439	6,868	922	22.0
1977	671	67,023	8,401	419,107	13,300	1,381	28.0
1978	2,682	41,574	55,578	224,715	16,545	1,567	27.1
1979	2,720	66,373	28,083	648,212	35,507	2,784	31.4
1980	580	107,422	16,666	45,666	26,277	1,329	25.0
1981	1,565	182,001	22,614	437,573	34,296	2,928	26.0
1982	1,648	193,696	31,664	25,479	18,630	1,659	22.5
1983	567	48,842	62,442	208,290	20,144	1,422	31.4
1984	892	91,653	41,359	343,255	70,258	1,783	31.4
1985	1,689	264,987	91,142	584,946	69,661	2,625	31.4
1986	1,704	145,709	194,912	308,484	82,289	3,446	31.4
1987	836	136,427	34,534	243,482	42,025	1,726	19.5
1988	1,104	92,529	13,103	69,559	69,620	1,460	[8.5
1989	1,544	192,734	92,385	1,101,194	67,351	3,080	34.0
1990	2,108	185,805	164,235	319,186	73,232	3,440	34.0
1991	2,066	143,112	197,803	132,739	123,730	3,642	39.0
1992	1,355	203,155	298,935	94,248	140,468	4,227	40.0
1993	992	205,955	231,038	537,960	134,601	4,353	38.0
1994	754	211,048	267,831	179,994	[76,018	4,468	43.0
Averages							
60-94	1,411	110,637	79,426	300,470	56,013	2,8.36	34.1
85-94	1,415	178,146	158,592	357,179	97,900	3,247	32.9
1995	951	207,298	170,561	448,163	300,078	3,657	34.0

Alaska Hatchery Contribution							
1989			5,081				
1990			42,859				
1991			64,088				
1992			84,568				
1993			77,860				
1994	414	1,667	39,841		67,I14		
Averages							
89-94			52,383				
1995	353	4,553	27,330		72,417		
Catches not including Alaska hatchery contributions							
1989	1,544	192,734	87,304	1,101,194	67,351	3,080	34.0
1990	2,108	185,805	121,376	319,186	73,232	3,440	34.0
1991	2,066	143,112	133,715	132,739	123,730	3,642	39.0
1992	1,355	203,155	214,367	94,248	140,468	4,227	40.0
1993	992	205,955	153,178	537,960	134,601	4,353	38.0
1994	340	209,381	227,990	179,994	108,904	4,468	43.0
Averages							
89-94	1,401	190,024	156,322	394,220	108,048	3,868	38.0
1995	598	202,745	143,231	448,163	227,661	3,657	34.0

Appendix B.6. Stock proportions and catches of sockeye salmon in the Alaskan District 106 commercial drift gillnet fisheries, 1982-1995. Catches do not include Blind Slough terminal area harvest. Data based on SPA.

Year	Alaska	Canada	Stikine				Thermal Marked Tahltan	$\begin{array}{r} \text { Wild } \\ \text { Tahiltan } \end{array}$
			$\begin{array}{r} \text { All }^{1} \\ \text { Tahltan } \end{array}$	Tuya	$\begin{array}{r} \text { non- } \\ \text { Tahltan } \end{array}$	Total		
Proportions								
1982	0.486	0.319				0.194		
1983	0.668	0.217	0.103		0.013	0.116		
1984	0.658	0.269	0.029		0.044	0.074		
1985	0.479	0.419	0.091		0.011	0.102		
1986	0.689	0.293	0.014		0.004	0.018		
1987	0.827	0.155	0.010		0.007	0.017		
1988	0.874	0.106	0.020		0.001	0.020		
1989	0.657	0.311	0.006		0.026	0.032		
1990	0.608	0.371	0.005		0.016	0.021		
1991	0.545	0.331	0.100		0.024	0.124		
1992	0.595	0.232	0.070		0.102	0.172		
1993	0.400	0.338	0.098		0.164	0.262		
1994	0.579	0.254	0.142		0.025	0.167	0.033	0.108
Averages								
83-94	0.631	0.275	0.057		0.037	0.094		
1995	0.316	0.560	0.081	0.001	0.043	0.124	0.036	0.044
Catches								
1982	94,225	61,821				37,650		
1983	32,603	10,589	5,020		631	5,650		
1984	60,278	24,624	2,673		4,078	6,751		
1985	126,914	111,015	24,045		3,013	27,058		
1986	100,337	42,685	2,081		606	2,687		
1987	112,893	21,190	1,376		968	2,344		
1988	80,868	9,784	1,813		64	1,877		
1989	126,603	59,959	1,111		5,061	6,172		
1990	112,983	68,921	915		2,986	3,901		
1991	77,996	47,376	14,263		3,476	17,740		
1992	120,977	47,207	14,187		20,784	34,971		
1993	82,300	69,617	20,204		33,833	54,037		
1994	122,118	53,683	29,876		5,371	35,247	7,019	22,857
Averages								
83-94	96,406	47,221	9,797		6,739	16,536		
1995	65,544	116,075	16,715	125	8,839	25,679	7,533	9,182

All Tahltan includes wild and thermally marked fish.

Appendix B.7. Salmon catch and effort in the Alaskan District 108 commercial drift gillnet fishery, 1964-1995. Catches do not include Ohmer Creek terminal area harvests. Permit days are adjusted for boats which did not fish the entire opening and may total less than the sum of the permits times days open.

Year	Catch					Effor Permit Days	$\begin{aligned} & \text { Days } \\ & \text { Open } \end{aligned}$
	Chinook	Sockeye	Coho	Pink	Chum		
1964	2,911	20,299	29,388	114,555	10,771		62.0
1965	3,106	21,419	8,301	4,729	2,480	.	48.0
1966	4,516	36,710	16,493	61,908	17,730		62.0
1967	6,372	29,226	6,747	4,713	5,955		40.0
1968	4,604	14,594	36,407	91,028	14,537		61.0
1969	5,021	19,209	5,790	11,877	2,311	967	46.0
1970	3,207	15,120	18,403	20,523	12,305	1,222	51.0
1971	3,717	18,143	14,876	21,806	4,665	1,070	57.0
1972	9,3,32	51,734	38,520	17,153	17,363	2,095	64.0
1973	9,254	21,387	5,837	6,585	6,680	1,519	39.0
1974	8,199	2,428	16,021	4,188	2,107	1,178	28.5
1975	1,534	0	0	0	1	258	8.0
1976	1,123	18	6,056	722	124	372	19.0
1977	1,443	48,374	14,405	16,253	4,233	742	23.0
1978	531	56	32,650	1,157	1,001	565	12.0
1979	91	2,158	234	13,478	1,064	94	5.0
1980	631	14,053	2,946	7,224	6,910	327	22.0
1981	283	8,833	1,403	1.466	3,594	177	9.0
1982	1,033	6,911	19,971	16,988	741	494	21.0
1983	47	178	15,369	4,171	675	263	17.0
1984	14	1,290	5,141	4,960	1,892	56	8.6
1985	20	1,060	1,926	5,325	1,892	70	14.0
1986	102	4,185	7,439	4,901	5,928	246	25.0
1987	149	1,629	1,015	3,343	949	81	13.0
1988	206	1,246	12	144	3,109	66	8.0
1989	310	10,083	4,261	27,640	3,375	216	28.0
1990	557	11,574	8,218	13,822	9,382	359	34.0
1991	1,504	22,275	15,864	10,935	11,402	1,114	48.5
1992	967	52,717	22,127	66,742	15,458	1,029	51.0
1993	1,628	76,874	14,307	39,661	22,504	1,333	48.0
1994	1,996	97,224	44,891	35,405	27,658	2,908	57.0
Averages							
64-94	2,400	19,710	13,388	20,432	7,058	724	33.2
85-94	744	27,887	12,006	20,792	10,166	742	32.7
1995	1,702	76,756	17,834	37,788	54,296	1,214	49.5

Alaska Hatchery Contribution						
1989		55				
1990		2,539				
1991		3,458				
1992		7,036				
1993		887				
1994 571	4	2,040		2,159		
Averages						
89.94		2,669				
1995	268	1,085		18,333		
Catches not including Alaska hatchery contributions						
1989 310	10,083	4,206	27,640	3,375	216	28.0
1990 557	11,574	5,679	13,822	9,382	359	34.0
1991 1,504	22,275	12,406	10,935	11,402	1,114	48.5
1992967	52,717	15,091	66,742	15,458	1,029	51.0
1993 1,628	76,874	13,420	39,661	22,504	1,333	48.0
1994 1,425	97,220	42,851	35,405	25,499	2,908	57.0
Averages						
89-94 1,065	45,124	15,609	32,368	14,603	1,160	44.4
1995	76,488	16,749	37,788	35,963	1,214	49.5

Appendix B.8. Stock proportions and catches of sockeye salmon in the Alaskan District 108 commercial drift gillnet fishery, 1985-1995. Catches do not include Ohmer Creek terminal area harvests. Data based on SPA.

Year	Alaska	Canada	Stikine				Thermal Marked Tahltan	$\begin{gathered} \text { Wild } \\ \text { Tahltan } \end{gathered}$
			All $^{\text {a }}$ Tahltan	Tuya	$\begin{array}{r} \text { non- } \\ \text { Tahltan } \end{array}$	Total		
1984								
1985	0.064	0.000	0.292		0.644	0.936		
1986	0.206	0.017	0.094		0.683	0.777		
1987b	0.125	0.000	0.438		0.437	0.875		
1988	0.213	0.039	0.178		0.571	0.749		
1989	0.117	0.054	0.034		0.795	0.829		
1990	0.395	0.128	0.111		0.366	0.477		
1991	0.173	0.118	0.395		0.314	0.709		
1992	0.163	0.051	0.258		0.528	0.786		
1993	0.231	0.114	0.256		0.399	0.655		
1994	0.326	0.208	0.362		0.103	0.466	0.116	0.246
Averages								
85-94	0.201	0.073	0.242		0.484	0.726		
1995	0.135	0.204	0.455	0.006	0.200	0.661	0.257	0.198
Catch								
1985	68	0	310		683	992		
1986	862	71	393		2,858	3,252		
1987	204	0	714		712	1,425		
1988	265	48	222		711	933		
1989	1,180	545	341		8,017	8,358	,	
1990	4,576	1,479	1,280		4,239	5,519		
1991	3,859	2,622	8,807		6,987	15,794		
1992	8,604	2,696	13,599		27,818	41,417		
1993	17,758	8,742	19,688		30,686	50,374		
1994	31,715	20,250	35,222		10,037	45,259	11,286	23,936
Averages								
85-94	6,909	3,645	8,058		9,275	17,332		
1995	10,374	15,641	34,950	461	15,330	50,741	19,726	15,224

Numbers do not sum due to rounding.
a All Tahltan includes wild and thermally marked fish.
b There was no data available to determine the ratio of Tahltan to non-Tahltan Stikine stocks; a 1:1 ratio was assumed.

Appendix B.9. Salmon catch in the Alaskan Subdistrict 106-41 (Sumner Strait) test fishery, 19841995.

Year	Catch					Boat Hours
	Chinook	Sockeye	Coho	Pink	Chum	
1984	13	1,370	101	975	793	142.51
1985	16	4,345	301	3,230	746	156.31
1986	23	982	177	60	248	99.45
1987	24	2,659	799	4,117	741	508.10
1988	11	1,020	89	137	772	121.00
1989	11	2,043	275	6,069	856	60.20
1990	13	2,256	432	372	552	7.00
1991	There was no test fishery in 1991.					
1992	There was no test fishery in 1992.					
1993	There was no test fishery in 1993.					
1994	0	12		0	16	11.00
1995	There was no	test fishery	1995.			

Appendix B.10. Stock proportions and catches of sockeye salmon in the Alaskan Subdistrict 106-41 and 106-42 (Sumner Strait) test fishery, 1984-1995. Data based on SPA.

Year	Alaska	Canada	Stikine			Thermal Marked Tahltan	Wild Tahltan
			$\mathrm{All}^{\mathrm{a}}$ Tahltan	nonTahltan	Total		
Proportions							
1984	0.658	0.269	0.029	0.044	0.074		
1985	0.480	0.401	0.109	0.010	0.119		
1986	0.834	0.149	0.008	0.009	0.017		
1987	0.816	0.166	0.015	0.003	0.018		
1988	0.868	0.098	0.034	0.000	0.034		
1989	0.624	0.304	0.017	0.056	0.072		
1990	0.548	0.416	0.014	0.022	0.035		
1991	There was no	est fishery	i 1991.				
1992	There was no	est fishery	in 1992.				
1993	There was no	est fishery	i 1993.				
1994	0.500	0.250	0.250	0.000	0.250	0.083	0.167
1995	There was no	est fishery	i 1995.				
Catch							
1984	901	368	40	61	101		
1985	2,085	1,741	475	44	519		
1986	819	146	8	9	17		
1987	2,169	442	39	9	47		
1988	886	100	35	0	35		
1989	1,274	621	34	114	148		
1990	1,237	939	31	49	80		
1991	There was no	est fishery	1991.				
1992	There was no	est fishery	1992.				
1993	There was no	est fishery	1993.				
1994	6	3	3	0	3	1	2
1995	There was no	est fishery	1995.				

a All Tahltan includes thermally marked fish.

Appendix B.11. Salmon catch in the Alaskan Subdistrict 106-30 (Clarence Strait) test fishery, 19861995.

	Catch					Boat Year
	Chinook	Sockeye	Coho	Pink	Chum	Hours
1986	24	363	95	80	58	23.25
1987	1	899	589	1,705	467	384.00
1988	10	16	412	112	598	119.70
1989	4	37	464	431	329	
1990	There was no test fishery in 1990.					
1991	There was no test fishery in 1991.					
1992	There was no test fishery in 1992.					
1993	There was no test fishery in 1993.					
1994	There was no test fishery in 1994.					
1995	There was no test fishery in 1995.					

Appendix B.12. Stock proportions and catches of sockeye salmon in the Alaskan Subdistrict 106-30 (Clarence Strait) test fishery, 1986-1995. Data based on SPA.

Year	Alaska	Canada	Stikine		
			Tahltan	$\begin{array}{r} \text { non- } \\ \text { Tahltan } \end{array}$	Total
Proportions					
1986	0.726	0.272	0.000	0.002	0.002
1987	0.844	0.140	0.004	0.012	0.016
1988	0.746	0.254	0.000	0.000	0.000
1989	0.514	0.486	0.000	0.000	0.000
1990	There was no test fishery in 1990.				
1991	There was no test fishery in 1991.				
1992	There was no test fishery in 1992.				
1993	There was no test fishery in 1993.				
1994	There was no test fishery in 1994.				
1995	There was no test fishery in 1995.				
Catches					
1986	263	99	0	1	1
1987	758	126	3	11	15
1988	12	4	0	0	0
1989	19	18	0	0	0
1990	There was no test fishery in 1990.				
1991	There was no test fishery in 1991.				
1992	There was no test fishery in 1992.				
1993	There was no test fishery in 1993.				
1994	There was no test fishery in 1994.				
1995	There was no test fishery in 1995.				

Appendix B.13. Salmon catch and effort in the Alaskan District 106 test fisheries 1984-1995.

Year	Catch					Boat Hours
	Chinook	Sockeye	Coho	Pink	Chum	
1984	13	1,370	101	975	793	142.51
1985	16	4,345	301	3,230	746	156.31
1986	47	1,345	272	140	306	122.70
1987	25	3,558	1,388	5,822	1,208	892.10
1988	21	1,036	501	249	1,370	240.70
1989	15	2,080	739	6,500	1,185	60.20
1990	13	2,256	432	372	552	7.00
1991	There were no test fisheries in 1991.					
1992	There were no test fisheries in 1992.					
1993	There were no test fisheries in 1993.					
1994	0	12	1	0	16	11.00
1995	There were	test fishe	1995.			

Appendix B.14. Stock proportions and catches of sockeye salmon in the Alaskan District 106 test fisheries, 1984-1995. Data based on SPA.

Year	Alaska	Canada	Stikine			Thermal Marked Tahltan	Wild Tahltan
			$\mathrm{All}^{\mathrm{a}}$ Tahltan	non- Tahltan	Total		
Proportions							
1984	0.658	0.269	0.029	0.044	0.074		
1985	0.480	0.401	0.109	0.010	0.119		
1986	0.805	0.182	0.006	0.007	0.013		
1987	0.823	0.160	0.012	0.006	0.017		
1988	0.867	0.100	0.033	0.000	0.033		
1989	0.622	0.307	0.016	0.055	0.071		
1990	0.548	0.416	0.014	0.022	0.035		
1991	There were no	test fisher	1991.				
1992	There were no	test fisher	in 1992.				
1993	There were no	test fisher	in 1993.				
1994	0.500	0.250	0.250	0.000	0.250	0.083	0.167
1995	There were no	test fisher	- 1995.				
Catch							
1984	901	368	40	61	101		
1985	2,085	1,741	475	44	519		
1986	1,082	245	8	9	17		
1987	2,928	568	42	20	62		
1988	898	104	35	0	35		
1989	1,293	639	34	114	148		
1990	1,237	939	31	49	80		
1991	There were no	test fisher	1991.				
1992	There were no	test fisher	1992.				
1993	There were no	test fisher	1993.				
1994	6	3	3	0	3	1	2
1995	There were no	test fisher	1995.				

[^3]Appendix B.15. Salmon catch and effort tin the Alaskan District 108 test fishery, 1984-1995.

Year	Catch					Boat Hours
	Chinook	Sockeye	Coho	Pink	Chum	
1984	37	641	11	822	813	
1985	33	1,258	11	465	381	71.67
1986	79	564	3	36	315	72.15
1987	30	290	13	1,957	488	76.87
1988	65	451	9	1,091	1,009	126.83
1989	15	1,038	45	2,459	283	63.47
1990	19	866	45	942	643	7.00
1991	21	893	18	390	455	154.99
1992	26	1,299	23	855	252	79.00
1993	30	303	0	18	31	45.00
1994	There was no test fishery in 1994.					
Averages						
84-93	36	760	18	904	467	77.44
1995	There was no	test fishery	995.			

Appendix B.16. Stock proportions and catches of sockeye salmon in the Alaskan District 108 test fishery, 1985-1995. Data based on SPA.

Appendix B.17. Salmon and steelhead trout catch and effort in the Canadian commercial fishery in the lower Stikine River, 1979-1995.

Year	Catch							Effort Permit	
	Chinook		Sockeye	Coho	Pink	Chum	Steelhead		
	Jacks	Large						Days	Days
$1979{ }^{\text {a }}$	63	712	10,534	10,720	1,994	424	264	756.0	42.0
1980		1,488	18,119	6,629	736	771	362	668.0	41.0
1981		664	21,551	2,667	3,713	1,128	280	522.0	32.0
1982		1,693	15,397	15,904	1,782	722	828	1,063.0	71.0
1983	430	492	15,857	6,170	1,043	274	667	434.0	54.0
$1984{ }^{\text {b }}$									
1985	91	256	17,093	2,172	2,321	532	231	145.5	22.5
1986	365	806	12,411	2,278	107	295	192	239.0	13.5
1987	242	909	6,138	5,728	646	432	217	287.0	20.0
1988	201	1,007	12,766	2,112	418	730	258	320.0	26.5
1989	157	1,537	17,179	6,092	825	674	127	325.0	23.0
1990	680	1,569	14,530	4,020	496	499	188	328.0	29.0
1991	318	641	17,563	2,638	394	208	71	282.4	39.0
1992	89	873	21,031	1,850	122	231	129	235.4	55.0
1993	164	830	38,464	2,616	29	395	63	483.8	58.0
1994	158	1,016	38,462	3,377	89	173	75	430.1	74.0
Averages ${ }^{\text {c }}$									
79-94		1,163	18,473	4,998	981	499	263	434.6	40.0
85-94	247	944	19,564	3,288	545	417	155	307.6	36.1
1995	599	1,067	45,622	3,418	48	256	208	534.0	59.0

The lower river commercial catch in 1979 includes the upper river commercial catch.
b There was no commercial fishery in 1984.
c Chinook average for 1979-1994 is for jacks and large fish combined.

Appendix B.18. Sockeye salmon stock proportions and catch by stock in the Canadian commercial fishery in the lower Stikine River, 1979-1995. Stock compositions based on: scale circuli counts 1970-1983; SPA in 1985; average of SPA and genetic analysis 1986; SPA in 1987 and 1988; and egg diameter in 1989-1995.

Year	Proportions			Prop. Marked Tahltan	Catch			Tahltan	
	Tahltan	Tuya	non- Tahltan		Tahltan	Tuya	non- Tahltan		
								Wild	Planted
1979	0.433		0.567		4,561		5,973		
1980	0.309		0.691		5,599		12,520		
1981	0.476		0.524		10,258		11,293		
1982	0.624		0.376		9,608		5,789		
1983	0.422		0.578		6,692		9,165		
$1984{ }^{\text {a }}$									
1985	0.623		0.377		10,649		6,444		
1986	0.489		0.511		6,069		6,342		
1987	0.225		0.775		1,380		4,758		
1988	0.161		0.839		2,062		10,704		
1989	0.164		0.836		2,813		14,366		
1990	0.346		0.654		5,029		9,501		
1991	0.634		0.366		11,136		6,427		
1992	0.482		0.518		10,134		10,897		
1993	0.537		0.463		20,662		17,802		
1994	0.616		0.384		23,678		14,784		
Averages									
79-94	0.436		0.564		8,689		9,784		
85-94	0.428		0.572		9,361		10,203		
1995	0.676	0.020	0.304	0.195	30,848	893	13,881	21,936	8,912

There was no commercial fishery in 1984.

Appendix B.19. Salmon and steelhead trout catch and effort in the Canadian commercial fishery in the upper Stikine River, 1975-1995.

Year	Catch							Effor Permit Days	Days
	Chinook		Sockeye	Coho	Pink	Chum	Steelhead		
	Jacks	Large							
1975		178	270	45	0	0	0		
1976		236	733	13	0	0	0		
1977		62	1,975	0	0	0	0		
1978		100	1,500	0	0	0	0		
$1979{ }^{\text {a }}$									
1980		156	700	40	20	0	0		
1981		154	769	0	0	0	0	11.0	5.0
1982		76	195	0	0	0	0	8.0	4.0
1983		75	614	0	0	4	1	10.0	8.0
$1984{ }^{\text {b }}$									
1985		62	1,084	0	0	0	0	14.0	6.0
1986	41	104	815	0	0	0	0	19.0	7.0
1987	19	109	498	0	0	19	0	20.0	7.0
1988	46	175	348	0	0	0	0	21.5	6.5
1989	17	54	493	0	0	0	0	14.0	7.0
1990	20	48	472	0	0	0	0	15.0	7.0
1991	32	117	761	0	0	0	0	13.0	6.0
1992	19	56	822	0	0	0	0	28.0	13.0
1993	2	44	1,692	0	0	0	2	48.0	22.0
1994	1	76	2,466	0	1	0	0	68.0	50.0
Averages $^{\text {c }}$									
75-94		109	900	5	1	1	0		
85-94	22	85	945	0	0	2	0	26.1	13.2
1995	17	9	2,355	0	0	0	0	59.0	25.0

Catches in 1979 were included in the lower river commercial catches.
b There was no commercial fishery in 1984.
c Chinook average for 1975-1994 is for jacks and large fish combined.

Appendix B.20. Salmon and steelhead trout catch in the Canadian aboriginal fishery located at Telegraph Creek, on the Stikine River, 1972-1995.

Year	Catch						
	Chinook		Sockeye	Coho	Pink	Chum	Steelhead
	Jacks	Large					
1972			4,373	0	0	0	0
1973		200	3,670	0	0	0	0
1974		100	3,500	0	0	0	0
1975		1,024	1,982	5	0	0	0
1976		924	2,911	0	0	0	0
1977		100	4,335	0	0	0	0
1978		400	3,500	0	0	0	0
1979		850	3,000	0	0	0	0
1980		587	2,100	100	0	0	0
1981		586	4,697	200	144	0	4
1982		618	4,948	40	60	0	0
1983	215	851	4,649	3	77	26	46
1984	59	643	5,327	1	62	0	2
1985	94	793	7,287	3	35	4	9
1986	569	1,026	4,208	2	0	12	2
1987	183	1,183	2,979	3	0	8	2
1988	197	1,178	2,177	5	0	3	3
1989	115	1,078	2,360	6	0	0	0
1990	259	633	3,022	17	0	0	11
1991	310	753	4,439	10	0	0	0
1992	131	911	4,431	5	0	0	3
1993	142	929	7,041	0	0	0	2
1994	191	698	4,167	4	0	0	9
Averages $^{\text {a }}$							
72-94		806	3,961	18	16	2	4
85-94	219	918	4,211	6	4	3	4
1995	244	570	5,490	0	0	7	62

a Chinook average for 1972-1994 is for jacks and large fish combined.

Appendix B.21. Catch by stock for sockeye salmon harvested in the Canadian upper river commercial and aboriginal fisheries in the Stikine River, 1972-1995.

	Upper River Commercial					Canadian Aboriginal Fishery				
	Tahltan	Tuya	NonTahltan	Tahltan		Tahltan	Planted Tuya	Non- Tahltan	Tahltan	
				Wild	Planted				Wild	Planted
1972						3,936		437		
1973						3,303		367		
1974						3,150		350		
1975	243		27			1,784		198		
1976	660		73			2,620		291		
1977	1,778		198			3,902		434		
1978	1,350		150			3,150		350		
1979	0		0			2,700		300		
1980	630		70			1,890		210		
1981	692		77			4,227		470		
1982	176		20			4,453		495		
1983	553		61			4,184		465		
1984	0		0			4,794		533		
1985	976		108			6,558		729		
1986	734		82			3,787		421		
1987	448		50			2,681		298		
1988	313		35			1,959		218		
1989	444		49			2,124		236		
1990	425		47			2,720		302		
1991	685		76			3,995		444		
1992	740		82			3,988		443		
1993	1,523		169			6,337		704		
1994	2,219		247			3,750		417		
Averages										
72-94	729		81			3,565		396		
85-94	851		95			3,790		42 I		
1995	2,120	60	176	1,507	612	4,941	139	410	3,514	1,427

Appendix B.22. Salmon and steelhead trout catch in the combined Canadian net fisheries in the Stikine River, 1972-1995. ESSR catches not included.

Year	Catch						
	Chinook		Sockeye	Coho	Pink	Chum	Steelhead
	Jacks	Large					
1972	0	0	4,373	0	0	0	0
1973	0	200	3,670	0	0	0	0
1974	0	100	3,500	0	0	0	0
1975	0	1,202	2,252	50	0	0	0
1976	0	1,160	3,644	13	0	0	0
1977	0	162	6,310	0	0	0	0
1978	0	500	5,000	0	0	0	0
1979	63	1,562	13,534	10,720	1,994	424	264
1980	0	2,231	20,919	6,769	756	771	362
1981	0	1,404	27,017	2,867	3,857	1,128	284
1982	0	2,387	20,540	15,944	1,842	722	828
1983	645	1,418	21,120	6,173	1,120	304	714
$1984{ }^{\text {a }}$	59	643	5,327	1	62	0	2
1985	185	1,111	25,464	2,175	2,356	536	240
1986	975	1,936	17,434	2,280	107	307	194
1987	444	2,201	9,615	5,731	646	459	219
1988	444	2,360	15,291	2,117	418	733	261
1989	289	2,669	20,032	6,098	825	674	127
1990	959	2,250	18,024	4,037	496	499	199
1991	660	1,511	22,763	2,648	394	208	71
1992	239	1,840	26,284	1,855	122	231	132
1993	308	1,803	47,197	2,616	29	395	67.
1994	350	1,790	45,095	3,381	90	173	84
Averages ${ }^{\text {b }}$							
72-94		1,655	16,713	3,282	657	329	176
85-94	485	1,947	24,720	3,294	548	422	159
1995	860	1,646	53,467	3,418	48	263	270

There was no commercial fishery in 1984.
b Chinook average for 1972-1994 is for jacks and large fish combined.

Appendix B.23. Salmon catches in the Stikine River harvested under Canadian ESSR licenses, 19921995.

Year	Sockeye	Wild	Planted
1992			
1993	1,752	1,714	38
1994	6,852	5,682	1,170
1995	10,740	6,680	4,060

Appendix B.24. Salmon and steelhead trout catches and effort in Canadian test fisheries in the Stikine River, 1985-1995.

	Catclies							$\begin{array}{r} \text { Effort } \\ \text { Drift }=\text { \# } \\ \text { Set }=\text { hr. } \end{array}$
	Chinook							
Year	Jacks	Large	Sockeye	Coho	Pink	Chum	Steelhead	
Drift Test Fishery Catches								
1985								
1986	12	27	412	226	8	25	0	405
$1987{ }^{\text {a }}$		128	385	162	111	61	0	845
1988	14	168	325	75	9	33	7	720
1989	4	116	364	242	41	46	5	870
1990	6	167	447	134	5	29	6	673
1991	1	90	503	118	37	30	3	509
1992	27	135	393	75	13	23	7	312
1993	11	94	440	37	6	18	7	304
1994	4	4.3	179	71	6	20	7	175
Averages								
85-94	10	108	383	127	26	32	5	535
1995	13	18	297	35	4	12	4	285
Sct Test Fishery Catches								
1985			1,340					
1986								
$1987^{\text {a }}$		61	1,283	620	587	193	0	1,456
1988	15	101	922	130	23	65	14	1,380
1989	20	101	1,243	502	249	103	17	1,392
1990	12	64	1,493	271	42	48	18	1,212
1991	15	77	1,872	127	197	48	1	1,668
1992	21	62	1,971	193	56	43	19	1,249
1993	11	85	1,384	136	6	63	6	1,224
1994	34	74	414	0	0	0	0	456
Averages								
85-94	18	78	1,325	247	14.5	70	9	1,255
1995	35	61	850	166	5	41	14	888

Additional Test Fishery Catches
1985
1986
1987
1988
1989
1990
1991

1991	134	417	594	0	0	0	0	85
1992	65	389	1,925	2	1	3	2	266
1993	40	178	840	0	0	0	0	131

Averages								
85-94	80	328	1,120	1	0	1	1	161
1995	136	169	1,423	26	!	9	1	222
Total Test Fishery Catehes								
1985	0	0	1,340	0	0	0	0	
1986	12	27	412	226	8	25	0	
1987	30	189	1,668	782	698	254	0	
1988	29	269	1,247	205	32	98	2 I	
1989	24	217	1,607	744	290	149	22	
1990	18	231	1,940	405	47	77	24	
1991	16	167	2,375	245	234	78	4	
1992	182	614	2,958	268	69	66	26	
1993	87	568	3,749	175	13	84	15	
1994	78	295	1,433	71	6	20	7	
Averages								
85-94	48	258	1,873	312	140	85	12	
1995	184	248	2,570	227	10	62	19	

Appendix B.25. Sockeye salmon stock proportions and catch by stock in the test fishery in the lower Stikine River, 1985-1995. Stock composition based on: SPA 1985; average of SPA and GPA 1986-1988; egg diameter 1989-1995.

Year	Catch Tahltan		Catch Tuya	Catch Thermalnon- MarkedTahltan Tahltan	Proportion Tahltan		Average Proportion ${ }^{\text {a }}$			
								non-		
	U.S.	Canada			U.S.	Canada	Tahltan	Tuya	Tahltan	
1985	560	439			841	0.418	0.328	0.372		0.628
1986	164	127		267	0.398	0.308	0.352		0.648	
1987	513	397		1,213	0.308	0.238	0.273		0.727	
1988	408	295		895	0.327	0.237	0.282		0.718	
1989		414		1,192		0.258	0.258		0.742	
1990		822		1,058		0.454	0.454		0.546	
1991		1,443		931		0.608	0.608		0.392	
1992		1,912		1,046		0.646	0.646		0.354	
1993		2,184		1,564		0.583	0.583		0.417	
1994		1,228		205		0.857	0.857		0.143	
Averages										
85-94							0.469		0.531	
1995		2,064	20	$486 \quad 729$		0.803	0.803	0.008	0.189	

Average proportions are from averages of weekly estimates.

Appendix B.26. Estimated proportion of inriver run comprised of Tahltan Lake and non-Tahltan sockeye stocks, 1979-1995. Stock compositions based on: scale circuli counts 19791983; SPA in 1985; average of SPA and GPA 1986-1988; and egg diameter analysis in 1989-1994. 1994 \& 1995 data from commercial catch and CPUE.

Year	Tahltan		Average ${ }^{\text {a }}$		
					non-
	U.S.	Canada	Tahltan	Tuya	Tahltan
1979	0.433		0.433		0.567
1980	0.305		0.305		0.695
1981	0.475		0.475		0.525
1982	0.618		0.618		0.382
1983	0.489	0.423	0.456		0.544
1984	0.635	0.394	0.493		0.507
1985	0.621	0.363	0.466		0.534
1986	0.398	0.500	0.449		0.551
1987	0.338	0.257	0.304		0.696
1988	0.209	0.122	0.172		0.828
1989		0.188	0.188		0.812
1990		0.417	0.417		0.583
1991		0.561	0.561		0.439
1992		0.496	0.496		0.504
1993		0.477	0.477		0.523
1994		0.606	0.606		0.394
Averages					
79-94			0.432		0.568
85-94			0.414		0.586
1995		0.578	0.578	0.016	0.406

Average proportions are from averages of weekly stock composition and migratory timing (from drift test fishery) estimates.

Appendix B.27. Counts of adult sockeye salmon migrating through Tahltan Lake weir, 1959-1995.

Thermal mark data not yet available.

Year	Weir	Date of Arrival			Total BroodCount stock		ESSR	Total Spawners	Natural Spawners	Hatchery Spawners
	Installed	First	50\%	90\%						
1959	30-Jun	02-Aug	12-Aug	16-Aug	4,311					
1960	15-Jul	02-Aug	24-Aug	27-Aug	6,387					
1961	20-Jul	09-Aug	11-Aug	15-Aug	16,619					
$1962^{\text {a }}$	01-Aug	02-Aug	05-Aug	08-Aug	14,508					
$1963{ }^{\text {b }}$	03-Aug				1,780					
1964	23-Jul	26-Jul	14-Aug	25-Aug	18,353					
$1965^{\text {c }}$	19-Jul	18-Jul	02-Sep	07-Sep	1,471					
1966	12-Jul	03-Aug	13-Aug	21-Aug	21,580					
1967	11-Jul	14-Jul	21-Jul	28-Jul	38,801					
1968	11-Jul	21-Jul	$25-\mathrm{Jul}$	08-Aug	19,726					
1969	07-Jul	11-Jul	18-Jul	31-Jul	11,805					
1970	$05-\mathrm{Jul}$	25-Jul	01-Aug	11-Aug	8,419					
1971	12-Jul	19-Jul	28-Jul	12-Aug	18,523					
1972	13-Jul	13-Jul	19-Jul	31-Aug	52,545					
1973	$10-\mathrm{Jul}$	24-Jul	30-Jul	07-Aug	2,877					
1974	03-Jul	28-Jul	03-Aug	17-Aug	8,101					
1975	10-Jul	25-Jul	08-Aug	17-Aug	8,159					
1976	16-Jul	29-Jul	01-Aug	06-Aug	24,111					
1977	$06-\mathrm{Jul}$	11-Jul	16-Jul	10-Aug	42,960					
1978	10-Jul	10-Jul	$20-\mathrm{Jul}$	29-Jul	22,788					
1979	09 -Jul	23 -Jul	01-Aug	11-Aug	10,211					
1980	04-Jul	15-Jul	22-Jul	12-Aug	11,018					
1981	30-Jun	16-Jul	26-Jul	03-Aug	50,790					
1982	02-Jul	10-Jul	19-Jul	29-Jul	28,257					
1983	27-Jun	05-Jul	22 -Jul	05-Aug	21,256					
1984	20-Jun	19-Jul	$24-\mathrm{Jul}$	03-Aug	32,777					
1985	28-Jun	18-Jul	31-Jul	06-Aug	67,326					
1986	10 -Jul	26-Jul	04-Aug	11-Aug	20,280					
1987	14-Jul	21-Jul	04-Aug	13-Aug	6,958					
1988	16-JuF	16-Jul	06-Aug	14-Aug	2,536					
1989	07-Jul	$09-\mathrm{Jul}$	01-Aug	14-Aug	8,316	2,210		6,106		
1990	06-Jul	15-Jul	26-Jul	03-Aug	14,927	3,302		11,625		
1991	15-Jul	17-Jul	$25-\mathrm{Jul}$	07-Aug	50,135	3,552		46,583		
1992	$10-\mathrm{Jul}$	$18-\mathrm{Jul}$	$25-\mathrm{Jul}$	03-Aug	59,907	3,694		56,213		
1993	$10-\mathrm{Jul}$	$10-\mathrm{Jul}$	28-Jul	10-Aug	53,362	4,506	1,752	47,104	46,074	1,030
1994	10-Jul	14-Jul	30-Jul	09-Aug	46,363	3,378	6,852	36,133	29,961	6,172
Averages										
59-94	10-Jul	19-Jul	31-Jul	11-Aug	23,007					
85-94	09 -Jul	16-Jul	30-Jul	09-Aug	33,011					
1995	08-Jul	$09-\mathrm{Jul}$	24-Jul	12-Aug	42,317	4,902	10,740	26,675	16,591	10,084

a Question as to date weir installed.
b Daily counts unavailable.
c A slide occurred blocking the entrance for awhile.

Appendix B.28. Aerial survey counts of non-Tahltan sockeye stocks in the Stikine River drainage, 1984-1995. The index represents the combined counts from eight spawning areas.

Year	Chutine River	Scud River	Porcupine Slough	Christina Creek	Craig River	Bronson Slough	Verrett Creek	Verrett Slough	Escapement Index
1984	526	769	69	130	102		640		2,236
185	253	282	69	67	27		383		1,081
1986	139	151	8	0	0		270		568
1987	0	490	62	6	30		103		691
1988	14	219	22	7	0		114		376
1989	29	269	133	10	60	60	180	68	809
1990	24	301	31	4	0	0	301	82	743
1991	0	100	61		7	32	179	8	387
1992	164	1242	90	50	17	138	163	22	1,886
1993	57	321	141	28	2	79	107	142	877
1994	267	292	66			62	147	114	948
Averages									
$84-94$	134	403	68	34	25	62	235	73	964
1995	13	260	11			72	47	31	434

Appendix B.29. Estimates of sockeye salmon smolt migrating through Tahltan Lake smolt weir, 19841995.

Year	Weir Installed	Date of Arrival			Total Estimate	Natural Smolt	Hatchery Smolt
		First	50\%	90\%			
1984	10-May	11-May	23-May	06-Jun	218,702		
1985	$25-\mathrm{Apr}$	23-May	31-May	28-May	613,531		
1986	08-May	10-May	31-May	07-Jun	244,330		
$1987{ }^{\text {a }}$	07-May	15-May	23-May	24-May	810,432		
1988	01-May	08-May	20-May	06-Jun	1,170,136		
1989	05-May	08-May	22-May	$06-\mathrm{Jum}$	580,574		
$1990{ }^{\text {b }}$	05-May	15-May	29-May	05-Jun	610,407		
$1991{ }^{\text {c }}$	05-May	14-May	21-May	30-May	1,487,265	1,220,397	266,868
$1992{ }^{\text {d }}$	07-May	13-May	21-May	27-May	1,555,026	750,702	804,324
1993	07-May	11-May	17-May	22-May	3,255,045	2,855,562	399,483
1994	08-May	08-May	16-May	12-Jun	915,119	620,809	294,310
Averages							
84-94	05-May	12-May	23-May	01-Jun	1,041,870	1,361,868	441,246
1995	05-May	06-May	27-May	11-Jun	822,284	767,027	55,257

a Estimate includes approximately 30,000 mortalities from overcrowding on $5 / 22,1987$.
b Estimate of 595,147 on June 14 expanded by average $\%$ of out migration by date (97.5%) from historical data.
c Estimate of $1,439,673$ on June 13 expanded by average $\%$ of out migration by date (96.8%) from historical data.
d Estimate of $1,516,150$ on June 14 expanded by average $\%$ of out migration by date (97.5%) from historical data.

Appendix B.30. Weir counts of chinook salmon at Little Tahltan River, 1985-1995.

Year	$\begin{array}{r} \text { Weir } \\ \text { Installed } \\ \hline \end{array}$	First Arrival	$\begin{array}{r} 50 \% \\ \text { Arrival } \\ \hline \end{array}$	$\begin{array}{r} 90 \% \\ \text { Arrival } \\ \hline \end{array}$	Total Count	Brood- stock and Other	Natural Spawners	Total Natural Spawners
Large Chinook								
1985	03-Jul	04-Jul	30-Jul	06-Aug	3,114		3,114	
1986	28-Jun	29-Jun	21-Jul	05-Aug	2,891		2,891	
1987	28-Jun	04-Jul	24-Jul	02-Aug	4,783		4,783	
1988	26-Jun	27-Jun	18-Jul	03-Aug	7,292		7,292	
1989	25-Jun	26-Jun	23-Jul	02-Aug	4,715		4,715	
1990	22-Jun	29-Jun	23-Jul	04-Aug	4,392		4,392	
1991	23-Jun	25-Jun	20-Jul	03-Aug	4,506		4,506	
1992	24-Jun	04-Jul	21-Jul	30-Jul	6,627	-12	6,615	
1993	20-Jun	21-Jun	$16-\mathrm{Jul}$	28-Jul	11,449	-24	11,425	
1994	18-Jun	28-Jun	22-Jul	02-Aug	6,387	-27	6,360	
Averages								
85-94	24-Jun	28-Jun	21-Jul	02-Aug	5,616		5,609	
1995	17-Jun	20-Jun	17-Jul	04-Aug	3,072	0	3,072	
Jack Chinook (fish<600mm poh length)								
1985	03-Jul	04-JuI	31-Jul	10-Aug	316			3,430
1986	28-Jun	$03-\mathrm{Jul}$	$25-\mathrm{Jul}$	06-Aug	572			3,463
1987	28-Jun	03-Jul	26-Jul	06-Aug	365			5,148
1988	26-Jun	27-Jun	17-Jul	02-Aug	327			7,619
1989	25-Jun	26-Jun	23-Jul	02-Aug	199			4,914
1990	22-Jun	$05-\mathrm{Jul}$	22-Jul	30-Jul	417			4,809
1991	23-Jun	03-Jul	24-Jul	07-Aug	313			4,819
1992	24-Jun	12-Jul	$22-\mathrm{JuI}$	30-Jul	131			6,746
1993	20-Jun	30-Jun	$14-\mathrm{Jul}$	01-Aug	60			11,485
1994	18-Jun	02-JuI	$22-\mathrm{JuI}$	05-Aug	121			6,481
Averages								
85-94	24-Jun	02-Jul	22-Jul	03-Aug	282			5,891
1995	17-Jun	22-Jun	$28-\mathrm{Jul}$	10-Aug	135			3,207

Appendix B.31. Index counts of Stikine chinook escapements, 1979-1995. Counts do not include jacks (fish less than 600 mm mef length).

Year	Little Tahltan Weir ${ }^{\text {a }}$	Little Tahltan Aerial	Tahltan Aerial	Beatty Aerial	Andrew Foot
1979		1,166	2,118		$382^{\text {b }}$ Andrew weir count includes brood stock.
1980		2,137	960	122	$363^{\text {b }}$ Andrew weir count includes brood stock.
1981		3,334	1,852	558	$654^{\text {b }}$ Andrew weir count includes brood stock.
1982		2,830	1,690	567	$947^{\text {b }}$ Andrew weir count includes brood stock.
1983		594	453	83	444^{b} Andrew weir count includes brood stock.
1984		1,294		126	$389{ }^{\text {b }}$ Andrew weir count includes brood stock.
1985	3,114	1,598	1,490	147	319
1986	2,891	1,201	1,400	183	707
1987	4,783	2,706	1,390	312	788 Andrew helicopter survey.
1988	7,292	3,796	4,384	593	564
1989	4,715	2,527	c	362	530 Tahltan not surveyed due to visibility.
1990	4,392	1,755	2,134	271	664
1991	4,506	1,768	2,445	193	400 Andrew fixed wind survey.
1992	6,627	3,607 ${ }^{\text {b }}$	1,891	362	778 Andrew helicopter survey, Little Tahltan includes brood stock.
1993	11,425	4,010	2,249	757	1,060
1994	6,360	2,422	c	184	572 Andrew helicopter survey - Tahltan no survey.
Averages					
79-94		2,297	1,747	321	598
85-94	5,611	2,539	1,931	336	638
1995	3,072	1,117	696	152	338

Numbers are weir counts.
b Count includes fish later removed for brood stock.
c Not surveyed due to poor visibility.

Appendix B.32. Index counts of Stikine coho salmon escapements, 1984-1995.

Year	Date	Katete South	Katete North	Craig	Verret	Scud Slough	Porcupine	Christina	Total
1984	30 -Oct	147	313	0	15			517	
1985	25 -Oct	590	1,217	735	39	924	365	3,870	
1988	$28-$ Oct	32	227	a	175	97	53	0	584
1989	$29-$ Oct	336	896	992	848	707	90	55	4,044
1990	30 -Oct	94	548	810	494	664	430	3,040	
1991	$29-$ Oct	302	878	985	218	221	352	2,956	
1992	$29-$ Oct	295	1,346	949	320	462	316	3,688	
1993	30 -Oct	a	a	a	a	206	324		
1994	$11 / 1 \& 2$	28	652	1,026	466	448	1,105	3,725	
Average									
$84-94$		228	760	785	322	466	379	28	2,803
1995	30 -Oct	211	208	1,419	574	621	719		3,752

Poor observation conditions.

Appendix B.33. Stikine River sockeye salmon run size, 1979-1995. Catches include test fishery catches.

Year	Inriver Run Size Estimates			Inriver Catch	Escapement ${ }^{\text {b }}$	Marine Catch	Total Run
	Canada	U.S.	Average ${ }^{\text {a }}$				
1979		40,353	40,353	13,534	26,819	8,299	48,652
1980		62,743	62,743	20,919	41,824	23,206	85,949
1981		138,879	138,879	27,017	111,862	27,538	166,417
1982		68,761	68,761	20,540	48,221	42,666	111,427
1983	77,260	66,838	71,683	21,120	50,563	5,779	77,463
1984	95,454	59,168	76,211	5,327	70,884	7,788	83,999
1985	237,261	138,498	184,747	26,804	157,943	29,747	214,494
1986			69,036	17,846	51,190	6,420	75,456
1987			39,264	11,283	27,981	4,085	43,350
1988			41,915	16,538	25,377	3,181	45,096
1989			75,054	21,639	53,415	15,492	90,546
1990			57,386	19,964	37,422	9,856	67,242
1991			120,152	25,138	95,014	34,199	154,351
1992			154,542	29,242	125,300	77,394	231,936
1993			176,100	52,698	123,402	104,630	280,730
1994			127,527	53,380	74,147	80,509	208,036
Averages							
79-94			94,022	23,937	70,085	30,049	124,072
85-94			104,572	27,453	77,119	36,551	141,124
1995			142,308	66,777	75,531	76,420	218,728
Tahltan sockeye run size							
1979			17,472	7,261	10,211	5,076	22,548
1980			19,137	8,119	11,018	11,239	30,376
1981			65,968	15,178	50,790	16,189	82,157
1982			42,493	14,236	28,257	20,496	62,990
1983			32,684	11,428	21,256	5,063	37,747
1984			37,571	4,794	32,777	3,025	40,596
1985			86,008	18,682	67,326	25,197	111,205
1986			31,015	10,735	20,280	2,757	33,771
1987			11,923	4,965	6,958	2,259	14,182
1988			7,222	4,686	2,536	2,129	9,351
1989			14,110	5,794	8,316	1,561	15,671
1990			23,923	8,996	14,927	2,307	26,230
1991			67,394	17,259	50,135	23,511	90,905
1992			76,681	16,774	59,907	28,218	104,899
1993			84,068	32,458	51,610	40,036	124,104
1994			77,239	37,728	39,511	65,101	142,340
Averages							
79-94			43,432	13,693	29,738	15,885	59,317
85-94			47,958	15,808	32,151	19,308	67,266
1995			82,290	50,713	31,577	51,665	133,955
Tuya							
1995			2,216	1,112	1,105	586	2,802

Appendix B.33. (page 2 of 2)

Year	Inriver Run Size Estimates			Inriver Catch	Escapement ${ }^{\text {b }}$	Marine Catch	$\begin{aligned} & \text { Total } \\ & \text { Run } \end{aligned}$
	Canada	U.S.	Average ${ }^{\text {a }}$				
Non-Tahltan sockeye run size							
1979			22,880	6,273	16,608	3,223	26,103
1980			43,606	12,800	30,806	11,967	55,573
1981			72,911	11,839	61,072	11,349	84,260
1982			26,267	6,304	19,964	22,170	48,437
1983			38,999	9,692	29,307	717	39,716
1984			38,640	533	38,107	4,763	43,403
1985			98,739	8,122	90,617	4,550	103,289
1986			38,022	7,111	30,910	3,663	41,685
1987			27,342	6,318	21,023	1,826	29,168
1988			34,693	11,852	22,841	1,052	35,745
1989			60,944	15,845	45,099	13,931	74,875
1990			33,464	10,968	22,495	7,549	41,013
1991			52,758	7,879	44,879	10,687	63,446
1992			77,861	12,468	65,393	49,176	127,037
1993			92,033	20,240	71,792	64,594	156,627
1994			50,288	15,652	34,636	15,408	65,696
Averages							
79-94			50,590	10,244	40,347	14,164	64,755
85-94			56,614	11,646	44,969	17,244	73,858
1995			57,802	14,953	42,849	24,169	81,971

The averages for 1983-1985 are averages of weekly run timing estimates as well as stock composition estimates and are not simple averages of total estimates for the season.
b Escapement includes fish later captured for brood stock.

Appendix C.1. Weekly salmon catch and effort in the Alaskan District 111 and Subdistrict 111-32 (Taku Inlet), commercial drift gillnet fishery, 1995.

Week	Start Date	Catch					Effort		
								Days	Boat
		Chinook	Sockeye	Coho	Pink	Chum	Boats	Open	Days
District 111 catches									
25	18-Jun	1,353	6,289	23	11	2,884	81	3.0	243
26	2-Jul	988	8,633	136	305	8,831	77	3.0	231
27	9-Jul	715	11,877	409	1,638	33,478	79	4.0	316
28	16-Jul	774	18,017	1,060	3,817	75,108	94	4.0	376
29	23-Jul	374	14,961	1,685	6,008	90,528	97	4.0	388
30	$30-\mathrm{Jul}$	298	11,765	2,141	12,347	88,288	131	4.0	524
31	6-Aug	108	10,699	2,356	6,971	23,351	110	3.0	330
32	13-Aug	50	12,899	5,586	4,952	11,125	77	3.0	231
33	20-Aug	0	3,280	5,117	4,460	5,585	77	3.0	231
34	27-Aug	0	3,031	11,659	649	3,143	63	3.0	189
35	3-Sep	0	1,176	12,483	88	2,441	62	3.0	186
36	10-Sep	0	403	13,005	21	3,185	83	3.0	249
37	17-Sep	0	135	4,319	2	722	58	3.0	174
38	24-Sep	0	134	15,283	0	814	52	3.0	156
39	1-Oct	0	78	8,364	0	615	70	3.0	210
Total		4,660	103,377	83,626	41,269	350,098		49.0	4,034

Alaskan hatchery contribution for chinook, sockeye, and coho ${ }^{\text {a }}$

25	18-Jun	314	0	0
26	25-Jun	200	0	0
27	2-Jul	743	0	0
28	9-Jul	163	87	0
29	16-Jul	182	223	0
30	23-Jul	250	418	131
31	$30-J u l$	44	736	0
32	6-Aug	5	650	73
33	13-Aug		412	126
34	20-Aug		122	452
35	27-Aug		47	133
36	3-Sep		16	4,740
37	10-Sep		5	642
38	17-Sep		5	6,266
39	$24-S e p$	3	1,103	
Total		1,901	2,726	13,666

-Continued-

Week	Start Date	Catch					Effort		
							Boats	$\begin{aligned} & \text { Days } \\ & \text { Open } \end{aligned}$	Boat Days
		Chinook	Sockeye	Coho	Pink	Chum			
Catches not including Alaskan hatchery contribution:									
25	18-Jun	1,039	6,289	23					
26	25-Jun	788	8,633	136					
27	2-Jul	-28	11,877	409					
28	9-Jul	611	17,930	1,060					
29	16-Jul	192	14,738	1,685					
30	23-Jul	48	11,347	2,010					
31	30-Jul	64	9,963	2,356					
32	6-Aug	45	12,249	5,513					
33	13-Aug	0	2,868	4,991					
34	20-Aug	0	2,909	11,207					
35	27-Aug	0	1,129	12,350					
36	3-Sep	0	387	8,265					
37	10-Sep	0	130	3,677					
38	17-Sep	0	129	9,017					
39	24-Sep	0	75	7,261					
Total		2,759	100,651	69,960					
Subdistrict 111-32 Catches (Taku Inlet)									
25	18-Jun	1,069	5,147	18	7	2,062	66	3.0	198
26	25-Jun	893	8,050	131	282	7,493	71	3.0	213
27	2-Jul	549	10,262	336	1,342	24,413	76	3.0	228
28	9-Jul	665	16,042	948	3,147	59,970	91	4.0	364
29	16-Jul	159	10,774	1,212	3,154	48,326	81	3.0	243
30	23-Jul	104	7,704	1,061	5,023	37,323	89	3.0	267
31	30-Jul	32	5,959	1,176	1,407	6,390	66	2.0	132
32	6-Aug	26	10,775	4,705	2,128	4,953	69	3.0	207
33	13-Aug	0	2,329	3,288	1,391	1,627	57	3.0	171
34	20-Aug	0	2,476	10,155	499	2,292	58	3.0	174
35	27-Aug	0	1,090	11,921	82	2,204	61	3.0	183
36	3-Sep	0	332	10,927	5	2,380	70	3.0	210
37	10-Sep	0	126	3,875	2	651	51	3.0	153
38	17-Sep	0	130	13,827	0	721	48	3.0	144
39	24-Sep	0	70	7,246	0	538	58	3.0	174
Total		3,497	81,266	70,826	18,469	201,343		45.0	3,061

Chum Salmon are not included because of the difficulty of making an accurate estimate, the majority of the summer chum catch was of hatchery origin. Sockeye counts include Sweetheart fish plus Auke Creek Hatchery fish.

Appendix C.2. Estimate of the proportion of natural and planted sockeye salmon stock groups harvested in the Alaskan District 111 commercial drift gillnet fishery by week, 1995.

Week	Kuthai	Little Trapper		Mainstem	Tatsamenie		Total Taku	Crescent	Speel	Total Wild Snett.	$\begin{array}{r} \text { U.S. } \\ \text { Planted } \end{array}$
		Wild	Planted		Wild	Planted					
25	0.186	0.246	0.000	0.457	0.053	0.009	0.951	0.009	0.040	0.049	0.000
26	0.163	0.289	0.007	0.384	0.054	0.053	0.949	0.000	0.051	0.051	0.000
27	0.068	0.301	0.007	0.432	0.102	0.039	0.949	0.015	0.036	0.051	0.000
28	0.052	0.311	0.024	0.380	0.115	0.024	0.906	0.015	0.074	0.089	0.005
29	0.025	0.209	0.009	0.479	0.159	0.008	0.888	0.044	0.052	0.097	0.015
30	0.010	0.224	0.006	0.493	0.143	0.027	0.902	0.015	0.048	0.063	0.035
31	0.000	0.084	0.005	0.435	0.241	0.051	0.817	0.012	0.102	0.114	0.069
32	0.000	0.113	0.012	0.381	0.265	0.024	0.795	0.030	0.125	0.155	0.050
33	0.000	0.122	0.002	0.370	0.213	0.046	0.754	0.005	0.115	0.120	0.126
34	0.000	0.075	0.000	0.477	0.188	0.038	0.778	0.005	0.176	0.182	0.040
35	0.000	0.075	0.000	0.477	0.188	0.038	0.778	0.005	0.176	0.182	0.040
36	0.000	0.075	0.000	0.477	0.188	0.038	0.778	0.005	0.176	0.182	0.040
37	0.000	0.075	0.000	0.477	0.188	0.038	0.778	0.005	0.176	0.182	0.040
38	0.000	0.075	0.000	0.477	0.188	0.038	0.778	0.005	0.176	0.182	0.040
39	0.000	0.075	0.000	0.477	0.188	0.038	0.778	0.005	0.176	0.182	0.040
Total	0.046	0.214	0.010	0.428	0.153	0.029	0.880	0.018	0.075	0.093	0.026

Appendix C.3. Weekly stock-specific catch of wild and planted Taku River and Port Snettisham sockeye salmon harvested in the Alaskan District 111 commercial drift gillnet fishery, 1995. Stock composition estimates are based on SPA and otolith mark recovery.

Week	Little Trapper			Mainstem	Tatsamenie		Total Taku	Crescent	Speel	Total Wild Snett.	$\begin{array}{r} \text { U.S. } \\ \text { Planted } \end{array}$
	Kuthai	Wild	Planted		Wild	Planted					
25	1,168	1,546	0	2,874	335	56	5,979	56	254	310	0
26	1,403	2,491	63	3,312	465	461	8,195	0	438	438	0
27	803	3,580	87	5,130	1,210	467	11,277	174	426	600	0
28	928	5,606	441	6,848	2,070	436	16,329	272	1,328	1,600	88
29	374	3,124	131	7,170	2,377	115	13,291	665	782	1,447	223
30	112	2,630	76	5,795	1,680	316	10,609	177	562	739	417
31	0	901	57	4,659	2,577	549	8,743	126	1,093	1,219	737
32	0	1,456	154	4,912	3,423	309	10,254	387	1,608	1,995	650
33	0	401	8	1,215	698	152	2,474	17	377	394	412
34	0	229	0	1,445	570	115	2,358	17	534	550	122
35	0	89	0	561	221	45	915	6	207	214	47
36	0	30	0	192	76	15	314	2	71	73	16
37	0	10	0	64	25	5	105	1	24	25	5
38	0	10	0	64	25	5	104	1	24	24	5
39	0	6	0	37	15	3	61	0	14	14	3
Total	4,788	22,109	1,017	44,278	15,767	3,049	91,008	1,901	7,741	9,642	2,727

Appendix C.4. Weekly salmon and steelhead trout catch and effort in the Canadian commercial fishery in the Taku River, 1995.

Week	Start Date	Catch							Effort		
		Chinook		Sockeye	Coho	Pink	Chum	Steelhead	Average Permits	Days Fished	$\begin{aligned} & \text { Permit } \\ & \text { Days } \end{aligned}$
		Jacks	Large								
25	18-Jun	30	469	933	0	0	0	0	8.00	2.00	16.00
26	25-Jun	105	501	2,174	5	0	0	0	8.33	3.00	25.00
27	2-Jul	100	307	3,111	38	2	0	0	9.67	3.00	29.00
28	9-Jul	28	168	2,521	88	0	0	0	10.33	3.00	31.00
29	16-Jul	23	74	3,004	340	0	0	0	11.33	3.00	34.00
30	23-Jul	6	33	2,835	498	0	0	0	8.00	4.13	33.00
31	30-Jul	2	15	6,781	1,430	0	0	1	11.75	4.00	47.00
32	6-Aug	3	7	4,611	1,136	0	0	1	11.25	4.00	45.00
33	13-Aug	1	0	2,098	1,342	0	0	1	11.67	3.00	35.00
34	20-Aug	0	2	2,519	1,876	0	1	24	11.33	3.00	34.00
35	27-Aug	0	1	1,212	2,364	0	0	44	10.00	3.00	30.00
36	3-Sep	0	0	635	2,602	0	0	43	8.33	3.00	25.00
37	10-Sep	0	0	47	445	0	0	7	5.25	4.00	21.00
38	17-Sep	0	0	153	1,043	0	0	51	4.00	4.00	16.00
39	24-Sep	0	0	6	374	0	0	27	1.50	4.00	6.00
40	1 -Oct	0	0	0	48	0	0	6	1.00	1.00	1.00
Total		298	1,577	32,640	13,629	2	1	205		51.13	428.00

Appendix C.5. Weekly stock proportions of sockeye salmon harvested in the Canadian commercial fishery in the Taku River, 1995.

	Start		Little Trapper			Tatsamenie	
Week	Date	Kuthai	Wild	Planted	Mainstem	Wild	Planted
25	18-Jun	0.206	0.397	0.000	0.390	0.008	0.000
26	25-Jun	0.338	0.415	0.000	0.203	0.044	0.000
27	2-Jul	0.119	0.564	0.010	0.279	0.019	0.010
28	9-Jul	0.000	0.643	0.020	0.277	0.060	0.000
29	16-Jul	0.000	0.542	0.020	0.356	0.049	0.033
30	23-Jul	0.000	0.531	0.010	0.379	0.053	0.026
31	30-Jul	0.034	0.408	0.010	0.434	0.074	0.040
32	6-Aug	0.000	0.285	0.010	0.444	0.206	0.054
33	13-Aug	0.000	0.310	0.007	0.402	0.239	0.042
34	20-Aug	0.000	0.310	0.007	0.402	0.239	0.042
35	27-Aug	0.000	0.310	0.007	0.402	0.239	0.042
36	3-Sep	0.000	0.310	0.007	0.402	0.239	0.042
37	10-Sep	0.000	0.310	0.007	0.402	0.239	0.042
38	17-Sep	0.000	0.310	0.007	0.402	0.239	0.042
39	24-Sep	0.000	0.310	0.007	0.402	0.239	0.042
40	1-Oct	0.000	0.310	0.007	0.402	0.239	0.042
Total		0.047	0.427	0.010	0.373	0.112	0.031

Appendix C.6. Weekly stock-specific catch of sockeye salmon in the Canadian commercial fishery in the Taku River, 1995.

	Start		Little Trapper			Tatsamenie		
	Week	Date	Kuthai	Wild	Planted	Mainstem	Wild	Planted
25	18-Jun	192	370	0	364	7	0	
26	25-Jun	735	902	0	441	96	0	
27	2-Jul	369	1,754	31	868	59	30	
28	9-Jul	0	1,622	50	698	151	0	
29	16-Jul	1	1,628	60	1,069	146	100	
30	23-Jul	1	1,506	29	1,075	151	73	
31	30-Jul	230	2,767	68	2,941	505	270	
32	6-Aug	0	1,315	46	2,049	951	250	
33	13-Aug	0	651	15	843	501	88	
34	20-Aug	0	782	18	1,012	602	106	
35	27-Aug	0	376	9	487	289	51	
36	3-Sep	0	197	4	255	152	27	
37	10-Sep	0	15	0	19	11	2	
38	17-Sep	0	47	1	61	37	6	
39	24-Sep	0	2	0	2	1	0	
40	1-Oct	0	0	0	0	0	0	
41	8-Oct	0	0	0	0	0	0	
42	15-Oct	0	0	0	0	0	0	
43	22-Oct	0	0	0	0	0	0	
44	29-Oct	0	0	0	0	0	0	
Total		1,528	13,934	331	12,185	3,659	1,003	

Appendix C.7. Mark-recapture estimate of above border run of sockeye and coho salmon in the Taku River, 1995.

Recovery Week	Start Date	Above Border Run	Canadian Harvests				Above Border Escapement
			Commercial	Test		Aboriginal ${ }^{\text {a }}$	
Sockeye							
25-26	18-Jun	25,368	3,107		0		22,261
27-28	2-JuI	25,443	5,632		0		19,811
29-30	16-Jul	40,291	5,839		0		34,452
31-32	30-Jul	28,583	11,392		0		17,191
33-34	13-Aug	17,504	4,617		0		12,887
35-39	27-Aug	8,075	2,053		0		6,022
M-R Estimate		145,264	32,640		0	71	112,553
95\% C.I.		(137,032-153,496)					
Total Estimate		146,450	32,640		0	71	113,739
Coho							
26-29	18-Jun	1,460	471				989
30	25-Jun	2,628	498				2,130
31	2-Jul	4,582	1,430				3,152
32	$9-\mathrm{Jul}$	2,100	1,136				964
33	$16-\mathrm{Jul}$	5,299	1,342				3,957
34	$23-\mathrm{Jul}$	8,764	1,876				6,888
35	30-Jul	10,565	2,364				8,201
36	6-Aug	10,951	2,602				8,349
37	13-Aug	7,118	445				6,673
38-40	6-Aug	8,271	1,465				6,806
Through week 39		61,739	13,629		0	109	48,001
95\% C.I.		$(56,091-67,387)$					
Total Number ${ }^{\text {b }}$		69,448					55,710

a Aboriginal catch by week is not available.
55,710
b The coho estimate covered approximately 88.9% of the run (based on District 111-32 gillnet CPUE excluding hatchery contribution). The total in-river run is estimated to be 69,448 coho and the escapement is 55,710 fish.

Appendix C.8. Daily counts of adult salmon passing through Tatsamenie weir, 1995.

Date	Chinook ${ }^{\text {a }}$				Sockeye			Coho ${ }^{3}$		
	Cumulative				Cumulative			Cumulative		
	Jack	Adult	Count	Percent	Count	Count	Percent	Count	Count	Percent
19-Aug	Weir Operational-..............-									
20-Allg	0	0	0	0.0	I4	14	0.2	0	0	0.0
21-Aug	0	0	0	0.0	60	74	1.3	0	0	0.0
22-Aug	0	0	0	0.0	67	141	2.4	0	0	0.0
23-Aug	0	0	0	0.0	239	380	6.6	0	0	0.0
24-Aug	0	0	0	0.0	175	555	9.6	I	1	I. 6
25-Aug	1	0	1	14.3	14.5	700	12.1	I	2	3.2
26-Aug	0	0	1	14.3	135	835	14.4	0	2	3.2
27-Aug	0	5	6	85.7	174	1,009	17.5	0	2	3.2
28-Aug	0	0	6	85.7	177	1,186	20.5	0	2	3.2
29-Agg	0	1	7	100.0	54	1,240	21.5	0	2	3.2
30-Aug	0	0	7	100.0	65	1,305	22.6	0	2	3.2
31-Aug	0	0	7	100.0	92	1,397	24.2	0	2	3.2
1-Sep	0	0	7	100.0	253	1,650	28.5	1	3	4.8
2-Sep	0	0	7	100.0	79	1,729	29.9	0	3	4.8
3-Sep	0	0	7	100.0	1.58	1,887	32.6	1	4	6.5
4-Sep	0	0	7	100.0	221	2,108	36.5	0	4	6.5
5-Sep	0	0	7	100.0	96	2,204	38.1	0	4	6.5
6-Scp	0	0	7	100.0	1.53	2,357	40.8	0	4	6.5
7-Sep	0	0	7	100.0	231	2,588	44.8	0	4	6.5
8-Sep	0	0	7	100.0	214	2,802	48.5	1	5	8.1
9-Sep	0	0	7	100.0	2.51	3,053	52.8	0	5	8.1
10-Sep	0	0	7	100.0	214	3,267	56.5	0	5	8.1
11-Sep	0	0	7	100.0	124	3,391	58.7	0	5	8.1
12-Sep	0	0	7	100.0	365	3,756	65.0	0	5	8.1
13-Sep	0	0	7	100.0	37	3,793	65.6	0	5	8.1
14-Sep	0	0	7	100.0	235	4,028	69.7	0	5	8.1
15-Scp	0	0	7	100.0	8.5	4,113	71.2	0	5	8.1
16-Sep	0	0	7	100.0	8	4,121	71.3	0	5	8.1
17-Sep	0	0	7	100.0	112	4,233	73.2	0	5	8.1
18-Sep	0	0	7	100.0	60	4,293	74.3	0	5	8.1
19-Sep	0	0	7	100.0	78	4,371	75.6	0	5	8.1
20-Sep	0	0	7	100.0	33	4,404	76.2	0	5	8.1
21-Sep	0	0	7	100.0	179	4,583	79.3	1	6	9.7
22-Sep	0	0	7	100.0	91	4,674	80.9	0	6	9.7
23-Scp	0	0	7	100.0	139	4,813	83.3	7	13	21.0
24-Sep	0	0	7	100.0	55	4,868	84.2	1	14	22.6
$25-\mathrm{Sep}$	0	0	7	100.0	54	4,922	85.2	4	18	29.0
26-Sep	0	0	7	100.0	102	5,024	86.9	I	19	30.6
27-Sep	0	0	7	100.0	220	5,244	90.7	8	27	43.5
28-Sep	0	0	7	100.0	78	5,322	92.1	2	29	46.8
29-Sep	0	0	7	100.0	15	5,337	92.3	5	34	54.8
30-Sep	0	0	7	100.0	3	5,340	92.4	2	36	58.1
1-Oct	0	0	7	100.0	33	5,373	93.0	3	39	62.9
2-Oct	0	0	7	100.0	0	5,373	93.0	0	39	62.9
3-Oct	0	0	7	100.0	36	5,409	93.6	3	42	67.7
4-Oet	0	0	7	100.0	0	5,409	93.6	0	42	67.7
5-Oct	0	0	7	100.0	110	5,519	95.5	5	47	75.8
6-Oet	0	0	7	100.0	40	5,559	96.2	3	50	80.6
7-Oct	0	0	7	100.0	38	5,597	96.8	1	51	82.3
8-Oct	0	0	7	100.0	19	5,616	97.2	0	51	82.3
9-Oct	0	0	7	100.0	53	5,669	98.1	3	54	87.1
10-Oct	0	0	7	100.0	111	5,780	100.0	8	62	100.0
Counts	1	6	7		5,780			62		
Broodstock ${ }^{\text {b }}$					-1,393					
Spawners					4,387					

a Operation of weir did not cover entire run.
b Broodstock included 726 females and 603 males spawned and 26 female and 38 male mortalities.

Appendix C.9. Daily counts of adult sockeye salmon passing through Little Trapper Lake weir, 1995.

Date	Cumulative		
	Count	Count	Percent
27-Jul --	-.--Weir In		
28-Jul	52	52	0.48
29-Jul	85	137	1.28
30-Jul	14	151	1.41
31-Jul	211	362	3.38
1-Aug	118	480	4.48
2-Aug	460	940	8.77
3-Aug	1,269	2,209	20.60
4-Aug	1,568	3,777	35.22
5-Aug	990	4,767	44.45
6-Aug	622	5,389	50.25
7-Aug	196	5,585	52.08
8-Aug	511	6,096	56.84
9-Aug	515	6,611	61.65
10-Aug	435	7,046	65.70
11-Aug	135	7,181	66.96
12-Aug	89	7,270	67.79
13-Aug	289	7,559	70.49
14-Aug	318	7,877	73.45
15-Aug	195	8,072	75.27
16-Aug	203	8,275	77.16
17-Aug	253	8,528	79.52
18-Aug	135	8,663	80.78
19-Aug	160	8,823	82.27
20-Aug	225	9,048	84.37
21-Aug	169	9,217	85.95
22-Aug	107	9,324	86.95
23-Aug	48	9,372	87.39
24-Aug	202	9,574	89.28
25-Aug	79	9,653	90.01
26-Aug	72	9,725	90.68
27-Aug	80	9,805	91.43
28-Aug	48	9,853	91.88
29-Aug	83	9,936	92.65
30-Aug	57	9,993	93.18
31-Aug	93	10,086	94.05
1-Sep	120	10,206	95.17
2-Scp	118	10,324	96.27
3-Sep	79	10,403	97.01
4 -Sep	106	10,509	98.00
5-Sep	50	10,559	98.46
6-Scp	43	10,602	98.86
7-Sep	43	10,645	99.26
8-Sep	59	10,704	99.81
9-Scp	11	10,715	99.92
10-Scp	9	10,724	100.00
Count		10,724	
Additional Fish ${ }^{\text {a }}$		800	
Spawners		11,524	

[^4]Appendix C.10. Daily counts of adult salmon passing through the Nahlin River weir, 1995. Chinook counts represent an unknown portion of the escapement because the weir was not operated throughout the entire run.

Date	Jack Chinook	Chinook			Sockeye		
	Count	Count	Cum.	Percent	Count	Cum.	Percent
6-Jun							
7-Jun		6	6	0.18		0	0.00
8-Jun		0	6	0.18		0	0.00
9 -Jun		2	8	0.23		0	0.00
10-Jun		7	15	0.44		0	0.00
11-Jun			24	0.70		0	0.00
12-Jun		5	29	0.85		0	0.00
13-Jun		5	34	1.00		0	0.00
14-Jun		14	48	1.41		0	0.00
15-Jun		6	54	1.59	2	2	0.05
16-Jun		3	57	1.67	0	2	0.05
17-Jun		1	58	1.70	0	2	0.05
18-Jun		18	76	2.23		6	0.16
19-Jun		102	178	5.23	4	10	0.27
20-Jun		78	256	7.52	5	15	0.40
21-Jun		5	261	7.67	1	16	0.43
22-Jun		36	297	8.72	7	23	0.62
23-Jun		20	317	9.31	1	24	0.65
24-Jun		1	318	9.34	0	24	0.65
25-Jun		0	318	9.34	0	24	0.65
26-Jun		0	318	9.34	13	37	1.00
27-Jun		0	318	9.34	5	42	1.13
28-Jun		3	321	9.43	10	52	1.40
29-Jun		34	355	10.43	86	138	3.72
30-Jun		115	470	13.80	127	265	7.14
1-Jul		12	482	14.16	89	354	9.54
2-Jul		20	502	14.74	322	676	18.22
3 -Jul		27	529	15.54	33	709	19.11
4 -JuI		9	538	15.80	62	771	20.78
5-Jul		42	580	17.03	125	896	24.15
6 -Jul		12	592	17.39	168	1,064	28.68
7-Jul		43	635	18.65	164	1,228	33.10
8 -Jul		84	719	21.12	248	1,476	39.78
$9-\mathrm{Jul}$		144	863	25.35	187	1,663	44.82
$10-\mathrm{Jul}$		76	939	27.58	144	1,807	48.71
11-Jul		83	1,022	30.01	86	1,893	51.02
12-Jul		10	1,032	30.31	35	1,928	51.97
13-Jul		16	1,048	30.78	54	1,982	53.42
14-Jul		11	1,059	31.10	37	2,019	54.42
15-Jul		30	1,089	31.98	27	2,046	55.15

Appendix C.10. (page 2 of 2)

Appendix C.11. Daily counts of adult sockeye salmon passing through the Kuthai Lake weir, 1995.

Date	Count	Cum.	Percent
11-Jul	--- Weir installed ---		
12-Jul	154	154	4.65
13-Jul	78	232	7.01
14-JuI	105	337	10.18
15-Jul	231	568	17.16
16-Jul	296	864	26.10
17-Jul	6	870	26.28
18-Jul	185	1,055	31.87
19-Jul	100	1,155	34.89
20-Jul	60	1,215	36.71
21-Jul	93	1,308	39.52
22-Jul	53	1,361	41.12
23-JuI	92	1,453	43.90
24-Jul	75	1,528	46.16
25-Jul	91	1,619	48.91
26-Jul	48	1,667	50.36
27-Jul	49	1,716	51.84
28-Jul	63	1,779	53.75
29-Jul	6	1,785	53.93
30-Jul	13	1,798	54.32
31-Jul	3	1,801	54.41
1-Aug	3	1,804	54.50
2-Aug	0	1,804	54.50
3-Aug	0	1,804	54.50
4-Aug	1	1,805	54.53
5-Aug	6	1,81]	54.71
6-Aug	64	1,875	56.65
7-Aug	171	2,046	61.81
8-Aug	205	2,251	68.01
9-Aug	108	2,359	71.27
10-Aug	46	2,405	72.66
11-Aug	27	2,432	73.47
12-Aug	82	2,514	75.95
13-Aug	13	2,527	76.34
14-Aug	0	2,527	76.34
15-Aug	5	2,532	76.50
16-Aug	19	2,551	77.07
17-Aug	29	2,580	77.95
18-Aug	3	2,583	78.04
19-Aug	7	2,590	78.25
20-Aug	8	2,598	78.49
21-Aug	49	2,647	79.97
22-Aug	354	3,001	90.66
23-Aug	124	3,125	94.41
24-Aug	53	3,178	96.01
25-Aug	66	3,244	98.01
26-Aug	18	3,262	98.55
27-Aug	18	3,280	99.09
28-Aug	25	3,305	99.85
29-Aug	4	3,309	99.97
30-Aug	1	3,310	100.00
Total	3,310		

Appendix D.1. Salmon catches and effort in the Alaskan District 111 and Subdistrict 111-32 (Taku Inlet) commercial drift gillnet fishery, 1964-1995. Days open are for the entire district and include openings to harvest spawner chinook salmon, 1964-1975.

Year	Catch						Effort	
							Boat	Days
	Chinook	Sockeye	Coho	Pink	S. Chum ${ }^{\text {a }}$	F. Chum ${ }^{\text {a }}$	Days	Open
District 111 Catches								
1964	2,509	34,140	29,315	26,593	4,970	7,883		56.00
1965	4,170	27,569	32,667	2,768	3,842	7,691		63.00
1966	4,829	33,925	26,065	23,833	5,015	30,118		64.00
1967	5,417	17,735	40,391	12,372	2,183	20,651		53.00
1968	4,904	19,501	39,103	67,365	5,747	16,143		60.00
1969	6,986	41,169	10,802	73,927	4,851	10,198	1,461	41.50
1970	3,357	50,922	44,960	197,017	19,593	90,797	2,688	53.00
1971	6,958	66,181	41,830	31,484	31,813	59,332	2,914	55.00
1972	10,955	80,404	49,780	144,339	67,126	80,831	3,100	51.00
1973	9,799	85,317	35,453	58,186	33,296	75,949	3,316	41.00
1974	2,908	38,670	38,667	57,731	11,263	75,423	2,237	29.50
1975	2,182	32,513	1,185	9,567	2,091	587	1,089	15.50
1976	1,757	61,749	41,729	14,962	6,027	75,776	1,939	25.00
1977	1,068	70,097	54,917	88,578	8,995	52,107	2,284	27.00
1978	1,926	55,398	31,944	51,385	9,076	27,178	2,176	26.00
1979	3,701	122,148	16,194	152,836	5,936	55,261	2,235	28.83
1980	2,251	123,451	41,677	296,572	33,627	159,020	4,080	30.92
1981	1,721	49,942	26,711	254,856	22,546	53,892	2,660	30.00
1982	3,057	83,625	29,072	109,297	14,867	22,741	2,437	35.50
1983	888	31,821	21,455	66,239	6,160	9,104	1,274	33.00
1984	1,773	77,233	33,836	145,971	45,811	40,930	2,690	52.50
1985	2,636	88,077	55,597	311,248	58,972	47,748	3,102	48.00
1986	2,584	73,061	30,512	16,568	29,909	28,883	2,102	32.83
1987	2,076	75,212	35,219	363,439	57,280	64,380	2,514	34.75
1988	1,779	38,923	44,881	157,831	80,307	59,271	2,146	32.00
1989	1,811	74,019	51,812	180,597	18,022	18,955	2,333	41.00
1990	3,480	126,884	67,530	153,036	112,336	33,463	3,202	38.33
1991	3,217	109,877	126,436	74,183	147,404	13,771	4,103	57.00
1992	2,341	135,411	172,662	314,445	97,725	14,802	4,550	50.00
1993	6,748	171,556	65,536	17,081	156,033	10,447	3,827	43.00
1994	5,047	105,861	188,501	401,525	198,002	16,169	5,082	66.00
Averages								
64-94	3,704	71,045	49,240	125,027	41,962	41,274	2,752	42.39
85-94	3,172	99,888	83,869	198,995	95,599	30,789	3,296	44.29
1995	4,660	103,377	83,626	41,269	339,178	10,920	4,034	49.00

-Continued-

Appendix D.1. (page 2 of 2)

Year	Catch						Effort	
							Boat Days	$\begin{gathered} \text { Days } \\ \text { Open } \end{gathered}$
	Chinook	Sockeye	Coho	Pink	S. Chum ${ }^{\text {a }}$	F. Chum ${ }^{\text {a }}$		
Subdistrict 111-32 Catches (Taku								
Inlet)								
1964	2,482	28,873	28,603	22,177	3,919	7,822	1,491	56.00
1965	4,146	23,828	32,382	2,641	3,604	7,691	1,332	60.00
1966	4,817	28,301	24,153	22,490	4,350	27,327	1,535	58.00
1967	5,351	14,537	39,983	11,619	1,569	20,463	1,663	50.00
1968	4,862	16,952	37,570	55,527	4,646	15,597	2,420	60.00
1969	6,874	38,260	10,131	66,991	4,233	9,926	1,413	42.00
1970	3,073	41,476	37,587	143,886	14,208	76,795	2,425	53.00
1971	6,753	62,459	38,571	30,765	31,110	54,696	2,849	55.00
1972	9,633	62,877	38,568	78,673	45,955	60,097	2,797	51.00
1973	9,525	80,063	29,770	55,234	30,817	61,025	3,135	41.00
1974	2,280	26,256	27,670	32,684	6,469	51,063	1,741	30.00
1975	1,998	28,201	429	8,084	1,639	31	986	15.00
1976	1,693	51,674	31,641	11,868	3,766	42,674	1,582	23.00
1977	754	47,512	48,403	67,072	5,436	43,595	1,879	27.00
1978	1,642	43,795	21,620	41,624	7,142	18,101	1,738	24.00
1979	3,016	103,043	12,741	114,324	4,317	46,142	2,011	29.00
1980	1,986	108,577	35,814	241,085	25,779	131,126	3,634	31.00
1981	1,325	39,963	20,936	98,524	10,407	40,212	1,740	22.00
1982	2,841	75,012	24,761	77,942	11,558	18,363	2,130	36.00
1983	689	25,957	17,665	40,996	3,171	7,813	1,065	31.00
1984	1,414	59,229	25,951	83,028	28,214	27,967	2,120	39.00
1985	2,152	70,160	45,106	176,710	35,897	40,530	2,116	37.00
1986	1,877	60,106	26,474	9,772	14,646	24,790	1,413	30.00
1987	1,534	54,436	23,342	200,203	31,992	28,891	1,517	30.00
1988	949	23,752	33,159	41,625	25,969	27,010	1,213	29.00
1989	1,606	68,104	44,034	141,385	15,254	15,491	1,909	36.00
1990	2,432	110,006	60,078	101,168	88,350	29,099	2,879	38.00
1991	2,614	96,006	118,902	44,347	97,577	12,279	3,324	52.00
1992	1,672	103,238	152,598	180,340	57,153	11,649	3,407	43.00
1993	4,413	144,982	58,062	8,801	101,356	7,760	3,372	43.00
1994	3,051	88,625	156,314	198,507	129,350	12,280	3,960	60.00
Averages								
64-94	3,208	58,912	42,033	77,745	27,415	31,558	2,155	39.71
85-94	2,230	81,942	71,807	110,286	59,754	20,978	2,511	39.80
1995	3,497	81,266	70,826	18,469	192,557	8,786	3,061	45.00

S. Chum and F. Chum refer to Summer and Fall runs of these fish, fish harvested prior to week 34 are considered summer chum, and fish harvested in week 34 and beyond are considered fall chum.

Appendix D.2. Stock proportions and catches of sockeye salmon in the Alaska District 111 commercial drift gillnet fishery, 1983-1995. Data based on analysis of scale patterns, otolith marks, and incidence of brain parasites.

Week	Kuthai	Little Trapper		Mainstem	Tatsamenie		Total Taku	Crescent	Speel	Total Wild	$\begin{array}{r} \text { U.S. } \\ \text { Planted } \end{array}$
		Wild	Planted		Wild	Planted				Snett.	
Proportions											
1983							0.755			0.245	
1984							0.758			0.242	
1985							0.838			0.162	
1986	0.061	0.266		0.303	0.204		0.834	0.090	0.076	0.166	
1987	0.078	0.234		0.376	0.031		0.720	0.157	0.123	0.280	
1988	0.118	0.158		0.305	0.082		0.663	0.266	0.071	0.337	
1989a	0.077	0.616			0.156		0.848	0.051	0.100	0.152	
1990	0.036	0.197		0.336	0.286		0.855	0.112	0.033	0.145	
1991	0.039	0.297		0.373	0.232		0.941	0.059	0.000	0.059	
1992	0.048	0.220		0.445	0.191		0.904	0.036	0.060	0.096	
1993	0.062	0.328		0.308	0.123		0.822	0.069	0.109	0.178	
1994	0.110	0.356		0.361	0.091		0.917	0.036	0.022	0.058	0.025
Averages $^{\text {b }}$	0.069	0.257		0.351	0.155		0.821	0.103	0.062	0.177	0.025
1995	0.046	0.214	0.010	0.428	0.153	0.029	0.880	0.018	0.075	0.093	0.026
Catches											
1983							24,025			7,796	
1984							58,543			18,690	
1985							73,809			14,268	
1986	4,489	19,441		22,104	14,900		60,934	6,610	5,516	12,127	
1987	5,893	17,594		28,286	2,352		54,124	11,814	9,274	21,088	
1988	4,598	6,153		11,865	3,194		25,811	10,365	2,748	13,112	
1989a	5,696	45,573			11,536		62,805	3,789	7,425	11,214	
1990	4,539	24,952		42,676	36,332		108,499	14,242	4,143	18,385	
1991	4,295	32,685		40,957	25,475		103,412	6,465	0	6,465	
1992	6,543	29,818		60,224	25,853		122,438	4,912	8,060	12,972	
1993	10,673	56,350		52,876	21,139		141,038	11,877	18,641	30,518	
1994	11,638	37,644		38,179	9,585		97,046	3,859	2,319	6,178	2,637
Averages ${ }^{\text {b }}$	6,584	28,080		37,146	17,354		77,707	8,768	6,338	14,401	2,637
1995	4,788	22,109	1,017	44,278	15,767	3,049	91,008	1,901	7,741	9,642	2,727

a The Trapper and Mainstem groups were combined in the 1989 analysis.
b Averages for individual stocks do not include 1989.

Appendix D.3. Proportion of wild Taku River sockeye salmon in the Alaskan District 111 commercial drift gillnet catch by week, 1983-1995." Data based on scale patterns and incidence of brain parasites.

	Week											
Year	25	26	27	28	29	30	31	32	33	34	Total	
1983		0.996	0.842	0.819	0.663	0.527	0.836	0.534	0.719	0.759	0.755	
1984	0.970	0.956	0.843	0.670	0.588	0.712	0.728	0.809	0.726		0.758	
1985	0.999	0.986	0.928	0.974	0.868	0.706	0.737	0.826	0.801		0.838	
1986	0.938	0.953	0.873	0.880	0.852	0.777	0.851	0.757	0.893	0.739	0.834	
1987		0.982	0.901	0.884	0.948	0.414	0.619	0.689	0.841	0.731	0.720	
1988		0.964	0.886	0.889	0.510	0.643	0.677	0.528	0.478	0.346	0.663	
1989	0.943	0.989	0.979	0.852	0.835	0.641	0.681	0.919	0.676		0.848	
1990	0.874	0.935	0.904	0.773	0.782	0.863	0.943	0.939	0.878	0.862	0.855	
1991	0.988	0.979	0.953	0.979	0.951	0.933	0.936	0.890	0.885	0.875	0.941	
1992		0.978	0.985	0.956	0.916	0.943	0.893	0.858	0.766	0.766	0.904	
1993		0.961	0.901	0.837	0.856	0.781	0.790	0.829	0.738	0.706	0.822	
1994		1.000	0.981	0.973	0.967	0.870	0.835	0.938	0.804	0.901	0.917	
Average												
$83-94$	0.952	0.973	0.915	0.874	0.811	0.734	0.794	0.793	0.767	0.743	0.821	
1995	0.942	0.889	0.903	0.858	0.872	0.868	0.761	0.759	0.705	0.740	0.841	

To make this data comparable across years, it does not include returns of Tatsamenie and Trapper enhanced.

Appendix D.4. Salmon catch in the U.S. subsistence and personal use fisheries in the Taku River, 1967-1995. The subsistence fishery was open 1967 to 1976 and 1985 and the personaluse fishery was open 1989-1995.

	Catch					
Year	Chinook	Sockeye	Coho	Pink	Chum	
1967	0	103	221	9	25	
1968	3	41	196	19	10	
1969	0	122	8	11	0	
1970	0	304	0	20	8	
1971	0	512	0	42	0	
1972	0	554	0	103	7	
1973	0	1,227	0	64	14	
1974	0	1,431	0	118	5	
1975	0	170	0	3	0	
1976	0	351	4	22	0	
1985	0	2,514	96	44	3	
1989	62	1,395	142	1,467	40	
1990	57	1,726	224	242	100	
1991	47	1,506	162	183	4	
1992	34	1,972	143	162	0	
1993	17	2,223	46	172	6	
1994	36	2,001	168	137	5	
Averages						
All	15	1,068	83	166	13	
$85-94$	36	1,905	140	344	23	
1995	37	2,058	202	83	12	

Appendix D.5. Salmon and steelhead trout catch and effort in the Canadian commercial fishery in the Taku River, 1979-1995.

Year	Catch							Effort	
	Chinook		Sockeye	Coho	Pink	Chum	Steelhead	Boat Days	$\begin{gathered} \text { Days } \\ \text { Open } \end{gathered}$
	Jack	Large							
1979		97	13,578	6,006	13,661	15,474	254	599	50
1980		225	22,602	6,405	26,821	18,516	457	476	39
1981		159	10,922	3,607	10,771	5,591	108	243	31
1982		54	3,144	51	202	3	1	38	13
1983	400	156	17,056	8,390	1,874	1,760	213	390	64
1984	221	294	27,242	5,357	6,964	2,492	367	288	30
1985	24	326	14,244	1,770	3,373	136	32	178	16
1986	77	275	14,739	1,783	58	110	48	148	17
1987	106	127	13,554	5,599	6,250	2,270	223	280	26
1988	186	555	12,014	3,123	1,030	733	86	185	15
1989	139	895	18,545	2,876	695	42	24	271	25
1990	128	1,258	21,100	3,207	378	12	22	295	28
1991	432	1,177	25,067	3,415	296	2	5	284	25
1992	147	1,445	29,472	4,077	0	7	15	291	27
1993	171	1,619	33,217	3,033	16	15	11	363	34
1994	235	2,065	28,762	14,531	168	18	232	497	74
Averages									
79-94 ${ }^{\text {a }}$		812	18,433	3,913	4,826	3,144	124	289	29
85-94	165	974	21,071	4,341	1,226	335	70	279	29
1995	298	1,577	32,640	13,629	2	1	205	428	51

Chinook averages are for large fish and jacks combined.

Appendix D.6. Sockeye salmon stock proportions and catch by stock in the Canadian commercial fishery on the Taku River, 1986-1995. Data based on scale pattern analysis.

Year	Kuthai	Little Trapper		Mainstem	Tatsamenie		Total Wild	
		Wild	Planted		Wild	Planted		
Proportions								
1986	0.111	0.397		0.350	0.143			
1987	0.062	0.201		0.649	0.088			
1988	0.143	0.417		0.343	0.098			
$1989{ }^{\text {a }}$	0.053	0.744			0.203			
1990	0.112	0.388		0.338	0.163			
1991	0.064	0.308		0.452	0.176			
1992	0.092	0.240		0.569	0.099			
1993	0.126	0.392		0.432	0.049			
1994	0.158	0.482		0.302	0.058			
Averages ${ }^{\text {b }}$								
84-94	0.108	0.353		0.429	0.109			
1995	0.047	0.427	0.010	0.373	0.112	0.031	0.959	0.041
Catch								
1986	1,629	5,855		5,152	2,103			
1987	834	2,728		8,793	1,199			
1988	1,715	5,005		4,122	1,172			
$1989{ }^{\text {a }}$	990	13,792			3,763			
1990	2,355	8,183		7,131	3,431			
1991	1,601	7,721		11,327	4,418			
1992	2,699	7,085		16,764	2,924			
1993	4,192	13,036		14,347	1,641			
1994	4,544	13,858		8,684	1,676			
Averages ${ }^{\text {b }}$								
86-94	2,446	7,934		9,540	2,321			
1995	1,528	13,934	331	12,185	3,659	1,003	31,306	1,334

a The Trapper and Mainstem groups were combined in the 1989 analysis.
b Averages do not include 1989.

Appendix D.7. Salmon catches in the Canadian Aboriginal fishery on the Taku River, 1980-1995.

Year	Chinook		Sockeye	Coho	Pink	Chum	Steelhead
	Jack	Large					
1980		85	150	0	0	15	0
1981							
1982							
1983		9	0	0	0	0	0
1984		0	50	15	0	0	0
1985		4	167	22	0	0	0
1986		10	200	50	0	0	0
1987		0	96	113	0	0	0
1988		27	245	98	0	0	0
1989		6	53	146	0	0	0
1990		0	89	6	0	0	0
1991		0	150	20	0	0	0
1992		121	352	187	0	0	16
1993		25	140	8	0	0	0
1994		119	239	162	4	0	1
Averages							
80-94		31	149	64	0	1	1
85-94		31	173	81	0	0	2
1995		70	71	109	0	7	4

Appendix D.8. Salmon and steelhead trout catch in the Canadian test fishery in the Taku River, 19871995.

Year	Catch					
	Chinook	Sockeye	Coho	Pink	Chum	Steelhead
1987		237	807			
1988	72	708	422	52	222	14
1989	31	207	1,011	0	13	26
1990	48	285	472	0	0	20
1991	0	163	2,004	3	295	41
1992	0	38	1,277	0	76	88
$1993{ }^{\text {a }}$	0	166	1,593	0	50	13
1994	There was no Canadian test fishery in 1994.					
Averages						
87-93	25	258	1,084	9	109	34
1995 There was no Canadian test fishery in 1995.						

Appendix D.9. Taku River sockeye salmon run size, 1984-1996. Run estimate does not include spawning escapements below the U.S./Canada border. The early season sockeye expansion is based on the proportion of fish wheel sockeye catch that occurs before the fishery opens.

Appendix D.10. Sockeye salmon escapement estimates of Taku River and Port Snettisham sockeye stocks, 1979-1995. Spawners equals escapement to the weir minus fish collected for brood stock.

	Little Trapper		Little Tatsamenie		Hackett Weir	KuthaiLakeWeir	Nahlin River Weir	Crescent		Speel	
	Escape.	Spawners	Escape.	Spawners				Escape.	Spawners	Escape.	Spawners
1980						1,658					
1981						2,299					
1982											
1983	7,402 ${ }^{\text {a }}$	7,402						19,422	19,422	10,484	10,484
1984	13,084	13,084						6,707	6,707	9,764	9,764
1985	14,889 ${ }^{\text {a }}$	14,889	13,093	13,093	2,309			7,249	7,249	7,073	7,006
1986	13,820	13,820	11,446	11,446	1,004			3,414	3,414	5,857	5,457
1987	$12,007^{\text {a }}$	12,007	2,794	2,794	910			7,839	7,839	9,319	9,319
1988	10,637	10,637	2,063	2,063	516		$138^{\text {b }}$	1,199 ${ }^{\text {c }}$	1,199 ${ }^{\text {c }}$	969	710
1989	9,606	9,606	3,039	3,039				1,109 ${ }^{\text {c }}$	$775{ }^{\text {c }}$	12,229	10,114
1990	9,443	7,777	5,736	4,929			2,515	1,262 ${ }^{\text {c }}$	$757^{\text {c }}$	$18,064^{\text {c }}$	16,867 ${ }^{\text {c }}$
1991	22,942	21,001	8,381	7,585				9,208 ${ }^{\text {d }}$	8,666	$299{ }^{\text {c }}$	299
1992	14,372	12,732	6,576	5,681		1,457 ${ }^{\text {b }}$	$297{ }^{\text {b }}$	22,674 ${ }^{\text {d }}$	21,849	9,439	8,136
1993	17,432	16,685	5,028	4,230		6,312 ${ }^{\text {c }}$	2,463				
1994	13,438	12,691	4,371	3,578		5,427	960				
Averages											
83-94	13,256	12,694	6,253	5,844	1,185	3,431	1,275	8,008	7,788	8,350	7,816
1995	11,524	11,524	8,000 ${ }^{\text {e }}$	6,607		3,310	3,710			$16,208{ }^{\text {d }}$	14,260

a Weir count plus spawning ground survey.
b Weir counts are incomplete.
c Counts may be low due to uncounted fish passage past weir.
${ }^{d}$ Mark-recapture estimates.
e In 1995 the weir was moved upstream to Tatsamenie Lake, the count of 8,000 is an expansion (based on past experience) of the 5,780 fish counted there.

Appendix D.11. Aerial survey index escapement counts of large (3-ocean and older) Taku River chinook salmon, 1975-1995.

Year	Kowatua	Tatsatua Dudidontu	Tseta	Nakina	Nahlin	Total Index Count	
1975			15		1,800	274	2,089
1976	341	620	40		3,000	725	4,726
1977	580	573	18		3,850	650	5,671
1978	490	550	0	21	1,620	624	3,305
1979	430	750	9		2,110	857	4,156
1980	450	905	158		4,500	1,531	7,544
1981	560	839	74	258	5,110	2,945	9,786
1982	289	387	130	228	2,533	1,246	4,813
1983	171	236	117	179	968	391	2,062
1984	279	616		$176^{\text {a }}$	1,887	951	3,909
1985	699	848	475	303	2,647	2,236	7,208
1986	548	886	413	193	3,868	1,612	7,520
1987	570	678	287	180	2,906	1,122	5,743
1988	1,010	1,272	243	66	4,500	1,535	8,626
1989	601	1,228	204	494	5,141	1,812	9,480
1990	614	1,068	820	172	7,917	1,658	12,249
1991	570	1,164	804	224	5,610	1,781	10,153
1992	782	1,624	768	313	5,750	1,821	11,058
1993	1,584	1,491	1,020	491	6,490	2,128	13,204
1994	410	1,106	573	614	4,792	2,418	9,913
Averages							
$75-94$	578	886	325	261	3,850	1,416	7,315
$85-94$	739	1,137	561	305	4,962	1,812	9,515
1995	550	678	731	786	3,943	2,069	8,757
1							

a Partial survey.
b Extrapolated results.

Appendix D.12. Taku River (above border) coho salmon run size, 1987-1995.

	Canadian Catch				Above Border	
Year	Commercial	Food	Test		Escapement	Run
1987	5,599	113	807	55,457	$61,976^{\mathrm{a}}$	
1988	3,123	98	422		39,450	$43,093^{\mathrm{b}}$
1989	2,876	146	1,011		56,808	$60,841^{\mathrm{c}}$
1990	3,207	6	472		72,196	$75,881^{\mathrm{d}}$
1991	3,415	20	2,004	127,484	132,923	
1992	4,077	187	1,277	84,853	$90,394^{\mathrm{e}}$	
1993	3,033	8	1,593	109,457	$114,091^{\mathrm{f}}$	
1994	14,531	162		96,343	$111,036^{\mathrm{g}}$	
Averages						
$87-94$	4,983	93	1,084	80,256	86,279	
1995	13,629	109	0	55,710	$69,448^{\mathrm{h}}$	
	2.74	1.18	0.00	0.69	0.80	

a Mark-recapture estimate through $9 / 20$ was 43,570 . Run through $10 / 05$ estimated using inriver test fish CPUE.
b Mark-recapture estimate through 9/18.
c Mark-recapture estimate through 10/01.
d A second method of estimating the above-border run by expanding test fishery CPUE yielded an estimate of 85,053 coho salmon.
e Mark-recapture estimate of imriver run size through $9 / 05$ of 50,249 was expanded by dividing by proportion of District 111 CPUE of wild coho (.559).
f Inriver estimate through week 37 expanded by dividing by proportion of District 111 CPUE of wild coho (.54409) through week 37.
g Inriver estimate through week 39 expanded by dividing by proportion of District 111 CPUE of wild coho (0.8884) through week 39.
h Inriver estimate through week 39 expanded by dividing by proportion of District 111 CPUE of wild coho (0.8887) through week 39.

Appendix D.13. Escapement counts of Taku River coho salmon, 1984-1995. Counts are for age-. 1 fish and do not include jacks. Because of variability between methods, visibility, observers, and timing, these counts are not an index of run strength.

Year	Yehring Creek		Sockeye Creek Aerial	Johnson Creek $\mathrm{Ar} / \mathrm{Foot}$		Flannigan Tatsamenie		Hacket River Weir	Dudidontu River Aerial	Upper Nahlin R.		
			Slough			River						
	Weir	Aerial				Aerial	Weir			Aerial	Weir	
1984		2,900		275	235	700	1,480					
1985		560	740	150	1,000	2,320	201	1,031				
1986	2,116	1,200	174	70	53	1,095	344	2,723	108	318		
1987	1,627	565	980	150	250	2,100	173	1,715	276	165		
1988	1,423	658	585	500	1,215	1,308	663	1,260	367	694	1,322	
1989	1,570	600	400	400	235	1,670	712		115	322		
1990	2,522	220	193		425	414	669		25	256		
1991		475	399	120	1,378	1,348	1,101		458	176		
1992		1,267	594	654	478	1,288	730				970	
1993		250	130	90	380	70	88				326	
1994		500	60	450	200	50	168				2,112	
Averages												
84-94	1,852	836	412	282	574	1,195	485	1,682	225	322	1,183	
1995		70	230	170	132	421	62					

Notes:
Weir count combined with spawning ground count. Tat 88-90, Yeh 86-87, Nahlin 92.
Incomplete weir count. Tat 85-87, 93 and Nahlin 92.
Count is an average of surveys by different observers. Flan $86,87,88,90,91$; sockeye $86,87,88,90,91$;
Fish 86, 88, 90, 91; Yehring, 87, 88, 91, 92.
Includes mark-recapture estimate. Yeh 89,90.
Poor survey conditions. Nahlin 91.
Foot survey. Yehring 92, Sockeye 92.
Surveys conducted before peak abundance on spawning grounds Flan 93, 94.

Appendix D.14. Canyon Island fish wheel salmon counts and periods of operation on the Taku River, 1983-1995.

	Period of	Count						Pink	
	Operation	Chinook	Sockeye	Coho	Pink	Chum	even	odd	
1984	$6 / 15-9 / 18$	138	2,334	889	20,751	316	20,751		
1985	$6 / 16-9 / 21$	184	3,601	1,207	27,670	1,376		27,670	
1986	$6 / 14-8 / 25$	571	5,808	758	7,256	80	7,256		
1987	$6 / 15-9 / 20$	285	4,307	2,240	42,786	1,533		42,786	
1988	$5 / 11-9 / 19$	1,436	3,292	2,168	3,982	1,089	3,982		
1989	$5 / 05-10 / 01$	1,811	5,650	2,243	31,189	645		31,189	
1990	$5 / 03-9 / 23$	1,972	6,091	1,860	13,358	748	13,358		
1991	$6 / 08-10 / 15$	680	5,102	4,922	23,553	1,063		23,553	
1992	$6 / 20-9 / 24$	212	6,279	2,103	9,252	189	9,252		
1993	$6 / 12-9 / 29$	562	8,975	2,552	1,625	345		1,625	
1994	$6 / 10-9 / 21$	906	6,485	4,792	27,100	367	27,100		
Averages									
$84-94$		796	5,266	2,339	18,957	705	13,617	25,365	
$85-94$		862	5,559	2,485	18,777	744	12,190	25,365	
1995	$5 / 4-9 / 27$	1,535	6,228	2,535	1,712	218			

Appendix E.1. Weekly salmon catch and effort in the U.S. commercial fishery in the Alsek River, 1995.

Effort is not listed by week, but is included in the season total.

Appendix E.2. Weekly salmon catch and effort in the Canadian aboriginal and sport fisheries in the Alsek River, 1995. Total catches do not include released fish.

Week	Date	Chinook				Sockeye				Coho			
		Sport	Release	Aboriginal	Total ${ }^{\text {a }}$	Sport	Release	Aboriginal	Total ${ }^{\text {a }}$	Sport	Release	Aboriginal	Total ${ }^{\text {a }}$
25	18-Jun	32	6	0	32	0	1	0	0	0			0
26	25-Jun	104	30	0	104	0	6	0	0	0	0	0	0
27	2-Jul	210	16	42	252	0	0	0	0	0	0	0	0
28	9-Jul	209	52	163	372	0	5	26	26	0	0	0	0
29	16-Jul	329	78	149	478	0	0	34	34	0	0	0	0
30	23-Jul	90	8	46	136	0	1	51	51	0	0	0	0
31	30-Jul	34	5	72	106	0	1	134	134	0	0	0	0
32	6-Aug	26	0	73	99	0	15	101	101	0	0	0	0
33	13-Aug	6	0	32	38	24	5	150	174	0	0	0	0
34	20-Aug	0	0	3	3	70	4	139	209	0	0	0	0
35	27-Aug	2	0	0	2	130	6	611	741	0	0	0	0
36	3-Sep	2	0	0	2	94	3	285	379	0	0	0	0
37	10-Sep	0	0	0	0	34	0	32	66	0	0	0	0
38	17-Sep	0	0	0	0	36	0	88	124	3	0	6	9
39	24-Sep	0	0	0	0	78	11	54	132	6	1	0	6
40	1 -Oct	0	0	0	0	74	88	38	112	107	23	53	160
41	8-Oct	0	0	0	0	54	103	2	56	200	198	24	224
42	15-Oct	0	0	0	0	88	74	0	88	211	118	0	211
Total ${ }^{\text {b }}$		1,044	195	580	1,624	682	323	1,745	2,427	527	340	83	610

Does not include released fish.
b The total food fish catch above the Klukshu Weir was 19 chinook and 726 sockeye salmon. Village Creek food fish catch was 43 sockeye and 0 chinook salmon.

Appendix E.3. Daily counts of salmon passing through Klukshu River weir, 1995.

Date	Chinook ${ }^{\text {a }}$			Sockeye			Coho		
	Cumulative			Cumulative			Daily	Cumulative	
	Daily	Daily	Prop.	Daily	Daily	Prop.		Daily	Prop.
9-Jun	0	0	0.000	0	0	0.000	0	0	0.000
10-Jun	0	0	0.000	0	0	0.000	0	0	0.000
11-Jun	0	0	0.000	0	0	0.000	0	0	0.000
12-Jun	0	0	0.000	0	0	0.000	0	0	0.000
13-Jun	0	0	0.000	0	0	0.000	0	0	0.000
14-Jun	0	0	0.000	0	0	0.000	0	0	0.000
15-Jun	0	0	0.000	0	0	0.000	0	0	0.000
16-Jun	0	0	0.000	0	0	0.000	0	0	0.000
17-Jun	0	0	0.000	0	0	0.000	0	0	0.000
18-Jun	0	0	0.000	0	0	0.000	0	0	0.000
19-Jun	0	0	0.000	0	0	0.000	0	0	0.000
20-Jun	1	1	0.000	0	0	0.000	0	0	0.000
21-Jun	0	1	0.000	0	0	0.000	0	0	0.000
22-Jun	1	2	0.000	0	0	0.000	0	0	0.000
23-Jun	0	2	0.000	0	0	0.000	0	0	0.000
24-Jun	0	2	0.000	0	0	0.000	0	0	0.000
25-Jun	0	2	0.000	0	0	0.000	0	0	0.000
26-Jun	0	2	0.000	0	0	0.000	0	0	0.000
27-Jun	1	3	0.001	0	0	0.000	0	0	0.000
28-Jun	1	4	0.001	0	0	0.000	0	0	0.000
29-Jun	3	7	0.001	0	0	0.000	0	0	0.000
30-Jun	7	14	0.002	0	0	0.000	0	0	0.000
1-Jul	0	14	0.002	0	0	0.000	0	0	0.000
2-Jul	0	14	0.002	0	0	0.000	0	0	0.000
3-Jul	3	17	0.003	4	4	0.000	0	0	0.000
4-Jul	216	233	0.041	133	137	0.007	0	0	0.000
5-Jul	21	254	0.045	4	141	0.007	0	0	0.000
$6-\mathrm{Jul}$	390	644	0.113	113	254	0.012	0	0	0.000
7-Jul	71	715	0.126	25	279	0.013	0	0	0.000
8-Jul	192	907	0.160	25	304	0.015	0	0	0.000
$9-\mathrm{Jul}$	27	934	0.164	13	317	0.015	0	0	0.000
10-Jul	735	1,669	0.294	192	509	0.025	0	0	0.000
11-Jul	903	2,572	0.453	106	615	0.030	0	0	0.000
12-Jul	92	2,664	0.469	25	640	0.031	0	0	0.000
13-Jul	82	2,746	0.484	20	660	0.032	0	0	0.000
14-Jul	97	2,843	0.501	36	696	0.034	0	0	0.000
15-Jul	40	2,883	0.508	23	719	0.035	0	0	0.000
16-Jul	179	3,062	0.539	41	760	0.037	0	0	0.000
17-Jul	306	3,368	0.593	196	956	0.046	0	0	0.000
18-Jul	613	3,981	0.701	101	1,057	0.051	0	0	0.000
19-Jul	593	4,574	0.806	35	1,092	0.053	0	0	0.000
20-Jul	38	4,612	0.812	48	1,140	0.055	0	0	0.000
21-Jul	80	4,692	0.826	92	1,232	0.060	0	0	0.000
22-Jul	78	4,770	0.840	140	1,372	0.066	0	0	0.000
23-Jul	100	4,870	0.858	25	1,397	0.068	0	0	0.000
24-Jul	185	5,055	0.890	40	1,437	0.069	0	0	0.000

-Continued-

Appendix E.3. (page 2 of 3)

Date	Chinook ${ }^{\text {a }}$			Sockeye			Coho		
		Cumulative		Daily	Cumulative		Daily	Cumulative	
	Daily	Daily	Prop.		Daily	Prop.		Daily	Prop.
25-Jul	63	5,118	0.901	24	1,461	0.071	0	0	0.000
26-Jul	84	5,202	0.916	126	1,587	0.077	0	0	0.000
27-Jul	59	5,261	0.927	79	1,666	0.080	0	0	0.000
28-Jul	38	5,299	0.933	90	1,756	0.085	0	0	0.000
29-Jul	12	5,311	0.935	14	1,770	0.086	0	0	0.000
30-Jul	58	5,369	0.946	3	1,773	0.086	0	0	0.000
31-Jul	26	5,395	0.950	9	1,782	0.086	0	0	0.000
1-Aug	20	5,415	0.954	2	1,784	0.086	0	0	0.000
2-Aug	4	5,419	0.954	14	1,798	0.087	0	0	0.000
3-Aug	22	5,441	0.958	4	1,802	0.087	0	0	0.000
4-Aug	26	5,467	0.963	51	1,853	0.090	0	0	0.000
5-Aug	5	5,472	0.964	22	1,875	0.091	0	0	0.000
6-Aug	20	5,492	0.967	29	1,904	0.092	0	0	0.000
7-Aug	7	5,499	0.968	8	1,912	0.092	0	0	0.000
8-Aug	24	5,523	0.973	53	1,965	0.095	0	0	0.000
9-Aug	5	5,528	0.974	35	2,000	0.097	0	0	0.000
10-Aug	12	5,540	0.976	54	2,054	0.099	0	0	0.000
11-Aug	25	5,565	0.980	199	2,253	0.109	0	0	0.000
12-Aug	2	5,567	0.980	9	2,262	0.109	0	0	0.000
13-Aug	6	5,573	0.982	4	2,266	0.109	0	0	0.000
14-Aug	5	5,578	0.982	13	2,279	0.110	0	0	0.000
15-Aug	11	5,589	0.984	10	2,289	0.111	0	0	0.000
16-Aug	10	5,599	0.986	21	2,310	0.112	0	0	0.000
17-Aug	5	5,604	0.987	16	2,326	0.112	0	0	0.000
18-Aug	8	5,612	0.988	46	2,372	0.115	0	0	0.000
19-Aug	15	5,627	0.991	137	2,509	0.121	0	0	0.000
20-Aug	4	5,631	0.992	78	2,587	0.125	0	0	0.000
21-Aug	4	5,635	0.992	14	2,601	0.126	0	0	0.000
22-Aug	2	5,637	0.993	75	2,676	0.129	0	0	0.000
23-Aug	5	5,642	0.994	357	3,033	0.147	0	0	0.000
24-Aug	2	5,644	0.994	40	3,073	0.148	0	0	0.000
25-Aug	2	5,646	0.994	199	3,272	0.158	0	0	0.000
26-Aug	3	5,649	0.995	69	3,341	0.161	0	0	0.000
27-Aug	6	5,655	0.996	645	3,986	0.193	0	0	0.000
28-Aug	6	5,661	0.997	445	4,431	0.214	0	0	0.000
29-Aug	1	5,662	0.997	1,472	5,903	0.285	0	0	0.000
30-Aug	3	5,665	0.998	147	6,050	0.292	0	0	0.000
31-Aug	1	5,666	0.998	2,304	8,354	0.404	0	0	0.000
1-Sep	2	5,668	0.998	1,710	10,064	0.486	0	0	0.000
2-Sep	1	5,669	0.998	97	10,161	0.491	0	0	0.000
3-Sep	1	5,670	0.999	419	10,580	0.511	0	0	0.000
4-Sep	0	5,670	0.999	192	10,772	0.520	0	0	0.000
5-Sep	1	5,671	0.999	1,225	11,997	0.580	0	0	0.000
6-Sep	2	5,673	0.999	1,849	13,846	0.669	0	0	0.000
7-Sep	1	5,674	0.999	2,055	15,901	0.768	0	0	0.000
8-Sep	1	5,675	0.999	1,989	17,890	0.864	0	0	0.000

-Continued-

Appendix E.3. (page 3 of 3)

Date D	Chinook ${ }^{\text {a }}$			Sockeye			Coho		
		Cumulative		Daily	Cumulative		Daily	Cumulative	
	Daily	Daily	Prop.		Daily	Prop.		Daily	Prop.
9-Sep	0	5,675	0.999	175	18,065	0.873	0	0	0.000
10-Sep	0	5,675	0.999	226	18,291	0.884	0	0	0.000
11-Sep	1	5,676	1.000	238	18,529	0.895	0	0	0.000
12-Sep	0	5,676	1.000	67	18,596	0.899	0	0	0.000
13-Sep	0	5,676	1.000	240	18,836	0.910	0	0	0.000
14-Sep	0	5,676	1.000	39	18,875	0.912	1	1	0.000
15-Sep	0	5,676	1.000	26	18,901	0.913	0	1	0.000
16-Sep	0	5,676	1.000	4	18,905	0.913	0	1	0.000
17-Sep	0	5,676	1.000	4	18,909	0.914	0	1	0.000
18-Sep	0	5,676	1.000	0	18,909	0.914	0	1	0.000
19-Sep	0	5,676	1.000	2	18,911	0.914	0	1	0.000
20-Sep	0	5,676	1.000	4	18,915	0.914	0	1	0.000
21-Sep	1	5,677	1.000	851	19,766	0.955	42	43	0.012
22-Sep	1	5,678	1.000	47	19,813	0.957	3	46	0.013
23-Sep	0	5,678	1.000	0	19,813	0.957	0	46	0.013
24-Sep	0	5,678	1.000	9	19,822	0.958	0	46	0.013
25-Sep	0	5,678	1.000	82	19,904	0.962	53	99	0.027
26-Sep	0	5,678	1.000	6	19,910	0.962	1	100	0.028
27-Sep	0	5,678	1.000	5	19,915	0.962	2	102	0.028
28-Sep	0	5,678	1.000	1	19,916	0.962	2	104	0.029
29-Sep	0	5,678	1.000	11	19,927	0.963	7	111	0.031
30-Sep	0	5,678	1.000	1	19,928	0.963	0	111	0.031
1-Oct	0	5,678	1.000	1	19,929	0.963	0	111	0.031
2-Oct	0	5,678	1.000	7	19,936	0.963	26	137	0.038
3-Oct	0	5,678	1.000	45	19,981	0.965	754	891	0.247
4-Oct	0	5,678	1.000	28	20,009	0.967	806	1,697	0.470
5-Oct	0	5,678	1.000	36	20,045	0.969	166	1,863	0.515
6-Oct	0	5,678	1.000	135	20,180	0.975	972	2,835	0.784
7 -Oct	0	5,678	1.000	79	20,259	0.979	173	3,008	0.832
8-Oct	0	5,678	1.000	7	20,266	0.979	17	3,025	0.837
9 -Oct	0	5,678	1.000	12	20,278	0.980	51	3,076	0.851
10-Oct	0	5,678	1.000	14	20,292	0.980	32	3,108	0.860
11-Oct	0	5,678	1.000	13	20,305	0.981	32	3,140	0.869
12-Oct	0	5,678	1.000	2	20,307	0.981	19	3,159	0.874
13-Oct	0	5,678	1.000	30	20,337	0.983	37	3,196	0.884
14-Oct	0	5,678	1.000	1	20,338	0.983	1	3,197	0.885
15-Oct	0	5,678	1.000	3	20,341	0.983	4	3,201	0.886
16-Oct	0	5,678	1.000	5	20,346	0.983	13	3,214	0.889
17 -Oct ${ }^{\text {b }}$	0	5,678	1.000	350	20,696	1.000	400	3,614	1.000
Totals		5,678			20,696			3,614	
Adjustments									
Brood stock		24			0				
Catch above weir		260			879			50	
Total Escapement		5,394			19,817			3,564	

[^5]Appendix E.4. Salmon catch and effort in the U.S. commercial fishery in the Alsek River, 1964-1995.

Year	Catch					Effort	
						Boat Days	Days Open
	Chinook	Sockeye	Coho	Pink	Chum		
1961	2,120	23,339	7,679	84	86	1,436	80.0
1962	2,276	14,475	8,362	93	133		76.0
1963	131	6,055	7,164	42	34	692	68.0
1964	591	14,127	9,760	144	367	592	68.0
1965	719	28,487	9,638	10	72	1,016	72.0
1966	934	29,091	2,688	22	240	500	64.0
1967	225	11,108	10,090	107	30	600	68.0
1968	215	26,918	10,586	82	240	664	68.0
1969	685	29,259	2,493	38	61	807	61.0
1970	1,128	22,654	2,188	6	26	670	52.3
1971	1,222	25,314	4,730	3	120	794	60.5
1972	1,827	18,717	7,296	37	280	640	65.0
1973	1,757	26,523	4,395	26	283	894	52.0
1974	1,162	16,747	7,046	13	107	699	46.0
1975	1,379	13,842	2,230	16	261	738	58.0
1976	512	19,741	4,883	0	368	550	58.5
1977	1,402	40,780	11,817	689	483	882	57.0
1978	2,441	50,580	13,913	59	233	929	57.0
1979	2,525	41,449	6,158	142	263	1,110	51.0
1980	1,382	25,522	7,863	21	1,005	792	42.0
1981	779	23,641	10,232	65	816	585	40.0
1982	532	27,423	6,534	6	358	555	33.0
1983	94	18,293	5,253	20	432	479	38.0
1984	60	14,326	7,868	24	1,610	429	33.0
1985	213	5,940	5,490	3	427	279	33.0
1986	481	24,791	1,344	13	462	517	34.0
1987	347	11,393	2,517	0	1,924	388	40.5
1988	223	6,286	4,986	7	908	324	34.0
1989	228	13,513	5,972	2	1,031	367	38.0
1990	78	17,013	1,437	0	495	374	38.0
1991	103	17,542	5,956	0	103	530	49.0
1992	301	19,298	3,116	1	120	404	46.0
1993	300	20,043	1,215	0	49	383	40.0
1994	805	19,639	4,182	0	32	416	61.0
Averages							
61-94	858	21,290	6,091	52	396	637	52.4
85-94	308	15,546	3,622	3	555	398	41.4
1995	670	33,112	14,184	13	347	926	53.5

Appendix E.5. Salmon catch in the U.S. subsistence and personal use fisheries in the Alsek River, 1976-1995. ${ }^{\text {a }}$

	Catch		
Year	Chinook	Sockeye	Coho
1976	13	51	5
1977	18	113	0
1978			
1979	80	35	70
1980	57	41	62
1981	32	50	74
1982	87	75	50
1983	31	25	50
1984			
1985	16	95	0
1986	22	241	45
1987	27	173	31
1988	13	148	9
1989	20	131	34
1990	85	144	12
1991	38	104	0
1992	15	37	44
1993	38	96	28
1994	60	47	20
Averages			
$76-94$	38	94	31
$85-94$	33	122	22
1995	51	167	53
Reported catches on returned fishing permits.			

Appendix E.6. Salmon catches in the Canadian aboriginal and sport fisheries in the Alsek River, 19761995.

Year	Chinook			Sockeye			Coho		
	Aboriginal	Sport	Total	Aboriginal	Sport	Total	Aboriginal	Sport	Total
1976	150	200	350	4,000	600	4,600	0	100	100
1977	350	300	650	10,000	500	10,500	0	200	200
1978	350	300	650	8,000	500	8,500	0	200	200
1979	1,300	650	1,950	7,000	750	7,750	0	100	100
1980	150	200	350	800	600	1,400	0	200	200
1981	150	315	465	2,000	808	2,808	0	109	109
1982	400	224	624	5,000	755	5,755	0	109	109
1983	300	312	612	2,550	732	3,282	0	16	16
1984	100	475	575	2,600	289	2,889	0	20	20
1985	175	250	425	1,361	100	1,461	50	100	150
1986	102	165	267	1,914	307	2,221	0	9	9
1987	125	367	492	1,158	383	1,541	0	49	49
1988	43	249	292	1,604	322	1,926	0	192	192
1989	234	272	506	1,851	319	2,170	0	227	227
1990	202	555	757	2,314	392	2,706	0	75	75
1991	509	388	897	2,111	303	2,414	0	227	227
1992	148	103	251	2,592	582	3,174	0	213	213
1993	152	171	323	2,361	329	2,690	0	37	37
1994	289	197	486	1,745	261	2,006	8	69	77
Averages									
76-94	275	300	575	3,208	465	3,673	3	119	122
85-94	198	272	470	1,901	330	2,231	6	120	126
1995	580	1,044	1,624	1,745	682	2,427	83	527	610

Appendix E.7. Klukshu River weir counts of chinook, sockeye, and coho salmon, 1976-1995. The escapement count equals the weir count minus the aboriginal fishery catch and brood stock taken.

	Chinook $^{\mathrm{a}}$		Sockeye				Coho $^{\mathrm{b}}$		
Year	Count	Escape. $^{\mathrm{c}}$	Early $^{\mathrm{d}}$	Late	Total	Escape. ${ }^{\mathrm{c}}$	Count	Escape.	
1976	1,278	1,153	181	11,510	11,691	7,941	1,572		
1977	3,144	2,894	8,931	17,860	26,791	15,441	2,758		
1978	2,976	2,676	2,508	24,359	26,867	19,017	30		
1979	4,404	2,454	977	11,334	12,311	7,051	175		
1980	2,637	2,487	1,008	10,742	11,750	10,850	704		
1981	2,113	1,963	997	19,351	20,348	18,448	1,170		
1982	2,369	1,969	7,758	25,941	33,699	28,899	189		
1983	2,537	2,237	6,047	14,445	20,492	18,017	303		
1984	1,672	1,572	2,769	9,958	12,727	10,227	1,402		
1985	1,458	1,283	539	18,081	18,620	17,259	350		
1986	2,709	2,607	416	24,434	24,850	22,936	71		
1987	2,616	2,491	3,269	7,235	10,504	9,346	202		
1988	2,037	1,994	585	8,756	9,341	7,737	2,774		
1989	2,456	2,289	3,400	20,142	23,542	21,636	2,219		
1990	1,915	1,742	1,316	24,679	25,995	24,607	315		
1991	2,489	2,248	1,924	17,053	18,977	17,645	8,540	8,478	
1992	1,367	1,242	11,339	8,428	19,767	18,269	1,145	1,145	
1993	3,302	3,220	5,369	11,371	16,740	14,921	788	788	
1994	3,727	3,628	3,247	11,791	15,038	13,892	1,232	1,232	
Averages									
$76-94$	2,485	2,218	3,294	15,656	18,950	16,007	1,365		
$85-94$	2,408	2,274	3,140	15,197	18,337	16,825	1,764		
1995	5,678	5,394	2,289	18,407	20,696	19,817	3,614	3,564	

Counts include jack chinook salmon.
b Weir was removed prior to the end of the coho run.
c The chinook and sockeye escapements into Klukshu Lake are calculated from the weir count minus fish harvested above the weir site minus brood stock taken. The remainder of the food fishery harvest occurred below the weir at Village Creek, and Blanchard and Takhanne Rivers.
d Includes sockeye counts up to and including August 15.

Appendix E.8. Alsek River sockeye counts from U.S. and Canadian aerial surveys and from the electronic counter at Village Creek, 1985-1995.

Year	U.S. Aerial Surveys ${ }^{\text {a }}$				Canadian Aerial Surveys ${ }^{\text {b }}$		Village Creek Counter
	Basin	Cabin	Muddy	Tanis	Tatshenshini	Neskataheen	
	Creek	Creek	Creek	River	River	Lake	
1985	2,600			2,200			
1986	100		300	2,700	536	750	1,490
1987	350	220		1,600			1,875
1988	500			750	433	456	$433{ }^{\text {c }}$
1989	320			680	1,689	1,700	9,569
1990	275	300		3,500			7,500 ${ }^{\text {d }}$
1991				800			5,670 ${ }^{\text {c }}$
1992	1,000	10		350			11,485 ${ }^{\text {f }}$
1993	4,800			900			3,135 ${ }^{5}$
1994	250			600	366		4,007 ${ }^{\text {h }}$
Averages							
85-94	1,133	177	300	1,408	756	969	5,018
1995	2,700			350			4,041

a Surveys not made every year at each tributary.
${ }^{b}$ Includes several streams from Lo-Fog to Goat Creek.
c Incomplete count due to machine malfunction.
d Estimated count based on absolute electronic records $(5,313)$ and the total number of non-operational days.
e Estimated count based on absolute electronic records $(3,981)$ and the total number of non-operational days.
f Counts were estimated during the non-operational days by averaging the counts recorded three days before and three days after the malfunction.
g Estimated count based on absolute electronic records $(2,101)$ and the total number of non-operational days.
h Estimated count based on absolute electronic records $(3,921)$ and the total number of non-operational days.

Appendix E.9. Aerial survey index counts of Alsek chinook salmon escapements, 1984-1995.

Year	Blanchard River	Takhanne River	Goat Creek
1984	304	158	28
1985	232	184	
1986	556	358	142
1987	624	295	85
1988	437	169	54
1989	a	158	34
1990	a	325	32
1991	121	86	63
1992	86	77	16
1993	326	351	50
1994	349	342	67
Averages			
$84-94$	337	228	57
1995	338	260	$5^{\text {b }}$

Not surveyed due to poor visibility.
${ }^{b}$ Late survey date which missed the peak of spawning.

Appendix E.10. Aerial survey counts of coho salmon from U.S. lower Alsek River tributaries, 19841995.03/10/97 11:51:56 AM

Year	Combined U.S. Tributary Counts
1985	450
1986	1,100
1987	100
1988	1,900
1989	1,990
1990	1,600
1991	500^{a}
1992	$1,010^{\mathrm{a}}$
1993	800^{a}
1994	975^{a}
Averages	
$85-94$	1,043
1995	1,050
a Few	

Few systems surveyed.

[^0]: ${ }^{\text {a }}$ The Canadian preseason forecast includes an estimated non-terminal marine harvest which is not accounted for in the total run size in this report.

[^1]: ${ }^{\text {a }}$ U.S. harvest estimate differs from Joint Interception Committee estimate because no estimates are made for catches other than the listed fisheries.

[^2]: Alaskit hatchery pink salmon contributions are not available.

[^3]: All Tahltan includes thermally marked fish.

[^4]: a On 2, 8, and 11 August holes in the weir allowed fish to pass, an estimated 800 additional sockeye passed on these dates.

[^5]: a Jack chinook included in the counts.
 b Estimate of fish holding below weir during removal.

