PACIFIC SALMON COMMISSION
 TRANSBOUNDARY TECHNICAL COMMITTEE REPORT
 FINAL ESTIMATES OF TRANSBOUNDARY RIVER SALMON PRODUCTION, HARVEST AND ESCAPEMENT AND A REVIEW OF JOINT ENHANCEMENT ACTIVITIES IN 2019

REPORT TCTR (21) -03

By
The Transboundary Technical Committee

For
The Pacific Salmon Commission

TABLE OF CONTENTS

Page
TABLE OF CONTENTS ii
LIST OF TABLES iv
LIST OF FIGURES iv
LIST OF APPENDICES v
ACRONYMS xii
CALENDAR OF STATISTICAL WEEKS xiii
EXECUTIVE SUMMARY 14
Stikine River 14
Taku River. 14
Alsek River 15
Enhancement 16
INTRODUCTION 17
STIKINE RIVER 17
Harvest Regulations and the Joint Management Model 20
Chinook Salmon 20
Sockeye Salmon 21
U.S. Fisheries 24
Canadian Fisheries 28
Escapement 33
Sockeye Salmon 33
Chinook Salmon 33
Coho Salmon 34
Sockeye Salmon Run Reconstruction 34
TAKU RIVER 35
Harvest Sharing and Joint Management Models 37
Chinook Salmon 37
Sockeye Salmon 38
Coho Salmon 40
U.S. Fisheries 42
Canadian Fisheries 50
Escapement 56
Sockeye Salmon 56
Chinook Salmon 56
Coho Salmon 57
Pink Salmon 57
Chum Salmon 58
Sockeye Salmon Run Reconstruction 58
ALSEK RIVER 59
Harvest Regulations \& Management Objectives 59
Preseason Forecasts 60
U.S. Fisheries 62
Canadian Fisheries 62
Escapement 64
Sockeye Salmon 64
Chinook Salmon 65
Coho Salmon 65
ENHANCEMENT ACTIVITIES 65
Standards 69

LIST OF TABLES

Table 1. Stikine River large Chinook salmon run size based on the Stikine Chinook Management Model and MR estimates, and other methods, and weekly inseason harvest estimates from the District 108 gillnet, sport, troll, and subsistence fisheries and the inriver assessment/test, Canadian gillnet, and sport fisheries, 2019.21Table 2. Weekly forecasts of run size, total allowable harvest for Stikine River sockeyesalmon, and cumulative Stikine River harvest as estimated inseason by the StikineManagement Model and other methods, 2019.22
Table 3. Stikine River sockeye salmon terminal run reconstruction and harvest shares for, 2019. 24
Table 4. Taku River large Chinook salmon run size based on CPUE (methods similar to the Stikine Chinook Salmon Management Model), and other methods, and weekly inseason harvest estimates from the District 111 commercial drift gillnet and sport fisheries and the Canadian gillnet and recreational fisheries, 2019 37
Table 5. Weekly inseason projections of Taku River sockeye salmon terminal run size, total allowable harvest, and cumulative harvest for 2019 39
Table 6. Taku River sockeye salmon terminal run reconstruction and harvest shares, 2019. 40
Table 7. Weekly inseason projections of terminal run size, allowable harvest, and cumulative harvest by country of Taku River coho salmon for 2019. 41
Table 8. Taku River coho salmon terminal run reconstruction and harvest shares, 2019. 42
Table 9. Inseason run size projections, Canadian available harvest, and actual harvest of wild Taku River sockeye salmon, 2019. 52
Table 10. Klukshu River harvest and escapement for the Chinook and sockeye salmon and Alsek River harvest for Chinook and sockeye salmon for 2019. 61
LIST OF FIGURES
Figure 1. The Stikine River and principal U.S. and Canadian fishing areas. 19
Figure 2. The Taku River and principal U.S. and Canadian fishing areas 36
Figure 3. The Alsek River and principal U.S. and Canadian fishing areas. 60

LIST OF APPENDICES

Appendix A. 1. Weekly harvest estimates of Chinook salmon in the US gillnet, troll, recreational, and subsistence fisheries in District 108, 2019. 70
Appendix A. 2. Weekly harvest of Chinook salmon in the Canadian commercial, Telegraph Aboriginal, and recreational fishery in the Stikine River, 2019. 70
Appendix A. 3. Weekly harvest of Chinook salmon in the Canadian test fisheries in the Stikine River, 2019. 71
Appendix A. 4. Weekly harvest of sockeye salmon in the Alaskan District 106 and 108 fisheries, 2019 72
Appendix A. 5. Weekly stock proportions of sockeye salmon harvested in the Alaskan D106 commercial drift gillnet fishery, 2019 73
Appendix A. 6. Weekly stock proportions of sockeye salmon harvested in the Alaskan Subdistrict 106-41/42 (Sumner Strait) commercial drift gillnet fishery, 2019. 73
Appendix A. 7. Weekly stock proportions of sockeye salmon harvested in the Alaskan Subdistrict 106-30 (Clarence Strait) commercial drift gillnet fishery, 2019. 75
Appendix A. 8. Weekly stock proportions sockeye salmon harvested in the Alaskan District 108 commercial drift gillnet fishery, 2019 76
Appendix A. 9. Weekly sockeye salmon harvest and effort in the Canadian commercial and assessment fisheries in the lower Stikine River, 2019. 77
Appendix A. 10. Weekly sockeye salmon stock proportions and harvest by stock in the Canadian commercial fishery in the lower Stikine River, 2019 78
Appendix A. 11. Harvest by stock and week for sockeye salmon in the Canadian upper river commercial and Aboriginal fisheries in the Stikine River, 2019. 79
Appendix A. 12. Weekly harvest, CPUE, and migratory timing of Tahltan, Tuya, and mainstem sockeye salmon stocks in the Stikine River test fishery, 2019 79
Appendix A. 13. Weekly coho salmon harvest in the Alaskan District 106 and 108 fisheries, 2019 80
Appendix A. 14. Weekly harvest of coho salmon in the Canadian lower river commercial fishery and test fisheries 2019. 81
Appendix A. 15. Weekly salmon effort in the Alaskan District 106 and 108 fisheries, 2019.81
Appendix A. 16. Weekly salmon effort in the Canadian fisheries in the Stikine River, 2019.82
Appendix A. 17. Daily counts of adult sockeye salmon passing through Tahltan Lake weir, 2019 83
Appendix A. 18. Daily counts of sockeye salmon smolt migrating through Tahltan Lake smolt weir, 2019 84
Appendix A. 19. Daily counts of adult Chinook salmon passing through Little Tahltan weir, 2019 85
Appendix B. 1. Historic salmon harvest and effort in the Alaskan District 106 commercial gillnet fishery, 1960-2019. 86
Appendix B. 2 Historic salmon harvest and effort in the Alaskan District 108 commercial gillnet fishery, 1962-2019. 87
Appendix B. 3. District 108 total Chinook salmon estimates in the US gillnet, troll, recreational, and subsistence fisheries, 2005-2019. 88
Appendix B. 4. Annual estimates of Stikine River large Chinook salmon in the U.S. gillnet, troll, recreational, and subsistence and estimates of Stikine River bound Chinook salmon in District 108, 2005-2019. 89
Appendix B. 5. Chinook salmon harvest in the Alaskan District 106 and 108 test fisheries, 1984-2019 90
Appendix B. 6. Chinook salmon harvest in the Canadian commercial and recreational fisheries in the Stikine River, 1979-2019 91
Appendix B. 7. Chinook salmon harvest in inriver test fisheries in the Stikine River, 1985- 2019. 92
Appendix B. 8. Index counts of Stikine River large Chinook salmon escapements, 1979- 2019. 93
Appendix B. 9. General stock proportions and harvest of sockeye salmon in the Alaskan commercial gillnet fishery; District 106 \& 108, 1982-2019. 94
Appendix B. 10. Stikine River stock proportions and harvest of sockeye salmon in the Alaskan commercial gillnet fishery; Districts 106 \& 108, 1982-2019. 95
Appendix B. 11. Tahltan sockeye salmon stock proportions and harvest of in the Alaskan commercial gillnet fishery; Districts 106 \& 108, 1994-2019. 96
Appendix B. 12. Stikine River sockeye salmon harvest in the U.S. Subsistence fishery, 2004-2019 97
Appendix B. 13. Stock proportions of sockeye salmon in the Alaskan District 106 and 108 test fisheries, 1984-2019. 98
Appendix B. 14. All harvest in of sockeye salmon in Canadian commercial and assessment fisheries, 1972-2019. 99
Appendix B. 15. Sockeye salmon stock proportions and harvest by stock in the Canadian commercial and assessment fishery in the Stikine River, 1979-2019. 100
Appendix B. 16. Tahltan sockeye salmon stock proportions and harvest by stock in the Canadian commercial and assessment fishery in the Stikine River, 1979-2019. 102
Appendix B. 17. Tahltan Lake weir data with enhanced and wild Tahltan fish, 1979-2019. 102
Appendix B. 18. Sockeye salmon harvest by stock in the Stikine River under Canadian ESSR licenses, 1992-2019. 103
Appendix B. 19. Estimated proportion of inriver run comprised of Tahltan, Tuya, and mainstem sockeye salmon, 1979-2019. 104
Appendix B. 20. Aerial survey counts of Mainstem sockeye salmon stocks in the Stikine River drainage, 1984-2019. 105
Appendix B. 21. Stikine River sockeye salmon run size, 1979-2019 106
Appendix B. 22. Tahltan wild and enhanced sockeye salmon run size, 1994-2019. 107
Appendix B. 23. Coho salmon harvest in the Alaskan District 106 and 108 test fisheries,1984-2019108
Appendix B. 24. Annual harvest of coho salmon in the Canadian lower and upper river commercial, Telegraph Aboriginal and the Canadian test fisheries, 1979-2019. 109
Appendix B. 25. Index counts of Stikine River coho salmon escapements, 1984-2019.110
Appendix B. 26. Effort in the Canadian fisheries, including assessment fisheries in the Stikine River, 1979-2019. 111
Appendix B. 27. Counts of adult sockeye salmon migrating through Tahltan Lake weir, 1959-2019 112
Appendix B. 28. Estimates of sockeye salmon smolt migrating through Tahltan Lake smolt weir, 1984-2019. 113
Appendix B. 29. Weir counts of Chinook salmon at Little Tahltan River, 1985-2019. 114Appendix C. 1. Weekly Chinook salmon estimates in the U.S. fisheries in D111, 2019.115
Appendix C. 2. Weekly Chinook salmon abundance estimates of above border run and harvest in the Canadian fisheries in the Taku River 2019 115
Appendix C. 3. Weekly sockeye salmon harvest of Alaskan D111 traditional and terminal hatchery access common property commercial drift gillnet fishery, 2019. 116
Appendix C. 4. Weekly stock proportions of sockeye salmon harvested in the Alaskan District 111 traditional commercial drift gillnet fishery, 2019. 117
Appendix C. 5. Weekly sockeye salmon abundance estimates of above border run and harvest in the Canadian fisheries in the Taku River, 2019. 118
Appendix C. 6. Estimates of wild and enhanced sockeye salmon stock harvested in the Canadian commercial fishery in the Taku River by week, 2019 118
Appendix C. 7. Weekly coho salmon harvest in the traditional Alaskan District 111 and StatArea 111-32 (Taku Inlet), commercial drift gillnet fishery, 2019. 119
Appendix C. 8. Weekly coho salmon abundance estimates of above border run and harvest in the Canadian fisheries in the Taku River, 2019. 119
Appendix C. 9. Weekly effort in the Alaskan traditional District 111 and StatArea 111-32 (Taku Inlet), commercial drift gillnet fishery, 2019. 120
Appendix C. 10. Weekly effort in the Canadian commercial and assessment fisheries in the Taku River, 2019 120
Appendix C. 11. Daily counts of adult sockeye salmon passing through Tatsamenie Lake weir, 2019 121
Appendix C. 12. Daily counts of adult sockeye salmon passing through Little Trapper Lake weir, 2019. 122
Appendix C. 13. Daily counts of adult sockeye salmon passing through the King Salmon Lake weir, 2019. 123
Appendix C. 14. Daily counts of adult sockeye salmon passing through the Kuthai Lake weir, 2019. 124
Appendix D. 1. All historic harvest and effort of salmon in the D111 gillnet fishery, 1960-2019.125
Appendix D. 2. District 111 total Chinook salmon harvest in the US gillnet, sport, and personal use fisheries, 2005-2019. 126
Appendix D. 3. Annual estimates of Taku River large Chinook salmon in the D111 fisheries, 2005-2019. 127
Appendix D. 4. Annual Chinook Salmon harvest in the Canadian fisheries in the Taku River, 1979-2019. 128
Appendix D. 5. Taku River large Chinook salmon terminal run size, 1979-2019. 129
Appendix D. 6. Aerial survey index escapement counts of large (3-ocean and older) Taku River Chinook salmon, 1975-2019. 130
Appendix D. 7. Annual sockeye salmon harvest in the Alaskan District 111 fisheries, includes estimates of Taku wild and enhanced fish in the gillnet, seine, and personal use fisheries, 1967-2019. 131
Appendix D. 8. Stock proportions and harvest of sockeye salmon in the traditional Alaska District 111 commercial drift gillnet fishery, 1983-2019. 132
Appendix D. 9. Proportion of wild Taku River sockeye salmon in the Alaskan District 111 commercial drift gillnet harvest by week, 1983-2019 133
Appendix D. 10. Annual sockeye salmon harvest estimates of wild and enhanced fish in the Canadian fisheries in the Taku River, 1979-2019. 134
Appendix D. 11. Annual sockeye salmon stock proportions and harvest by stock in the Canadian commercial fishery on the Taku River, 1986-2019. 135
Appendix D. 12. Annual sockeye salmon weir counts, escapements, and samples at the Tatsamenie Lake weir, 1984-2019. 136
Appendix D. 13. Annual sockeye salmon weir counts, escapements, and samples at the Little Trapper weir, 1983-2019. 137
Appendix D. 14. Annual sockeye salmon weir counts, escapements, and samples at the King Salmon weir, 1983-2019. 138
Appendix D. 15. Taku River sockeye salmon run size, 1984-2019 139
Appendix D. 16. The terminal run reconstruction of Taku River wild and enhanced sockeye salmon, 1984-2019. 140
Appendix D. 17. Annual sockeye salmon escapement estimates of Taku River and Port Snettisham sockeye salmon stocks, 1979-2019. 141
Appendix D. 18. Historical Taku River coho salmon harvested in D111 terminal fisheries, 1992-2019 142
Appendix D. 19. Historical coho salmon harvested in the Canadian fisheries in the Taku River, 1987-2019. 143
Appendix D. 20. Historic Taku River coho salmon run size, 1987-2019. 144
Appendix D. 21. Historical effort in the Alaskan District 111 and Subdistrict 111-32 (Taku Inlet) commercial drift gillnet fishery, 1960-2019. 145
Appendix D. 22. Historical effort in the Canadian commercial fishery in the Taku River, 1979-2019 146
Appendix D. 23. Canyon Island fish wheel salmon counts and periods of operation on theTaku River, 1984-2019.147
Appendix E. 1. Weekly salmon harvest and effort in the lower Alsek River fisheries, 2019. 148
Appendix E. 2. Weekly salmon harvest and effort in the Canadian Aboriginal and sport fisheries in the Alsek River, 2019. 148
Appendix E. 3. Daily counts of salmon passing through Klukshu River weir, 2019 149
Appendix E. 4. Chinook salmon harvest in the U.S. fisheries in the Alsek River, 1960- 2019. 151
Appendix E. 5. Klukshu River counts, harvest, and escapement of Chinook salmon, 1976- 2019. 152
Appendix E. 6. Chinook salmon harvest in the Canadian Aboriginal and recreational fisheries in the Alsek River, 1976-2019 153
Appendix E. 7. Chinook salmon above border run and harvest in the Canadian Aboriginal and recreational fisheries in the Alsek River, 1976-2019. 154
Appendix E. 8. Aerial survey index counts of Alsek River Chinook salmon escapements, 1984-2019 155
Appendix E. 9. Sockeye salmon harvest in the U.S. fisheries in the Alsek River, 1960- 2019. 156
Appendix E. 10. Klukshu River sockeye salmon weir count, weir harvest, and escapement, 1976-2019 157
Appendix E. 11. Sockeye salmon harvest in the Canadian Aboriginal and recreational fisheries in the Alsek River, 1976-2019 158
Appendix E. 13. Alsek River sockeye counts from U.S. and Canada, 1985-2019 160
Appendix E. 14. Coho, pink, and chum salmon harvest in the U.S. fisheries in the Alsek River, 1960-2019. 161
Appendix E. 15. Klukshu River weir counts, harvest, and escapement of coho salmon, 1976-2019 162
Appendix F. 1. Tahltan Lake egg collection, fry plants, and survivals, 1989-2019. 163
Appendix F. 2. Tuya Lake fry plants and survivals, 1991-2019. 164
Appendix F. 3. Tatsamenie Lake egg collection, fry plants, and survivals, 1989-2019. 165
Appendix F.4. Trapper and King Salmon lakes egg collection, fry plants, and survivals, 1990-2019 166
Appendix G. 1. Annual stock proportion estimates (mean) of Chinook salmon harvested in the Alaskan District 108 commercial drift gillnet, 2004-2019 167
Appendix G. 2. Annual stock proportion estimates (mean) of Chinook salmon harvested in the Alaskan District 108 sport fisheries, 2004-2019. 168
Appendix G. 3. Annual stock proportion estimates (mean) of Chinook salmon harvested in the Alaskan District 108 commercial troll, 2019. 169
Appendix G. 4. Annual stock proportion estimates (mean) of Chinook salmon harvested in the Alaskan District 111 commercial drift gillnet, 2019 170

Appendix G. 4. Annual stock proportion estimates (mean) of Chinook salmon harvested in the Alaskan District 111 sport fisheries, 2019.
Appendix G. 5. Weekly stock proportion estimates (mean) of sockeye salmon harvested in the Alaskan Subdistrict 106-41/42 (Sumner Strait) commercial drift gillnet fishery, 2019.

Appendix G. 6. Weekly stock proportion estimates (mean) of sockeye salmon harvested in the Alaskan Subdistrict 106-30 (Clarence Strait) commercial drift gillnet fishery, 2019.

Appendix G. 7. Weekly stock proportion estimates (mean) of sockeye salmon harvested in the Alaskan District 108 commercial drift gillnet fishery, 2019. 174
Appendix G. 8. Weekly stock proportion estimates (mean) of sockeye salmon harvested in the Alaskan District 111 traditional commercial drift gillnet fishery by week, 2019...... 175

Transboundary Technical Committee

Canadian Members	U.S. Members
Mr. Bill Waugh (Co-Chair)	Mr. Edgar Jones (Co-Chair)
Mr. Ian Boyce	Ms. Julie Bednarski
Mr. Aaron Foos	Mr. Robert Clark
Mr. Mark Connor	Mr. Scott Forbes
Ms. Jody Mackenzie-Grieve	Ms. Sara Gilk-Baumer
Mr. Johnny Sembsmoen	Mr. David Harris
Mr. Sean Stark	Mr. Rick Hoffman
Dr. Paul Vecsei	Mr. Philip Richards
	Mr. Paul Salomone
	Mr. Jeffrey Williams

Enhancement Subcommittee

Canadian Members	U.S. Members
Mr. Corino Salomi (Co-Chair)	Mr. Garold Pryor (Co-Chair)
Mr. Adam Brennan	Mr. Eric Prestegard
Mr. Jason Calvert	Ms. Lorraine Vercessi
Mr. Sean Collins	Mr. Scott Vulstek
Mr. Marc Connor	
Ms. Cheri Frocklage	
Mr. Alex Parker	

ACRONYMS

ADF\&G	Alaska Department of Fish and Game
AC	Allowable Catch
AF	Aboriginal Fishery
BLC	Base Level Catch
CAFN	Champagne Aishihik First Nation
CCPH	Cumulative Catch per Hour
CPUE	Catch per unit effort
CWT	Coded Wire Tag
CYI	Canyon Island
DFO	Department of Fisheries and Oceans (Canada)
DIPAC	Douglas Island Pink and Chum (Private Hatchery)
ESSR	Excess Salmon to Spawning Requirement (surplus fishery license)
FBD	Fish per boat day
GSI	Genetic Stock Identification
IHNV	Infectious Hematopoietic Necrosis (a virus which infects sockeye salmon)
LCM	Latent Class Model
MEF	Mid Eye Fork (fish length measurement)
MR	Mark-Recapture
MSY	Maximum Sustained Yield
POH	Post-Orbital-Hypural (fish length measurement)
PSC	Pacific Salmon Commission
PST	Pacific Salmon Treaty
SCMM	Stikine Chinook Management Model
SHA	Special Harvest Area
SMM	Stikine Management Model
SPA	Scale Pattern Analysis
SW	Statistical Week
TAC	Total Allowable Catch
TMR	Thermal Mark Recovery
TRTFN	Taku River Tlingit First Nation
TBR	Transboundary River
TTC	Transboundary Technical Committee
YSC	Yukon Salmon Committee

CALENDAR OF STATISTICAL WEEKS

SW	Date		SW	Date	
	Begin	End		Begin	End
1	1-Jan	5-Jan	28	7-Jul	13-Jul
2	6-Jan	12-Jan	29	14-Jul	20-Jul
3	13-Jan	19-Jan	30	21-Jul	27-Jul
4	20-Jan	26-Jan	31	28-Jul	3-Aug
5	27-Jan	$2-\mathrm{Feb}$	32	4-Aug	10-Aug
6	3-Feb	$9-\mathrm{Feb}$	33	11-Aug	17-Aug
7	$10-\mathrm{Feb}$	16-Feb	34	18-Aug	24-Aug
8	17-Feb	23-Feb	35	25-Aug	31-Aug
9	24-Feb	2-Mar	36	1-Sep	7-Sep
10	3-Mar	9-Mar	37	8-Sep	14-Sep
11	10-Mar	16-Mar	38	15-Sep	21-Sep
12	17-Mar	23-Mar	39	22-Sep	28-Sep
13	24-Mar	30-Mar	40	29-Sep	5-Oct
14	31-Mar	6-Apr	41	6-Oct	12-Oct
15	$7-\mathrm{Apr}$	13-Apr	42	13-Oct	19-Oct
16	14-Apr	20-Apr	43	20-Oct	26-Oct
17	21-Apr	27-Apr	44	27-Oct	2-Nov
18	28-Apr	4-May	45	3-Nov	$9-\mathrm{Nov}$
19	5-May	11-May	46	10-Nov	16-Nov
20	12-May	18-May	47	17-Nov	23-Nov
21	19-May	25-May	48	24-Nov	30-Nov
22	26-May	1-Jun	49	1-Dec	7-Dec
23	2-Jun	8-Jun	50	8-Dec	14-Dec
24	9-Jun	15-Jun	51	15-Dec	21-Dec
25	16-Jun	22-Jun	52	22-Dec	28-Dec
26	23-Jun	29-Jun	53	29-Dec	31-Dec
27	30-Jun	6-Jul			

EXECUTIVE SUMMARY

Final estimates of harvests and escapements of Pacific salmon returning to the transboundary Stikine, Taku, and Alsek rivers in 2019 are presented and compared with historical patterns. Average, unless defined otherwise, refers to the most recent 10-year average (2009-2018). Relevant information pertaining to the management of U.S. and Canadian fisheries is presented and the use of inseason management models is discussed. Results from TBR sockeye salmon, Oncorhynchus nerka, enhancement projects are also reviewed.

Stikine River

The postseason estimate of the 2019 Stikine River sockeye salmon terminal run was 89,400 fish, of which approximately 29,200 fish were harvested in various fisheries including assessment/test fisheries. An estimated 60,200 Stikine River fish escaped to spawn; 3,600 fish were removed for brood stock. The terminal run was below average and the harvest was below average (even when Tuya Lake fish were excluded). The Tahltan Lake sockeye salmon total weir count of 37,000 fish was above the goal range of 18,000 to 30,000 fish. The estimated spawning escapement of 23,200 Stikine River mainstem sockeye salmon was within the goal range of 20,000 to 40,000 fish. The estimated U.S. commercial harvest of Stikine River sockeye salmon in Districts 106 and 108, including the Stikine River subsistence fishery, was 13,000 fish. The sockeye salmon harvest in the Canadian inriver commercial fishery was 10,800 fish and the AF harvest was 5,400 fish. There was no inriver test fishery in 2019. Weekly inseason run projections from the SMM ranged from 121,500 to 140,800 sockeye salmon; final inseason model prediction was 123,000 fish, with a TAC of 65,000 fish. The postseason terminal run estimate was 89,400 fish. The estimated Stikine River sockeye salmon AC for the U.S. was 18,400 fish (53\% of TAC) and Canada's estimated AC was 16,300 fish (47\% of TAC); Canada harvested 100% and the U.S. harvested 71% of their respective TACs.

The estimated 2019 Stikine River large Chinook salmon terminal run was 14,280 fish. The above border run was 14,150 fish and spawning escapement was 13,820 fish; below the escapement goal target of 17,400 fish and the escapement goal range 14,000 to 28,000 fish. The run was one of the lowest on record and the harvests were well below average. The Little Tahltan River large Chinook salmon escapement of 540 fish was well below the Canadian escapement target of 3,300 fish and below the lower bound of the Canadian target range of 2,700 to 5,300 fish. The estimated incidental U.S. total harvest of Stikine River Chinook salmon was 133 large fish.

The 2019 run size of Stikine River coho salmon cannot be quantified. The Canadian inriver commercial fishery harvest was 5,200 coho salmon. The U.S. mixed stock coho salmon harvest in District 106 was 59,300 fish (16% Alaska hatchery) and District 108 was 9,500 fish (27% Alaska hatchery).

Taku River

The estimate of the 2019 Taku River sockeye salmon terminal run is 166,400 fish; 162,900 wild fish and 3,600 enhanced fish. The U.S. harvested 67,000 wild fish, Canada harvested 21,100 wild fish, and the estimated above border spawning escapement was 74,900 wild sockeye salmon. The terminal run size and wild fish escapement are not comparable to historical averages, but escapement was above the interim goal range of 55,000 to 62,000 fish. The U.S. and Canada harvested an estimated 79% and 100% of their respective ACs calculated using an $80 \% / 20 \%$ U.S./Canada harvest sharing split based on enhanced fish production.

The estimated 2019 Taku River large Chinook salmon terminal run was 11,800 fish. The above border run was 11,570 fish and the spawning escapement was 11,560 fish; both below the escapement point goal of 25,500 fish and escapement goal range 19,000 to 36,000 fish. The run was the second lowest on record and the harvests were well below average. The total harvest of large Chinook salmon in the Canadian commercial fishery in the Taku River was 0 fish; due to the nonretention license requirement. The estimated incidental U.S. total harvest of Taku River large Chinook salmon was 230 large fish.

The above border run estimate of Taku River coho salmon in 2019 is 95,000 fish, which was average. The Canadian inriver commercial fishery harvest was 12,100 coho salmon. After all Canadian harvests are subtracted from the above border run the above border spawning escapement is estimated at 82,800 coho salmon, slightly below the upper end of the escapement goal range of 50,000 to 90,000 fish. The U.S. harvest of 23,200 coho salmon in the traditional District 111 drift gillnet mixed stock fishery was below average. Alaskan hatcheries contributed an estimated 8,200 fish, or 35\% of the District 111 harvest. The estimated U.S. total harvest of Taku River above border coho salmon was 7,900 fish. The U.S. and Canada harvested an estimated 28% and 82% of their respective ACs.

Alsek River

The 2019 Alsek River harvest of 9,800 sockeye salmon in the U.S. commercial fishery was below average. The Canadian inriver recreational fishery reported a harvest of 5 sockeye salmon, while the Aboriginal food fishery harvested approximately 650 sockeye salmon. The Klukshu River count of 19,100 sockeye salmon was above average and the escapement of 18,700 fish was well above the escapement goal range of 7,500 to 11,000 fish.

The 1,590 Chinook salmon counted into the Klukshu River was above average and the estimated escapement (1,570 fish) was above the escapement goal range of 800 to 1,200 Chinook salmon. The U.S. Dry Bay harvest of 79 Chinook salmon was below average. There were 5 Chinook salmon harvested in the Canadian inriver recreational fishery, and an estimated 32 fish in the Aboriginal food fishery.

Current stock assessment programs prevent an accurate comparison of the Alsek River coho salmon run with historical runs. There was minimal effort during the U.S. Dry Bay coho salmon fishery and harvest figures are negligible. The Canadian recreational fishery harvested 7 coho salmon, and Aboriginal fisheries harvested no coho salmon. The Klukshu River enumeration program does not provide a complete enumeration of coho salmon into this system since it is removed before the run is complete.

Enhancement

In 2019, eggs and milt were collected from sockeye salmon at Tahltan, Tatsamenie and Trapper lakes. An estimated 4.4 million eggs were collected at Tahltan Lake, 2.6 million eggs at Tatsamenie Lake and 429,000 eggs at Trapper Lake. Low initial survival coupled with lower than average fecundity means less eggs are available than originally estimated. Canadian technical staff revised the Tahltan Lake egg-take goal to 4.5 million sockeye salmon eggs based on actual escapement into Tahltan Lake, expected wild smolt production and stocking guidelines limiting enhanced production to less than 50% of the smolt leaving the lake. No egg take occurred at King Salmon Lake due to high return numbers exceeding TRTFN enhancement mandates.

In 2019, outplants of brood year 2018 sockeye salmon fry were as follows: 1.8 million fry into Tahltan Lake; 1.39 million fry were released directly to Tatsamenie Lake and 371 thousand fry were reared in net pens before being released into the lake.

Adult sockeye salmon otoliths were processed inseason by the ADF\&G otolith lab to estimate weekly contribution of fish from U.S./Canada TBR fry planting programs to District 106, 108, and 111 drift gillnet fisheries and to Canadian lower commercial and test fisheries in the Stikine and Taku rivers. Postseason estimates of stocked fish to Alaskan harvests were 3,700 Stikine River fish to District 106 and 108, and 1,300 Taku River fish to District 111. Postseason estimates of stocked fish to Canadian fisheries included 7,700 fish to Stikine River fisheries and 430 fish to Taku River fisheries.

INTRODUCTION

This report presents estimates of the 2019 harvest and escapement data for Pacific salmon runs to the transboundary Stikine, Taku, and Alsek rivers and describes management actions taken during the season. Harvest and effort data are presented by week, for each river for both U.S. and Canadian fisheries. Spawning escapement data for most species are reported from weir counts or other escapement monitoring techniques. Joint enhancement activities on the Stikine and Taku rivers are also summarized.

The TTC met prior to the season to update joint management, stock assessment and enhancement plans and determine preseason forecasts and outlooks for run strengths and initial TAC estimates for the various species and rivers. The results of this meeting are summarized in: PSC TTC, TCTR (19)-3 Salmon Management and Enhancement Plans for the Stikine, Taku and Alsek Rivers, 2019.

Run reconstruction analyses are conducted on the sockeye salmon Oncorhynchus nerka and Chinook salmon O. tshawytscha runs to the Stikine and Taku rivers and to the Taku River for coho salmon O. kisutch for the purpose of evaluating the stocks and the fisheries managed for these stocks. No estimates of marine harvest are made for Alaskan fisheries outside of District 106 and 108 for Stikine River stocks, District 111 for Taku River stocks and Subdistrict 182-30 \& 31 for Alsek River stocks.

STIKINE RIVER

Stikine River salmon are harvested by U.S. commercial drift gillnet and troll fisheries as well as sport and subsistence fisheries in Alaskan Districts 106 and 108, by Canadian commercial gillnet and assessment/test fisheries located in the lower and upper Stikine River, and by a Canadian AF in the upper portion of the river (Figure 1). In addition, Canadian terminal area fisheries are occasionally operated in the lower Tuya River and/or at Tahltan Lake when escapements are estimated to include excess salmon to spawning requirements (ESSR). A recreational fishery also exists in the Canadian section of the Stikine River drainage. In 1995, a U.S. personal use fishery was established in the lower Stikine River; no harvests were reported in this fishery in 1995 through 2000. Approximately 30 sockeye salmon were harvested in 2001, and the personal use fishery on the Stikine River was not open in 2002 and 2003. A U.S. subsistence fishery was opened in 2004 for sockeye salmon and in 2005 for Chinook and coho salmon.

In 1993, the U.S. spring experimental troll fishery near Wrangell was expanded to include two new areas in portions of District 106 and 108 to target hatchery Chinook salmon. In 1998 an additional area was included in a portion of District 108. The three areas in District 108 and one area in District 106 have remained unchanged and have opened in the absence of District 108 directed Stikine River Chinook salmon fisheries.

In May 2014, a landslide occurred near the mouth of the Tahltan River. The landslide deposited approximately $8,000 \mathrm{~m}^{3}$ of debris into the river which may have restricted access to Tahltan River Chinook and sockeye salmon spawning sites during high flows (until about mid-July 2014). In March 2015 select boulders at the landslide were demolished
using an industrial expansion compound set into drill holes within the boulders. The resulting fragments were displaced downstream by manual labor and by the erosional effects of the spring freshet. The exercise resulted in an increase in the channel width, ridding the site of a "pinch point" where it was observed that salmon struggled in their attempts to ascend the river in 2014. Radio telemetry studies in 2015 and 2016 showed that the landslide was not a significant barrier to Chinook salmon, however Tahltan River water levels were well below average during the Chinook salmon migration. In winter 2017/2018 significant work was completed at the landslide to improve fish passage by the blasting of large instream debris. On site monitoring in 2018 under extremely low water conditions indicated that Chinook and sockeye salmon passage was not delayed significantly. Sockeye and Chinook salmon passage was again assessed with radio telemetry in 2019. Results of the 2019 telemetry project are pending and will be provided in the forthcoming Pacific Salmon Commission Northern Endowment Fund project report.

Figure 1. The Stikine River and principal U.S. and Canadian fishing areas.

Harvest Regulations and the Joint Management Model

Fishing arrangements in place for salmon originating from the Canadian portion of the Stikine River watershed are provided in Annex IV, Chapter 1 of the PST and can be found at: http://www.psc.org/pubs/treaty.pdf. These arrangements include: directed fisheries for Chinook salmon; continuation of a U.S. subsistence fishery on Chinook, sockeye, and coho salmon stocks within the U.S. section of the Stikine River; continuation of coho salmon harvest shares; and, a sockeye salmon harvest sharing arrangement based on the estimated production of enhanced fish.

The TTC meets prior to the season to update joint management and enhancement plans, develop run forecasts, and determine new parameters for input into the inseason Chinook and sockeye salmon run projection models. The Chinook salmon model is referred to as the SCMM and serves as a key management tool governing weekly fishing regimes for Stikine River Chinook salmon. The SCMM is complemented inseason with a concurrent MR study and other inriver assessment methods. The sockeye salmon model is referred to as the SMM. The SMM was complemented inseason with concurrent inriver run size estimates based on fishery performance against historical fishery performance and run size estimates.

Chinook Salmon

The SCMM model described above is based on the linear regression (correlation) between weekly cumulative CPUE of large Chinook salmon at the tagging site, located near the mouth of the Stikine River, and inriver run size based on annual inseason MR studies conducted from 1996 to 2018. The CPUE and run size data sets (CPUE vs. run size) are significantly correlated, although there are statistical challenges with the SCMM at low CPUE levels such as those seen in 2019 as they lie outside of the established relationship. Generalized inseason model estimates were generated commencing in SW 20 but were primarily for information purposes as there were no directed inriver commercial fisheries (Table 1). Traditional MR estimates based on the cumulative ratio of tagged-to-untagged fish observed in the inriver commercial fishery were unavailable due to low catch rates during the first event and no retention in the commercial fisheries (second event). The SCMM was the only available indication of run strength during the Chinook salmon reporting period. In order to abide by Annex IV, Chapter 1, Paragraph 3(a)(3)(vii), which obliges the Parties to apportion their overall TAC by historical weekly run timing, weekly fishery openings were announced based on weekly guideline harvests.

The preseason run size estimate of 8,250 large Chinook salmon was below the threshold run size limit of 28,100 fish (Table 1); hence, there were no directed Chinook salmon fisheries in the U.S. and Canada. The threshold number is the sum of the midpoint escapement goal (21,000 fish $)+$ the Canadian BLC (2,300 fish $)+$ the U.S. BLC $(3,400$ fish) + the inriver assessment/test fishery harvest (1,400 fish). In conjunction with the AC associated with the directed fishery, both U.S. and Canada are permitted a base level catch harvested as bycatch taken during the targeted sockeye salmon net fisheries and Chinook salmon taken in traditional recreational fisheries. In response to conservation concerns for

Chinook salmon in 2019, the Canadian directed sockeye salmon fishery opening was delayed by one week (to SW 26) to avoid Chinook salmon bycatch, and once the sockeye salmon fishery opened, fishermen were required to release all Chinook salmon bycatch.

Table 1. Stikine River large Chinook salmon run size based on the Stikine Chinook Management Model and MR estimates, and other methods, and weekly inseason harvest estimates from the District 108 gillnet, sport, troll, and subsistence fisheries and the inriver assessment/test, Canadian gillnet, and sport fisheries, 2019.

	Terminal Run	
SW	Estimate	Method
19	8,250	Preseason
20	8,250	Preseason
21	$<14,000$	SCMM
22	$<14,000$	SCMM
23	$<14,000$	SCMM
24	$<14,000$	SCMM
25	$<14,000$	SCMM
26	$<14,000$	SCMM
27	$<14,000$	SCMM
28	$<14,000$	SCMM
29	$<14,000$	SCMM

The preseason forecast for the Stikine River large Chinook salmon terminal run was approximately 8,250 large Chinook salmon (Table 1), which indicated a run size characterized as well below average. Joint Canadian and U.S. inseason predictions of terminal run size were all less than 14,000 large Chinook salmon (Table 1). Project biologists used the daily catch and effort data transmitted from the Kakwan Point tagging site to make weekly run projections based on the SCMM model. Joint weekly run size estimates were calculated on Wednesday or Thursday of the current week. Given the very low run strength and paucity of spaghetti tags recovered inseason, managers used the preseason forecast during SW 19-20 and used only the SCMM to generate a directional estimate (i.e. $<14,000$) weekly through the remainder of the Chinook salmon reporting period. Point estimates were not statistically defensible due to the inseason model data lying outside of the established relationship to CPUE and run size as determined by the MR. The first inseason estimate was generated in SW 21.

Sockeye Salmon

The preseason forecast for the Stikine River sockeye salmon run was approximately 90,000 fish (Table 2) and was characterized as below average. The forecast included approximately 29,000 Tahltan wild sockeye salmon, 36,000 Tahltan fish enhanced, and 24,000 mainstem sockeye salmon. The final returns of Tuya implants are expected to be less than 1,000 fish and not included in the forecast. The preseason forecast was used for management purposes from SW 25 to 27 and the SMM was used beginning in SW 28.

Starting in SW 28, weekly inputs of the harvest, effort, and stock composition were entered into the SMM to provide weekly forecasts of run size and TAC. Specific inputs include proportion Tahltan/Tuya from egg diameters, proportion Tuya enhanced from thermal mark analyses of otoliths in the Canadian lower river assessment/test (when in operation) and commercial fisheries; the upper river harvest in the AF and upper river commercial fishery; the catch, effort and assumed stock composition in Subdistrict 106-41 (Sumner Strait), Subdistrict 106-30 (Clarence Strait), and District 108.

The SMM provides inseason projections of the Stikine River sockeye salmon run, including the Tahltan stock (wild and enhanced combined), the stocked Tuya stock, and the mainstem stocks. The SMM predicts run size for each week of the fisheries using linear regression of historical stock specific harvest data and cumulative CPUE. It breaks the stock proportions in District 106 and 108 harvests, using historical postseason scale pattern analysis (SPA), into triggers of run size for Tahltan and Mainstem; the averages used each week depended upon whether the run was judged to be below average ($0-40,000$ fish), average ($40,000-80,000$ fish), or above average ($+80,000$ fish). The SMM for 2019 was based on CPUE data from 1994 to 2017 from the Alaska District 106 fishery and the Canadian commercial fishery in the lower river and from the lower Stikine River test fishery from 1986 to 2004. The enhanced Tuya and Tahltan stock proportions are adjusted inseason based on the analysis of otolith samples taken in Districts 106 and 108 harvests.

Generally, the SMM has used the Canadian Lower River Commercial (LRCF) fishery CPUE to estimate inriver run size. In 2019 the upper commercial fishing zone (Flood fishery) was not opened for harvest; in years that it is opened, the harvest and effort from this area are excluded from the CPUE and not used in the model estimate. The annual weekly CPUE values were adjusted in order to make the current year data comparable with historical CPUE. For example, during 1979-1994 and 2000-2004, 2010-2016, only one net per license was permitted, while in 1996-1999 and 2005-2009 two nets per license were allowed. Only one net was permitted in the 2019 fishing season.

The Stikine Forecasting Management Model (SFMM) was also used in season, as decided by the TTC. The SFMM results were summarized in the PSC Technical report No. 38 Stikine Sockeye Salmon Management Model: Improving Management Uncertainty. This model was based on a second order polynomial relationship between weekly cumulative harvest or CPUE in District 106-41 and yearly run size. Triggers of run size for the Tahltan stock were $\leq 98,000$ fish or $>98,000$ fish in the District 106-41 fishery, and 0, $<46,000$ fish, or $>175,000$ fish in the District 108 fishery. Triggers were not used for the mainstem stock. Additional model runs using cumulative harvest or CPUE in the District 108 sockeye salmon area was also tested. The sockeye salmon area harvest and CPUE in District 108 does not include 108-20 and 108-10 fishing areas, or midweek openings.

Table 2. Weekly forecasts of run size, total allowable harvest for Stikine River sockeye salmon, and cumulative Stikine River harvest as estimated inseason by the Stikine Management Model and other methods, 2019.

	Terminal		TAC			Cumulative Harvest	
SW	Estimate	Method	Total	U.S.	Canada	U.S.	Canada
Model runs U.S.							
25		Preseason Forecast				242	
26		Preseason Forecast				2,244	1,806
27		Preseason Forecast				5,675	4,071
28	121,454	SMM	65,654	34,796	30,857	7,608	7,530
29	121,437	SMM	65,637	34,787	30,849	9,473	9,943
30	140,763	SMM	84,963	45,030	39,933	9,815	
Postseason Estimate			34,568	18,321	16,247	12,996	10,772

Harvest is commercial fisheries

Table 3. Stikine River sockeye salmon terminal run reconstruction and harvest shares for, 2019.

	All Tahltan	Mainstem		Total Stikine	Tahltan	
			Tuya		EnhancedTahltan	WildTahltan
Total Count ${ }^{\text {a }}$	36,999	23,174	0	60,173	20,438	16,561
Observed weir count	36,999					
estimated expansion at weir	0				0	0
Broodstock	3,579				1,283	2,296
Excess ${ }^{\text {c }}$			0			
Tahltan weir Biological Samples	212			212	117	95
ESSR Harvest ${ }^{\text {b }}$	0			0		
Natural Spawning	33,208				19,037	14,171
Canadian Harvest						
Aboriginal	5,293	108	0	5,401	3,017	2,276
Upper Commercial	39	0	0	39	0	39
Lower Commercial	8,513	2,259	0	10,772	4,749	3,764
Total	13,846	2,367	0	16,212	7,766	6,080
\% Harvest	64.0\%	31.5\%	0.0\%	55.5\%	19.6\%	18.5\%
Test Fishery Removals	0	0	0	0	0	0
Tuya Test	0	0	0	0	0	0
All above border removals/harvest	13,846	2,367	0	16,212	7,766	6,080
(plus biological samples)	14,058	2,367	0	16,424		
Above Border Run	50,845	25,541	0	76,386	28,203	22,641
U.S. Harvest ${ }^{\text {a }}$						
106-41\&42	3,176	1,422	20	4,617	1,399	1,777
106-30	140	709	21	869	13	127
108	3,220	2,396	18	5,634	1,616	1,604
Subsistence	1,248	627	0	1,875	696	552
Total	7,784	5,154	58	12,996	3,724	4,060
\% Harvest	36.0\%	68.5\%	100.0\%	44.5\%	32.4\%	40.0\%
Test FisheryRemovals	0	0	0	0	0	0
Terminal Run	58,628	30,695	58	89,381	31,928	26,701
Escapement Goal	24,000	30,000	0			
Terminal Excessd			24			
Total TAC	34,628	0	34	34,663		
Total Harvest ${ }^{\text {e }}$	21,629	7,520	58	29,208		
Canada TAC	16,275	0	17	16,293		
Actual Harvest ${ }^{\text {fg }}$	13,846	2,367	0	16,212		
\% of total TAC	85\%		0\%	100\%		
U.S. TAC	18,353	0	17	18,370		
Actual Harvest ${ }^{\text {fg }}$	7,784	5,154	58	12,996		
\% of total TAC	42\%		339\%	71\%		
${ }^{\text {a }}$ Total count of fish pass the traditional fisheries.						
${ }^{\mathrm{b}}$ Harvest allowed in terminal areas under the Excess Salmon to Spawning Requirement license.						
${ }^{\text {c }}$ Fish returning to the Tuya system are not able to access the lake where they originated due to velocity barriers.						
${ }^{\mathrm{d}}$ The number of Tuya fish that should be passed through traditional fisheries in order to harvest the Tuya stock at the same rate as the Tahltan stock to ensure adequate spawning escapement for Tahltan fish.						
${ }^{\mathrm{e}}$ Includes traditional, ESSR, and test fishery Harvestes.						
${ }^{\mathrm{g}}$ U.S. harvest estimate differs from Joint Interception Committee estimate because no estimates are made for Harvestes other than in the listed fisheries.						

U.S. Fisheries

The Stikine River Chinook salmon preseason forecast of 8,250 fish was insufficient to allow for directed fisheries. In District 108, restrictions implemented in the gillnet fishery to reduce harvests of Stikine River Chinook salmon included a two-week delay of the initial opening with area and mesh restrictions implemented through SW 29. Due to recent and expected poor performance of Chinook salmon runs throughout SE Alaska, restrictions in
the District 106 fishery were implemented as well. The District 106 opening was delayed one week and a six-inch maximum mesh restriction was in place for the first three openings.

The Stikine River sockeye salmon preseason forecast indicated a below average terminal run size of 90,000 fish, with a resulting U.S. AC of 22,260 fish (Table 2). Preseason forecasts were the primary basis of management during SWs 25 through 27. Inseason estimates of terminal run sizes were first produced on a weekly basis beginning in SW 27 and were used from SW 28 through SW 30. Inseason abundance estimates were variable and ranged between 121,500 and 140,800 sockeye salmon (Table 2). The postseason Stikine River sockeye salmon run estimate of 89,400 fish resulted in an U.S. AC of 18,370 sockeye salmon. The total U.S. harvest was estimated to be 13,000 fish, based on GSI analysis (Table 3).

The 2019 District 106 drift gillnet fishery was open for 45 days from June 16 through October 8. Total fishing time was below average (47 days). Weekly participation was below average during the sockeye salmon management period from SW 25 through SW 31. Effort during the pink salmon management period (SWs 32 through 35) was below average for the first week and then it was above average for the remainder of the period. Effort during the coho salmon management period (SWs 36 through 41) started above average for the first week, but then fell below average for the remaining weeks of the season. The number of permits ranged between 80 permits fished in SW 36 to 2 permits fished in SW 41. Total season effort of 2,217 boat days was below the average of 2,752 boat days.

Total salmon harvest in the District 106 drift gillnet fishery was below average and included 1,073 Chinook, 23,844 sockeye, 59,304 coho, 424,495 pink, and 113,161 chum salmon. Chinook, sockeye, coho, and chum salmon harvests were below average, while the pink salmon harvests were above average. An estimated 465 Chinook salmon (43\%) of the District 106 harvest were of Alaska hatchery origin. An estimated 5,500 Stikine River sockeye salmon were harvested in District 106, approximately 23\% of the harvest (Table 3). An estimated 9,652 coho salmon (16%) of the District 106 harvest were of Alaska hatchery origin.

Stikine River sockeye salmon harvests in the two fishing areas of District 106 were markedly different. In the Sumner Strait fishery (Subdistrict 106-41), 14,344 sockeye salmon were harvested, of which 4,600 fish were estimated to be Stikine River sockeye salmon and contributed 32% of the total sockeye salmon harvest in that subdistrict. In the Clarence Strait fishery (Subdistrict 106-30), 9,500 sockeye salmon were harvested, of which an estimated 900 fish were estimated to be Stikine River sockeye salmon, which contributed 9% of the total sockeye salmon harvest in that subdistrict (Table 3).

The District 108 drift gillnet fishery was opened for a total of 39 days starting June 23. Total fishing time was below average (47 days), excluding years with directed Chinook salmon fishing, and closed concurrently with District 106 on October 8. Participation in District 108 was below average most weeks, except for SW 32. The total season effort of 775 boat days was well below average (1,724 boat days).

Total salmon harvest in the District 108 drift gillnet fishery was well below average and included 4,253 Chinook, 6,591 sockeye, 9,478 coho, 10,884 pink, and 50,653 chum salmon. Harvests of all five species were below their respective averages. Large Chinook salmon through SW 29 totaled 2,447 fish, of which 112 were identified as above border Stikine River origin through GSI. Of the sockeye salmon harvest, an estimated 5,600 Stikine River sockeye salmon were harvested, which contributed 85\% of the District 108 sockeye salmon harvest. An estimated 2,565 fish (27\%) of the District 108 coho salmon harvest were of Alaska hatchery origin.
U.S. harvest of large Stikine River Chinook salmon in all District 108 fisheries were minimal and well below the U.S. BLC. The District 108 drift gillnet fishery estimated harvest of large Stikine River Chinook salmon was 112 fish. The District 108 Spring Troll fishery was closed for 2019. Commercial trolling opened in District 108 for the Summer Troll fishery on July 1 with nonretention of Chinook salmon in effect. The District 108 sport fishery implemented nonretention of Chinook salmon from April 1 through July 15. A small area inside District 108, adjacent to City Creek in Petersburg, was open for the retention of Chinook salmon from June 15 through July 31 to target Alaska hatchery Chinook salmon in this location. Harvest of Stikine River Chinook salmon in the sport fishery was estimated to be 2 fish. Cumulative U.S. District 108 base level fishery harvest by all gear groups through SW 29 was estimated to be 133 fish, well below the U.S. BLC of 3,400 large Stikine River Chinook salmon.

In 2019, U.S. subsistence fisheries targeting sockeye and coho salmon occurred on the Stikine River. The directed subsistence Chinook salmon fishery was not opened. Subsistence fishing was restricted to federally qualified users, required a permit issued by the U.S. Forest Service, and was limited to the U.S./Canadian border to marine waters at the mouth of the Stikine River. Fishing in "clearwater" tributaries, side channels, or at stock assessment sites was also prohibited. Annual guideline harvest levels were 600 sockeye and 400 coho salmon. Allowable gear for the fishery included dipnets, spears, gaffs, rod and reel, beach seine, and gillnets not exceeding 15 fathoms in length with mesh size no larger than $51 / 2$ inches. A total of 19 large Chinook salmon were harvested incidentally during the subsistence sockeye salmon fishery through SW 29. Subsistence fishing was allowed from June 21 through July 20 to target sockeye salmon and from August 4 through October 1 to target coho salmon. In 2019, a total of 117 permits were issued and the estimated harvests included 19 large Chinook, 1,875 sockeye, and 71 coho salmon.

District 106 opened at 12:00 noon on Sunday, June 18, for an initial 2-day period with a six-inch maximum gillnet mesh restriction in place. On the grounds surveys indicated low sockeye salmon abundance and no additional fishing time occurred. Effort was comprised of 5 boats in Clarence Strait (106-30) and 27 boats in Sumner Strait (106-41). An estimated 242 Stikine River sockeye salmon were harvested in the District 106 drift gillnet fishery in SW 25.

In SW 26 (June 23-June 29), Districts 106 and 108 opened for an initial 2-day period with a six-inch maximum gillnet mesh restriction in place. Additionally, an expanded area off
the Stikine River delta in District 108 was closed. On the grounds surveys indicated sockeye salmon abundance in District 106 well below the level to warrant additional fishing time. Sockeye salmon harvest rates in District 108 were above average; however, additional time did not occur due to Stikine River Chinook salmon conservation. Effort was 17 boats in Clarence Strait (106-30), 23 boats in Sumner Strait (106-41), and 12 boats in District 108. An estimated 744 Stikine River sockeye salmon were harvested in the District 106 drift gillnet fishery in SW 26.

Districts 106 and 108 opened for an initial 3 days in SW 27 (June 30-July 6) with a sixinch mesh restriction in both districts. On the grounds surveys indicated sockeye salmon abundance in both districts well below the level to allow for additional time. There was Stikine sockeye salmon AC available for the U.S., but the opening was limited to three days due to Chinook salmon conservation concerns. An estimated 3,430 Stikine River sockeye salmon were harvested this week. Effort included 27 boats in Sumner Strait (10641), 15 boats in Clarence Strait (106-30), and 35 boats in District 108.

During SW 28 (July 7-July 13), Districts 106 and 108 were opened for an initial 2 days. The first inseason forecast of Stikine River sockeye salmon terminal run size generated this week was 121,500 fish, which resulted in a U.S. AC of 34,800 fish and was considerably above the preseason forecasts (Table 2). However, on the grounds surveys indicated sockeye salmon abundance in both districts well below the level to allow for additional time. The U.S. cumulative harvest of Stikine River sockeye salmon through SW 28 was estimated to be 7,608 fish. Effort was below average and included 14 boats in Clarence Strait (106-30), 28 boats in Sumner Strait (106-41), and 28 boats in District 108.

Districts 106 and 108 were opened for a total 2 days during SW 29 (July 14-July 20). Opening time for District 106 was limited to 2 days for SWs 29 through 31 due to McDonald Lake sockeye salmon concerns. Time was limited to two days in District 108 due to Stikine River mainstem sockeye salmon concerns. Effort remained below average with 21 boats in Clarence Strait (106-30), 27 boats in Sumner Strait (106-41), and 20 boats in District 108. Harvest rates of sockeye salmon in District 106 remained below average; however, harvest rates improved to near average for fishermen targeting sockeye salmon this week in District 108. Although there was very little change in the overall SMM run size assessment this week, the estimated run size for the Tahltan component increased, while the mainstem component decreased. The resultant U.S. AC remained at 34,800 fish (Table 2). An estimated 1,865 Stikine River sockeye salmon were harvested in SW 29 with a cumulative harvest of 9,473 fish.

District 106 opened for 2 days during SW 30 (July 21-July 27). District 108 was closed SWs 30 and 31 due to the preseason forecast and historical timing of Stikine River mainstem sockeye salmon. Run size estimates and the corresponding U.S. AC produced by the SMM increased in SW 30 with a projected run size of 140,800 fish, which resulted in a U.S. AC of 45,000 fish (Table 2). However, the mainstem component continued to decrease. This was the last week of inseason run projections. Sockeye salmon harvest rates continued to be below average this week. Effort remained below average with 26 boats in Clarence Strait (106-30) and 21 boats in Sumner Strait (106-41).

District 106 opened for a total of two days during SW 31 (July 28-August 3). District 108 remained closed. Sockeye salmon harvest and harvest rates increased slightly this week, but remained well below average. Effort remained below average with 28 boats fishing in Clarence Strait (106-30) and 20 boats in Sumner Strait (106-41). This was the last week of sockeye salmon management in District 106. Management actions to conserve sockeye salmon in District 108 continued through SW34 with large area restrictions adjacent to the Stikine River delta.

During SWs 32 through 35 (August 6-August 31), both Districts 106 and 108 were managed based on pink salmon abundance. That portion of Section 6-D in District 106 along the Etolin Island shoreline was closed to gillnet fishing from SW 32 through SW 35 by regulation. Both districts opened for three days in SW 32, then four for SWs 33 and 34, then back to three days in SW 35. Effort in District 106 was below average in SW 32, and then increased to above average for the remainder of the pink salmon management period. Inversely, effort in District 108 was above average for SW32, and then fell to below average for the remainder of the period.

Beginning in SW 36 (September 1-September 7), management emphasis transitioned to coho salmon management that focuses on wild coho salmon abundance. Before coho salmon management period, 33,310 coho salmon, approximately 56% of the total District 106 harvest, had been harvested. The hatchery contribution was approximately 2,642 fish in District 106 prior to SW 35 and was comprised primarily of releases from Neck Lake. During the coho salmon management period, coho salmon harvests were below average in District 106 with an estimated harvest of 7,010 hatchery fish and 19,184 wild coho salmon. Harvest of wild coho salmon in District 108 was also below average with an estimated harvest of 6,823 fish for the season. Both districts were open for three days for during most weeks except for SWs 37 and 41 when open time was two days each week (Table 15). The 2019 drift gillnet season concluded at noon on Tuesday, October 8, in both districts.

Canadian Fisheries

Harvests from the combined Canadian commercial, Aboriginal gillnet and recreational fisheries in the Stikine River in 2019 included 333 large Chinook, 237 nonlarge Chinook, 16,212 sockeye, 5,228 coho, 480 chum, and 40 pink salmon. The harvest of large and nonlarge Chinook salmon was well below average due to the low return and the retention restrictions in place in most fisheries. The sockeye salmon harvest was also well below average, while the harvest of coho salmon was close to average. The estimate of the total contribution of sockeye salmon from the Canada/U.S. fry-stocking program to the combined Canadian Aboriginal and commercial fisheries was 7,726 fish, comprising 48\% of the harvest.

No assessment or test fisheries were conducted on the lower Stikine River in 2019. The Chinook salmon assessment fishery was not implemented in response to the poor preseason forecast of Chinook salmon and the decision to maximize the number of fish returning to the spawning grounds. The sockeye salmon assessment/test fishery was forgone in consideration of the poor Chinook salmon forecast, but primarily due to mainstem sockeye
salmon concerns. Typically the sockeye salmon assessment/test fishery provides inseason catch, stock ID, and effort data for input, if necessary, into the SMM to estimate the inriver run size; and, assists with determination of migratory timing and stock composition of the sockeye salmon run for use in the postseason estimates of the inriver sockeye salmon run. The coho salmon test fishery has not been conducted for a number of years.

Lower Stikine River Commercial Fishery

The Canadian commercial fishery on the lower Stikine River harvested 10,772 sockeye, 5,228 coho, 40 pink, and 480 chum salmon. A total of 376 large Chinook, 272 nonlarge Chinook, 120 pink, and 222 chum salmon, as well as 185 steelhead, were released in 2019. There was no directed Chinook salmon fishery, and all Chinook salmon caught incidentally in the directed sockeye and coho salmon fisheries (SWs 26-29 and 35-36) were released. Additional conservation measures were taken in sockeye salmon fishery. As a result of this precautionary approach, fishery impacts on Chinook salmon were minimal. The harvests of sockeye and coho salmon were well below average and average, respectively.

As noted, there was no fishing effort directed at Chinook salmon in 2019. Sockeye salmon were targeted for a total of 71 licence days, well below the average of 304 licence days. The coho salmon fishery effort amounted to 109 licence days, close to the average of 114 licence days.

The stock composition of the lower river sockeye salmon harvest was 4,759 enhanced Tahltan fish, which accounted for 44% of the sockeye salmon harvest; 3,764 wild Tahltan sockeye salmon accounting for 35% of the harvest; 2,259 mainstem fish accounting for 21% of the harvest. There were no enhanced Tuya sockeye salmon harvested in 2019 (Table 3).

Typically, weekly Chinook and sockeye salmon guideline harvests, based on SCMM, SMM and MR forecasts of the TAC apportioned by average run timing and domestic and international allocation agreements, are developed each week to guide management decisions during the Chinook and sockeye salmon seasons. For 2019, weekly inseason run projections for Chinook salmon were not made, as assessment information was largely absent. The poor run size meant low catches at Kakwan Point, resulting in not only a less effective SCMM, but a low number of tags applied for the MR project. Fishery conservation measures resulted in minimal tag recovery, compounding the effect on inseason MR estimates. In most years, after SW 25, for the purpose of managing the lower river catch, 800 large Chinook salmon are allocated to the upper Stikine River fisheries. The allocation consists of 100, 20, and 680 large Chinook salmon in the recreational, upper commercial and Aboriginal fisheries (AF) respectively. In 2019, as in 2018, the allocation of Chinook salmon to the respective fisheries was not made as restrictions were put in place to eliminate the harvest of Chinook salmon in all fisheries, specifically, the release of all Chinook salmon caught. A total of 7,000 sockeye salmon was allocated to the upper Stikine River commercial and AF. The balance of the sockeye salmon TAC was allocated to the lower Stikine River commercial fishery. Particular attention was directed at the inriver run and escapement projections of the various sockeye salmon stock groupings. From SW 26
through SW 29, management emphasis was on the Tahltan sockeye salmon stock; after this, the focus was on mainstem sockeye salmon. The coho salmon management regime began on SW 35.

The preseason forecast of 8,300 large Chinook salmon was far below the threshold of 24,500 fish that would trigger a directed fishery. In response to the poor forecast, Canada made the decision to implement restrictions/modifications to the management of the directed sockeye salmon fishery in the lower Stikine River. If Chinook salmon escapement had not been a concern in 2019, the directed sockeye fishery would have opened on 16 June (SW 25) but in response to the Chinook salmon situation, the sockeye salmon fishery did not commence until 25 June (SW 26) to allow for the majority of the Chinook salmon return to pass through the lower Stikine River. Additionally, licence holders were required to release all incidentally caught Chinook salmon. Openings in SW 26 were restricted to the daylight period to in order to implement a requirement to pick set nets at least once every 30 minutes. The maximum mesh size was kept at $14.0 \mathrm{~cm}(\sim 5.5$ inches) until the start of the coho salmon management period (SW 35) to further reduce interceptions and avoid gilling large Chinook salmon.

Annex IV, Chapter 1, paragraph 4 of the PST prescribes that either Party takes corrective action in the event that a Party exceeds its catch allocation in any three of five consecutive years. In 2018, as in 2017, fisheries management actions based on bilaterally agreed to inseason run size information resulted in Canada exceeding its sockeye salmon allocation for the third time in the previous five years. In response, Canada reviewed its management actions for 2017 and in 2018 in relation to the stock assessment information available during the fishing season. It was found that the preseason forecast was significantly higher than the postseason run estimate, resulting in early season fishing opportunity (SW26-27) that led Canada to exceed its weekly guidelines. Once inseason information became available, run projections dropped significantly but still exceeded the postseason run estimate which further exacerbated Canada's ability to manage within its AC. Through the review, it was found that inseason run projections exceeded the postseason run estimates by approximately 40% for both the Tahltan and mainstem sockeye salmon management components in 2017 and 2018.

In an attempt to align the Canadian harvest with its allocation in 2019, Canada was to implement the following measures based on anticipated fishing conditions (water levels) and effort (11 licences) being similar to 2017-2018:

- preseason forecast adjusted to reflect the recent observed smolt to adult survival rates (2 years) for Tahltan sockeye salmon - used to inform management in SW2627;
- for SW28-34, inseason run projections were to be reduced by 40% to reflect the tendency for the inseason models to project high during recently observed fishing conditions on the lower Stikine River;
(Note: some of the catch figures listed in the following narrative may not match the final catch records listed in the tables. This is due to slight changes in the catches as a result of a postseason check of the catch slips, updated stock composition information, and assessment of Chinook salmon large versus nonlarge size ratios.)

In SW 26 (23-29 June), the fishery opened (delayed by eight days) for sockeye salmon, which was centered on the Tahltan stock group and was expected to remain so until SW 29. Fishers were permitted one net only and the commercial fishing area remained the same as recent years, which was from the Canada/U.S. border upstream to a location near the mouth of the Porcupine River. The area included the lower 10 km reach of the Iskut River. The use of set nets was permitted as along as net checks occurred no less than every 30 minutes. In order to facilitate this, openings were restricted to daylight periods only. The overall Canadian sockeye salmon AC of 19,800 fish was comprised entirely of Tahltan Lake sockeye salmon based on the preseason run size expectations of 66,000 Tahltan Lake fish, 24,000 mainstem sockeye salmon, and less than 1,000 Tuya fish (these were the final returns from the Tuya enhancement program and were not factored into the total forecast or management).

The initial opening was for an 18 -hour period, beginning at 0500 hrs on Tuesday June 25. The guideline catch for sockeye salmon was 1,600 fish. Based on room in the guideline harvest and in keeping with the Paragraph 4 measures noted above, the decision was made to extend the fishery for another 18 hour period, again starting in the early morning. Catch rates for the week were almost double the average and resulted in a harvest of 1,806 sockeye salmon, including $\sim 1,500$ Tahltan Lake sockeye salmon. A total of 170 large Chinook salmon were caught and subsequently released. The sockeye salmon harvest was comprised of 85% Tahltan and 15% mainstem stocks. The Tahltan sockeye salmon fbd was 128 versus an average of 62 fbd .

The following week, SW 27 (30 June - 6 July), the fishery started at noon with a 48-hour opening. The guideline harvest was 3,100 Tahltan Lake sockeye salmon, as per the preseason forecast. Based on room in the guideline, the opening was extended 24 hours. Set net restrictions were lifted for day three due to low encounter rates on Chinook salmon. The final harvests for the week consisted of 2,265 sockeye salmon, including $\sim 2,200$ Tahltan Lake origin fish. A total of 84 large Chinook salmon were released. The weekly sockeye salmon harvest was comprised of 95% Tahltan and 5% mainstem sockeye salmon. The Tahltan sockeye salmon fbd was 98 , below the average of 122 .

The SW 28 (7-13 July) fishery was posted for an initial 48-hour period; using the preseason forecast the guideline harvest was $\sim 2,900$ sockeye salmon. Catch rates on Tahltan sockeye salmon were above average for day one and the fishery was extended 24 hours. The harvest for the week consisted of 3,459 sockeye salmon, including ~3,000 Tahltan Lake sockeye salmon. The stock composition was 87% Tahltan and 13% mainstem sockeye salmon. The week's Tahltan Lake sockeye salmon fbd of 111 approximated the average (115 fbd). Week 28 marks the historical peak of the Tahltan Lake sockeye salmon through the fishery. The run size generated from the SMM in SW 28 was 87,400 sockeye salmon. This included 40,100 Tahltan Lake origin fish, which was well below the preseason forecast.

In SW 29 (14-20 July) the fishery was posted for an initial 24-hour opening. The fishery was not extended due to concerns for the mainstem sockeye salmon stock. The week's effort yielded a harvest 2,393 sockeye salmon of which $\sim 1,800$ fish were Tahltan origin. The Tahltan sockeye salmon CPUE was 179 fbd , about double the average of 81 fbd . The weekly sockeye salmon harvest was comprised of 75% Tahltan and 25% mainstem fish. The SW 28 run size estimate suggested a run size of approximately 88,900 sockeye salmon. The Tahltan Lake component was estimated at 42,700 fish; still below the preseason forecast but consistent with inseason information to date.

SW 29 marked the end of the 2019 sockeye salmon management regime. Due to the preseason forecast of mainstem sockeye and the resulting lack of AC, the fishery was not opened for SWs 30-34. By the end of SW 29, Canada had harvested a total of $\sim 8,500$ Tahltan sockeye salmon ($\sim 3,600$ wild and $\sim 4,800$ enhanced) in the lower commercial fishery. The FSC was ongoing and the harvest was $\sim 3,500$ fish. The harvest of mainstem sockeye salmon to date was $\sim 1,500$ fish.

In SW 35 (25-31 August), the fishery was opened for an initial 72 hours with the management objective focused on coho salmon abundance. A total of 10 licences were fished. The guideline harvest on coho salmon was 5,000 fish for the season with the intention of spreading the harvest over SW 35 and 36. After two days of fishing, the fishery was extended for an additional 48 hours. The coho salmon CPUE for the week was 32 fbd , close to the average of 36 fbd . The harvest was 1,381 coho and 202 sockeye salmon.

In SW 36 (1-7 September), the fishery was opened for an initial 96 -hour period. An average of 8.5 licences fished each day. After two days the fishery was projected to be within the 5,000 directed coho salmon target and an additional 48 hours of fishing time was provided, resulting in a weekly harvest of 3,487 coho and 177 sockeye salmon.

The season total coho salmon harvest was 5,228 fish. In most years a small number of coho salmon are harvested during the sockeye salmon fishery and these fish do not count toward the 5,000 fish allocation as prescribed in the PST. However in 2019 , due to the early closure of sockeye salmon fishery, all coho salmon were taken in the course of the directed fishery, and therefore counted against the 5,000 fish allocation.

Upper Stikine River Commercial Fishery

A small commercial fishery has existed near Telegraph Creek, B.C., on the upper Stikine River since 1975. As per the lower Stikine commercial fishery, retention of Chinook salmon was not permitted in 2019. The fishing effort this year amounted to one boat day, which occurred in SW 31 (28 July-3 August). A total of 40 sockeye were caught, which was below average. No Chinook salmon were encountered. Generally, fishery openings were based on the lower Stikine commercial fishery openings, lagged one week.

Aboriginal Fishery

The upper Stikine Aboriginal fishery, which is also located near Telegraph Creek, harvested 333 large Chinook, 237 nonlarge Chinook and 5,401 sockeye salmon in 2019. Effort was below average, as were the harvests of both large Chinook and sockeye salmon. The sockeye catch was largely comprised of the Tahltan Lake run. Typically, about 90% of the sockeye salmon catch takes place prior to August.

Recreational Fishery

The Stikine River salmon recreational fishery targets primarily Chinook salmon and most activity takes place at the mouth of the Tahltan River. Some fishing occurs in the upper reaches of the Tahltan River and in select tributaries of the Iskut River, including the Verrett and Craig rivers. There was no harvest of Chinook salmon in the recreational fishery in 2019. Restrictions were in place starting April 01 that did not permit the retention of Chinook salmon of any size in the waters of the Stikine River. Additionally, the Tahltan River was closed to recreational salmon fishing effective June 01 through August 31. Access to fishing sites near the mouth of the Tahltan River was restricted by the Tahltan Central Government Chief and Council in order to reduce potential impacts on Little Tahltan River bound Chinook salmon.

Escapement

Sockeye Salmon

A total of 36,999 sockeye salmon were counted into Tahltan Lake from July 7 (weir in) to September 10 (weir out). The total Tahltan Lake sockeye salmon escapement estimate of 36,787 fish is above the average escapement count of 26,352 fish and exceeds the escapement goal range of 18,000 to 30,000 fish. Of the total counted through the weir, an estimated 19,037 fish. A total of 3,579 sockeye salmon were collected for broodstock and 212 fish (males only) were collected for stock identification purposes at the weir resulting in a total natural spawning escapement of 33,208 sockeye salmon to Tahltan Lake.

The spawning escapements for the mainstem stock group is calculated using stock identification, assessment/test fishery (not conducted in 2019), and inriver commercial harvest data. The mainstem sockeye salmon escapement estimate was 23,174 fish, which is similar to the average escapement of 13,278 fish, but below the target escapement of 30,000 fish, and within the escapement goal range of 20,000 to 40,000 fish.

Aerial survey counts of mainstem sockeye salmon were well above average at most index sites which was expected given that there was no mainstem directed fishery prosecuted in 2019.

In 2019 a radiotag telemetry project was undertaken to assess fish passage at the Tahltan River landslide and Decheeka Falls locations. A total of 207 tags were applied to sockeye salmon at a location approxiamtely 16 km below the Tahltan and Stikine Rivers confluence.

Chinook Salmon

In order to assess inriver Chinook salmon abundance in 2019, a MR study was conducted. Inseason MR estimates for large chinook salmon, however, were not calculated in 2019 due to the low number of marks deployed, and Chinook salmon retention not being permitted in inriver fisheries. The postseason Stikine River spawning escapement estimate of 13,817 large Chinook salmon is based on tag recoveries from Chinook salmon released in directed sockeye salmon commercial fisheries, the Aboriginal fisheries, and the Little Tahltan video weir observations. This is below the average escapement of 15,360 large fish, and just below the escapement goal range of 14,000 to 28,000 large Chinook salmon.

The 2019 Chinook salmon escapement enumerated at the Little Tahltan River weir was 536 large fish and 1,002 nonlarge fish. This escapement of large Chinook salmon in the Little Tahltan River was below the average of 914 fish and well below the lower end of the Canadian escapement target range of 2,700 to 5,300 fish. This was the thirteenth consecutive year that the Canadian escapement target range was not reached.

The Little Tahltan River weir count represented approximately 4\% of the total Stikine River large Chinook salmon escapement which is below the average weir count contribution of 6%. Note that this average has declined significantly over the history of the project and has ranged from 1% to 34% of the estimated escapement.

The Chinook salmon aerial surveys took place on July 26 and 29, under favorable weather conditions. Water turbidity had a negative impact on visibility at several index sites including the Verrett River, Christina Creek, and the Tahltan River. Little Tahltan River and Beatty Creek had excellent viewing conditions; Little Tahltan counts were well below average and Beatty Creek counts were close to the 5 -year average.

In 2019, a radio tag telemetry project was undertaken to assess fish passage at the Tahltan River landslide and Decheeka Falls locations. A total of 56 tags were applied to Chinook salmon at a location approximately 16 km below the Tahltan and Stikine Rivers confluence.

Stikine River Chinook salmon DNA baseline samples were collected in 2019 in late July and early August via helicopter reconnaissance and foot surveys. Collection locations included Verrett River, Tuya River, Beatty Creek, Little Tahltan River, and Johnny Tashoots Creek.

Coho Salmon

The annual coho salmon aerial survey was conducted on November 10 under moderate to good viewing conditions. The total count of coho salmon observed at six index sites was 398 fish, which was below average. The lower than average counts may have been a reflection of the later survey date in 2019 , since inclement weather delayed the survey by about 5 days. The in season weekly CPUE of coho salmon from the lower Stikine River Canadian commercial fishery was average.

Sockeye Salmon Run Reconstruction

The postseason estimate of the Stikine River sockeye salmon terminal run was 89,381 fish. Of this, approximately 58,628 fish were of Tahltan Lake origin (wild \& enhanced), 58 fish were of Tuya Lake origin (enhanced fry from Tahltan broodstock stocked into Tuya Lake), and 30,695 fish were of mainstem origin (Table 3). These estimates are based on postseason data, including otolith recovery and GSI analysis in the U.S. Districts 106 and 108 harvests, harvest data from the inriver Canadian commercial, Aboriginal, and test fisheries, and escapement data. Inriver stock composition data are from inseason egg diameter and inseason and postseason otolith analysis. Due to the reduced fishing period in the LRCF, the estimated proportion of the Stikine River above border run was based on the average stock composition of the LRCF; 0.666 Tahltan and 0.334 mainstem. The 2019 terminal run was well below average, but very close to the preseason forecast of 90,000 fish.

TAKU RIVER

Taku River salmon are harvested by U.S. commercial drift gillnet and troll fisheries as well as sport and inriver personal use fisheries in Alaskan District 111. In Canada, a commercial gillnet fishery extends from the international border upstream for approximately 18 km , with Aboriginal and recreational fisheries also harvesting Taku River salmon (Figure 2).

Figure 2. The Taku River and principal U.S. and Canadian fishing areas.

Harvest Sharing and Joint Management Models

Fishing arrangements in place for salmon originating from the Canadian portion of the Taku River watershed are provided in Annex IV, Chapter 1 of the PST and can be found at: http://www.psc.org/pubs/treaty.pdf. These arrangements include directed fisheries and harvest shares based on run size for Taku River Chinook salmon and coho salmon stocks and directed fisheries for sockeye salmon with harvest sharing arrangements based on the production of enhanced fish.

The TTC met prior to the season to update joint management and enhancement plans, develop run size forecasts, and determine new parameters for input into the inseason Chinook, sockeye, and coho salmon run size projection models.

Chinook Salmon

A bilateral review of the escapement goal for Taku River large Chinook salmon completed in early 2009 resulted in a revised escapement goal range of 19,000 to 36,000 fish.

Weekly Chinook salmon run size and AC projections based on historical run timing, are used to guide the management of U.S. and Canada fisheries. These are determined by a formula based on the preseason Taku River Chinook salmon run forecast early in the season, and revised inseason based on the inseason run projection estimates generated from the Canyon Island MR project.

Table 4. Taku River large Chinook salmon run size based on CPUE (methods similar to the Stikine Chinook Salmon Management Model), and other methods, and weekly inseason harvest estimates from the District 111 commercial drift gillnet and sport fisheries and the Canadian gillnet and recreational fisheries, 2019.

	Terminal Run	
SW	Estimate	SW
19	9,050	19
20	9,050	20
21	$<19,000$	21
22	$<19,000$	22
23	$<19,000$	23
24	$<19,000$	24
25	$<19,000$	25
26	$<19,000$	26
27	$<19,000$	27
28	$<19,000$	28
29	$<19,000$	29

The 2019 preseason terminal run forecast of 9,050 Taku River large Chinook salmon provided no AC for directed fisheries for either country. The Taku River Chinook salmon forecast model was reduced to account for model error over the past 5 years. An additional
consideration for reducing the model forecast was the general poor performance of Chinook salmon stocks in recent years throughout northern British Columbia and Alaska. This 2019 forecast is the second lowest Chinook salmon forecast on record, and far below the average terminal run size of 21,000 fish.

No Chinook salmon inriver assessment fishery was conducted because of the low preseason forecast, however drifted tangle nets were used near the confluence of the Wright River to spaghetti and radio tag fish to allow for a spawning grounds MR estimate and potentially give some sense of inseason run abundance based on catch rates. Traditional inseason MR estimates based on the cumulative ratio of tagged-to-untagged fish observed in the inriver commercial fishery were unavailable due to low catch rates during the first event and no Chinook salmon retention permitted in directed commercial fisheries (second event). With no reliable way of estimating inseason run size, both countries managed their early season sockeye salmon fisheries based off the preseason Chinook salmon forecast.

Sockeye Salmon

On an interim basis for 2019, the Panel recommended that sockeye salmon inseason run abundance estimates and escapement goal be adjusted downwards by 22% to account for tagged fish that dropout from the MR program. Dropouts are fish tagged in event 1 that do not become available for recapture in event 2 . The interim 22% dropout rate was determined from radiotelemetry studies conducted in 1984, 2015, 2017, and 2018. This resulted in a 2019 interim Taku River sockeye salmon escapement goal of 55,000 to 62,000 fish with a management target of 59,000 fish.

Sockeye salmon weekly inriver abundance estimates are generated from the joint MR program using the Canyon Island fish wheels as event 1 and the Canadian inriver fishery as event 2 . The weekly inriver run estimate is combined with historical migratory timing and fishery harvest data to project the Taku River sockeye salmon terminal run size and TAC. Otolith analysis of the U.S. and Canadian harvests are used to project the enhanced component of the run which determines the Parties respective ACs.

The 2019 preseason terminal run forecast of 154,000 Taku River wild sockeye salmon was below the recent 10 -year average of 180,000 fish. This was a stock-recruitment model forecast that was adjusted using the recent 10 -year model error (23\%). Note that this forecast was based on traditional run sizes and produced prior to the Transboundary Panel decision to adjust the 2019 assessment and interim escapement goal for tagged fish dropout. If the preseason forecast was also adjusted downwards by the equivalent 22% for comparative purposes, the preseason forecast would be 120,000 fish.

Approximately 2,500 enhanced fish from Tatsamenie Lake were forecasted, well below the average Tatsamenie enhanced run size of 9,000 fish. Based on the treaty arrangement, an enhanced run of $1-5,000$ fish requires the TAC to be split 80% to the U.S and 20% to Canada with management based on weekly estimates of the TAC of wild fish. The 2019 interim escapement target of 59,000 wild sockeye salmon could only be compared to the

2019 adjusted forecast of 120,000 sockeye salmon, which resulted in a preseason TAC of 61,000 fish; 80% or 48,800 fish to the US, and 20% or 12,200 fish to Canada.

Table 5. Weekly inseason projections of Taku River sockeye salmon terminal run size, total allowable harvest, and cumulative harvest for 2019.

	Terminal			TAC				Canada
SW	Estimate	Method	Total	U.S.	Canada	Surplus AC	U.S.	Canada
25	120,120	Preseason	61,120	48,900	12,200			
26	120,120	Preseason	61,120	48,900	12,200			
27	120,120	Preseason	61,120	48,900	12,200			
28	76,900		17,900	14,320	3,580		6,330	2,020
29	107,700		48,700	38,960	9,740		17,470	4,517
30	154,100		95,100	76,080	19,020		29,175	8,940
31	169,600		110,600	88,480	22,120		40,352	14,736
32	156,500		97,500	78,000	19,500		41,075	16,958
33	153,300		94,300	75,440	18,860		41,127	19,588
34	150,500		91,500	73,200	18,300		41,397	20,745
Postseason								
	166,429		107,429	85,943	21,486		68,226	21,481

Table 6. Taku River sockeye salmon terminal run reconstruction and harvest shares, 2019.
U.S. harvest estimate differs from Joint Interception Committee estimate because no estimates are made for harvest other than the listed fisheries. Total escapement includes a small number of non-Taku River enhanced fish

	Taku			Non-Taku Enhanced	
	Total	Wild	Enhanced	US	Stikine
Escapement	76,722	74,854	1,868		
Canadian Harvest					
Commercial	21,376	20,952	423	9	11
Aboriginal Fishery	105	103	2		
Total	21,481	21,055	426		
Test Fishery removals	0	0	0		
Above Border Run estimate	98,203	95,909	2,294		
U.S. Harvest					
District 111 Gillnet	66,518	65,281	1,237	17,683	160
Personal Use	1,708	1,673	35		
Total	68,226	66,953	1,273		
Test Fishery harvest	0				
Terminal Run	166,429	162,863	3,566		
Management Objective	59,000	59,000			
TAC	107,429	103,863			
Canada					
Harvest Share	20\%	20\%			
Canada AC	21,486	20,773			
Surplus Allowable	14,717	13,137			
Canada AC + Surplus	36,203	33,909			
Actual harvest	21,481	21,055			
U.S.					
Harvest Share	80\%	80\%			
US AC	85,943	83,090			
Actual harvest	68,226	66,953			
	0.79	0.81			

Coho Salmon

In early 2015, an escapement goal range of 50,000 to 90,000 Taku River coho salmon with a 70,000 fish point goal was adopted. The management intent for both Parties in 2019 was to manage their fisheries to achieve the respective ACs based on harvest sharing dictated by Paragraph 3(b)(iii) of Annex IV, Chapter 1 of the PST.

Inseason run estimates are generated using MR methodology. Tags are applied in event 1 from Canyon Island fish wheels or set gillnets. Event 2 consists of fish inspected in the inriver commercial or assessment fisheries upstream of the U.S./Canada border. Weekly inriver run abundance estimates are projected to terminal run estimates based on average run timing past Canyon Island.

The 2019 preseason terminal run forecast of 73,000 Taku River coho salmon was below the average terminal run of 116,000 fish. The 2019 forecast was generated using the relationship between the CPUE in smolt tagging and the total run estimates seen over the past twenty years.

Table 7. Weekly inseason projections of terminal run size, allowable harvest, and cumulative harvest by country of Taku River coho salmon for 2019.

	Terminal		AC			Cumulative Harvest	
SW		Method		U.S.	Canada		U.S.
32	73,000	Preseason	0	5,000		Canada	
33	59,635		0	5,000		2,000	3,877
34	80,305		5,152	5,152		4,000	4,863
35	77,179		2,178	5,000		4,100	7,256
36	91,195		10,597	10,597		5,000	9,460
37	102,469		17,222	15,247		5,500	11,013
38	99,214		14,607	14,607		7,800	11,475
39	96,822		13,411	13,411		9,500	12,013
40	98,443		14,221	14,221		9,800	12,145
41	105,090		19,581	15,509		10,300	12,145
Postseason	102,957		15,221	15,025	5,234	12,252	

Table 8. Taku River coho salmon terminal run reconstruction and harvest shares, 2019.
Harvest shares of Canadian-origin Taku River coho salmon in excess to the escapement point goal are shared between the U.S. District 111 drift gillnet fishery and the Canadian inriver fisheries
Estimates do not include spawning escapements below the U.S./Canada border.

Harvest shares are based on D111 gillnet fisheries and the Canadian inriver fisheries
(excluding test fisheries).

Management Objective	70,000
Harvest share run size	100,245
TAC	30,245

Canada
Canada AC $\quad 15,025$
Harvest 12,252
U.S.

US AC	15,221
Harvest	5,234

U.S. Fisheries

The traditional District 111 commercial drift gillnet salmon fishery was open for a total of 62 days from June 16 through October 11, 2019. The harvest totaled 1,201 Chinook, 95,400 sockeye, 23,200 coho, 69,100 pink, and 246,000 chum salmon. Harvests of all species were below average. The traditional fishery does not include harvests from the Speel Arm Special Harvest Area (SHA) inside Port Snettisham. This hatchery access fishery first opened in SW 32 and closed in SW 37 resulting in an additional harvest of 9,600 sockeye salmon and minor harvests of other salmon species.

The 2019 season was the twentieth year of adult sockeye salmon returns to the Snettisham Hatchery inside Port Snettisham. These fish contributed to the traditional harvests in Taku

Inlet, Stephens Passage, and the entrance of Port Snettisham, the latter being open from SW 32-41. This was the fifth year of full production for DIPAC's revitalized enhanced coho salmon program and the proportion of these fish in the traditional District 111 gillnet coho salmon harvest was significant. Hatchery stocks contributed substantially to the harvests of sockeye, coho, and chum salmon and more minimally to the harvest of Chinook salmon.

In 2018, the Alaska Board of Fisheries adopted a regulation increasing the sockeye salmon possession and annual limits for the U.S. Taku River personal use fishery to 10 fish for a household of one person and 20 fish for a household of two or more persons. The estimated personal use harvest of Taku River sockeye salmon in 2019 is 1,500 fish.

Management actions in the District 111 commercial drift gillnet fishery due to Chinook salmon conservation concerns occurred in the first five directed sockeye salmon openings with two-day openings in Taku Inlet in SWs 25 through 28, significant area closures including most of Taku Inlet and waters extending further south and west in SWs 25 and 26, a closure north of Point Cooper in SW 27, north of the latitude of Jaw Point in SW 28, and north and east of a line from Jaw Point to Annex Creek in SW 29. A six-inch maximum mesh size restriction and night closures (10 p.m. to 4 a.m.) were in place throughout the district in SWs 25 through 27. Commercial spring troll fisheries throughout the region were limited to select outer coastal areas, near hatchery facilities/release sites, in THAs, and in areas that have been identified as having low proportional harvest of wild SEAK/Yakutat Chinook salmon. Nonretention of Chinook salmon in the sport fishery was in effect in northern inside waters from April 1 through June 14. The personal use sockeye salmon fishery on the U.S. side of the Taku River was also delayed by more than two weeks starting on July 15. The 2019 District 111 drift gillnet Chinook salmon harvest in the SWs 25-29 TBR accounting period was 936 fish of which 49% were large fish. Postseason GSI analysis indicates that 27.4% of the District 111 drift gillnet large Chinook salmon harvest (124 fish) was of Taku River origin through SW 29. The Juneau area sport harvest of Taku River large Chinook salmon was estimated at 94 fish during the same period based on GSI analysis. The MR estimate of Taku River spawning escapement is approximately 11,560 large Chinook salmon.

The traditional District 111 sockeye salmon harvest of 95,400 fish was 97% of average with generally average to above average weekly CPUE from SWs 27 through 31. Snettisham Hatchery sockeye salmon returns began to contribute to the traditional fishery in SW 26 and otolith sampling occurred through SW 35 in Taku Inlet and through SW 34 in Stephens Passage. Of the total traditional District 111 sockeye salmon harvest, 76\% occurred in and around Taku Inlet (average is 69\%), 20\% occurred in Stephens Passage south of Circle Point (average is 23\%) and 3\% occurred in Port Snettisham (average is 7%). The contributions of Taku River wild, Taku River enhanced, Port Snettisham enhanced, and other sockeye salmon stocks were derived from estimates based inseason on otolith analysis and postseason from estimates based on GSI and otolith analyses. The postseason GSI based stock composition of the harvest of sockeye salmon in the traditional District 111 (with the exception of the entrance to Port Snettisham, stat area 111-34, which does not get adequately sampled) drift gillnet fishery is 65,300 (71\%) Taku River wild,

1,240 (1\%) enhanced Tatsamenie and King Salmon lakes, 17,700 (19\%) Snettisham Hatchery fish, and 7,800 (8\%) domestic wild fish.

Opportunity to target returning Snettisham Hatchery sockeye salmon inside Port Snettisham began in SW 32 with the entrance of Port Snettisham (111-34) opened for four days starting on August 5 and the Speel Arm SHA (111-33) opened for a 24 -hour period starting on August 8 due to a large pulse of Speel Lake wild sockeye salmon through the weir and another sizeable group of fish observed in the stream below the weir. The minimum mesh size restriction south of Circle Point, in place since SW 28 to conserve Speel and Crescent Lake wild sockeye salmon, was removed for a 24 -hour period starting July 31 in SW 31. The Speel Arm SHA was opened for a four-day period in SW 33 with escapement through the weir slowing significantly during this week. The Speel Arm SHA remained open continuously from August 18 through September 13 and a total of 9,605 sockeye salmon were harvested from the SHA with most of the harvest occurring in SWs 33 and 34.

Coho salmon stocks harvested in District 111 include returns to the Taku River, Port Snettisham, Stephens Passage, and local Juneau area streams, as well as Alaskan hatchery release sites. The 2019 preseason terminal run forecast of 73,000 Taku River coho salmon was below the average terminal run of 116,000 fish. The traditional District 111 coho salmon harvest of 23,200 fish was 64% of average and was comprised of a large proportion of hatchery fish. Hatchery coho salmon, mainly returning to DIPAC release sites in Gastineau Channel, first appeared in the District 111 harvest in SW 32 and made up as much as 100% of the weekly harvest in SWs 39 and 40. CWT analyses indicate hatchery coho salmon contributed approximately 8,200 fish or 35% of the 2019 District 111 drift gillnet harvest.

Management of the District 111 drift gillnet fishery is based on Taku River wild sockeye salmon abundance in SWs 25-33 and on Taku River wild coho salmon abundance in SWs 34-42. The 2019 fishery began by regulation in SW 25. Management actions were limited to imposing restrictions in time, area, and gear. Because there is no bilaterally agreed forecast for Taku River sockeye salmon, early season management of the District 111 fishery is based on fishery CPUE and Canyon Island fish wheel catches. As the fishing season progresses, sufficient data is acquired to estimate the inriver run size from the inriver MR program and to use that estimate in conjunction with historical migratory timing and fishery harvest data to project the season's Taku River sockeye salmon terminal run size. In the first week of sockeye salmon management starting June 16, Taku Inlet and Stephens Passage were opened with restrictions in time, area, and gear due to Chinook salmon conservation concerns. The opening was limited to two days with a six-inch maximum mesh size restriction, night closures in effect from 10 p.m. to 4 a.m., and an area restriction closing waters in Taku Inlet north of Point Greely and west of a line of longitude running mid-inlet from the latitude of Point Greely to a point where it intersects with the Admiralty Island shoreline south of Grand Island. Effort was approximately 126% of average for the week with 35 boats fishing. The sockeye salmon harvest was 15%, and the CPUE was 12% of average. The total Chinook salmon harvest was 83 fish with 27 fish
estimated as Taku River origin large fish based on inseason CWT analysis and ASL sampling.

District 111 was again opened for two days in SW 26 with the same restrictions throughout the district as the previous opening to minimize Chinook salmon interception. The two-day opening was largely for Chinook salmon conservation but also reflected concerns over early Taku River sockeye salmon stocks, particularly the Kuthai Lake stock. The two days of fishing in the district was approximately 74% of average for the week. Forty-one boats, 84% of average, harvested 133 Chinook salmon of which an estimated 86 fish were Taku River large fish based on inseason CWT analysis and ASL sampling. The sockeye salmon harvest and CPUE were 36% and 57% of average, respectively. TBR enhanced sockeye salmon of equal parts King Salmon and Tahltan lakes origin made up 2.5% while Snettisham Hatchery origin fish represented less than 1% of the Taku Inlet harvest based on otolith analysis.

District 111 was again opened for two days in SW 27 with no additional time granted. Chinook salmon conservation measures were slightly reduced this week with open waters extended north to the latitude of Point Cooper. However, the maximum mesh size restriction and night closures remained in place throughout the opening. The two days fishing was open in the district was 69% of average. Effort increased from the previous week to 59 boats, 84% of average. Three hundred four Chinook salmon were harvested this week, of which an estimated 122 fish were Taku River large fish based on inseason CWT analysis and ASL sampling. Sockeye salmon harvest and CPUE increased from the previous week to 56% and 94% of average, respectively. Otolith analysis revealed that less than 1% of the sockeye salmon harvest from Taku Inlet were of Snettisham Hatchery origin. TBR enhanced sockeye salmon of predominantly Tahltan Lake, but also King Salmon Lake, origins made up 2.5% of the Taku Inlet harvest. A Taku River sockeye salmon run size estimate was not produced this week, but Canyon Island fish wheel sockeye salmon hourly catch rates were average to above average.

The opening for SW 28 was again two days in Taku Inlet but three days were announced in Stephens Passage. The maximum mesh size restriction and night closures were rescinded for this opening and the northern line was moved up to Jaw Point. A six-inch minimum mesh size restriction was implemented south of Circle Point in Stephens Passage, which would stay in place until SW 31, to minimize harvest of Port Snettisham wild sockeye salmon returns while still allowing opportunity to target enhanced chum salmon. The three days fishing was open in the district was 103% of average. Ninety-nine boats, 96% of average, harvested 272 Chinook salmon, of which an estimated 34 fish were Taku River large fish based on inseason CWT analysis and ASL sampling. Sockeye salmon harvest and CPUE were 88% and 92% of their respective averages. Otolith analysis revealed that 4% of the sockeye salmon harvest from Taku Inlet, and 15% from Stephens Passage, were of Snettisham Hatchery origin. TBR enhanced sockeye salmon of King Salmon, Tahltan, and Tatsamenie lakes origin made up 1% of the Taku Inlet harvest. The first bilateral Taku River sockeye salmon run size estimate was produced this week and projected an inriver run of 52,100 fish using BTSPAS.

Fishing time for SW 29 was set initially at three days in both Taku Inlet and Stephens Passage with Taku River sockeye salmon run size indicators both in District 111 and inriver showing increased abundance. The Jaw Point line in upper Taku Inlet was modified slightly to allow a little more area on the west side but remained as a Chinook salmon conservation measure. A one-day extension in Stephens Passage, with the minimum mesh size restriction, was granted for a total of an above-average four days of fishing in the district. The three days of fishing in Taku Inlet was the first above-average weekly period of the season there. Effort decreased from the previous week with 87 boats making landings, 70% of average. One hundred forty-four Chinook salmon were harvested this week, of which an estimated zero fish were Taku River large fish based on inseason CWT analysis and ASL sampling. The sockeye salmon harvest for the opening was 121% of average while CPUE was 118% of average. Otolith analysis revealed that 16% of the sockeye salmon harvest from Taku Inlet, and 40% from Stephens Passage, were of Snettisham Hatchery origin. TBR enhanced sockeye salmon of Tatsamenie and King Salmon lakes origin made up 1% of the harvest in Taku Inlet. The weekly Taku River sockeye salmon inriver run size projection increased from the previous week to 60,800 fish.

Fishing time for SW 30 was a repeat of the previous week with an initial three days in Taku Inlet and Stephens Passage followed by a one-day extension in Stephens Passage for a total of four days of fishing in the district, 125% of average for the week. The upper line in Taku Inlet was relaxed to the normal line just off the river flats. Effort increased from the previous week to 96 boats, 78% of average for the week. Sockeye salmon harvest was 153% of average while CPUE was 149% of average, and the 27,600 fish harvested this week was the highest weekly harvest of the season. Otolith analysis revealed that 26% of the sockeye salmon harvested in Taku Inlet, and 23% from Stephens Passage, were of Snettisham Hatchery origin. TBR enhanced sockeye salmon of Tatsamenie Lake origin made up 1% and 2% of the harvest in Taku Inlet and Stephens Passage, respectively. This was the only opening of the season where TBR enhanced fish were represented in Stephens Passage. The weekly Taku River sockeye salmon inriver run size projection increased significantly from the previous week to 96,100 fish.

Fishing time for SW 31 was again initially three days in Taku Inlet and Stephens Passage. With an increasing Taku River sockeye salmon run size projection, and both District 111 and inriver fisheries showing solid abundance, Stephens Passage was extended for an additional day for an above average total of four days of fishing for the week. The minimum mesh size restriction south of Circle Point was removed for the one-day extension in Stephens Passage to allow some targeting of Snettisham Hatchery sockeye salmon transiting the area as well as the smaller-sized, latter portion of the enhanced chum returns. Effort increased from the previous week to 108 boats, 111% of average and the highest weekly effort of the season. Sockeye salmon harvest and CPUE were 142% and 116% of their respective averages. Otolith analysis revealed that 6% of the sockeye salmon harvested in Taku Inlet, and 25\% from Stephens Passage, were of Snettisham Hatchery origin. TBR enhanced sockeye salmon of Tatsamenie Lake origin made up 1% of the harvest in Taku Inlet. The weekly Taku River sockeye salmon inriver run size projection increased from the previous week to 106,800 fish.

Fishing time for SW 32 was again initially three days in Taku Inlet and Stephens Passage. The minimum mesh size restriction south of Circle Point was kept in place initially, but with escapement of sockeye salmon into Speel Lake ramping up throughout the week, the mesh restriction was removed after the first day along with area being extended into the entrance of Port Snettisham for the remaining two days of the original opening. Continued passage of fish through the Speel Lake weir and observed buildup of fish in the creek below the weir resulted in additional time and area extensions totaling to five days of fishing in Stephens Passage, four days in the entrance of Port Snettisham, and one day in the Speel Arm SHA for the week. The total fishing time of five days in the district was above average. Effort fell drastically from the previous week to 56 boats, 75% of average. Traditional (not including the Speel Arm SHA) sockeye salmon harvest and CPUE were 58% and 55% of their respective averages. Otolith analysis indicated that 27% of the sockeye salmon harvest from Taku Inlet was of Snettisham Hatchery origin. TBR enhanced sockeye salmon of Tatsamenie Lake origin made up 2.5% of the harvest in Taku Inlet. The weekly Taku River sockeye salmon inriver run size projection remained similar to the previous week at 104,000 fish.

Fishing time for SW 33 was initially three days throughout the district for the fifth consecutive opening. Unlike previous openings, this opening included the entrance to Port Snettisham and the Speel Arm SHA to target Snettisham Hatchery sockeye salmon. Stephens Passage, the entrance of Port Snettisham, and the Speel Arm SHA were extended an additional day for four days of fishing there. Sockeye salmon escapement through the Speel Lake weir slowed significantly, likely due to the hot and dry weather, so the SHA did not open until further notice during this week. The total fishing time of four days in the district was above average. Effort again fell significantly from the previous opening to 23 boats, 33% of the average for the week. Sockeye salmon harvest and CPUE in the traditional fishery were 61% and 178% of their respective averages. Otolith analysis indicated that 35% of the sockeye salmon harvest from Taku Inlet were of Snettisham Hatchery origin. TBR enhanced sockeye salmon of Tatsamenie Lake origin made up 3.5\% of the harvest in Taku Inlet which was the highest weekly proportion of TBR enhanced fish for the season. The weekly Taku River sockeye salmon inriver run size again remained like the previous week at 105,200 fish, and with approximately 90% of the run historically through Canyon Island at this juncture in the season, it appeared that the upper end of the interim spawning objective goal range would be exceeded. This was the last week of the sockeye salmon management period in District 111 with coho salmon management starting in SW 34. The first Taku River coho salmon inriver run estimate was produced this week and expanded by average run timing with harvest from fisheries applied, projected a terminal run of 59,600 fish.

The fall commercial drift gillnet season in District 111 occurred over eight weeks, beginning on August 19 in SW 34, and ending on October 11 in SW 41. During this time, management in District 111 switched from being driven by Taku River sockeye to coho salmon abundance. Both the forecast and initial run size estimates for Taku River coho salmon were well below average, resulting in conservative early openings in District 111, and then inriver abundance increased significantly in SW 36 allowing ample AC for both countries and much more liberal openings.

Fishing time for SW 34 was set for two days in Taku Inlet and three days in Stephens Passage and the entrance to Port Snettisham. The additional day in the southern portion of the district allowed further targeting of Snettisham Hatchery sockeye salmon with minimal impact on Taku River coho salmon returns. The Speel Arm SHA was opened until further notice this week and would remain open until September 13. A well below average 19 boats made landings in the traditional fishery for the week. The sockeye salmon harvest was 37% of average, while CPUE was 82% of average. Otolith analysis indicated that 53% of the sockeye salmon harvest from Taku Inlet, and 80% from Stephens Passage, were of Snettisham Hatchery origin while TBR enhanced sockeye salmon of Tatsamenie Lake origin made up 1% of the Taku Inlet harvest. The coho salmon harvest and CPUE were 73% and 155% of average, respectively. CWT analysis indicated that 31% of the coho salmon harvest for the week was comprised of Alaska hatchery fish. The coho salmon hatchery contribution in the District 111 gillnet harvest this season was once again comprised nearly entirely of DIPAC fish returning to Gastineau Channel. The second Taku River coho salmon inriver run estimate, expanded by average run timing with harvest applied, projected a terminal run of 80,300 fish, a significant increase from the previous week but also general agreement that the estimate was biased high.

Fishing time for SW 35 was set at two days throughout the district with no extension granted due to declining effort throughout the opening and an overall consensus from the fleet that fishing was dropping off. This week's opening was delayed until Monday, August 26 to reduce conflict with the annual Golden North Salmon Derby that was postponed from the previous week due to the marine weather forecast. A total of 22 boats made landings throughout the opening, 52% of average, with all but a few boats fishing in and around Taku Inlet. Otolith analysis indicated that 38% and 2% of the sockeye salmon harvest from Taku Inlet were of Snettisham Hatchery and Tatsamenie Lake origins, respectively. This was the last week of sockeye salmon otolith sampling for the season in District 111. Coho salmon harvest and CPUE were respectively 57% and 176% of average. CWT analysis indicated that 43% of the coho salmon harvest for the week was comprised of Alaska hatchery fish. The projected terminal run estimate for Taku River coho salmon decreased from the previous week to 77,200 fish.

Fishing time for SW 36 was initially set at one day in Taku Inlet and two days in Stephens Passage and the entrance of Port Snettisham. An extension granted an additional day in the southern portion due to above average coho salmon catch rates there. A total of 20 boats, 50% of average, made landings with coho salmon harvest and CPUE at 28% and 67% of average, respectively. CWT analysis indicated that 38% of the coho salmon harvest for the week was comprised of Alaska hatchery fish. The weekly projected terminal run estimate for Taku River coho salmon increased from the previous week to 91,200 fish, resulting in the first substantial U.S. AC of the season under the new harvest sharing agreement.

Fishing time for SW 37 was initially set at two days throughout the district, but with high catch rates spread all around, the fishery was extended for two more days for a total of four days of fishing. Effort increased slightly from the previous week to 25 boats, 71% of average, and the turnaround in coho salmon fishing brought out a few boats that were likely
ready to call it a season the week before. Coho salmon harvest was 125% of average while CPUE was 169% of average, and the 7,000 fish harvested was the highest weekly harvest of the season. CWT analysis indicated that 52% of the coho salmon harvest was comprised of Alaska hatchery fish. The weekly Taku River coho salmon terminal run projection increased from the previous week to 102,500 fish. The Speel Arm SHA closed for the season on September 13 without receiving any effort during this week.

Fishing time for SW 38 was increased initially to four days throughout the district with an initial day provided for a total of five days due to good catch rates throughout the initial opening. Effort remained similar to the previous week with 26 boats fishing, right at average. Coho salmon harvest was 89% of average while CPUE was 60% of average. CWT analysis indicated that Alaska hatchery fish contributed 36% to the weekly coho salmon harvest. The weekly Taku River coho salmon terminal run projection fell slightly from the previous week to 99,200 fish.

Fishing time for SWs 39 through 41 remained at five days for each opening. Effort dropped from eight boats in SW 39to zero boats in SW 41. Coho salmon harvest and catch rates were well below average each week and the cumulative harvest in these weeks was approximately 400 fish. CWT analysis showed a 100% contribution from Alaska hatchery fish for SWs 39 and 40. The weekly Taku River coho salmon terminal run projections remained just under 100,000 fish in SWs 39 and 40 and increased to 105,100 fish in SW 41. District 111 closed for the season at noon on Friday, October 11.

The 2019 District 111 fall chum salmon harvest in SWs $34-39$ was 42% of the fall fishing period average. Escapement numbers for Taku River chum salmon are unknown; however, the number of chum salmon caught by the fish wheels throughout the season at Canyon Island can be used as an index of escapement. The 2019 fish wheel catch of 118 chum salmon (Fish Wheel 1 and 2 only) was 68% of average. Comparisons to historical data are not as straightforward for the 2018 and 2019 seasons as fish wheel operation times were altered significantly in efforts to address the sockeye salmon dropout rate in the MR project. This resulted in the fish wheels not spinning 24 hours a day as they had in the past. However, chum salmon returning to the Taku River were obviously at lower than average abundance.

The District 111 traditional drift gillnet pink salmon harvest of approximately 69,000 fish was 47% of average. Escapement numbers for Taku River pink salmon are unknown; however, the number of pink salmon caught by the fish wheels at Canyon Island can be used as an index of escapement. The 2019 total of 16,971 pink salmon caught in the fish wheels (Fish Wheel 1 and 2 only) was 92% of the 2017 parent-year catch and 112% of the 1999-2017 odd-year average. The pink salmon escapement to the Taku River is characterized as average with the same caveats in comparing Canyon Island fish wheel catches in recent seasons to historical catches as mentioned in the chum salmon section.

Several other fisheries in the Juneau area harvested transboundary Taku River salmon stocks in 2019. Several Chinook salmon stocks are known to contribute to the Juneau area sport fishery, including wild fish from the Chilkat River, as well as hatchery stocks, but the
major contributor of large, wild fish is the Taku River. Of the Chinook salmon harvested in the sport fishery, 94 fish were estimated to be of Taku River origin through SW 29 based on postseason GSI analysis. Personal use permits were used to harvest an estimated 1,500 Taku River sockeye salmon along with an estimated incidental harvest of 10 Taku River large Chinook salmon. The District 111 Amalga Harbor SHA common property purse seine fishery targeting returning DIPAC enhanced summer chum salmon, northwest of Juneau, did not occur this summer as all the returns here were needed for cost recovery purposes. Some portion of the incidental sockeye salmon harvest from these fisheries, when they occur, is assumed to be of Taku River origin, but the magnitude of the contribution is unknown. GSI analysis of the 2013 and 2014 harvests averaged 35\% Taku River origin.

Canadian Fisheries

The Taku River commercial fishery harvest was 21,395 sockeye and 12,145 coho salmon in 2019. No Chinook salmon were retained. Sockeye salmon originating from Taku fry plants contributed an estimated 423 fish to the harvest, comprising 2.0% of the total commercial sockeye salmon harvest. As a result of a poor preseason run forecast and lack of inseason information, there was no directed commercial Chinook salmon fishery in 2019 and all incidental catches in commercial fisheries were released. In addition, the Chinook salmon assessment fishery did not occur in 2019. Catches of sockeye and coho salmon were slightly below and above average respectively. There were 60 days of fishing which was about average. The seasonal fishing effort of 226 boat days however was below average. As is typical, both set and drift gillnets were used, with the majority of the catch taken in drift gillnets. The maximum allowable mesh size was 14.0 cm (5.5 inches) for the early part of the season to minimize the incidental catch of Chinook salmon. This was subsequently increased to 20.4 cm (8.0 inches).

In addition to the commercial fishery harvest, 5 nonlarge Chinook, 10 large Chinook, 105 sockeye, and 1074 coho salmon were harvested in the Aboriginal fishery. All of the Chinook salmon was harvested from the Nakina River. On average, 80 large Chinook, 14 nonlarge Chinook, 142 sockeye and 121 coho salmon are harvested annually in the Aboriginal fishery.

As a result of the preseason forecast being well below the goal range, retention of Chinook salmon of any size was not permitted in the recreational fishery effective April 1, 2019. Complete recreational harvest figures are not available but the catches of other salmon species are thought to have been negligible.

Typically, the inseason management of Taku River Chinook salmon depends on abundance estimates generated from the joint MR program in the lower Taku River with tags being applied below the border and recoveries being made in the Canadian assessment and/or commercial fisheries. In recent years, when the preseason forecast or inseason projections have indicated no AC, the commercial fishery has operated in an assessment mode and served as the test fishery identified in the PST agreement. In 2019, as in the previous two years, the preseason forecast did not warrant an assessment fishery and the Panel did not recommend it as a result. As such, the preseason forecast was used to make necessary
adjustments in the other fisheries with the intention of eliminating the harvest of Chinook salmon.

Due to the poor large Chinook salmon forecast (coupled with ongoing Kuthai Lake sockeye salmon concerns), the start of the directed commercial fishery for sockeye salmon was delayed by 16 days. The first opening was noon Tuesday, July 2 (SW27) and this was held to a maximum of 48 hours. Additional measures were also implemented based on Chinook salmon considerations. As per the 2019 Taku River commercial conditions of licence, the harvest of Chinook salmon was not permitted. In addition, the use of set nets was not permitted for the first commercial opening (SW27) to allow for the release of Chinook salmon. A maximum mesh size restriction of 140 mm (approximately 5.5 inches) was in effect through SW29 (ending July 20).

The preseason forecast of 153,500 wild Taku sockeye salmon with an enhanced run size forecast of 2,500 fish provided Canada with a 20% share of the TAC, with management based on weekly estimates of the TAC of wild fish. Subtracting the interim management target of 59,000 wild sockeye salmon from the forecast resulted in an overall preseason TAC of 94,500 fish; 20% of that was approximately 18,900 fish. In addition to its share of the TAC, Canada was entitled to harvest any projected escapement in excess of spawning objectives and broodstock needs apportioned by run timing.

The preseason forecast for the total (wild plus enhanced) terminal run of Tatsamenie fish was 8,500 fish, which was well below the average of approximately 21,100 fish. The eggtake goal for the 2019 season was based on a target of 50% of the escapement up to a maximum of 3.0 million eggs. During SWs 31-33 (July 28-August 17), management attention focused on Tatsamenie sockeye salmon to ensure an adequate number of sockeye salmon escaped to Tatsamenie Lake to support wild production and egg-take objectives.

As in past years, guideline harvests were developed each week for both sockeye and coho salmon fisheries to guide management decisions so that: a) the catch was consistent with conservation and Treaty objectives; and b) management was responsive to changes in projections of abundance (i.e., abundance-based management).

Fishing periods were set with a view to achieving weekly guideline harvests. Extensions to weekly fishing periods were considered if it appeared that the weekly guidelines would not be achieved. For both drift and set gillnets, net length was restricted to a maximum of 36.6 m (120 ft .); mesh sizes were restricted to between 100 mm (4 inches) and 204 mm (8 inches) except for the period prior to July 21 (SW 30) when the maximum permissible was 140 mm (5.5 inches) to reduce the bycatch of Chinook salmon.

The following summarizes the fishery management on a weekly basis and generally captures catch estimates and stock assessment information made inseason. As such the catch figures may not match the values listed in appendix tables. This is due to slight changes resulting from postseason review of catch slips, and updated stock composition information. Sockeye salmon catches and run projections are for wild fish; CPUE data is for wild and enhanced fish combined. Guideline harvests presented in Table 8 are based on
run projections made the previous week; additionally, those identified in the verbiage were generally based on the previous week's run projection. Values in Table 8 may differ from what is presented in appendix tables as they reflect inseason information. Guidelines identified in Table. 8 were set using a 20:80 harvest split for the entire sockeye salmon management period, as enhanced run projections did not exceed 5,000 fish at any point during the season.

The management plan indicated that the sockeye salmon fishery would be delayed over two weeks and commence at noon Tuesday, July 2 (SW27) restricted to a maximum of a 48 -hour period due to the poor large Chinook salmon forecast and ongoing escapement concerns for Kuthai Lake sockeye salmon. Additional modifications were made to address Chinook salmon management concerns. For 2019, as per the Taku River commercial conditions of licence, the harvest of Chinook salmon was not permitted. In addition, for the first commercial opening, fishing gear was restricted to drift nets (i.e. set nets were not permitted) in order to allow for the release of Chinook salmon. A maximum mesh size restriction of 140 mm (approximately 5.5 inches) was in effect through SW29 (ending July 20).

As per the preseason forecast, the weekly guideline for the first week of the fishery was 1,378 wild fish. As noted, for conservation reasons, the opening occurred on a Tuesday rather than the standard Sunday; furthermore it was for a 24 -hour period rather than the more usual 48-hours. As it turned out, fishing effort was very low, comprising only two licences. Given this, and a minimal bycatch of Chinook salmon, an extension of 24 -hours was provided. The two-day opening resulted in a catch of 585 sockeye salmon, well below the weekly average of 1,155 fish. A total of 24 large Chinook salmon were encountered and subsequently released.

Table 9. Inseason run size projections, Canadian available harvest, and actual harvest of wild Taku River sockeye salmon, 2019.

Stat Week	Terminal Run	TAC	Inriver Run	Cdn Available Harvest	Weekly Guideline	Weekly Actual	Cum. Guideline	Cum. Actual
24	153,520	94,520		18,904	494	0	494	0
25	153,520	94,520		18,904	868	0	1,362	0
26	153,520	94,520		18,904	1,119	0	2,481	0
27	153,520	94,520		18,904	1,378	585	3,859	585
28	153,520	94,520		18,904	1,927	1,435	5,785	2,020
29	96,534	37,534	84,784	25,784	3,041	2,437	10,932	4,457
30	130,955	71,955	84,984	25,984	4,031	4,290	15,048	8,747
31	177,351	118,351	120,580	61,580	8,567	5,796	44,229	14,543
32	176,509	117,509	114,657	55,657	6,817	2,222	46,791	16,765
33	163,485	104,485	111,961	52,961	3,241	2,630	47,766	19,395

Note: Run sizes reflect either the preseason forecast or the projection from the preceding week. Weekly guidelines are based on available harvest (inriver run less escapement target) apportioned by run timing.

The fishery opened on two days in statistical week 28 (July 7-13). The weekly guideline, still based on the preseason forecast, was 1,927 wild fish. The fishing effort (four licences)
was double that of the previous week, but this was still well below average. Based on above average catch rates on day one (148 versus 76 fbd) the opening was extended by 24 hours. The weekly catch was 1,435 wild sockeye salmon. A total of 34 large Chinook salmon were released. A Tulsequah River jökulhlaup began late in the opening and resulted in poor fishing conditions. The weekly sockeye salmon CPUE of 103 fbd was above the average for SW 28 of 74 fbd . The first inseason run projection was made after the close of the fishery. It projected only a terminal run of 96,534 fish, well below the preseason forecast.

An opening of two days was posted for SW 29 (July 14-20). Although the terminal run forecast was low, the inriver run projection was 84,784 fish which, when apportioned by run timing, corresponded to an available harvest of 3,041 fish, using the escapement target of 59,000 fish. Water levels had receded post-jökulhlaup, and were now below average. The catch for day one was a respectable 1,039 sockeye and a 24 -hour extension was provided. The CPUE for SW 29 (114 fbd) was above the average of 99 fbd . The weekly catch was 2,437 wild sockeye salmon. Weekly effort averaged 5.5 licences, below the average of 7.8 . The terminal run projection made after closing was 130,955 fish, was a marked improvement on the estimate generated the previous week, but still below the preseason forecast.

The fishery in statistical week 30 (July 21-27) was opened on three days. The weekly guideline using the inriver run projection of 84,984 was 4,031 fish. Taking into consideration below average effort (5.0 versus a weekly average of 8.5) and an apparent abundance of fish, the opening was extended for two additional 24 -hour periods. River levels were below average. The weekly CPUE (177 fbd) was above the average of 133 fbd). The weekly catch was 4,290 fish. The number of licenses that fished in SW 30 was 5.0, below the average of 8.5 licenses. After day three of the fishery, a run projection of 177,351 fish was made which was now above the preseason forecast. The inriver run projection was 120,580 fish.

For SW 31 (July 28-August 3), the weekly guideline was 8,567 sockeye salmon based on the inriver run outlook from SW 30. The initial opening was three days; very high catch rates were observed and the fishery extended by 24 hours. Effort was again below average (6.8 versus 8.4 licenses). The weekly catch was 5,796 fish. Water levels were considerably below average. The terminal run projection was 176,509 fish, very close to the SW 30 projection.

The fishery was again opened on three days in statistical week 32 (August 4-10). Based on an inriver run projection of 114,657 fish, the weekly guideline was 6,817 fish. Water levels climbed back to average values over the course of the opening. The weekly CPUE was 131 fbd, compared to an average of 112 fbd . The weekly catch was 2,222 sockeye salmon; the number of licenses fished was 5.7 versus an average of 8.7 licenses. The terminal run projection made after closing, 163,485 sockeye salmon, relatively consistent with recent weeks as well as the preseason forecast.

Statistical week 33 (August 11-17) started with a weekly guideline harvest of 3,241 fish and an opening of 3 days. The effort was 7.0 licences, compared to a weekly average of
8.3 licenses. The fishery was again held to 3 days. The weekly catch of 2,630 fish was similar to that of week 32, as was the CPUE (126 fbd versus an average of 86 fbd). Water levels were back down to well below average.

Statistical week 33 marked the end of the directed sockeye salmon fishery. A terminal run projection made the following week (i.e. after the first week of the directed coho salmon fishery) was 147,284 wild fish. The projected inriver run was 102,788 fish. Subtracting the actual harvest of wild fish to date (20,426 fish) plus potential harvest in the coho fishery ($<1,000$ fish) projected an escapement of approximately 81,000 wild sockeye salmon, which was above the interim target range of 55,000 to 62,000 fish.

The postseason harvest estimate of enhanced Taku River sockeye salmon was 423 fish which included 95 fish from King Salmon Lake and 328 fish from Tatsamenie Lake. A small number (20 fish) of non-Taku enhanced-origin sockeye salmon were also harvested.

Postseason figures for the above are presented in the Sockeye Salmon Run Reconstruction section.

Based on the terminal run forecast of Taku River coho salmon in 2019 of 73,000 fish, a Canadian harvest of 5,000 fish was permitted starting in SW34 for assessment purposes. Canada was also permitted a directed harvest of all inriver coho salmon in excess of 75,000 fish (the sum of the MSY point goal of 70,000 fish and the 5,000 fish allocated for assessment purposes).

Statistical week 34 (August 18-24) was opened for two days based on the preseason forecast, and extended 24 hours. Coho salmon catch rates for the week (78 fbd) were above average (55 fbd) as were sockeye salmon catch rates (61 fbd versus 54 fbd). Fishing conditions were excellent, with water levels dropping to record low (as identified at Canyon Island) by closing. The number of licenses was below average (6.6 licenses compared to the SW 34 average of 7.2). A total of 1,478 coho salmon were landed plus 1,157 sockeye salmon. The MR estimate after day three indicated that 24,176 fish had crossed the border; this projected to an inriver run of 68,904 fish, slightly below the preseason forecast.

Statistical week 35 (August 25-31) was opened for two days and extended for two additional 24-hour periods. Coho salmon catch rates for the week were below average (43 fbd compared to average of 65 fbd$)$. Water levels were near average, and 5.8 licenses fished for the week. A total of 996 coho salmon and 461 sockeye salmon were caught. The MR estimate after day three indicated that 32,885 fish had crossed the border; this projected to an inriver run of 68,624 fish, very similar to the previous week's projection.

Statistical week 36 (September 1-7) was opened on three days, and extended by one day. Coho salmon catch rates for the week were above average (94 fbd versus 74 fbd). Water levels fluctuated from below average to average. Three (3.0) licenses fished for the week which was below the average of 5.8 licenses. A total of 2,393 coho salmon and 125 sockeye salmon were caught. The MR estimate made at closing, 48,760 coho salmon, generated an
inriver run projection of 82,713 fish which was in excess of both the preseason forecast and the number of fish required for directed fishing.

Statistical week 37 (September 8-14) also opened on three days. The opening was extended for two days, with only 2.8 licences fishing. As in SW 34, the river dropped to very low levels over the course of the fishery. Coho salmon catch rates were above average (157 fbd versus 64 fbd). The inriver run projection made after day three (94,610 coho salmon) showed another increase over the previous weeks estimate. A total of 2,204 coho salmon and 45 sockeye salmon were caught.

Statistical week 38 (September 15-21) was posted for four days and extended one day. A weekly average of 2.6 licenses fished, above the average of 1.6 licenses. A total of 1,553 coho salmon and 4 sockeye salmon were caught. These were the final sockeye salmon catches of the season. Coho salmon CPUE was 119 fbd vs an average of 72 fbd . Water levels were below average for most of the opening but a flood started mid-week. The inriver run estimate made after closing was 73,610 coho salmon, which projected to 89,708 fish.

The fishery continued for three more weeks, with one licence fishing. This matched the average effort for SW 39 and exceeded the average for statistical weeks 40 and 41. The flood ebbed over the course of the SW 39 fishery and water levels were once again below average by closing. They were relatively stable in SW 40; measurements were not taken in SW 41 as the Canyon Island field operations had terminated.

Statistical week 39 (September 22-28) was opened for five days. A total of 462 coho were caught. The CPUE was 116 fbd , which was well above the average of 68 fbd . The inriver run estimate made after closing was 81,022 coho salmon, which projected to 86,661 fish.

The opening for statistical week 40 (September 29-October 5) was also open for five days. The CPUE of 108 fbd matched the average and the catch was 538 coho salmon. The inriver run estimate made after closing was 88,643 coho salmon, no projection was as the run as reflected by Canyon Island catches is typically complete by this time.

The final week of fishing, statistical week 41 (October 6-12) was opened on three days and extended to the end of the week. A total of 132 coho salmon were caught; CPUE was 22 fbd . Comparisons with average are not informative as fishing is typically complete by this time. A final inseason run estimate was made, amounting to 94,790 fish. The fishery was again opened the following week, for a total of three days; however, there was no fishing activity. Totals of 12,145 and 94 coho salmon had been caught in the commercial and Aboriginal fisheries respectively. Of the commercial catch 2,399 fish were from the directed sockeye fishery, i.e. prior to SW 34. Subtracting the total harvest of 12,239 fish indicated an escapement of 82,551 coho salmon. This is above the MSY point goal of 70,000 fish and close to the upper end of the goal range of 50,000 to 90,000 fish.

Escapement

Sockeye Salmon

Spawning escapement is estimated by subtracting the inriver harvest from the above border run size estimate. The above border run size of sockeye salmon into the Canadian portion of the Taku River drainage is estimated from a joint Canada/U.S. MR program that has been operated annually since 1984. The postseason estimate of the above border run in 2019 is 98,203 fish; subtracting the inriver harvest of 21,481 Taku fish (21,376 commercial and 105 Aboriginal harvest) results in a spawning ground escapement estimate of 76,722 fish. The Taku River wild spawning escapement was above the 2019 interim escapement goal range of 55,000 to 62,000 wild sockeye salmon. The Canyon Island catch in the fish wheels was 3,545 sockeye salmon.

Escapement projects conducted by Canada provide information on the abundance of discrete lake spawning stocks within the watershed. Traditional counting weirs were operated by DFO at Little Trapper and Tatsamenie lakes, and video counting weirs were operated by the TRTFN at Kuthai and King Salmon lakes.

The sockeye salmon count through the Kuthai Lake video weir was 605 fish in 2019; below the average of 754 fish and 390% of the primary brood year (2014) escapement estimate of 155 fish. Since 2016, TRTFN has been implementing small ongoing fish passage improvement projects on the Silver Salmon River, results will be available in a future report.

The King Salmon Lake video weir count of 4,294 fish was above the average of 2,915 fish and 173% of the primary brood year (2015) escapement estimate of 1,683 fish. A significant beaver dam near the lake was breached by field crews in early summer. A TRTFN planned egg take was not conducted in 2019.

The Little Trapper Lake traditional weir count was 6,382 sockeye salmon was average and slightly below the 2014 primary brood year count of 6,607 fish. Run timing was typical and there were 444 fish removed for broodstock.

The Tatsamenie Lake traditional weir count was 3,092 sockeye salmon well below the average of 10,795 fish but above the 2014 primary brood year count of 2,105 fish. The run started about ten days late with two peaks, one on August 28 and another September 22. Based on thermal mark data 48% of the run was enhanced fish. There were a total of 1,561 removals which included 1,415 fish for broodstock, and 146 holding mortalities. An additional 223 fish were held for broodstock but released unspawned.

Chinook Salmon

Spawning escapement of Chinook salmon in the Canadian portion of the Taku River drainage was estimated from the joint Canada/U.S. MR program. Spaghetti and radio tag application took place from April 30 through June 30 using a drift gillnet to capture fish in the lower river near the Wright River just downstream of the U.S./Canada border. Fish
wheels were also used from May 15 through July 23 to capture and spaghetti tag fish. Catches in the drift gillnet accounted for 75% of all tags applied to large Chinook salmon, though fish wheel catch comprised 55% of the total tags applied to all sizes of fish. There was no inseason event 2 component in 2019 since no assessment fishery or directed fishing for Chinook salmon was permitted due to the low preseason forecast. Also, Chinook salmon were required to be released in the inriver commercial sockeye salmon fishery because of low abundance. Spawning ground sampling and spaghetti tag recovery occurred in July through September on the Nakina, Tatsatua, Kowatua, Nahlin, and Dudidontu rivers, as well as Tseta Creek. The sonar weir was operated from May 28-July 27 on the lower Nahlin River enumerated 4,403 large Chinook salmon passing upriver.

The 2019 postseason Chinook salmon escapement estimate of 11,560 large fish was generated from the joint Canada/U.S. MR program with the lower river drift gillnet and fish wheels as Event 1. Tags out in event 1 were reduced based on the dropout rate ($\sim 12 \%$) observed from the 2019 Chinook salmon telemetry project. Event 2 recapture combined the relevant spawning ground samples (Nakina, Tatsatua, Kowatua, Nahlin, and Dudidontu rivers, and Tseta Creek). This estimate is well below the average escapement of 17,770 large fish, and the escapement goal range of 19,000 to 36,000 large Chinook salmon.

Aerial surveys of large Chinook salmon to the five escapement index areas were; Nakina 1,070 fish; Kowatua 361 fish; Tatsamenie 330 fish; Dudidontu 949 fish; and Nahlin 282 fish; all sites were below average except for the above average count at Dudidontu. Viewing conditions were excellent with very low and clear water for all surveys and the total peak count of 2,992 large Chinook salmon expands to 15,558 large fish using the published expansion factor of 5.2.

Coho Salmon

Spawning escapement of coho salmon in the Canadian portion of the Taku River drainage was estimated from the joint Canada/U.S. MR program. Tag application occurred at the CYI fishwheels from July 4 (SW 27) until October 4 (SW 40), augmented by gillnetting from September 29 to October 1 and October 4 and 5. The tag recovery effort consisted of Canadian commercial fisheries throughout the period augmented by a test fishery from October 5-9 (SW 40 and 41). The test fishery was a live release set gillnet program operated by DFO / TRTFN that caught and released 22 coho salmon.

The postseason inriver MR estimate is 95,011 fish. The inriver harvest was 12,252 fish (12,145 commercial and 107 Aboriginal fish) the spawning escapement estimate is 82,759 fish. This is an average escapement $(82,200$ fish) and within the biological escapement goal range of 50,000-90,000 fish.

Pink Salmon

There is no program to estimate the escapement of Taku River pink salmon; however, the Canyon Island fish wheels were used as an index of escapement. A total of 16,971 pink salmon were captured in 2019. This is above the recent odd-year average.

Chum Salmon

Chum salmon escapement numbers to the Taku River are unknown; however, the numbers of fall chum captured by the fish wheels at Canyon Island were used as an index of escapement. A total of 118 chum salmon were captured in 2019; below average.

Sockeye Salmon Run Reconstruction

An estimated 65,281 wild and 1,237 enhanced Taku River sockeye salmon were harvested in the traditional U.S. District 111 drift gillnet fishery. This estimate was made by postseason GSI and otolith analysis. An additional 1,673 wild and 51 enhanced sockeye salmon were estimated to have been taken in the U.S. inriver personal use fishery. The estimated total U.S. harvest of Taku River sockeye salmon is 66,953 wild and 1,273 enhanced fish (Table 4).

In the Canadian commercial fishery, the postseason harvest estimate of Taku River sockeye salmon is 20,952 wild, 328 enhanced Tatsamenie Lake, and 95 enhanced King Salmon Lake fish. Also harvested were 11 Stikine River enhanced fish, and 9 U.S. enhanced fish; total Canadian commercial harvest was 21,395 fish (21,376 Taku fish and 19 non-Taku enhanced fish). An estimated 103 wild and 2 enhanced sockeye salmon were taken in the Canadian Aboriginal fishery. Therefore, the estimated Canadian treaty harvest of Taku River sockeye salmon is 21,055 wild and 426 enhanced fish (Table 4).

The postseason estimate of the above border run size of sockeye salmon, based on the joint Canada/U.S. MR program is 98,203 fish. Deducting the Canadian inriver harvest noted above from the above border run estimate results in an estimated escapement of 76,722 fish; 74,854 wild fish. The escapement of Taku River sockeye salmon originating from the fry planting program was estimated to be 1,868 fish from broodstock otoliths collected at Tatsamenie and King Salmon lakes. The terminal run of Taku River sockeye salmon is estimated at 162,863 wild fish and 3,566 enhanced fish. Based on the interim 2019 escapement target of 59,000 wild fish, the wild TAC was 103,863 fish and combining wild and enhanced terminal run the TAC was 107,429. The harvest sharing agreement based on total terminal enhanced run was 80% U.S. and 20% Canada.

Abstract

ALSEK RIVER Alsek River salmon stocks contribute to the U.S. commercial gillnet fisheries located in Dry Bay, at the mouth of the Alsek River (Figure 3). Unknown quantities of Alsek River origin fish may also be taken in the U.S. commercial gillnet and troll fisheries in the Yakutat area. No commercial fishery exists in the Canadian portions of the Alsek River drainage, although Aboriginal and recreational fisheries occur in the Tatshenshini River and some of its headwater tributaries (Figure 3).

Harvest Regulations \& Management Objectives

Although harvest sharing of Alsek River salmon stocks between Canada and the U.S. has not yet been specified, Annex IV does call for the development and implementation of cooperative abundance-based management plans and programs for Alsek River Chinook and sockeye salmon. In February 2013, the bilateral TTC and bilateral TBR Panel agreed to the revised biological escapement goals for Alsek River Chinook and sockeye salmon. These were Alsek River Chinook salmon MSY target of 4,700 fish (escapement goal range 3,500-5,300 fish), Klukshu River Chinook salmon MSY target of 1,000 fish (escapement goal range of 800-1,200 fish), Alsek River sockeye salmon MSY target of 29,700 fish (escapement goal range of 24,000-33,500 fish), and Klukshu River sockeye salmon MSY target of 9,700 fish (escapement goal range 7,500-11,000 fish). Since 1976 the principle escapement monitoring tool for Chinook and sockeye salmon stocks on the Alsek River is the Klukshu River salmon counts, a project operated by DFO in cooperation with the CAFN. MR programs to estimate the total inriver abundance and the portion of escapement contributed by Klukshu River stocks operated from 1997 to 2005 for Chinook salmon, and from 2000 to 2005 for sockeye salmon. Currently, total Alsek River run estimates for sockeye salmon are generated using Dry Bay commercial sample GSI analysis to expand the Klukshu River counts.

Figure 3. The Alsek River and principal U.S. and Canadian fishing areas.

Preseason Forecasts

The preseason forecast for Klukshu River Chinook salmon escapement in 2019 was 8601,100 fish. These forecasts are below the average of approximately 1,400 fish and bracket the escapement goal range of $800-1,200$ Chinook salmon. Two models were used in forecasting; a sibling model (860 fish) and a stock recruit model (1,100 fish). The sibling model uses 2018 returns of age 4 (BY 2014) and age 5 (BY 2013) Chinook salmon to predict the returns of age 5 (BY 2014) and age 6 (BY 2013) in 2019 using the relationships observed between age classes over the past 10-years corrected with the 5 -year average (2014-2018) model error. The stock recruit model forecast is based on 23 years of Klukshu

River Chinook salmon production data and was discounted using the 5 -year average (2014-2018) model error (49\%).

The 2019 Alsek River sockeye salmon run was expected to be approximately 45,000 fish; this was well below the average run size estimate of approximately 79,400 sockeye salmon. The outlook for 2019 was based on a predicted run of 10,300 Klukshu River sockeye salmon, well below the average of approximately 14,700 fish, but near the upper end of the Klukshu River escapement goal of 7,500 to 11,000 sockeye salmon. The forecast was derived from the latest Klukshu River stock-recruitment based on MR results (2000-2004) and run size estimates using GSI (2005-2006, 2011) data and a Klukshu River contribution to the total run of 23\% (Eggers et al. 2011). The principal contributing brood year was 2014 (Klukshu River escapement of 12,148 sockeye salmon).

Information from coho salmon partial escapement counts at the Klukshu River in 2015 (1,800 fish) and 2016 (2,100 fish) suggested the 2019 run would be above the recent average of approximately 2,000 coho salmon.

Table 10. Klukshu River harvest and escapement for the Chinook and sockeye salmon and Alsek River harvest for Chinook and sockeye salmon for 2019.

	Chinook	Sockeye
Klukshu River $^{\mathrm{a}}$		
Weir count	1,589	19,073
Harvest at/above weir	16	324
Escapement $\quad 1,573$	18,749	
Harvest $^{\mathrm{b}}$		
U.S. Commercial	79	9,787
U.S. Subsistence/P.U.	20	279
U.S. Test		
Canadian Aboriginal	32	648
Canadian Recreational	5	5
Alsek River		82,536
Above border run		

Total escapement
<Above border run above - U.S. harvest>
a Klukshu River salmon stocks represent an assumed large and variable portion of the total Alsek River salmon escapement.
b U.S. harvest estimate differs from Joint Interception Committee estimate because no estimates are made for harvest other than the listed fisheries.

U.S. Fisheries

The preseason forecast for Klukshu River Chinook salmon escapement in 2019 was 8601,100 fish. These forecasts are below the average of approximately 1,400 fish, but within the escapement goal range of $800-1,200$ Chinook salmon. Two models were used in forecasting; a sibling model (860 fish) and a stock recruit model (1,100 fish). The sibling model uses 2018 returns of age 4 (BY 2014) and age 5 (BY 2013) Chinook salmon to predict the returns of age 5 (BY 2014) and age 6 (BY 2013) in 2019 using the relationships observed between age classes over the past 10-years corrected with the 5 -year average (2014-2018) model error. The stock recruit model forecast is based on 23 years of Klukshu Chinook salmon production data and was discounted using the 5-year average (2014-2018) model error (49\%).

As a Chinook salmon conservation measure, the 2019 Alsek River commercial set gillnet fishery was delayed by two weeks. The fishery opened for 24-hours on Sunday, June 16 (SW 25). Traditionally, inseason management decisions were made by monitoring fishery performance data and comparing it to historical CPUE for a given opening to adjust time and area openings. The sockeye salmon directed fishery was extended for all statistical weeks except SW 25 and SW 30 and extensions were 12-hour or 24 -hour; 24-hour extensions were given after SW 30 due to low fishing effort. Chinook and sockeye salmon harvests were both below the historical and 5-year average throughout the duration of the directed sockeye salmon fishery. The total number of individual permits fished during the season was 12 , which was below the average of 16 permits. Peak sockeye salmon harvest occurred during SW 28 with 10 permits harvesting 2,739 fish. Effort decline after SW 30 and by SW 33 coho salmon management strategies were in place. Coho salmon are targeted starting in mid-August and effort typically drops during the fall due to or lack of pilots and aircrafts to transport the product to town. Fishing times remained at three days per week throughout the duration of the coho salmon season. The commercial fishing season closed on October 10.

The 2019 Dry Bay commercial set gillnet fishery harvested 79 Chinook and 9,787 sockeye salmon and 1 coho salmon (Table 10). There was no chum or pink salmon harvested. A test fishery for Chinook salmon was conducted in the Alaska portion of the Alsek River in 2005-2008 and from 2011-2012. Test fishing ceased in 2014.

Canadian Fisheries

Due to low returns in recent years and 2019 preseason forecasts for Klukshu River Chinook and sockeye salmon that were below average yet within escapement goals, 2019 Alsek River fisheries were approached with caution by all parties. As Chinook and Sockeye salmon began returning in numbers above those expected and eventually above the upper bounds of escapement goals and management targets, fishery opportunities were incrementally increased.

Aboriginal fishery harvest opportunities were permitted throughout the season and were subject to conservation requirements. The Tatshenshini River recreational fishery was
closed to all salmon angling (including live release) prior to August 15. On August 15, the recreational fishery was opened with Chinook salmon limits set at 1 daily and 1 in possession, sockeye salmon non-retention only, and coho salmon limits at 2 daily and 4 in possession. On September 5, sockeye salmon limits were increased to 2 daily and 4 in possession, and on September 26 coho salmon limits were increased to 4 daily and 12 in possession.

An estimated 5 Chinook, 5 sockeye, and 10 coho salmon were harvested in the recreational fishery, and additional estimated 3 coho salmon were released. Additional coho salmon harvest may have occurred as fishing may have taken place after monitoring had ceased, and mandatory catch reporting is not complete. The estimate of Aboriginal fishery harvest (based on the past relationship between the Klukshu count and Aboriginal fishery harvest) is 32 Chinook, 648 sockeye, and 0 coho salmon.

Management of salmon in Yukon is a shared responsibility between DFO and the Yukon Salmon Sub-Committee (YSSC). The YSSC was established in 1995 pursuant to the Comprehensive Land Claim Umbrella Final Agreement between the Government of Canada, the Council for Yukon Indians and the Government of the Yukon. The Committee is a public board consisting of ten members, 70% of which are appointed by Yukon First Nations. Two CAFN members sit on the YSSC. Although the Committee currently operates by consensus, the voting structure of the Committee is organized so that, should a vote be necessary, 50% of the votes reside with appointees of Yukon First Nations.

The 2019 Integrated Fisheries Management Plan, developed by DFO in collaboration CAFN and the YSSC, is based on the escapement objectives described in the Harvest Regulations \& Management Objectives section above. Decision guidelines are agreed to for salmon fisheries management on the Alsek-Tatshenshini Rivers. For Chinook and early run sockeye salmon management, the Klukshu River counts were reviewed in mid-July to determine if changes to management were warranted. Run projections for Chinook salmon were positive, resulting in opening of the recreational fishery on August 15 and allowing retention of Chinook salmon. Run projections for early run sockeye remained uncertain, so non-retention was implemented when the fishery opened on August 15. The status of the sockeye salmon run was reviewed again in late August and due to strong returns, the escapement goal was exceeded and the CAFN Basic Needs Level was forecast to be exceeded as well. This resulted in an increase in bag limits for sockeye salmon in the recreational fishery on September 5.

The center of Aboriginal fishing activity in the Alsek River drainage occurs at the CAFN village of Klukshu, on the Haines Road, about 60 km south of Haines Junction. Salmon are harvested by means of gaff, small gillnets, sport rods, and traditional fish traps as the fish migrate up the Klukshu River and into Klukshu Lake. The fishing plan for the Aboriginal fishery in the Klukshu River and adjacent areas allowed for fishing by any means (as established in the communal license) 7 days a week. Conservation thresholds that might invoke restrictions in the Aboriginal fishery were projected Klukshu River counts of < 800 Chinook, < 1,500 early, and < 7,500 total sockeye salmon. Fishing also occurs on Village Creek and in the headwaters of the Tatshenshini River and tributaries thereof (Goat Creek,

Stanley Creek, Parton River, and the Blanchard River). The plan did not restrict the fishery other than to reserve harvests of Chinook salmon at Goat Creek, Stanley Creek, and the Parton River for elders only.

The majority of the recreational fishing effort in the Alsek River drainage occurs in the Tatshenshini River, at and just downstream of the mouth of the Klukshu River in the vicinity of the abandoned settlement of Dalton Post. Conservation thresholds that had the potential to invoke lifting of restrictions in the recreational fishery were projected Klukshu River counts significantly greater than 1,000 Chinook, 4,500 early run sockeye salmon and 10,500 early / late run combined sockeye salmon.

A mandatory Yukon Salmon Conservation Catch Card (YSCCC), introduced by the YSSC in 1999, was required by all recreational salmon fishers in 2019. The purpose of the YSCCC is to improve harvest estimates and to serve as a statistical base to ascertain the importance of salmon to the Yukon recreational fishery. Anglers are required to report their catch via email or mail by the late fall. Information requested includes the number, sex, size, date and location of salmon caught and released.

Since 2001, CAFN has imposed a fishing area closure from the Klukshu River bridge crossing upstream to the assessment site to allow for better staging opportunities for salmon in the vicinity of the Klukshu/Tatshenshini rivers confluence.

Escapement

Alsek River drainagewide abundance programs are being investigated for Chinook and sockeye salmon stocks as part of the development of abundance-based management regimes and to accurately assess whether the current escapement goals are appropriate and if so, are being achieved. Currently, there are no programs in place to estimate the drainagewide coho salmon escapement.

The most reliable long-term comparative escapement index for Alsek River drainage salmon stocks are the Klukshu River counts. Escapements for 2019 are shown in Table 10. A large and annually variable proportion of the drainagewide escapement of each species is enumerated at Klukshu River, where video enumeration systems have been implemented since 2016. Video enumeration has been implemented on Village Creek since 2014. These video enumeration projects allow salmon passage 24 hours per day and alleviate concerns over impeding and/or handling salmon during periods of low abundance. Since 2018, a very successful snorkel survey of the lower Takhanne River has enumerated Chinook salmon. In 2019, a trial season of sonar enumeration of large (>659 mm MEF) Chinook salmon into the Blanchard River was successfully implemented.

Sockeye Salmon

In 2019, the Klukshu River sockeye salmon count was 19,073 fish and the escapement estimate was 18,749 fish (Table 10), well above the escapement goal range of 7,500 to 11,000 fish. The count of 4,127 early run fish (count through August 15) was above the average of 2,616 fish as was the count of 14,946 late run fish compared to an average of

8,411 fish. The sockeye salmon count at Village Creek was 1,497 fish; this was well above average.

Chinook Salmon

In 2019, the Klukshu River Chinook salmon count was 1,589 fish and the escapement estimate was 1,573 fish (Table 8). This escapement estimate is above the escapement goal range of 800 to 1,200 Klukshu Chinook salmon. The 2019 Takhanne River peak snorkel survey count was 150 Chinook salmon. The 2019 Blanchard River trial sonar count of large (>659 mm MEF) Chinook salmon was 1,400 fish.

Coho Salmon

The Klukshu River coho salmon count prior to project end was 2,180 fish. As in past years, this does not serve as a reliable run strength indicator as the project ends during the coho salmon run to the Klukshu River. This number is slightly above the recent average of 1,977 fish.

ENHANCEMENT ACTIVITIES

Egg Collection

In 2019, sockeye salmon eggs were collected at Tahltan Lake on the Stikine River and Tatsamenie and Trapper lakes on the Taku River. A planned sockeye salmon egg take at King Salmon Lake did not occur due to high adult return numbers exceeding TRTFN enhancement guidelines.

Tahltan Lake

In 2019, Tahltan Fisheries were contracted to perform the egg take. The egg-take goal was set at 5.0 million eggs in the approved Stikine River Enhancement Plan. Canadian technical staff lowered the egg-take goal to 4.5 million eggs due to treaty stocking guidelines not to exceed a $1: 1$ ratio of enhanced to wild smolt out-migrating from the lake. Escapement into the lake was 36,621 sockeye salmon. Broodstock were collected from August 28 through September 24th. This produced an estimate of 4.5 million sockeye salmon eggs for delivery to Snettisham Hatchery in Alaska (based on an estimated fecundity of 2,800 eggs per female). Three of the 10 lots were delayed due to weather (2 two-day delays and 1 one-day delay). Green to eye egg survival was 80.1% compared to the historical average of 85.6%. Actual fecundity was 2,737 eggs per female. 3,523,952 eggs are available after picking.

Tatsamenie Lake

In 2019, Metla Environmental Ltd was contracted to collect eggs at Tatsamenie Lake. Broodstock was captured near the assessment weir at the outlet of Tatsamenie Lake and held until ripe. Escapement through the weir was below average at 3,902 sockeye salmon. The egg-take goal was set at 3.0 million eggs in the approved Taku Enhancement Production Plan. A total of 685 females were spawned from September 17 through October

13th. Two of the 6 egg shipments were delivered the following day. An estimated 2.6 million sockeye salmon eggs were delivered to Snettisham Hatchery. Average egg survival to 100 CTU was estimated at 69.3% which is well below the historic average of 87.9%. Assumed fecundity was 3,800 eggs per female. Actual fecundity through the first 3 lots has been 3,400 eggs per female.

Little Trapper Lake

In 2019, Metla Environmental Ltd was funded through the Northern Fund to collect 500,000 sockeye salmon eggs at Little Trapper Lake. The resulting fry will be used to evaluate passage of subsequently returning adults at the barrier location between Little Trapper and Trapper Lake that is to be modified as part of the development of an enhancement program. Escapement into the lake was 6,382 sockeye salmon. An estimated 429,000 eggs were collected from September 4 through $6^{\text {th }}$. Neither of the two lots were delayed to the hatchery. Green to eye egg survival is estimated at 68.6% compared to the historical average of 77.5%. Actual fecundity was 3,127 eggs, which is below the assumed fecundity of 3,300 eggs per female. There are 278,802 eggs available after picking. Egg takes completed in 2016 and 2017 are expected to result in sockeye salmon returns for passage evaluation in 2020 through 2022.

King Salmon Lake

In 2019, there were no eggs collected at King Salmon Lake. Escapement into the lake was 4,292 sockeye salmon, which is well above the average of 2,588 fish. Taking eggs in high return years is not in line with TRTFN mandates on enhancement. In 2020, Taku River Tlingit Fisheries will monitor fish passage and make improvements as necessary. Additional egg takes are planned for 2021 and 2022.

Incubation, Thermal Marking, and Fry Plants

Snettisham Hatchery is operated by DIPAC, a private aquaculture organization in Juneau. A cooperative agreement between ADF\&G and DIPAC provides for Snettisham Hatchery to serve the needs of the joint TBR enhancement projects.

In 2019 , brood year 2018 fry were transported to the appropriate systems from May $16^{\text {th }}$ to June14 ${ }^{\text {th }}$. There were no IHNV losses of the 2018 brood year. Egg incubation and thermalmarking at Snettisham Hatchery went smoothly.

Tahltan Lake

In 2019, a total of 1.9 million sockeye salmon fry were stocked back into Tahltan Lake. These fish were from eggs collected in Tahltan Lake in the fall of 2018. Approximately 1.6 million sockeye salmon smolt left the lake in the spring of 2019 , with an estimated 70% of them from enhancement efforts. Escapement in 2017 was 19,200 sockeye salmon so good wild production was expected but did not materialize.

Tuya Lake

Since 2014, fry planting into Tuya Lake has been discontinued due to Canadian domestic concerns.

Tatsamenie Lake

In 2019, a total of 1.76 million sockeye salmon fry were stocked in Tatsamenie Lake. These fry were from eggs collected at Tatsamenie Lake in the fall of 2017. Approximately 1.39 million sockeye salmon fry were released directly into the lake on May 19 ${ }^{\text {th }}$. In 2019, two in lake rearing strategies were implemented. A group of 200,000 fry were flown into the lake on May $25^{\text {th }}$ and released on June $25^{\text {th }}$. A second group was flown into the lake on June $10^{\text {th }}$ and released on July $5^{\text {th }}$. Both groups were released at approximately 2 grams. Approximately 1.69 million smolt left the lake with 582 thousand from enhanced efforts and 1.09 million from wild production. Full evaluation of the success of extended rearing will not be available until these fish return as adults.

Trapper Lake

In 2019, no fry were flown into Trapper Lake because no eggs were collected in 2018.

Sockeye Supplementation Evaluation Surveys

Acoustic, Trawl, Beach Seine and Limnological Sampling

Standard limnological surveys were conducted at Tatsamenie and Tahltan lakes. No surveys were conducted on Tuya or Trapper lakes. No hydroacoustic surveys were conducted in 2017.

Thermal Mark Laboratories

ADF\&G Thermal Mark Laboratory

During the 2019 season, the ADF\&G Thermal Mark Lab processed 10,652 sockeye salmon otoliths collected by ADF\&G and DFO staff as part of the U.S./Canada fry-stocking evaluation program. These collections came from commercial and test fisheries in both U.S. and Canadian waters on the Taku and Stikine Rivers over a 13-week period. The laboratory provided estimates on hatchery contributions for 58 distinct sample collections. Estimates of the percentage of hatchery fish contributed to commercial fishery catches were provided to ADF\&G and DFO fishery managers 24 to 48 hours after samples arrived at the lab.

Postseason estimates of stocked fish to Alaskan harvests were 3,700 Stikine River fish to District 106 and 108, and 1,300 Taku River fish to District 111. Postseason estimates of stocked fish to Canadian fisheries included 7,700 fish to Stikine River fisheries and 430 fish to the Taku River fisheries.

Canadian Thermal Mark Laboratory

Subsamples of juvenile and adult otolith samples collected at the study lakes during the 2019 season are being analyzed at the DFO thermal mark lab in Whitehorse.

APPENDICES

Standards

Large Chinook salmon are MEF length $\geq 660 \mathrm{~mm}$
Unless otherwise stated Chinook salmon are large
Test fisheries for Chinook salmon became commercial assessment/test fisheries starting in 2004
Data not available to estimate harvests of Alaska Hatchery pink and chum salmon
All harvest of Tahltan and Tatsamenie lake sockeye salmon, unless otherwise noted, include both wild and hatchery fish.
Bold numbers are incomplete or interpolated numbers
Italicized numbers are used when the GSI estimates do not meet acceptable levels of precision and accuracy agreed upon by the TTC (April 2013): to estimate the proportion of mixtures within 10% of the true mixture 90% of the time.

Appendix A. 1. Weekly harvest estimates of Chinook salmon in the US gillnet, troll, recreational, and subsistence fisheries in District 108, 2019.

SW	Subsistence--Stikine		D108 sport			D108 gillnet				D108 troll			US total large Stikine harvest
	Large	Nonlarge	Large total	Large non-Stikine	Large Stikine	Nonlarge	Large total	Large non-Stikine	Large Stikine	Large total	Large non-Stikine	Large Stikine	
18			0	0	0								0
19			0	0	0				0				0
20			0	0	0				0				0
21			0	0	0				0				0
22			0	0	0				0				0
23			0	0	0				0				0
24			31	0	31				0				31
25	3	3	88	13	74				0				77
26	2	15	38	0	38	54	85	27	58				98
27	3	21	23	6	17	1,097	1,512	1,824	-312				-292
28	9	12	0	0	0	279	513	664	-151				-142
29	2	1	8	51	-43	199	337	0	337				296
Total	19	52	188	71	117	1,629	2,447	2,515	-68	0	0	0	68

Appendix A. 2. Weekly harvest of Chinook salmon in the Canadian commercial, Telegraph Aboriginal, and recreational fishery in the Stikine River, 2019.

SW	LRCF				URCF		Aboriginal Telegraph		Tahltan sport fishery			Canada Large fish Harvest
	Large		Nonlarge		Large	Nonlarge	Large	Nonlarge				
	Harvested	Released	Harvested	Released	Harvested	Harvested	Harvested	Harvested	Retained	Released	Total	
19												0
20												0
21												0
22												0
23												0
24												0
25												0
26		170		114			25	7				25
27		84		72			51	31				51
28		87		69			155	88				155
29		34		17			78	64				78
30							18	35				18
31							6	11				6
32							0	1				0
33												0
34												0
35		0		0								0
36		1		0								0
37												0
Total	0	376		272			333	237	0	0	0	333

SW	Drift		Set		Commercial license		Total catch	
	Large	Nonlarge	Large	Nonlarge	Large	Nonlarge	Large	Nonlarge
19							0	0
20							0	0
21							0	0
22							0	0
23							0	0
24							0	0
25							0	0
26							0	0
27							0	0
28							0	0
29							0	0
30							0	0
31							0	0
32							0	0
33							0	0
34							0	0
35							0	0
36							0	0
37							0	0
38							0	0
39							0	0
40							0	0
41							0	0
42							0	0
Total	0	0	0	0	0	0	0	0

Appendix A. 4. Weekly harvest of sockeye salmon in the Alaskan District 106 and 108 fisheries, 2019.

SW	Subsistence	D106 Total	D106-30	D106-41/4. D108	
$22-24$	87	0			
25	306	309	3	306	
26	776	1,028	114	914	1,329
27	519	3,157	346	2,811	2,001
28	142	2,933	621	2,312	1,219
29	32	3,399	1,458	1,941	1,232
30	0	3,045	1,528	1,517	0
31	12	3,284	2,166	1,118	0
32	1	2,522	1,005	1,517	566
33	0	2,417	1,179	1,238	156
34	0	1,380	853	527	69
35	0	266	175	91	15
36	0	86	40	46	1
37	0	18	12	6	3
38	0	0	0	0	0
39		0	0	0	0
40	0	0	0	0	
41		0,844	9,500	14,344	6,591
Total					0

Appendix A. 5. Weekly stock proportions of sockeye salmon harvested in the Alaskan D106 commercial drift gillnet fishery, 2019.

Estimates derived from GSI estimates for subdistricts 10641/42 and 106-30; see Appendices G. 1 and G. 2. for GSI details.

SW	Other	All Tahltan	Tuya	Mainstem	Total	Tahltan Enhance	WildTahltan
25	0.218	0.619	0.008	0.155	0.782	0.183	0.437
26	0.276	0.566	0.007	0.151	0.724	0.164	0.401
27	0.473	0.443	0.002	0.082	0.527	0.214	0.229
28	0.678	0.211	0.002	0.109	0.322	0.097	0.114
29	0.766	0.117	0.003	0.114	0.234	0.053	0.063
30	0.888	0.016	0.001	0.096	0.112	0.009	0.007
31	0.918	0.015	0.001	0.066	0.082	0.002	0.013
32	0.916	0.008	0.001	0.075	0.084	0.003	0.005
33	0.930	0.002	0.001	0.067	0.070	0.001	0.001
34	0.940	0.003	0.001	0.057	0.060	0.001	0.001
35	0.938	0.004	0.001	0.057	0.062	0.002	0.002
36	0.936	0.003	0.001	0.060	0.064	0.001	0.002
37	0.938	0.004	0.001	0.057	0.062	0.002	0.002
38							
39							
Total	0.770	0.139	0.002	0.089	0.230		0
25	67	191	2	48	242	56	135
26	284	582	8	155	744	169	413
27	1,494	1,399	5	260	1,663	676	722
28	1,988	619	5	321	945	284	335
29	2,605	396	11	387	794	181	215
30	2,703	49	2	292	342	27	21
31	3,015	50	2	217	269	6	44
32	2,310	21	2	190	212	8	12
33	2,247	5	2	163	170	2	0
34	1,297	4	1	78	83	2	0
35	250	1	0	15	16	0	0
36	80	0	0	5	6	0	0
37	17	0	0	1	1	0	0
38	0	0	0	0	0	0	0
39	0	0	0	0	0	0	0
Total	18,357	3,316	40	2,130	5,487	1,412	1,904
						0	0

Appendix A. 6. Weekly stock proportions of sockeye salmon harvested in the Alaskan Subdistrict 106-41/42 (Sumner Strait) commercial drift gillnet fishery, 2019.

Estimates based on mean GSI; see Appendix G. 1 for GSI details.							
		Stikine					
SW	Other	All Tahltan	Tuya	Mainstem	Total	Tahltan Enhance	WildTahltan
25	0.213	0.625	0.008	0.155	0.787	0.184	0.440
26	0.213	0.625	0.008	0.155	0.787	0.184	0.440
27	0.435	0.486	0.001	0.078	0.565	0.240	0.246
28	0.650	0.242	0.001	0.108	0.350	0.121	0.121
29	0.685	0.193	0.001	0.120	0.315	0.093	0.101
30	0.854	0.030	0.001	0.115	0.146	0.017	0.013
31	0.896	0.041	0.001	0.062	0.104	0.004	0.037
32	0.884	0.012	0.001	0.102	0.116	0.005	0.007
33	0.929	0.002	0.001	0.068	0.071	0.001	0.001
34	0.929	0.002	$\mathbf{0 . 0 0 1}$	$\mathbf{0 . 0 6 8}$	0.071	$\mathbf{0 . 0 0 1}$	$\mathbf{0 . 0 0 1}$
35	0.929	0.002	$\mathbf{0 . 0 0 1}$	$\mathbf{0 . 0 6 8}$	0.071	$\mathbf{0 . 0 0 1}$	$\mathbf{0 . 0 0 1}$
36	0.929	0.002	$\mathbf{0 . 0 0 1}$	$\mathbf{0 . 0 6 8}$	0.071	$\mathbf{0 . 0 0 1}$	$\mathbf{0 . 0 0 1}$
37	0.929	0.002	$\mathbf{0 . 0 0 1}$	$\mathbf{0 . 0 6 8}$	0.071	$\mathbf{0 . 0 0 1}$	$\mathbf{0 . 0 0 1}$
38	0.929	0.002	$\mathbf{0 . 0 0 1}$	$\mathbf{0 . 0 6 8}$	0.071	$\mathbf{0 . 0 0 1}$	$\mathbf{0 . 0 0 1}$
39	0.929	0.002	$\mathbf{0 . 0 0 1}$	$\mathbf{0 . 0 6 8}$	0.071	$\mathbf{0 . 0 0 1}$	$\mathbf{0 . 0 0 1}$
Total	0.678	0.221	0.001	0.099	0.322	0.098	0.124
25	65	191	2	47	241	56	135
26	195	571	7	142	719	168	402
27	1,223	1,365	3	220	1,588	674	691
28	1,502	559	2	249	810	280	279
29	1,331	375	2	234	610	180	195
30	1,296	46	1	175	221	26	19
31	1,001	46	1	70	117	4	42
32	1,342	19	1	155	175	8	11
33	1,150	3	1	84	88	1	0
34	490	1	0	36	37	0	0
35	85	0	0	6	6	0	1
36	43	0	0	3	3	0	0
37	6	0	0	0	0	0	0
38	0	0	0	0	0	0	0
39	0	0	0	0	0	0	0
Total	9,727	3,176	20	1,422	4,617	1,399	1,777
						0	

Appendix A. 7. Weekly stock proportions of sockeye salmon harvested in the Alaskan Subdistrict 106-30 (Clarence Strait) commercial drift gillnet fishery, 2019.

Estimates based on mean GSI; see Appendix G. 2 for GSI details.
Stikine

SW	Other	All Tahltan	Tuya	Mainstem	Total	Tahltan Enhance	WildTahltan
25	0.783	0.096	0.006	0.115	0.217	0.006	0.090
26	0.783	0.096	0.006	0.115	0.217	0.006	0.090
27	0.783	0.096	0.006	0.115	0.217	0.006	0.090
28	0.783	0.096	0.006	0.115	0.217	0.006	0.090
29	0.874	0.014	0.006	0.105	0.126	0.001	0.014
30	0.921	0.002	0.001	0.076	0.079	0.001	0.001
31	0.930	0.002	0.001	0.068	0.070	0.001	0.001
32	0.963	0.002	0.001	0.034	0.037	0.001	0.001
33	0.931	0.002	0.001	0.067	0.069	0.001	0.001
34	0.947	0.003	0.001	0.050	0.053	0.001	0.002
35	0.943	0.004	0.001	0.051	0.057	0.002	0.002
36	0.943	0.004	$\mathbf{0 . 0 0 1}$	$\mathbf{0 . 0 5 1}$	0.057	$\mathbf{0 . 0 0 2}$	$\mathbf{0 . 0 0 2}$
37	0.943	0.004	$\mathbf{0 . 0 0 1}$	$\mathbf{0 . 0 5 1}$	0.057	$\mathbf{0 . 0 0 2}$	$\mathbf{0 . 0 0 2}$
38	0.943	0.004	$\mathbf{0 . 0 0 1}$	$\mathbf{0 . 0 5 1}$	0.057	$\mathbf{0 . 0 0 2}$	$\mathbf{0 . 0 0 2}$
39	0.943	0.004	$\mathbf{0 . 0 0 1}$	$\mathbf{0 . 0 5 1}$	0.057	$\mathbf{0 . 0 0 2}$	$\mathbf{0 . 0 0 2}$
Total	0.908	0.015	0.002	0.075	0.092	0.001	0.013
25	2	0	0	0	1	0	0
26	89	11	1	13	25	1	10
27	271	33	2	40	75	2	31
28	486	60	4	71	135	4	56
29	1,275	21	9	153	183	1	0
30	1,407	3	1	117	121	1	20
31	2,014	4	1	147	152	1	2
32	968	2	1	34	37	1	3
33	1,097	2	1	79	82	1	1
34	807	3	1	42	46	1	1
35	165	1	0	9	10	0	1
36	38	0	0	2	2	0	0
37	11	0	0	1	1	0	0
38	0	0	0	0	0	0	0
39	0	0	0	0	0	0	0
Total	8,631	140	21	709	869	13	127
							0

Appendix A. 8. Weekly stock proportions sockeye salmon harvested in the Alaskan District 108 commercial drift gillnet fishery, 2019.

Estimates based on mean GSI; see Appendix G. 3 for GSI details.							
		Stikine					
SW	Other	All Tahltan	Tuya	Mainstem	Total	Tahltan Enhance	WildTahltan
25							
26	0.053	0.740	0.001	0.206	0.947	0.386	0.354
27	0.117	0.531	0.002	0.351	0.883	0.288	0.243
28	0.189	0.471	0.001	0.338	0.811	0.213	0.258
29	0.130	0.448	0.003	0.419	0.870	0.202	0.246
30	1.000	0.000			0.000		
31	1.000	0.000			0.000		
32	0.363	0.074	0.008	0.555	0.637	0.029	0.045
33	0.230	0.026	0.012	0.731	0.770	0.012	0.014
34	0.230	0.026	$\mathbf{0 . 0 1 2}$	$\mathbf{0 . 7 3 1}$	0.770	$\mathbf{0 . 0 1 2}$	$\mathbf{0 . 0 1 4}$
35	0.230	0.026	$\mathbf{0 . 0 1 2}$	$\mathbf{0 . 7 3 1}$	0.770	$\mathbf{0 . 0 1 2}$	$\mathbf{0 . 0 1 4}$
36	0.230	0.026	$\mathbf{0 . 0 1 2}$	$\mathbf{0 . 7 3 1}$	0.770	$\mathbf{0 . 0 1 2}$	$\mathbf{0 . 0 1 4}$
37	0.230	0.026	$\mathbf{0 . 0 1 2}$	$\mathbf{0 . 7 3 1}$	0.770	$\mathbf{0 . 0 1 2}$	$\mathbf{0 . 0 1 4}$
38	0.230	0.026	$\mathbf{0 . 0 1 2}$	$\mathbf{0 . 7 3 1}$	0.770	$\mathbf{0 . 0 1 2}$	$\mathbf{0 . 0 1 4}$
39	0.230	0.026	$\mathbf{0 . 0 1 2}$	$\mathbf{0 . 7 3 1}$	0.770	$\mathbf{0 . 0 1 2}$	$\mathbf{0 . 0 1 4}$
Total	0.145	0.489	0.003	0.364	0.855	0.245	0.243
25	0	0	0	0	0	0	0
26	70	983	2	274	1,259	513	471
27	234	1,062	3	702	1,767	575	487
28	231	574	1	413	988	260	315
29	161	552	4	516	1,071	249	302
30	0	0	0	0	0	0	0
31	0	0	0	0	0	0	0
32	205	42	5	314	361	16	26
33	36	4	2	114	120	2	2
34	16	2	1	50	53	1	1
35	3	0	0	11	12	0	0
36	0	0	0	1	1	0	0
37	1	0	0	2	2	0	0
38	0	0	0	0	0	0	0
33	0	0	0	0	0	0	0
Total	957	3,220	18	2,396	5,634	1,616	1,604

Appendix A. 9. Weekly sockeye salmon harvest and effort in the Canadian commercial and assessment fisheries in the lower Stikine River, 2019.

SW	LRCF				URCF	Telegraph Aboriginal	Drift Net Test		Set Net Test		Commercial License/assessment	Test Total
	Harvest	Permits	Days	Permit days			harvest	\# drifts	harvest	hours		
19				0.0								0
20				0.0								0
21				0.0								0
22				0.0								0
23				0.0								0
24				0.0								0
25				0.0								0
26	1,806	8.0	1.5	12.0		6						0
27	2,265	7.3	3.0	21.9		123						0
28	3,459	9.0	3.0	27.0		749						0
29	2,413	10.0	1.0	10.0		2,569						0
30				0.0		1,492						0
31				0.0	40	459						0
32				0.0		3						0
33				0.0								0
34				0.0								0
35	535	8.6	5.0	43.0								0
36	294	11.0	6.0	66.0								0
37				0.0								0
38												0
39												0
Total	10,772	54	19.5	179.9	40	5,401	0	0	0	0	0	0

Appendix A. 10. Weekly sockeye salmon stock proportions and harvest by stock in the Canadian commercial fishery in the lower Stikine River, 2019.
Weekly proportions are based on GSI and otolith marks

Appendix A. 11. Harvest by stock and week for sockeye salmon in the Canadian upper river commercial and Aboriginal fisheries in the Stikine River, 2019.

	Stock				
SW	All Tahltan	Tuya	Mainste	ildTahlt	anEnh
Proportion by stock for upper river fisheries					
24			0.000		
25	1.000		1.000		
26	1.000		1.000		
27	0.980		0.020	0.531	0.449
28	0.980		0.020	0.448	0.532
29	0.980		0.020	0.454	0.526
30	0.980		0.020	0.369	0.611
31	0.980		0.020	0.326	0.654
32	1.000		0.000	1.000	0.000
33	1.000			1.000	
34	1.000			1.000	
Total					
Harvest by stock for upper river commercial fishery					
27	0	0	0	0	0
28	0	0	0	0	0
29	0	0	0	0	0
30	0	0	0	0	0
31	39	0	0	0	0
32	0	0	0	40	0
Total	39	0	0	40	0
Harvest by stock for Telegraph aboriginal fishery				0	0
24	0	0	0	0	0
25	0	0	0	0	0
26	6	0	0	6	0
27	121	0	2	65	55
28	734	0	15	336	398
29	2,518	0	51	1,166	1,351
30	1,462	0	30	551	912
31	450	0	9	150	300
32	3	0	0	3	0
33	0	0	0	0	0
34	0	0	0	0	0
35	0	0	0	0	0
Total	5,293	0	108	2,276	3,017

Appendix A. 12. Weekly harvest, CPUE, and migratory timing of Tahltan, Tuya, and mainstem sockeye salmon stocks in the Stikine River test fishery, 2019.

No test fishery in 2019.

Appendix A. 13. Weekly coho salmon harvest in the Alaskan District 106 and 108 fisheries, 2019.

SW	D106					D108			Subsistence harvest
	Hatchery	Wild	Total	106-41/42	106-30	Hatchery	Wild	Total	
25		191	191	184	7			0	0
26	41	335	376	184	192	0	9	9	0
27	175	879	1,054	838	216	0	41	41	0
28	305	1,132	1,437	1,099	338	0	37	37	1
29	347	1,379	1,726	1,034	692	0	76	76	0
30	0	1,056	1,056	635	421	0	0	0	0
31	192	1,844	2,036	1,040	996	0	0	0	0
32	337	1,575	1,912	1,063	849	13	584	597	6
33	191	7,238	7,429	5,041	2,388	12	1,061	1,073	12
34	186	6,841	7,027	4,574	2,453	234	1,629	1,863	0
35	868	7,998	8,866	6,733	2,133	0	1,297	1,297	0
36	1,065	6,639	7,704	4,636	3,068	22	527	549	6
37	1,264	7,221	8,485	4,178	4,307	801	991	1,792	7
38	2,738	3,124	5,862	2,774	2,992	1,419	144	1,563	18
39	1,310	1,433	2,743	1,684	1,059	0	423	423	21
40	560	736	1,296	576	720	64	94	158	
41	73	31	104	104	0	0		0	
Total	9,652	49,652	59,304	36,377	22,831	2,565	6,913	9,478	71

Appendix A. 14. Weekly harvest of coho salmon in the Canadian lower river commercial fishery and test fisheries 2019.

SW	LRCF	Test			Total
		Drift	Set	Additional	
19					
20					
21					
22					
23					
24					
25					
26					0
27					0
28					0
29					0
30					0
31					0
32					0
33					0
34					0
35	1,381				1,381
36	3,847				3,847
37					0
38					
39					
40					
41					
42					
Total	5,228	0	0	0	5,228

Appendix A. 15. Weekly salmon effort in the Alaskan District 106 and 108 fisheries, 2019.

SW	Start Date	D106			106-41/42			106-30			D108		
				Permit			Permit			Permit			Permit
		Permits	Days	Days									
25	16-Jun	32	2.0	64	27	2.0	54	5	2.0	10			
26	23-Jun	40	2.0	80	23	2.0	46	17	2.0	34	12	2.0	24
27	30-Jun	42	3.0	126	27	3.0	81	15	3.0	45	35	3.0	105
28	7-Jul	42	2.0	84	28	2.0	56	14	2.0	28	28	2.0	56
29	14-Jul	47	2.0	94	27	2.0	54	21	2.0	42	20	2.0	40
30	21-Jul	47	2.0	94	21	2.0	42	26	2.0	52			
31	28-Jul	48	2.0	96	20	2.0	40	28	2.0	56			
32	4-Aug	63	3.0	189	28	3.0	84	36	3.0	108	51	3.0	153
33	11-Aug	74	4.0	296	30	4.0	120	45	4.0	180	30	4.0	120
34	18-Aug	65	4.0	260	33	4.0	132	33	4.0	132	30	4.0	120
35	25-Aug	75	3.0	225	42	3.0	126	34	3.0	102	13	3.0	39
36	1-Sep	80	3.0	240	38	3.0	114	43	3.0	129	9	3.0	27
37	8-Sep	70	2.0	140	38	2.0	76	33	2.0	66	14	2.0	28
38	15-Sep	46	3.0	138	21	3.0	63	26	3.0	78	13	3.0	39
39	22-Sep	13	3.0	39	6	3.0	18	7	3.0	21	6	3.0	18
40	29-Sep	16	3.0	48	6	3.0	18	10	3.0	30	2	3.0	6
41	6-Oct	2	2.0	4	2	2.0	4	0	2.0	0	0	2.0	0
Total			45	2,217		45	1,128		45	1,113		39	775

Appendix A. 16. Weekly salmon 2019.															
	Commercial license Test fishery				LRCF			URCF			Telegraph Aboriginal			Test	
SW	Start Date	Permits	Days	Permit Days	\# Drifts	Set hours									
19	5-May														
20	12-May														
21	19-May														
22	26-May														
23	2-Jun														
24	9-Jun														
25	16-Jun														
26	23-Jun				8.0	1.5	12				1.8	6.0	11		
27	30-Jun				7.3	3.0	22		1.0	0	5.7	5.0	29		
28	7-Jul				9.0	3.0	27		2.0	0	14.4	7.0	101		
29	14-Jul				10.0	1.0	10		2.0	0	22.3	7.0	156		
30	21-Jul						0		0.0	0	22.7	7.0	159		
31	28-Jul						0	1.0	1.0	1	5.1	7.0	36		
32	4-Aug						0		1.0	0	1.0	1.0	1		
33	11-Aug						0								
34	18-Aug						0								
35	25-Aug				8.6	5.0	43								
36	1-Sep				11.0	6.0	66								
37	8 -Sep														
38	15-Sep														
39	22-Sep														
40	29-Sep														
41	6 -Oct														
42	13-Oct														
Total			0.0	0.0		19.5	180.0		7.0	1.0		40.0	492.6	0.0	0.0

Appendix A. 17. Daily counts of adult sockeye salmon passing through Tahltan Lake weir, 2019.

Date	Count ${ }^{\text {a }}$	Cumulative		Date	Count	Cumulative	
		Count	Percent			Count	Percent
7-Jul	weir in			13-Aug	399	35,188	95.1\%
8-Jul	0	0	0.0\%	14-Aug	129	35,317	95.5\%
$9-\mathrm{Jul}$	0	0	0.0\%	15-Aug	404	35,721	96.5\%
10-Jul	0	0	0.0\%	16-Aug	48	35,769	96.7\%
11-Jul	0	0	0.0\%	17-Aug	55	35,824	96.8\%
12-Jul	0	0	0.0\%	18-Aug	468	36,292	98.1\%
13-Jul	13	13	0.0\%	19-Aug	19	36,311	98.1\%
14-Jul	16	29	0.1\%	20-Aug	7	36,318	98.2\%
15-Jul	7	36	0.1\%	21-Aug	136	36,454	98.5\%
16-Jul	73	109	0.3\%	22-Aug	23	36,477	98.6\%
17-Jul	1	110	0.3\%	23-Aug	13	36,490	98.6\%
18-Jul	0	110	0.3\%	24-Aug	40	36,530	98.7\%
19-Jul	14	124	0.3\%	25-Aug	32	36,562	98.8\%
20-Jul	0	124	0.3\%	26-Aug	20	36,582	98.9\%
21-Jul	1,808	1,932	5.2\%	27-Aug	7	36,589	98.9\%
22-Jul	948	2,880	7.8\%	28-Aug	122	36,711	99.2\%
23-Jul	1,735	4,615	12.5\%	29-Aug	27	36,738	99.3\%
24-Jul	1,257	5,872	15.9\%	30-Aug	56	36,794	99.4\%
25-Jul	1,398	7,270	19.6\%	31-Aug	90	36,884	99.7\%
26-Jul	3,091	10,361	28.0\%	1-Sep	12	36,896	99.7\%
27-Jul	3,570	13,931	37.7\%	2-Sep	96	36,992	100.0\%
28-Jul	1,943	15,874	42.9\%	3-Sep	0	36,992	100.0\%
29-Jul	1,473	17,347	46.9\%	4-Sep	1	36,993	100.0\%
30-Jul	2,299	19,646	53.1\%	5-Sep	6	36,999	100.0\%
31-Jul	1,128	20,774	56.1\%	6-Sep	0	36,999	100.0\%
1-Aug	1,113	21,887	59.2\%	7-Sep	0	36,999	100.0\%
2-Aug	714	22,601	61.1\%	8-Sep	0	36,999	100.0\%
3-Aug	353	22,954	62.0\%	9-Sep	0	36,999	100.0\%
4-Aug	1,223	24,177	65.3\%	10-Sep	weir out		
5-Aug	1,319	25,496	68.9\%	11-Sep			
6-Aug	1,463	26,959	72.9\%	12-Sep			
7-Aug	1,442	28,401	76.8\%	13-Sep			
8-Aug	1,814	30,215	81.7\%	14-Sep			
9-Aug	1,000	31,215	84.4\%	15-Sep			
10-Aug	392	31,607	85.4\%	16-Sep			
11-Aug	1,455	33,062	89.4\%	17-Sep			
12-Aug	1,727	34,789	94.0\%	18-Sep			
				\% enhanced	Hatchery ${ }^{\text {a }}$	Wild	Total
Total Counted					20,438	16,561	36,999
Fish removed for broodstock				0.359	1,283	2,296	3,579
Fish removed for otolith samples				0.552	117	95	212
Total Spawners					19,037	14,171	

Appendix A. 18. Daily counts of sockeye salmon smolt migrating through Tahltan Lake smolt weir, 2019.

Date	Count	Cumulative		Date	Count	Cumulative	
		Count	Percent			Count	Percent
4-May	Wier in						
5-May	0	0	0.00\%				
6-May	0	0	0.00\%	2-Jun	6,919	1,587,123	99.21\%
7-May	0	0	0.00\%	3-Jun	2,447	1,589,570	99.37\%
8-May	0	0	0.00\%	4-Jun	4,386	1,593,956	99.64\%
9-May	0	0	0.00\%	5-Jun	951	1,594,907	99.70\%
10-May	0	0	0.00\%	6-Jun	2,030	1,596,937	99.83\%
11-May	0	0	0.00\%	7-Jun	316	1,597,253	99.85\%
12-May	0	0	0.00\%	8-Jun	2,016	1,599,269	99.97\%
13-May	0	0	0.00\%	$9-\mathrm{Jun}$	183	1,599,452	99.98\%
14-May	40	40	0.00\%	10-Jun	149	1,599,601	99.99\%
15-May	18	58	0.00\%	11-Jun	92	1,599,693	100.00\%
16-May	48	106	0.01\%	12-Jun	2	1,599,695	100.00\%
17-May	10	116	0.01\%				
18-May	64,197	64,313	4.02\%				
19-May	195	64,508	4.03\%				
20-May	12,332	76,840	4.80\%				
21-May	58,414	135,254	8.45\%				
22-May	493,676	628,930	39.32\%				
23-May	240,875	869,805	54.37\%	enhanced	wild		
24-May	61,476	931,281	58.22\%	0.715	0.285		
25-May	321,185	1,252,466	78.29\%				
26-May	98,747	1,351,213	84.47\%				
27-May	102,747	1,453,960	90.89\%				
28-May	45,077	1,499,037	93.71\%				
29-May	32,326	1,531,363	95.73\%				
30-May	15,605	1,546,968	96.70\%				
31-May	15,359	1,562,327	97.66\%	Wild	456,083		
1-Jun	17,877	1,580,204	98.78\%	Hatchery	1,143,612		
Total					1,599,695		

Appendix A. 19. Daily counts of adult Chinook salmon passing through Little Tahltan weir, 2019.

Date	Large Chinook			nonlarge Chinook		
	Count	Cumulative		Count	Cumulative	
		Count	Percent		Count	Percent
23-Jun	weir in			0	0	0.00\%
24-Jun	0	0	0.00\%	0	0	0.00\%
25-Jun	0	0	0.00\%	1	1	0.10\%
26-Jun	0	0	0.00\%	0	1	0.10\%
27-Jun	0	0	0.00\%	0	1	0.10\%
28-Jun	0	0	0.00\%	0	1	0.10\%
29-Jun	3	3	0.56\%	2	3	0.30\%
30-Jun	2	5	0.93\%	11	14	1.40\%
1-Jul	0	5	0.93\%	3	17	1.70\%
2-Jul	1	6	1.12\%	2	19	1.90\%
3-Jul	1	7	1.31\%	5	24	2.40\%
4-Jul	0	7	1.31\%	1	25	2.50\%
5-Jul	0	7	1.31\%	2	27	2.69\%
6-Jul	0	7	1.31\%	3	30	2.99\%
7-Jul	1	8	1.49\%	1	31	3.09\%
8-Jul	1	9	1.68\%	2	33	3.29\%
9-Jul	3	12	2.24\%	5	38	3.79\%
10-Jul	5	17	3.17\%	9	47	4.69\%
11-Jul	0	17	3.17\%	1	48	4.79\%
12-Jul	8	25	4.66\%	8	56	5.59\%
13-Jul	1	26	4.85\%	5	61	6.09\%
14-Jul	3	29	5.41\%	4	65	6.49\%
15-Jul	22	51	9.51\%	24	89	8.88\%
16-Jul	8	59	11.01\%	9	98	9.78\%
17-Jul	36	95	17.72\%	19	117	11.68\%
18-Jul	67	162	30.22\%	21	138	13.77\%
19-Jul	28	190	35.45\%	15	153	15.27\%
20-Jul	25	215	40.11\%	26	179	17.86\%
21-Jul	16	231	43.10\%	16	195	19.46\%
22-Jul	2	233	43.47\%	15	210	20.96\%
23-Jul	15	248	46.27\%	22	232	23.15\%
24-Jul	36	284	52.99\%	53	285	28.44\%
25-Jul	12	296	55.22\%	33	318	31.74\%
26-Jul	15	311	58.02\%	32	350	34.93\%
27-Jul	11	322	60.07\%	38	388	38.72\%
28-Jul	8	330	61.57\%	24	412	41.12\%
29-Jul	7	337	62.87\%	24	436	43.51\%
30-Jul	6	343	63.99\%	36	472	47.11\%
31-Jul	34	377	70.34\%	52	524	52.30\%
1-Aug	15	392	73.13\%	81	605	60.38\%
2-Aug	16	408	76.12\%	65	670	66.87\%
3-Aug	17	425	79.29\%	31	701	69.96\%
4-Aug	16	441	82.28\%	63	764	76.25\%
5-Aug	12	453	84.51\%	61	825	82.34\%
6-Aug	26	479	89.37\%	84	909	90.72\%
7-Aug	11	490	91.42\%	22	931	92.91\%
8-Aug	16	506	94.40\%	0	931	92.91\%
9-Aug	9	515	96.08\%	9	940	93.81\%
10-Aug	10	525	97.95\%	24	964	96.21\%
11-Aug	11	536	100.00\%	38	1,002	100.00\%
12-Aug	eir out					
Total Counted		536		1,002		
Broodstock		0		0		
Escapement		536			1,002	

Appendix B. 1. Historic salmon harvest and effort in the Alaskan District 106 commercial gillnet fishery, 1960-2019.

Year	Harvest					Boats	$\begin{aligned} & \text { Days } \\ & \text { Open } \end{aligned}$	Effort Permit Days
	Chinook	Sockeye	Coho	Pink	Chum			
1960	46	10,354	336	1,246	502			
1961	416	20,614	14,934	124,236	64,479			
1962	1,308	47,033	42,276	256,620	59,119			
1963	1,560	80,767	52,103	514,596	90,103			
1964	2,082	76,541	64,654	443,086	44,218			
1965	1,802	87,749	75,728	625,848	27,658			
1966	1,665	89,847	62,823	400,932	40,756			
1967	1,318	86,385	17,670	91,609	26,370			
1968	1,316	64,671	67,151	169,107	61,366			
1969	877	70,484	10,305	198,785	10,930	127	31.0	2,111
1970	782	42,809	35,188	95,173	32,245	113	41.0	1,863
1971	1,336	53,262	48,085	528,737	37,682	166	50.0	2,773
1972	2,548	101,958	92,283	89,510	72,389	204	42.0	3,320
1973	1,961	72,025	38,447	304,536	87,704	245	26.0	3,299
1974	1,929	57,498	45,595	104,596	50,402	272	28.0	2,178
1975	2,587	32,099	30,962	203,031	24,047	168	17.0	1,648
1976	386	15,493	19,126	139,641	6,868	135	22.0	827
1977	671	67,394	8,389	422,955	13,311	168	28.0	1,381
1978	2,682	41,574	55,578	224,715	16,545	158	26.5	1,509
1979	2,720	66,373	31,454	648,212	35,507	238	25.0	2,702
1980	580	107,422	16,666	45,662	26,291	169	25.0	1,324
1981	1,565	182,001	22,614	437,573	34,296	221	26.0	2,925
1982	1,648	193,801	31,584	25,533	18,646	174	23.0	1,699
1983	567	48,842	62,442	208,290	20,144	140	32.0	1,452
1984	892	91,653	41,359	343,255	70,303	152	32.0	1,814
1985	1,687	264,987	91,188	584,953	69,673	186	32.0	2,672
1986	1,704	145,709	194,912	308,484	82,289	237	32.0	3,509
1987	836	136,427	34,534	243,482	42,025	199	20.0	1,766
1988	1,104	92,529	13,103	69,559	69,620	196	19.0	1,494
1989	1,544	192,734	92,385	1,101,194	67,351	185	34.0	3,221
1990	2,108	185,805	164,235	319,186	73,232	219	34.0	3,501
1991	2,055	144,104	198,160	133,566	124,630	213	39.0	3,620
1992	1,355	203,155	298,935	94,248	140,468	206	40.0	4,229
1993	992	205,955	231,038	537,960	134,601	239	38.0	4,352
1994	754	211,048	267,862	179,994	176,026	230	43.0	4,467
1995	951	207,298	170,561	448,163	300,078	187	34.0	3,656
1996	644	311,100	223,640	188,035	283,290	212	46.0	5,289
1997	1,075	168,518	77,550	789,051	186,456	202	39.0	3,667
1998	518	113,435	273,197	502,655	332,022	184	43.0	4,397
1999	518	104,835	203,301	491,179	448,409	199	49.0	4,854
2000	1,220	90,076	96,207	156,619	199,836	168	33.0	2,408
2001	1,138	164,013	188,465	825,447	283,462	183	50.0	3,853
2002	446	56,135	226,560	82,951	112,541	154	47.0	2,683
2003	422	116,904	212,057	470,697	300,253	157	59.0	3,803
2004	2,735	116,259	138,631	245,237	110,574	151	55.0	2,735
2005	1,572	110,192	114,440	461,187	198,564	152	53.0	2,963
2006	1,948	91,980	69,015	149,907	268,436	143	45.0	2,035
2007	2,144	92,481	80,573	383,355	297,998	153	49.0	2,740
2008	1,619	30,533	116,074	90,217	102,156	144	46.0	2,195
2009	2,138	111,984	144,569	143,589	287,707	170	45.0	3,252
2010	2,473	112,450	225,550	309,795	97,948	180	47.0	3,161
2011	3,008	146,069	117,860	337,169	158,096	164	41.0	2,647
2012	1,853	45,466	121,418	129,646	104,307	133	40.0	1,929
2013	2,202	49,223	160,659	474,551	94,260	146	62.0	3,276
2014	2,092	58,430	286,815	415,392	106,243	143	58.0	3,280
2015	2,723	121,921	112,561	224,816	232,390	130	47.0	2,402
2016	2,094	106,649	122,101	358,309	130,236	138	47.0	2,642
2017	1,521	45,005	49,382	302,033	234,349	149	41.0	2,263
2018	3,247	25,203	112,000	348,277	176,392	151	41.0	2,663
2019	1,073	23,844	59,304	424,495	113,161	132	45.0	2,217
60-18	1,520	104,869	105,378	314,379	118,607	177	38	2,809
09-18	2,335	82,240	145,292	304,358	162,193	150	47	2,752

Appendix B. 2 Historic salmon harvest and effort in the Alaskan District 108 commercial gillnet fishery, 1962-2019.

Year	commercial gillnet fishery, 1962-2019.							
	Harvest					Boats	$\begin{aligned} & \text { Days } \\ & \text { Open } \end{aligned}$	Effort Permit Days
	Chinook	Sockeye	Coho	Pink	Chum			
1962	618	4,430	3,921	2,889	2,035			
1963	1,431	9,979	11,612	10,198	11,024			
1964	2,911	20,299	29,388	114,555	10,771			
1965	3,106	21,419	8,301	4,729	2,480			
1966	4,516	36,710	16,493	61,908	17,730			
1967	6,372	29,226	6,747	4,713	5,955			
1968	4,604	14,594	36,407	91,028	14,537			
1969	5,021	19,211	5,791	11,962	2,318	85	55	1,084
1970	3,199	15,121	18,529	20,523	12,304	94	54	1,222
1971	3,717	18,143	14,876	22,216	4,665	85	57	1,061
1972	9,342	51,725	38,440	17,197	17,442	146	64	2,094
1973	9,254	21,393	5,837	6,585	6,680	155	39	1,519
1974	8,199	2,428	16,021	4,188	2,107	140	31	1,240
1975	1,529	0	0	0	1	58	8	257
1976	1,123	18	6,074	722	124	70	20	372
1977	1,443	48,385	14,424	16,318	4,233	106	23	742
1978	531	56	32,650	1,157	1,001	112	12	565
1979	91	2,158	234	13,478	1,064	25	5	94
1980	631	14,053	2,946	7,224	6,910	62	22	327
1981	283	8,833	1,403	1,466	3,594	53	11	217
1982	1,052	7,136	20,003	16,174	734	96	21	494
1983	47	178	15,369	4,171	675	45	17	260
1984	14	1,290	5,141	4,960	1,892	15	16	88
1985	20	1,060	1,926	5,325	1,892	17	13	45
1986	102	4,185	7,439	4,901	5,928	48	25	216
1987	149	1,620	1,015	3,331	949	25	13	81
1988	206	1,246	12	144	3,109	21	8	60
1989	310	10,083	4,261	27,640	3,375	46	29	223
1990	557	11,574	8,218	13,822	9,382	55	34	359
1991	1,366	17,987	15,629	6,406	5,977	117	49	636
1992	967	52,717	22,127	66,742	15,458	135	51	1,247
1993	1,628	76,874	14,307	39,661	22,504	157	48	1,569
1994	1,996	97,224	44,891	35,405	27,658	179	58	2,198
1995	1,702	76,756	17,834	37,788	54,296	158	50	1,768
1996	1,717	154,150	19,059	37,651	135,623	190	57	2,393
1997	2,566	93,039	2,140	65,745	38,913	173	44	1,808
1998	460	22,031	19,206	39,246	41,057	119	45	947
1999	1,049	36,601	28,437	48,552	117,196	150	54	1,675
2000	1,671	15,833	5,651	9,497	40,337	100	35	606
2001	7	610	10,731	11,012	5,397	59	34	377
2002	25	208	21,131	4,578	2,017	42	30	323
2003	312	42,158	38,795	76,113	51,701	100	56	1,270
2004	7,410	103,392	26,617	20,439	37,996	124	53	1,830
2005	26,970	99,465	42,203	106,395	150,121	161	78	4,239
2006	30,033	61,298	34,430	56,810	343,827	160	64	3,437
2007	17,463	70,580	19,880	39,872	177,573	147	56	2,586
2008	14,599	35,679	34,479	18,105	81,876	171	58	2,895
2009	2,830	36,680	30,860	27,010	190,800	151	47	1,932
2010	2,359	32,737	42,772	58,610	51,005	146	45	1,382
2011	5,321	51,478	20,720	65,022	142,526	150	41	1,671
2012	8,027	21,997	20,100	16,374	240,569	128	43	1,642
2013	10,817	20,609	43,669	116,026	103,365	127	60	2,334
2014	8,023	19,808	30,184	33,830	84,771	107	62	1,501
2015	13,845	22,896	30,153	35,926	166,009	124	50	1,992
2016	10,024	70,143	22,146	35,250	200,653	141	58	2,342
2017	3,817	14,282	13,592	49,027	177,119	122	43	1,382
2018	2,649	5,731	8,823	15,643	133,812	103	40	1,064
2019	4,253	6,591	9,478	10,884	50,653	263	39	775
60-18	4,387	30,342	17,790	29,233	52,545	106	40	1,233
09-18	6,771	29,636	26,302	45,272	149,063	130	49	1,724

Appendix B. 3. District 108 total Chinook salmon estimates in the US gillnet, troll, recreational, and subsistence fisheries, 2005-2019.

Year	Subsistence		Sport		Drift Gillnet			Troll	
	Large	nonlarge	Large	Large non-Stikine	Large	Large non-Stikine	nonlarge	Large	Large non-Stikine
2005	15	8	3,242	240	23,932	1,690	2,636	5,014	684
2006	37	17	4,058	1,028	26,864	4,717	2,951	2,915	1,021
2007	28	15	3,881	608	14,421	4,716	2,787	2,459	646
2008	26	6	1,984	632	12,682	5,667	1,673	1,742	131
2009	31	19	907	146	1,901	1,264	601	312	519
2010	53	18	1,072	107	1,107	759	978	946	519
2011	61	20	1,273	210	2,801	1,690	1,831	631	168
2012	46	20	1,396	286	4,884	2,869	2,825	859	353
2013	41	36	1,297	125	6,676	4,503	3,733	680	246
2014	44	28	1,968	352	4,753	4,616	2,704	1,585	908
2015	34	19	1,739	693	8,020	8,361	4,640	684	340
2016	20	26	1,442	227	4,824	4,126	4,232	1,028	460
2017	14	43	656	406	2,221	2,149	1,107	115	80
2018	22	66	12	0	852	738	1,313	0	0
2019	19	52	186	70	2,447	2,515	1,629	0	0
Averages 09-18	37	30	1,176	255	3,804	3,108	2,396	684	359

Appendix B. 4. Annual estimates of Stikine River large Chinook salmon in the U.S. gillnet, troll, recreational, and subsistence and estimates of Stikine River bound Chinook salmon in District 108, 2005-2019.
GSI used for sport and gillnet. Troll is based on GSI 2005-2008 and CWT 2009-present.
For detailed GSI stock comp estimates see Appendix G. 5.

		D108 Large Stikine Chinook		Total Large	
Year	Subsistence	Sport	Gillnet	Troll	Stikine Chinook
2010		0.546	0.215		
2011		0.509	0.346		
2012		0.423	0.248		
2013		0.490	0.068		
2014		0.354	0.043		
2015		0.449	0.047		
2016		0.304	0.220		
2017	0.212	0.008			
2018		CWT estimate	0.006		
2019	0.012	0.046			
Average					
$10-17$		0.411	0.149		10,885
2005	15	3,665	21,233	2,969	7,335
2006	37	3,346	17,259	1,418	1,350
2007	36	2,218	7,057	1,574	1,303
2008	26	1,453	4,905	951	
2009	31	887	244	188	
2010	53	586	238	427	
2011	61	648	970	463	2,353
2012	46	591	1,209	506	1,566
2013	41	636	455	434	1,622
2014	44	697	204	677	1,500
2015	34	781	379	306	1,707
2016	20	438	1,060	190	207
2017	14	139	19	35	76
2018	22	12	5	36	133
2019	19	2	112	0	

Appendix B. 5. Chinook salmon harvest in the Alaskan District 106 and 108 test fisheries, 1984-2019.

Table only includes years when test fisheries were operated.				
	Large Chinook			
Year	Total 106	$106-41 / 42$	$106-30$	108
1984	13	13		37
1985	16	16	33	
1986	47	23	24	79
1987	25	24	1	30
1988	21	11	10	65
1989	15	11	4	15
1990	13	13		19
1991			21	
1992			26	
1993			30	
1994	0			

1998			0	
1999			29	
2000			21	
--				
2009			113	

Appendix B. 6. Chinook salmon harvest in the Canadian commercial and recreational fisheries in the Stikine River, 1979-2019.

Year	LRCF				URCF		Aboriginal Telegraph		Tahltan sport fishery		Total	
	Large		Nonlarge		$\frac{\text { Large }}{\text { Harvested }}$	Nonlarge Harvested	$\frac{\text { Large }}{\text { Harvested }}$	Nonlarge Harvested	Retained	Released	$\frac{\text { Large }}{\text { Harvested }}$	Nonlarge Harvested
	Harvested	Released	Harvested	Released								
1972											0	0
1973							200				200	0
1974							100				100	0
1975					178		1,024				1,202	0
1976					236		924				1,160	0
1977					62		100				162	0
1978					100		400				500	0
$1979{ }^{\text {b }}$	712		63				850		74	10	1,636	73
1980	1,488				156		587		136	18	2,367	18
1981	664				154		586		213	28	1,617	28
1982	1,693				76		618		181	24	2,568	24
1983	492		430		75		851	215	38	5	1,456	650
$1984{ }^{\text {c }}$							643	59	83	11	726	70
1985	256		91		62		793	94	92	12	1,203	197
1986	806		365		104	41	1,026	569	93	12	2,029	987
1987	909		242		109	19	1,183	183	138	18	2,339	462
1988	1,007		201		175	46	1,178	197	204	27	2,564	471
1989	1,537		157		54	17	1,078	115	132	18	2,801	307
1990	1,569		680		48	20	633	259	129	17	2,379	976
1991	641		318		117	32	753	310	129	17	1,640	677
1992	873		89		56	19	911	131	181	24	2,021	263
1993	830		164		44	2	929	142	386	52	2,189	360
1994	1,016		158		76	1	698	191	218	29	2,008	379
1995	1,067		599		9	17	570	244	107	14	1,753	874
1996	1,708		221		41	44	722	156	162	22	2,633	443
1997	3,283		186		45	6	1,155	94	188	25	4,671	311
1998	1,614		328		12	0	538	95	165	22	2,329	445
1999	2,127		789		24	12	765	463	166	22	3,082	1,286
2000	1,970		240		7	2	1,109	386	226	30	3,312	658
2001	826		59		0	0	665	44	190	12	1,681	115
2002	433		209		2	3	927	366	420	46	1,782	624
2003	695		672		19	12	682	373	167	46	1,563	1,103
2004	2,481		2,070		0	1	1,425	497	91	18	3,997	2,586
2005	19,070		1,181		28	1	800	94	118		20,016	1,276
2006	15,098		1,955		22	1	616	122	40		15,776	2,078
2007	10,131		1,469		10	25	364	233	0		10,505	1,727
2008	7,051		908		40	9	769	150	46		7,906	1,067
2009	1,587	339	498	153	11	26	496	136	20		2,114	660
2010	1,209	64	698	56	16	48	512	232	50		1,787	978
2011	1,737	58	1,260	100	2	14	515	218	53	23	2,307	1,515
2012	4,054	10	1,043	53	6	0	513	170	64		4,637	1,213
2013	1,086	1	815	37	8	0	809	508	50		1,953	1,323
2014	896	15	511	8	0	0	1,020	103	50	0	1,966	614
2015	3,134	0	1,339	0	1	0	1,022	198	76	25	4,233	1,562
2016	2,116	0	655	0	0	0	615	139	0	0	2,731	794
2017	312	258	610	9	0	0	281	178	0	0	593	788
2018	0	476	0	636	0	0	165	456	0	0	165	456
2019	0	376	0	272	0	0	333	237	0	0	333	237
Averages												
85-18	2,739		611		34	13	772	231	122		3,667	870
09-18	1,613	122	743	105	4	9	595	234	36		2,249	990

Appendix B. 7. Chinook salmon harvest in inriver test fisheries in the Stikine River,

Year	$1985-2019$											
	Drift		Set		Additional drift		Commercial license		Tuya		Total Fish	
	Large	Nonlarge										
1985											0	0
1986	27	12									27	12
1987	128		61								189	0
1988	168	14	101	15							269	29
1989	116	4	101	20							217	24
1990	167	6	64	12							231	18
1991	90	1	77	15							167	16
1992	135	27	62	21	417	134					614	182
1993	94	11	85	11	389	65					568	87
1994	43	4	74	34	178	40					295	78
1995	18	13	61	35	169	136					248	184
1996	42	5	64	40	192	31					298	76
1997	30	7									30	7
1998	25	11									25	11
1999	53	43	49	16	751	38					853	97
2000	59	4	87	0	787	14					933	18
2001	128	3	56	7	1,652	49					1,836	59
2002	63	50	48	56	1,545	217					1,656	323
2003	64	62	14	91	1,225	617					1,303	770
2004	29	41	22	39	0	0					51	80
2005	14	8	19	13	0	0					33	21
2006	0	0	0	0	0	0					0	0
2007	2	0	3	0	0	0					5	0
2008	7	2	6	8	0	0			13		26	10
2009	3	0	0	0	0	0			29		32	0
2010	2	0	3	1	0	0	1,364	140	8	8	1,377	149
2011	22	28	0	1	0	0	799	219	13	6	834	254
2012	54	31	8	8	0	0	467	49	44	5	573	93
2013	6	4	4	8	0	0	1,406	268	1	19	1,417	299
2014	18	12	5	6	0	0	1,319	127	19	5	1,361	150
2015	22	23	3	36	0	0	0	0			25	59
2016	16	12	5	4	0	0	483	39			504	55
2017	7	13	3	10	0	0	0	0			10	23
2018	0	0	0	0	0	0	0	0			0	0
2019	0	0	0	0	0	0	0	0			0	0
Averages												
85-18	50	14	36	17	292	54					485	97
09-18	15	12	3	7	0	0					613	108

Appendix B. 8. Index counts of Stikine River large Chinook salmon escapements, 19792019.

Appendix B. 9. General stock proportions and harvest of sockeye salmon in the Alaskan commercial gillnet fishery; District $106 \& 108,1982-2019$.

Estimates based on SPA 1982-2011; GSI 2012 to present.								
Year	Other	Total Stikine						
1982	0.806	0.194						
1983	0.884	0.116						
1984	0.926	0.074						
1985	0.898	0.102	0.881	0.119	0.930	0.070	0.064	0.936
1986	0.982	0.018	0.970	0.030	0.998	0.002	0.223	0.777
1987	0.983	0.017	0.982	0.018	0.984	0.016	0.125	0.875
1988	0.980	0.020	0.980	0.020	0.979	0.021	0.251	0.749
1989	0.968	0.032	0.956	0.044	0.984	0.016	0.171	0.829
1990	0.979	0.021	0.974	0.026	0.985	0.015	0.523	0.477
1991	0.876	0.124	0.837	0.163	0.940	0.060	0.291	0.709
1992	0.828	0.172	0.823	0.177	0.841	0.159	0.214	0.786
1993	0.738	0.262	0.696	0.304	0.808	0.192	0.345	0.655
1994	0.833	0.167	0.802	0.198	0.925	0.075	0.534	0.466
1995	0.876	0.124	0.851	0.149	0.921	0.079	0.339	0.661
1996	0.799	0.201	0.724	0.276	0.990	0.010	0.184	0.816
1997	0.847	0.153	0.807	0.193	0.944	0.056	0.188	0.812
1998	0.905	0.095	0.887	0.113	0.947	0.053	0.223	0.777
1999	0.763	0.237	0.719	0.281	0.867	0.133	0.180	0.820
2000	0.876	0.124	0.833	0.167	0.954	0.046	0.331	0.669
2001	0.857	0.143	0.829	0.171	0.901	0.099	0.874	0.126
2002	0.856	0.144	0.831	0.169	0.915	0.085	0.995	0.005
2003	0.838	0.162	0.796	0.204	0.971	0.029	0.345	0.655
2004	0.721	0.279	0.641	0.359	0.948	0.053	0.131	0.869
2005	0.791	0.209	0.744	0.256	0.939	0.061	0.306	0.694
2006	0.726	0.274	0.602	0.398	0.941	0.059	0.197	0.803
2007	0.591	0.409	0.493	0.507	0.943	0.057	0.312	0.688
2008	0.445	0.555	0.328	0.672	0.691	0.309	0.199	0.801
2009	0.618	0.382	0.540	0.460	0.832	0.168	0.183	0.817
2010	0.877	0.123	0.792	0.208	0.970	0.030	0.233	0.767
2011	0.790	0.211	0.691	0.309	0.956	0.044	0.197	0.803
2012	0.809	0.191	0.728	0.272	0.961	0.039	0.150	0.850
2013	0.754	0.246	0.655	0.345	0.939	0.061	0.254	0.746
2014	0.885	0.115	0.815	0.185	0.976	0.024	0.210	0.790
2015	0.885	0.115	0.817	0.183	0.979	0.021	0.297	0.703
2016	0.797	0.203	0.718	0.282	0.966	0.034	0.150	0.850
2017	0.782	0.218	0.681	0.319	0.957	0.043	0.153	0.847
2018	0.881	0.119	0.834	0.166	0.946	0.054	0.264	0.736
2019	0.770	0.230	0.678	0.322	0.908	0.092	0.145	0.855
Averages								
83-18	0.828	0.172	0.772	0.228	0.933	0.067	0.283	0.717
09-18	0.808	0.192	0.727	0.273	0.948	0.052	0.209	0.791
1982	156,130	37,671						
1983	43,192	5,650						
1984	84,902	6,751						
1985	237,929	27,058	151,525	20,563	86,404	6,495	68	992
1986	143,022	2,687	82,676	2,571	60,346	116	933	3,252
1987	134,083	2,344	77,752	1,413	56,331	931	203	1,418
1988	90,652	1,877	56,202	1,135	34,450	742	313	933
1989	186,562	6,172	103,099	4,787	83,463	1,385	1,725	8,358
1990	181,904	3,901	102,210	2,712	79,694	1,189	6,055	5,519
1991	126,240	17,864	74,767	14,588	51,473	3,277	5,233	12,754
1992	168,184	34,971	120,641	25,967	47,543	9,004	11,300	41,417
1993	151,918	54,037	90,421	39,438	61,497	14,599	26,500	50,374
1994	175,801	35,247	126,312	31,214	49,489	4,033	51,965	45,259
1995	181,619	25,679	113,848	19,865	67,771	5,814	26,015	50,741
1996	248,492	62,608	162,016	61,768	86,476	840	28,373	125,777
1997	142,766	25,752	95,719	22,956	47,047	2,796	17,533	75,506
1998	102,701	10,734	70,140	8,912	32,561	1,822	4,917	17,114
1999	80,026	24,809	52,717	20,608	27,313	4,197	6,578	30,023
2000	78,931	11,145	48,202	9,661	30,729	1,484	5,245	10,588
2001	140,590	23,423	82,215	17,004	58,375	6,419	533	77
2002	48,060	8,075	32,415	6,615	15,645	1,460	207	1
2003	97,984	18,920	70,483	18,112	27,501	808	14,526	27,632
2004	83,793	32,467	55,055	30,874	28,738	1,593	13,511	89,882
2005	87,144	23,048	62,221	21,426	24,923	1,622	30,403	69,062
2006	66,791	25,189	35,144	23,215	31,647	1,975	12,061	49,237
2007	54,625	37,855	35,691	36,720	18,934	1,136	22,027	48,554
2008	13,590	16,943	6,766	13,886	6,824	3,057	7,108	28,571
2009	69,179	42,805	44,431	37,795	24,749	5,009	6,712	29,968
2010	98,563	13,887	46,831	12,274	51,732	1,613	7,631	25,106
2011	115,324	30,765	63,576	28,380	51,748	2,385	10,127	41,351
2012	36,761	8,705	21,665	8,090	15,096	615	3,301	18,693
2013	37,109	12,114	21,030	11,070	16,079	1,044	5,243	15,366
2014	51,720	6,710	26,791	6,087	24,929	623	4,162	15,643
2015	107,892	14,028	57,830	12,947	50,063	1,080	6,809	16,087
2016	84,955	21,694	52,395	20,559	32,560	1,135	10,521	59,622
2017	35,216	9,789	19,372	9,072	15,844	717	2,189	12,093
2018	22,203	3,000	12,244	2,431	9,959	569	1,514	4,217
2019	18,357	5,487	9,727	4,617	8,631	869	957	5,634
Averages								
83-18	107,204	20,172	66,894	17,786	41,410	2,694	10,339	30,329
09-18	65,892	16,350	36,616	14,871	29,276	1,479	5,821	23,815

Appendix B. 10. Stikine River stock proportions and harvest of sockeye salmon in the
Alaskan commercial gillnet fishery; Districts 106 \& 108, 1982-2019.

Estimates based on SPA 1982-2011; GSI 2012 to present.												
		D106			106-41/42			D106-30			D108	
Year	All Tahltan	Mainstem	Tuya									
1982												
1983	0.103	0.013										
1984	0.029	0.044										
1985	0.091	0.011		0.109	0.010		0.056	0.013		0.292	0.644	
1986	0.014	0.004		0.024	0.006		0.000	0.002		0.094	0.683	
1987	0.010	0.007		0.015	0.003		0.004	0.012		0.438	0.437	
1988	0.020	0.001		0.019	0.001		0.021	0.000		0.178	0.571	
1989	0.006	0.026		0.009	0.036		0.002	0.015		0.034	0.795	
1990	0.005	0.016		0.008	0.018		0.001	0.013		0.111	0.366	
1991	0.100	0.024		0.129	0.034		0.052	0.008		0.395	0.314	
1992	0.070	0.102		0.088	0.089		0.022	0.138		0.258	0.528	
1993	0.098	0.164		0.134	0.169		0.036	0.156		0.256	0.399	
1994	0.142	0.025		0.166	0.032		0.069	0.006		0.362	0.103	
1995	0.081	0.043	0.001	0.099	0.048	0.001	0.047	0.032	0.000	0.455	0.200	0.006
1996	0.166	0.007	0.028	0.228	0.009	0.039	0.008	0.001	0.001	0.622	0.125	0.069
1997	0.058	0.016	0.079	0.079	0.014	0.101	0.009	0.021	0.026	0.362	0.189	0.261
1998	0.015	0.000	0.080	0.017	0.000	0.096	0.010	0.000	0.043	0.189	0.343	0.244
1999	0.057	0.118	0.061	0.074	0.128	0.079	0.018	0.095	0.020	0.414	0.205	0.201
2000	0.020	0.019	0.085	0.028	0.023	0.116	0.007	0.012	0.027	0.132	0.275	0.261
2001	0.039	0.025	0.079	0.032	0.028	0.112	0.049	0.021	0.029	0.000	0.121	0.005
2002	0.037	0.035	0.072	0.049	0.034	0.087	0.009	0.037	0.039	0.000	0.005	0.000
2003	0.075	0.035	0.053	0.097	0.040	0.068	0.005	0.019	0.005	0.179	0.414	0.062
2004	0.241	0.018	0.020	0.315	0.018	0.026	0.031	0.017	0.005	0.613	0.239	0.018
2005	0.182	0.027	0.000	0.227	0.029	0.000	0.041	0.020	0.000	0.437	0.257	0.000
2006	0.203	0.016	0.056	0.304	0.016	0.078	0.027	0.015	0.017	0.588	0.135	0.081
2007	0.322	0.005	0.082	0.403	0.005	0.099	0.028	0.007	0.021	0.474	0.067	0.147
2008	0.165	0.152	0.238	0.168	0.169	0.336	0.158	0.118	0.033	0.352	0.159	0.291
2009	0.215	0.077	0.090	0.287	0.068	0.104	0.016	0.103	0.050	0.360	0.232	0.225
2010	0.047	0.026	0.051	0.084	0.036	0.088	0.005	0.015	0.011	0.356	0.234	0.178
2011	0.094	0.050	0.066	0.146	0.065	0.098	0.005	0.025	0.013	0.445	0.216	0.142
2012	0.046	0.072	0.073	0.070	0.091	0.111	0.002	0.034	0.003	0.171	0.475	0.204
2013	0.068	0.118	0.060	0.099	0.156	0.089	0.008	0.047	0.007	0.180	0.440	0.125
2014	0.053	0.031	0.031	0.090	0.043	0.053	0.006	0.015	0.003	0.335	0.315	0.140
2015	0.038	0.030	0.046	0.064	0.041	0.077	0.002	0.015	0.004	0.294	0.276	0.132
2016	0.119	0.044	0.040	0.172	0.052	0.058	0.006	0.027	0.001	0.583	0.145	0.123
2017	0.154	0.043	0.020	0.237	0.053	0.029	0.013	0.027	0.004	0.465	0.331	0.051
2018	0.055	0.058	0.006	0.089	0.068	0.009	0.007	0.045	0.001	0.322	0.397	0.018
2019	0.139	0.089	0.002	0.221	0.099	0.001	0.015	0.075	0.002	0.489	0.364	0.003
Averages												
83-17	0.091	0.041	0.061	0.123	0.047	0.085	0.023	0.033	0.016	0.316	0.310	0.129
08-17	0.100	0.064	0.072	0.142	0.077	0.104	0.022	0.043	0.013	0.354	0.282	0.161
1982												
1983	5,020	631										
1984	2,673	4,078										
1985	24,045	3,013		18,801	1,762		5,244	1,251		310	683	
1986	2,081	606		2,070	501		11	105		393	2,858	
1987	1,376	968		1,155	258		221	710		710	708	
1988	1,813	64		1,071	64		742	0		222	711	
1989	1,111	5,061		957	3,830		154	1,231		341	8,017	
1990	915	2,986		801	1,911		114	1,075		1,280	4,239	
1991	14,364	3,501		11,541	3,048		2,823	453		7,112	5,642	
1992	14,187	20,784		12,961	13,005		1,226	7,778		13,599	27,818	
1993	20,204	33,833		17,446	21,992		2,758	11,841		19,688	30,686	
1994	29,876	5,371		26,164	5,050		3,712	321		35,222	10,037	
1995	16,715	8,839	125	13,292	6,448	125	3,423	2,391	0	34,950	15,330	461
1996	51,598	2,189	8,821	50,924	2,113	8,731	674	76	90	95,837	19,319	10,621
1997	9,764	2,756	13,232	9,327	1,692	11,937	437	1,064	1,295	33,644	17,574	24,288
1998	1,678	36	9,020	1,326	31	7,555	352	5	1,465	4,170	7,561	5,383
1999	5,986	12,399	6,424	5,421	9,405	5,782	563	2,993	641	15,156	7,497	7,371
2000	1,827	1,706	7,612	1,617	1,317	6,727	210	389	885	2,097	4,353	4,138
2001	6,339	4,119	12,965	3,164	2,777	11,063	3,175	1,342	1,902	0	74	3
2002	2,055	1,962	4,058	1,896	1,325	3,394	159	637	664	0	1	0
2003	8,736	4,039	6,145	8,595	3,501	6,016	141	538	129	7,562	17,455	2,615
2004	28,027	2,058	2,382	27,098	1,532	2,244	929	526	138	63,347	24,666	1,869
2005	20,080	2,968	0	18,979	2,447	0	1,101	521	0	43,467	25,595	0
2006	18,640	1,427	5,122	17,729	933	4,553	911	494	569	36,021	8,272	4,944
2007	29,759	484	7,612	29,196	342	7,182	563	142	430	33,439	4,716	10,398
2008	5,031	4,651	7,261	3,467	3,483	6,936	1,564	1,168	325	12,547	5,659	10,365
2009	24,085	8,640	10,080	23,623	5,583	8,589	462	3,057	1,491	13,188	8,508	8,271
2010	5,231	2,882	5,775	4,959	2,105	5,210	272	776	565	11,645	7,651	5,811
2011	13,750	7,323	9,693	13,454	5,954	8,972	296	1,368	721	22,916	11,127	7,307
2012	2,108	3,259	3,338	2,079	2,718	3,292	29	541	46	3,760	10,443	4,492
2013	3,326	5,810	2,978	3,192	5,013	2,866	134	797	112	3,720	9,065	2,582
2014	3,103	1,792	1,815	2,954	1,399	1,734	149	394	80	6,631	6,231	2,781
2015	4,676	3,699	5,652	4,562	2,925	5,460	114	773	193	6,728	6,326	3,033
2016	12,733	4,673	4,287	12,532	3,765	4,262	202	908	26	40,868	10,148	8,605
2017	6,943	1,953	893	6,732	1,511	830	211	443	63	6,637	4,730	727
2018	1,380	1,473	148	1,301	994	136	78	479	12	1,843	2,272	102
2019	3,316	2,130	40	3,176	1,422	20	140	709	21	3,220	2,396	18
Averages												
83-17	11,424	4,873	5,882	10,881	3,629	5,368	1,002	1,397	514	17,491	9,809	5,481
08-17	8,099	4,468	5,177	7,755	3,446	4,815	343	1,022	362	12,864	7,989	5,397

Appendix B. 11. Tahltan sockeye salmon stock proportions and harvest of in the Alaskan commercial gillnet fishery; Districts 106 \& 108, 1994-2019.

Year	D106			D106-41/42			D106-30			D108		
	All Tahltan	TahltanEnhance	WildTahltan									
1994	0.142	0.033	0.108	0.166	0.040	0.127	0.069	0.015	0.055	0.362	0.116	0.246
1995	0.081	0.036	0.044	0.099	0.051	0.049	0.047	0.010	0.036	0.455	0.257	0.198
1996	0.166	0.019	0.147	0.228	0.025	0.203	0.008	0.002	0.006	0.622	0.070	0.552
1997	0.058	0.021	0.037	0.079	0.023	0.056	0.009	0.015	-0.006	0.362	0.102	0.260
1998	0.015	0.002	0.013	0.017	0.003	0.014	0.010	0.000	0.010	0.189	0.008	0.182
1999	0.057	0.003	0.054	0.074	0.004	0.070	0.018	0.001	0.017	0.414	0.024	0.390
2000	0.020	0.003	0.017	0.028	0.004	0.024	0.007	0.000	0.007	0.132	0.032	0.100
2001	0.039	0.010	0.029	0.032	0.015	0.017	0.049	0.002	0.047	0.000	0.000	0.000
2002	0.037	0.012	0.024	0.049	0.017	0.031	0.009	0.000	0.009	0.000	0.000	0.000
2003	0.075	0.036	0.039	0.097	0.047	0.050	0.005	0.001	0.004	0.179	0.087	0.092
2004	0.241	0.097	0.144	0.315	0.125	0.191	0.031	0.020	0.011	0.613	0.252	0.361
2005	0.182	0.094	0.088	0.227	0.123	0.104	0.041	0.002	0.039	0.437	0.258	0.179
2006	0.203	0.113	0.090	0.304	0.174	0.130	0.027	0.007	0.020	0.588	0.331	0.257
2007	0.322	0.200	0.122	0.403	0.251	0.152	0.028	0.015	0.013	0.474	0.324	0.150
2008	0.165	0.073	0.091	0.168	0.106	0.062	0.158	0.004	0.154	0.352	0.165	0.186
2009	0.215	0.063	0.152	0.287	0.084	0.203	0.016	0.004	0.012	0.360	0.097	0.262
2010	0.047	0.019	0.027	0.084	0.034	0.049	0.005	0.002	0.003	0.356	0.143	0.213
2011	0.094	0.051	0.043	0.146	0.079	0.067	0.005	0.003	0.003	0.445	0.191	0.254
2012	0.046	0.019	0.028	0.070	0.028	0.042	0.002	0.002	0.000	0.171	0.062	0.109
2013	0.068	0.032	0.035	0.099	0.048	0.051	0.008	0.002	0.006	0.180	0.093	0.088
2014	0.053	0.027	0.027	0.090	0.044	0.046	0.006	0.004	0.002	0.335	0.176	0.159
2015	0.038	0.016	0.023	0.064	0.026	0.038	0.002	0.001	0.001	0.294	0.130	0.164
2016	0.119	0.042	0.078	0.172	0.060	0.111	0.006	0.002	0.004	0.583	0.190	0.392
2017	0.154	0.053	0.101	0.237	0.081	0.156	0.013	0.006	0.007	0.465	0.174	0.291
2018	0.055	0.028	0.026	0.089	0.048	0.041	0.007	0.001	0.006	0.322	0.154	0.167
2019	0.139	0.059	0.080	0.221	0.098	0.124	0.015	0.001	0.013	0.489	0.245	0.243
Averages												
94-18	0.108	0.044	0.064	0.145	0.062	0.083	0.023	0.005	0.019	0.348	0.137	0.210
09-18	0.089	0.035	0.054	0.134	0.053	0.080	0.007	0.003	0.004	0.351	0.141	0.210
1994	29,876	7,019	22,857	26,164	6,230	19,934	3,712	789	2,923	35,222	11,286	23,936
1995	16,715	7,533	9,182	13,292	6,778	6,514	3,423	755	2,668	34,950	19,726	15,224
1996	51,598	5,772	45,826	50,924	5,584	45,340	674	188	486	95,837	10,796	85,041
1997	9,764	3,483	6,281	9,327	2,733	6,594	437	750	-313	33,644	9,500	24,144
1998	1,678	201	1,477	1,326	201	1,125	352	0	352	4,170	170	4,000
1999	5,986	288	5,698	5,421	266	5,155	563	22	541	15,156	877	14,279
2000	1,827	254	1,573	1,617	254	1,363	210	0	210	2,097	506	1,591
2001	6,339	1,592	4,747	3,164	1,441	1,723	3,175	151	3,024	0	0	0
2002	2,055	680	1,375	1,896	680	1,216	159	0	159	0	0	0
2003	8,736	4,186	4,550	8,595	4,161	4,434	141	25	116	7,562	3,666	3,896
2004	28,027	11,306	16,721	27,098	10,713	16,385	929	593	336	63,347	26,073	37,274
2005	20,080	10,356	9,724	18,979	10,292	8,687	1,101	64	1,037	43,467	25,614	17,853
2006	18,640	10,363	8,277	17,729	10,126	7,603	911	237	674	36,021	20,259	15,762
2007	29,759	18,506	11,253	29,196	18,198	10,998	563	308	255	33,439	22,867	10,572
2008	5,031	2,240	2,791	3,467	2,196	1,271	1,564	44	1,520	12,547	5,899	6,648
2009	24,085	7,053	17,032	23,623	6,938	16,685	462	115	346	13,188	3,560	9,628
2010	5,231	2,140	3,091	4,959	2,035	2,924	272	105	167	11,645	4,665	6,980
2011	13,750	7,449	6,301	13,454	7,300	6,155	296	150	146	22,916	9,834	13,083
2012	2,108	852	1,256	2,079	824	1,255	29	28	1	3,760	1,372	2,388
2013	3,326	1,583	1,743	3,192	1,551	1,640	134	32	102	3,720	1,909	1,811
2014	3,103	1,553	1,550	2,954	1,446	1,508	149	107	42	6,631	3,484	3,147
2015	4,676	1,920	2,756	4,562	1,862	2,700	114	58	56	6,728	2,968	3,760
2016	12,733	4,452	8,282	12,532	4,401	8,131	202	51	151	40,868	13,355	27,514
2017	6,943	2,398	4,545	6,732	2,301	4,431	211	97	114	6,637	2,485	4,153
2018	1,380	716	664	1,301	704	598	78	12	66	1,843	885	958
2019	3,316	1,412	1,904	3,176	1,399	1,777	140	13	127	3,220	1,616	1,604
Averages												
94-18	12,538	4,556	7,982	11,743	4,369	7,375	794	187	607	21,416	8,070	13,346
09-18	7,734	3,012	4,722	7,539	2,936	4,603	195	75	119	11,794	4,452	7,342

Appendix B. 12. Stikine River sockeye salmon harvest in the U.S. Subsistence fishery, 2004-2019.

Stocks were proportioned based on using inriver stock comps									
	Stikine							TahltanEnhance	WildTahltan
Year	All Tahltan	Mainstem	Tuya	Total	All Tahltan	Mainstem	Tuya		
2004	0.664	0.311	0.026	243	161	75	6	65	96
2005	0.662	0.318	0.020	252	167	80	5	77	90
2006	0.672	0.185	0.144	390	262	72	56	146	116
2007	0.541	0.294	0.165	244	132	72	40	67	65
2008	0.385	0.289	0.326	428	165	124	139	80	85
2009	0.541	0.215	0.244	723	391	156	176	101	290
2010	0.417	0.294	0.289	1,653	689	485	479	184	505
2011	0.467	0.328	0.205	1,741	814	571	356	309	505
2012	0.246	0.492	0.262	1,302	320	641	341	113	207
2013	0.346	0.489	0.166	1,655	572	809	274	231	341
2014	0.523	0.223	0.255	1,527	798	340	389	381	418
2015	0.435	0.286	0.279	1,844	803	527	515	277	525
2016	0.611	0.245	0.144	2,126	1,298	521	307	383	916
2017	0.647	0.254	0.099	1,727	1,118	439	170	429	689
2018	0.609	0.357	0.034	1,732	1,056	618	58	671	385
2019	0.666	0.334	0.000	1,875	1,248	627	0	696	552

Appendix B. 13. Stock proportions of sockeye salmon in the Alaskan District 106 and 108 test fisheries, 1984-2019.

Year	Alaska	Canada	Stikine					
			All Tahltar	Tuya	Mainstem	Total	11tanEnhat	WildTahltan
Sub-district 106-41 (Sumner Strait) Proportions								
1984	0.658	0.269	0.029		0.044	0.074		
1985	0.480	0.401	0.109		0.010	0.119		
1986	0.834	0.149	0.008		0.009	0.017		
1987	0.816	0.166	0.015		0.003	0.018		
1988	0.868	0.098	0.034		0.000	0.034		
1989	0.624	0.304	0.017		0.056	0.072		
1990	0.548	0.416	0.014		0.022	0.035		

1994	0.500	0.250	0.250		0.000	0.250	0.083	0.167
Sub-district 106-41 (Sumner Strait) harvest								
1984	901	368	40		61	101		
1985	2,085	1,741	475		44	519		
1986	819	146	8		9	17		
1987	2,169	442	39		9	47		
1988	886	100	35		0	35		
1989	1,274	621	34		114	148		
1990	1,237	939	31		49	80		

1994	6	3	3		0	3		
Sub-district 106-30 (Clarence Strait) Proportions								
1986	0.726	0.272	0.000		0.002	0.002		
1987	0.844	0.140	0.004		0.012	0.016		
1988	0.746	0.254	0.000		0.000	0.000		
1989	0.514	0.486	0.000		0.000	0.000		
Subdistrict 106-30 (Clarence Strait) harvest								
1986	263	99	0		1	1		
1987	758	126	3		11	15		
1988	12	4	0		0	0		
1989	19	18	0		0	0		
District 106 Proportions								
1984	0.658	0.269	0.029		0.044	0.074		
1985	0.480	0.401	0.109		0.010	0.119		
1986	0.805	0.182	0.006		0.007	0.013		
1987	0.823	0.160	0.012		0.006	0.017		
1988	0.867	0.100	0.033		0.000	0.033		
1989	0.622	0.307	0.016		0.055	0.071		
1990	0.548	0.416	0.014		0.022	0.035		

1994	0.500	0.250	0.250		0.000	0.250	0.000	0.250
District 106 harvest								
1984	901	368	40		61	101		
1985	2,085	1,741	475		44	519		
1986	1,082	245	8		9	17		
1987	2,928	568	42		20	62		
1988	898	104	35		0	35		
1989	1,293	639	34		114	148		
1990	1,237	939	31		49	80		

1994	6	3	3		0	3	0	3
District 108 Proportions								
1985	0.064	0.000	0.292		0.644	0.936		
1986	0.134	0.044	0.486		0.336	0.822		
1987	0.125	0.000	0.438		0.437	0.875		
1988	0.205	0.049	0.132		0.614	0.746		
1989	0.132	0.084	0.072		0.712	0.784		
1990	0.417	0.172	0.094		0.318	0.411		
1991	0.128	0.128	0.494		0.251	0.745		
1992	0.149	0.076	0.333		0.442	0.774		
1993	0.168	0.109	0.475		0.248	0.719		

1998	0.064	0.041	0.353	0.438	0.104	0.895	0.016	0.336
1999	0.162	0.019	0.481	0.298	0.041	0.820	0.028	0.453
2000	0.110	0.116	0.302	0.321	0.150	0.774	0.062	0.240
District 108 harvest								
1985	81	0	367		810	1,177		
1986	76	25	274		190	464		
1987	36	0	127		127	254		
1988	93	22	59		277	336		
1989	137	87	75		739	814		
1990	361	149	81		275	356		
1991	114	114	441		224	665		
1992	194	99	432		574	1,006		
1993	51	33	144		75	219		

1998	224	145	1,238	1,538	365	3,141	57	1,181
1999	776	89	2,309	1,430	197	3,936	135	2,174
2000	516	544	1,416	1,505	705	3,626	291	1,125

Appendix B. 14. All harvest in of sockeye salmon in Canadian commercial and

 assessment fisheries, 1972-2019.| All Tuya Area fish considered to be Tuya fish. | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Commercial/FN | | | | Test | | | | | Tahltan Area | | Tuya Area | |
| Year | LRCF | URCF | Telegraphıtal Canadian aboriginal eaty harve | | Drift Net | Set Net | Additional Drifts | Tuya Assesment | Test total | ESSR | Oto samples | ESSR | Oto samples |
| 1972 | | | 4,373 | 4,373 | | | | | | | | | |
| 1973 | | | 3,670 | 3,670 | | | | | | | | | |
| 1974 | | | 3,500 | 3,500 | | | | | | | | | |
| 1975 | | 270 | 1,982 | 2,252 | | | | | | | | | |
| 1976 | | 733 | 2,911 | 3,644 | | | | | | | | | |
| 1977 | | 1,975 | 4,335 | 6,310 | | | | | | | | | |
| 1978 | | 1,500 | 3,500 | 5,000 | | | | | | | | | |
| 1979a | 10,534 | | 3,000 | 13,534 | | | | | | | | | |
| 1980 | 18,119 | 700 | 2,100 | 20,919 | | | | | | | | | |
| 1981 | 21,551 | 769 | 4,697 | 27,017 | | | | | | | | | |
| 1982 | 15,397 | 195 | 4,948 | 20,540 | | | | | | | | | |
| 1983 | 15,857 | 614 | 4,649 | 21,120 | | | | | | | | | |
| 1984 | | | 5,327 | 5,327 | | | | | | | | | |
| 1985 | 17,093 | 1,084 | 7,287 | 25,464 | | 1,340 | | | 1,340 | | | | |
| 1986 | 12,411 | 815 | 4,208 | 17,434 | 412 | | | | 412 | | | | |
| 1987 | 6,138 | 498 | 2,979 | 9,615 | 385 | 1,283 | | | 1,668 | | | | |
| 1988 | 12,766 | 348 | 2,177 | 15,291 | 325 | 922 | | | 1,247 | | | | |
| 1989 | 17,179 | 493 | 2,360 | 20,032 | 364 | 1,243 | | | 1,607 | | | | |
| 1990 | 14,530 | 472 | 3,022 | 18,024 | 447 | 1,493 | | | 1,940 | | | | |
| 1991 | 17,563 | 761 | 4,439 | 22,763 | 503 | 1,872 | | | 2,375 | | | | |
| 1992 | 21,031 | 822 | 4,431 | 26,284 | 393 | 1,971 | 594 | | 2,958 | | | | |
| 1993 | 38,464 | 1,692 | 7,041 | 47,197 | 440 | 1,384 | 1,925 | | 3,749 | 1,752 | | 0 | |
| 1994 | 38,462 | 2,466 | 4,167 | 45,095 | 179 | 414 | 840 | | 1,433 | 6,852 | | 0 | |
| 1995 | 45,622 | 2,355 | 5,490 | 53,467 | 297 | 850 | 1,423 | | 2,570 | 10,740 | | 0 | |
| 1996 | 66,262 | 1,101 | 6,918 | 74,281 | 262 | 338 | 712 | | 1,312 | 14,339 | | 216 | |
| 1997 | 56,995 | 2,199 | 6,365 | 65,559 | 245 | | | | 245 | | 378 | 2,015 | |
| 1998 | 37,310 | 907 | 5,586 | 43,803 | 190 | | | | 190 | | 390 | 6,103 | |
| 1999 | 32,556 | 625 | 4,874 | 38,055 | 410 | 803 | 4,683 | | 5,896 | | 429 | 2,822 | |
| 2000 | 20,472 | 889 | 6,107 | 27,468 | 374 | 1,015 | 989 | | 2,378 | | 406 | 1,283 | |
| 2001 | 19,872 | 487 | 5,241 | 25,600 | 967 | 2,223 | 91 | | 3,281 | | 50 | 0 | 410 |
| 2002 | 10,420 | 484 | 6,390 | 17,294 | 744 | 3,540 | 128 | | 4,412 | | 400 | 0 | 501 |
| 2003 | 51,735 | 454 | 6,595 | 58,784 | 997 | 2,173 | 186 | | 3,356 | | 400 | 7,031 | 0 |
| 2004 | 77,530 | 626 | 6,862 | 85,018 | 420 | 918 | 0 | | 1,338 | | 420 | 1,675 | 0 |
| 2005 | 79,952 | 605 | 5,333 | 85,890 | 339 | 1,312 | 0 | | 1,651 | | 400 | 0 | 148 |
| 2006 | 95,791 | 520 | 5,094 | 101,405 | 299 | 629 | 0 | | 928 | | 400 | 0 | 0 |
| 2007 | 56,913 | 912 | 2,188 | 60,013 | 435 | 673 | 0 | | 1,108 | | 200 | 0 | 151 |
| 2008 | 28,636 | 505 | 4,510 | 33,651 | 241 | 870 | 0 | 1,955 | 3,066 | | 100 | | 280 |
| 2009 | 39,409 | 2,476 | 5,148 | 47,033 | 250 | 1,092 | 0 | 2,144 | 3,486 | | 349 | | 214 |
| 2010 | 42,049 | 1,215 | 7,276 | 50,540 | 304 | 1,450 | 3 | 2,792 | 4,549 | | 158 | | 224 |
| 2011 | 47,575 | 972 | 6,893 | 55,440 | 590 | 2,525 | 21 | 2,878 | 6,014 | | 340 | | 153 |
| 2012 | 25,939 | 468 | 4,000 | 30,407 | 638 | 1,139 | 19 | 2,306 | 4,102 | | 224 | | 189 |
| 2013 | 24,290 | 876 | 7,528 | 32,694 | 294 | 1,008 | 24 | 2,144 | 3,470 | | 0 | | 207 |
| 2014 | 30,487 | 548 | 9,951 | 40,986 | 362 | 1,410 | 15 | 883 | 2,670 | | 400 | | 0 |
| 2015 | 51,660 | 202 | 8,184 | 60,046 | 468 | 1,397 | 0 | | 1,865 | | 0 | | |
| 2016 | 75,739 | 333 | 10,644 | 86,716 | 460 | 1,287 | 13 | | 1,760 | | 173 | | |
| 2017 | 32,849 | 322 | 8,578 | 41,749 | 276 | 1,632 | 0 | | 1,908 | | 0 | | |
| 2018 | 16,915 | 407 | 5,415 | 22,737 | 205 | 1,107 | 0 | | 1,312 | | 207 | | |
| 2019 | 10,772 | 40 | 5,401 | 16,213 | 0 | 0 | 0 | | 0 | | 212 | | |
| Avera | | | | | | | | | | | | | |
| 85-19 | 37,136 | 881 | 5,685 | 43,701 | 410 | 1,333 | | | 2,400 | | | | |
| 09-18 | 38,691 | 782 | 7,362 | 46,835 | 385 | 1,405 | | | 3,114 | | | | |

Appendix B. 15. Sockeye salmon stock proportions and harvest by stock in the Canadian commercial and assessment fishery in the Stikine River, 1979-2019.

Year	All Tahltan	$\begin{gathered} \hline \text { LRCF } \\ \hline \text { Mainstem } \\ \hline \end{gathered}$	Tuya	All Tahltan	URCFMainstem	Tuya	Telegraph Aboriginal			$\xrightarrow[\text { LRTF }]{\text { LIC }}$			Tuya Assessment		
							All Tahtan	Mainstem	Tuya	AllTahlan	Mainstem	Tuya	All Tahlan	Mainstem	Tuya
1972							0.900	0.100							
1973							0.900	0.100							
1974							0.900	0.100							
1975				0.900	0.100		0.900	0.100							
1976				0.900	0.100		0.900	0.100							
1977				0.900	0.100		0.900	0.100							
1978				0.900	0.100		0.900	0.100							
1979	0.433	0.567					0.900	0.100							
1980	0.309	0.691		0.900	0.100		0.900	0.100							
1981	0.476	0.524		0.900	0.100		0.900	0.100							
1982	0.624	0.376		0.900	0.100		0.900	0.100							
1983	0.422	0.578		0.900	0.100		0.900	0.100							
1984							0.900	0.100							
1985	0.623	0.377		0.900	0.100		0.900	0.100		0.372	0.628				
1986	0.489	0.511		0.900	0.100		0.900	0.100		0.352	0.648				
1987	0.225	0.775		0.900	0.100		0.900	0.100		0.273	0.727				
1988	0.161	0.839		0.900	0.100		0.900	0.100		0.282	0.718				
1989	0.164	0.836		0.900	0.100		0.900	0.100		0.258	0.742				
1990	0.346	0.654		0.900	0.100		0.900	0.100		0.454	0.546				
1991	0.634	0.366		0.900	0.100		0.900	0.100		0.608	0.392				
1992	0.482	0.518		0.900	0.100		0.900	0.100		0.646	0.354				
1993	0.537	0.463		0.900	0.100		0.900	0.100		0.583	0.417				
1994	0.616	0.384		0.900	0.100		0.900	0.100		0.857	0.143				
1995	0.676	0.304	0.020	0.900	0.075	0.025	0.900	0.075	0.025	0.803	0.189	0.008			
1996	0.537	0.350	0.113	0.858	0.005	0.136	0.839	0.021	0.141	0.667	0.245	0.088			
1997	0.356	0.372	0.272	0.524	0.097	0.379	0.521	0.101	0.378	0.396	0.384	0.220			
1998	0.335	0.313	0.352	0.400	0.030	0.570	0.421	0.023	0.555	0.368	0.363	0.268			
1999	0.576	0.183	0.241	0.574	0.096	0.330	0.623	0.085	0.292	0.514	0.221	0.265			
2000	0.252	0.350	0.397	0.252	0.094	0.654	0.284	0.063	0.653	0.254	0.333	0.413			
2001	0.175	0.599	0.226	0.437	0.092	0.470	0.342	0.097	0.561	0.208	0.510	0.282			
2002	0.320	0.552	0.128	0.376	0.128	0.496	0.422	0.084	0.494	0.391	0.451	0.157			
2003	0.427	0.412	0.161	0.696	0.084	0.220	0.605	0.157	0.238	0.448	0.424	0.128			
2004	0.707	0.276	0.016	0.861	0.072	0.067	0.909	0.002	0.089	0.512	0.455	0.033			
2005	0.761	0.221	0.018	0.962	0.017	0.021	0.956	0.031	0.013	0.542	0.453	0.005			
2006	0.747	0.075	0.178	0.852	0.015	0.133	0.780	0.089	0.131	0.355	0.631	0.014			
2007	0.635	0.173	0.191	0.658	0.299	0.043	0.643	0.316	0.042	0.262	0.662	0.076			
2008	0.470	0.141	0.389	0.719	0.095	0.186	0.729	0.088	0.183	0.385	0.348	0.266	0.278	0.233	0.489
2009	0.601	0.149	0.250	0.668	0.029	0.303	0.686	0.033	0.281	0.323	0.490	0.187	0.220	0.067	0.714
2010	0.456	0.188	0.356	0.565	0.007	0.428	0.570	0.017	0.413	0.258	0.634	0.108	0.427	0.061	0.512
2011	0.495	0.293	0.212	0.678	0.034	0.288	0.670	0.046	0.284	0.268	0.578	0.154	0.343	0.089	0.568
2012	0.274	0.476	0.250	0.460	0.011	0.529	0.475	0.033	0.491	0.242	0.443	0.315	0.091	0.026	0.883
2013	0.347	0.460	0.193	0.578	0.143	0.279	0.505	0.205	0.290	0.236	0.748	0.016	0.136	0.142	0.722
2014	0.547	0.210	0.243	0.564	0.057	0.379	0.584	0.064	0.353	0.450	0.306	0.243	0.490	0.030	0.480
2015	0.444	0.266	0.290	0.587	0.035	0.378	0.584	0.020	0.396	0.516	0.172	0.312			
2016	0.687	0.147	0.166	0.812	0.002	0.186	0.804	0.002	0.194	0.539	0.279	0.182			
2017	0.695	0.193	0.113	0.633	0.079	0.288	0.596	0.062	0.342	0.665	0.281	0.054			
2018	0.650	0.314	0.035	0.963	0.020	0.017	0.965	0.020	0.015	0.650	0.324	0.026			
2019	0.790	0.210	0.000	0.980	0.000	0.000	0.980	0.020	0.000						
Averages															
79-18	0.480	0.397	0.201	0.742	0.079	0.283	0.745	0.083	0.286						
09-18	0.519	0.270	0.211	0.651	0.042	0.307	0.644	0.050	0.306	0.415	0.426	0.160			
1972							3,936	437							
1973							3,303	367							
1974							3,150	350							
1975				243	27		1,784	198							
1976				660	73		2,620	291							
1977				1,778	198		3,902	434							
1978				1,350	150		3,150	350							
1979	4,561	5,973					2,700	300							
1980	5.599	12,520		630	70		1,890	210							
1981	10,258	11,293		692	77		4,227	470							
1982	9,608	5,789		176	20		4,453	495							
1983	6,692	9,165		553	61		4,184	465							
1984							4,794	533							
1985	10,649	6,444		976	108		6,558	729		499	841				
1986	6,069	6,342		734	82		3,787	421		145	267				
1987	1,380	4,758		448	50		2,681	298		455	1,213				
1988	2,062	10,704		313	35		1,959	218		352	895				
1989	2,813	14,366		444	49		2,124	236		415	1,192				
1990	5,029	9,501		425	47		2,720	302		881	1,059				
1991	11,136	6.427		685	76		3,995	444		1,443	932				
1992	10,134	10,897		740	82		3,988	443		1,912	1,046				
1993	20,662	17,802		1,523	169		6,337	704		2,184	1,565				
1994	23,678	14,784		2,219	247		3,750	417		1,228	205				
1995	30,848	13,881	893	2,120	176	60	4,941	410	139	2,064	486	20			
1996	35,584	23,213	7,465	945	6	150	5,802	144	972	875	321	116			
1997	20,269	21,213	15,513	1,152	213	834	3,318	644	2,403	97	94	54			
1998	12,498	11,675	13,137	363	27	517	2,352	131	3,103	70	69	51			
1999	18,742	5,952	7,862	359	60	206	3,038	413	1,423	3,031	1,301	1,564			
2000	5,165	7,171	8,136	224	84	581	1,733	385	3,989	605	791	982			
2001	3,482	11,907	4,483	213	45	229	1,795	507	2,939	684	1,673	924			
2002	3,335	5,750	1,335	182	62	240	2,697	538	3,155	1,726	1,992	694			
2003	22,067	21,333	8,335	316	38	100	3,987	1,037	1,571	1,505	1,423	428			
2004	54,841	21,415	1,276	539	45	42	6,240	14	608	686	608	44			
2005	60,881	17,634	1,437	582	10	13	5,099	163	71	895	748	8			
2006	71,573	7,139	17,079	443	8	69	3,974	452	668	329	586	13			
2007	36,167	9,855	10,891	600	273	39	1,406	691	91	290	734	84			
2008	13,455	4,028	11,153	363	48	94	3,287	398	825	428	387	296	543	455	956
2009	23,666	5,891	9,852	1,654	73	749	3,530	169	1,449	434	657	251	471	144	1,530
2010	19,185	7,899	14,965	687	9	520	4,145	127	3,004	453	1,114	190	1,192	171	1,429
2011	23,530	13,939	10,106	659	33	280	4,620	316	1,957	841	1,813	482	988	257	1,634
2012	7,102	12,352	6,485	215	5	248	1,901	133	1,966	434	796	566	210	60	2,036
2013	8,430	11,182	4,679	506	126	244	3,804	1,540	2,183	313	992	21	292	305	1,547
2014	16,678	${ }^{6,391}$	7,418	309	31	207	5,809	634	3,508	805	547	435	433	26	424
2015	22,924	13,736	15,000	119	7	76	4,780	165	3,239	962	321	582			
2016	52,021	11,151	12,568	270	1	62	8.561	21	2,062	949	492	320			
2017	22,823	6.325	3,701	204	25	93	5.111	534	2,933	1,270	536	103			
2018	10,999	5,318	598	392	8	7	5,227	108	80	852	426	34			
2019	8.513	2,259	0	39	0	0	5,293	108	0						
Averages															
$\begin{array}{r}79-18 \\ \hline 09-18 \\ \hline\end{array}$	18,631 20,736	10,849 9,418	8,099 8,537	631 502	68 32	236 249	$\begin{aligned} & 3,933 \\ & 4,749 \end{aligned}$	$\begin{gathered} 409 \\ 375 \\ \hline \end{gathered}$	2,238	731	769	298			

Appendix B. 16. Tahltan sockeye salmon stock proportions and harvest by stock in the Canadian commercial and assessment fishery in the Stikine River, 1979-2019.

Year	LRCF			URCF			Telegraph Aboriginal			LRTF			Tuya Assessment		
	All Tahltan	TahltanEnhance	WildTahltan												
1994	0.616	0.000	0.616	0.900	0.128	0.772	0.900	0.128	0.772	0.857	0.000	0.857			
1995	0.676	0.195	0.481	0.900	0.260	0.640	0.900	0.260	0.640	0.803	0.284	0.519			
1996	0.537	0.066	0.471	0.858	0.110	0.748	0.839	0.126	0.713	0.667	0.082	0.585			
1997	0.356	0.072	0.284	0.524	0.108	0.416	0.521	0.108	0.413	0.396	0.082	0.314			
1998	0.335	0.020	0.315	0.400	0.030	0.370	0.421	0.022	0.399	0.368	0.021	0.347			
1999	0.576	0.021	0.554	0.574	0.005	0.570	0.623	0.028	0.596	0.514	0.019	0.495			
2000	0.252	0.039	0.213	0.252	0.000	0.252	0.284	0.009	0.275	0.254	0.040	0.215			
2001	0.175	0.032	0.143	0.437	0.133	0.304	0.342	0.065	0.277	0.208	0.038	0.171			
2002	0.320	0.074	0.246	0.376	0.087	0.289	0.422	0.095	0.327	0.391	0.091	0.300			
2003	0.427	0.131	0.296	0.696	0.214	0.482	0.605	0.201	0.403	0.448	0.111	0.337			
2004	0.707	0.285	0.422	0.861	0.380	0.481	0.909	0.371	0.538	0.512	0.207	0.305			
2005	0.761	0.352	0.409	0.962	0.240	0.722	0.956	0.235	0.721	0.542	0.198	0.344			
2006	0.747	0.416	0.331	0.852	0.421	0.431	0.780	0.382	0.398	0.355	0.197	0.158			
2007	0.635	0.321	0.315	0.658	0.235	0.423	0.643	0.237	0.406	0.262	0.105	0.157			
2008	0.470	0.228	0.242	0.719	0.121	0.598	0.729	0.121	0.608	0.385	0.183	0.203	0.278	0.122	0.156
2009	0.601	0.155	0.445	0.668	0.158	0.511	0.686	0.143	0.542	0.323	0.093	0.230	0.220	0.038	0.182
2010	0.456	0.122	0.334	0.565	0.221	0.345	0.570	0.227	0.342	0.258	0.060	0.198	0.427	0.190	0.237
2011	0.495	0.188	0.307	0.678	0.240	0.438	0.670	0.223	0.447	0.268	0.115	0.153	0.343	0.127	0.216
2012	0.274	0.096	0.177	0.460	0.152	0.308	0.475	0.173	0.302	0.242	0.115	0.127	0.091	0.037	0.054
2013	0.347	0.140	0.207	0.578	0.227	0.351	0.505	0.216	0.289	0.236	0.029	0.207	0.136	0.067	0.069
2014	0.547	0.261	0.286	0.564	0.233	0.332	0.584	0.238	0.346	0.450	0.199	0.252	0.490	0.120	0.370
2015	0.444	0.153	0.290	0.587	0.242	0.345	0.584	0.225	0.359	0.516	0.207	0.309			
2016	0.687	0.202	0.484	0.812	0.223	0.589	0.804	0.238	0.567	0.539	0.185	0.353			
2017	0.695	0.267	0.428	0.633	0.087	0.546	0.596	0.099	0.497	0.665	0.279	0.387			
2018	0.650	0.413	0.237	0.963	0.205	0.758	0.965	0.277	0.688	0.650	0.363	0.287			
2019	0.790	0.441	0.349	0.980	0.000	0.980	0.980	0.559	0.421						
Averages															
09-18	0.519	0.200	0.320	0.651	0.199	0.452	0.644	0.206	0.438	0.415	0.164	0.250			
1994	23,678	0	23,678	2,219	315	1,904	3,750	533	3,217	1,228	0	1,228			
1995	30,848	8.912	21,936	2,120	612	1,508	4,941	1,427	3,514	2,064	729	1,335			
1996	35,584	4,387	31,197	945	121	824	5,802	871	4,931	875	108	767			
1997	20,269	4,094	16,175	1,152	238	914	3,318	687	2,631	97	20	77			
1998	12,498	747	11,751	363	27	336	2,352	125	2,227	70	4	66			
1999	18,742	696	18,046	359	3	356	3,038	135	2,903	3,031	113	2,918			
2000	5.165	801	4,364	224	0	224	1,733	52	1,681	605	94	511			
2001	3,482	632	2,850	213	65	148	1,795	341	1,454	684	124	560			
2002	3,335	776	2.559	182	42	140	2,697	605	2,092	1,726	402	1,324			
2003	22,067	6,763	15,304	316	97	219	3.987	1,328	2,659	1,505	374	1,131			
2004	54,841	22,124	32,717	539	238	301	6,240	2,549	3,691	686	277	409			
2005	60,881	28,174	32,707	582	145	437	5,099	1,254	3,845	895	327	568			
2006	71,573	39,888	31,685	443	219	224	3,974	1,946	2,028	329	183	146			
2007	36,167	18,266	17,901	600	214	386	1,406	518	888	290	116	174			
2008	13,455	6.533	6.922	363	61	302	3,287	547	2,740	428	203	225	543	239	304
2009	23,666	6,124	17,542	1,654	390	1,264	3,530	738	2,791	434	125	309	471	81	390
2010	19,185	5,126	14,059	687	268	419	4,145	1,654	2,490	453	105	348	1,192	530	662
2011	23,530	8.924	14,606	659	234	425	4,620	1,540	3,080	841	361	480	988	365	622
2012	7,102	2,498	4,604	215	71	144	1,901	692	1,209	434	206	228	210	86	124
2013	8,430	3,401	5,028	506	199	307	3,804	1,628	2,176	313	38	275	292	143	149
2014	16,678	7,953	8,725	309	127	182	5,809	2,369	3,440	805	355	450	433	106	327
2015	22,924	7,922	15,002	119	49	70	4,780	1,839	2,941	962	385	577			
2016	52,021	15,332	36,688	270	74	196	8.561	2,529	6,031	949	326	622			
2017	22,823	8,763	14,060	204	28	176	5,111	847	4,264	1,270	532	738			
2018	10,999	6.991	4,007	392	84	309	5,227	1,502	3,725	852	476	376			
2019	8.513	4,749	3,764	39	0	39	5,293	3,017	2,276						
Averages															
09-18	20,736	7,304	13,432	502	152	349	4,749	1,534	3,215	731	291	440			

Appendix B. 17. Tahltan Lake weir data with enhanced and wild Tahltan fish, 19792019.

Year	Weir count			Actual escapement			Broodstock taken			Sockeye otolith samples			Natural spawners		
	Total	TahltanEshance	WildTahlitan	Total	TahltanEnhance	Wildrahtan	Total	TahltanEnhance	WildTahltan	Total	TahltanEnhance	Wildatahtan	Total	TailtanEnhance	Wildrahlan
1979	10,211			10,211											
1980	11,018			11,018											
1981	50,790			50,790											
1982	28,257			28.257											
1983	21,256			21,256											
1984	32,777			32,777											
1985	67.326			67.326											
1986	20,280			20,280											
1987	6.958			6.958											
1988	2.536			2.536											
1989	8.316			${ }_{8,316}$			2,210								
1990	14.927			14.927			3,302								
1991	50,135			50,135			3,552								
1992	59,907			59,907			3,694								
1993	53,362	1.167	52,195	51,610	1.129	50,481	4.506	99	4.407				47,104	1,030	46,074
1994	46.363	7.919	38,444	39,511	6,749	32,762	3.378	577	2,801				36,133	6.172	29.961
1995	42.317	15.997	26.320	31.577	11,937	19,640	4.902	1.853	3,049				26,675	10,084	16.591
1996	52,500	6.121	46,379	38.161	4,449	33,712	4.402	513	3.889				33,759	3.936	29.823
1997	12,483	2.521	9,962	12,105	2,445	9,660	2,294	463	1,831	378	76	302	9,811	1,982	7.829
1998	12,658	717	11.941	12,268	691	11.577	3,099	75	3,024	390	26	364	9,169	616	8.553
1999	10,748	719	10,029	10,319	690	9,629	2,870	193	2,677	429	29	400	7,449	497	6.952
2000	${ }_{6,076}$	1,230	4,846	5.670	1,148	4.522	1,717	347	1,370	406	82	324	${ }^{3,953}$	801	3,152
2001	14.811	5.865	8.946	14,761	5.845	8.916	2,386	945	1,441	50	20	${ }^{30}$	12,375	4,900	7.475
2002	17,740	5,212	12,528	17,340	5,097	12,243	3,051	1,298	1,753	400	115	285	14,289	3,799	10,490
2003	53,933	23.595	30.338	53.533	23,420	30,113	3.946	1,726	2,220	400	175	225	49,587	21,694	27,893
2004	63,372	31,439	31,933	62.952	31,244	31708	4.243	1,250	2,993	420	195	225	58,709	29.994	28,715
2005	43,446	17,928	25.518	43,046	17,770	25,276	3,424	1,350	2,074	400	158	242	39,622	16.420	23,202
2006	53,855	25.966	27,889	53,455	25,772	27,683	3,403	1,646	1,757	400	194	206	50,052	24,126	25.926
2007	21,074	8.966	12,108	20,874	8,881	11,993	2,839	1,208	1,631	200	85	115	18.035	7,673	10,362
2008	10.516	5,344	5.172	10.416	5,295	5.121	2.364	1,152	1,212	100	49	51	8.052	4,143	3,909
2009	30.673	5,030	25,643	30.324	4,971	25,353	3,011	930	2,081	349	59	290	27,313	4,041	23,272
2010	22.860	9,670	13,190	22,702	9.596	13,106	4.484	1,807	2.677	158	74	84	18,218	7,789	10,429
2011	34.588	12,123	22,465	34,248	12.017	22,231	4.559	1,769	2,790	340	106	234	29,689	10,248	19,441
2012	13,687	5.851	7,836	13,463	5,764	7,699	3,949	1,836	2,113	224	87	137	9.514	3,928	5.586
2013	15.828	8.026	7,802	15.828	8,026	7,802	3,196	1,643	1.553	0	0	0	12,632	6.383	6.249
2014	40,145	19,189	20,956	39.745	18.998	20,747	2,881	1,622	1,259	400	191	209	36,864	17.376	19,488
2015	33,159	16.204	16.955	33,159	16,204	16.955	3.871	1.892	1.979	0	0	0	29,288	14.312	14.976
2016	38,631	14.969	23,665	38.458	14.917	23,544	4.315	1,672	2,643	173	52	121	34,143	13.245	20,901
2017	19,241	10,044	9,197	19,241	10,044	9,197	2,909	1.518	1,391	0	0	0	16.332	8.525	7.807
2018	16.557	8.273	8.284	16.350	8.146	8.204	1.878	936	942	207	127	80	14,472	7.210	7.262
2019	36,999	20,438	16.561	36,787	20.320	16.467	3.579	1.283	2,296	212	117	95	33.208	19,037	14,171
$\begin{gathered} \text { Averages } \\ 09-18 \end{gathered}$	26.537	10,938	15,599	26,352	10.868	15,484	3.505	1.563	1,943	185	70	116	22.847	9,306	13,541

Appendix B. 18. Sockeye salmon harvest by stock in the Stikine River under Canadian ESSR licenses, 1992-2019.

Year	Tahltan Area ESSR License			Tuya Area ESSR		
	All Tahltan	TahltanEnhance	WildTahltan	Tuya	Total	otolith samples
1993	1,752	38	1,714		0	
1994	6,852	1,170	5,682		0	
1995	10,740	4,060	6,680		0	
1996	14,339	1,672	12,667	216	14,555	
1997				2,015	2,015	
1998				6,103	6,103	
1999				2,822	2,822	
2000				1,283	1,283	
2001					0	410
2002					0	501
2003				7,031	7,031	
2004				1,675	1,675	
2005					0	148
2006					0	0
2007					0	151
2008						280
2009						214
2010						224
2011						153
2012						189
2013						207
2014						0

Appendix B. 19. Estimated proportion of inriver run comprised of Tahltan, Tuya, and mainstem sockeye salmon, 1979-2019.

In 1979-1988, there were US estimates and 1983-1988, they overlapped with estimates from Canada and the All tahltan estimate was oftened averaged. The estimates are from the LRCF, test, or average of LRCF and Test.				
Year	All Tahltan	Mainstem	Tuya	Type
1979	0.433	0.567		
1980	0.305	0.695		
1981	0.475	0.525		
1982	0.618	0.382		
1983	0.456	0.544		
1984	0.493	0.507		
1985	0.466	0.534		
1986	0.449	0.551		
1987	0.304	0.696		
1988	0.172	0.828		
1989	0.188	0.812		
1990	0.417	0.583		
1991	0.561	0.439		
1992	0.496	0.504		
1993	0.477	0.523		
1994	0.606	0.394		LRCF
1995	0.578	0.406	0.016	LRCF
1996	0.519	0.377	0.104	LRCF
1997	0.297	0.474	0.229	LRCF
1998	0.309	0.344	0.348	LRCF
1999	0.545	0.209	0.245	LRCF
2000	0.260	0.349	0.391	LRCF
2001	0.202	0.530	0.268	test
2002	0.360	0.498	0.141	test
2003	0.421	0.421	0.158	test
2004	0.664	0.311	0.026	LRCF
2005	0.662	0.318	0.020	LRCF
2006	0.672	0.185	0.144	LRCF
2007	0.541	0.294	0.165	LRCF
2008	0.385	0.289	0.326	LRCF
2009	0.541	0.215	0.244	average
2010	0.417	0.294	0.289	average
2011	0.467	0.328	0.205	LRCF
2012	0.246	0.492	0.262	average
2013	0.346	0.489	0.166	average
2014	0.523	0.223	0.255	average
2015	0.435	0.286	0.279	LRCF
2016	0.611	0.245	0.144	LRCF
2017	0.647	0.254	0.099	LRCF
2018	0.609	0.357	0.034	LRCF
2019	0.666	0.334		age of 10 yrs
Averages				
79-18	0.454	0.432		
09-18	0.484	0.318	0.198	

Appendix B. 20. Aerial survey counts of Mainstem sockeye salmon stocks in the Stikine River drainage, 1984-2019.

Appendix B. 21. Stikine River sockeye salmon run size, 1979-2019.

Year	All Tailtan					Stikine Mainstem					All Taillan + Mainstem				
	Above border	Canadian		U.S.	Terminal	Above border	Canadian		U.S.	Terminal	Above border	Canadian		U.S.	Terminal
	Run	Harvest	Escapement	Harvest	Run	Run	Harvest	Escapement	Harvest	Run	Run	Harvest	Escapement	Harvest	Run
1979	17,472	7,261	10,211	5,076	22.548	22,880	${ }_{6}^{6,273}$	16,608	3,223	26,103	40,353	13,534	26.819	8,299	48,652
1980	19,137	8.119	11,018	11,239	${ }^{30,376}$	43,606	12,800	30,806	11.967	55,573	62,743	20,919	41.824	23,206	85.949
1981	65.968	15.178	50,790	16.189	82,157	72,911	11.839	61,072	11,349	84,260	138.879	27,017	111.862	27.538	166,417
1982	42,493	14,236	28,257	20.981	63,474	26,267	6,304	19,964	21,501	47,768	68,761	20.540	48,221	42,482	111,243
1983	32,684	11,428	${ }^{21,256}$	5,075	37,759	38,999	9,692	29,307	699	${ }^{39,698}$	71,683	21,120	50.563	5,774	77,457
1984	37.571	4,794	32,777	3,114	40,685	38,640	533	38,107	4,636	43.276	76.211	5.327	70,884	7,750	83.961
1985	86,008	18,682	67,326	25,197	111,205	98,739	8,122	90,617	4,550	103,289	184,747	26,804	157.943	29,747	214,494
1986	31,015	10,735	20,280	2,757	33,771	38,022	7,111	30,910	3,663	41,685	69,036	17,846	51,190	${ }_{6,420}$	75,456
1987	11,923	4.965	6.958	2,255	14,178	27,342	6.318	21,023	1,822	29,164	39,264	11,283	27,981	4,077	43.342
1988	7.222	4,686	2.536	2,129	9,351	34,693	11,852	22,841	1,052	35,745	41,915	16.538	25,377	3,181	45,096
1989	14,111	5,795	8.316	1.561	15,672	60.947	15,844	45,103	13,931	74,878	75,058	21,639	53,419	15,492	90.550
1990	23.982	9.055	14.927	${ }^{2}, 307$	26,289	33,547	10.909	22,638	7.549	${ }^{41,096}$	57.529	19.964	37.565	9.856	${ }^{67,385}$
1991	67,394	17,259	50,135	21,916	89,311	52,759	7.879	44,880	9.368	${ }^{62,126}$	120,153	25,138	95,015	31,284	151,437
1992	76,680	16,773	59,907	28,218	104,899	77,861	12,469	65,392	49,176	127,037	154.541	29,242	125,299	77,394	231,935
1993	84.068	32,458	51,610	40.036	124,104	92,033	20.240	71,792	${ }_{64,594}$	156,627	176,100	52,698	123,402	104,630	280,730
1994	77,239	37,728	39,511	65,101	142,340	50,288	15,652	34,636	15,408	65,996	127.527	53,380	74,147	80.509	208,036
1995	82,290	50,713	31.577	51,665	133,955	57,802	14,953	42,850	24,169	81,971	140,092	65,665	74.427	75,834	${ }^{215,926}$
1996	95,706	57,545	38,161	147,435	243,141	69,536	23,684	45,852	21,508	91,044	165,242	81,229	84,013	168,943	334,185
1997	37,319	25,214	12,105	43,408	${ }^{80,727}$	59,600	22,164	37,436	20.330	79,930	96,919	47,378	49.541	63,738	160,657
1998	27,941	15,673	12,268	7,086	35,027	31,077	11,902	19,175	7.962	39,039	59,018	27.575	31,443	15,048	74,066
1999	35,918	25,599	10,319	23,449	59.367	13,797	7,726	6.071	20,092	33,889	49,715	33,325	16.390	43,541	93,256
2000	13.803	8.133	5.670	5.340	19,143	18.563	8.431	10,132	6.764	25,327	${ }^{32,366}$	16.564	15,802	12,104	44,470
2001	20,985	6,224	14,761	6,339	27,324	54,987	14,132	40,855	4,193	59,180	75,972	20,356	55,616	10.532	86.504
2002	25,680	8.340	17,340	2,055	27,735	35,496	8.342	27,154	1.963	37,459	61,176	16,682	44,494	4,018	65,194
2003	81,808	28,275	53,533	16,298	98,106	81,803	23,831	57,972	21,494	103,297	163,611	52,106	${ }^{111,505}$	37,792	201,403
2004	125,677	62,725	62.952	91,535	217,213	58.809	22,080	36,728	26,799	85,608	184,486	84,806	99,680	118,335	302,821
2005	110,903	67,857	43,046	63,714	174,617	53,343	18.555	34,788	28,517	81,860	164,245	86,412	77,834	92,231	256,476
2006	130,174	76,719	53,455	54,923	185,097	35,788	${ }^{8,185}$	27,603	9,772	45,560	165,962	84,904	81,058	64,695	230,657
2007	59,537	38,663	20,874	63,330	122,867	32,418	11.553	20,865	5,274	37,692	91,955	50,216	41,739	68,604	160.559
2008	28.592	18,176	10,416	17,743	46,335	21,494	5.316	16,178	10,434	31.928	50,087	23,493	26,594	28,177	78,264
2009	60.428	30,104	${ }^{30,324}$	37,664	98,092	24,082	6.933	17,148	17.304	${ }^{41,385}$	84.509	37,037	47,472	54,968	139,477
2010	48,521	25,819	22,702	17,565	${ }_{66,086}$	34,152	9,320	24,831	11,018	45,169	82,672	35,139	47,533	28.583	111,255
2011	65,226	30,978	34,248	37,480	102,706	45,750	16,357	29,393	19,021	64,771	110,977	47,335	63,641	56,501	167,477
2012	23,550	10,087	13,463	6,188	29,738	47,158	13,347	33,812	14,340	${ }^{61,498}$	70,708	23,433	47,275	20.528	91,236
2013	29,173	13,345	15,828	7,618	36,791	41,236	14,144	27,091	15,684	56,920	70,408	27,489	42,919	23,302	93,710
2014	67,673	24,434	39,745	10.533	74,712	23,828	7.630	19,691	${ }_{8,363}$	35,685	91.501	32,064	59,436	18,896	110,397
2015	${ }^{61,944}$	28,785	33,159	12,207	74,151	40,661	14,229	26,432	10.552	51,212	102,605	43,014	59,591	22,759	125,363
2016	100,431	61,973	38,458	54.900	155,331	40,310	11,665	28,646	15,343	55,653	140,742	73,638	67,104	70,243	210,984
2017	48,649	29,408	19,241	14,698	63,347	19,098	7,420	11,678	7.122	26,220	67,747	36,828	30.919	21,820	${ }^{89,566}$
2018	33,852	17.502	16.350	4,278	38,130	19,818	${ }_{6}^{6,056}$	13,762	${ }_{4}^{4,363}$	24,181	53,670	23.558	30,112	8,641	62,311
2019	50,845	14,058	36,787	7,784	58.628	25,541	2,367	23,174	5.154	30,695	76,386	16,425	59.961	12,937	89,323
Average															
79-18	52,769	${ }^{24,536}$	28,145	26,265	78.946	${ }^{44,253}$	11,795	32,546	13.922	58.262	97.022	${ }^{36,331}$	${ }^{60,691}$	40,187	137,209
09-18	53.945	27,243	26.352	20,313	73,908	33,609	10,710	23,248	12,311	46,269	87,554	37,954	49,600	32.624	120,178

Appendix B. 21. Page 2 of 2.

	Stikine River					Tuya				
Year	Above border Run	Canadian Harvest	Escapement	U.S. Harvest	$\begin{gathered} \text { Terminal } \\ \text { Run } \\ \hline \end{gathered}$	Above border Run	Canadian Harvest	Excess	U.S. Harvest	$\begin{gathered} \hline \text { Terminal } \\ \text { Run } \\ \hline \end{gathered}$
1979	40,353	13,534	26,819	8,299	48,652					
1980	62,743	20,919	41,824	23,206	85,949					
1981	138,879	27,017	111,862	27,538	166,417					
1982	68,761	20,540	48,221	42,482	111,243					
1983	71,683	21,120	50,563	5,774	77,457					
1984	76,211	5,327	70,884	7,750	83,961					
1985	184,747	26,804	157,943	29,747	214,494					
1986	69,036	17,846	51,190	6,420	75,456					
1987	39,264	11,283	27,981	4,077	43,342					
1988	41,915	16,538	25,377	3,181	45,096					
1989	75,058	21,639	53,419	15,492	90,550					
1990	57,529	19,964	37,565	9,856	67,385					
1991	120,153	25,138	95,015	31,284	151,437					
1992	154,541	29,242	125,299	77,394	231,935					
1993	176,100	52,698	123,402	104,630	280,730					
1994	127,527	53,380	74,147	80,509	208,036					
1995	142,308	66,777	75,531	76,420	218,728	2,216	1,112	1,104	586	2,802
1996	184,400	90,148	94,252	188,385	372,785	19,158	8,919	10,239	19,442	38,600
1997	125,657	68,197	57,460	101,258	226,915	28,738	20,819	7,919	37,520	66,258
1998	90,459	50,486	39,973	30,989	121,448	31,442	22,911	8,531	15,941	47,383
1999	65,879	47,202	18,677	58,765	124,644	16,165	13,877	2,288	15,224	31,389
2000	53,145	31,535	21,610	25,359	78,504	20,779	14,971	5,808	13,255	34,034
2001	103,755	29,341	74,414	23,500	127,255	27,783	8,985	18,798	12,968	40,751
2002	71,253	22,607	48,646	8,076	79,329	10,078	5,925	4,153	4,058	14,136
2003	194,425	69,571	124,854	46,552	240,977	30,814	17,465	13,349	8,760	39,574
2004	189,395	88,451	100,944	122,592	311,987	4,909	3,645	1,264	4,257	9,166
2005	167,570	88,089	79,482	92,362	259,932	3,325	1,677	1,648	131	3,456
2006	193,768	102,733	91,035	74,817	268,585	27,806	17,829	9,977	10,122	37,928
2007	110,132	61,472	48,660	86,654	196,786	18,176	11,256	6,920	18,050	36,227
2008	74,267	37,097	37,170	45,942	120,209	24,180	13,604	10,576	17,765	41,945
2009	111,780	51,082	60,699	73,495	185,275	27,271	14,044	13,226	18,527	45,798
2010	116,354	55,471	60,883	40,647	157,001	33,682	20,332	13,350	12,064	45,746
2011	139,541	61,947	77,594	73,857	213,399	28,565	14,612	13,953	17,356	45,921
2012	95,840	34,922	60,918	28,700	124,540	25,132	11,489	13,643	8,172	33,304
2013	84,380	36,371	48,009	29,136	113,515	13,972	8,882	5,090	5,833	19,805
2014	122,759	44,056	78,703	23,881	146,640	31,259	11,992	19,267	4,984	36,243
2015	142,334	61,911	80,423	31,958	174,292	39,729	18,897	20,832	9,200	48,929
2016	164,451	88,649	75,802	83,441	247,892	23,709	15,011	8,698	13,199	36,908
2017	75,159	43,657	31,502	23,609	98,768	7,412	6,829	583	1,790	9,202
2018	55,541	24,256	31,285	8,950	64,491	1,871	698	1,173	309	2,180
2019	76,386	16,425	59,961	12,996	89,381	0	0	0	58	58
Averages										
79-18	109,476	43,475	66,001	46,925	156,401					
09-18	110,814	50,232	60,582	41,767	152,581	23,260	12,279	10,982	9,143	32,404

Appendix B. 22. Tahltan wild and enhanced sockeye salmon run size, 1994-2019.

Year	All Talltan					EnhancedTahltan					Wildrahltan				
	Above border	Canadian		U.S.	Terminal	Above border	Canadian		U.S.	Terminal	Abowe border	Canadian		U.S.	Terminal
	Run	Harvest	Escapement	Harvest	Run	Run	Harrest	Escapement	Harvest	Run	Run	Harvest	Escapement	Harvest	Run
1994	77,239	37,728	39.511	65,101	142,340	8.767	2,018	6,749	18,305	27,072	68,471	35,709	32,762	46,793	115,264
1995	82,290	50,713	31.577	51,665	133,955	27,677	15,740	11,937	27,259	54,936	54,612	34,972	19,640	24,406	79,018
1996	95,706	57,545	38,161	147,435	243,141	11,608	7,159	4,449	16,568	28,176	84,098	50,386	33,712	130,867	214,965
1997	37,319	25,214	12,105	43,408	80,727	7.560	5,115	2,445	12.983	20,543	29,759	20,099	9,660	30.425	60,184
1998	27,941	15,673	12,268	7,086	35,027	1,620	929	691	428	2,048	26,321	14,744	11,577	6,658	32,979
1999	35,918	25,599	10,319	23,449	59,367	1,666	976	690	1,300	2,966	34,252	24,623	9,629	22,149	56,401
2000	13,803	8,133	5,670	5.340	19,143	2,177	1,029	1,148	1,051	3,228	11,626	7,104	4.522	4,289	15,915
2001	20,985	6.224	14,761	${ }_{6} \mathbf{3} 39$	27,324	7,027	1,182	5,845	1.592	8.619	13,958	5,042	8.916	4.747	18,705
2002	25,680	8.340	17,340	2,055	27,735	7,037	1,940	5,097	680	7,717	18,643	6.400	12,243	1,375	20,018
2003	81,808	28,275	53.533	16,298	98,106	32,157	8,737	23,420	7.852	40,009	49,651	19,538	30,113	8.446	58,097
2004	125,677	62,725	62.952	91,535	217,213	56,627	25,383	31,244	37,444	94,071	69,050	37,342	31,708	54,091	123,142
2005	${ }_{110,903}$	67,857	43,046	63,714	174,617	47,828	30,058	17,770	36,047	83,875	63,075	37,799	25,276	27,667	90,741
2006	130,174	76,719	53.455	54,923	185,097	68,202	42,430	25,772	30,768	98,970	61,972	34,289	27,683	24,155	86,127
2007	59.537	38,663	20.874	63,330	122,867	28,080	19,199	8,881	41,440	69,520	31,457	19,464	11,993	21,890	53,347
2008	28.592	18,176	10.416	17,743	46.335	12,927	7,632	5,295	8.219	21,146	15,666	10.544	5,121	9.524	25,190
2009	60,428	30,104	30.324	37,664	98,092	12,489	7.518	4,971	10,714	23,203	47.939	22.586	25,353	26,950	74,889
2010	48,521	25,819	22,702	17,565	${ }_{66,086}$	17,353	7,757	9,596	6,990	24,342	31,168	18,062	13,106	10,575	41,743
2011	65,226	30,978	34,248	37,480	102,706	23,547	11,530	12,017	17.592	41,138	41,680	19,449	22,231	19,888	61,568
2012	23,550	10,087	13,463	6,188	29,738	9,404	3,640	5,764	2,337	11,740	14,146	6,447	7,699	3,851	17,998
2013	29,173	13,345	15,828	7.618	36,791	13,435	5,409	8,026	3,723	17,158	15,738	7.935	7,802	3,895	19,633
2014	67,673	24,434	39,745	10,533	74,712	30,100	11,102	18,998	5,418	35,518	34,079	13,332	20,747	5,115	39,194
2015	61,944	28,785	33,159	12,207	74,151	26,399	10,195	16,204	5.165	31,564	35,545	18,590	16.955	7,042	42.587
2016	100,431	${ }_{61,973}$	38.458	54,900	155,331	33,232	18,314	14,917	18,189	51,421	67,203	43.659	23,544	36,711	103.913
2017	48,649	29,408	19,241	14,698	6,347	20,214	10,170	10,044	5.311	25,526	28,435	${ }^{19,237}$	9,197	9.386	37,821
2018	33.852	17.502	16.350	4,278	38,130	17,326	9,180	8,146	2,272	19,598	16.526	${ }_{8,322}$	8,204	2,006	18,532
2019	50.845	14,058	36.787	7,784	58,628	28,203	7.883	20,320	3,724	31.928	22,641	6.175	16.467	4.060	26,701
$\begin{aligned} & \text { Averages } \\ & 09-18 \end{aligned}$	53.945	27,243	26.352	20.313	73.908	20,350	9.481	10.868	7,771	28.121	33.246	17,762	15.484	12.542	45,788

Appendix B. 23. Coho salmon harvest in the Alaskan District 106 and 108 test fisheries, 1984-2019.
Table only includes years when test fisheries were operated.

Year	$106-41 / 42$	$106-30$	Total 106	108
1984	101		1,370	11
1985	301		4,345	11
1986	177		1,345	3
1987	799	95	3,558	13
1988	89	589	1,036	9
1989	275	412	2,080	45
1990	432	464	2,256	45
1991				18
1992				23
1993			12	0
1994				142
--				217
1998				140
1999				
2000				0
--				0
2009				

Appendix B. 24. Annual harvest of coho salmon in the Canadian lower and upper river commercial, Telegraph Aboriginal and the Canadian test fisheries, 1979-2019.

	Commercial			URCF	Telegraph Canada total Aboriginal Stikine harvest		Test			
Year	LRCF	Before SW 35	SW 35 to end				drift	set	additional	test total
1972					0	0				0
1973					0	0				0
1974					0	0				0
1975				45	5	50				0
1976				13	0	13				0
1977				0	0	0				0
1978				0	0	0				0
1979	10,720				0	10,720				0
1980	6,629			40	100	6,769				0
1981	2,667			0	200	2,867				0
1982	15,904			0	40	15,944				0
1983	6,170			0	3	6,173				0
1984					1	1				0
1985	2,172			0	3	2,175				0
1986	2,278			0	2	2,280	226			226
1987	5,728			0	3	5,731	162	620		782
1988	2,112			0	5	2,117	75	130		205
1989	6,092			0	6	6,098	242	502		744
1990	4,020			0	17	4,037	134	271		405
1991	2,638			0	10	2,648	118	127		245
1992	1,850			0	5	1,855	75	193	0	268
1993	2,616			0	0	2,616	37	136	2	175
1994	3,377			0	4	3,381	71	0	0	71
1995	3,418			0	0	3,418	35	166	26	227
1996	1,402			0	2	1,404	55	0	0	55
1997	401			0	0	401	11			11
1998	726			0	0	0	207			207
1999	181	76	105	0	0	181	312	64	16	392
2000	298	235	63	0	3	301	60	181	195	436
2001	233	99	134	0	0	233	257	1,078	426	1,761
2002	82	82	0	0	0	82	306	1,323	1,116	2,745
2003	190	135	55	0	0	190	291	525	883	1,699
2004	271	242	29	0	4	275	352	135	0	487
2005	276	276	0	0	0	276	444	271	0	715
2006	72	72	0	0	0	72	343	181	0	524
2007	50	45	0	0	2	47	89	99	0	188
2008	2,398	61	2,337	0	0	2,398	321	216	0	537
2009	5,981	898	5,061	0	0	5,959	348	146	0	494
2010	5,301	349	4,952	0	0	5,301	488	253	0	741
2011	5,821	1,015	4,703	0	0	5,718	280	130	0	410
2012	6,188	440	5,748	0	0	6,188	393	43	0	436
2013	6,757	1,922	4,835	0	0	6,757	249	1,094	0	1,343
2014	5,409	417	4,992	0	0	5,409	83	259	0	342
2015	5,619	696	4,923	0	0	5,619	21	12	0	33
2016	5,346	389	4,957	0	0	5,346	36	104	0	140
2017	5,502	519	4,983	0	0	5,502	2	10	0	12
2018	3,685	361	3,324	0	0	3,685	32	86	0	118
2019	5,228	0	5,228	0	0	5,228	0	0	0	0
Averages										
85-18	2,897			0	2	2,874	187	279	107	505
09-18	5,561			0	0	5,548	193	214	0	407

Appendix B. 25. Index counts of Stikine River coho salmon escapements, 1984-2019.

Missing data due to poor survey conditions.										
		Katete				Bronson	Scud	’orcupine		
Year	Date	West	Katete	Craig	Verrett	Slough	Slough	Slough	Christina	Total
1984	10/30	147	313	0	15	42				517
1985	10/25	590	1,217	735	39	0	924	365		3,870
1988	10/28	32	227		175		97	53	0	584
1989	10/29	336	896	992	848	120	707	90	55	4,044
1990	10/30	94	548	810	494		664	430		3,040
1991	10/29	302	878	985	218		221	352		2,956
1992	10/29	295	1,346	949	320		462	316		3,688
1993	10/30						206	324		
1994	11/1	28	652	1,026	466		448	1,105		3,725
1995	10/30	211	208	1,419	574		621	719		3,752
1996	10/30	163	232	205	549		630	1,466		3,245
1997	11/1	2	0	19	116		272	648		1,057
1998	10/30	14	63	141	282		143	450		1,093
1999	11/5	163	773	891	490		661	894		3,872
2000	11/2				5		95	206		306
2001	11/2	207	1,401	3,121	708		1,571	397		7,405
2002	11/5	806	2,642	4,488	1,695		1,389	1,626		12,646
2003										
2004	11/03a	78	762	19	959		173	1,009		3,000
2005	10/31	300	1,195	444	353		218	689		3,199
2006	11/2	350	543	675	403		95	147		2,213
2007	11/10	66	190	567	240		153	341		1,557
2008	11/01-05b			535	501		86	25		1,147
2009	11/2	212	698	475	257		16	617		2,275
2010	11/03a	37	237	31	363		130	953		1,751
2011	11/4	182	689	459	309		437	468		2,542
2012	11/05c	aborted	aborted	aborted	aborted		3	336		
2013	11/5	449	191	675	249		23	53		1,640
2014	11/6	7	255	212	74		138	509		1,195
2015	11/7	15	168	608	66		61	263		1,181
2016	11/3	0	0	10	152		90	40		292
2017	11/2	246	538	570	189		36	77		1,656
2018	11/6	463	185	736	22		128	460		1,994
2019	11/10	1	50	61	48		190	48		398
Average										
84-18	43,131	207	609	778	371		352	498		2,715
09-18	43,773	179	329	420	187		106	378		1,614

${ }^{\text {a }}$ Veiwing conditions at the Craig River site were poor in 2004 and 2010.
${ }^{\mathrm{b}}$ West Katete and Katete not survey due to inclement weather
${ }^{\text {c }}$ aborted to due ice condtions and inclement weather

Appendix B. 26. Effort in the Canadian fisheries, including assessment fisheries in the Stikine River, 1979-2019.

Appendix B. 27. Counts of adult sockeye salmon migrating through Tahltan Lake weir, 1959-2019.

Year		Date of Arrival			$\begin{aligned} & \text { Weir } \\ & \text { Pulled } \end{aligned}$	Observed Count		Broodstock	$\begin{gathered} \text { Samples } \\ \text { or ESSR } \end{gathered}$	$\begin{array}{\|c} \hline \text { Ololith } \\ \text { Samples } \end{array}$	Spauners			Estimated landslide moralality			Estimuted Expansion		
		First	50\%	90%							Total	Enhanced	Wild	Total	Enhanced	Wild	Total	Enhanced	Wild
	${ }^{30-J u n}$	${ }^{2 \text {-Aug }}$	${ }^{12-A u g ~}$	${ }^{16-A u g}$		4.311													
1960	15-Jul	2 -Aug	24-Aug	27-Aug		6.387	6.387												
1961	20-Jul	9 -Aug	11-Aug	15-Aug		16.619	16.619												
1962	${ }^{1-\text {-ung }}$	2 -Aug	5 -Aug	8 -Aug		14.508	14.508												
1963 1964	${ }^{\text {3-Aug }}$	26 -Jul	14-Aus	25-Aug		1.780 , 8.53	1.780 18.733												
${ }_{1965^{\circ}}$	19.-Jul	${ }_{\text {18,-Jul }}^{2 \text {-3.ul }}$	${ }_{\text {2 }}^{\text {2-sep }}$	${ }_{\text {7-Scp }}^{\text {25-Aug }}$		18,353 1.471	18,353 1,471												
1966	12-Jul	3-Aug	${ }^{13-A u g}$	${ }^{21-A u g}$		21.580	21.580												
1967	11-Jul	14.Jul	${ }^{21-J u l}$	28 -Jul		38.801	38.801												
1968 1969	71-Jul	21-Jul	${ }_{\text {cole }}^{\text {25-Jul }}$	- ${ }_{\text {8-Aug }}^{\text {31-Jul }}$		${ }_{11}^{19,895}$	${ }_{1}^{11,8,726}$												
1970	5-Jul	2 5-Jul	1-Aug	11-Aug		${ }_{8.419}$	${ }_{8.419}$												
1971	12-Jul	19.Jul	$28 . \mathrm{Jul}$	12-Aug		18.523	18.523												
1972	13-Jul	13-Jul	19-Jul	31-Aug	21-Aug	52.545	52.545												
1973	10-Jul	24 -Jul	30-Jul	${ }^{\text {7-Aug }}$	1.Scp	2.877	2.887												
1974	3-Jul	${ }^{28-\text {-ul }}$	3-Aug	17-Aug	13-5.p	8.101	8.101												
1975 1976	${ }_{\text {l }}^{\text {16-Jul }}$	${ }^{29}$ 2-Jul	${ }_{\text {chen }}^{\text {8-Augg }}$		${ }^{24}$ 2-Augg	24,111	- 24.111												
1977	${ }^{6 . J \mathrm{Jul}}$	11 -Jul	16 -Jul	${ }^{10-A u g}$	${ }^{25}$-Aug	42.960	42,600												
1978	${ }^{10-\mathrm{Jul}}$	${ }^{\text {10-Jul }}$	20 -Jul	29-Jul	${ }^{26-\text {-aug }}$	${ }^{22,788}$	${ }^{22,788}$												
1980	${ }^{\text {9.Jual }}$	${ }^{\text {15-Jul }}$	${ }^{\text {22-Jul }}$	${ }_{\text {12-Aug }}$		${ }_{11}^{10,0,18}$	$\xrightarrow{10,211}$												
1981	$30-\mathrm{Jun}$	16-Jul	26. -Jul	3 -Aug	8 8.cep	50,790	50,790												
1982	2-Jul	${ }^{\text {10,-ul }}$	19-Jul	${ }^{29 . \mathrm{Jul}}$	${ }^{\text {4.scp }}$	${ }^{28,257}$	${ }^{28,257}$												
1983	27 -Jun	5.Jul	${ }^{22-\text {-Jul }}$	5-Aug	${ }^{7.5 \mathrm{Scp}}$	${ }^{21,256}$	${ }^{21,256}$												
1984 1985	${ }_{2 \text { 28-Jun }}^{20 . \mathrm{Jun}}$	- 19. -Jul	${ }_{\text {l }}^{\text {2-JJul }}$	${ }^{\text {3-Aug }}$	${ }_{\text {cosen }}^{\text {2-Aug }}$	${ }^{322777}$	32,777 67326												
1985 1986		${ }_{\text {l }}^{\text {18-Jul }}$	${ }^{\text {31-Jul }}$ - Aug	${ }_{1}^{\text {1-Augg }}$	${ }_{\substack{\text { 5-Scp } \\ 4 \text {-Scp }}}^{\text {des }}$	67326 20.280	67.326 20.280												
1987	14.Jul	21.Jul	4.Aug	13-Aug	27-Aug	${ }_{6,958}$	${ }_{6} 6.958$												
1988	${ }^{16-\mathrm{Jul}}$	${ }^{16-\text {-ul }}$	6 -Aug	14-Aug	29-Aug	${ }^{2} 536$	${ }^{2} 536$												
1989	7 -Jul	9-Jul	${ }^{\text {1-Aug }}$	14-Aug	4.sep	8316	8.316	2.210			${ }^{6.106}$								
1990 1991		${ }^{\text {15, -Jul }}$	${ }_{2}^{26-\text {-Jul }}$	${ }^{\text {3-Aug }}$	${ }_{\text {c-sep }}^{\text {28-Aug }}$	${ }_{50}^{14,927}$	${ }_{50}^{14,927}$	3.302 3.55			${ }^{11.625}$								
1991 1992		${ }_{\text {18-Jul }}$	${ }_{2 \text { 2S-Jul }}^{\text {25-JII }}$	${ }_{\text {3-Augg }}$	${ }_{\text {2-Scp }}^{\text {S.Sep }}$	50,135 59.97	50,135 59.907	3.552 3.694			${ }_{56,213}^{46,53}$								
1993	7-Jul	10.Jul	28 -Jul	10-Aug	11-Scp	53.362	51,610	4.506	1,752		47,104	1,030	46.074						
1994	7 -Jul	14-Jul	30-Jul	9 9-Aug	${ }^{7}$-5.pp	${ }^{46,363}$	39,511	3.378	${ }_{6}^{6.852}$		${ }^{36,133}$	${ }^{6.172}$	29.961						
1995	8 -Jul	9.Jul	24. Jul	12-Aug	16-Scp	42.317	${ }^{31,577}$	4.902	10.740		${ }^{26,675}$	10,084	16.591						
1996	6 -Jul	14 -Jul	22 -Jul	04 -Aug	${ }^{10-S c p}$	52.500	38.161	4.402	14,339		33.759	${ }^{3} .936$	29.823						
1997 1998	9.Jul	15.Jul	${ }^{25-5.1 / 31}$	${ }^{26-\text {-aug }}$	26-scp	${ }^{12,483}$	${ }^{12,105}$	2, 2.24		378 390	9.811 1169	1.982	7.829 8553						
1998 1999		19.-Jul	${ }_{\text {3 }}$ 2-J-Jul	${ }_{\text {l }}{ }^{213-A \text { Aug }}$	${ }_{\text {1-s.cp }}^{\text {1-sp }}$	${ }^{12} 12.0788$	$12,2.68$ 10,319	3,099 2.870		390 429	7.449	616 497	8.9.953 6.95						
2000	9.Jul	21 -Jul	25 -Jul	$0^{33-A u g}$	4.Scp	${ }_{6} 6.076$	5.670	1.717		406	3.953	801	${ }^{3.152}$						
${ }_{2001}^{2002}$	${ }_{\text {l }}^{\text {08-Jul }}$ 07-Jul		${ }_{2}{ }^{\text {2 }}$-JIJul	${ }_{\text {OS }}^{\text {O-Aug }}$		14,811 17,740	l $\begin{array}{l}14,761 \\ 17.340\end{array}$	2.386 3.051		50 400	12,375 14.289	4.900 3,799	7.475 10.490						
2003	${ }^{\text {07-Jul }}$	${ }^{12-\text {-Jul }}$	${ }^{29}$ 2-Jul	${ }_{\text {OS-Aug }}$	${ }_{18 \text { - } 5 \text { cp }}$	53,933	${ }_{53,533}$	${ }_{3} 3.946$		400	${ }_{4}^{4,587}$	21,694	${ }_{27} 27,893$						
2004	07-Jul	12-Jul	$25 . \mathrm{Jul}$	10-Aug	15-Scp	63.372	62.952	4.243		420	58,709	29.994	28,715						
2005	${ }^{\text {07-Jul }}$	${ }^{11-\text {-Jul }}$	${ }^{0.4 .4 u g ~}$	${ }^{25-A u g}$	15-scp	${ }^{43,446}$	${ }^{43.046}$	3,424		400	39,622 50	${ }^{16,420}$	${ }^{23,202}$						
2006	${ }^{\text {09, Jul }}$	12-Jul	27-Jul	${ }^{20-A u g}$	13-5cp	53,855	53,455	${ }^{3}, 403$		400	${ }^{50.052}$	24.126	25.926						
2007	${ }^{\text {09,-Jul }}$	20 -Jul	08 -Aug	${ }^{19-A n g}$	${ }^{15-5 \mathrm{Sc}}$ P	${ }^{21,074}$	20.874	${ }^{2} .839$		200	18.035	7.673	10.362						
2008 209		${ }_{1}^{213-\text {-ulul }}$		${ }_{\text {04 Augy }}$	18-5cp 1-Scp	${ }_{30.516}^{10.673}$	10,416 30,324	2.364 3.011		100 349	${ }^{8.052}$	4.143 4.041	3,909 23.272						
2010	07-Jul	10-Jul	29.Jul	12-Aug	15-scp	22,860	22,702	4.484		158	18,218	7,789	10,429						
2011	09-Jul	13-Jul	18-Jul	07-Aug	15-Scp	34.588	34,248	4.559		${ }^{340}$	29,689	10,248	19,441						
2012	${ }^{\text {0, -Jul }}$	16--Jul	24. Jul	${ }^{08-A u g}$	30-Aug	${ }^{13,5887}$	${ }^{13,463}$	${ }^{3} .949$		224	9.514	${ }^{3.928}$	${ }_{5}^{5.586}$						
${ }_{2014}^{2013}$		${ }_{2}{ }_{2}$ 2--Jul	${ }_{2}^{25-\text {-ulu }}$	${ }_{\substack{\text { O2-Aug } \\ \text { 31-Jul }}}$	cos.sp	15.828 40.145	15.828 39.745	3.196 2.881		400	12,632 36.864	6,383 17.376	6.249 19.488	3.494	1.656	1.838			
2015	${ }^{\text {09-Jul }}$	15.Jul	${ }^{07-\text {-aug }}$	${ }^{23-A u g}$	13 -sep	33,159	33,159	${ }^{3.871}$		0	29,288	14.312	14.976						
2016	${ }^{07-\text {-Jul }}$	11-Jul	05 -Aug	${ }^{22-A u g}$	12-Scp	${ }^{38.631}$	38,458	4.315		173	34,146	13.245	20.901						
2017	07-Jul	14-Jul	05 -Aug	31-Ang	18.Scp	19.241	19,241	2.909		0	16.332	8.525	7.807						
2018	${ }^{\text {07-Jul }}$	$15 . \mathrm{Jul}$			09.Scp	9.854	16.350	1.878		207	14,472	7.210	7.262				6.703	3.340	3,363
$\frac{2019}{\text { Averages }}$	07-Jul	13-Jul	30-Jul	12-Aug	10.Scp	36.999	36,787	3.579		212	33,208	19,037	14.171					0	${ }^{0}$
$59-18$	09-Jul	17-Jul	29-Jul	${ }^{11-A u g}$	07-Sp	25.041	24,494												
09-18	08.Jul	14-Jul	27-Jul	12-Aug	11-Scp	25.867	26,352	3.505		185	22,847	9.306	13.541						

2014 it is presumed that 9% of the escapement died as a result of the Tahltan landslide

Appendix B. 28. Estimates of sockeye salmon smolt migrating through Tahltan Lake smolt weir, 1984-2019.

Year	Weir Installed	Date of Arrival			Total Count	Total Estimate	Date and Expansion	Smolt	
		First	50\%	90\%				Natural	Hatchery
1984	10-May	11-May	23-May	06-Jun		218,702			
1985	$25-\mathrm{Apr}$	23-May	31-May	28-May		613,531			
1986	8-May	10-May	31-May	07-Jun		244,330			
$1987{ }^{\text {a }}$	7-May	15-May	23-May	24-May		810,432			
1988	1-May	08-May	20-May	06-Jun		1,170,136			
1989	5-May	08-May	22-May	06-Jun		580,574			
$1990{ }^{\text {b }}$		15-May	29-May	05-Jun	595,147	610,407	6/14 97.5\%		
$1991{ }^{\text {c }}$	5-May	14-May	21-May	30-May	1,439,676	1,487,265	6/13 96.8\%	1,220,397	266,868
$1992{ }^{\text {d }}$	7-May	13-May	21-May	27-May	1,516,150	1,555,026	6/14 97.5\%	750,702	804,324
1993	7-May	11-May	17-May	22-May		3,255,045		2,855,562	399,483
1994	8-May	08-May	16-May	12-Jun		915,119		620,809	294,310
1995	5-May	06-May	13-May	11-Jun		822,284		767,027	55,257
1996	11-May	11-May	20-May	25-May		1,559,236		1,408,020	151,216
1997	7-May	11-May	23-May	30-May		518,202		348,685	169,517
1998	7-May	08-May	25-May	05-Jun		540,866		326,420	214,446
1999	6-May	10-May	09-Jun	15-Jun		762,033		468,488	293,545
2000	7-May	09-May	22-May	17-Jun		619,274		355,618	263,656
2001	6-May	07-May	24-May	18-Jun		1,495,642		841,268	654,374
2002	6-May	14-May	27-May	12-Jun		1,873,598		1,042,435	831,163
2003	6-May	11-May	29-May	06-Jun		1,960,480		979,442	981,038
2004	6-May	10-May	21-May	25-May		2,116,701		825,513	1,291,188
2005	6-May	07-May	17-May	25-May		1,843,804		943,929	899,875
2006	6-May	10-May	25-May	02-Jun		2,195,266		1,773,062	422,204
2007	6-May	16-May	21-May	28-May		1,055,114		644,987	410,127
2008	6-May	12-May	23-May	02-Jun		1,402,995		870,295	532,700
2009	6-May	14-May	26-May	01-Jun		746,045		484,929	261,116
2010	6-May	10-May	23-May	07-Jun		557,532		306,344	251,188
2011	7-May	17-May	26-May	01-Jun		1,632,119		960,531	671,588
2012	10-May	13-May	25-May	02-Jun		639,473		324,876	314,597
2013	8-May	10-May	23-May	28-May		2,387,669		1,671,368	716,301
2014	11-May	16-May	24-May	30-May	1,461,359	1,531,823	/05 95.4\%	980,367	551,456
2015	7-May	12-May	20-May	26-May	2,096,350	2,123,168		966,041	1,157,127
2016	6-May	10-May	18-May	24-May	2,094,592	2,094,592		1,019,421	1,075,171
2017	4-May	07-May	28-May	03-Jun	2,461,675	2,461,675		1,186,954	1,274,721
2018	6-May	11-May	19-May	25-May	1,014,975	1,014,975		378,733	636,242
2019	04-May	14-May	23-May	27-May	1,599,695	1,599,695		456,083	1,143,612
Averages									
84-18	06-May	11-May	23-May	02-Jun		1,297,575		904,365	565,886
09-18	07-May	12-May	23-May	30-May		1,518,907		827,956	690,951

[^0]Appendix B. 29. Weir counts of Chinook salmon at Little Tahltan River, 1985-2019.

Year	Weir Installed	Date of Arrival			Total Count	Broodstock and Other	Natural Spawners	Landslide mortality
		First	50\%	90\%				
Large Chinook								
1985	03-Jul	04-Jul	30-Jul	06-Aug	3,114		3,114	
1986	28-Jun	29-Jun	21-Jul	05-Aug	2,891		2,891	
1987	28-Jun	04-Jul	24-Jul	02-Aug	4,783		4,783	
1988	26-Jun	27-Jun	18-Jul	03-Aug	7,292		7,292	
1989	25-Jun	26-Jun	23-Jul	02-Aug	4,715		4,715	
1990	22-Jun	29-Jun	23-Jul	04-Aug	4,392		4,392	
1991	23-Jun	25-Jun	20-Jul	03-Aug	4,506		4,506	
1992	24-Jun	04-Jul	21-Jul	30-Jul	6,627	-12	6,615	
1993	20-Jun	21-Jun	16-Jul	28-Jul	11,449	-12	11,437	
1994	18-Jun	28-Jun	22-Jul	02-Aug	6,387	-14	6,373	
1995	17-Jun	20-Jun	17-Jul	04-Aug	3,072	0	3,072	
1996	17-Jun	26-Jun	16-Jul	30-Jul	4,821	0	4,821	
1997	14-Jun	22-Jun	16-Jul	29-Jul	5,557	-10	5,547	
1998	13-Jun	19-Jun	14-Jul	29-Jul	4,879	-6	4,873	
1999	18-Jun	27-Jun	19-Jul	1-Aug	4,738	-5	4,733	
2000	19-Jun	23-Jun	21-Jul	5-Aug	6,640	-9	6,631	
2001	20-Jun	23-Jun	18-Jul	2-Aug	9,738	-8	9,730	
2002	20-Jun	23-Jun	18-Jul	27-Jul	7,490	-14	7,476	
2003	20-Jun	20-Jun	19-Jul	6-Aug	6,492	0	6,492	
2004	18-Jun	19-Jun	20-Jul	31-Jul	16,381	0	16,381	
2005	19-Jun	21-Jun	22-Jul	4-Aug	7,387	0	7,387	
2006	20-Jun	26-Jun	21-Jul	29-Jul	3,860	0	3,860	
2007	4-Jul	10-Jul	29-Jul	4-Aug	562	0	562	
2008	19-Jun	6-Jul	26-Jul	4-Aug	2,663	0	2,663	
2009	19-Jun	3-Jul	19-Jul	4-Aug	2,245	0	2,245	
2010	19-Jun	22-Jun	23-Jul	2-Aug	1,057	0	1,057	
2011	19-Jun	22-Jun	23-Jul	2-Aug	1,753	0	1,753	
2012	27-Jun	7-Jul	26-Jul	5-Aug	720	0	720	
2013	20-Jun	9-Jul	27-Jul	5-Aug	878	0	878	
2014	23-Jun	18-Jul	28-Jul	31-Jul	169		169	394
2015	19-Jun	14-Jul	24-Jul	27-Jul	450		450	
2016	22-Jun	8-Jul	28-Jul	5-Aug	921		921	
2017	23-Jun	23-Jun	18-Jul	6-Aug	492		492	
2018	23-Jun	23-Jun	18-Jul	31-Jul	453		453	
2019	22-Jun	29-Jun	24-Jul	7-Aug	536		536	
Averages								
85-18	21-Jun	28-Jun	21-Jul	01-Aug	4,399		4,397	
09-18	21-Jun	02-Jul	23-Jul	02-Aug	914		914	
nonlarge Chinook								
1985	03-Jul	04-Jul	31-Jul	10-Aug	316		316	
1986	28-Jun	03-Jul	25-Jul	06-Aug	572		572	
1987	28-Jun	03-Jul	26-Jul	06-Aug	365		365	
1988	26-Jun	27-Jun	17-Jul	02-Aug	327		327	
1989	25-Jun	26-Jun	23-Jul	02-Aug	199		199	
1990	22-Jun	$05-\mathrm{Jul}$	22-Jul	30-Jul	417		417	
1991	23-Jun	03-Jul	24-Jul	07-Aug	313		313	
1992	24-Jun	12-Jul	22-Jul	30-Jul	131		131	
1993	20-Jun	30-Jun	14-Jul	01-Aug	60		60	
1994	18-Jun	02-Jul	22-Jul	05-Aug	121		121	
1995	17-Jun	22-Jun	28-Jul	10-Aug	135		135	
1996	17-Jun	12-Jul	25-Jul	05-Aug	22		22	
1997	14-Jun	26-Jun	21-Jul	1-Aug	54		54	
1998	13-Jun	26-Jun	20-Jul	7-Aug	37		37	
1999	18-Jun	1-Jul	23-Jul	6-Aug	202		202	
2000	19-Jun	23-Jun	20-Jul	5-Aug	108		108	
2001	20-Jun	23-Jun	27-Jul	3-Aug	269		269	
2002	20-Jun	26-Jun	21-Jul	7-Aug	618		618	
2003	20-Jun	30-Jun	21-Jul	5-Aug	334		334	
2004	18-Jun	21-Jun	19-Jul	31-Jul	250		250	
2005	19-Jun	29-Jun	23-Jul	4-Aug	231		231	
2006	20-Jun	7-Jul	23-Jul	5-Aug	93		93	
2007	04-Jul	15-Jul	29-Jul	1-Aug	12		12	
2008	19-Jun	14-Jul	25-Jul	29-Jul	139		139	
2009	19-Jun	9-Jul	19-Jul	4-Aug	99		99	
2010	19-Jun	7-Jul	26-Jul	4-Aug	221		221	
2011	27-Jun	7-Jul	26-Jul	4-Aug	194		194	
2012	27-Jun	11-Jul	18-Jul	27-Jul	51		51	
2013	20-Jun	13-Jul	27-Jul	3-Aug	183		183	
$2014{ }^{\text {a }}$	23-Jun	18-Jul	28-Jul	31-Jul	39		39	91
2015	19-Jun	14-Jul	24-Jul	27-Jul	490		490	
2016	22-Jun	9-Jul	28-Jul	6-Aug	318		318	
2017	23-Jun	26-Jun	26-Jul	7-Aug	311		311	
2018	24-Jun	1-Jul	27-Jul	4-Aug	413		413	
2019	23-Jun	25-Jun	31-Jul	6-Aug	1,002		1,002	
Averages								
85-18	21-Jun	03-Jul	23-Jul	03-Aug	225		225	
09-18	22-Jun	08-Jul	24-Jul	02-Aug	232		232	

Appendix C. 1. Weekly Chinook salmon estimates in the U.S. fisheries in D111, 2019.

$\begin{aligned} & \begin{array}{l} \text { ONLY } \\ \text { (small } \end{array} \\ & \hline \end{aligned}$	$\frac{\mathrm{PU}}{\text { LargeTaku }}$	D111sport		D111 gillnet				D111 troll			US large Taku	Amalga Seine non-Taku
		Largetotal	arge non-TaLLarge Taku	Nonlarge	Large tot	-	ge Tak			eTaku		
18			0									
19			0									
20			0									
21			0									
22			0									
23			0									
24		258	$69 \quad 189$									
25		644	$345 \quad 299$	34	49	22	27					
26		832	925 -93	47	86		86					
27		498	$167 \quad 331$	158	146	24	122					
28		276	0276	163	109	75	34					
29		125	$67 \quad 58$	81	63	74	-11					
Total	11	2,633	1,573 1,060	483	454	195	259	0	0	0	0	0

Appendix C. 2. Weekly Chinook salmon abundance estimates of above border run and harvest in the Canadian fisheries in the Taku River 2019.

Above		Commercial				Assesment/Test fishery				Aboriginal		Rec	$\begin{aligned} & \text { Total } \\ & \text { Large } \end{aligned}$	Spawning
		Large		Nonlarge		Large		Nonlarge		Large	Nonlarge			
SW	Border Run	Harvested	Released	Harvested	Released	Harvested	Released	Harvested	Released	Harvested	Harvested	Harvested	Harvest	Escapement
19													0	
20													0	
21													0	
22													0	
23													0	
24													0	
25													0	
26													0	
27			24		6								0	
28			40		13								0	
29			17		8								0	
30			7		1								0	
31			3		0								0	
32			5		0								0	
33			8		1								0	
34			1		0								0	
35			1		0								0	
Insea	on Estimate		106	0	29	0	0	0	0	10	5		10	
Postseason estimate														
	11,568					0	0			10	5		10	11,558

Appendix C. 3. Weekly sockeye salmon harvest of Alaskan D111 traditional and terminal hatchery access common property commercial drift gillnet fishery, 2019.

SW	D111 Commercial drift gillnet						Amalga Seine111-55
	Gillnet	Traditional StatArea specific harvests				Speel Arm SHA	
	D111 Total	111-32	111-31/90	111-20	111-34	111-33	
25	191	142	49				
26	988	941	47				
27	2,363	1,712	651				
28	7,914	5,965	1,949				
29	17,694	14,283	3,411				
30	27,574	22,795	4,779				
31	21,400	17,306	4,094				
32	11,303	5,638	1,998		2,252	1,415	
33	9,454	2,862	2,168		500	3,924	
34	4,369	895	326		484	2,664	
35	1,586	112	1			1,473	
36	183	46	8			129	
37	7	7	0				
38	0	0	0				
39	0	0	0				
40	0	0	0				
41	0	0	0				
Total	105,026	72,704	19,481	0	3,236	9,605	0

Appendix C. 4. Weekly stock proportions of sockeye salmon harvested in the Alaskan District 111 traditional commercial drift gillnet fishery, 2019.

Does not inlcude Port Snettisham harvests. Taku River wild stock composition estimates are based on GSI; see Appendix G. 4 for GSI details.												
	D111 Commercial gillnet											
	Taku harvest proportions											
			Tats	menie	King Salmon	Taku	Total	Wild Snet/	U.S.	Stikine	Total	Total
SW	Taku Lakes	Mainstem	Wild	Enhanced	Enhanced	Wild	Taku	wild other	Enhanced	Enhanced	Enhanced	Wild
25	0.108	0.463	0.003	0.003	0.003	0.574	0.580	0.415	0.003	0.003	0.011	0.989
26	0.182	0.646	0.001	0.000	0.013	0.829	0.842	0.141	0.005	0.013	0.030	0.970
27	0.205	0.681	0.001	0.000	0.006	0.888	0.894	0.081	0.006	0.020	0.032	0.968
28	0.187	0.610	0.001	0.002	0.004	0.797	0.804	0.130	0.064	0.002	0.072	0.928
29	0.152	0.561	0.001	0.004	0.004	0.714	0.723	0.077	0.199	0.000	0.209	0.791
30	0.107	0.525	0.011	0.011	0.000	0.644	0.656	0.096	0.248	0.001	0.261	0.739
31	0.089	0.697	0.019	0.012	0.001	0.805	0.819	0.082	0.097	0.001	0.112	0.888
32	0.048	0.564	0.039	0.025	0.000	0.651	0.677	0.035	0.289	0.000	0.315	0.685
33	0.065	0.431	0.077	0.034	0.001	0.573	0.608	0.043	0.348	0.001	0.384	0.616
34	0.027	0.229	0.046	0.008	0.001	0.302	0.312	0.107	0.580	0.001	0.591	0.409
35	0.007	0.412	0.128	0.022	0.002	0.548	0.572	0.064	0.362	0.002	0.389	0.611
36	0.007	0.412	0.128	0.022	0.002	0.548	0.572	0.064	0.362	0.002	0.389	0.611
37	0.007	0.412	0.128	0.022	0.002	0.548	0.572	0.064	0.362	0.002	0.389	0.611
38	0.007	0.412	0.128	0.022	0.002	0.548	0.572	0.064	0.362	0.002	0.389	0.611
39	0.007	0.412	0.128	0.022	0.002	0.548	0.572	0.064	0.362	0.002	0.389	0.611
40	0.007	0.412	0.128	0.022	0.002	0.548	0.572	0.064	0.362	0.002	0.389	0.611
41	0.007	0.412	0.128	0.022	0.002	0.548	0.572	0.064	0.362	0.002	0.389	0.611
Total	0.113	0.578	0.016	0.011	0.002	0.708	0.722	0.085	0.192	0.002	0.207	0.793
25	21	88	1	1	1	110	111	79	0	1	2	189
26	180	639	1	0	12	819	832	139	5	12	30	958
27	484	1,610	3	1	14	2,097	2,112	191	14	47	75	2,288
28	1,479	4,824	7	18	32	6,310	6,360	1,031	505	18	573	7,341
29	2,698	9,933	11	77	79	12,641	12,798	1,361	3,528	7	3,692	14,002
30	2,954	14,485	313	315	9	17,752	18,076	2,637	6,825	36	7,186	20,388
31	1,908	14,921	407	261	30	17,236	17,526	1,764	2,080	30	2,400	19,000
32	364	4,305	300	194	3	4,969	5,166	263	2,203	3	2,403	5,233
33	326	2,168	388	170	5	2,882	3,056	217	1,752	5	1,931	3,099
34	33	280	56	10	2	369	380	131	708	2	721	500
35	1	47	15	3	0	62	65	7	41	0	44	69
36	0	22	7	1	0	30	31	3	20	0	21	33
37	0	3	1	0	0	4	4	0	3	0	3	4
38	0	0	0	0	0	0	0	0	0	0	0	0
39	0	0	0	0	0	0	0	0	0	0	0	0
40	0	0	0	0	0	0	0	0	0	0	0	0
41	0	0	0	0	0	0	0	0	0	0	0	0
Total	10,448	53,324	1,508	1,050	187	65,281	66,518	7,824	17,683	160	19,080	73,105

Appendix C. 5. Weekly sockeye salmon abundance estimates of above border run and harvest in the Canadian fisheries in the Taku River, 2019.
The above border run is are BTSPAS estimates.

SW	Above Border Run	Commercial		Assesment/Test	Aboriginal	Above Border Escapement
		All	Taku			
22						
23						
24						
25						
26						
27		585	585			
28	12,454	1,435	1,432			
29	22,673	2,497	2,482			
30	47,566	4,423	4,423			
31	67,743	5,796	5,796			
32	79,687	2,222	2,222			
33	89,858	2,645	2,645			
34	95,572	1,157	1,157			
35		461	461			
36		125	125			
37		45	44			
38		4	4			
39						
40						
Postseaso	98,203	21,395	21,376	0	105	76,722

Appendix C. 6. Estimates of wild and enhanced sockeye salmon stock harvested in the Canadian commercial fishery in the Taku River by week, 2019.

Enhanced estimates based on harvest expanations of thermally marked fish.										
SW		Tatsameni Enhanced	Stikine Enhanced	US Enhanced	Taku Wild	King Salmon Enhanced	Tatsamenic Enhanced	Stikine Enhanced	$\begin{gathered} \text { US } \\ \text { Enhanced } \end{gathered}$	Taku Wild
26					1.000	0	0	0	0	0
27	0.016	0.000	0.005	0.000	0.979	9	0	3	0	573
28	0.016	0.005	0.005	0.005	0.968	23	8	8	8	1,390
29	0.011	0.000	0.000	0.000	0.989	26	0	0	0	2,471
30	0.005	0.021	0.000	0.000	0.974	23	93	0	0	4,307
31	0.000	0.016	0.000	0.000	0.984	0	93	0	0	5,703
32	0.000	0.011	0.000	0.000	0.989	0	24	0	0	2,198
33	0.005	0.026	0.000	0.000	0.969	14	69	0	0	2,562
34	0.000	0.021	0.000	0.000	0.979	0	25	0	0	1,132
35	0.000	0.031	0.000	0.000	0.969	0	14	0	0	447
36	0.000	0.018	0.000	0.009	0.974	0	2	0	1	122
37	0.000	0.000	0.000	0.000	1.000	0	0	0	0	45
38	0.000	0.000	0.000	0.000	1.000	0	0	0	0	4
Total	0.004	0.015	0.000	0.000	0.979	95	328	11	9	20,952

Appendix C. 7. Weekly coho salmon harvest in the traditional Alaskan District 111 and StatArea 111-32 (Taku Inlet), commercial drift gillnet fishery, 2019.

	D111 Total				$111-32$
SW	Total	Hatchery	Wild		Total
25	1		1		0
26	6		6		5
27	39		39		25
28	75		75		27
29	155		155		128
30	637		637		560
31	1,900		1,900		1,227
32	1,105	73	1,032		761
33	1,206	114	1,092		818
34	1,941	592	1,349		1,671
35	2,563	1,100	1,463		2,473
36	2,120	795	1,325		1,337
37	7,048	3,677	3,371		6,937
38	4,041	1,456	2,585		3,983
$39-40$	398	429	-31	398	
Total	23,235	8,236	14,999	20,350	

Appendix C. 8. Weekly coho salmon abundance estimates of above border run and harvest in the Canadian fisheries in the Taku River, 2019.

SW	Above border Run	Harvest				Above border Escapement
		Commercial	Aboriginal	Recreational	Assesment/test	
18						
19						
20						
21						
22						
23						
24						
25						
26						
27		0				
28		18				
29		98				
30		339				
31		555				
32		397				
33	15,046	992				
34	24,176	1,478				
35	32,885	986				
36	48,760	2,393				
37	66,209	2,204				
38	73,610	1,553				
39	81,022	462				
40	88,643	538				
41	94,790	132				
42						
Before SW34		2,399				
SW34 to end		9,746				
Postseason Estimate	95,011	12,145	107	0	0	82,759

Appendix C. 9. Weekly effort in the Alaskan traditional District 111 and StatArea 11132 (Taku Inlet), commercial drift gillnet fishery, 2019.

SW	Start Date	D111			D111-32		
			Days	Boat		Days	Boat
		Boats	Open	Days	Boats	Open	Days
25	16-Jun	35	2.0	70	24	2.0	48
26	23-Jun	41	2.0	82	39	2.0	78
27	30-Jun	59	2.0	118	48	2.0	96
28	7-Jul	99	3.0	297	69	2.0	138
29	14-Jul	87	4.0	348	66	3.0	198
30	21-Jul	96	4.0	384	70	3.0	210
31	28-Jul	108	4.0	432	86	3.0	258
32	4-Aug	56	5.0	280	36	3.0	108
33	11-Aug	23	4.0	92	18	3.0	54
34	18-Aug	19	3.0	57	15	2.0	30
35	26-Aug	22	2.0	44	20	2.0	40
36	1-Sep	20	3.0	60	18	1.0	18
37	8-Sep	25	4.0	100	24	4.0	96
38	15-Sep	26	5.0	130	26	5.0	130
39	22-Sep	8	5.0	40	8	5.0	40
40	29-Sep	2	5.0	10	2	5.0	10
41	6-Oct	0	5.0	0	0	5.0	0
Total		183	62.0	2,544		52.0	1,552

Appendix C. 10. Weekly effort in the Canadian commercial and assessment fisheries in the Taku River, 2019.

SW	Start Date	Commercial			Assesment/test		
		Average Permits	Days Fished	Permit Days	Average Permits	Days Fished	$\begin{array}{r} \text { Permit } \\ \text { Days } \\ \hline \end{array}$
18							
19							
20							
21							
22							
23							
24							
25							
26							
27	1-Jul	2.00	2.00	4.00			
28	7-Jul	4.67	3.00	14.00			
29	14-Jul	5.50	4.00	22.00			
30	21-Jul	5.00	5.00	25.00			
31	28-Jul	6.75	4.00	27.00			
32	4-Aug	5.67	3.00	17.00			
33	11-Aug	7.00	3.00	21.00			
34	18-Aug	6.33	3.00	19.00			
35	25-Aug	5.75	4.00	23.00			
36	1-Sep	3.00	4.00	12.00			
37	8-Sep	2.80	5.00	14.00			
38	15-Sep	2.60	5.00	13.00			
39	22-Sep	1.00	4.00	4.00			
40	29-Sep	1.00	5.00	5.00			
41	6-Oct	1.00	6.00	6.00			
Total			60	226		0	0

Appendix C. 11. Daily counts of adult sockeye salmon passing through Tatsamenie Lake weir, 2019.

Date	Count	Cumulative		
		Count	Percent	
16-Aug	Weir installed			
17-Aug	2	2	0.1	
18-Aug	0	2	0.1	
19-Aug	0	2	0.1	
20-Aug	0	2	0.1	
21-Aug	0	2	0.1	
22-Aug	0	2	0.1	
23-Aug	1	3	0.1	
24-Aug	2	5	0.1	
25-Aug	138	143	3.7	
26-Aug	113	256	6.6	
27-Aug	244	500	12.8	
28-Aug	252	752	19.3	
29-Aug	154	906	23.2	
30-Aug	237	1,143	29.3	
31-Aug	237	1,380	35.4	
1-Sep	169	1,549	39.7	
2-Sep	109	1,658	42.5	
3-Sep	115	1,773	45.4	
4-Sep	58	1,831	46.9	
5-Sep	48	1,879	48.2	
6-Sep	106	1,985	50.9	
7-Sep	28	2,013	51.6	
8-Sep	31	2,044	52.4	
9-Sep	37	2,081	53.3	
10-Sep	133	2,214	56.7	
11-Sep	98	2,312	59.3	
12-Sep	135	2,447	62.7	
13-Sep	157	2,604	66.7	
14-Sep	114	2,718	69.7	
15-Sep	159	2,877	73.7	
16-Sep	30	2,907	74.5	
17-Sep	13	2,920	74.8	
18-Sep	36	2,956	75.8	
19-Sep	174	3,130	80.2	
20-Sep	52	3,182	81.5	
21-Sep	56	3,238	83.0	
22-Sep	276	3,514	90.1	
23-Sep	35	3,549	91.0	
24-Sep	45	3,594	92.1	
25-Sep	41	3,635	93.2	
26-Sep	28	3,663	93.9	
27-Sep	53	3,716	95.2	
28-Sep	29	3,745	96.0	
29-Sep	23	3,768	96.6	
30-Sep	56	3,824	98.0	
1-Oct	26	3,850	98.7	
2-Oct	27	3,877	99.4	
3-Oct	15	3,892	99.7	
4-Oct	10	3,902	100.0	
5-Oct	Weir removed			
		Total	Wild	enhanced
Holding below weir				
Weir cou		3,902	2,034	1,868
Outlet spawners				
carcass otolith samples		0		
broodstock otolith samples		376	196	180
Broodstock a		1,248	651	597
Broodstock holding mortalities		146	76	70
Natural Spawners		2,508	1,307	1,201

a Broodstock included 685 females and 563 males from which gametes were collected,
Mortalities included 115 females and 31 males.
b Includes 169 females and 54 males held for broodstock but released unspawned.The spawning success of these fish is not known.

Appendix C. 12. Daily counts of adult sockeye salmon passing through Little Trapper Lake weir, 2019.

Date		Cumulative	
	Count	Count	Percent
22-Jul	Weir installed		
23-Jul	0	0	0.0
24-Jul	0	0	0.0
25-Jul	0	0	0.0
26-Jul	0	0	0.0
27-Jul	0	0	0.0
28-Jul	0	0	0.0
29-Jul	0	0	0.0
30-Jul	0	0	0.0
31-Jul	352	352	5.5
1-Aug	193	545	8.5
2-Aug	48	593	9.3
3-Aug	387	980	15.4
4-Aug	399	1,379	21.6
5-Aug	126	1,505	23.6
6-Aug	683	2,188	34.3
7-Aug	392	2,580	40.4
8-Aug	254	2,834	44.4
9-Aug	207	3,041	47.6
10-Aug	41	3,082	48.3
11-Aug	250	3,332	52.2
12-Aug	190	3,522	55.2
13-Aug	231	3,753	58.8
14-Aug	72	3,825	59.9
15-Aug	123	3,948	61.9
16-Aug	123	4,071	63.8
17-Aug	149	4,220	66.1
18-Aug	151	4,371	68.5
19-Aug	185	4,556	71.4
20-Aug	168	4,724	74.0
21-Aug	133	4,857	76.1
22-Aug	72	4,929	77.2
23-Aug	146	5,075	79.5
24-Aug	92	5,167	81.0
25-Aug	62	5,229	81.9
26-Aug	73	5,302	83.1
27-Aug	226	5,528	86.6
28-Aug	98	5,626	88.2
29-Aug	229	5,855	91.7
30-Aug	185	6,040	94.6
31-Aug	20	6,060	95.0
1-Sep	33	6,093	95.5
2-Sep	20	6,113	95.8
3-Sep	54	6,167	96.6
4-Sep	8	6,175	96.8
5-Sep	98	6,273	98.3
6-Sep	36	6,309	98.9
7-Sep	13	6,322	99.1
8-Sep	20	6,342	99.4
9-Sep	30	6,372	99.8
10-Sep	3	6,375	99.9
11-Sep	1	6,376	99.9
12-Sep	6	6,382	100.0
13-Sep Weir removed			
		Total	Wild enhanced
Holding below weir		0	
Escapement to lake		6,382	
Outlet spawners		0	
otolith samples		0	
Broodstock		444	
Natural Spawners		5,938	

Appendix C. 13. Daily counts of adult sockeye salmon passing through the King Salmon Lake weir, 2019.

Date	Count	Cumulative	
		Count	Percent
4-Jul	Weir installed		
5-Jul	0	0	0.0
6-Jul	0	0	0.0
7-Jul	1	1	0.0
8 -Jul	0	1	0.0
9 -Jul	0	1	0.0
10-Jul	14	15	0.3
11-Jul	33	48	1.1
12-Jul	22	70	1.6
13-Jul	13	83	1.9
14-Jul	11	94	2.2
15-Jul	1	95	2.2
16-Jul	4	99	2.3
17-Jul	0	99	2.3
18-Jul	0	99	2.3
19-Jul	5	104	2.4
20-Jul	0	104	2.4
21-Jul	0	104	2.4
22-Jul	0	104	2.4
23-Jul	1	105	2.4
24-Jul	0	105	2.4
25 -Jul	0	105	2.4
26-Jul	0	105	2.4
27-Jul	0	105	2.4
28-Jul	0	105	2.4
29-Jul	1,466	1,571	36.6
30-Jul	30	1,601	37.3
31-Jul	104	1,705	39.7
1-Aug	132	1,837	42.8
2-Aug	0	1,837	42.8
3-Aug	455	2,292	53.4
4-Aug	408	2,700	62.9
5-Aug	363	3,063	71.3
6-Aug	219	3,282	76.4
7-Aug	272	3,554	82.8
8-Aug	67	3,621	84.3
9-Aug	29	3,650	85.0
10-Aug	72	3,722	86.7
11-Aug	101	3,823	89.0
12-Aug	67	3,890	90.6
13-Aug	71	3,961	92.2
14-Aug	71	4,032	93.9
15-Aug	20	4,052	94.4
16-Aug	62	4,114	95.8
17-Aug	16	4,130	96.2
18-Aug	46	4,176	97.3
19-Aug	19	4,195	97.7
20-Aug	4	4,199	97.8
21-Aug	5	4,204	97.9
22-Aug	15	4,219	98.3
23-Aug	24	4,243	98.8
24-Aug	21	4,264	99.3
25-Aug	0	4,264	99.3
26-Aug	0	4,264	99.3
27-Aug	1	4,265	99.3
28-Aug	29	4,294	100.0
29-Aug	0	4,294	100.0
30-Aug	0	4,294	100.0
31-Aug	0	4,294	100.0
1-Sep	0	4,294	100.0
2-Sep	0	4,294	100.0
3-Sep	0	4,294	100.0
4-Sep		4,294	100.0
5-Sep	Weir removed		
Total	4,294		
Escapement to lake		4,294	
Broodstock			
Spawners Helicopter survey		4,294	

Appendix C. 14. Daily counts of adult sockeye salmon passing through the Kuthai Lake

Date	Count	weir, 2019.	
		Cumulative	
		Count	Percent
6-Jul	Weir installed		
7-Jul	0	0	0.0
8-Jul	0	0	0.0
9 -Jul	0	0	0.0
10-Jul	0	0	0.0
11-Jul	0	0	0.0
12-Jul	0	0	0.0
13-Jul	0	0	0.0
14-Jul	0	0	0.0
15-Jul	0	0	0.0
16-Jul	0	0	0.0
17-Jul	0	0	0.0
18-Jul	0	0	0.0
19-Jul	5	5	0.8
20-Jul	68	73	12.1
21-Jul	26	99	16.4
22-Jul	1	100	16.5
23-Jul	1	101	16.7
24-Jul	1	102	16.9
$25-\mathrm{Jul}$	91	193	31.9
26-Jul	46	239	39.5
27-Jul	125	364	60.2
28-Jul	26	390	64.5
29-Jul	2	392	64.8
30-Jul	8	400	66.1
31-Jul	52	452	74.7
1-Aug	0	452	74.7
2-Aug	5	457	75.5
3-Aug	13	470	77.7
4-Aug	14	484	80.0
5-Aug	0	484	80.0
6-Aug	0	484	80.0
7-Aug	0	484	80.0
8-Aug	1	485	80.2
9-Aug	0	485	80.2
10-Aug	0	485	80.2
11-Aug	0	485	80.2
12-Aug	0	485	80.2
13-Aug	0	485	80.2
14-Aug	0	485	80.2
15-Aug	0	485	80.2
16-Aug	0	485	80.2
17-Aug	0	485	80.2
18-Aug	3	488	80.7
19-Aug	0	488	80.7
20-Aug	0	488	80.7
21-Aug	0	488	80.7
22-Aug	0	488	80.7
23-Aug	0	488	80.7
24-Aug	1	489	80.8
25-Aug	83	572	94.5
26-Aug	11	583	96.4
27-Aug	9	592	97.9
28-Aug	11	603	99.7
29-Aug	1	604	99.8
30-Aug	1	605	100.0
31-Aug	0	605	100.0
1-Sep	0	605	100.0
2-Sep	0	605	100.0
3-Sep	0		
Total co		605	
Harvest above weir			
Escapem		605	

Appendix D. 1. All historic harvest and effort of salmon in the D111 gillnet fishery, 1960-2019.

These estimates include traditional and hatchery access common property commercial drift gillnet harvest in District 111.							
Year	Chinook	Sockeye	Coho	Pink	Chum	Boat Day	sDays open
1960	8,810	42,819	22,374	33,155	41,852		60
1961	7,434	45,981	15,486	41,455	24,433		62
1962	5,931	36,745	15,661	17,280	20,635		52
1963	2,652	24,119	10,855	21,692	20,114		54
1964	2,509	34,140	29,315	26,593	12,853		56
1965	4,170	27,569	32,667	2,768	11,533		63
1966	4,829	33,925	26,065	23,833	35,133		64
1967	5,417	17,735	40,391	12,372	22,834		53
1968	4,904	19,501	39,103	67,365	21,890		60
1969	6,986	41,222	10,802	74,178	15,046	1,518	42
1970	3,357	50,862	44,569	196,237	110,621	2,688	53
1971	6,945	66,261	41,588	31,296	90,964	3,053	55
1972	10,949	80,911	49,609	144,237	148,432	3,103	51
1973	9,799	85,402	35,453	58,186	109,245	3,286	41
1974	2,908	38,726	38,667	57,820	86,692	2,315	30
1975	2,182	32,550	1,185	9,567	2,678	1,084	16
1976	1,757	62,174	41,664	14,977	81,972	1,914	25
1977	1,068	72,030	54,929	88,904	60,964	2,258	27
1978	1,926	55,398	31,944	51,385	36,254	2,174	26
1979	3,701	122,148	16,194	152,836	61,194	2,269	29
1980	2,251	123,451	41,677	296,622	192,793	4,123	31
1981	1,721	49,942	26,711	254,856	76,438	2,687	30
1982	3,014	83,722	29,073	109,270	37,584	2,433	36
1983	888	31,821	21,455	66,239	15,264	1,274	33
1984	1,773	77,233	33,836	145,971	86,764	2,757	53
1985	2,632	88,093	55,518	311,305	106,900	3,264	48
1986	2,584	73,061	30,512	16,568	58,792	2,129	33
1987	2,076	75,212	35,219	363,439	121,660	2,514	35
1988	1,777	38,901	44,818	157,732	140,038	2,135	32
1989	1,811	74,019	51,812	180,639	36,979	2,333	41
1990	3,480	126,884	67,530	153,126	145,799	3,188	38
1991	3,214	109,471	126,576	74,170	160,422	4,145	57
1992	2,341	135,411	172,662	314,445	112,527	4,550	50
1993	7,159	171,427	65,539	29,216	167,902	3,827	43
1994	5,047	105,893	188,501	401,525	214,171	5,078	66
1995	4,660	103,362	83,606	41,228	349,949	4,034	49
1996	2,659	199,014	33,633	12,660	354,463	3,229	46
1997	2,804	94,745	3,515	51,424	176,864	2,107	33
1998	794	69,677	28,713	168,283	296,111	3,070	48
1999	1,949	79,686	17,608	59,316	429,359	2,841	59
2000	1,154	185,956	7,828	58,696	669,994	2,919	40
2001	1,698	293,043	22,646	123,026	237,122	4,731	54
2002	1,850	204,103	40,464	78,624	231,936	4,095	62
2003	1,467	238,160	24,338	114,166	170,874	3,977	78
2004	2,345	283,756	45,769	154,640	131,757	3,342	63
2005	23,301	106,048	21,289	182,778	93,700	3,734	68
2006	11,261	262,527	60,145	191,992	382,952	4,052	89
2007	1,452	112,241	22,394	100,375	590,169	3,505	64
2008	2,193	116,693	37,349	90,162	774,095	3,116	49
2009	6,800	62,070	36,615	56,801	918,350	3,438	62
2010	1,685	76,607	62,241	132,785	488,898	2,832	54
2011	2,510	163,896	28,574	344,766	667,929	3,481	46
2012	1,291	140,898	24,115	193,969	566,741	2,608	43
2013	1,224	207,231	51,441	127,343	726,849	3,655	62
2014	1,471	126,738	54,186	29,190	291,409	3,343	65
2015	1,150	83,431	23,572	296,575	475,456	2,391	44
2016	595	215,049	35,037	46,604	448,284	2,850	56
2017	1,086	113,818	16,002	230,243	885,694	3,384	43
2018	783	92,889	35,930	24,300	517,812	3,080	44
2019	1,358	105,026	23,473	71,724	246,600	2,544	62
averag							
60-18	3,698	101,464	40,796	117,139	229,935	3,038	
09-18	1,860	128,263	36,771	148,258	598,742	3,106	

Appendix D. 2. District 111 total Chinook salmon harvest in the US gillnet, sport, and personal use fisheries, 2005-2019.
Reference only mostly based on CWT--See Appendix D3 for estimates of Taku River large Chinook salmon.

Year	PU	Sport		Drift Gillnet		
	Large	Large	arge non-Tal	Large	Large non-Taku	nonlarge
2005	32	2,967		17,952	850	5,056
2006	18	2,396		10,233	808	948
2007	22	1,411		616	32	619
2008	46	1,255		920	332	893
2009	25	1,287		5,673	814	886
2010	36	2,173	849	975	235	308
2011	48	1,261	198	641	86	941
2012	34	1,407	449	762	68	309
2013	20	2,171	1,327	473	90	496
2014	21	2,045	927	769	124	375
2015	29	953		493	82	392
2016	30	1,081	444	212	80	157
2017	1	1,120	1,240	309	73	566
2018	11	1,244	746	260	239	220
2019	11	2,633	1,573	454	195	483
Averages $09-18$	27				202	504

Appendix D. 3. Annual estimates of Taku River large Chinook salmon in the D111 fisheries, 2005-2019.
Estimates based on GSI for gillnet and sport; troll is CWT.
For detailed GSI stock comp estimates see Appendix G. 6.

Year	PU	Sport	Gillnet	Troll	Total large Taku
2010		0.453	0.539		
2011		0.454	0.809		
2012		0.494	0.876		
2013		0.125	0.753		
2014		0.396	0.635		
2015		0.486	0.592		
2016		0.587	0.749		
2017		0.031	0.464		
2018		0.007	0.118		
2019		0.036	0.274		
Average					
10-17		0.38	0.68		
2005	32	2,476	16,490	21	19,019
2006	18	2,048	9,257	11	11,334
2007	22	1,034	303	0	1,359
2008	46	632	445	0	1,123
2009	25	673	4,609	2	5,309
2010	36	984	526	0	1,546
2011	48	573	518	0	1,139
2012	34	695	668	8	1,405
2013	20	271	356	0	648
2014	21	810	489	0	1,320
2015	29	463	292	0	784
2016	30	635	159	0	824
2017	1	34	143	0	179
2018	11	9	31	0	50
2019	10	94	124	0	228
Averages					
08-17	28	619	773	1	1,421

Appendix D. 4. Annual Chinook Salmon harvest in the Canadian fisheries in the Taku River, 1979-2019.

Year	Commercial				Assesment/Test fishery				Aboriginal		Rec
	Large		Nonlarge		Large		Nonlarge		Large	nonlarge	
	Harvested	Released	Harvested	Released	d Harvested	Released	Harvested	Released	Harvested	Harvested	Harvested
1979	97										300
1980	225							85			300
1981	159										300
1982	54										300
1983	156		400					9			300
1984	294		221					0			300
1985	326		24					4			300
1986	275		77					10			300
1987	127		106					0			300
1988	555		186		72			27			300
1989	895		139		31			6			300
1990	1,258		128		48			0			300
1991	1,177		432		0			0			300
1992	1,445		147		0			121			300
1993	1,619		171		0			25			300
1994	2,065		235		There was no C	Canadian cond	ho test fisht	119			300
1995	1,577		298		There was no C	Canadian cond	ho test fishs	70			105
1996	3,331		144		There was no C	Canadian coh	ho test fishe	63			105
1997	2,731		84					103			105
1998	1,107		227		There was no C	Canadian cond	ho test fishs	60			105
1999	908		257		577	2	181	50			105
2000	1,576		87		1,312	87	439	50			105
2001	1,458		118		1,175	229	871	125			105
2002	1,561		291		1,311	355	1,132	37			105
2003	1,894		547		1,403	397		277	237		105
2004	2,082		335		1,489	294		277	116		105
2005	7,399		821		0	0		212			105
2006	7,377		207		630	9		222			105
2007	874		426		1,396	302		167	16		105
2008	913		330		1,399	139		1			105
2009	6,759		1,137		0	0		172	0		105
2010	5,238		700		0	0		126	0		105
2011	2,342		514		680	134		150	21		105
2012	1,930		479		863	114		67	14		105
2013	579		653		There were no	assesmen	t/test fisheris	54	16		105
2014	1,041		579		1,230	62		96	16		105
2015	868		305		1,357	87		117	12		105
2016	508		195		1,021	144		91	10		10
2017	246		88		0	0		4	31		0
2018	0	221	0	158	here were no	assesmen	t/test fisheris	7	19		0
2019	0	106	0	29	here were no	assesmen	t/test fisheris	10	5	0	0
Averages											
85-18	1,884		308		666			86			153
09-18	1,857		453	158	728	76		80	14		77

Appendix D. 5. Taku River large Chinook salmon terminal run size, 1979-2019.

Run estimate does not include spawning escapements below the U.S./Canada border. U.S. harvest estimates after 2004 are based on GSI (gillnet and sport fish) and CWT (troll) and harvest in the fisheries between SW 18-29.									
Year	Spawning Escapements	Method	Confidence Intervals		Canadian Catch/Harvest	Above Border			
					Run	U.S.	Terminal		
			Lower	Upper		Estimate	Harvest	Run	
1989	40,329	Mark-recapture	29,263	51,395		1,232	41,561		
1990	52,142	Mark-recapture	33,863	70,421	1,606	53,748			
1991	51,645	Aerial expansion	17,072	86,218	1,477	53,122			
1992	55,889	Aerial expansion	18,475	93,303	1,866	57,755			
1993	66,125	Aerial expansion	21,858	110,392	1,944	68,069			
1994	48,368	Aerial expansion	15,989	80,747	2,484	50,852			
1995	33,805	Medium expansion	23,887	43,723	1,752	35,557	6,263	41,820	
1996	79,019	Mark-recapture	61,285	96,753	3,499	82,518	6,280	88,798	
1997	114,938	Mark-recapture	79,878	149,998	2,939	117,877	8,325	126,202	
1998	31,039	Aerial expansion	10,255	51,823	1,272	32,311	2,605	34,916	
1999	16,786	Mark-recapture	10,571	23,001	1,640	18,426	4,019	22,445	
2000	34,997	Mark-recapture	24,407	45,587	3,043	38,040	3,472	41,512	
2001	46,644	Mark-recapture	33,383	59,905	2,863	49,507	3,883	53,390	
2002	55,044	Mark-recapture	33,313	76,775	3,014	58,058	3,282	61,340	
2003	36,435	Mark-recapture	23,293	49,577	3,679	40,114	2,768	42,882	
2004	75,032	Mark-recapture	54,883	95,181	3,953	78,985	3,696	82,681	
2005	38,599	Mark-recapture	28,980	48,219	7,716	46,315	19,019	65,334	
2006	42,191	Mark-recapture	31,343	53,040	8,334	50,525	11,334	61,859	
2007	14,749	Mark-recapture	8,326	21,172	2,542	17,291	1,359	18,650	
2008	26,645	Mark-recapture	20,744	32,545	2,418	29,063	1,123	30,186	
2009	22,761	Mark-recapture	17,134	28,388	7,036	29,797	5,309	35,106	
2010	28,769	Mark-recapture	23,840	33,698	5,469	34,238	1,546	35,784	
2011	19,672	Aerial expansion	12,938	26,406	3,277	22,949	1,139	24,088	
2012	16,713	Aerial expansion	10,992	22,434	2,965	19,678	1,405	21,083	
2013	18,002	Aerial expansion	4,500	31,504	738	18,740	648	19,388	
2014	23,532	Mark-recapture	19,187	27,877	2,472	26,004	1,320	27,324	
2015	23,567	Mark-recapture	20,512	26,622	2,447	26,014	784	26,798	
2016	9,177	Mark-recapture	8,114	10,240	1,630	10,807	824	11,631	
2017	8,214	Mark-recapture	6,679	9,749	250	8,464	179	8,643	
2018	7,271	Mark-recapture	5,745	8,798	7	7,278	50	7,328	
2019	11,558	Mark-recapture	8,802	14,314	10	11,568	228	11,796	
Averages									
95-18	- 34,317				3,123	37,440	3,776	41,216	
09-18	17,768				2,629	20,397	1,320	21,717	

Appendix D. 6. Aerial survey index escapement counts of large (3-ocean and older)
Taku River Chinook salmon, 1975-2019.

Year	Kowatua	Tatsamenie	Dudidontu	Tseta	Nakina ${ }^{\text {a }}$		Nahlin	Total Index Count withor Tseta
					1 fish for in	Total fish		
1975			15			1,800	274	2,089
1976	341	620	40			3,000	725	4,726
1977	580	573	18			3,850	650	5,671
1978	490	550		21		1,620	624	3,284
1979	430	750	9			2,110	857	4,156
1980	450	905	158			4,500	1,531	7,544
1981	560	839	74	258		5,110	2,945	9,528
1982	289	387	130	228		2,533	1,246	4,585
1983	171	236	117	179		968	391	1,883
1984	279	616		176		1,887	951	3,733
1985	699	848	475	303		2,647	2,236	6,905
1986	548	886	413	193		3,868	1,612	7,327
1987	570	678	287	180		2,906	1,122	5,563
1988	1,010	1,272	243	66		4,500	1,535	8,560
1989	601	1,228	204	494		5,141	1,812	8,986
1990	614	1,068	820	172		7,917	1,658	12,077
1991	570	1,164	804	224		5,610	1,781	9,929
1992	782	1,624	768	313		5,750	1,821	10,745
1993	1,584	1,491	1,020	491		6,490	2,128	12,713
1994	410	1,106	573	614		4,792	2,418	9,299
1995	550	678	731	786		3,943	2,069	7,971
1996	1,620	2,011	1,810	1,201		7,720	5,415	18,576
1997	1,360	1,148	943	648		6,095	3,655	13,201
1998	473	675	807	360		2,720	1,294	5,969
1999	561	431	527	221		1,900	532	3,951
2000	702	953	482	160		2,907	728	5,772
2001	1,050	1,024	479	202		1,552	935	5,040
2002	945	1,145	834	192		4,066	1,099	8,089
2003	850	1,000	644	436		2,126	861	5,481
2004	828	1,396	1,036	906		4,091	1,787	9,138
2005	833	1,146	318	215		1,213	471	3,981
2006	1,180	908	395	199		1,900	955	5,338
2007	262	390	4	199		NA	277	933
2008	690	1,083	480	497		1,437	1,121	4,811
2009	408	633	272	145		1,698	1,033	4,044
2010	716	821	561	128		1,730	1,018	4,846
2011	377	917	301	128		1,380	808	3,783
2012	402	660	126			1,300	726	3,214
2013	708	438	166		148	1,623	527	3,462
2014	384	376	193		100	1,040	304	2,297
2015	622	434	289		134	1,340	612	3,297
2016	303	92	156		80	800	379	1,730
2017	272	179	37		30	301	134	923
2018	202	121	363		76	765	268	1,719
2019	361	330	949		107	1,070	282	2,992
85-18	697	883	517	358	95	3,129	1,327	6,461
09-18	439	467	246	134	95	1,198	581	2,932
	0.82	0.71	3.85	0.00	1.13	0.89	0.49	1.02

[^1]Appendix D. 7. Annual sockeye salmon harvest in the Alaskan District 111 fisheries, includes estimates of Taku wild and enhanced fish in the gillnet, seine, and personal use fisheries, 1967-2019.

Personal Use wild/enhanced estimates are based on the Canadian lower river commerical fishery.										
Year	D111 Gillnet harvest				D111 Amalga Seine harvest			PU Taku harvest		
	All D111 Gillnet	Traditional D111 Gillnet without 111-34 for stock comp			All			All Taku	Wild TakunhancedTar	
		harvest	Wild Taku	EnhancedTaku	D111 Seine	Wild Taku	EnhancedTaku			
1967	17,735	15,282						103	103	
1968	19,501	17,721						41	41	
1969	41,169	40,053						122	122	
1970	50,922	49,951						304	304	
1971	66,181	62,593						512	512	
1972	80,404	76,478						554	554	
1973	85,317	81,149						1,227	1,227	
1974	38,670	33,934						1,431	1,431	
1975	32,513	32,271						170	170	
1976	61,749	54,456						351	351	
1977	70,097	66,844								
1978	55,398	54,305								
1979	122,148	115,192								
1980	123,451	116,861								
1981	49,942	48,912								
1982	83,625	80,161								
1983	31,821	31,073								
1984	77,233	76,015								
1985	88,077	87,550						920	920	
1986	73,061	72,713								
1987	75,212	76,377								
1988	38,923	38,885								
1989	74,019	73,991						562	562	
1990	126,884	126,876						793	793	
1991	109,877	111,002						800	800	
1992	135,411	132,669						1,217	1,217	
1993	171,556	171,373						1,201	1,201	
1994	105,861	105,758						1,111	1,111	
1995	103,377	103,361	86,929	4,065				990	950	40
1996	199,014	198,303	181,776	4,762				1,189	1,168	21
1997	94,745	94,486	76,043	2,031				1,053	1,024	29
1998	69,677	68,462	47,824	806				1,202	1,165	37
1999	79,425	77,515	61,205	599				1,254	1,236	18
2000	168,272	166,248	128,567	1,561				1,134	1,116	18
2001	290,450	284,786	194,091	8,880				1,462	1,405	57
2002	178,488	176,042	114,460	651				1,289	1,287	2
2003	205,433	177,903	134,957	767				1,218	1,208	10
2004	241,254	177,830	75,186	676				1,150	1,135	15
2005	87,254	71,472	44,360	579				1,150	1,136	14
2006	134,781	99,622	62,814	2,210				804	773	31
2007	112,241	107,129	60,879	3,684				566	508	58
2008	116,693	116,693	63,002	11,680				1,010	903	107
2009	62,070	62,070	35,121	240				871	863	8
2010	61,947	61,947	44,837	910				1,020	987	33
2011	100,400	100,049	65,090	5,604				1,111	1,024	87
2012	140,898	124,830	45,410	4,039				1,287	1,149	138
2013	207,231	137,739	84,567	12,779	4,429	1,054	372	1,371	1,152	219
2014	126,738	84,529	30,672	859	1,440	536	26	1,133	1,098	35
2015	83,431	51,286	40,904	194	912			955	948	7
2016	215,049	131,025	66,980	6,710	2,684			1,184	1,051	133
2017	113,818	111,409	67,706	6,042	2,689			856	775	81
2018	92,889	63,043	35,784	2,092	2,300			1,854	1,756	98
2018	105,026	92,185	65,281	1,237	0			1,500	1,469	31
Averag										
95-18	136,899	118,657	77,048	3,434				1,130	1,076	54
09-18	120,447	92,793	51,707	3,947				1,164	1,080	84

Appendix D. 8. Stock proportions and harvest of sockeye salmon in the traditional
Alaska District 111 commercial drift gillnet fishery, 1983-2019.

Year	Taku Lakes	Mainstem	D111 Gillnet harvest									Amalga Seine harvest Taku	
			Tatsamenie		Little Trapper Enhanced	King Salmon Enhanced	Taku Wild	Total Taku	Wild Snet/ Wild other	U.S. Enhanced	Stikine Enhanced		
			Wild	Enhanced								Wild	Enhance
1983							0.755	0.755					
1984							0.758	0.758					
1985							0.838	0.838					
1986	0.328	0.303	0.204				0.834	0.834	0.166				
1987	0.312	0.376	0.031				0.720	0.720	0.280				
1988	0.276	0.305	0.082				0.663	0.663	0.337				
$1989{ }^{\text {a }}$							0.849	0.849	0.152				
1990	0.232	0.336	0.286				0.855	0.855	0.145				
1991	0.337	0.373	0.232				0.941	0.941	0.059				
1992	0.269	0.445	0.191				0.904	0.904	0.096				
1993	0.391	0.308	0.123				0.822	0.822	0.178				
1994	0.466	0.361	0.091				0.917	0.917	0.058	0.025			
1995	0.260	0.428	0.153	0.029	0.010		0.841	0.880	0.093	0.026			
1996	0.186	0.499	0.232	0.014	0.010		0.917	0.941	0.045	0.014			
1997	0.237	0.282	0.286	0.011	0.011		0.805	0.826	0.053	0.120			
1998	0.245	0.209	0.245	0.004	0.008		0.699	0.710	0.033	0.257			
1999	0.436	0.235	0.119	0.005	0.003		0.790	0.797	0.072	0.131			
2000	0.412	0.211	0.151	0.008	0.002		0.773	0.783	0.058	0.160			
2001	0.206	0.268	0.207	0.031	0.000		0.682	0.713	0.046	0.241			
2002	0.352	0.173	0.126	0.004	0.000		0.650	0.654	0.047	0.299			
2003	0.328	0.398	0.033	0.004	0.000		0.759	0.763	0.056	0.181			
2004	0.148	0.233	0.042	0.004	0.000		0.423	0.427	0.051	0.522			
2005	0.125	0.456	0.040	0.008	0.000		0.621	0.629	0.145	0.226			
2006	0.110	0.361	0.159	0.022	0.000		0.631	0.653	0.060	0.288			
2007	0.124	0.355	0.089	0.034	0.000		0.568	0.603	0.106	0.291			
2008	0.119	0.267	0.154	0.100	0.000		0.540	0.640	0.082	0.278			
2009	0.114	0.343	0.109	0.004	0.000		0.566	0.570	0.140	0.288	0.002		
2010	0.046	0.523	0.155	0.012	0.002		0.724	0.738	0.152	0.109	0.001		
2011	0.118	0.397	0.135	0.040	0.016		0.651	0.707	0.045	0.246	0.003		
2012	0.122	0.242		0.028	0.005		0.364	0.396	0.090	0.512	0.002		
2013	0.322	0.292		0.090	0.003		0.614	0.707	0.135	0.154	0.004	0.238	0.084
2014	0.079	0.268	0.016	0.010	0.000		0.363	0.373	0.176	0.448	0.003	0.372	0.018
2015	0.219	0.575	0.004	0.004	0.000		0.798	0.801	0.063	0.131	0.005		
2016	0.102	0.264	0.145	0.046		0.005	0.511	0.562	0.054	0.383	0.001		
2017	0.093	0.245	0.270	0.050		0.004	0.608	0.662	0.042	0.293	0.003		
2018	0.103	0.222	0.063	0.017		0.006	0.388	0.411	0.051	0.536	0.002		
2019	0.113	0.578	0.016	0.011		0.002	0.708	0.722	0.085	0.192	0.002		
Averag													
86-18	0.225	0.330	0.139				0.691	0.711	0.102				
09-18	0.132	0.337	0.112				0.559	0.593	0.095				
1983							23,460	23,460					
1984							57,619	57,619					
1985							73,367	73,367					
1986	23,816	21,999	14,829				60,644	60,644	12,069				
1987	23,851	28,724	2,388				54,963	54,963	21,414				
1988	10,741	11,854	3,191				25,785	25,785	13,100				
$1989{ }^{\text {a }}$							62,804	62,804	11,210				
1990	29,489	42,673	36,330				108,492	108,492	18,384				
1991	37,359	41,376	25,736				104,471	104,471	6,531				
1992	35,625	59,004	25,329				119,959	119,959	12,709				
1993	66,952	52,820	21,116				140,888	140,888	30,485				
1994	49,234	38,142	9,576				96,952	96,952	6,172	2,634			
1995	26,893	44,271	15,765	3,049	1,017		86,929	90,994	9,641	2,727			
1996	36,917	98,876	45,983	2,849	1,913		181,776	186,538	8,928	2,838			
1997	22,389	26,621	27,033	1,003	1,028		76,043	78,074	5,054	11,358			
1998	16,775	14,306	16,743	246	560		47,824	48,630	2,244	17,588			
1999	33,780	18,231	9,194	358	241		61,205	61,804	5,556	10,155			
2000	68,500	35,025	25,042	1,285	276		128,567	130,128	9,592	26,528			
2001	58,736	76,418	58,937	8,880	0		194,091	202,971	13,166	68,649			
2002	61,922	30,397	22,141	651	0		114,460	115,111	8,224	52,708			
2003	58,280	70,801	5,876	767	0		134,957	135,724	9,983	32,196			
2004	26,314	41,366	7,505	676	0		75,186	75,862	9,157	92,810			
2005	8,909	32,591	2,860	579	0		44,360	44,939	10,371	16,161			
2006	10,995	35,993	15,825	2,210	0		62,814	65,024	5,940	28,659			
2007	13,311	38,084	9,484	3,684	0		60,879	64,563	11,353	31,213			
2008	13,833	31,170	17,999	11,680	0		63,002	74,682	9,544	32,467			
2009	7,050	21,275	6,796	240	0		35,121	35,361	8,674	17,888	148		
$2010^{\text {a }}$	2,833	32,407	9,597	760	150		44,837	45,747	9,390	6,759	79		
2011	11,799	39,743	13,548	4,047	1,557		65,090	70,694	4,473	24,595	288		
2012	15,221	30,189	0	3,453	587		45,410	49,449	11,210	63,963	208		
2013	44,412	40,155	0	12,373	406		84,567	97,346	18,641	21,172		1,054	372
2014	6,694	22,622	1,356	859	0		30,672	31,531	14,868	37,880		536	26
2015	11,254	29,467	183	194	0		40,904	41,099	3,238	6,698	250		
2016	13,357	34,570	19,053	6,039		671	66,980	73,690	7,027	50,150	154		
2017	10,330	27,340	30,035	5,576		466	67,706	73,748	4,655	32,645	361		
2018	9,517	20,486	5,781	1,550		542	35,784	37,876	4,656	49,430	223		
2019	10,448	53,324	1,508	1,050		187	65,281	66,518	7,824	17,683	160		
Averag													
86-18	27,096	37,156	15,789				79,519	82,016	10,232	29,595			
09-18	13,247	29,825	8,635	3,509	386		51,707	55,654	8,683	31,118			

Appendix D. 9. Proportion of wild Taku River sockeye salmon in the Alaskan District 111 commercial drift gillnet harvest by week, 1983-2019.

Week											Total
Year	25	26	27	28	29	30	31	32	33	34	
1983		0.996	0.842	0.819	0.663	0.527	0.836	0.534	0.719	0.759	0.755
1984	0.970	0.956	0.843	0.670	0.588	0.712	0.728	0.809	0.726		0.758
1985	0.999	0.986	0.928	0.974	0.868	0.706	0.737	0.826	0.801		0.838
1986	0.938	0.953	0.873	0.880	0.852	0.777	0.851	0.757	0.893	0.739	0.834
1987		0.982	0.901	0.884	0.948	0.414	0.619	0.689	0.841	0.731	0.720
1988		0.964	0.886	0.889	0.510	0.643	0.677	0.528	0.478	0.346	0.663
1989	0.943	0.989	0.979	0.852	0.835	0.641	0.681	0.919	0.676		0.848
1990	0.874	0.935	0.904	0.773	0.782	0.863	0.943	0.939	0.878	0.862	0.855
1991	0.988	0.979	0.953	0.979	0.951	0.933	0.936	0.890	0.885	0.875	0.941
1992		0.978	0.985	0.956	0.916	0.943	0.893	0.858	0.766	0.766	0.904
1993		0.961	0.901	0.837	0.856	0.781	0.790	0.829	0.738	0.706	0.822
1994		1.000	0.981	0.973	0.967	0.870	0.835	0.938	0.804	0.901	0.917
1995	0.942	0.889	0.903	0.858	0.872	0.868	0.761	0.759	0.705	0.740	0.841
1996	1.000	0.998	0.909	0.974	0.950	0.991	0.914	0.945	0.879	0.804	0.953
1997	0.992	0.970	0.910	0.926	0.951	0.939	0.939	0.925	0.872	0.906	0.938
1998		0.964	0.974	0.978	0.971	0.949	0.948	0.942	0.997	0.857	0.955
1999		0.966	0.988	0.953	0.934	0.917	0.878	0.833	0.732	0.665	0.917
2000		0.973	0.962	0.958	0.929	0.898	0.872	0.907	0.908	0.858	0.931
2001	0.995	0.998	0.948	0.888	0.908	0.930	0.961	0.945	0.858	0.858	0.936
2002	0.986	0.989	0.993	0.970	0.872	0.946	0.829	0.880	0.851	0.851	0.933
2003	1.000	0.987	0.961	0.994	0.970	0.929	0.883	0.795	0.236	0.236	0.931
2004		0.968	0.950	0.930	0.939	0.884	0.731	0.799	0.909	0.891	0.891
2005	0.973	0.973	0.953	0.947	0.932	0.924	0.881	0.885	0.786	0.767	0.905
2006	0.957	0.957	0.912	0.856	0.896	0.819	0.802	0.842	0.970	0.970	0.914
2007	1.000	0.992	0.934	0.807	0.716	0.821	0.879	0.824	0.812	0.786	0.925
2008	0.975	0.900	0.695	0.632	0.589	0.470	0.424	0.488	0.489	0.489	0.868
2009	0.902	0.902	0.715	0.683	0.552	0.542	0.528	0.416	0.382	0.382	0.566
2010		0.964	0.955	0.960	0.737	0.637	0.754	0.636	0.529	0.764	0.723
2011		0.988	0.943	0.797	0.766	0.699	0.683	0.606	0.365	0.228	0.651
2012	0.938	0.720	0.909	0.828	0.632	0.321	0.389	0.085	0.298	0.298	0.364
2013	0.960	0.927	0.865	0.794	0.467	0.477	0.457	0.457	0.457	0.457	0.614
2014	0.756	0.825	0.695	0.355	0.568	0.445	0.206	0.199	0.107	0.014	0.363
2015	0.000	0.910	0.969	0.927	0.830	0.815	0.823	0.723	0.693	0.693	0.798
2016	0.000	0.889	0.894	0.877	0.681	0.599	0.436	0.525	0.335	0.319	0.511
2017	0.914	0.930	0.656	0.640	0.709	0.608	0.591	0.512	0.450	0.510	0.608
2018	0.962	0.936	0.731	0.492	0.310	0.412	0.451	0.228	0.228	0.252	0.388
2019	0.574	0.829	0.888	0.797	0.714	0.644	0.805	0.651	0.573	0.302	0.708
Average											
83-18		0.950	0.897	0.847	0.789	0.740	0.737	0.713	0.668	0.645	0.786
09-18		0.899	0.833	0.735	0.625	0.556	0.532	0.439	0.384	0.392	0.559

Appendix D. 10. Annual sockeye salmon harvest estimates of wild and enhanced fish in the Canadian fisheries in the Taku River, 1979-2019.

Year	Total harvest					Natural Spawning			Enhanced		
	Commercial		Aborginal	Test	test released	Commercial	Aboriginal	Test	Commercial	Aboriginal	Test
	Allharvest	TakuOnly									
1979	13,578					13,578					
1980	22,602		150			22,602	150				
1981	10,922					10,922					
1982	3,144					3,144					
1983	17,056		0			17,056	0				
1984	27,242		50			27,242	50				
1985	14,244		167			14,244	167				
1986	14,739		200			14,739	200				
1987	13,554		96	237		13,554	96	237			
1988	12,014		245	708		12,014	245	708			
1989	18,545		53	207		18,545	53	207			
1990	21,100		89	285		21,100	89	285			
1991	25,067		150	163		25,067	150	163			
1992	29,472		352	38		29,472	352	38			
1993	33,217		140	166		33,217	140	166			
1994	28,762		239			28,762	239				
1995	32,640		71			31,306	68		1,334	3	0
1996	41,665		360			40,933	354		732	6	0
1997	24,003		349		1	23,346	339		657	10	0
1998	19,038		239			18,449	232		589	7	0
1999	20,681		382	88		20,384	377	87	297	5	1
2000	28,009		140	319		27,573	138	314	436	2	5
2001	47,660		210	247	82	45,792	202	237	1,868	8	10
2002	31,053		155	518	161	31,004	155	517	49	0	1
2003	32,730		267	27	197	32,463	265	27	267	2	0
2004	20,148		120	91		19,883	118	90	265	2	1
2005	21,697		161	244		21,440	159	241	257	2	3
2006	21,099		85	262		20,294	82	252	805	3	10
2007	16,714	16,589	159	376		14,988	143	337	1,726	16	39
2008	19,284	19,147	215	10	32	17,241	192	9	2,043	23	1
2009	10,980	10,955	106	174		10,875	105	172	105	1	2
2010	20,211	20,180	184	297		19,554	178	287	626	6	10
2011	24,032	23,898	124	521		22,145	114	480	1,753	10	41
2012	30,056	29,938	169	6		26,830	151	5	3,108	18	1
2013	25,125	25,074	99	0		21,107	83	0	3,966	16	0
2014	17,645	17,568	219	8		17,106	212	8	462	7	0
2015	19,747	19,715	85	49		19,592	84	49	123	1	0
2016	37,301	37,120	191	123		33,112	170	109	4,007	21	14
2017	30,209	30,150	229	0		27,345	207	0	2,805	22	0
2018	17,974	17,948	14	0		17,024	13	0	923	1	0
2019	21,395	21,376	105	0		20,952	103	0	423	2	0
Averages											
86-18	24,429		179			23,523	173				
09-18	23,328	23,254	142	118		21,469	132	111	1,788	10	7

Appendix D. 11. Annual sockeye salmon stock proportions and harvest by stock in the Canadian commercial fishery on the Taku River, 1986-2019.

Year	Taku		Tatsamenie		Little Trapper Enhance	King Salmon Enhance	Taku		Stikine Enhance	US Enhance	Wild lake stocks based on SPA				
				King					Little Trapp						
	Lakes other	Mainstem			Wild		Enhance	Wild			Enhance	Kuthai	Salmon	Wild	
1986	0.508	0.350	0.143					1.000					0.111		0.397
1987	0.263	0.649	0.088				1.000				0.062		0.201		
1988	0.559	0.343	0.098				1.000				0.143		0.417		
$1989{ }^{\text {a }}$							1.000				0.053		${ }^{\text {a }}$		
1990	0.499	0.338	0.163				1.000				0.112		0.388		
1991	0.372	0.452	0.176				1.000				0.064		0.308		
1992	0.332	0.569	0.099				1.000				0.092		0.240		
1993	0.519	0.432	0.049				1.000				0.126		0.392		
1994	0.640	0.302	0.058				1.000				0.158		0.482		
1995	0.474	0.373	0.112	0.031	0.010		0.959	0.041			0.047		0.427		
1996	0.325	0.442	0.215	0.010	0.008		0.982	0.018			0.105		0.221		
1997	0.402	0.277	0.294	0.008	0.019		0.973	0.027			0.120		0.282		
1998	0.432	0.254	0.283	0.003	0.028		0.969	0.031			0.225		0.207		
1999	0.694	0.145	0.147	0.006	0.008		0.986	0.014			0.389		0.305		
2000	0.377	0.326	0.282	0.016	0.000		0.984	0.016			0.172		0.205		
2001	0.352	0.364	0.246	0.039	0.000		0.961	0.039			0.184		0.168		
2002	0.745	0.192	0.062	0.002	0.000		0.998	0.002			0.316		0.428		
2003	0.633	0.271	0.089	0.008	0.000		0.992	0.008			0.231	0.023	0.378		
2004	0.370	0.586	0.031	0.013	0.000		0.987	0.013			0.168	0.071	0.132		
2005	0.340	0.505	0.143	0.012	0.000		0.988	0.012			0.098	0.038	0.204		
2006	0.259	0.474	0.229	0.038	0.000		0.962	0.038			0.055	0.028	0.176		
2007	0.203	0.524	0.170	0.096	0.000		0.897	0.096	0.007		0.102	0.000	0.101		
2008	0.373	0.222	0.299	0.099	0.000		0.894	0.099	0.007		0.308	0.007	0.058		
2009	0.569	0.276	0.145	0.007	0.000		0.990	0.007	0.002		0.155	0.000	0.414		
2010	0.195	0.605	0.167	0.017	0.014		0.967	0.031	0.002		0.162	0.033	${ }^{\text {a }}$		
2011	0.171	0.422	0.329	0.056	0.017		0.921	0.073	0.004	0.001	0.058	0.083	0.030		
2012	0.175	0.570	0.148	0.095	0.009		0.893	0.103	0.004						
2013	0.246	0.395	0.199	0.157	0.002		0.840	0.158	0.000	0.002					
2014	0.259	0.679	0.032	0.026	0.000		0.969	0.026	0.004	0.001					
2015	0.204	0.776	0.013	0.006	0.000		0.992	0.006	0.002	0.000					
2016				0.090		0.017	0.888	0.107	0.002	0.003					
2017				0.089		0.004	0.905	0.093	0.002	0.000					
2018				0.028		0.023	0.947	0.051	0.001	0.000					
2019				0.015		0.004	0.979	0.020	0.000	0.000					
Averages															
86-18							0.965								
09-18				0.057			0.931	0.066							
1986	7,484	5,152	2,103				14,739				1,629		5,855		
1987	3,562	8,793	1,199				13,554				834		2,728		
1988	6,720	4,122	1,172				12,014				1,715		5,005		
$1989{ }^{\text {a }}$	0		0				18,545				990				
1990	10,538	7,131	3,431				21,100				2,355		8,183		
1991	9,322	11,327	4,418				25,067				1,601		7,721		
1992	9,784	16,764	2,924				29,472				2,699		7,085		
1993	17,229	14,347	1,641				33,217				4,192		13,036		
1994	18,402	8,684	1,676				28,762	0			4,544		13,858		
1995	15,462	12,185	3,659	1,003	331		31,306	1,334			1,528		13,934		
1996	13,552	18,422	8,959	401	331		40,933	732			4,357		9,195		
1997	9,649	6,637	7,060	201	456		23,346	657			2,891		6,758		
1998	8,223	4,829	5,397	56	533		18,449	589			4,279		3,944		
1999	14,358	2,992	3,034	126	171		20,384	297			8,044		6,314		
2000	10,554	9,122	7,897	436	0		27,573	436			4,809		5,745		
2001	16,753	17,330	11,709	1,868	0		45,792	1,868			8,748		8,005		
2002	23,131	5,948	1,925	49	0		31,004	49			9,826		13,305		
2003	20,706	8,855	2,902	267	0		32,463	267			7,568	755	12,383		
2004	7,464	11,799	620	266	0		19,883	266			3,381	1,430	2,653		
2005	7,382	10,950	3,108	257	0		21,440	257			2,120	829	4,433		
2006	5,461	9,993	4,840	805	0		20,294	805			1,168	589	3,704		
2007	3,391	8,759	2,838	1,602	0		14,988	1,602	125		1,697	0	1,694		
2008	7,202	4,276	5,763	1,905	0		17,241	1,905	137		5,949	139	1,114		
2009	6,252	3,035	1,588	80	0		10,875	80	25		1,703	0	4,549		
$2010^{\text {a }}$	3,950	12,235	3,369	334	290		19,554	624	31	0	3,274	676			
2011	4,099	10,140	7,906	1,347	406		22,145	1,753	106	28	1,387	1,990	723		
2012	5,254	17,143	4,434	2,852	257		26,830	3,109	118	0					
2013	6,189	9,922	4,997	3,934	40		21,107	3,974	11	40					
2014	4,570	11,981	565	462	0		17,106	462	66	11					
2015	4,028	15,324	257	123	0		19,592	123	32	0					
2016				3,361	0	646	33,112	4,007	57	124					
2017				2,690		115	27,345	2,805	59	0					
2018				508		416	17,024	923	26	0					
2019				328		95	20,952	423	11	9					
Averages															
86-18							23,523								
09-18				1,569	124		21,469	1,786							

Appendix D. 12. Annual sockeye salmon weir counts, escapements, and samples at the Tatsamenie Lake weir, 1984-2019.

Appendix D. 13. Annual sockeye salmon weir counts, escapements, and samples at the Little Trapper weir, 1983-2019.
Broodstock estimate is based on commercial ratio with Tatsamenie River weir data

Year	Weir count oodstock ta		Natural spawning escapement		
			Total	wild	enhanced
1983	7,402	0	7,402	7,402	
1984	13,084	0	13,084	13,084	
1985	14,889	0	14,889	14,889	
1986	13,820	0	13,820	13,820	
1987	12,007	0	12,007	12,007	
1988	10,637	0	10,637	10,637	
1989	9,606	0	9,606	9,606	
1990	9,443	1,666	7,777	7,777	
1991	22,942	1,941	21,001	21,001	
1992	14,372	1,640	12,732	12,732	
1993	17,432	747	16,685	16,685	
1994	13,438	747	12,691	12,691	
1995	11,524	0	11,524	11,067	457
1996	5,483	0	5,483	5,292	191
1997	5,924	0	5,924	5,543	381
1998	8,717	0	8,717	7,698	1,019
1999	11,805	0	11,805	11,760	45
2000	11,551	0	11,551	11,551	0
2001	16,860	0	16,860	16,860	0
2002	7,973	0	7,973	7,973	0
2003	31,227	0	31,227	31,227	0
2004	9,613	0	9,613	9,613	0
2005	16,009	0	16,009	16,009	0
2006	25,265	708	24,557	24,557	0
2007	7,153	813	6,340	6,340	0
2008	3,831	1,040	2,791	2,791	0
2009	5,552	109	5,443	5,443	0
2010	3,347		3,387	3,084	303
2011	3,809		3,809	3,521	288
2012	10,015		10,015	9,522	493
2013	4,840		4,840	4,809	31
2014	6,607		6,707	6,707	0
2015	13,253		13,253	13,253	
2016	7,771		7,594	7,594	
2017	6,552		6,376	6,376	
2018	8,249		8,249	8,249	
2019	6,382	304	5,938	5,938	
Averages					
83-18	11,167				
09-18	7,000				

Appendix D. 14. Annual sockeye salmon weir counts, escapements, and samples at the King Salmon weir, 1983-2019.
Spawning escapement is based harvest rates and projections of King Salmon inriver run estimate

		Natural spawning escapement		
Year	Weir count odstock ta	Total	wild	enhanced
2004	5005	5,005	5,005	
2005	1046	1,046	1,046	
2006	2177	2,177	2,177	
2007	5	5	5	
2008	888	888	888	
2009	1100		1,100	1,100
2010	2977		2,977	2,977
2011	2899		2,899	2,899
2012	6913	150	6,763	6,763
2013	470		470	470
2014	1061	151	910	910
2015	1683		1,683	1,683
2016	6404		6,404	3,378
2017	439		$\mathbf{4 3 9}$	3,026
2018	3375	$\mathbf{3 , 3 7 5}$	$\mathbf{2 , 4 7 9}$	
2019	4294		4,294	4,294

Appendix D. 15. Taku River sockeye salmon run size, 1984-2019.
Run estimate does not include spawning escapements below the U.S./Canada border.
MR estimates have been adjusted for dropout and size selectivity.

Year	Above Border MR				Canadian harvest	Escape.	$\begin{gathered} \text { U.S. } \\ \text { Harvest } \end{gathered}$	Terminal Run	Total Harvest Rate
			Confidence Intervals						
	Estimate	Start date	Lower	Upper					
1984	88,272	17-Jun	70,894	105,650	27,292	60,980	57,619	145,891	58\%
1985	84,479	16-Jun	67,333	101,625	14,411	70,068	74,287	158,766	56\%
1986					14,939		60,644		
1987	56,362	21-Jun	45,590	67,134	13,887	42,475	54,963	111,325	62\%
1988	55,580	19-Jun	44,648	66,512	12,967	42,613	25,785	81,365	48\%
1989	80,997	18-Jun	65,787	96,207	18,805	62,192	63,366	144,363	57\%
1990	75,801	10-Jun	61,839	89,763	21,474	54,327	109,285	185,086	71\%
1991	104,895	9-Jun	85,097	124,693	25,380	79,515	105,271	210,166	62\%
1992	99,643	21-Jun	81,401	117,885	29,862	69,781	121,176	220,819	68\%
1993	92,933	13-Jun	76,231	109,635	33,523	59,410	142,089	235,022	75\%
1994	90,128	12-Jun	73,666	106,590	29,001	61,127	98,063	188,191	68\%
1995	104,242	11-Jun	85,180	123,304	32,711	71,531	91,984	196,226	64\%
1996	97,477	9-Jun	79,901	115,053	42,025	55,452	187,727	285,204	81\%
1997	73,255	3-May	59,861	86,649	24,352	48,903	79,127	152,382	68\%
1998	64,755	2-May	52,617	76,893	19,277	45,478	49,832	114,587	60\%
1999	83,588	14-May	67,816	99,360	21,151	62,437	63,058	146,646	57\%
2000	83,190	14-May	68,024	98,356	28,468	54,722	131,262	214,452	74\%
2001	132,502	27-May	108,404	156,600	48,117	84,385	204,433	336,935	75\%
2002	94,605	19-May	77,331	111,879	31,726	62,879	116,400	211,005	70\%
2003	133,593	20-May	108,917	158,269	33,024	100,569	136,942	270,535	63\%
2004	85,257	12-May	69,601	100,913	20,359	64,898	77,012	162,269	60\%
2005	87,496	5-May	70,454	104,538	22,102	65,394	46,089	133,585	51\%
2006	106,545	20-May	86,195	126,895	21,446	85,099	65,828	172,373	51\%
2007	60,320	19-May	49,616	71,024	17,249	43,071	65,129	125,449	66\%
2008	78,031	17-May	62,737	93,325	19,509	58,522	75,692	153,723	62\%
2009	59,817	12-May	47,343	72,291	11,260	48,557	36,232	96,049	49\%
2010	80,747	19-May	64,679	96,815	20,661	60,086	46,767	127,514	53\%
2011	82,116	25-Apr	66,634	97,598	24,543	57,573	71,805	153,921	63\%
2012	102,670	25-Apr	83,602	121,738	30,113	72,557	50,736	153,406	53\%
2013	88,535	15-May	71,523	105,547	25,173	63,362	100,144	188,679	66\%
2014	68,532	25-Apr	55,818	81,246	17,795	50,737	33,226	101,758	50\%
2015	102,506	25-Apr	81,982	123,030	19,849	82,657	42,054	144,560	43\%
2016	146,294	3-May	119,726	172,862	37,434	108,860	74,874	221,168	51\%
2017	91,164	18-May	81,104	101,224	30,379	60,785	74,604	165,768	63\%
2018	84,806	7-Jun	74,394	95,218	17,962	66,844	27,514	112,320	40\%
2019	98,203	15-May			21,481	76,722	68,226	166,429	54\%
Average									
84-18	88,857	23-May			24,521	64,054	81,743	171,221	61\%
09-18	90,719	8-May			23,517	67,202	55,795	146,514	54\%

Appendix D. 16. The terminal run reconstruction of Taku River wild and enhanced sockeye salmon, 1984-2019.

Year	Wild Terminal Run					Enhanced Terminal Run				
	Canadian		escapement	$\begin{gathered} \text { US } \\ \text { harvest } \end{gathered}$	Terminal Run	Canadian		escapement	$\begin{gathered} \text { US } \\ \text { harvest } \end{gathered}$	Terminal Run
	harvest	test				harvest	test			
1984	27,292	0	60,980	57,619	145,891					
1985	14,411	0	70,068	74,287	158,766					
1986	14,939	0		60,644						
1987	13,650	237	42,475	54,963	111,325					
1988	12,259	708	42,613	25,785	81,365					
1989	18,598	207	62,192	63,366	144,363					
1990	21,189	285	54,327	109,285	185,086					
1991	25,217	163	79,515	105,271	210,166					
1992	29,824	38	69,781	121,176	220,819					
1993	33,357	166	59,410	142,089	235,022					
1994	29,001	0	61,127	98,063	188,191					
1995	31,374	0	69,831	87,878	189,083	1,337	0	1,700	4,106	7,143
1996	41,287	0	54,816	182,944	279,047	738	0	636	4,783	6,157
1997	23,685	0	48,291	77,067	149,043	667	0	612	2,060	3,339
1998	18,681	0	44,323	48,989	111,993	596	0	1,155	843	2,594
1999	20,761	87	62,355	62,441	145,643	302	1	82	617	1,003
2000	27,711	314	53,722	129,683	211,430	438	5	1,000	1,579	3,022
2001	45,994	237	80,632	195,496	322,358	1,876	10	3,753	8,938	14,577
2002	31,159	517	62,220	115,747	209,643	49	1	659	653	1,362
2003	32,728	27	99,229	136,165	268,149	269	0	1,340	777	2,386
2004	20,001	90	64,184	76,321	160,596	267	1	714	692	1,673
2005	21,599	241	64,725	45,496	132,061	259	3	669	593	1,524
2006	20,376	252	82,608	63,587	166,823	808	10	2,491	2,241	5,550
2007	15,131	337	39,883	61,387	116,737	1,742	39	3,188	3,742	8,712
2008	17,433	9	54,355	63,905	135,702	2,066	1	4,167	11,787	18,021
2009	10,980	172	48,204	35,984	95,340	106	2	353	248	709
2010	19,732	287	59,077	45,824	124,920	632	10	1,009	943	2,594
2011	22,259	480	55,212	66,113	144,065	1,762	41	2,362	5,691	9,856
2012	27,098	5	65,822	46,564	139,490	3,008	1	6,735	4,172	13,916
2013	21,259	0	58,633	86,777	166,669	3,914	0	4,729	13,367	22,010
2014	17,318	8	49,844	32,306	99,477	468	0	893	919	2,281
2015	19,676	49	81,988	41,852	143,565	124	0	669	202	995
2016	33,282	109	99,791	68,031	201,213	4,029	14	9,069	6,843	19,955
2017	27,552	0	55,571	68,480	151,603	2,827	0	5,214	6,123	14,164
2018	17,038	0	64,469	25,999	107,505	924	0	2,376	1,516	4,815
2019	21,055	0	74,854	66,953	162,863	426	0	1,868	1,273	3,566
Averages										
84-18	23,539	144	62,420	79,359	166,269					
09-18	21,620	111	63,861	51,793	137,385	1,779	7	3,341	4,003	9,130

Appendix D. 17. Annual sockeye salmon escapement estimates of Taku River and Port Snettisham sockeye salmon stocks, 1979-2019.

Spawners equals escapement to the weir minus fish collected for brood stock.														
Year	Little Trapper		Little Tatsamenie		Tatsamenie		King Salmon		Kuthai Lake Weir	Nahlin River Weir	Crescent Lake		Speel Lake	
	Count	Escape.	Count	Escape.	Count	Escape.	count	escape			Count	Escape.	Count	Escape.
1980									1,658					
1981									2,299					
1982														
1983	7,402	7,402									19,422	19,422	10,484	10,484
1984	13,084	13,084									6,707	6,707	9,764	9,764
1985	14,889	14,889	13,093	13,093							7,249	7,249	7,073	7,006
1986	13,820	13,820	11,446	11,446							3,414	3,414	5,857	5,457
1987	12,007	12,007	2,794	2,794		25					7,839	7,839	9,319	9,319
1988	10,637	10,637	2,063	2,063						138	1,199	1,199	969	710
1989	9,606	9,606	3,039	3,039							1,109	775	12,229	10,114
1990	9,443	7,777	5,736	4,929						2,515	1,262	757	18,064	16,867
1991	22,942	21,001	8,381	7,585							9,208	8,666	299	299
1992	14,372	12,732	6,576	5,681					1,457	297	22,674	21,849	9,439	8,136
1993	17,432	16,685	5,028	4,230					6,312	2,463				
1994	13,438	12,691	4,371	3,578					5,427	960				
1995	11,524	11,524			5,780	4,387			3,310	3,711			16,208	14,260
1996	5,483	5,483			10,381	8,026			4,243	2,538			20,000	18,610
1997	5,924	5,924			8,363	5,981			5,746	1,857			4,999	
1998	8,717	8,717			5,997	4,735			1,934	345			13,358	
1999	11,805	11,805			2,104	1,888			10,042				10,277	
2000	11,551	11,551			7,575	5,570			4,096				6,764	
2001	16,860	16,860			22,575	19,579			1,663	935			8,060	
2002	7,973	7,973			5,495	4,379			7,697				5,016	
2003	31,227	31,227			4,515	2,965			7,769				7,014	
2004	9,613	9,613			1,951	1,357	5,005	5,005	1,578		na	na	7,813	
2005	16,009	16,009			3,372	2,445	1,046	1,046	6,004		na	na	7,538	
2006	25,265	24,557			22,475	19,820	2,177	2,177	1,015		na	na	4,163	
2007	7,153	6,340			11,187	8,384	5		204		na	na	3,099	
2008	3,831	2,791			8,976	6,176	888	888	1,547		na	na	1,763	
2009	5,552	5,443			2,032	1,292	1,100	1,100	1,442		na	na	3,689	3,689
2010	3,347	3,387			3,513	2,113	2,977	2,977	1,626		na	na	5,643	5,643
2011	3,809	3,809			7,880	6,580	2,899	2,899	811		na	na	4,777	4,777
2012	10,015	10,015			15,605	14,305	6,913	6,746	182		na	na	5,681	5,681
2013	4,840	4,840			10,246	8,946	470	470	1,195		na	na	6,427	6,427
2014	6,607	6,707			2,106	1,348	1,061	894	208				5,062	5,062
2015	13,253	13,253			1,537	939	1,683	1,683	341				4,888	4,888
2016	7,771	7,594			32,934	31,434	6,404	6,404	1,476				5,538	5,538
2017	6,552	6,376			27,237	25,697	439	439	299					
2018	8,249	8,249			5,086	3,386	3,375	3,375	13					
2019	6,382	6,078			3,902	2,478	4,294	4,294	605					
Averages														
83-18	11,167	10,899											7,540	
09-18	7,000	6,967			10,818	9,604	2,732	2,699	759				5,213	

Appendix D. 18. Historical Taku River coho salmon harvested in D111 terminal

 fisheries, 1992-2019.| Sportfish estimate is based on all landings made in Juneau (not just District 111) | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | D111 Gillnet | | | | Juneau Sport Fish | | PU | Total |
| | Harvest | SE | Before SW34 | SW34 to end | Harvest | SE | | |
| 1992 | 74,226 | 23,030 | | | 431 | 380 | 88 | 74,745 |
| 1993 | 32,456 | 8,515 | | | 3,222 | 3,048 | 25 | 35,703 |
| 1994 | 82,181 | 14,117 | | | 19,018 | 8,674 | 93 | 101,292 |
| 1995 | 51,286 | 7,263 | | | 7,857 | 2,920 | 97 | 59,240 |
| 1996 | 14,491 | 2,762 | | | 2,461 | 1,162 | 67 | 17,019 |
| 1997 | 1,489 | 412 | | | 4,963 | 1,674 | 27 | 6,479 |
| 1998 | 12,972 | 2,015 | | | 3,984 | 1,084 | 86 | 17,042 |
| 1999 | 5,572 | 913 | | | 3,393 | 997 | 44 | 9,009 |
| 2000 | 7,352 | 1,355 | | | 4,137 | 1,148 | 31 | 11,520 |
| 2001 | 9,212 | 1,523 | | | 2,505 | 813 | 22 | 11,739 |
| 2002 | 26,981 | 4,257 | | | 6,189 | 1,346 | 68 | 33,238 |
| 2003 | 19,659 | 6,937 | | | 5,421 | 1,727 | 59 | 25,139 |
| 2004 | 13,058 | 2,937 | | | 12,720 | 3,528 | 120 | 25,898 |
| 2005 | 18,011 | 5,679 | | | 3,573 | 1,830 | 134 | 21,718 |
| 2006 | 32,051 | 4,020 | | | 3,985 | 1,017 | 134 | 36,170 |
| 2007 | 15,753 | 2,416 | | | 804 | 488 | 60 | 16,617 |
| 2008 | 23,806 | 5,028 | | | 493 | 362 | 91 | 24,390 |
| 2009 | 36,757 | 5,033 | | | 5,949 | 2,445 | 240 | 42,946 |
| 2010 | 41,695 | 8,703 | | | 13,301 | 4,491 | 258 | 55,254 |
| 2011 | 4,829 | 1,237 | | | 4,340 | 977 | 224 | 9,393 |
| 2012 | 10,760 | 2,674 | | | 662 | 465 | 132 | 11,554 |
| 2013 | 23,269 | 3,330 | | | 1,793 | 716 | 238 | 25,300 |
| 2014 | 28,297 | 5,127 | | | 2,628 | 1,445 | 224 | 31,149 |
| 2015 | 6,239 | 2,163 | | | 3,063 | 1,699 | 256 | 9,558 |
| 2016 | 12,717 | 2,737 | | | 1,044 | 604 | 169 | 13,930 |
| 2017 | 7,446 | 2,724 | | | 5,892 | 2,424 | 178 | 13,516 |
| 2018 | 11,346 | 2,391 | | | 1,035 | 490 | 246 | 12,627 |
| 2019 | 4,928 | 1,301 | 632 | 4,296 | 2,712 | 1,176 | 306 | 7,946 |
| average | | | | | | | | |
| 09-19 | 18,833 | 3,741 | | | 3,655 | 1,465 | 205 | 22,692 |

Appendix D. 19. Historical coho salmon harvested in the Canadian fisheries in the Taku River, 1987-2019.

Year	Commercial			Aboriginal	Test	Test released
	Total	Before SW34	SW34 to end			
1979	6,006					
1980	6,405			0		
1981	3,607					
1982	51					
1983	8,390			0		
1984	5,357			15		
1985	1,770			22		
1986	1,783			50		
1987	5,599			113	807	
1988	3,123			98	422	
1989	2,876			146	1,011	
1990	3,207			6	472	
1991	3,415			20	2,004	
1992	4,077			187	1,277	
1993	3,033			8	1,593	
1994	14,531			162		
1995	13,629			109		
1996	5,028			24		39
1997	2,594			96		
1998	5,090			0		
1999	4,416			471	688	
2000	4,395			342	710	
2001	2,568			500	31	2,976
2002	3,082			688	32	3,767
2003	3,168			416	59	4,031
2004	5,966	2,387	3,579	450	3,268	
2005	4,924	1,412	3,512	162	3,173	
2006	8,567	4,947	3,620	300	2,802	
2007	5,244	2,229	3,015	155	2,674	
2008	3,906	2,802	1,104	67	0	1,012
2009	5,649	2,379	3,270	154	3,963	
2010	10,349	3,283	7,066	59	4,000	
2011	8,446	2,353	6,093	30	4,002	
2012	11,548	2,883	8,665	324	2,200	
2013	10,264	2,406	7,858	111	0	
2014	14,464	2,696	11,768	104	2,000	
2015	7,886	2,427	5,459	299	1,998	
2016	9,466	1,983	7,483	47	2,007	
2017	7,726	2,847	4,879	76	0	686
2018	9,503	2,258	7,245	2	0	244
2019	12,145	2,399	9,746	107	0	22
Averages						
83-18	6,251			161		
09-18	9,530			121	2,017	

Appendix D. 20. Historic Taku River coho salmon run size, 1987-2019.

Year	Above Border M-R		Expansion		Expanded Estimate	Canadian Harvest	Escape.	Terminal Run			TotalRun
	Run	End			U.S. Harvest			Run	Harvest Rate		
	Estimate	Date	Method	Factor							
1987	43,750	20-Sep	Test Fish CPUE	1.42	61,976	6,519	55,457				
1988	43,093	18-Sep		1.00	43,093	3,643	39,450				
1989	60,841	1-Oct		1.00	60,841	4,033	56,808				
1990	75,881			1.00	75,881	3,685	72,196				
1991	132,923			1.00	132,923	5,439	127,484				
1992	49,928	5-Sep	District 111-32 CPUE	1.79	89,270	5,541	83,729	74,745	164,015	0.490	212,798
1993	67,448	11-Sep	District 111-32 CPUE	1.84	123,964	4,634	119,330	35,703	159,667	0.253	249,320
1994	98,643	24-Sep	District 111-32 CPUE	1.13	111,036	14,693	96,343	101,292	212,328	0.546	339,736
1995	61,738	30-Sep	District 111-32 CPUE	1.12	69,448	13,738	55,710	59,240	128,688	0.567	181,116
1996	44,172	28-Sep	District 111-32 CPUE	1.12	49,687	5,052	44,635	17,019	66,706	0.331	94,283
1997	35,035	27-Sep	District 111-32 CPUE	1.00	35,035	2,690	32,345	6,479	41,514	0.221	50,886
1998	49,290	26-Sep	District 111-32 CPUE	1.35	66,472	5,090	61,382	17,042	83,514	0.265	119,925
1999	59,052	3-Oct	Troll CPUE	1.12	66,343	5,575	60,768	9,009	75,352	0.194	117,176
2000	70,147	2-Oct	no expansion	1.00	70,147	5,447	64,700	11,520	81,667	0.208	109,148
2001	107,493	$5-\mathrm{Oct}$	no expansion	1.00	107,493	3,099	104,394	11,739	119,232	0.124	162,777
2002	223,162	7-Oct	no expansion	1.00	223,162	3,802	219,360	33,238	256,400	0.144	303,275
2003	186,755	8-Oct	no expansion	1.00	186,755	3,643	183,112	25,139	211,894	0.136	265,090
2004	139,011	8-Oct	no expansion	1.00	139,011	9,684	129,327	25,898	164,909	0.216	251,537
2005	143,817	8-Oct	no expansion	1.00	143,817	8,259	135,558	21,718	165,535	0.181	222,997
2006	134,053	8-Oct	no expansion	1.00	134,053	11,669	122,384	36,170	170,223	0.281	226,694
2007	82,319	8-Oct	no expansion	1.00	82,319	8,073	74,246	16,617	98,936	0.250	133,301
2008	99,199	8-Oct	no expansion	1.00	99,199	3,973	95,226	24,390	123,589	0.229	174,070
2009	113,716	8-Oct	no expansion	1.00	113,716	9,766	103,950	42,946	156,662	0.336	224,010
2010	141,238	8-Oct	no expansion	1.00	141,238	14,408	126,830	55,254	196,492	0.355	246,822
2011	83,349	9 -Oct	no expansion	1.00	83,349	12,478	70,871	9,393	92,742	0.236	129,939
2012	61,797	15-Sep	CYI run timing	1.37	84,847	14,072	70,775	11,554	96,401	0.266	112,947
2013	55,161	12-Sep	CYI run timing	1.42	78,492	10,375	68,117	25,300	103,792	0.344	143,410
2014	140,739	9-Oct	no expansion	1.00	140,739	16,568	124,171	31,149	171,888	0.278	189,655
2015	70,361	9 -Oct	no expansion	1.00	70,361	10,183	60,178	9,558	79,919	0.247	104,344
2016	99,224	$9-\mathrm{Oct}$	no expansion	1.00	99,224	11,520	87,704	13,930	113,154	0.225	125,323
2017	65,670	4-Oct	no expansion	1.00	65,670	7,802	57,868	13,516	79,186	0.269	108,263
2018	60,678	3-Oct	no expansion	1.00	60,678	9,505	51,173	12,627	73,305	0.302	82,675
2019	95,011	8-Oct	no expansion	1.00	95,011	12,252	82,759	7,946	102,957	0.196	117,031
Averages											
87-18	90,615	30-Sep			97,195	7,958	89,237	27,859	129,174	0.28	171,377
09-18	89,193	2-Oct			93,831	11,668	82,164	22,523	116,354	0.29	146,739

Appendix D. 21. Historical effort in the Alaskan District 111 and Subdistrict 111-32
(Taku Inlet) commercial drift gillnet fishery, 1960-2019.

Days open are for the entire district and include openings to spawner chinook salmon, 1960-1975.					
	D111		D111-32		$\begin{array}{r} \text { PU } \\ \text { Permits } \end{array}$
Year	Boat Days	$\begin{aligned} & \text { Days } \\ & \text { Open } \end{aligned}$	Boat Days	$\begin{aligned} & \text { Days } \\ & \text { Open } \end{aligned}$	
1960		60.00	1,680	60.00	
1961		62.00	2,901	62.00	
1962		52.00	1,568	52.00	
1963		54.00	1,519	51.00	
1964		56.00	1,491	56.00	
1965		63.00	1,332	60.00	
1966		64.00	1,535	58.00	
1967		53.00	1,663	50.00	
1968		60.00	2,420	60.00	
1969	1,518	41.50	1,413	42.00	
1970	2,688	53.00	2,425	53.00	
1971	3,053	55.00	2,849	55.00	
1972	3,103	51.00	2,797	51.00	
1973	3,286	41.00	3,135	41.00	
1974	2,315	29.50	1,741	30.00	
1975	1,084	15.50	986	15.00	
1976	1,914	25.00	1,582	23.00	
1977	2,258	27.00	1,879	27.00	
1978	2,174	26.00	1,738	24.00	
1979	2,269	28.83	2,011	29.00	
1980	4,123	30.92	3,634	31.00	
1981	2,687	30.00	1,740	22.00	
1982	2,433	35.50	2,130	36.00	
1983	1,274	33.00	1,065	31.00	
1984	2,757	52.50	2,120	39.00	
1985	3,264	48.00	2,116	37.00	54
1986	2,129	32.83	1,413	30.00	
1987	2,514	34.75	1,517	30.00	
1988	2,135	32.00	1,213	29.00	
1989	2,333	41.00	1,909	36.00	75
1990	3,188	38.33	2,879	38.00	95
1991	4,145	57.00	3,324	52.00	88
1992	4,550	50.00	3,407	43.00	125
1993	3,827	43.00	3,372	43.00	128
1994	5,078	66.00	3,960	60.00	116
1995	4,034	49.00	3,061	45.00	106
1996	3,229	46.00	2,685	41.00	130
1997	2,107	33.00	1,761	30.00	123
1998	3,070	48.00	2,007	39.00	130
1999	2,841	59.00	2,563	58.00	147
2000	2,919	40.00	2,325	38.00	128
2001	4,731	54.00	3,635	55.00	163
2002	4,095	62.00	2,792	54.00	136
2003	3,977	73.50	2,685	64.50	133
2004	3,342	59.00	1,627	50.00	131
2005	3,427	68.00	2,947	65.00	132
2006	3,517	89.00	2,470	81.00	105
2007	3,505	64.00	2,941	64.00	91
2008	3,116	49.00	2,223	46.00	125
2009	3,438	62.00	2,524	57.00	113
2010	2,724	54.00	2,357	54.00	120
2011	3,303	46.00	2,669	46.00	133
2012	2,462	43.00	1,620	42.00	153
2013	3,311	62.00	2,375	61.00	158
2014	3,164	65.00	2,422	65.00	135
2015	2,132	44.00	1,745	43.00	119
2016	2,850	56.00	2,022	52.00	138
2017	3,388	43.00	1,986	36.00	106
2018	3,080	44.00	1,877	39.00	115
2019	2,544	62.00	1,552	52.00	124
Averag					
60-18	2,997	48	2,234	45	
09-18	2,985	52	2,160	50	129

Appendix D. 22. Historical effort in the Canadian commercial fishery in the Taku River, 1979-2019.

	Commercial	
Year	Boat Days	Days Fished
1979	599	50
1980	476	39
1981	243	31
1982	38	13
1983	390	64
1984	288	30
1985	178	16
1986	148	17
1987	280	26
1988	185	15
1989	271	25
1990	295	28
1991	284	25
1992	291	27
1993	363	34
1994	497	74
1995	428	51
1996	415	65
1997	394	47
1998	299	42
1999	300	34
2000	351	39
2001	382	42
2002	286	33
2003	275	44
2004	294	40
2005	561	68
2006	518	77
2007	313	55
2008	245	33
2009	459	98
2010	396	62
2011	440	63
2012	330	50
2013	346	53
2014	437	53
2015	271	35
2016	314	60
2017	260	37
2018	237	38
2019	226	60
Averages		
$79-18$	334	43
$09-18$	349	55

Appendix D. 23. Canyon Island fish wheel salmon counts and periods of operation on

 the Taku River, 1984-2019.| Total counts from both fish wheels and supplemental gillnets when water is low. | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| In 2018 caution for comparisons to long-term average; fish wheels not run 24hrs due to change in sample methods to hourly checks with nightime fish wheel stops. | | | | | | | | | | | | | | |
| Year | Period of Operation | Traditional - CYI Fish Wheel 1 and 2 | | | | | Pink | | Downriver Fish Wheel 3 | | | | | Steelhead |
| | | Chinook | Sockeye | Coho | Pink | Chum | even year | odd year | Chinook | Sockeye | Coho | Pink | Chum | |
| 1984 | 6/15-9/18 | 138 | 2,334 | 889 | 20,751 | 316 | 20,751 | | | | | | | |
| 1985 | 6/16-9/21 | 184 | 3,601 | 1,207 | 27,670 | 1,376 | | 27,670 | | | | | | |
| 1986 | 6/14-8/25 | 571 | 5,808 | 758 | 7,256 | 80 | 7,256 | | | | | | | |
| 1987 | 6/15-9/20 | 285 | 4,307 | 2,240 | 42,786 | 1,533 | | 42,786 | | | | | | 34 |
| 1988 | 5/11-9/19 | 1,436 | 3,292 | 2,168 | 3,982 | 1,089 | 3,982 | | | | | | | 34 |
| 1989 | 5/05-10/01 | 1,811 | 5,650 | 2,243 | 31,189 | 645 | | 31,189 | | | | | | 38 |
| 1990 | 5/03-9/23 | 1,972 | 6,091 | 1,860 | 13,358 | 748 | 13,358 | | | | | | | 43 |
| 1991 | 6/08-10/15 | 680 | 5,102 | 4,922 | 23,553 | 1,063 | | 23,553 | | | | | | 138 |
| 1992 | 6/20-9/24 | 212 | 6,279 | 2,103 | 9,252 | 189 | 9,252 | | | | | | | 22 |
| 1993 | 6/12-9/29 | 562 | 8,975 | 2,552 | 1,625 | 345 | | 1,625 | | | | | | 16 |
| 1994 | 6/10-9/21 | 906 | 6,485 | 4,792 | 27,100 | 367 | 27,100 | | | | | | | 107 |
| 1995 | 5/4-9/27 | 1,535 | 6,228 | 2,535 | 1,712 | 218 | | 1,712 | | | | | | 61 |
| 1996 | 5/3-9/20 | 1,904 | 5,919 | 1,895 | 21,583 | 388 | 21,583 | | | | | | | 68 |
| 1997 | 5/3-10/1 | 1,321 | 5,708 | 1,665 | 4,962 | 485 | | 4,962 | | | | | | 103 |
| 1998 | 5/2-9/15 | 894 | 4,230 | 1,777 | 23,347 | 179 | 23,347 | | | | | | | 119 |
| 1999 | 5/3-10/3 | 440 | 4,636 | 1,848 | 23,503 | 164 | | 23,503 | | | | | | 119 |
| 2000 | 4/23-10/3 | 1,211 | 5,865 | 1,877 | 6,529 | 423 | 6,529 | | | | | | | 160 |
| 2001 | 4/23-10/5 | 1,262 | 6,201 | 2,380 | 9,134 | 250 | | 9,134 | | | | | | 125 |
| 2002 | 4/24-10/7 | 1,578 | 5,812 | 3,766 | 5,672 | 205 | 5,672 | | | | | | | 87 |
| 2003 | 4/20-10/08 | 1,351 | 5,970 | 3,002 | 15,492 | 268 | | 15,492 | | | | | | 93 |
| 2004 | 4/30-10/06 | 2,234 | 6,255 | 3,163 | 8,464 | 414 | 8,464 | | | | | | | 63 |
| 2005 | 4/25-10/05 | 517 | 3,953 | 1,476 | 15,839 | 258 | | 15,839 | | | | | | 79 |
| 2006 | 4/27-10/03 | 544 | 5,296 | 2,811 | 21,725 | 466 | 21,725 | | | | | | | 47 |
| 2007 | 4/27-10/01 | 430 | 7,698 | 2,117 | 12,405 | 482 | | 12,405 | | | | | | 57 |
| 2008 | 4/23-10/03 | 1,298 | 3,736 | 2,213 | 4,704 | 350 | 4,704 | | | | | | | |
| 2009 | 4/24-9/27 | 688 | 3,489 | 3,051 | 9,234 | 231 | | 9,225 | | | | | | 52 |
| 2010 | 4/24-9/27 | 778 | 3,244 | 2,123 | 8,868 | 94 | 8,868 | | | | | | | 176 |
| 2011 | 4/25-10/02 | 728 | 3,671 | 1,843 | 17,775 | 177 | | 17,775 | | | | | | 93 |
| 2012 | 5/21-9/15 | 598 | 4,441 | 965 | 5,826 | 232 | 5,826 | | | | | | | 24 |
| 2013 | 6/16-9/9 | 796 | 4,240 | 1,132 | 4,666 | 269 | | 4,666 | | | | | | 11 |
| 2014 | 4/25-10/3 | 609 | 5,342 | 3,646 | 2,436 | 310 | 2,436 | | | | | | | |
| 2015 | 4/29-10/3 | 627 | 5,069 | 1,889 | 24,246 | 95 | | 24,246 | | | | | | 47 |
| 2016 | 5/3-9/27 | 142 | 4,942 | 981 | 1,369 | 66 | 1,369 | | 164 | 1,419 | 148 | 1,838 | 15 | |
| 2017 | 5/18-9/30 | 293 | 4,771 | 875 | 18,520 | 236 | | 18,520 | 30 | 1,085 | 256 | 13,507 | 21 | |
| 2018 | 6/3-9/23 | 155 | 3,239 | 798 | 1,604 | 32 | 1,604 | | | | | | | 12 |
| 2019 | 5/15-10/4 | 819 | 3,545 | 1,692 | 16,971 | 118 | | 16,971 | | | | | | |
| Averages | | | | | | | | | | | | | | |
| 84-18 | | 877 | 5,082 | 2,159 | 13,661 | 401 | 10,768 | 16,724 | | | | | | |
| 09-18 | | 541 | 4,245 | 1,730 | 9,454 | 174 | 4,021 | 14,886 | | | | | | |

Appendix E. 1. Weekly salmon harvest and effort in the lower Alsek River fisheries, 2019.

SW	Chinook	Sockeye	Coho	Pink	Chum	Effort		
						Boats	Days Open	Boat Days

No Test fishery in 2019								
Commercial Fishery								
23								0.0
24								0.0
25	26	509	0	0	0	11	1.0	11.0
26	36	2,108	0	0	0	11	1.5	16.5
27	10	1,613	0	0	0	9	2.0	18.0
28	5	2,739	1	0	0	10	2.0	20.0
29	2	2,422	0	0	0	8	2.0	16.0
30-32	0	396	0	0	0	10	5.0	14.0
33	0	0	0	0	0	0	3.0	0.0
34	0	0	0	0	0	0	3.0	0.0
35	0	0	0	0	0	0	3.0	0.0
36	0	0	0	0	0	0	3.0	0.0
37	0	0	0	0	0	0	3.0	0.0
38	0	0	0	0	0	0	3.0	0.0
39	0	0	0	0	0	0	3.0	0.0
40	0	0	0	0	0	0	3.0	0.0
41	0	0	0	0	0	0	3.0	0.0
Total	79	9,787	1	0	0		40.5	96

Appendix E. 2. Weekly salmon harvest and effort in the Canadian Aboriginal and sport fisheries in the Alsek River, 2019.

Appendix E. 3. Daily counts of salmon passing through Klukshu River weir, 2019.

Date	All Chinook			Sockeye			Coho		
	Daily	Cumulative		Daily	Cumulative		Daily	Cumulative	
		Daily	Prop.		Daily	Prop.		Daily	Prop.
14-Jun	weir installed		0.00	weir installed		0.00	weir installed		0.00
15-Jun	0	0	0.00	0	0	0.00		0	0.00
16-Jun	0	0	0.00	0	0	0.00		0	0.00
17-Jun	0	0	0.00	0	0	0.00		0	0.00
18-Jun	0	0	0.00	0	0	0.00		0	0.00
19-Jun	0	0	0.00	0	0	0.00		0	0.00
20-Jun	0	0	0.00	0	0	0.00		0	0.00
21-Jun	0	0	0.00	0	0	0.00		0	0.00
22-Jun	0	0	0.00	0	0	0.00		0	0.00
23-Jun	0	0	0.00	2	2	0.00		0	0.00
24-Jun	0	0	0.00	0	2	0.00		0	0.00
25-Jun	1	1	0.00	0	2	0.00		0	0.00
26-Jun	0	1	0.00	1	3	0.00		0	0.00
27-Jun	2	3	0.00	2	5	0.00		0	0.00
28-Jun	0	3	0.00	3	8	0.00		0	0.00
29-Jun	4	7	0.00	1	9	0.00		0	0.00
30-Jun	1	8	0.01	1	10	0.00		0	0.00
1-Jul	7	15	0.01	5	15	0.00		0	0.00
2-Jul	2	17	0.01	7	22	0.00		0	0.00
3-Jul	3	20	0.01	3	25	0.00		0	0.00
4-Jul	2	22	0.01	9	34	0.00		0	0.00
5-Jul	17	39	0.02	22	56	0.00		0	0.00
6-Jul	10	49	0.03	10	66	0.00		0	0.00
7-Jul	14	63	0.04	15	81	0.00		0	0.00
8-Jul	10	73	0.05	7	88	0.00		0	0.00
9-Jul	56	129	0.08	16	104	0.01		0	0.00
10-Jul	8	137	0.09	13	117	0.01		0	0.00
11-Jul	11	148	0.09	7	124	0.01		0	0.00
12-Jul	4	152	0.10	19	143	0.01		0	0.00
13-Jul	6	158	0.10	6	149	0.01		0	0.00
14-Jul	29	187	0.12	22	171	0.01		0	0.00
15-Jul	37	224	0.14	11	182	0.01		0	0.00
16-Jul	20	244	0.15	13	195	0.01		0	0.00
17-Jul	17	261	0.16	7	202	0.01		0	0.00
18-Jul	12	273	0.17	0	202	0.01		0	0.00
19-Jul	44	317	0.20	3	205	0.01		0	0.00
20-Jul	194	511	0.32	89	294	0.02		0	0.00
21-Jul	84	595	0.37	36	330	0.02		0	0.00
22-Jul	121	716	0.45	243	573	0.03		0	0.00
23-Jul	85	801	0.50	102	675	0.04		0	0.00
24-Jul	59	860	0.54	110	785	0.04		0	0.00
25-Jul	70	930	0.59	148	933	0.05		0	0.00
26-Jul	38	968	0.61	202	1,135	0.06		0	0.00
27-Jul	74	1,042	0.66	225	1,360	0.07		0	0.00
28-Jul	42	1,084	0.68	130	1,490	0.08		0	0.00
29-Jul	65	1,149	0.72	165	1,655	0.09		0	0.00
30-Jul	22	1,171	0.74	53	1,708	0.09		0	0.00
31-Jul	78	1,249	0.79	168	1,876	0.10		0	0.00
1-Aug	59	1,308	0.82	329	2,205	0.12		0	0.00
2-Aug	24	1,332	0.84	61	2,266	0.12		0	0.00
3-Aug	37	1,369	0.86	6	2,272	0.12		0	0.00
4-Aug	49	1,418	0.89	107	2,379	0.12		0	0.00
5-Aug	44	1,462	0.92	349	2,728	0.14		0	0.00
6-Aug	39	1,501	0.94	104	2,832	0.15		0	0.00
7-Aug	23	1,524	0.96	107	2,939	0.15		0	0.00
8-Aug	15	1,539	0.97	83	3,022	0.16		0	0.00
9-Aug	17	1,556	0.98	160	3,182	0.17		0	0.00
10-Aug	8	1,564	0.98	186	3,368	0.18		0	0.00
11-Aug	4	1,568	0.99	70	3,438	0.18		0	0.00
12-Aug	0	1,568	0.99	86	3,524	0.18		0	0.00
13-Aug	3	1,571	0.99	257	3,781	0.20		0	0.00
14-Aug	2	1,573	0.99	258	4,039	0.21		0	0.00
15-Aug	2	1,575	0.99	88	4,127	0.22		0	0.00

Appendix E.3. Page 2 of 2.

Date	All Chinook			Sockeye			Coho		
	Daily	Cumulative		Daily	Cumulative		Daily	Cumulative	
		Daily	Prop.		Daily	Prop.		Daily	Prop.
16-Aug	2	1,577	0.99	147	4,274	0.22		0	0.00
17-Aug	4	1,581	0.99	213	4,487	0.24		0	0.00
18-Aug	2	1,583	1.00	159	4,646	0.24		0	0.00
19-Aug	1	1,584	1.00	144	4,790	0.25		0	0.00
20-Aug	0	1,584	1.00	236	5,026	0.26		0	0.00
21-Aug	1	1,585	1.00	521	5,547	0.29		0	0.00
22-Aug	0	1,585	1.00	587	6,134	0.32		0	0.00
23-Aug	0	1,585	1.00	890	7,024	0.37		0	0.00
24-Aug	3	1,588	1.00	1,424	8,448	0.44		0	0.00
25-Aug	0	1,588	1.00	967	9,415	0.49		0	0.00
26-Aug	1	1,589	1.00	1,223	10,638	0.56		0	0.00
27-Aug		1,589	1.00	801	11,439	0.60		0	0.00
28-Aug		1,589	1.00	1,185	12,624	0.66		0	0.00
29-Aug		1,589	1.00	1,043	13,667	0.72		0	0.00
30-Aug		1,589	1.00	792	14,459	0.76		0	0.00
31-Aug		1,589	1.00	845	15,304	0.80		0	0.00
1-Sep		1,589	1.00	654	15,958	0.84	0	0	0.00
2-Sep		1,589	1.00	434	16,392	0.86	0	0	0.00
3-Sep		1,589	1.00	384	16,776	0.88	0	0	0.00
4-Sep		1,589	1.00	317	17,093	0.90	0	0	0.00
5-Sep		1,589	1.00	315	17,408	0.91	0	0	0.00
6-Sep		1,589	1.00	238	17,646	0.93	0	0	0.00
7-Sep		1,589	1.00	187	17,833	0.93	0	0	0.00
8-Sep		1,589	1.00	116	17,949	0.94	0	0	0.00
9-Sep		1,589	1.00	111	18,060	0.95	0	0	0.00
10-Sep		1,589	1.00	112	18,172	0.95	0	0	0.00
11-Sep		1,589	1.00	121	18,293	0.96	1	1	0.00
12-Sep		1,589	1.00	106	18,399	0.96	0	1	0.00
13-Sep		1,589	1.00	104	18,503	0.97	0	1	0.00
14-Sep		1,589	1.00	65	18,568	0.97	0	1	0.00
15-Sep		1,589	1.00	40	18,608	0.98	2	3	0.00
16-Sep		1,589	1.00	58	18,666	0.98	1	4	0.00
17-Sep		1,589	1.00	69	18,735	0.98	2	6	0.00
18-Sep		1,589	1.00	51	18,786	0.98	2	8	0.00
19-Sep		1,589	1.00	46	18,832	0.99	13	21	0.01
20-Sep		1,589	1.00	27	18,859	0.99	14	35	0.02
21-Sep		1,589	1.00	25	18,884	0.99	13	48	0.02
22-Sep		1,589	1.00	18	18,902	0.99	22	70	0.03
23-Sep		1,589	1.00	11	18,913	0.99	28	98	0.04
24-Sep		1,589	1.00	12	18,925	0.99	39	137	0.06
25-Sep		1,589	1.00	25	18,950	0.99	54	191	0.09
26-Sep		1,589	1.00	14	18,964	0.99	26	217	0.10
27-Sep		1,589	1.00	12	18,976	0.99	85	302	0.14
28-Sep		1,589	1.00	13	18,989	1.00	116	418	0.19
29-Sep		1,589	1.00	10	18,999	1.00	71	489	0.22
30-Sep		1,589	1.00	9	19,008	1.00	154	643	0.29
1-Oct		1,589	1.00	12	19,020	1.00	166	809	0.37
2-Oct		1,589	1.00	10	19,030	1.00	218	1,027	0.47
3-Oct		1,589	1.00	3	19,033	1.00	136	1,163	0.53
4-Oct		1,589	1.00	6	19,039	1.00	121	1,284	0.59
5-Oct		1,589	1.00	6	19,045	1.00	105	1,389	0.64
6-Oct		1,589	1.00	4	19,049	1.00	165	1,554	0.71
7-Oct		1,589	1.00	4	19,053	1.00	69	1,623	0.74
8-Oct		1,589	1.00	0	19,053	1.00	22	1,645	0.75
9-Oct		1,589	1.00	0	19,053	1.00	23	1,668	0.77
10-Oct		1,589	1.00	1	19,054	1.00	44	1,712	0.79
11-Oct		1,589	1.00	11	19,065	1.00	171	1,883	0.86
12-Oct		1,589	1.00	2	19,067	1.00	115	1,998	0.92
13-Oct		1,589	1.00	1	19,068	1.00	53	2,051	0.94
14-Oct		1,589	1.00	3	19,071	1.00	22	2,073	0.95
15-Oct		1,589	1.00	1	19,072	1.00	22	2,095	0.96
16-Oct		1,589	1.00	0	19,072	1.00	45	2,140	0.98
17-Oct		1,589	1.00	1	19,073	1.00	40	2,180	1.00
Total Co		1,589			19,073			2,180	
Adjustments									
Harvest		0			0			7	
Harvest		16			324			0	
Total Es		1,573			18,749			2,173	

Appendix E. 4. Chinook salmon harvest in the U.S. fisheries in the Alsek River, 19602019.

Year	Commercial	Test	Subsistence
1960			
1961	2,120		
1962			
1963	131		
1964	591		
1965	719		
1966	934		
1967	225		
1968	215		
1969	685		
1970	1,128		
1971	1,222		
1972	1,827		
1973	1,757		
1974	1,162		
1975	1,379		
1976	512		13
1977	1,402		18
1978	2,441		
1979	2,525		80
1980	1,382		57
1981	779		32
1982	532		87
1983	94		31
1984	60		
1985	213		16
1986	481		22
1987	347		27
1988	223		13
1989	228		20
1990	78		85
1991	103		38
1992	301		15
1993	300		38
1994	805		60
1995	670		51
1996	772		60
1997	568		38
1998	550		63
1999	482		44
2000	677		73
2001	541		19
2002	700		60
2003	937		24
2004	656		51
2005	286	423	31
2006	530	135	47
2007	400	347	79
2008	128	465	34
2009	602	421	57
2010	273		70
2011	546		44
2012	510	251	63
2013	469		20
2014	1,074		40
2015	243		23
2016	132		11
2017	127		7
2018	88		28
2019	79		20
Averages			
61-18	682		41
09-18	406		36

Appendix E. 5. Klukshu River counts, harvest, and escapement of Chinook salmon, 1976-2019.

A portion of Klukshu River Chinook salmon harvested below weir are accounted for in drainagewide harvest estimate see E.6.				
Year	Weir Count	Harvest		Escapement
		At weir	Above weir	
1976	1,278		125	1,153
1977	3,144		250	2,894
1978	2,976		300	2,676
1979	4,404		1,950	2,454
1980	2,637		150	2,487
1981	2,113		150	1,963
1982	2,369		400	1,969
1983	2,537		300	2,237
1984	1,672		100	1,572
1985	1,458		175	1,283
1986	2,709		102	2,607
1987	2,616		125	2,491
1988	2,037		43	1,994
1989	2,456		167	2,289
1990	1,915		173	1,742
1991	2,489		241	2,248
1992	1,367		125	1,242
1993	3,302		82	3,220
1994	3,727		99	3,628
1995	5,678		284	5,394
1996	3,599		217	3,382
1997	2,989		160	2,829
1998	1,364		17	1,347
1999	2,193		25	2,168
2000	1,365		44	1,321
2001	1,825		87	1,738
2002	2,240		106	2,134
2003	1,737		76	1,661
2004	2,525		80	2,445
2005	1,070		107	963
2006	568		2	566
2007	677		1	676
2008	466		0	466
2009	1,571	1	52	1,518
2010	2,358	0	99	2,259
2011	1,671	3	58	1,610
2012	693	0	0	693
2013	1,261	0	34	1,227
2014	841	0	9	832
2015	1,432	0	44	1,388
2016	651	0	5	646
2017	448	0	5	443
2018	1,087	0	0	1,078
2019	1,589	0	16	1,573
Averages				
76-18	2,035		153	1,882
08-19	1,201		31	1,169

[^2]Appendix E. 6. Chinook salmon harvest in the Canadian Aboriginal and recreational fisheries in the Alsek River, 1976-2019.

All Klukshu harvest is included in the Alsek River harvest totals.			
Year	Harvest		
	Aboriginal	Recreational	Total
1976	150	200	350
1977	350	300	650
1978	350	300	650
1979	1,300	650	1,950
1980	150	200	350
1981	150	315	465
1982	400	224	624
1983	300	312	612
1984	100	475	575
1985	175	250	425
1986	102	165	267
1987	125	367	492
1988	43	249	292
1989	234	272	506
1990	202	555	757
1991	509	388	897
1992	148	103	251
1993	152	171	323
1994	289	197	486
1995	580	1,044	1,624
1996	448	650	1,098
1997	232	298	530
1998	171	175	346
1999	238	174	412
2000	65	77	142
2001	120	157	277
2002	120	197	317
2003	90	138	228
2004	139	46	185
2005	58	56	114
2006	2	17	19
2007	1	40	41
2008	0	7	7
2009	105	20	125
2010	197	97	294
2011	119	95	214
2012	0	85	85
2013	67	5	72
2014	17	26	43
2015	87	44	131
2016	10	80	90
2017	10	41	51
2018	0	0	0
2019	32	5	37
Averages			
76-18	188	215	404
09-18	61	49	111

Appendix E. 7. Chinook salmon above border run and harvest in the Canadian
Aboriginal and recreational fisheries in the Alsek River, 1976-2019.

All Klukshu harvest is included in the Alsek River harvest totals.									
			CI		Harvest			Escapement	$\begin{gathered} \hline \text { Total } \\ \text { Inriver run } \\ \hline \end{gathered}$
Year	Above border run	Method ${ }^{\text {a }}$	Lower	Upper	Aboriginal	Recreational	Total		
1998	7,179	Mark-recapture	3,027	9,765	171	175	346	6,833	7,929
1999	15,027	Mark-recapture	8,243	22,035	238	174	412	14,615	15,587
2000	8,047	Mark-recapture	6,805	14,308	65	77	142	7,905	8,807
2001	6,982	Mark-recapture	9,146	14,303	120	157	277	6,705	7,943
2002	5,886	Mark-recapture	8,345	10,790	120	197	317	5,569	6,593
2003	6,132	Mark-recapture	4,302	6,310	90	138	228	5,904	6,872
2004	7,268	Mark-recapture			139	46	185	7,083	7,980

Appendix E. 8. Aerial survey index counts of Alsek River Chinook salmon escapements, 1984-2019.

Year	Blanchard River	Takhanne River	Goat Creek	Blanchard River Sonar (Large Fish)
1984	304	158	28	
1985	232	184		
1986	556	358	142	
1987	624	395	85	
1988	437	169	54	
1989	No survey	158	34	
1990	No survey	325	32	
1991	121	86	63	
1992	86	77	16	
1993	326	351	50	
1994	349	342	67	
1995	338	260	a	
1996	132	230	12	
1997	109	190		
1998	71	136	39	
1999	371	194	51	
2000	163	152	33	
2001	543	287	21	
2002	351	220	86	
2003	127	105	10	
2004	84	46	No survey	
2005	112	47	7	
2006	98	28	9	
2007	39	32	45	
2008	65	41	11	
2009	No surveys			
2010	No surveys			
2011	No surveys			
2012	No surveys			
2013	No surveys			
2014	No surveys			
2015	No surveys			
2016	No surveys			
2017	No surveys			
2018	No survey	127	No survey	
2019	No survey	150	No survey	1,408

[^3]Appendix E. 9. Sockeye salmon harvest in the U.S. fisheries in the Alsek River, 1960-

2019.			
Year	Commercial	Test	Subsistence
1960			
1961	23,339		
1962			
1963	6,055		
1964	14,127		
1965	28,487		
1966	29,091		
1967	11,108		
1968	26,918		
1969	29,259		
1970	22,654		
1971	25,314		
1972	18,717		
1973	26,523		
1974	16,747		
1975	13,842		
1976	19,741		51
1977	40,780		113
1978	50,580		
1979	41,449		35
1980	25,522		41
1981	23,641		50
1982	27,443		75
1983	18,293		25
1984	14,326		
1985	5,792		95
1986	24,791		241
1987	11,393		173
1988	6,286		148
1989	13,513		131
1990	17,013		144
1991	17,542		104
1992	19,298		37
1993	20,043		96
1994	19,639		47
1995	33,112		167
1996	15,182		67
1997	25,879		273
1998	15,007		158
1999	11,441		152
2000	9,522		146
2001	13,995		72
2002	16,918		232
2003	39,698		176
2004	18,030		224
2005	7,572	222	63
2006	9,842	224	272
2007	19,795	367	298
2008	2,815	55	200
2009	12,906		252
2010	12,668		259
2011	24,169	157	230
2012	18,217	90	275
2013	7,517		147
2014	33,668		179
2015	16,104		163
2016	6,709		181
2017	4,883		125
2018	1,363		142
2019	9,787		279
Averages			
61-18	19,058		148
09-18	13,820		195

Appendix E. 10. Klukshu River sockeye salmon weir count, weir harvest, and escapement, 1976-2019.

A portion of Klukshu River sockeye salmon harvested below weir are accounted for in drainagewide estimate see E.10.						
Year	Early (to August 16)	Late	Weir Count	Harvest		Escapement
				At weir	Above weir	
1976	181	11,510	11,691		3,750	7,941
1977	8,931	17,860	26,791		11,350	15,441
1978	2,508	24,359	26,867		7,850	19,017
1979	977	11,334	12,311		5,260	7,051
1980	1,008	10,742	11,750		900	10,850
1981	997	19,351	20,348		1,900	18,448
1982	7,758	25,941	33,699		4,800	28,899
1983	6,047	14,445	20,492		2,475	18,017
1984	2,769	9,958	12,727		2,500	10,227
1985	539	18,081	18,620		1,361	17,259
1986	416	24,434	24,850		1,914	22,936
1987	3,269	7,235	10,504		1,158	9,346
1988	585	8,756	9,341		1,604	7,737
1989	3,400	20,142	23,542		1,906	21,636
1990	1,316	24,679	25,995		1,388	24,607
1991	1,924	17,053	18,977		1,332	17,645
1992	11,339	8,428	19,767		1,498	18,269
1993	5,369	11,371	16,740		1,819	14,921
1994	3,247	11,791	15,038		1,146	13,892
1995	2,289	18,407	20,696		879	19,817
1996	1,502	6,818	8,320		429	7,891
1997	6,565	4,931	11,496		193	11,303
1998	597	12,994	13,591		11	13,580
1999	371	5,010	5,381		280	5,101
2000	237	5,314	5,551		129	5,422
2001	908	9,382	10,290		961	9,329
2002	11,904	13,807	25,711		2,124	23,587
2003	3,084	31,278	34,362		2,242	32,120
2004	3,464	11,884	15,348		1,627	13,721
2005	994	2,379	3,373		206	3,167
2006	247	13,208	13,455		565	12,890
2007	2,725	6,231	8,956		646	8,310
2008	43	2,698	2,741		0	2,741
2009	1,247	4,484	5,731	75	128	5,528
2010	5,073	13,887	18,960	91	323	18,546
2011	5,635	15,767	21,402	262	358	20,782
2012	5,969	11,725	17,694	214	304	17,176
2013	312	3,581	3,893	0	101	3,792
2014	2,732	9,652	12,384	10	226	12,148
2015	2,604	8,984	11,588	10	215	11,363
2016	1,405	6,179	7,584	37	156	7,391
2017	1,087	2,802	3,889	77	101	3,711
2018	97	7,046	7,143	0	0	7,143
2019	4,127	14,946	19,073	0	324	18,749
Averages						
76-18	2,876	12,231	15,107			13,505
09-18	2,616	8,411	11,027			10,758

Appendix E. 11. Sockeye salmon harvest in the Canadian Aboriginal and recreational fisheries in the Alsek River, 1976-2019.
All Klukshu harvest is included in the Alsek River harvest totals.

Year	Harvest		
	Aboriginal	Recreational	Total
1976	4,000	600	4,600
1977	10,000	500	10,500
1978	8,000	500	8,500
1979	7,000	750	7,750
1980	800	600	1,400
1981	2,000	808	2,808
1982	5,000	755	5,755
1983	2,550	732	3,282
1984	2,600	289	2,889
1985	1,361	100	1,461
1986	1,914	307	2,221
1987	1,158	383	1,541
1988	1,604	322	1,926
1989	1,851	319	2,170
1990	2,314	392	2,706
1991	2,111	303	2,414
1992	2,592	582	3,174
1993	2,361	329	2,690
1994	1,745	261	2,006
1995	1,745	682	2,427
1996	1,204	157	1,361
1997	484	36	520
1998	567	18	585
1999	554	0	554
2000	745	0	745
2001	1,173	4	1,177
2002	2,194	61	2,255
2003	2,734	61	2,795
2004	1,875	247	2,122
2005	581	13	594
2006	1,321	6	1,327
2007	1,330	10	1,340
2008	0	0	0
2009	715	2	717
2010	1,704	12	1,716
2011	2,053	57	2,110
2012	1,734	52	1,786
2013	508	0	508
2014	1,140	0	1,140
2015	1,084	0	1,084
2016	815	0	815
2017	584	38	622
2018	0	0	0
2019	648	5	653
Averages			
76-18	2,042	239	2,281
09-18	1,034	16	1,050

Appendix E. 12. Alsek

Year	Above border Run Estimate	CI		Canadian Harvest	Spawning Escapement	U.S. Harvest	Total Inriver Run	Spawning Escapement Percent Klukshu
		Lower	Upper					
2000	37,887	23,410	52,365	745	37,142	9,668	47,555	14.6\%
2001	31,164	23,143	39,185	1,177	29,987	14,067	45,231	31.1\%
2002	95,427	55,893	134,961	2,255	93,172	17,150	112,577	25.3\%
2003	103,507	74,350	132,664	2,795	100,712	39,874	143,381	31.9\%
2004	83,703	39,566	127,841	2,122	81,581	18,254	101,957	16.8\%
2005	57,817	21,907	93,727	594	57,223	7,857	65,674	5.5\%
2006	48,901	41,234	56,569	1,327	47,574	10,338	59,239	27.1\%
2011	86,009	72,970	99,049	2,110	83,899	24,556	110,565	24.8\%
2012	78,384	64,311	92,456	1,786	76,598	18,582	96,966	22.4\%
2013	84,279	16,466	152,091	508	83,771	7,664	91,943	4.5\%
2014	88,233	69,508	106,958	1,140	87,093	33,847	122,080	13.9\%
2015	64,793	47,474	82,111	1,084	63,709	16,267	81,060	17.8\%
2016	59,651	43,558	75,743	815	58,836	6,890	66,541	12.6\%
2017	102,186	57,832	146,540	622	101,564	10,066	112,252	3.7\%
2018	Not enough US fishing	t sufficie	les to pro	estimate--n	d to formalize	final repo		
2019	82,536	69,077	95,995	653	81,883	10,066	92,602	22.9\%
Averages								
11-17	80,505			1,152	79,353	16,839	97,344	14.2\%

Appendix E. 13. Alsek River sockeye counts from U.S. and Canada, 1985-2019.
Surveys not made every year at each tributary. Canadian surveys-include several streams fromLo-Fog to Goat Creek.
Village Creek counter 1986-2013 conductivity counter; 2014 video counter

Year	U.S. Aerial Surveys				Canada Aerial Surveys		Village Creek Counter
	Basin Creek	Cabin Creek	Muddy Creek	Tanis River	Tatshenshini River	$\begin{gathered} \text { Neskataheen } \\ \text { Lake } \\ \hline \end{gathered}$	
1985	2,600			2,200			
1986	100		300	2,700	536	750	1,490
1987	350	220		1,600			1,875
1988	500			750	433	456	433
1989	320			680	1,689	1,700	9,569
1990	275	300		3,500			5,313
1991				800			86
1992	1,000	10		50			7,447
1993	4,800			900			2,104
1994	250			600	366		3,921
1995	2,700			350			4,042
1996	325			650			1,583
1997	600			350			2,267
1998				130			826
$1999{ }^{\text {a }}$	30			800			NA
2000	25			180			1,860
2001				700			1,897
2002	No surveys flown						2,765
2003	No surveys flown						2,778
2004	No surveys flown						1,968
2005	No surveys flown						1,408
2006	No surveys flown						979
2007	No surveys flown						10,254
$2008{ }^{\text {a }}$	No surveys flown					1,000	NA
2009	No surveys flown					4,500	887
2010	No surveys flown					2,500	2,305
2011	No surveys flown					150	355
2012	No surveys flown					2,038	1,372
2013	No surveys flown						129
2014	No surveys flown					700	189
2015	No surveys flown						Not conducted
2016	No surveys flown						410
2017	No surveys flown						240
2018							97
2019							1,497
Averages							
86-18							2,362
09-18							665

${ }^{a}$ No counts due to malfunction of the counter

Appendix E. 14. Coho, pink, and chum salmon harvest in the U.S. fisheries in the Alsek River, 1960-2019.

	Coho	Pink	Effort			Subsistence coho
			Chum	Boat Days	Days Open	
1960						
1961	7,679	84	86	1,436	80.0	
1962						
1963	7,164	42	34	692	68.0	
1964	9,760	144	367	592	68.0	
1965	9,638	10	72	1,016	72.0	
1966	2,688	22	240	500	64.0	
1967	10,090	107	30	600	68.0	
1968	10,586	82	240	664	68.0	
1969	2,493	38	61	807	61.0	
1970	2,188	6	26	670	52.3	
1971	4,730	3	120	794	60.5	
1972	7,296	37	280	640	65.0	
1973	4,395	26	283	894	52.0	
1974	7,046	13	107	699	46.0	
1975	2,230	16	261	738	58.0	
1976	4,883	0	368	550	58.5	5
1977	11,817	689	483	882	57.0	0
1978	13,913	59	233	929	57.0	
1979	6,158	142	263	1,110	51.0	70
1980	7,863	21	1,005	773	42.0	62
1981	10,232	65	816	588	40.0	74
1982	6,534	6	358	552	33.0	50
1983	5,253	20	432	487	38.0	50
1984	7,868	24	1,610	429	33.0	
1985	5,490	3	427	277	33.0	0
1986	1,344	13	462	517	34.0	45
1987	2,517	0	1,924	388	40.5	31
1988	4,986	7	908	324	34.0	9
1989	5,972	2	1,031	378	38.0	34
1990	1,437	0	495	374	38.0	12
1991	5,956	0	105	530	49.0	0
1992	3,116	1	120	372	46.0	44
1993	1,215	0	49	372	40.0	28
1994	4,182	0	32	403	61.0	20
1995	14,184	13	347	879	53.5	53
1996	5,514	0	165	419	51.0	28
1997	11,427	0	34	611	59.0	26
1998	4,925	1	145	358	41.0	42
1999	5,660	0	112	319	44.0	21
2000	5,103	5	130	307	37.0	31
2001	2,909	8	17	234	50.0	45
2002	9,525	0	1	270	73.0	35
2003	47	0	0	271	60.0	27
2004	2,475	0	2	280	76.5	21
2005	1,196	0	0	171	41.0	62
2006	701	2	3	248	45.0	23
2007	134	0	0	199	47.0	27
2008	2,668	0	0	177	34.0	28
2009	3,454	0	20	200	44.0	17
2010	1,884	0	9	192	37.0	24
2011	1,614	0	11	235	46.0	18
2012	536	0	1	459	39.0	22
2013	17	0	5	285	46.0	14
2014	3	0	12	239	47.0	10
2015	11	0	0	227	57.0	6
2016	655	0	3	296	65.5	18
2017	114	0	0	114	47.0	7
2018	2	0	0	39	32.5	0
2019	1	0	0	96	40.5	0
Averages						
76-18	4,798	30	252	491	51	28
09-18	829	0	6	229	46	14

Appendix E. 15. Klukshu River weir counts, harvest, and escapement of coho salmon, 1976-2019.
Coho salmon counts are partial counts; weir is removed prior to the end of the run.

Year	Count
1976	1,572
1977	2,758
1978	30
1979	175
1980	704
1981	1,170
1982	189
1983	303
1984	1,402

1985350
$1986 \quad 71$
$1987 \quad 202$
1988 2,774

1989	2,219
1990	315

1991	8,540	62	8,478
1992	1,145	0	1,145
1993	788	0	788
1994	1,232	0	1,232

1995	3,614	50	3,564
1996	3,465	0	3,465

1997	307	5	302
1998	1,961	0	1,961

1999	2,531	0	2,531
2000	4,832	41	4,791

2001	748	2	746

$2002 \quad 9,921 \quad 0 \quad 9,921$

2003	3,689	0	3,689
2004	750	0	750

$2005 \quad 683 \quad 20 \quad 663$

2006	420	0	420
2007	300	1	299

2008	4,275	26	4,249
2009	424	3	421

2010	2,365	4	2,361
2011	2,119	9	2,110
2012	1,272	0	1,272
2013	7,462	140	7,322
2014	341	0	341
2015	1,810	0	1,810
2016	2,141	0	2,141
2017	966	0	966
2018	728	0	728
2019	2,180	7	2,180

Averages			
$76-18$	1,932		
$09-18$	1,963	16	1,947

2012 weir count was adjusted to account for high water years when weir was disabled

Appendix F. 1. Tahltan Lake egg collection, fry plants, and survivals, 1989-2019.
Numbers for eggs and fry are millions.
Eggs collected from Tahltan broodstock are used for outplants to both Tahltan and Tuya Lakes.

Brood Year	Egg Take		Designated Tahltan	Fry Planted	Percent Survival			Thermal Mark Pattern	
			Green to		Eyed Egg	Green			
	Target	Collected			Eyed Egg	to Fry	Egg to Fry		
1989	3.000	2.955		2.955	1.042	70\%	0.501	0.353	1:1.4
1990	5.000	4.511	4.511	3.585	82\%	0.964	0.795	1:1.3	
1991	5.000	4.246	1.514	1.415	95\%	0.759	0.935	1:1.4	
1992	5.400	4.901	2.154	1.947	92\%	0.869	0.904	1:1.4+2.3	
1993	6.000	6.140	0.969	0.904	92\%	0.994	0.933	1:1.6+2.5n	
1994	6.000	4.183	1.418	1.143	89\%	0.916	0.806	1:1.6	
1995	6.000	6.891	3.008	2.296	84\%	0.821	0.763	1:1.7	
1996	6.000	6.402	3.169	2.248	93\%	0.818	0.709	1:1.6	
1997	6.000	3.221	2.700	1.900	83\%	0.875	0.704	2:1.6	
1998	6.000	4.022	1.998	1.671	91\%	0.891	0.836	1:1.7	
1999	6.000	3.826	2.773	2.228	92\%	0.883	0.804	2:1.6	
2000	6.000	2.388	2.388	1.873	92\%	0.853	0.784	1:1.7	
2001	6.000	3.306	3.306	2.533	83\%	0.924	0.766	2:1.6	
2002	6.000	4.050	2.780	2.623	92\%	1.006	0.943	1:1.7	
2003	6.000	5.391	2.661	2.226	91\%	0.949	0.836	1:1.6\& 1:1.5+2.4	
2004	6.000	5.701	1.966	1.226	88\%	0.882	0.624	1:1.6+2.6	
2005	6.000	4.552	1.809	1.280	86\%	0.872	0.708	1:1.4+2.2	
2006	6.000	4.364	2.954	2.466	91\%	0.923	0.835	1:1.3n, 2.2	
2007	6.000	4.060	2.209	1.540	80\%	0.946	0.697	1,2n,3H	
2008	6.000	3.386	2.398	1.395	85\%	0.774	0.582	1,4H	
2009	6.000	4.469	2.609	1.830	78\%	0.802	0.701	5,2H	
2010	6.000	5.949	3.097	1.230	82\%	0.507	0.397	4,3H	
2011	6.000	6.481	3.383	2.130	86\%	0.669	0.630	3,2n,2H	
2012 ${ }^{\text {a }}$	6.000	5.597	3.674	1.349	72\%	0.525	0.367	1,4H	
2013	6.000	4.218	3.517	2.066	75\%	0.794	0.587	4,3H\&6,3H	
$2014{ }^{\text {b }}$	6.000	3.898	3.898	2.684	76\%	0.911	0.689	3,2n,2H\&3,2n,2H3	
$2015^{\text {c }}$	6.000	4.509	4.509	3.399	84\%	0.899	0.754	$1,4 \mathrm{H} \& 14 \mathrm{H} 4$	
2016	4.910	5.310	5.310	3.136	76\%	0.780	0.591	4,3H \& 3n,3H	
2017	5.000	3.850	3.850	2.634	79\%	0.792	0.684	3,2n,2H	
2018	5.000	2.251	2.251	1.858	94\%	0.878	0.825	1,4H	
2019	4.500	3.524	3.524	2.685	80\%	0.762	0.762	4,3H	
Averages									
89-18	5.710	4.469	2.858	1.995	0.849	0.833	0.714		
09-18	5.691	4.653	3.610	2.232	0.801	0.756	0.623		

[^4]Appendix F. 2. Tuya Lake fry plants and survivals, 1991-2019.
Numbers for eggs and fry are millions.

	Egg Take Designated Tuya	Fry Planted	Percent Fertilized	Fertilized Egg to Fry	Green Egg to Fry	Thermal Mark Pattern
1991	2.732	1.632	0.944	0.633	0.597	$1: 1.6$
1992	2.747	1.990	0.929	0.780	0.724	$1: 1.7$
1993	5.171	4.691	0.911	0.996	0.907	$1: 1.4+2.5 \mathrm{n}$
1994	2.765	2.267	0.870	0.943	0.820	$1: 1.4$
1995	3.883	2.474	0.795	0.802	0.637	$1: 1.4+2.4$
1996	3.233	2.611	0.932	0.867	0.808	$1: 1.4$
1997	0.521	0.433	0.911	0.912	0.830	$2: 1.4$
1998	2.024	1.603	0.917	0.864	0.792	$1: 1.4$
1999	1.053	0.867	0.960	0.857	0.823	$2: 1.4$
2000	All eggs collected in 2000 and 2001 were for backplant into Tahltan Lake.					
2001						
2002	1.271	1.124	0.904	0.978	0.885	$1: 1.7+2.3$
2003	2.730	2.445	0.927	0.966	0.895	$1: 1.4$
2004	3.734	3.200	0.921	0.931	0.857	$1: 1.6+2.4$
2005	2.744	2.138	0.900	0.866	0.779	$1: 1.4+2.4$
2006	1.410	1.201	0.920	0.926	0.852	$1: 1.3,2.3$
2007	1.852	1.537	0.856	0.970	0.830	$2,1,3 \mathrm{H}$
2008	0.988	0.832	0.856	0.984	0.842	6 H
2009	1.860	0.976	0.794	0.661	0.525	$3,4 \mathrm{H}$
2010	2.852	1.240	0.819	0.531	0.435	$3 \mathrm{n}, 3 \mathrm{H}$
2011	3.098	1.600	0.865	0.597	0.516	6 H
2012	1.924	0.755	0.816	0.481	0.392	$4 \mathrm{n}, 3 \mathrm{H}$
2013	0.701	0.462	0.737	0.894	0.659	$3 \mathrm{n}, 3 \mathrm{H}$
2014	Fry plants into Tuya Lake discontinued					
Averages						
$91-13$	2.347	1.718	0.880	0.830	0.734	
$04-13$	2.116	1.394	0.848	0.784	0.669	

Appendix F. 3. Tatsamenie Lake egg collection, fry plants, and survivals, 1989-2019.

Appendix F.4. Trapper and King Salmon lakes egg collection, fry plants, and survivals, 1990-2019.

Numbers for eggs and fry are millions.										
Brood Year	Lake				$\begin{array}{r} \text { Fry } \\ \text { Planted } \\ \hline \end{array}$	Percent Fertilized	Survival		Thermal Mark Pattern	LastDateReleased
		Egg Take					Fertilized	Green		
		Target	Collect	Transport			Egg to Fry	Egg to Fry		
1990	Trapper	2.500	2.314	0.934	0.934			0.404	5H	22-Jun
1991	Trapper	2.500	2.953	1.811	1.811			0.613	6 H	11-Jun
1992	Trapper	2.500	2.521	1.113	1.113			0.442	7H3	22-Jun
1993	Trapper		1.174	0.916	0.916			0.781	5H5n	24-Jun
1994	Trapper		1.117	0.773	0.773			0.692	7H	3-Jul
2006	Trapper	1.000	1.109	0.897	0.897	0.897	0.905	0.808	6 H	20-Jun
2007	Trapper	1.000	0.900	0.353	0.353	0.604	0.650	0.393	4,2nH	5-Jun
2012	King Salmon	0.250	0.238	0.197	0.197	0.896	0.949	0.850	6,2H3	2-Jun
2014	King Salmon	0.250	0.199	0.169	0.169	0.893	0.930	0.893	6,3H	23-May
2016	Trapper	0.250	0.271	0.212	0.212	0.873	0.782	0.683	4,4n,3H	29-May
2017	Trapper	0.250	0.280	0.187	0.187	0.816	0.818	0.668	4,2,3H	29-May
$2018^{\text {a }}$	Trapper	0.500	0.000							
2019	Trapper	0.500	0.406	0.263	0.263	0.686	0.930	0.697	4,4n,3h	11-Jun

Appendix G. 1. Annual stock proportion estimates (mean) of Chinook salmon harvested in the Alaskan District 108 commercial drift gillnet, 2004-2019.

Year	Sample Size		2 Reporting Groups	
			Taku/Stikine	Other
2004	119	Estimate	0.299	0.701
		SD	0.052	0.052
		Lo	0.216	0.614
		Hi	0.386	0.784
2005	254	Estimate	0.887	0.113
		SD	0.026	0.026
		Lo	0.842	0.073
		Hi	0.927	0.158
2006	350	Estimate	0.642	0.358
		SD	0.034	0.034
		Lo	0.585	0.304
		Hi	0.696	0.415
2007	292	Estimate	0.489	0.511
		SD	0.036	0.036
		Lo	0.430	0.451
		Hi	0.549	0.570
2008	293	Estimate	0.387	0.613
		SD	0.035	0.035
		Lo	0.330	0.555
		Hi	0.445	0.670
2009	177	Estimate	0.128	0.872
		SD	0.031	0.031
		Lo	0.080	0.817
		Hi	0.183	0.920
2010	72	Estimate	0.215	0.785
		SD	0.067	0.067
		Lo	0.109	0.669
		Hi	0.331	0.891
2011	70	Estimate	0.346	0.654
		SD	0.067	0.067
		Lo	0.239	0.540
2012	202	Estimate	0.248	0.752
		SD	0.036	0.036
		Lo	0.189	0.691
		Hi	0.309	0.811
2013	164	Estimate	0.068	0.932
		SD	0.029	0.029
		Lo	0.025	0.879
		Hi	0.121	0.975
2014	273	Estimate	0.043	0.957
		SD	0.018	0.018
		Lo	0.019	0.927
		Hi	0.073	0.981
2015	272	Estimate	0.047	0.953
		SD	0.021	0.021
		Lo	0.016	0.916
		Hi	0.084	0.984
2016	293	Estimate	0.220	0.780
		SD	0.029	0.029
		Lo	0.173	0.731
		Hi	0.269	0.827
2017	246	Estimate	0.008	0.992
		SD	0.010	0.010
		Lo	0.000	0.971
		Hi	0.029	1.000
2018	114	Estimate	0.006	0.994
		SD	0.015	0.015
		Lo	0.000	0.961
		Hi	0.039	1.000
2019	58	Estimate	0.046	0.954
		SD	0.049	0.049
		Lo	0.000	0.862
		Hi	0.138	1.000

Appendix G. 2. Annual stock proportion estimates (mean) of Chinook salmon harvested in the Alaskan District 108 sport fisheries, 2004-2019.

Year	Sample Size		2 Reporting Groups	
			Taku/Stikine	Other
2004	189	Estimate	0.655	0.345
		SD	0.043	0.043
		Lo	0.583	0.276
		Hi	0.724	0.417
2005	226	Estimate	0.738	0.262
		SD	0.038	0.038
		Lo	0.674	0.201
		Hi	0.799	0.326
2006	201	Estimate	0.718	0.282
		SD	0.042	0.042
		Lo	0.648	0.216
		Hi	0.784	0.352
2007	200	Estimate	0.604	0.396
		SD	0.043	0.043
		Lo	0.532	0.326
		Hi	0.674	0.468
2008	200	Estimate	0.614	0.386
		SD	0.045	0.045
		Lo	0.539	0.314
		Hi	0.686	0.461
2009	190	Estimate	0.517	0.483
		SD	0.044	0.044
		Lo	0.445	0.412
		Hi	0.588	0.555
2010	201	Estimate	0.546	0.454
		SD	0.043	0.043
		Lo	0.475	0.382
		Hi	0.618	0.525
2011	199	Estimate	0.509	0.491
		SD	0.050	0.050
		Lo	0.427	0.407
		Hi	0.593	0.573
2012	201	Estimate	0.423	0.577
		SD	0.045	0.045
		Lo	0.350	0.502
		Hi	0.498	0.650
2013	223	Estimate	0.490	0.510
		SD	0.042	0.042
		Lo	0.422	0.442
		Hi	0.558	0.578
2014	205	Estimate	0.354	0.646
		SD	0.043	0.044
		Lo	0.285	0.575
		Hi	0.425	0.715
2015	297	Estimate	0.449	0.551
		SD	0.036	0.036
		Lo	0.390	0.492
		Hi	0.508	0.610
2016	251	Estimate	0.304	0.696
		SD	0.038	0.038
		Lo	0.242	0.634
		Hi	0.366	0.758
2017	182	Estimate	0.212	0.788
		SD	0.040	0.040
		Lo	0.148	0.721
		Hi	0.279	0.852
2018	0	Estimate		
		SD		
		Lo		
		Hi		
2019	29	Estimate	0.012	0.988
		SD	0.025	0.025
		Lo	0.000	0.940
		Hi	0.060	1.000

Appendix G. 3. Annual stock proportion estimates (mean) of Chinook salmon harvested in the Alaskan District 108 commercial troll, 2019.

No estimates in 2019

Appendix G. 4. Annual stock proportion estimates (mean) of Chinook salmon harvested in the Alaskan District 111 commercial drift gillnet, 2019.

Year	Sample Size		2 Reporting Groups	
			Taku/Stikine	Other
2004	111	Estimate	0.859	0.141
		SD	0.036	0.036
		Lo	0.795	0.085
		Hi	0.915	0.205
2005	247	Estimate	0.919	0.081
		SD	0.021	0.021
		Lo	0.882	0.050
		Hi	0.950	0.118
2006	209	Estimate	0.905	0.095
		SD	0.024	0.024
		Lo	0.863	0.059
		Hi	0.941	0.137
2007	96	Estimate	0.492	0.508
		SD	0.054	0.054
		Lo	0.404	0.419
		Hi	0.581	0.596
2008	104	Estimate	0.483	0.517
		SD	0.053	0.053
		Lo	0.397	0.430
		Hi	0.570	0.603
2009	257	Estimate	0.813	0.187
		SD	0.027	0.027
		Lo	0.766	0.145
		Hi	0.855	0.234
2010	152	Estimate	0.539	0.461
		SD	0.042	0.042
		Lo	0.469	0.391
		Hi	0.609	0.531
2011	70	Estimate	0.809	0.191
		SD	0.052	0.052
		Lo	0.718	0.113
		Hi	0.887	0.282
2012	206	Estimate	0.876	0.124
		SD	0.027	0.027
		Lo	0.830	0.082
		Hi	0.918	0.170
2013	86	Estimate	0.753	0.247
		SD	0.051	0.051
		Lo	0.666	0.167
		Hi	0.833	0.334
2014	78	Estimate	0.635	0.365
		SD	0.060	0.061
		Lo	0.534	0.268
		Hi	0.732	0.466
2015	88	Estimate	0.592	0.408
		SD	0.055	0.055
		Lo	0.500	0.319
		Hi	0.681	0.500
2016	49	Estimate	0.749	0.251
		SD	0.065	0.065
		Lo	0.636	0.150
		Hi	0.850	0.364
2017	48	Estimate	0.464	0.536
		SD	0.077	0.077
		Lo	0.338	0.407
		Hi	0.593	0.662
2018	100	Estimate	0.118	0.882
		SD	0.038	0.038
		Lo	0.061	0.815
		Hi	0.185	0.939
2019	110	Estimate	0.274	0.726
		SD	0.046	0.046
		Lo	0.201	0.648
		Hi	0.352	0.799

Appendix G. 4. Annual stock proportion estimates (mean) of Chinook salmon harvested in the Alaskan District 111 sport fisheries, 2019.

Year	Sample Size		2 Reporting Groups	
			Taku/Stikine	Other
2004	159	Estimate	0.538	0.462
		SD	0.043	0.043
		Lo	0.467	0.392
		Hi	0.608	0.533
2005	264	Estimate	0.578	0.422
		SD	0.035	0.035
		Lo	0.521	0.366
		Hi	0.634	0.479
2006	269	Estimate	0.652	0.348
		SD	0.032	0.032
		Lo	0.599	0.295
		Hi	0.705	0.401
2007	237	Estimate	0.451	0.549
		SD	0.035	0.035
		Lo	0.394	0.491
		Hi	0.509	0.606
2008	218	Estimate	0.226	0.774
		SD	0.032	0.032
		Lo	0.176	0.720
		Hi	0.280	0.824
2009	239	Estimate	0.255	0.745
		SD	0.030	0.030
		Lo	0.206	0.694
		Hi	0.306	0.794
2010	200	Estimate	0.453	0.547
		SD	0.038	0.038
		Lo	0.391	0.484
		Hi	0.516	0.609
2011	200	Estimate	0.454	0.546
		SD	0.040	0.040
		Lo	0.389	0.480
		Hi	0.520	0.611
2012	200	Estimate	0.494	0.506
		SD	0.039	0.039
		Lo	0.429	0.441
		Hi	0.559	0.571
2013	224	Estimate	0.125	0.875
		SD	0.025	0.025
		Lo	0.086	0.831
		Hi	0.169	0.914
2014	221	Estimate	0.396	0.604
		SD	0.036	0.037
		Lo	0.338	0.544
		Hi	0.456	0.662
2015	297	Estimate	0.486	0.514
		SD	0.031	0.031
		Lo	0.435	0.463
		Hi	0.537	0.565
2016	211	Estimate	0.587	0.413
		SD	0.036	0.036
		Lo	0.527	0.354
		Hi	0.646	0.473
2017	147	Estimate	0.031	0.969
		SD	0.017	0.017
		Lo	0.008	0.937
		Hi	0.063	0.992
2018	178	Estimate	0.007	0.993
		SD	0.011	0.011
		Lo	0.000	0.971
		Hi	0.029	1.000
2019	196	Estimate	0.036	0.964
		SD	0.015	0.015
		Lo	0.015	0.937
		Hi	0.063	0.985

Appendix G. 5. Weekly stock proportion estimates (mean) of sockeye salmon harvested in the Alaskan Subdistrict 106-41/42 (Sumner Strait) commercial drift gillnet fishery, 2019.

STATWEEK	Total	Genotyped	AgedOnly	OtolithMarked variable	EnhancedTahltan	EnhancedTuya	Non-Stikine	StikineTakuMainstem	Tahltan
25-26	121	87	6	28 MEAN	0.184	0.008	0.213	0.155	0.440
25-26	121	87	6	28 SD	0.045	0.010	0.054	0.052	0.062
25-26	121	87	6	28 CI5\%	0.118	0.001	0.132	0.079	0.339
25-26	121	87	6	28 CI95\%	0.268	0.025	0.311	0.248	0.543
25-26	121	87	6	28 P0	0.000	0.032	0.000	0.000	0.000
27	200	129	20	51 MEAN	0.240	0.001	0.435	0.078	0.246
27	200	129	20	51 SD	0.030	0.002	0.041	0.027	0.033
27	200	129	20	51 CI5\%	0.191	0.000	0.369	0.037	0.194
27	200	129	20	51 CI95\%	0.291	0.005	0.503	0.126	0.301
27	200	129	20	51 P0	0.000	0.564	0.000	0.000	0.000
28	299	173	89	37 MEAN	0.121	0.001	0.650	0.108	0.121
28	299	173	89	37 SD	0.019	0.001	0.040	0.033	0.023
28	299	173	89	37 CI5\%	0.092	0.000	0.585	0.051	0.085
28	299	173	89	37 C195\%	0.153	0.003	0.718	0.160	0.160
28	299	173	89	37 P0	0.000	0.620	0.000	0.000	0.000
29	227	164	41	22 MEAN	0.093	0.001	0.685	0.120	0.101
29	227	164	41	22 SD	0.019	0.002	0.047	0.041	0.022
29	227	164	41	22 CI5\%	0.063	0.000	0.612	0.046	0.066
29	227	164	41	22 CI95\%	0.126	0.004	0.768	0.182	0.139
29	227	164	41	22 P 0	0.000	0.611	0.000	0.000	0.000
30	299	167	124	8 MEAN	0.017	0.001	0.854	0.115	0.013
30	299	167	124	8 SD	0.007	0.001	0.040	0.039	0.008
30	299	167	124	8 CI5\%	0.007	0.000	0.795	0.041	0.003
30	299	167	124	8 CI95\%	0.031	0.003	0.930	0.172	0.029
30	299	167	124	8 P0	0.000	0.683	0.000	0.000	0.001
31	299	165	132	2 MEAN	0.004	0.001	0.896	0.062	0.037
31	299	165	132	2 SD	0.004	0.001	0.038	0.036	0.015
31	299	165	132	$2 \mathrm{CI5} \mathrm{\%}$	0.000	0.000	0.837	0.000	0.017
31	299	165	132	$2 \mathrm{Cl95} \mathrm{\%}$	0.011	0.003	0.964	0.116	0.064
31	299	165	132	2 P 0	0.076	0.712	0.000	0.063	0.000
32	240	164	74	2 MEAN	0.005	0.001	0.884	0.102	0.007
32	240	164	74	2 SD	0.005	0.002	0.031	0.030	0.007
32	240	164	74	$2 \mathrm{CI5} \mathrm{\%}$	0.000	0.000	0.830	0.055	0.001
32	240	164	74	$2 \mathrm{Cl95} \mathrm{\%}$	0.014	0.004	0.934	0.154	0.020
32	240	164	74	2 P0	0.041	0.653	0.000	0.000	0.030
34	242	160	82	0 MEAN	0.001	0.001	0.929	0.068	0.001
34	242	160	82	0 SD	0.002	0.002	0.024	0.024	0.003
34	242	160	82	0 CI5\%	0.000	0.000	0.885	0.033	0.000
34	242	160	82	0 CI95\%	0.004	0.004	0.964	0.111	0.006
34	242	160	82	0 P 0	0.785	0.772	0.000	0.000	0.728

Appendix G. 6. Weekly stock proportion estimates (mean) of sockeye salmon harvested in the Alaskan Subdistrict 106-30 (Clarence Strait) commercial drift
gillnet fishery, 2019.

STATWEEK	Total	Genotyped	AgedOnly	OtolithMarked variable	EnhancedTahltan	EnhancedTuya	Non-Stikine	StikineTakuMainstem	Tahltan
25-28	100	92	8	0 MEAN	0.006	0.006	0.783	0.115	0.090
25-28	100	92	8	0 SD	0.007	0.008	0.056	0.049	0.029
25-28	100	92	8	0 CI5\%	0.000	0.000	0.691	0.030	0.047
25-28	100	92	8	0 CI95\%	0.021	0.021	0.878	0.195	0.142
25-28	100	92	8	0 P 0	0.123	0.121	0.000	0.000	0.000
29	300	160	140	0 MEAN	0.001	0.001	0.880	0.105	0.014
29	300	160	140	0 SD	0.002	0.001	0.047	0.046	0.009
29	300	160	140	0 CI5\%	0.000	0.000	0.814	0.017	0.003
29	300	160	140	0 CI95\%	0.004	0.003	0.970	0.169	0.031
29	300	160	140	0 P0	0.675	0.672	0.000	0.009	0.001
30	288	152	136	0 MEAN	0.001	0.001	0.921	0.076	0.001
30	288	152	136	0 SD	0.002	0.002	0.034	0.034	0.003
30	288	152	136	0 CI5\%	0.000	0.000	0.868	0.013	0.000
30	288	152	136	0 CI95\%	0.004	0.004	0.984	0.129	0.007
30	288	152	136	0 P0	0.665	0.670	0.000	0.004	0.591
31	298	170	128	0 MEAN	0.001	0.001	0.930	0.068	0.001
31	298	170	128	0 SD	0.001	0.001	0.035	0.035	0.003
31	298	170	128	0 CI5\%	0.000	0.000	0.874	0.006	0.000
31	298	170	128	0 CI95\%	0.003	0.003	0.992	0.122	0.006
31	298	170	128	0 P 0	0.627	0.639	0.000	0.020	0.565
32	300	159	141	0 MEAN	0.001	0.001	0.963	0.034	0.001
32	300	159	141	0 SD	0.001	0.002	0.023	0.023	0.003
32	300	159	141	0 CI5\%	0.000	0.000	0.923	0.000	0.000
32	300	159	141	0 CI95\%	0.003	0.004	0.998	0.075	0.007
32	300	159	141	0 P 0	0.729	0.726	0.000	0.075	0.645
33	287	158	129	0 MEAN	0.001	0.001	0.931	0.067	0.001
33	287	158	129	0 SD	0.002	0.002	0.031	0.031	0.003
33	287	158	129	0 CI5\%	0.000	0.000	0.882	0.011	0.000
33	287	158	129	0 CI95\%	0.003	0.004	0.986	0.115	0.007
33	287	158	129	0 P 0	0.703	0.695	0.000	0.008	0.628
34	134	129	5	0 MEAN	0.001	0.001	0.946	0.050	0.002
34	134	129	5	0 SD	0.003	0.003	0.024	0.023	0.003
34	134	129	5	0 CI5\%	0.000	0.000	0.902	0.017	0.000
34	134	129	5	0 CI95\%	0.008	0.008	0.980	0.093	0.008
34	134	129	5	0 P0	0.641	0.645	0.000	0.001	0.642
35	94	89	5	\bigcirc MEAN	0.002	0.002	0.943	0.051	0.002
35	94	89	5	0 SD	0.005	0.005	0.036	0.036	0.005
35	94	89	5	0 CI5\%	0.000	0.000	0.879	0.000	0.000
35	94	89	5	O CI95\%	0.011	0.011	0.997	0.113	0.011
35	94	89	5	0 PO	0.800	0.808	0.000	0.121	0.795

Appendix G. 7. Weekly stock proportion estimates (mean) of sockeye salmon harvested in the Alaskan District 108 commercial drift gillnet fishery, 2019.

STATWEEK	Total	Genotyped	AgedOnly	OtolithMarked variable	EnhancedTahltan	EnhancedTuya	Non-Stikine	StikineTakuMainstem	Tahltan
26	318	180	15	123 MEAN	0.386	0.001	0.053	0.206	0.354
26	318	180	15	123 SD	0.027	0.002	0.015	0.024	0.027
26	318	180	15	123 CI5\%	0.341	0.000	0.031	0.168	0.310
26	318	180	15	123 CI95\%	0.431	0.005	0.079	0.246	0.400
26	318	180	15	123 P0	0.000	0.473	0.000	0.000	0.000
27	229	155	10	64 MEAN	0.288	0.002	0.117	0.351	0.243
27	229	155	10	64 SD	0.032	0.003	0.023	0.034	0.030
27	229	155	10	64 CI5\%	0.237	0.000	0.081	0.295	0.196
27	229	155	10	64 CI95\%	0.341	0.007	0.158	0.408	0.295
27	229	155	10	64 P0	0.000	0.378	0.000	0.000	0.000
28	351	245	23	83 MEAN	0.213	0.001	0.189	0.338	0.258
28	351	245	23	83 SD	0.023	0.002	0.025	0.030	0.025
28	351	245	23	83 CI5\%	0.176	0.000	0.149	0.290	0.218
28	351	245	23	83 CI95\%	0.251	0.005	0.232	0.388	0.301
28	351	245	23	83 P0	0.000	0.517	0.000	0.000	0.000
29	355	231	49	75 MEAN	0.202	0.003	0.130	0.419	0.246
29	355	231	49	75 SD	0.021	0.003	0.021	0.029	0.024
29	355	231	49	75 CI5\%	0.169	0.000	0.099	0.371	0.206
29	355	231	49	75 C195\%	0.238	0.009	0.167	0.465	0.286
29	355	231	49	75 P0	0.000	0.063	0.000	0.000	0.000
32	264	171	77	16 MEAN	0.029	0.008	0.363	0.555	0.045
32	264	171	77	16 SD	0.018	0.016	0.040	0.033	0.020
32	264	171	77	16 CI5\%	0.011	0.000	0.289	0.504	0.022
32	264	171	77	16 CI95\%	0.065	0.041	0.421	0.610	0.082
32	264	171	77	16 P0	0.000	0.401	0.000	0.000	0.000
33-35	58	52	6	0 MEAN	0.012	0.012	0.230	0.731	0.014
33-35	58	52	6	0 SD	0.014	0.014	0.059	0.060	0.015
33-35	58	52	6	O Cl5\%	0.000	0.000	0.141	0.628	0.000
33-35	58	52	6	O CI95\%	0.041	0.040	0.332	0.826	0.044
33-35	58	52	6	0 PO	0.331	0.322	0.000	0.000	0.276

Appendix G. 8. Weekly stock proportion estimates (mean) of sockeye salmon harvested in the Alaskan District 111 traditional commercial drift gillnet fishery by week, 2019.

STATWEEK	Total	Genotyped	AgedOnly	OtolithMarked variable	EnhancedKingSalmon	EnhancedSnettisham	EnhancedStikine	EnhancedTatsamenie	Other	Speel	StikineTakuM ainstem	TakuLakes	Tatsamenie
25	41	39	2	0 MEAN	0.003	0.003	0.003	0.003	0.412	0.004	0.463	0.108	0.003
25	41	39	2	0 SD	0.008	0.008	0.008	0.008	0.089	0.011	0.089	0.049	0.009
25	41	39	2	0 Cl5\%	0.000	0.000	0.000	0.000	0.266	0.000	0.318	0.040	0.000
25	41	39	2	o C195\%	0.016	0.014	0.015	0.016	0.562	0.021	0.612	0.198	0.017
25	41	39	2	0 PO	0.919	0.927	0.924	0.924	0.000	0.900	0.000	0.001	0.918
26	245	155	83	7 MEAN	0.013	0.005	0.013	0.000	0.140	0.001	0.646	0.182	0.001
26	245	155	83	7 SD	0.007	0.004	0.007	0.001	0.031	0.003	0.039	0.029	0.002
26	245	155	83	$7 \mathrm{CL5} \mathrm{\%}$	0.004	0.000	0.004	0.000	0.092	0.000	0.580	0.137	0.000
26	245	155	83	7 C195\%	0.026	0.013	0.026	0.003	0.194	0.006	0.708	0.232	0.004
26	245	155	83	7 P0	0.000	0.094	0.000	0.837	0.000	0.767	0.000	0.000	0.796
27	359	161	187	11 MEAN	0.006	0.006	0.020	0.000	0.079	0.001	0.681	0.205	0.001
27	359	161	187	11 SD	0.004	0.004	0.007	0.001	0.025	0.004	0.034	0.029	0.004
27	359	161	187	$11 \mathrm{CL5} \mathrm{\%}$	0.001	0.001	0.009	0.000	0.041	0.000	0.625	0.157	0.000
27	359	161	187	11 C195\%	0.014	0.014	0.033	0.002	0.124	0.007	0.736	0.253	0.008
27	359	161	187	11 P0	0.004	0.003	0.000	0.819	0.000	0.685	0.000	0.000	0.677
28	594	321	226	47 MEAN	0.004	0.064	0.002	0.002	0.108	0.022	0.610	0.187	0.001
28	594	321	226	47 SD	0.003	0.009	0.002	0.002	0.022	0.010	0.030	0.023	0.002
28	594	321	226	$47 \mathrm{CL5} \mathrm{\%}$	0.001	0.049	0.000	0.000	0.075	0.008	0.560	0.150	0.000
28	594	321	226	47 C195\%	0.009	0.080	0.006	0.006	0.146	0.041	0.658	0.225	0.004
28	594	321	226	47 P0	0.000	0.000	0.013	0.015	0.000	0.000	0.000	0.000	0.400
29	529	231	182	116 MEAN	0.004	0.199	0.000	0.004	0.073	0.004	0.561	0.152	0.001
29	529	231	182	116 SD	0.003	0.017	0.001	0.003	0.010	0.004	0.025	0.020	0.001
29	529	231	182	116 C15\%	0.001	0.173	0.000	0.001	0.057	0.000	0.520	0.120	0.000
29	529	231	182	116 C195\%	0.010	0.228	0.002	0.010	0.090	0.012	0.602	0.187	0.003
29	529	231	182	116 P0	0.000	0.000	0.432	0.000	0.000	0.085	0.000	0.000	0.399
30	580	304	126	150 MEAN	0.000	0.248	0.001	0.011	0.074	0.021	0.525	0.107	0.011
30	580	304	126	150 SD	0.001	0.019	0.001	0.004	0.021	0.011	0.028	0.017	0.005
30	580	304	126	150 C15\%	0.000	0.217	0.000	0.005	0.038	0.005	0.480	0.081	0.005
30	580	304	126	150 C195\%	0.002	0.279	0.004	0.020	0.108	0.041	0.571	0.136	0.020
30	580	304	126	150 P0	0.419	0.000	0.007	0.000	0.000	0.002	0.000	0.000	0.000
31	465	179	245	41 mean	0.001	0.097	0.001	0.012	0.080	0.003	0.697	0.089	0.019
31	465	179	245	41 SD	0.004	0.022	0.003	0.006	0.024	0.006	0.033	0.020	0.009
31	465	179	245	$41 \mathrm{CL5} \mathrm{\%}$	0.000	0.065	0.000	0.005	0.043	0.000	0.643	0.059	0.008
31	465	179	245	41 C195\%	0.007	0.135	0.007	0.022	0.122	0.013	0.752	0.123	0.035
31	465	179	245	41 P0	0.343	0.000	0.342	0.000	0.000	0.276	0.000	0.000	0.000
32	280	169	23	88 MEAN	0.000	0.289	0.000	0.025	0.028	0.006	0.564	0.048	0.039
32	280	169	23	88 SD	0.001	0.027	0.001	0.009	0.016	0.006	0.032	0.015	0.012
32	280	169	23	$88 \mathrm{CL5} \mathrm{\%}$	0.000	0.245	0.000	0.012	0.004	0.000	0.510	0.026	0.022
32	280	169	23	88 C195\%	0.002	0.334	0.002	0.043	0.057	0.019	0.617	0.074	0.060
32	280	169	23	88 P0	0.701	0.000	0.702	0.000	0.016	0.076	0.000	0.000	0.000
33	120	67	7	46 MEAN	0.001	0.348	0.001	0.034	0.032	0.011	0.431	0.065	0.077
33	120	67	7	46 SD	0.003	0.043	0.003	0.016	0.019	0.016	0.049	0.027	0.026
33	120	67	7	$46 \mathrm{Cl5} \mathrm{\%}$	0.000	0.280	0.000	0.012	0.009	0.000	0.351	0.027	0.040
33	120	67	7	46 C195\%	0.005	0.420	0.005	0.065	0.068	0.045	0.512	0.114	0.122
33	120	67	7	46 P0	0.685	0.000	0.688	0.000	0.000	0.343	0.000	0.000	0.000
34	150	58	3	89 MEAN	0.001	0.580	0.001	0.008	0.054	0.053	0.229	0.027	0.046
34	150	58	3	89 SD	0.003	0.039	0.003	0.007	0.019	0.019	0.034	0.014	0.018
34	150	58	3	$89 \mathrm{CL5} \mathrm{\%}$	0.000	0.515	0.000	0.001	0.026	0.025	0.176	0.008	0.021
34	150	58	3	89 C195\%	0.007	0.644	0.007	0.023	0.088	0.088	0.286	0.052	0.078
34	150	58	3	89 P0	0.579	0.000	0.580	0.030	0.000	0.000	0.000	0.000	0.000
35	49	28	2	19 MEAN	0.002	0.362	0.002	0.022	0.006	0.058	0.412	0.007	0.128
35	49	28	2	19 SD	0.007	0.067	0.006	0.021	0.015	0.040	0.075	0.015	0.047
35	49	28	2	$19 \mathrm{Cl5} \mathrm{\%}$	0.000	0.254	0.000	0.002	0.000	0.008	0.290	0.000	0.060
35	49	28	2	19 C195\%	0.013	0.477	0.013	0.064	0.033	0.136	0.534	0.039	0.215
35	49	28	2	19 PO	0.877	0.000	0.878	0.158	0.779	0.026	0.000	0.705	0.000

[^0]: ${ }^{\text {a }}$ Estimate includes approximately 30,000 mortalities from overcrowding on May 22, 1987.
 ${ }^{\mathrm{b}}$ Estimate of 595,147 on June 14 expanded by average $\%$ of outmigration by date (97.5%) from historical data.
 ${ }^{\text {c }}$ Estimate of 1,439,673 on June 13 expanded by average \% of outmigration by date (96.8%) from historical data.
 ${ }^{\text {d }}$ Estimate of $1,516,150$ on June 14 expanded by average \% of outmigration by date (97.5%) fromhistorical data.

[^1]: ${ }^{\text {a }}$ Stopped flying index area 4 on the Nakina after 2009.

[^2]: 2012 weir count was adjusted to account for high water years when weir was disabled

[^3]: ${ }^{\mathrm{a}}$ Late survey date which missed the peak of spawning.

[^4]: ${ }^{\text {a }}$ A low weir count resulted in a bilateral inseason adjustment of the egg take target to 5.5 million
 ${ }^{\mathrm{b}}$ The original goal of 6.0 million eggs at Tahltan Lake was reduced to 5.0 million by Canada due to domestic is sues
 ${ }^{\text {c }}$ The original goal of 6.0 million eggs at Tahltan Lake was reduced to 5.5 million by Canada due to domestic issues

