TCCHUM 8801

January 1988

THE PACIFIC SALMON COMMISSION JOINT CHUM TECHNICAL COMMITTEE REPORT

REPORT TCCHUM (88)-1

HISTORICAL CANADIAN AND UNITED STATES CHUM SALMON DATA REPORT FOR THE YEARS PRIOR TO 1985

page
Preface 2
Terms of reference 3
Participants 4
SUMMARY OF AGENCY HISTORICAL REPORTS
Canada 5
United States 12
AGENCY REPORTS
Canada attached
United States attached

The following summary and the two agency reports are intended to provide the majority of the historical information required by paragraph 1 of Chapter 6. Annex IV of the Pacific Salmon Treaty (PST). The report includes descriptions of the fishery areas and chum stocks of concern under the PST, the management policies on, and processes involved in, managing the fisheries on those stocks. and the stock assessment procedures used by the two countries. Also included are the terms of reference for the joint chum salmon committee and a list of the participants who contributed to the report.

SOUTHERN BRITISH COLUMBIA -
 WASHINGTON CHUM FISHERIES

Chapter 6. Annex IV of the Pacific Salmon Treaty (PST) calls for the formation of a Joint Chum Technical Committee and charges that committee with responsibilities as follows:

Considering that anticipated returns of some natural salmon stocks originating in Johnstone Strait, the Strait of Gerogia, the Fraser River, Puget Sound, Juan de Fuca Strait and Nitinat Lake are expected to be weak and therefore not likely to provide a harvestable surplus in 1985, although some enhanced stocks originating in these areas may provide harvestable surpluses and anticipating locally directed fisheries on such enhanced stocks, the Parties shall

1. no later than March 31. 1985, establish a Joint Chum Technical Committee (Committee) reporting, unless otherwise agreed, to the Southern Panel and the Commission, to inter alia.
(a) identify and review the status of stocks of primary concern:
(b) present the most current information on harvest rates and patterns on these stocks, and develop a joint data base for assessments:
(c) collate available information on the productivity of Chum stocks in order to identify escapements which produce maximum sustainable harvests and allowable harvest rates:
(d) present historical catch data, associated fishing regimes, and information on stock composition in fisheries harvesting those stocks:
(e) develop analytical methods to permit the exploration of alternative regulatory and production strategies:
(f) identify information and research needs, to include future monitoring programs for stock assessments;
(g) develop fishery regimes for the 1985 season and thereafter.
2. no later than August 15, 1985, instruct the Committee to present a report to the parties on the activities set out in paragraph 1 herein.

PARTICIPANTS

CANADA

Mr. Don Anderson (Co-Chair)
Dept. of Fisheries and Ocean 3225 Stephenson Point Road
Nanaimo. B.C.
V9T 1K3
Tel. 䒺 (604) 756-7283
Mr. Al Gould
Dept.of Fisheries and Oceans
3225 Stephenson Point Road
Nanaimo. B.C. V9t IK3
Tel.\# (604) 756-7279
Dr. Terry Beacham
Dept. of Fisheries and Ocean Pacific Biological Station p.0. Box 100, Hammond Bay Road Nanaimo. B.C. V9R 5K6
Tel.\# (604) 756-7149
Mr. Steve Heizer
Dept. of Fisheries and Oceans 3225 Stephenson Point Road Nanaimo. B.C. V9T 1K3 Tel.\# (60\&) 756-7270

Mr. Robin Harrison
Dept. of Fisheries and Oceans \#330-80-6th Street
New Westminster. B.C.
V3L 5B3
Tel. \# (604) 666-2417
Mr. Morley Farwell
Dept. of Fisheries and Oceans *330-80-6th Street
New Westminster. B.C.
V3L 5B3
Tel. \# (604) 666-6390

UNITED STATES

Mr. Gary R. Graves (Co-Chair) Northwest Indian Fisheries Comm. 6730 Martin Way E. Olympia. WA 98506
Tel.茾 (206) 438-1180

Mr. Donald D. Haring
Washington Department of Fisheries 115 General Administration Bldg.
Olympia, WA 98504
Tel.\# (206) 753-6769
Dr. Kenneth A. Henry
N.O.A.A.-N.M.F.S.

7600 Sand Point Way NE. Bldg. 4
Seattle, WA 98115
Tel. \# (206) 526-4234

Mr. Nicholas D. Lampsakis
Point No Point Treaty Council
7850 N.E. Little Boston Road
Kingston. WA 98346
Tel. \# (206) 297-3422
Mr. John H. Meyer **
U.S. Fish \& Wildife Service

2625 Parkmont Lane S.W. Bldg. A Olympia. WA 98502

Mr. Michael Hinton *
Tulalip Tribe
6700 Totem Beach Rd.
Marysuille. WA 98270
Mr. Bruce Sanford
Nooksack Indian Tribe
p.o. Box 157

Deming. WA 98244
Mr. Bill Harrington-Tweit
Nisqually Indian Tribe 4820 She-Nah-Num Drive S.E. Olympia. WA 98503 (206)456-5221

[^0]
II. gUMMARY OF AGENCY HISTORICAL REPORTS

Abstract

CANADA

Southern British Columbia chum salmon stocks and fishing areas are divided into two major components; the stocks of Johnstone and Georgia straits, herein termed inside chum, and those off the west coast of Vancouver Island including Juan de Fuca Strait, termed west coast chum. The primary fisheries of concern are net and troll fisheries off the west coast of Vancouver Island and net fisheries in Johnstone, Georgia, and Juan de Fuca straits and in the Fraser River.

INSIDE CHUM

Stock Description

Inside chum include stocks spawning along the east and west coasts of Johnstone and Georgia straits from the north end of Vancouver Island to Boundary Bay and Saanich Inlet to the south. The Fraser River is the most productive unit while other major production originates from mid Vancouver Island, Howe Sound, South and Lower Vancouver Island, Jervis Inlet and Lougborough/Bute inlets.

Most inside stocks are fall chum that spawn from October through December although there are a few runs of summer chum which spawn prior to October in some mainland inlets. Fall chum migration through Johnstone Strait generally extends from early September through November, with major abundance occurring during October.

Most chum migrate through Johnstone Strait on their approach to the spawning grounds although there is growing evidence that in some years a significant proportion of Fraser River and some southern Strait of Georgia stocks migrate through Juan de Fuca Strait. While each stock has a characteristic migration timing, there is substantial overlap so that many stocks may be present along the migratory pathways at any given time. Chum salmon overlap with other species including. late Fraser River sockeye and pink salmon in September, and chinook, coho and steelhead in September and October. These species are taken into account in designing fishing plans.

Between 1960 and 1984, the estimated total run size of
inside chum averaged $1,743,000$ with a range from 445,000 (1965) to 4,507,000 (1973). The 1980-84 average was 1,958,000. The Fraser River component averaged 631,000 since 1964 with a range from 208,000 (1965) to l,334,000 (1968). The size of the runs and productivity are generally greater in even numbered years. Average even year run size since 1960 was $2,043,000$, about 44\% greater than the odd year average of $1,418,000$. Returns per spawner average 2.0 in the even years compared to 1.6 in odd years.

Since 1960, wild spawning escapements, including spawning channel areas, have averaged l,093,000 with a range from 404,000 (1965) to $1,829,000$ (1972). The 1980-84 average was 1,355,000 indicating a general increase in recent years, but still well below the interim goal of 2,500,000. Fraser River escapements averaged 341,000 since 1960 (range of 173,000 to 822,000). The status of chum throughout Johnstone and Georgia straits varies considerably in different areas. Escapements of some stocks such as those in Loughborough, Bute and Jervis inlets, Howe Sound, and the Fraser River are improving (1980-84 average is 60% of goal). Others, such as Upper Vancouver Island and several of the mainland inlets off Johnstone Strait are well below their escapement goal (1980 to 84 average is 12% of goal).

Canadian commercial inside catches of chum averaged 619,000 since 1960 with a range from 26,000 (1965) to $2,897,000$ (1973). The 1980-84 average was 558,000.

Enhancement of inside chum began in 1963 at the Qualicum River with flow control and spawning channel construction. There was little additional enhancement effort until the salmonid Enhancement Program initiated a number of new projects starting in the late 1970^{\prime} s. Existing facilities throughout the inside waters have the capacity to produce about $1,500,000$ chum with full production expected to return in 1989. The major facilities are located in mid Vancouver Island, with a production potential average of 900,000 adults and in the Fraser River with a potential average return of 500,000 adults. An additional 100,000 average production is anticipated various minor facilities. Returns to these facilities were taken into account in the design and implementation of the wild stock rebuilding program.

Management Regime and Fishery Description

The major Canadian commercial fishing areas for inside chum are Johnstone Strait (Areas 12 and 13), mid Vancouver Island (Area 14) and the Fraser River (Area 29). Minor fisheries occasionally occur in Bute Inlet and off the Nanaimo and Cowichan rivers. In the past, chum were taken in the Juan de Fuca Strait (Area 20) fishery directed mainly at coho. Inside chum are also taken in the west coast troll fishery.

The Johnstone Strait mixed stock fishing area is about 200 km in length and harvests the largest catches. Chum caught in
this area are of high quality and fetch a relatively high price compared to those caught in more terminal areas. The fleet size often exceeds 400 purse seines and 500 gill nets with seines harvesting an average of 75% of the catch during the period 19601984. Chum catches in Johnstone Strait averaged 458,000 from 1960-84 with a range from 14,000 (1965) to 2,296,000 (1973). The 1980-84 average was 390,000 .

The Fraser River commercial fishing area (Area 29) includes the Fraser River up to Mission and may include a portion of the Strait of Georgia adjacent to the river mouth. Chum caught in the Fraser area are generally dark in colour. Fishing is restricted to gill nets with in excess of 500 vessels participating on some openings. The number of chum fishing days permitted has been sharply reduced in recent years, and, in 1984, openings were linked to fisheries in Johnstone Strait. The 196084 average catch was 78,000 with a range from 8,000 (1979) to 256,000 (1972). The 1980-84 average was 35,000; however, directed chum fisheries occurred only in 1980 and 1982 with catches of 75,500 and 63,300 , respectively.

The mid Vancouver Island fishery (Area l4) is a terminal fishery directed on enhanced chum returning to the area. As the enhanced returns increased and fishing in Johnstone Strait was reduced, catches in this fishery have grown. Average catches for Area 14 during the period 1960-84 were 49,000 with a range from zero (1963-69,1971 and 1977) to 197,400 (1982). The 1980-84 average was 123,700. In 1984, an attempt was made to limit the harvest to those areas where Fraser chum comprise less than 10% of the anticipated catch.

The catch of chum salmon elsewhere in the strait of Georgia is minor in most years. The 1960-84 average catch for areas 15-19 was 33,600 with a range from zero (1983,1984) to 225,100 (1973). The 1980-84 average was 9,000. Since 1980 fisheries directed at chum salmon harvest occurred only in 1982 with a catch of 41,000 .

Indian food fisheries in the Fraser River and Johnstone and Georgia straits take a small catch of chum salmon. No sales of Indian food fish are permitted. The catch for all areas combined averaged 31,000 from 1960-84 with a range from 15,000 (1965) to 58,000 (1984). The 1980-84 average was 46,000. The Fraser River catch averaged 15,000 from 1980-84.

Canadian inside and Puget Sound chum are also caught in Canadian west coast troll and net fisheries and in the Juan de Fuca Strait fishery. United States fisheries, mainly in the San Juan Islands, Point Roberts and Juan de Fuca Strait areas also harvest Canadian inside chum.

The strategy for managing inside chum has been modified substantially in recent years. Until 1983, the stated management approach involved harvesting all chum in excess of an escapement goal for all stocks combined. In practice, this approach was
difficult to implement because of the differences in run timing and productivity with the result that some stocks were overharvested while others could potentially be underharvested. A new approach, with the objective of achieving the escapement goal of $2,500,000$ within three cycles, was implemented in 1984. The approach involved managing the total run by variable harvest rate in the Johnstone Strait and Fraser River areas. At the lowest run sizes (under $2,600,000$), a harvest rate of 10% in Johnstone and Georgia straits and the Fraser River is permitted. At the highest run sizes (over $4,900,000$) a 40% harvest rate applies. Harvest rates above 10% are adjusted in a stepwise manner in relation to the estimated increased run size in Johnstone Strait. Escapements above the stated objective were permitted as they provide information about stock productivity.

Management Process
The management process for inside chum had been relatively unstructured but it has recently evolved into a more formalized approach. The first step is the development of preseason quantitative forecasts which are distributed to industry during spring. Until recently, the first meetings with industry advisors were held in late September, after the Johnstone Strait evaluation fishery. Since the management objectives were often unclear and the decision criteria not well defined, the meetings were often unproductive. Dissatisfaction with the advisory process led to the development of the "clockwork" approach which laid out a framework for managing the fisheries. This framework included a definition of objectives, criteria for making management decisions and run size evaluation techniques.

Stock Assessment Techniques

Preseason forecasts of inside chum have been made using various methods since the early l960's. In general, predictions were made for each age class which were then added to provide the total run size forecast. Age 4 returns were forecast from a relationship with age 3 returns the previous year while age 3's were predicted using brood year escapements, average returns per spawner and average age composition. Starting in 1974, a correlation between rates of return for pink and chum salmon was used to improve the accuracy. The average annual error in the prediction was 33% from 1970-84 and l8\% from 1980-84. In most years, Fraser River predictions were made by applying the ratio of Fraser to non-Fraser brood year escapements to the projected total returns for all inside chum. More recently, the fraser River forecast has been developed independently by applying even and odd year average returns per spawner to the appropriate brood years and then using average age compositions.

Forecasts for returns to enhancement facilities were made by applying expected survival rates to the fry output for each
brood year.
The abundance of chum salmon is estimated inseason by means of test fisheries and through comparative catch data from commercial fisheries. The first indication of run strength is from an evaluation commercial fishery in Johnstone Strait during the third week in September. For the remainder of the season, purse seine test fishing is the primary evaluation tool. Two test fisheries operate in Johnstone Strait; one in Area l2, with a relatively long history, is the main indicator of abundance while a second in Area l3, is comparatively new and is less useful at present. There are also two test fisheries in the Fraser River which are used to provide inseason estimates of run strength in the river. In terminal areas, such as Area l4, and occasionally off other river systems, estimates of abundance are based on a combination of comparative catch data, visual surveys and sporadic test fishing.

Electrophoresis has proven useful in estimating the proportional contribution of major chum stocks in areas where they intermingle. It has been used inseason to determine the proportion of Fraser chum in the outer portions of Area 14 to assist in setting fishing boundaries. In addition, chum have been sampled since 1981 to provide estimates of the proportion of Fraser, Canadian non-Fraser and Puget Sound chum entering Johnstone Strait.

The majority of spawning populations of chum salmon are enumerated visually, either by foot or by air. The methods for deriving escapement estimates are not standardized but usually involve counting live and dead fish then relating these counts to estimates of spawning turnover rate, timing of observations, and possibly other factors, to get a total population estimate. Within the Fraser River tag and recapture programs were used to estimate major populations from 1960-1969 and for several years in the $1970^{\prime} \mathrm{s}$.

The total run size of inside chum returns is estimated by summing the spawning escapements with the catches in all inside areas, including estimates of Canadian chum in US areas 7 and 7A. At present, the Fraser and Big Qualicum rivers are the only individual stocks for which total return estimates are made. As information from electrophoresis becomes available, more reliable estimates of major stock contribution to fishing areas will be possible with consequent improvements in the accuracy of run reconstructions.

The first reported spawning goal for inside wild chum, developed in l962, was derived by adding together the highest recorded escapements during the period 1949 to 1961 to provide a target of 2,375,000. Subsequently, the targets for individual sub areas have been modified but the total of $2,500,000$ is similar to the original target. The present spawning targets are primarily based on professional judgement. The present goal for the Fraser River wild spawning areas is 700,000 although stock
recruitment analysis suggests that this may be a minimum requirement.

WEST COAST CHUM

Stock Description

Chum salmon returning to Area 22 originate mainly from the Nitinat River with smaller contributions from four other streams. A major hatchery (capacity of $28,000,000$ eggs; first egg releases from 1980 brood) is now returning adults to the area with hatchery production expected to dominate the returns from now on. Hatchery returns of up to 400,000 adults are anticipated.

Little information is available on migration routes of Nitinat chum. It is assumed that they make landfall on the north end of Vancouver Island and migrate southeast arriving off Nitinat in early to mid October. This is a fall stock with peak abundance occurring within the lake during midoctober to mid November.

The total stock of Nitinat chum has fluctuated wildly over the years ranging from 4,500 (1979) to l,555,000 (1972) with an average of 134,000 from 1960-84. The 1980-84 average was 147,000. Since 1960, spawning escapements averaged 55,000 with a range from 4,500 (1979) to 265,000 (1972). The 1980-84 average was 55,000. The escapement target of 125,000 was achieved only three times during this period. Rates of return per spawner averaged 3.78:1, with a range from 0.09:1 to l3.99:1, indicating little relationship between escapements and subsequent returns.

Chum salmon production from the Canadian portion of the Juan de Fuca Strait originates from eight streams with the Sooke River being the most important producer. Spawning escapements averaged 30,000 from l960-84 with a range from 5,000 (1979) to lll,000 (1973). The 1980-84 average was 21,000, indicating a downward trend from earlier years. Fisheries in Juan de Fuca Strait are thought to harvest mainly passing stocks. There is no information on total run sizes or productivity.

Management Regime and Fisheries Description
Fisheries occurred in Nitinat Lake on more or less regular basis until the late 1950^{\prime} s with substantial catches in some years (217,000 in 1954, for example). However, the stock declined to the extent that the fishery was closed in 1961 and did not reopen until 1972 when there was a huge return and 1,290,000 chum were caught. Fisheries were conducted in 1973 with a catch of 175,000 chum and in 1980 with a catch of 274,000 . The next fishery occurred in 1984 when the first hatchery returns were expected and 187,000 chum were caught. To improve fleet safety and fish quality, the fishery took place outside of the
lake in 1984. Future fisheries will be designed to harvest surplus hatchery chum. Nitinat fisheries, like those elsewhere in southern B.C., are discussed with industry advisors to determine timing of fisheries, area to be opened and other relevant matters.

Until the late 1970^{\prime} s, Juan de Fuca Strait (Area 20) was opened for fishing after the International Pacific Salmon Fisheries Commission (IPSFC) relinquished control near the beginning of September until effort dropped off to nothing. The September openings were generally directed at coho while those in October and later were directed at chum. Due to the limited production from streams in this area, the majority of chum caught in this fishery likely were destined for strait of Georgia, Fraser River or Puget Sound. By agreement with the United States, the area did not open after the IPSFC relinquished control in 1983 and 1984. The catch from 1960-84 averaged 42,000 with a range from 100 (1983) to 202,000 (1972). The catch for 1980-84 averaged 17,000. The catch in the 1980-82 chum fishing years averaged 28,000.

Until the 1970^{\prime} s, troll catches of chum salmon by the west coast Vancouver Island troll fleet were minor with a maximum catch of 2,300 and an average of 1,000 . Increased effort directed at chum increased the average catch to 9,000 in the 1970's and to 21,000 from 1980-84. The largest catch up to 1984 occurred in 1982 when 63,000 were taken. The majority of the catch is taken off northwestern Vancouver Island. Peak catch generally occurs during the last or second to last week in July. Stock identification analyses are underway in an attempt to determine the composition of the catch.

Stock Assessment Techniques
Attempts to predict wild chum returns from brood year escapements have been unsuccessful for the Nitinat area, probably because of the marked influence of environmental factors, especially flooding, on survival. Hatchery returns were forecast using average survivals from egg to adult although there are insufficient data to assess the accuracy of the method.

To assess abundance inseason, a test fishery using a chartered purse seine vessel makes sets just off shore from the entrance to the lake. This is considered to provide a qualitative estimate of abundance only. In addition, starting in 1985, a commercial gill net fishery will be permitted to take a previously determined number of chum early in the season to evaluate stock abundance. Further fishing will be contingent on the performance of this fishery.

Electrophoretic stock identification was first applied to chum caught at Nitinat in 1984 in order to acquire information on the proportion of United States and inside Canadian chum.

UNITED STATES

United States chum stocks of interest are grouped into three geographical units: Puget Sound, Washington Coast and Oregon and are discussed in that order.

PUGET SOUND

Stock Description

Chum salmon spawn in a number of rivers throughout puget Sound as well as in rivers along Juan de Fuca Strait. Some of the major wild chum producers are the Nooksack, Skagit, Stillaguamish and Snohomish rivers as well as the South Sound area. The stocks are grouped into three timing periods based on average peak spawning: early - prior to November, normal November to early January and late - after early January. The majority of Puget Sound chum are of normal timing.

Most Puget Sound chum are currently believed to migrate through Juan de Fuca Strait where they are present in significant numbers from late Spetember through early November. Recent information from electrophoretic analysis indicates that a portion of the run approaches Puget Sound through Johnstone and Georgia straits.

The estimated total run of chum returning to Puget Sound averaged 734,000 from 1968 to 1984 with a range from 207,000 (1975) to $1,474,000$ (1978). The 1980-84 average was 950,000 . As is the case with British Columbia's inside chum, in most areas, even year runs tend to be larger than odd year runs. The average even year run size is 975,000 compared to 474,000 for odd years.

Early chum have decreased since 1968 with the recent (1980-84) average at 28,000 for even years and 18,000 for odd years. Previously, runs of up to 190,000 were observed. Returns from enhancement started in 1976 and have averaged 7,000 through 1984 (range 800 to 20,000).

Wild and enhanced normal chum combined have increased in abundance since 1968. The 1968-84 run size averaged 647,000 chum (837,000 even year and 392,000 odd year). The 1980-84 averages for even and odd years are $1,063,000$ and 599,000 , respectively. The largest run since 1968 was 1,366,000 (1978). Although most regions of puget Sound are managed on a wild basis, hatchery production contributes substantially to normal runs particularly in Hood Canal where more than half the puget Sound hatchery production originates. Major hatchery production in regions managed on a wild basis is confined to areas and for time periods
where the stocks can be differentially harvested.
Wild runs of late chum have, on average, changed little since 1968. Even and odd year averages for the 1980-84 period are 57,000 and 35,000 , respectively. The maximum run recorded since 1968 was 73,000 (1980).

Wild late chum escapements averaged 26,500 from 1968-84 with a range from 9,900 (l971, 1975) to 41,000 (1980). In general, wild stocks have achieved desired escapement levels in most recent years.

Management Regime and Fishery Description
The long term intent for Puget Sound chum is to return the maximum sustained harvest to Washington fisheries. For Puget Sound regions where the maximum sustained harvest level is undetermined, the management intent is to achieve fixed spawner escapement goals. Most stocks are managed for wild production; the only major stock group and area managed for hatchery production is normal chum in Hood Canal. Fisheries other than the main mixed stock fishing areas (4B, 5, 6, 6C, 7, and 7A) are generally managed to achieve fixed spawning escapement goals. Time periods, reflecting the central 80% of the run timing, have been identified for each species and catch area to establish periods when management actions are to be directed at the needs of each species or stock.

Washington fisheries which harvest a mixture of Puget Sound and Canadian stocks are located in Juan de Fuca Strait (areas 4B, 5, 6, 6C) and the San Juan Islands (Area 7) and Point Roberts (Area 7A) areas. Other fisheries in more terminal areas are considered to harvest only Puget Sound origin chum.

The Juan de Fuca Strait fishery historically took relatively few chum salmon with a maximum of 40,500 (1978) up to 1979. Fisheries prior to 1980 were restricted in duration after IPSFC control. The 1980 catch increased to 17,000 and 15,000 were taken in 1983 and 1984. The 1980-84 average is 9,900. In the l980's, this area has been managed on a fixed fishing schedule of five days per week for the Treaty tribes gill net fishermen. The number of boats operating currently averages about 25.

Area 7 has historically been managed on the basis of both Canadian and Puget Sound chum while Area 7A is considered to be a harvest area for Fraser River chum. Since 1977, both areas have been managed on the basis of Canadian stock status and associated fisheries in Canadian waters. There have been significant chum fisheries in only two of the last seven years (1978, 1980), and a limited fishery in 1982.

Until the mid l970's, when court decisions established allocation sharing between Indians and non-Indians, only

Washington Department of Fisheries (WDF) licensed fishermen fished these areas. Three types of gear are currently allowed under the WDF and Tribal regulations: purse seines, gill nets and reef nets. Reef nets have operated intermittently, even when other gear types have been closed. The gear count averages about 245 gill nets (200 non-Indian, 45 Indian), 85 purse seines (70 non-Indian, 15 Indian) and 20 reef nets. Catches in areas 6, 7 and 7A combined fluctuated between 8,100 (1965) and 427,000 (1978) from 1960-84 and averaged l16,800. The 1980-84 average catch was 88,100 with a range from 1600 (1984) to 350,000 (1980); however, at Canada's request fisheries directed at chum salmon during the 1980-84 period occured only in 1980 and 1982 with catches of 350,000 and 76,000 , respectively.

Management Process

The management process for Puget Sound salmon fisheries is embodied in the Puget Sound Salmon Management Plan (PSSMP), a negotiated set of rules for preseason planning and inseason management between the treaty tribes and WDF. A major objective of the PSSMP is to obtain preseason agreement on detailed management strategies to minimize inseason disputes. It lays out procedures for establishing and modifying escapement goals, management periods, harvest rates and test and evaluation fisheries. In addition, there are procedures for regulation notification, schedules for preseason planning and report preparation, and mechanisms for dispute resolution.

Preseason planning is conducted in accordance with a fixed schedule, beginning with preliminary forecast development in April, followed by a technical review of the forecasts and resolution of any disagreements at that level. Proposals on escapement goals, management recommendations and enhancement plans are exchanged between WDF and tribal technical staff in May. A draft management report is then submitted to the administrative/policy level for resolution of any differences of opinion. The final preseason reports are prepared in July. The preseason agreements are binding unless the parties agree to modifications. Disputes generally arise when inseason conditions deviate significantly from preseason expectations. If disputes can not be resolved through the mechanisms within the PSSMP, the Federal Court is the final arbiter.

Stock Assessment Techniques

Preseason forecasts of the magnitude of the chum runs expected to return to Puget Sound have been made since 1974. The forecasting methods for wild chum have varied over the years. From 1974-79, the number of age 4 and 5 fish were predicted from a relationship with previous returns of age 3 fish while the age 3's prediction was based on mean recruits per spawner. The total forecast was then apportioned to individual stocks or management units. Since 1980, environmental variables correlated with the
total return have been employed in the forecast development. The total forecast for puget Sound is apportioned to regions using parent year escapements. In 1983 and 1984, indices of juvenile abundance were also used for some areas. Forecasts of hatchery chum are based on fry to adult return data for specific facilities. From 1980 to 1984, the average deviation of actual returns from forecast levels was 18%.

Models for inseason updating of run sizes are developed where possible. Run size updates are generally provided after the first week or two of the fishery with successive updates available through the peak of the run. The total run entering U.S. waters is estimated using run reconstruction starting from terminal areas and working through mixed stock fishing areas. Inseason estimates in terminal areas are based on the relationship between catch/effort and run size. If the inseason data base is inadequate, the preseason forecast directs inseason management.

For run reconstruction, modifications (to take into account changes in U.S. and Canadian chum production) of the 1971 U.S./Canada agreed upon stock composition estimates have been used since 1979. Electrophoretic genetic stock identification techniques are just starting to be used for differentiating stocks by country of origin in mixed stock areas and are expected to enhance the accuracy of run reconstruction estimates in the future.

Enumeration of spawning chum salmon is done visually from boats or on foot. For small rivers, escapement curves are constructed using peak live and dead counts and the area under the curve is converted into an estimate of total escapement. Estimates for large rivers are derived by relating index area counts to base year estimates of total escapements developed from tagging studies where available.

Spawning goals have been developed for all management units within Puget Sound using either the average of observed escapements for selected years or spawner/recruit relationships. Where there are differences in odd and even years production, odd year escapement goals have been adjusted by an odd/even year production ratio.

WASHINGTON COAST

Stock Description

There are three chum stocks of interest along the west coast of Washington: Grays Harbor, Willapa Bay and Quinault River.

Grays Harbor chum salmon declined in abundance in the

1960's but have improved slightly in more recent years with escapements now generally at or above the goal of 21,000. The 1980-84 average spawning escapement was 25,000 (while the average run size for this period was 55,000). The timing is one to two weeks earlier than that of normal puget Sound chum with peak abundance in the terminal area in mid to late October. Age 4 fish predominate in most years although age 3's occasionally are the dominant age class. The average return rate is 4.55 per spawner. There is a poor relationship between spawners and returns. Hatchery production of Grays Harbor chums was low until 1979 when 7,000,000 fry and fingerlings were released. Recent production has been lower.

Willapa Bay chum also declined in the l960's; although there has been some recovery since 1980. Wild spawning escapements since 1980 have ranged from 21,000 to 66,000 averaging 37,500 , slightly above the goal of 35,400. The 1980-84 average run size was 84,000 . The migratory timing of Willapa Bay chum tends to be slightly earlier than that of Grays Harbor chum. On average 3.44 fish return from each spawner. Hatchery production began to increase in 1976 and peaked in 1982 with the release of 7,100,000 fingerlings.

Quinault River wild chum salmon suffered a severe decline in abundance during the period from 1935 to 1970 and have failed to recover. The terminal area fishery is supported mainly by hatchery production although survival of hatchery fish has been poor. Release of juveniles at more optimum size for survival is expected to improve production in the future. The goal is to release 3 million fry each year. Additional enhancement is on line at the Makah National Fish Hatchery and returns are anticipated in the near future.

Management Regime and Fishery Description
The Grays Harbor chum gill net fishery takes place within the harbor and the lower portions of the Chehalis and Humptulips rivers. The chum management period is from October 21 to November 10. There is a catch sharing arrangement between the Indian and non-Indian fishermen. In addition, a sport fishery for chum occurs in some freshwater tributaries. Grays Harbor chum are managed to achieve wild escapement goals. Catches since 1960 have averaged 19,400 with a range of 450 (1979) to 61,600 (1982). The 1980-84 average was 29,000 fish. The sport catch is 150-400 most years, but reached 2,300 in 1982, a year of high returns.

The Willapa Bay commercial gill net fishery is conducted in the harbor while sport fisheries occur in the tributaries. The chum management period is from October 15 to November 1. Effort is directed on the early portion of the run to improve fish quality. During the period 1960 to 1984 , catches have averaged 27,200 , ranging from 1,200 (1979) to 76,000 (1982). The 1980-84 average catch was 42,000.

A treaty Indian fishery for hatchery chum occurs in the lower Quinault River. The historical catch pattern is similar to that of Grays Harbor and Willapa Bay except that the wild chum abundance remains low.

Management Process

Preseason forecasts of returns to Grays Harbor and Willapa Bay are published annually by WDF. Negotiations take place between WDF and the tribes to develop fishing schedules designed to achieve allocation quotas. WDF holds public hearings with non-treaty fishermen to receive their input into the management process. Disputes arising during the season are usually mediated by the Court's Fisheries Advisory Board.

Stock Assessment Techniques
Forecasts of chum returns to Grays Harbor and Willapa Bay have been made for only the last four years. They are based on average returns per spawner, by age group, adjusted by return rates observed for prior ages of the same brood. Separate average return rates are used for odd and even year returns. Expected returns to the Quinault River are based on average survival rates at Quinault National Fish Hatchery.

Inseason adjustment of run sizes in both Grays Harbor and Willapa Bay is based on a one week full fleet test fishery in Willapa Bay. This adjustment is derived from historical relationships between the two stocks.

Escapement estimates are made for Grays Harbor stocks by comparing annual index counts with a base year in which there was a total escapement estimate. For Willapa Bay stocks, the area under the curve for index areas is expanded to take into account uncounted areas.

OREGON

Stock Description
Chum salmon spawn in the lower Columbia River and rivers entering some coastal bays of Oregon, particularly Tillamook and Netarts bays. Both Columbia River and coastal Oregon chum have normal timing with peak spawning occurring from the last week in November to the first week in December. Numerical spawning escapement estimates are not made although trends from index areas indicate that Columbia River and Tillamook Bay chum declined during the period 1950-80. Unlike some other areas, there is no apparent odd/even year pattern.

The first hatchery releases of Oregon chum occurred in Netarts Bay in 1969. Since 1971, ll private hatcheries have been
issued permits to produce chum. Currently, most hatchery production from Oregon coastal rivers is from private sea ranching operations. There have been some chum fry releases into the lower Columbia River by Oregon Department of Fish and Wildife and WDF.

Management Regime and Fishery Description
Chum gill net fisheries operated in the lower Columbia River, Tillamook Bay and Nestucca Bay before the stocks declined. Chum catches in the Columbia were as high as 425,000 in 1942 but declined sharply afterwards. Chum salmon are now taken only as an incidental catch in the Columbia River commercial fishery. The 1960-84 average was 1,100 (range from 100 to 3,900) while the 1980-84 average was 500. The Nestucca Bay net fishery was terminated in 1927 while the Tillamook Bay fishery ended in 1961. The Tillamook Bay fishery took an estimated average of 91,000 chum from 1927-36 but the catches declined thereafter with an average of 6,000 taken for the five year period from 1957-61.

Coastal chum are now taken by sport fisheries and at hatchery racks by private operators. The sport catch has increased recently and takes place mainly in the Miami and Kilchis rivers which flow into Tillamook Bay.

CONTENTS

Page No.
3.0 Stock Description 1
3.1 Inside Chum 1
3.2 West Coast Chum 6
4.0 Fishery Description and Management Regime 9
4.1 Inside Chum 9
4.1.1 Fishery Description 9
4.1.1.1 General Overview 9
4.1.1.2 Commercial Fishery Catch 11
4.1.1.2.1 Johnstone Strait 11
4.1.1.2.2 Fraser River 12
4.1.1.2.3 Mid-Vancouver Island 13
4.1.1.2.4 Strait of Georgia 15
4.1.1.3 Indian Food Fishery 15
4.1.2 Management Regime 16
4.2 West Coast Chum 19
4.2.1 Fishery Description 19
4.2.1.1. Nitinat Lake 19
4.2.1.2. Strait of Juan de Fuca 20
4.2.1.3. West Coast Troll 21
4.2.2 Management Regime 22
5.0 Stock Assessment Techniques 23
5.1 Pre-season Forecasts 23
5.1.1 Inside Chum 23
5.1.2 West Coast Chum 24
5.2 In-Season Stock Assessment 25
5.2.1 Inside Chum 25
5.2.2 West Coast Chum 28
5.3 Escapement Assessment 29
5.3.1 Inside Chum 29
5.3.2 West Coast Chum 30
5.4 Run Reconstruction 31
5.4.1 Inside Chum 31
5.4.2 West Coast Chum 32
5.5 Estimates of Production Capacity 32
5.5.1 Inside Chum 32
5.5.2 West Coast Chum 33
6.0 Management Process 34
6.1 Inside Chum 34
6.2 West Coast Chum 38
7.0 References 39
8.0 Tables
9.0 Figures

LIST OF TABLES

Table 1. Total study area fall chum salmon escapements in thousand of fish by sub area, 1960 - 1984.

Table 2. Comparison of predicted and actual returns of Fraser River chum salmon, 1974-1984.

Table 3. Production of Canadian caught study area chum salmon, 1960-1984.
Table 4. Production of Canadian caught Area 22 chum salmon, 1960-1984.
Table 5. Annual escapements for chum salmon in Area 20, 1951-1984.

Table 6. Fall commercial chum catches by region and gear, 1960-1984.
Table 7. Indian food fishery catches of chum salmon by statistical area, 1960-1985.

Table 8. Fall chum commercial catch by major gear type, 1960-1984.
Table 9. Catch, escapement and total stock of summer and fall chum.
Table 10. Catch, escapement, total stock and harvest rate for Canadian caught chum, 1960-1984.

Table 11. Fall commercial chum catch by major area, 1960 - 1984.
Table 12. Annual catch, escapement and total stock estimates for chum salmon in Area 22, 1951 - 1984.

Table 13. Annual catch by gear type for chum salmon in Area 20, 1951 -1984.
Table 14. Chum troll catches (pieces) for Areas 20-27, 1951-1984.
Table 15. Weekly troll catch of chum salmon in Area 27, 1980-84.
Table 16. Comparison of predictions and actual returns for Inside chum, 1969-1984.

Table 17. Area 12 commercial seine catch for the third week of September compared to total stock size.

Table 18. Upper Johnstone Strait test fishing average catches by week for 1965-1985.

Table 19. Clockwork Harvest Plan for Inside chum fishing area for years 1984 and 1985.
Figure 1. Location map of the Johnstone Strait - Fraser River chum salmon study area.
Figure 2. Statistical areas of catch for southern British Columbia waters.
Figure 3. Timing of chum salmon entering upper Johnstone Strait.
Figure 4. Timing of chum salmon entering the Fraser River.
Figure 5. Spawning escapements of Inside chum and total stock.
Figure 6. Annual chum salmon escapements for each Johnstone Strait - Fraser River sub area.
Figure 7. Escapements and subsequent returns of chum salmon to Nitinat Lake, 1968-1978.
Figure 8. Correlation between Area 12 commercial seine catch for the third week of September and total stock size.
Figure 9. Correlation between Area 12 test fishing catches, cumulative for the fourth week of September and the first week of October, and total stock size.
Figure 10. Correlation between test fishery CPUE for the season and chum run to the Fraser River.
Figure 11. Predicted variance of the test fishery used to predict spawning escapement to the Fraser River during the season.

3.0 Stock Description

Abstract

The primary Canadian stocks of concern are those of Johnstone and Georgia straits (herein referred to as "Inside" chum) and those of Juan de Fuca Strait and the southwest coast of Vancouver Island (referred to collectively as "West Coast" chum). The West Coast Troll Fishery is also included under "West Coast Chum" where applicable. West coast of Vancouver Island chum originating from streams north of Nitinat River are not included in this report as they are unlikely to influence fisheries that intercept U.S. chum nor be subject to interception by U.S. fisheries to a significant extent.

3.1 Inside Chum

Inside chum include stocks spawning in more than 150 streams along the east and west coasts of Johnstone and Georgia straits from the north end of Vancouver Island to Boundary Bay and Saanich Inlet to the south. For descriptive and, to some extent, management purposes the stocks are grouped into 14 geographic units as indicated in Figure 1 . Statistical areas of catch for southern British Columbia waters are given in Figure 2. The Fraser River is the most productive unit while major production also originates from mid-Vancouver Island (primarily hatchery output from Big Qualicum, Little Qualicum and Puntledge rivers), Howe Sound (mainly Squamish River), South and Lower Vancouver Island, Jervis Inlet and Loughborough/Bute inlets. In most of these geographic units there are many streams contributing to the total production but usually only one or, at most, a few that predominate. Within the Fraser River, for example, chum spawn in excess of 40 streams but about 80% of the wild production in recent years has originated from only three major tributaries: Harrison, Chilliwack and Stave rivers.

Most Inside chum migrate through Johnstone Strait on their approach to their spawning streams. There is a possibility that, in some years, a proportion of southern Georgia Strait stocks migrate through Juan de Fuca Strait. Major chum fisheries occur along the migration routes, primarily in Johnstone Strait, mid-Vancouver Island, in and adjacent to the Fraser River, as well as off Point Roberts and the San Juan Islands in the United States.

The majority of Inside chum are fall chum which enter their natal streams from September through December. There are a few earlier migrating summer chum runs (prior to September) to some mainland inlets including those spawning in the Ahnuhati River in Knight Inlet and in Orford River in Bute Inlet.

The migration timing and rate of travel through Johnstone and Georgia straits and in the Fraser River were defined by tagging studies conducted during the 1960s and 1970s (Palmer, 1972; Anderson and Beacham, 1983). Migration of fall chum through Johnstone Strait generally begins in September and continues to late November. Timing of major chum stocks in upper Johnstone Strait and in the Fraser River is depicted in Figures 3 and 4, respectively. Tagging over several years indicated that each stock had a characteristic timing period and that there was substantial overlap among stocks so that many stocks may be present along the migratory pathways at any given time. Among the earliest stocks are those spawning in the Loughborough/Bute and Lower Vancouver Island areas as well as some Fraser River tributaries. Late stocks include those from the Johnstone Strait, mid-Vancouver Island and Southern Vancouver Island areas plus some Fraser tributaries such as Harrison River (certain populations), Chilliwack River and

Inch Creek. The migration period of all Fraser River chum combined encompasses the entire migration period for Inside chum.

Tagging also indicated the presence of a small proportion of Puget Sound chum in Johnstone Strait (Anderson and Beacham, 1983).

Inside chum coincide in timing with other species including late Fraser River sockeye and pink salmon in September and chinook, coho and steelhead in September and October. These species, particularly the latter three, are taken into account in designing fishing plans for chum salmon as they may be adversely affected.

The travel time from Upper to Lower Johnstone Strait is about seven days and about twenty days from Upper Johnstone Strait to the Fraser River with early stocks migrating slightly faster than late stocks. Some stocks delay off their respective river mouths before entering freshwater. Chum were estimated to delay for at least one week off the Fraser River before entering the river (Palmer, 1972).

Spawning escapements of Inside chum averaged $1,057,000$ from $1960-84$ with a range from 404,000 (1965) to $1,898,000$ (1968) (Table 1; Fig. 5). There has been an upward trend in recorded escapement over this time period with the 1980-84 average of $1,355,000$ being 54% higher than the $1960-69$ average of 882,000. Stocks in the 1960 s were recovering from the effects of excessive harvest rates of earlier years. In spite of an improving trend, recent escapements through 1984 were still well below the interim goal of $2,500,000$.

The status of chum escapements relative to the interim goals differs markedly among stocks from different geographical areas (Fig. 6). In general, stocks in the Strait of Georgia south of Campbell River have recently been closer to their escapement goals than stocks further north. Some of the latter (upper Vancouver Island, Toba, Kingcome, Bond, and Knight inlets) stocks have been in a very depressed state for many years. An exception is Loughborough/Bute chum which have exceeded the 150,000 goal in some years. Spawning escapement of Fraser River chum averaged 343,000 from 1960-84 with a range from 173,000 (1961) to 822,000 (1968). The $1980-84$ average was 393,000 .

The total run size of Inside chum (exclusive of the catch in U.S. waters) averaged $1,743,000$ from $1960-84$ with a range from 446,000 (1965) to 4,509,000 (1973). The stocks were relatively depressed in most years in the 1960 s with an average return of $1,245,000$. Conservation measures applied during this period resulted in improved escapements, which, coupled with several years of high productivity, led to larger average run sizes in the 1970 s with 1972 and 1973 having record high returns. From 1980-84 the total stock averaged $1,958,000$ with a range from $1,460,000$ to $2,882,000$.

The Fraser River component is estimated separately by making certain assumptions about the contribution to catches in the interception areas based on historical tagging data and adding the estimated catch in these areas to the catch and spawning escapement in the Fraser River. The method details are described in Section 5.4 .1 and the results listed in Table 2. Between 1974-84 the Fraser run size averaged 699,000 with a range from 296,000 (1979) to 1,265,000 (1978). In the 1970s runs exceeding $1,000,000$ were recorded in four years. The Fraser run averaged 634,000 from 1980-84 indicating a decline from the 1970 s average.

The size of the runs and productivity of Inside chum are generally greater in the even numbered years (Table 3). Average run size for even years between 1960 and 1984 was $2,043,000$, about 44% greater than the odd year average of 1,418,000. Returns per spawner averaged 2.0 on even years compared to 1.6 on odd years. The average age composition on a brood year return for Inside chum have been 26% age $3,69 \%$ age 4 , and 5% age 5. Returns from even year spawners typically have a lower proportion of age 3 and a higher proportion of age 4 fish than do returns from odd year spawners.

Enhancement of Inside chum salmon began in 1963 at Qualicum River with flow control and side channel construction. Only minor efforts for producing additional chum salmon were attempted until the advent of the Salmonid Enhancement Program in the late 1970 s when a major expansion was undertaken. Existing facilities now have the capacity to produce about $1,500,000$ adults.

The majority of the enhanced chum is produced by major facilities in the mid-Vancouver Island area and in the Fraser River. Smaller facilities scattered throughout the area also collectively contribute significant numbers. The three large facilities on the eastern shore of Vancouver Island: Puntledge, Big Qualicum and Little Qualicum have a combined escapement capacity of 150,000 . The Puntledge facility is a hatchery while Big Qualicum and Little Qualicum are spawning channel operations. Other smaller facilities are located near Powell River, on the Nanaimo, Chemainus, and Cowichan rivers, along the Sunshine Coast, in Howe Sound and upper Johnstone Strait. Production from each of these facilities is expected to range from a few hundred adults to 40,000 when operating at capacity. In the Fraser River a number of facilities have a combined production capacity of approximately

500,000 adults. Again, the majority of the production is from three major facilities: Chehalis, Chilliwack and Inch hatcheries. Smaller facilities include hatcheries, incubation boxes and spawning channels.

The program for Fraser River chum involves enhancing all major stocks and many of the smaller ones and allowing some of the returning hatchery fish to augment wild spawning. Returns of hatchery fish (some of which are marked with coded wire tags and/or fin clips) will be monitored in selected tributaries to determine if they are mixing and spawning with and among wild fish. If this approach is judged to be successful, harvest rates in the terminal area could be increased to take advantage of surplus hatchery fish while still achieving escaperent targets for most stocks. The hatchery program is flexible enough to allow stocks not currently enhanced to be assisted if they show a declining trend.

In all cases, enhancement of chum salmon is confined to increasing the freshwater survival rates. Chum eggs or fry are not transferred to provide brood for another major area; however, restocking of natural spawning areas within a river by enhanced surpluses does take place.

3.2 West Coast Chum

The West Coast production areas included in this report are Juan de Fuca Strait and Nitinat River and adjacent streams. These two areas will be discussed separately.

Wild chum produced in Statistical Areas 21 and 22 (Nitinat) originate mainly from the Nitinat River with small contributions from Hobiton and Doobah creeks and the Cheewhat and Caycuse rivers. A major hatchery recently started production with the first egg take in 1980. The capacity is about $28,000,000$ eggs which is expected to return up to 500,000 adults. Production from this facility is expected to dominate chum returns to Nitinat in most years in the future.

There is little available information on the timing or migration route of Nitinat chum as they approach the coast in preparation for spawning. It is generally assumed that they make landfall on the north end of Vancouver Island then migrate southward, arriving in the Nitinat area in late September. Peak abundance within Nitinat Lake is from mid-October to mid-November.

Marked annual variations in run size and spawning escapements are characteristic of this and other west coast of Vancouver Island chum stocks. From 1960-34 the total run averaged 133,800 with a range from 4,500 (1979) to $1,555,000$ (1972). The 1980-84 average was 147,300 (Table 4). Because there have been few fishing years since 1960 the spawning escapement of Nitinat chum is usually the same as the terminal run size. The $1960-84$ average was 54,800 with a range from 4,500 (1979) to 264,600 (1972) during this period. The 1980-84 average was 55,200. The escapement target of 125,000 was achieved only three times since 1960.

Rates of return for Nitinat chum averaged $2.32: 1$ with a range from 0.09:1 to $14: 1$ indicating little relationship between spawning escapements and
subsequent returns (Fig. 7). The age composition on a brood year return for Nitinat chum varies markedly from one year to another. Age 3 fish may be dominant in some years while age 4 fish may be more abundant in other years (Table 4).
Chum salmon production from the Canadian portion of the Strait of Juan de Fuca originates from eight streams with the Sooke River and one of its tributaries, Demamiel Creek, being the most important. The other contributors are Gordon, Jordan and San Juan rivers, and Kirby, Muir and Tugwell creeks. During the 1960 s escapements averaged 29,900 and 35,000 during the 1970 s (Table 5). The 1980-84 average was 20,700 indicating a downward trend from earlier years. There is no available information on total run sizes or productivity. These fish are havested incidental to the harvesting of passing stocks in Area 20.

4.0 Fishery Description and Management Regime

Abstract

Southern British Columbia chum salmon fisheries can, by virtue of their geographical location, be conveniently divided into two major components: those operating between Vancouver Island and the mainland and those situated off the west coast of Vancouver Island. Within each major area several individual fisheries occur. They are described separately, starting with the inside fisheries.

4. 1 Inside Chum

4.1.1 Fishing Description

4.1.1.1 General Overview

Chum entering the inside waters of Johnstone and Georgia straits are subjected to commercial net fisheries and limited Indian food fisheries. The commercial fisheries developed during the 1930s, reaching a peak in the 1940s and early 1950s. In the late 1950 s and early 1960 s catches declined sharply due largely to overfishing. Subsequently, restrictive management measures allowed spawning escapements to increase with resultant rebuilding of some stocks. In recent years, overharvesting has again raised concerns over the long term viability of the stocks, resulting in renewed efforts to manage stocks to achieve their full potential. The program recently implemented is described in more detail in a later section.

The main Canadian commercial fishing areas for Inside chum salmon are Johnstone Strait, Area 14 (Qualicum), and the Fraser River (Table 6). Johnstone Strait is a mixed-stock area where all stocks are harvested to some extent. Chum caught in this area are high quality "silver bright" fish that fetch a relatively high price. The largest proportion of the total catch is usually taken in Johnstone Strait. Area 14 is a terminal area for chum destined mainly to the Big Qualicum, Little Qualicum and Puntledge rivers. The majority of these stocks are enhanced. Fish caught in this area early in the season are of relatively high quality; later in the season, the quality deteriorates, resulting in a corresponding decrease in the price paid to fishermen. The Fraser River could also be considered to be a terminal fishing area, although it is still a mixed-stock fishery in that there are numerous individual Fraser stocks present at any given time. Chum caught in the Fraser area are generally dark and of lower value than those caught in Johnstone Strait.

In addition to these major fisheries, minor net fisheries are occasionally permitted in the terminal areas of Jervis Inlet and the Nanaimo and Cowichan rivers, to take local surpluses.

The total catch of fall chum throughout the area by both commercial and Indian food fisheries averaged 650,000 from $1960-84$ with a range of 41,000 (1965) to $2,929,000$ (1973). Of this, commercial fisheries took by far the largest proportion (Table 6), averaging 619,000 (95\%), while the food fishery (Table 7) averaged $32,000(5 \%)$. Since 1960, purse seiners have taken about 61% of the total and gill netters 39%. A minor amount is also taken by the inside troll fishery. Over time the seiners have increased their share while
the gill net catch has declined correspondingly. The majority of the catch is taken by seine in Johnstone Strait (Table 8).

In addition to fall chum there is a relatively small catch of summer chum (averaging 48,000 from 1960-84) taken in Johnstone Strait and Bute Inlet. The catch of summer chum has increased since the 1960s (Table 9).

The harvest rate of Canadian fisheries on inside chum averaged 31% from 1960-84 with a range on individual years from 6% to 65% (Table 10). The highest average harvest rates were experienced in the 1970 s (37\%) although in 1982 it was 51%. In most years since the mid 1970 s harvest rates on even years have exceeded those on odd years (1984 is an exception due to implementation of a new management approach).

4.1.1.2 Conmercial Fishery Catch

4.1.1.2.1 Johnstone Strait

The Johnstone Strait fishing area (Statistical Areas 12 and 13) a narrow 200 km (120 miles) body of water extending approximately from Port Hardy in the north to Campbell River at its southern limit. The chum fishery in this area is very intense as it is here where fish are most abundant and at their best quality and, consequently, where potential profits for fishermen are greatest. Both purse seine and gill net vessels participate in the Johnstone Strait fishery with purse seines being the dominant gear type. The fleet size has grown and now often exceeds 400 purse seines and 500 gill nets during chum fisheries.

Commercial fisheries in Johnstone Strait catch significant numbers of fall chum salmon from early September through October. Until mid September the fisheries are managed for sockeye and pink salmon with chum taken incidentally. From mid September onward, management is directed toward chum salmon. Regardless of abundance there is always a fishery in the third week of September with the catch serving as the first in-season indicator of run strength for the entire season. Thereafter, fisheries are related to chum abundance .

Fall chum catches in Johnstone Strait have fluctuated markedly over time ranging from 14,000 in 1965 to $2,296,000$ in 1973 with average of 458,000 taken from 1960-84 (Table 11). Average catches (705,000) were higher in the 1970s than in the 1960 s $(246,000)$ and the $1980 s(390,000)$ but this was due largely to the big return years of 1972 and 1973.

4.1.1.2.2. Fraser River

The Praser River commercial fishing area (Statistical Area 29) includes the Fraser River up to the town of Mission, approximately 80 kn upstream from the mouth of the river, and, during some fishing periods, also includes a portion of the Strait of Georgia adjacent to the river mouth.

Fishing is restricted to drifted gill nets with more than 500 vessels participating in some openings. Chum caught in the Fraser area are generally dark in colour so fishermen receive a lower price per pound than in Johnstone Strait.

The Fraser was once a major chum fishing area with fishing permitted four or five days per week with catches up to several hundred thousand. Closures for conservation and a trend toward increased harvesting in Johnstone Strait have all but eliminated the Fraser chum fishery. In recent years openings have been linked to those in Johnstone Strait.

The catch from 1960-84 averaged 78,000 with a range from 7,800 (1979) to 256,400 (1972). The 1980-84 average was 35,000 with directed fisheries occurring only in 1980 and 1982 resulting in catches of 75,500 and 63,300 , respectively (Table 11). Although there have been few Fraser River chum openings for many years, fishing opportunities are expected to increase as the runs rebuild and the number of enhanced fish increases.

4.1.1.2.3 Mid-Vancouver Island

The mid-Vancouver Island fishery (Statistical Area 14) extends from just off Campbell River to about Parksville. Both gill nets and purse seines are permitted in this area.

Mid-Vancouver Lsland stocks are dominated by enhanced returns to the Big Qualicum, Little Qualicum and Puntledge rivers. These stocks have generally remained productive, even in years of low overall abundance of Inside chum. Because of conservation requirements for wild stocks these enhanced fish are not fully harvested in Johnstone Strait. Consequently, the surpluses to these facilities are fished terminally in the mid-Vancouver Island area. Although this is the terminal area for these stocks a small proportion of other passing stocks, notably Fraser River, may be present, particularly in the outer portion of the area.

The mid-Vancouver Island terminal fishery is managed on the basis of a combination of a fixed escapement and quota management. Since 1981, the objective has been to achieve maximum quality while minimizing the risk of not achieving the spawning escapement. In years when fishing occurs in Johnstone Strait, the catch of mid-Vancouver Island chum is determined in-season through analysis of coded wire tag data. The difference between the pre-season forecast and the catch of mid-Vancouver Island chum in Johnstone Strait is used to approximate the number of chum expected in the terminal area. In years of no fishing in Johnstone Strait it is assumed that the total run predicted pre-season would be available in the terminal area. The general approach taken in recent years is to harvest $60-65 \%$ of the expected total catch early in the season (during October) prior to the spawning escapement being achieved. This enables quality of the catch to be maximized. After this initial catch is taken further fishing is delayed until the spawning goals are met, after which time, a "cleanup" fishery occurs to take any remaining surplus. Chum taken in this later fishery are in dark condition. In 1984, an attempt was made to limit the fishery to those areas where Fraser chum comprise less than 10% of the anticipated catch.

The mid-Vancouver Island fishery took relatively few chum until 1972 when enhanced fish from the Big Qualicum River facility provided a catch of 134, 000. Since then the catch has ranged from zero (1977) to 197,000 (1982). The average catch in Area 14 during the period $1960-84$ was 49,000 while from 1980-84 an average of 124,000 were taken (Table 11).

4.1.1.2.4 Strait of Georgia

In the Strait of Georgia (excluding Statistical Area 14) there have been sizeable fisheries in some years with catches in the 1950s of up to 200-300,000. Restrictive management measures, including closures, reduced the catches in later years. With the return of enhanced chum, terminal fisheries have been permitted in selected areas recently when stock size warrants them.

From 1960-84 the catch in areas $15-19$ combined averaged 34,000 with a range from zero (1983, 1984) to 225,000 (1973). The 1980-84 average was 8,700. Since 1980, chum fisheries in these areas occurred only in 1982, resulting in a catch of 41,000 (Table 11).

4.1.1.3 Indian Food Fishery

Native Indians are issued permits to catch sufficient salmon to meet their "reasonable food fish needs". Fish caught under the food fish permits are not allowed to be sold. The largest catch is usually taken in the Fraser River with smaller numbers caught in several locations throughout the Strait of Georgia and in some rivers.

Overall the Indian food fish catch in the inside area averaged 32,000 from 1960-85 with a range from 15,000 (1965) to 58,000 (1984) (Table 7).

In the Johnstone Strait area, permits are issued authorizing natives to take a specified catch of salmon for food fish requirements. The catch of chum in this area averaged 9, 700 from $1960-85$ and 15,000 from 1980-85.

Elsewhere in the Strait of Georgia and associated streams chum are taken in a variety of small fisheries, mainly by set gill nets. The average catch in areas $14-19$ was 12,000 from $1960-85$ and 21,000 fron $1980-85$. A peak catch of 27,000 was taken in 1974.

Within the lower Fraser River, where chum are available to the Indian Food Fishery, the majority are taken with set gill nets except in the Steveston area at the river mouth where drifted gill nets are used. Chum comprise a relatively small proportion of the total salmon catch in the Indian food fishery. From 1960-85 the catch averaged 10,000 with a range from 4,000 (1971) to 19,000 (1984). The $1980-85$ average was 13,000 .

4.1.2 Management Regime

The stated objective has been, for many years, to manage salmon stocks to achieve optimum escapement. During the 1960 s a number of programs were initiated to collect the information which would form the biological basis for management of Inside chum. These programs included tagging to determine migration patterns and rates as well as stock composition and test fisheries to assess stock abundance. At the same time a rebuilding strategy was adopted which involved curtailment of most fisheries. The general approach was to harvest only when surpluses above the overall escapement goal for Inside chum could be identified. While the intention was sound, before many years had passed, it became evident that management of Inside chum suffered from lack of a real commitment to ensure that the stocks were managed to achieve their full potential. Fisheries were frequently opened without regard to their effects on spawning escapement. As a consequence, the stocks were overfished in many years.

Repeated failure to achieve management objectives and dissatisfaction with the communicative process between industry representatives and DFO precipitated a number of joint workshops and meetings between 1982 and 1984 which led to development of a new approach for managing Inside chum. The so-called "Clockwork Approach", which was first implemented in 1984, is a system whereby specific management objectives and criteria on which management decisions are based are agreed to in advance of the fishing season by both Department of Fisheries and Oceans (DFO) and the industry advisors. As the season unfolds all management decisions should be made in accordance with the pre-arranged plan with catches and escapements predicted with reasonable accuracy.

During development of the Clockwork Approach management objectives were clarified and a strategy for achieving them developed. The most important objective was to achieve a wild spawning escapement of 2.5 million chum to all areas combined including 700,000 to the Fraser River. It was recognized that attempting to achieve this escapement target quickly would result in considerable financial hardship to fishermen. Consequently, a three cycle (or 12-15 year) rebuilding program, which would allow some commercial fishing in years when it was known that escapement would be less than optimum, was agreed upon. The management strategy involved a stepwise increase in harvest rates to a maximum of 40% as the run size estimated in Johnstone Strait increased. For the years 1984 through 1986 a total escapement goal of 1.8 million wild chum was established with a minimum escapement of 500,000 wild chum in the Fraser River. Allowable harvest rates related to specific run size ranges were established with no directed comnercial chum fishing (other than during the third week in September in Johnstone Strait) permitted for runs less than
2.6 million. The specific run sizes and associated harvest rates are as follows:
Total Run Allowable Harvest Rate
$0-2,500,000$$10 \%$ *
$2.6-3,200,000$ 20\%
$3.3-4,800,000$ 30%
4.9 and higher 40\%

* At the lowest run sizes Indian food and test fishing continues and an evaluation fishery in Johnstone Strait in the third week in September takes place. Total harvest rate is roughly estimated at 10% on average.

The first in-season estimate run size is based on the third week of September evaluation fishery. Subsequent run size estimates are derived from test fishing and on commercial catch data in Johnstone Strait.

Catches taken into account in determining the harvest rate include these from commercial fisheries in Johnstone Strait, Fraser River and U.S. Areas 7 and 7 A , incidental commercial catches of passing stocks in Area 14 and catches of chum in all inside Indian food and test fisheries.

The agreed upon rules state that Johnstone Strait chum fisheries will be a minimum of 24 hours duration and that they will include both Areas 1.2 and 13 without ribbon boundaries. Directed chum fisheries in the Fraser River are contingent on fisheries also being held in Johnstone Strait. If one opening
is allowed in Johnstone Strait then one will be allowed in the Fraser River. In seasons where more than one opening is allowed in Johnstone Strait only one opening will take place in the Fraser for every two in Johnstone Strait. Fraser River chum openings are permitted only after October 15 to protect wild coho, chinook and steelhead and are a minimum of 12 hours duration in subareas 29-11 to 29-17 (within the river) only, to minimize the capture of non-Fraser chum.

Samples are taken weekly from the Johnstone Strait test fishery for electrophoretic analysis but the analyses are not completed until after the fishing season. The results assist in run reconstruction. Samples taken from specific locations in Area 14 prior to the commercial openings in that area are analyzed within two days to determine the Fraser River proportion. Subareas are opened to fishing only if Fraser River chum comprise less than 10% of the total.

4.2 West Coast Chum

4.2.1 Fishery Description

4.2.1.1 Nitinat Lake

Chum fisheries at Nitinat (Statistical Areas 21 and 22) prior to 1984 were conducted within Nitinat Lake where the fish congregated primarily at the Nitinat River prior to spawning in tributary streams. Fisheries took place on a more or less regular basis until the late 1950s, with substantial catches in some years (217,000 in 1954, for example). Both gill net and purse seine
vessels participated. The fishery was closed in 1959 and from 1961 through 1971 due to apparently poor returns (Table 12). It was reopened in 1972 when exceptionally large numbers of chum returned to this area, resulting in a catch of $1,290,500$. Fisheries were conducted in 1973 with a catch of 175,000 and in 1980 when 274,000 chum were caught. The next fishery occurred in 1984 when the first returns to the Nitinat hatchery were anticipated and 187,000 chum were taken. To improve fleet safety and fish quality, the 1984 fishery was conducted at the entrance to the lake while the chum were still in the ocean.

In the future it is likely that fisheries will continue to be conducted outside of the lake to increase product quality and improve safety to fishermen. Recent silting of the bar at the entrance to the lake, has made entry, in all except flat calm weather and high tides, a dangerous undertaking. It is particularly hazardous when boats heavily laden with fish try to leave the lake during rough weather. Lack of unloading facilities within the lake necessitates transport of fish to processing plants by sea.

4.2.1.2 Strait of Juan de Fuca

The fishery in the Strait of Juan de Puca (Statistical Area 20) encompasses the area between Sooke and Port San Juan. The major fisheries in the area are directed towards sockeye and pink salmon which were managed by the International Pacific Sa1mon Fisheries Commission (IPSFC). Until the late 1970s, the Strait of Juan de Fuca was opened by DFO after IPSFC relinquished control in early September until fishing effort dropped off to nothing due to poor catches and deteriorating weather. Fisheries in September were directed
primarily at coho while those in October targetted on chum. As there are few chum spawning in local streams, the majority of those caught were probably destined to the Strait of Georgia, Fraser River or Puget Sound. By agreement with the United States, the area did not open after IPSFC control in 1983 and 1984.

The catch was relatively small compared to most other areas although there were occasional years when substantial numbers were taken. From 1960-84 the catch ranged from 83 (1983) to 202,000 (1972). However, the average total catches were 22,000 for $1960-69,74,000$ for $1970-79$, and 17,000 for $1980-84$ (Table 13).

4.2.1.3 West Coast Troll

Until the 1969 s , troll catches of chum of the West Coast of British Columbia were minor with a maximum of 2,300 taken in 1969 and on a yearly average of 1,000 or less (Table 14). Greater effort directed at chum resulted in higher catches with the average increasing to 9,000 in the 1970 s and to 21,000 for 1980-84. The largest annual catch occurred in 1982 when 63,000 were taken. The majority of the catch is taken off northwestern Vancouver Island, particularly off Area 27 (Quatsino). The peak catch usually occurs during the latter half of July (Table 15). Chum caught in the troll fishery are a mixture of stocks originating throughout the coast. Stock identification analyses are underway in an attempt to more carefully define the composition of the catches.

4.2.2 Management Regime

The management regime for Nitinat (Statistical Areas 21 and 22) is one of harvesting returns surplus to a fixed escapement requirement for all stocks in aggregate. For years prior to 1985, "surpluses" were identified in only four years since 1960. During these infrequent years fishing was permitted on a "clean-up" basis. In two of the four years escapement targets were not obtained.

Catches in Juan de Fuca Strait (Statistical Area 20) are of a mixed stock origin. Catch levels and levels of escapement to the area, although important, are minor in comparison to other fishery and stock areas. As such this area and its stocks have not been actively managed for chum salmon. Starting in 1981, excepting 1982 during which an early September fishery occurred for coho, this area has not been fished following IPSFC de-control.

Catches in the West Coast Troll Fishery (Statistical Area 121-127) have occurred at incidental levels to the other troll caught species. Catches of chum are considered to be of mixed stock origin. As such, this fishery has not been actively managed for chum salmon.

5.0 STOCK ASSESSMENT TECHNIQUES

5.1 Pre-season Forecasts

5.1.1 Inside Chum

Preseason forecasts of chum salmon returns to the inside waters of southern British Columbia have been developed annually since the early 1960s. Annual forecasts are comprised of predictions for each age class which are added to provide a total return forecast. In past years, the magnitude of the age 4 return, the dominant age class, was forecasted on the basis of a correlation between the returns of age 3 chum in one year and the return of age 4 chum the following year (Anon., 1963). Age 3 returns were forecast using brood year escapements, assumed returns per spawner rates and average age composition. Age 5 returns averaged 5 percent of the production from a brood year so knowing the number of age 3 and age 4 chum that have returned from a given brood year the forecasted age 5 component was computed.

Commencing with the 1974 forecast, a correlation between rates of return for pink and chum salmon of the same brood year was taken into account to improve the accuracy of forecasts (Anderson and Bailey, 1973). The rates of return for pink and chum salmon tend to fluctuate in unison thereby enabling the return rate for chum to be estimated from the return rate for pinks which mature at age 2.

A comparison of predicted and actual returns from 1969 to 1984 is shown in Table 16. The average annual error (regardless of direction) over the
period of record was 569,000 or 29 percent on an average return of $2,052,000$. The forecasts were low in eight years and high in seven. While there are marked fluctuations in forecast accuracy there has been a tendency to improved accuracy in recent years with a 16.2 percent average annual error from 1980 to 1984.

Forecasts of Praser River chum returns have been made in the past by applying the ratio of Fraser to non-Fraser brood year escapements to the projected total returns for each age class as described above. From 1974 to 1984 the average annual error (regardless of direction) using this method was 151,000 or 22 percent on an average run size of 699,000 (Table 2).

Separate forecasts for returns to the major enhancement facilities are made by applying expected survival rates to the fry output for each brood year. Until recently, the only facility where this was done was Big Qualicum which commenced operation in the 1960 s . The past couple of years, with the first expected returns to a number of enhancement facilities, forecasts for enhanced returns of these stocks have been developed as well. These forecasts of enhanced chum are added to those for wild Fraser and non-Fraser chum to obtain the total forecast for "Inside" chum.

5.1.2 West Coast Chum

No particular stock identifications have been made for Areas 21 and 22 . For the time period under consideration (1951-84) these fish were fished, when fished, in Nitinat Lake except in 1984. Such a terminal fishery did not require monitoring for passing stocks. In 1984, these stocks were fished in

Area 21 , outside Nitinat Lake. To check on interceptions of passing stock, electrophoretic samples for stock identification were taken in 1984. The results of this sampling are to be reviewed as a separate report by the Chum Technical Committee.

Until recently, with the advent of hatchery stocks, Nitinat stock forecasts were done using brood year strength moderated by "environmental factors" such as flooding. A strong brood year was a predictor of strong returns. This technique requires that rates of return be constant (or at least known before the fishing occurs). Table 3 and Figure 7 show that this is not the case and that productivities have varied between $0.09: 1$ and 13.99:1. This wide range of productivity makes it impossible to predict return on the basis of brood year strength.

5.2 In-season Stock Assessment

5.2.1 Inside Chum

The abundance of chum salmon during the fishing season has been estimated primarily by means of test fisheries or through comparative catch per unit of effort data from commercial fisheries. As the majority of Inside chum are considered to migrate through Johnstone Strait it is here where the first estimates of the total run size are made. Test fisheries in the Fraser River are used to determine the strength of the chum run into that major system. Estimates of total abundance in the Qualicum area and occasionally off other river systems are usually based on a combination of comparative catch data, visual surveys and sporadic test fishing.

The fisheries during the first three weeks of September are traditionally directed at sockeye and pink salmon with chum taken incidentally. The first indication of total run strength through Johnstone Strait is derived from comparative commercial catch data during the first three weeks of September. Catches during the third week showing a strong correlation, (R square $=0.69$), with the total chum run for the season (Table 17; Fig。8). The chum stock size prediction has proved to be so useful that a commercial fishery for chum assessment purposes is now conducted annually during the third week in September. Based on this prediction the fishing pattern for the season is established in accordance with the management plan described elsewhere in this report.

In addition to this early September commercial catch, test fisheries operate in Johnstone Strait during September through to October to provide updates on run strength which in turn enable fishing patterns to be adjusted. A detailed description is given in Gould and Hop Wo (1986). There are two test fishery locations, both of which utilize commercial purse seine vessels under charter. The first test fishery, located in Area 12 , has operated annually since 1965 and involves making approximately 6 sets per day, 3 to 5 days per week. A weekly index of abundance is derived by averaging the chum catch in all sets made during a given week (Table 18). This average catch can then be correlated with total run size. Figure 9 summarizes an example of the average catch cumulative for the fourth week of September and the first week of October (R square $=0.83$).

The magnitude of the Praser River run through Johnstone Strait has been estimated in-season by assuming Fraser to non-Fraser proportions remain the
same as in the pre-season forecast and that the Fraser run simply fluctuates in relation to the total run.

There are two test fisheries in the Fraser River involving commercial gill net boats under charter which operate from approximately October 1 until late December (Farwe11, 1985). One test fishery, established in 1963, is located at Cottonwood Drift approximately 9 km from the mouth of the Fraser. The second test fishery, which first went into operation in 1979 , is situated near the village of Albion, another 50 km upstream from Cottonwood Drift.

During the period of operation both vessels fish daily making two 30-minute sets per day. The number of chum caught is converted to an index of abundance (catch per thousand fathom minutes) which is related to total abundance escaping to the river (Fig. 10). These test fisheries are used to predict spawning escapement during the season. The test fishery has a predictive value (Fig. 11).

The application of electrophoresis as a technique for determining the proportional contribution of major chum stocks in areas where they are intermingled has proved useful in-season in a couple of areas. The principal use as an in-season management tool has been in determining the proportion of Fraser-bound chum in the outer portions of Area 14 to assist in establishing the placement of fishing boundaries. Since 1982, chum have been sampled from Johnstone Strait and occasionally analysed in-season to provide estimates of the proportions of Fraser, Canadian non-Fraser and U.S. chum. The results of this sampling are to be reviewed and published as a separate report by the Chum Technical Committee.

5.2.2 West Coast Chum

Decisions on whether or not to open fisheries were based on results from visual observations, commercial catches, Indian Food Fisheries or test fisheries. The visual observations were made from the water or from aircraft. Their value depended on the experience of the observer and on the climatic conditions at the time of the observations. The Indian Food Fishery was not suitable for determining early estimates of stock strength because their fishery occurred at river mouths. The early test fisheries were limited and lack of background data, such as age composition, reduced their effectiveness.

When the chum fisheries resumed during the late 1960 s, the catches during the first and second week of September were used sometimes as an indicator of stock strength. This method was useful when the fishing effort remained low, but lost its value in recent years due to increased fleet size, mobility, and efficiency.

During the 1970 s, the fisheries occurred sporadically and extreme fluctuations in stock strength made management of the west coast chum fishery difficult. In 1977, a test fishery program was implemented to gather reliable age data from which estimates of returns from individual brood years would be made .

With the increase in chum releases from the Nitinat Hatchery in recent years, and a subsequent expected increase in numbers of returning adults, an improved in-season stock assessment was required. An expanded test fishery was initiated in 1984 in Area 21 just offshore from the entrance to the lake.

5.3 Escapement Assessment

5.3.1 Inside Chum

With few exceptions chum salmon are enumerated through visual estimates, either by foot or by air, by Fishery Officers assigned to specific geographical locations. An exception is the Big Qualicum River facility where chum salmon escapements are enumerated passing a weir. The number of times each stream is surveyed during a season varies, but usually larger systems are surveyed several times while some small streams may be observed only once.

Although there is no standard method for deriving escapement estimates the usual approach involves counting live fish and carcasses then relating these counts to estimates of spawning turnover rate, body condition, timing of observations and perhaps other factors to estimate the magnitude of the total spawning population. The counts are affected markedly by water clarity and weather conditions as well as the timing of the surveys. Lack of standardized approaches sometimes results in estimates being affected by staff changes, although officers who have remained in one area for a number of years generally maintain consistency within their own areas. The methods in use are not well documented and in recognition of this deficiency use of a new standardised form is being initiated to capture additional information from each survey. The information on these in-season forms will then be used to derive the final spawning population estimates as well as other information such as date of first arrival on the spawning grounds and the start, peak and end of spawning.

Within the Fraser River system there have been some significant exceptions to the visual approach for estimating spawning escapements. From 1960 to 1969 and during several years in the 1970 s, spawning populations in the major tributaries of the Fraser River were estimated through tag and recapture programmes (Palmer, 1972). During the 1960 s programme, tagging of chum in the mainstem of the Fraser River upstream of Mission with subsequent recapture in the tributaries provided an estimate of the total population of Fraser estimate indicated the presence of a substantial, previously undocumented, mainstem spawning population.

During the 1960 s, the mainstem populations estimate was derived by subtracting the combined tributary estimate from the total Fraser River estimate. During the 1970s, an expansion factor was applied to the visual estimates for several major tributary populations based on a relationship between visual and tagging estimates determined previously. The mainstem population was derived by subtracting the tributary total from the Fraser total as estimated by test fishing. Since 1980, tributary escapements have been determined by visual estimates and the mainstem population has been assigned a fixed proportion (14\%) of the total Fraser River escapement.

5.3.2 West Coast Chum

Escapement assessments for the west coast of Vancouver Island chum stocks are done using visual estimation techniques. The variations in the technique and other associated problems are similar to those discussed previously in Section 5.3.1.

5. 4 Run Reconstruction

5.4.1 Inside Chum

The total run size of chum returning to the inside waters of southern British Columbia is determined by summing: the spawning escapements to all areas; all Canadian commercial, Indian food, and test fishery catches in the area from upper Johnstone Strait to the Fraser River and southern Vancouver Island. Catches in U.S. Areas 7 (San Juan Islands) and 7A (Point Roberts) are not included. Likewise, U.S. chum caught in Canadian fisheries have not been subtracted from the total. The run reconstruction methods are currently under review with the intention of implementing improvements to permit new information to be used in run reconstruction of each of the major stocks. Currently Fraser River and Big Qualicum are the only individual stocks for which total return estimates are made.

To determine the magnitude of the Fraser River chum run the spawning escapement estimates are added to total catches in the Fraser River and to the proportion of the catch in Johnstone Strait and in U.S. Areas 7 and 7A that is assumed to be of Fraser River origin. Palmer (1972) described a method for estimating the catch of Fraser River chum in Johnstone Strait. The method has been used with some modifications in recent years. For the purposes of run reconstruction the percentage of the catches in U.S. Areas 7 and 7A that are assumed to be of Fraser River origin are 56% and 95%, respectively. As information from electrophoresis becomes available more reliable estimates of major stock contribution to the major fisheries will be possible with consequent improvements in the accuracy of run reconstructions.

5.4.2 West Coast Chum

Prior to 1984 , the majority of the fishing occurred within the lake so the run recontruction was simply a method of adding Area 22 escapement to Area 22 catch. In 1980 and 1984, fisheries also occurred in Area 21 and these catch statistics were then added to the Area 22 escapement.

5.5 Estimates of Production Capacity

5.5.1 Inside Chum

The first reported attempt to develop spawning goals for chum salmon in the inside area was in 1962 (Anon., 1962). As an interim measure the highest recorded escapements to individual streams during the period 1949 to 1961 were added together to provide a total escapement target of $2,375,000$ for the entire area. Since that time there have been modifications to the targets for individual sub-areas although the current total of $2,500,000$ for all Inside chum is not substantially different from the original 1962 target. The rationale for these modifications has generally not been well documented. Most estimates are based on the professional judgement of people familiar with the spawning areas.

For the Fraser River, Palmer (1972) reviewed the available spawning areas and suggested an escapement target of 510,000 . This has subsequently been modified to 700,000. In the course of his review of Canada's Pacific fisheries, Pearse (1982), on the basis of stock recruitment analysis, concluded that greater chum escapements, particularly in the Fraser River,

Abstract

would lead to larger catches. He suggested an escapement goal of $1,000,000$ chum spawners for the Fraser but with a wide range of 600,000 to 3,000,000. The large uncertainty is a reflection of the relatively narrow range of observed spawners with only one year when escapements were in excess of 600,000. Returns from the record escapement of nearly 900,000 in 1985 should help to establish a realistic escapement goal for the Fraser River in the future.

5.5.2 West Coast Chum

Origin of the spawning goal for Witinat has not been documented, but is considered to be an estimate based on the amount of habitat available in the system. This estimate, as in other areas, is likely based on the professional judgement of people familiar with this area.

6.0 MANAGEMENT PROCESS

6.1 Inside Chum

In general, the management of Inside chum stocks is done on an aggregate basis in the mixed-stock interception area of Johnstone Strait. Further management is done once the stocks have moved into the terminal areas. Inadequacies in separating individual chum stocks and defining their harvest requirements complicates this aggregated approach. The management approach, until 1983, was to harvest all chum salmon above a stipulated combined escapement target. This procedure did not recognize productivity differences between stocks and often resulted in over or under-harvesting certain stocks. In 1984, the Inside chum fishery has operated on a variable harvest rate schedule which is dependent on the returning stock size.

The rationale for the management change from harvesting above the escapement goal to the variable harvest rate strategy was proposed because the escapement goal approach was not rehabilitating wild chum. Theoretically, either strategy would permit rehabilitation; however, poorly enforced escapement goals, lobbying by various gear, and area sectors of the industry, and loosely defined management objectives, had combined to maintain low levels of chum production under the escapement goal approach.

The Department of Fisheries and Oceans working with the South Coast Advisory Committee (SCAC) spent two years developing several options for a rebuilding program for fall chum. During the discussions leading to the development of the current approach, several options were discussed and
evaluated using deterministic and stochastic model analyses. The variable harvest rate strategy was the endorsed option. A detailed description is given in Hop Wo, Gould, and Farwell (1987) and in Hilborn and Luedke (in press, 1987). Implementation of the present strategy is described below.

The chum run returning through Johnstone Strait is managed through a predetermined management plan known as the "clockwork". This clockwork began operation in 1984. The clockwork required fishermen, processors, and managers to carefully decide on a set of rules to manage the fishery by, before the season began. Then as the stocks arrive on the fishing grounds, the rules dictate how and when management decisions will be made. The clockwork is an agreement amongst all user groups that includes the following elements:

1. a clear set of objectives, most importantly the escapement goal;
2. a program of data collection that will provide information necessary for in-season measurement of stock abundance and composition;
3. an accurate, reliable set of methods to estimate stock size and stock composition; and
4. a set of rules stating how the objectives will be achieved and how estimates of run size will be used to determine openings.

The objectives of the clockwork included the following:

1. define the escapement goal as $2,500,000$ wild chum;
2. reach the escapement goal within three cycles (12-15 years);
3. stabilize the catch;
4. learn as much as possible about stock productivity; and
5. allow limited fishing at low stock size.

The first and most important objective is the escapement goal. A minimum escapement of $1,800,000$ wild chum was accepted. Additionally, to provide for

Canadian enhanced and U.S. origin chum migrating through Johnstone Strait, 700,000 and 100,000 chum, respectively, were accepted and included so that the total run entering Johnstone Strait must reach 2.6 million before fishing is allowed. Various stock size ranges and their associated harvest rates are described in Table 19.

The clockwork starts at the beginning of September with a pre-season forecast which gives a general idea of what may happen during the coming season. Pink or sockeye fisheries are usually held during the first three weeks of September. At the end of the third week of September, incidental chum catches during these fisheries are used to calculate the first in-season estimate of stock size. This estimate is applied to the rules outlining the harvest strategy to determine the allowable catch and the probable number of openings.

In addition to the commercial catches, a test fishing program operating during September and October provides information used to estimate stock size after the first week of October. A revised stock size estimate is determined each week from this information (see Section 5.2.1).

The clockwork was fixed for three years (1984 to 1986) after which time amendments and revisions, based on three years of experience, could be made. The review of the clockwork will take place in 1986 so that a revised management process can be in place for the 1987 season.

The Fraser River chum run has been heavily harvested in Johnstone Strait and in U.S. waters (Palmer, 1972; Anderson and Beecham, 1983). Commercial
chum harvesting in the Fraser River area has, in recent years, been dictated by the amount of fishing in other areas. Typically, if the Fraser River stocks were significantly harvested in Johnstone Strait and in U.S. waters, then the Fraser River area also partook in the harvest of the returning chum.

In 1984 to 1986 , with the clockwork management process in place, the harvest of Fraser chum was tied to the overall harvest place, and sharing of the total allowable catch was accomplished under the auspices of the clockwork system and the associated Advisory Group. However, the clockwork did not fully address local management issues. Therefore, there exists a Fraser River Advisory Group which has been participating in the development of a Fraser River management process. This local process will determine the harvest strategy and rules for terminal Fraser harvests. Prior to 1985, this process was still under development.

Mid-Vancouver Island stocks are dominated by enhanced returns to the Big Qualicum, Little Qualicum and Puntledge Rivers. These enhanced stocks have, in years of low overall abundance, remained productive. Because of conservation requirements for other stocks these enhanced fish are not fully harvested in Johnstone Strait. As a consequence, the surpluses to these facilities are fished terminally off the mid-Vancouver Island area (Area 14). Although this is the terminal area for these stocks, it does contain other passing stocks, notably the Fraser River stocks.

The mid-Vancouver Island terminal fishery is managed on the basis of a fixed escapement. The expected total returning stock is determined from pre-season estimates and then reduced by the estimated magnitude of the

Abstract

catches in Johnstone Strait. When fishing takes place in Johnstone Strait, the catch of mid-Vancouver Island enhanced chum is determined using coded wire tag data. The difference between the pre-season estimate of total stock and the catch in Johnstone Strait is expected to arrive off the mid-Vancouver Island terminal area. If there is no Johnstone Strait harvest than the full pre-season estimate of mid-Vancouver Island stocks is expected to arrive terminally.

In order to account for errors in stock size prediction only $60-65 \%$ of the expected total catch is harvested before the escapement requirement is met. This harvest takes place on bright chum whereas the remaining $35-40 \%$ are taken in dark condition just prior to spawning.

6.2 West Coast Chum

Of the three "Outside" fisheries and stocks of interest for the purpose of this report only the Nitinat stock and fishery is actively managed.

The management of the Nitinat (Statistical Areas 21 and 22) stocks have been done within the terminal area of Nitinat Lake. Given the variability in wild stock production and the infrequent fisheries, a specific management process had not been developed.

In 1984 a management process was initiated to account for newly enhanced production and to incorporate improved fleet safety, improved catch quality, and attainment of information for the development of an identifiable management process.

7.0 REFERENCES

Anderson, A. D. and 'T. D. Beacham. 1983. The migration and exploitation of chum salmon stocks of the Johnstone Strait - Fraser River Study Area, 1962 - 1970. Can. Tech. Rep. Fish. Aquat. Sci. 1166: 125 p.

Anderson, A. D. and D. B. Bailey. 1973. The 1972 return of even-year pink salmon stocks to the Johnstone Strait - Fraser River Study area, and prospects for 1974. Can. Tech. Rep. Pac/T-74-14: 11 p.

Anon. 1962. Annual report to the Salmon Management Committee on the 1961 Johnstone Strait pink and chum salmon fishery and on the prospectus for 1962. Dept. of Fish. Unpubl. MS: 27 p.

Anon. 1963. Annual report to the Salmon Management Committee on the status of the chum salmon stocks of Johnstone Strait study area and on the prospectus for 1963. Dept. of Fish., Vancouver: 31 p.

Farwell, M. S. 1985. The chum salmon test fishery in the Fraser River: Catch and effort summary, 1963 and 1965 to 1984. Can. Data Rep. Fish. Aquat. Sci. 529: 323 p.

Gould, A. P. and L. Hop Wo. 1986. Johnstone Strait chum test fishing data for 1965-1984. Can. Data Rep. Fish. Aquat. Sci. 533: 108 p.

Hilborn, R. and W. Luedke. 1987. Rationalizing the irrational: A view of user group participation in chum salmon management. Can. J. Fish. Aquat. Sci. (in press).

Hop Wo, L., A. P. Gould, and M. Farwe11. 1987. A review of the 1985 chum salmon in the Johnstone Strait - Fraser River study area. Can. Tech. Rep. Fish. Aquat. Sci. 1524: 54 p.

Palmer, R. N. 1972. Fraser River chum salmon. Dept. Env. Fish. Serv., Pac. Reg., Tech. Rep. 1972-1: 284 p.

Pearse, P. H. 1982. Turning the tide. A new policy for Canada's Pacific fisheries. The Commission on Pacific Fisheries Policy. Final Rep., Vancouver: 292 p.

Figure 1. Location map of the Johnstone Strait - Fraser River Chum salmon study area.

Figure 2. Statistical areas of catch for southern British Columbia waters.

Johnstone Strait
Nimpkish
Loughborough To Bute
Heydon
Middle Vanc. Island
Puntledge
Big Qualicum
Little Qualicum
Toba Inlet
Jervis Inlet
Saltery
Deserted
Lower Vanc. Island
Nanaimo
Southern Vanc. Island
Cowichan
Howe Sound
Cheakamus
Squamish
Fraser River
Stave
Harrison
Squakum
Chehalis
Vedder
Mainstem Fraser
Washington State

Figure 3. Timing of Chum salmon entering upper Johnstone Strait (* indicates week of peak entrance).

COTTONWOOD TEST FISHING CPUE

Figure 4. Timing of Chum salmon entering the Fraser River.

Annual Escapement and Total Stock

Figure 5. Spawning escapements of Inside Chum and total stock.

Figure 6. Annual Chum salmon escapements for each Johnstone Strait - Fraser River sub area.

JERVIS INLET CHUM ESCAPEMENTS

LOWER VANCOUVER ISLAND CHUM ESCAPEMENTS

SOUTH VANCOUVER ISLAND CHUM ESCAPEMENTS

BURRARD INLET CHUM ESCAPEMENTS

Figure 6. Cont'd.

FRASER RIVER CHUM ESCAPEMENTS

Figure 6. Cont'd.

AREA 22

Figure 7. Escapements and subsequent returns of Chum salmon to Nitinat Lake, 1968-1978.

Total Stock vs. Area 12 Seine

Figure 8. Correlation between Area 12 commercial seine catch for the third week of September and total stock size.

TEST CATCH VS. STOCK SIZE JOHNSTONE STRAIT (r square $=0.83$)

Figure 9. Correlation between Area 12 test fishing catches, cummulative for the fourth week of September and the first week of October, and total stock size.

Fraser River Chum Test Fishery

Figure 10. Correlation between test fishery CPUE for the season and Chum run to the Fraser River.

Figure 11. Predicted variance of the test fishery used to predict spawning escapement to the Fraser River during the season.

Table l. Total study area fall Chum salmon escapements in thousands of fish by sub area, 1960-1984.

SILIRAREA STDCK	CURRENT CAFACITY	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973
UFFER VANCOLIVER IS.	32.9	13.7	17.5	5.7	2.0	14.3	9.8	3.7	1.9	16.0	5.1	4.4	0.6	4.7	2.2
KINGCDME INLET	113.5	24.0	38.4	22.8	25.0	19.1	8.8	14.3	21.7	21.7	8.7	24.5	6.4	52.3	88.6
BOND TD KNIGHT INLET	220.0	43.0	107.8	108.9	94.0	150.9	5.0	28.1	86.3	70.7	70.8	89.6	10.2	115.7	178.3
JOHNSTONE STRAIT	137.0	40.4	42.4	22.7	19.9	20.2	17.2	45.5	21.8	60.2	11.2	24.1	9.4	32.9	35.9
LDUGHbordugh to bute	150.0	11.2	22.9	23.3	30.6	56.4	7.8	26.7	36.4	91.3	30.6	118.4	24.6	210.0	122.0
mid vancouver 15.	299.0	165.3	80.3	116.9	157.7	134.4	40.3	147.2	119.5	338.3	233.6	300.6	166.0	248.2	322.9
TOBA JNLET	136.0	20.5	14.3	11.9	11.3	17.1	17.0	22.0	18.9	78.6	20.0	10.2	23.6	50.8	11.4
JERVIS INLET	149.8	103. B	68.8	46.3	41.2	47.5	18.3	36.0	17.3	101.4	104.B	67.2	42.2	95.7	93.3
LONER VANEOUNE 15.	147.4	10.5	13.7	19.5	13.9	28.8	22.8	93.9	29.0	46.2	48.0	56.4	32.5	104.4	66.4
SOUTHEEN VAN. IS.	238.5	22.3	53.6	102.0	45.6	47.7	58.8	127.3	98.3	126.2	95.5	51.3	26.5	125.6	115.0
HDWE 5D. TD SUNSHINE	350.0	26.4	21.1	50.6	41.7	34.2	10.3	23.7	43.1	110.4	54.8	117.0	38.4	327.9	241.1
BURRARD INLET	50.0	4.1	2.6	3.6	3.2	5.1	3.6	3.6	3.6	15.3	15.2	15.1	7.6	36.9	36.2
FFASER RIVER	700.0	263.7	172.7	180.2	214.2	325.4	184.8	429.7	213.9	822.2	390.1	287.3	290.2	423.3	267.1
BGINDARY BAY	5.0	0.1	0.1	0.0	0.0	0.1	0.0	0.1	0.0	0.0	0.0	0.2	0.2	0.4	0.2

SUBAREA STOCK	1974	1975	1976	1977	1978	1979	1980	1981	1982	1983	1984	80-84	70-79	60-69	60-84
UPFER VANEDUVER 15.	1.7	0.2	0.1	0.1	0.2	0.0	0.0	0.0	0.0	0.3	0.4	0.1	1.4	9.0	4.4
KINGCOME INLET	63.8	18.6	66.0	31.1	38.8	2.7	14.1	11.6	14.5	8.0	6.4	10.9	39.3	20.5	22.9
BOND TD KNIGHT INLET	63.3	19.1	87.6	15.8	26.5	50.3	34.6	9.7	69.9	32.4	50.3	39.4	65.6	76.5	59.7
JOHNSTONE STRAIT	9.5	11.6	11.4	16.1	20.7	8.5	17.5	16.6	55.1	9.5	45.8	28.9	18.0	30.1	24.9
LOUGHELRIUGH TO BlJte	68.5	26.2	24.4	113.9	187.7	47.3	159.8	149.3	234.3	103.1	125.1	154.3	94.3	33.7	77.0
MID UANCDUVER IS.	234.8	182.6	167.6	203.6	302.7	207.3	203.1	230.8	269.7	281.8	221.8	241.4	233.6	153.4	197.3
TIBA INLET	27.2	18.2	12.5	17.5	8.1	3.9	6.3	17.7	15.0	17.7	18.9	15.1	18.3	23.2	18.4
JERVIS INLET	108.5	51.9	25.3	114.5	77.3	61.5	98.5	92.3	48.6	73.2	150.1	92.5	73.7	58.5	70.6
LDMER VANCOUNER IS.	50.8	19.8	18.7	74.2	66.4	48.0	60.6	48.9	56.7	72.9	86.7	65.2	53.8	32.6	44.8
SOUTHERN VAN. IS.	109.5	61.4	50.9	108.5	204.5	51.3	157.0	130.7	172.6	115.5	138.0	142.8	90.5	77.7	96.7
HDWE SD. TD SUINSHINE	146.2	55.6	114.6	124.1	115.5	29.7	231.7	130.2	133.8	B6. 5	156.2	147.7	131.0	41.6	84.4
burrafid INLET	9.0	15.4	20.0	14.3	7.5	B. 1	15.5	18.9	24.4	27.1	31.0	23.4	17.0	6.0	12.1
FRASER RIVER	350.4	151.4	340.5	599.4	359.1	255.6	312.1	435.3	320.3	365.0	533.0	393.2	336.4	319.7	343.0
bIUNDARY bay	0.3	0.4	0.2	0.1	0.1	0.1	0.2	0.1	0.2	0.4	0.8	0.3	0.2	0.0	0.2
GRAND TOTAL	1243.4672 .3		939.91433 .11415 .0			774.41311 .01292			1415.0	1193.3	1564.4	1355.2	1173.1	$882.5 \quad 1056.6$	
FILE : FALLSUM DIS DATE NDV/19/86	: US TA														
DRGINALLY FRDA DISK $15-\text { Dec- } 86$	STUDY A	REA CHUT	H ESCAP	EMENT											

Table 2. Comparison of predicted and actual returns of Fraser River Chum salmon, 1974 - 1984.

Year	Published Prediction	Actual Return	Error	Percent Error
1974	430,000	707,000	$(277,000)$	-39\%
1975	505,000	486,000	20,000	42
1976	1,040,000	1,054,000	$(24,000)$	-21
1977	756,000	704,000	52,000	74
1978	914,000	1,265,000	$(351,000)$	-284
1979	381,000	296,000	85,000	291
1980	595,000	891,000	$(296,000)$	-334
1981	628,000	489,000	139,000	281
1982	890,000	708,000	182,000	262
1983	400,000	482,000	$(82,000)$	-174
1984	450,000	599,000	$(149,000)$	-251
	635,000	699,000	$(63,727)$	-5x

Note: numbers in brackets represent negative values.
/data/chum/expect/history

Table 3．Production of Canadian caught study area Chum salmon，1960－1984．

ESCAPE－			TOTALPETURN	return at age			brado	AGE 3	AGE 4	AGE 5	RATIO R／E
YEAR	HENT	CATCH		3	4		5 RETUEN				
1960	748，800	766，000	1，514，800	363，520	817，770	10，068	1，191，358	30.5	68.6	0.8	1.59
1961	656，100	357，400	1，013，500	244，839	275，898	9，613	3 530，350	46.2	52.0	1.8	0.81
1962	714，200	273，700	987，900	159，534	867,297	11，657	1，038，486	15.4	83.5	1.1	1.45
1963	700，300	342，200	1，042，500	191，190	321，915	13，255	5 526，361	36,3	61.2	2.5	0.75
1964	901，000	169，100	1，070，100	562，231	2，237，200	62，471	12，861，902	19.6	78.2	2.2	3.18
1965	404，400	41，100	485，500	454，474	857，909	20，306	6 1，332，688	34.1	64.4	1.5	3.30
1966	1，001，800	66，300	1，068，100	781，310	1，955，845	87，642	2，824，797	27.7	69.2	3.1	2.82
1967	711，600	185，100	896，700	184，265	384，750	69，556	6 638，571	28.9	60.3	10.9	0.90
1968	1，898，400	806，800	2，705，200	337，770	3，440，738	747，592	2 4，526， 100	7.5	76.0	16.5	2.38
1969	1，088，200	614，000	1，702，200	269，906	3，642，370	434，422	4，346，699	6.2	83.8	10.0	3.99
1970	1，166，100	994，100	2，160，200	119，038	880，451	40，219	71，039，707	11.4	84.7	3.9	0.89
1971	678，200	131，800	810，000	338，252	461，324	27，017	7 日26，594	40.9	55.8	3.3	1.22
1972	1，828，600	1，951，600	3，780，200	687，762	1，617，172	35，317	$72,340,251$	29.4	69.1	1.5	1.28
1973	1，580，400	2，928，600	4，509，000	285，610	1，192，738	57，927	$71,536,275$	18.6	77.6	3.8	0.97
1974	1，243，400	414，700	1，658，100	375，640	2，365，111	146，546	2，887，298	13.0	81.9	5.1	2.32
1975	672，300	517，600	1，189，900	404，075	409，109	17，07日	日 830,261	48.7	49.3	2.1	1.23
1976	939，900	989，900	1，929，800	317，517	1，515，637	97，382	2 1，930，536	16.4	78.5	5.0	2.05
1977	1，433，100	172，200	1，605，300	604，120	1，159，970	129，713	31，893，803	31.9	61.3	6.8	1.32
1978	1，415，000	1，410，700	2，825，700	201，480	2，156，110	390，822	2，748，412	7.3	78.4	14.2	1.94
1979	774，400	97，900	872，300	596，678	824，413	82，805	5 1，503，895	39.7	54.8	5.5	1.94
1980	1，311，000	823，700	2，134，700	258，090	846，446						
1981	1，292，100	167，900	1，460，000	905，329							
1982	1，415，000	1，467，500	2，882，500								
1983	1，193，300	281，500	1，474，800								
1984	1，564，400	275，700	1，840，100								
AVERAGE：	1，093，280	649，884	1，743，164	392，847	1，341，294	124，570	1，867，717	25.5	69.4	5.1	1.8
EVEN YFS：	1，242，123	800，754	2，042，877	378，536	1，699，960	162，972	$22,338,885$	17.8	76.8	5.3	2.0
ODD YRS：	932，033	486，442	1，418，475	407，158	866，400	86，169	1，396，550	33.1	62.0	4.8.	1.6

NOTE ：ESCAFEHENT INCL．IISCALLANEDUS AND ADDED NEW WEST STREAMS 1956－85
FILE．．NEWPRDD．WES DISK．．U．S．TAELES
ORIGINALLY FROM DISK…CHUM FRODUCTION（F）
16－Dec

Table 4. Production of Canadian caught Area 22 Chum salmon, 1960-1984.

CMRPROR/D26

Table 5. Annual escapements for chum salmon in Area 20, 1951-1984.


```
            YEAR Escapement
```

1951	57,675
1952	18,275

1953 60,075
1954 52,200
1955 51,675
1956 23,350
1957 23,850
1958 75,650
1959 29,400
1960 10,075
1961 9,200
1962 13,025
1963 12,400
1964 52,675

1965 19,100
1966 13,725
1967 41,975
1968 75,850
1969 51,200
1970 59,075
1971 22,625
1972 93,725
1973 111,054
1974 19,675
1975 7,650
1976 5,825
1977 11,525
1978 18,055
1979 5,465
1980 32,084
1981 17,825
1982 11,222
1983 17,371
1984 25,242
AVERAGES

$1951-59$	43,572
$1960-69$	29,923
$1970-79$	35,467
$1980-84$	20,749

Data sources: Escapements from BC catalogue of salmon stream asd spawnine escapements.
CMESC20/D26

Table 6. Fall commercial Chum catches by region and gear, 1960-1984.

	AREAS 11 TO 13 JOHNSTONE STRAIT			AREAS 14 TO 19 GULF			AREA 29 FRASER RIVER			total COMMERCIAL CATCH			TDTAL COMMERCIAL
YEAR	6 N	SN	TR	GN	SN	TK	6 N	SN	TK	GN	SN	TR	ALL GEAR
1960	170800	421500	100	68600	9300	0	67300	0	0	306700	430800	100	737600
1961	92300	127400	200	58900	8300	0	47900	0	0	199100	135700	200	335000
1962	31300	87800	100	67200	16000	0	47600	0	0	146100	103800	100	250000
1963	99700	151000	300	10800	3000	100	53800	0	0	164300	154000	400	318700
1964	25600	55000	100	2800	700	0	60800	0	0	89200	55700	100	145000
1965	2800	11300	100	310	0	0	11900	0	0	15000	11300	100	26400
1966	10200	19300	200	600	0	0	13900	0	0	24700	19300	200	44200
1967	44100	74300	200	0	100	0	46500	0	0	90600	74400	200	165200
1968	221500	344500	200	9000	2900	0	202400	0	0	432900	347400	200	780500
1969	182000	288700	600	24900	9800	0	88900	0	0	295800	298500	600	594900
1970	239000	457800	1000	81600	13400	300	178900	0	0	499500	471200	1300	972000
1971	39100	49100	800	900	300	0	21700	0	0	61700	49400	800	111900
1972	344700	1007000	100	200500	116800	100	256400	0	0	801600	1123800	200	1925600
1973	441700	1853200	900	272700	137500	200	190500	0	0	904900	1990700	1100	2896700
1974	64700	172600	200	22800	4200	2900	93100	0	0	180600	176800	3100	360500
1975	104200	240800	1000	37000	31000	200	73300	0	200	214500	271800	1400	487700
1976	143500	557800	900	30300	42800	100	174100	0	0	347900	600600	1000	949500
1977	24200	91100	2600	0	0	100	14400	0	0	38600	91100	2700	132400
1978	182600	968400	6000	32400	67800	300	124400	0	300	339400	1036200	6600	1382200
1979	7200	42600	1300	4200	2200	200	7700	0	100	19100	44800	1600	65500
1980	110700	528500	2000	29200	51500	100	75500	0	0	215401	580000	2100	797500
1981	11500	44400	1100	41000	14100	100	8700	0	100	61200	58500	1300	121000
1982	244400	865000	2600	117800	120600	100	63200	0	100	425400	985600	2800	1413800
1983	14400	83800	3700	81700	41800	200	12600	0	0	108700	125600	3900	238200
1984	2700	35300	200	63300	100900	0	15000	0	0	81000	136200	200	217400
AUERAGE:													
1960-1969	88030	158080	210	24310	5010	10	64100	0	0	176440	163090	220	339750
	25,9\%	46.5\%	0.1\%	7.2\%	1.5\%	0.0\%	18.9\%	0.0\%	0.0\%	51.9\%	48.0\%	0.1\%	
1970-1979	159090	544040	1480	68240	41600	440	113450	0	60	340780	585640	1980	928400
	17.1\%	58.6\%	0.2\%	7.4\%	4.5\%	0.0\%	12.2\%	0.0\%	0.0\%	36.7\%	63.1\%	0.2\%	
1980-1984	76740	311400	1920	66600	65780	100	35000	0	40	178340	377180	2060	557580
	13.8\%	55.8\%	0.3\%	11.9\%	11.8\%	0.0\%	6.3\%	0.0\%	0.0\%	32.0\%	67.6\%	0.4\%	
1960-1984	105737	317711	981	46611	29444	185	72241	0	30	242556	374928	1292	618776
	17.1\%	51.3\%	0.2\%	7.5\%	4.8\%	0.0\%	11.7\%	0.0\%	0.0\%	39.2\%	60.6\%	0.2\%	

NOTE : CATCH DATA FFOM BRITISH COLUMBIA CATCH STATISTICS AREA 29, 1983,1984 INCLUDE ADDITIONAL TEST CATCHES.
FILE..FAL6085,朓1 DISK..IJS TAELE
DATE NOV/19/86
ORGINALLY FROM BE COMMERCIAL CATCH (C)
FILE..DEC8O DISK..BB COMMERCIAL CHUM CATCH 2 (C)
15-Dec-86

Table 7. Indian food fishery catches of Chum salmon by statistical area, 1960-1985.

YEARS	statistical area									$\begin{aligned} & \text { 10TAL } \\ & 12-13 \end{aligned}$	$\begin{aligned} & \text { TOTAL } \\ & \text { 14-19 } \end{aligned}$	$\begin{array}{r} \text { TOTAL } \\ 29 \end{array}$	$\begin{gathered} \text { COMBINED } \\ \text { TOTAL } \end{gathered}$
	12	13	14	15	16	17	18	19	29				
1960	4600	2583	245	3500	4500	750	2231		9970	7183	11226	9970	28379
1961	4600	2431	150	2500	300	700	1978		9647	7031	5628	9647	22306
1962	4391	1412	45	2000	400	860	3197		11300	5803	6502	11300	23605
1963	5122	1359	506	1500	650	280	3317		10741	6481	6253	10741	23475
1964	6054	1756	21	1200	400	580	1773		12210	7810	3974	12210	23994
1965	3432	748	124	500	100	400	1960	0	7390	4180	3084	7390	14654
1966	4313		157	950	400	1480	2772	0	12181	4313	5759	12181	22253
1967	5201		215	200	600	850	4000	0	8800	5201	5865	8800	19866
1968	4046	1708	360	2356	349	905	5395	100	11102	5754	9465	11102	26321
1969	3367	3346	440	2162	300	1745	3400	50	4300	6713	8097	4300	19110
1970	3632	4725	972	1652	200	3000	2204	50	5603	8357	8078	5603	22038
1971	4406	3677	850	1952	1317	2275	1375	0	4022	8083	7769	4022	19874
1972	5487	4690	265	1320	243	4675	3000	100	6301	10177	9603	6301	260日1
1973	2979	3543	5530	1400	637	4800	2200	0	10742	6522	14567	10742	31831
1974	4814	6940	14000	2000	300	6000	5000	20	15102	11754	27320	15102	54176
1975	6800	5656	2800	3000	400	1700	2400	0	7087	12456	10300	7087	29843
1976	3400	6679	9273	2200	55	1800	3500	0	13603	10079	16828	13603	40510
1977	8030	9419		5000	2036	2550	3350	22	9342	17449	12958	9342	39749
1978	3750	5572			1263	4805	3000	633	9509	9322	9701	9509	28532
1979	6900	7836	950		1639	4470	1500	950	8202	14736	9509	8202	32447
1980			4576	3000	1500	2750	1000	1055	12333		13881	12333	26214
1981	4700	6779	13044	5500	1500	2200	2000		11170	11479	24244	11170	46893
1982	8456	12733	1212	6000	664	3588	2000		19233	21189	13464	19233	53886
1983	7608	77	3154	4200	1180	9550	5000		12637	7685	23084	12637	43406
1984	11906	9000	2000	3000	1634	8000	4000		18637	20906	18634	18637	58177
1995	3692	9070	10920	5500	0	5800	9000		5859	12762	31220	5859	49841
averages:													
1960-1969:	4513	1918	226	1687	800	855	3002	30	9764	6047	6585	9764	22396
1970-1979:	5020	5874	4330	2316	809	3608	2753	178	8951	10894	12663	8951	32508
1980-1985:	7272	7532	5818	4533	1080	5315	3833	1055	13312	14804	20755	13312	46403
1960-1985:	5267	4858	2992	2608	868	2943	3098	186	10270	9737	12193	10270	31825

afeas 12 to 19 data from sub district offices
AREA 29 DATA FROM N. SCHUBERT.
REVISED
FILE..CM 60 _ 85 DISK.US TABLE
DRIGINALLY FROM DISK., IFF CATCHES (C)
15-Dec-86

Table 8. Fall Chum commercial catch by major gear type, 1960-1984.

YEAR	FALL COMMERCIAL CATCH			total FALL CATCH	PERCENT OF TOTAL CATCH			
	GN	SN	TR		GN \%	SN\%	TR \%	
1960	306,700	430,800	100	737,600	41.6\%	58.4\%	0.0\%	
1961	199,100	135,700	300	335,100	59.4\%	40.5\%	0.1\%	
1962	146,100	103,800	100	250,000	58.4\%	41.5\%	0.0\%	
1963	164,300	154,000	300	318,600	51.6\%	48.3\%	0.1\%	
1964	89,300	55,700	100	145,100	61.5\%	38.4\%	0.1%	
1965	15,000	11,300	200	26,500	56.6\%	42.6\%	0.8\%	
1966	24,600	19,300	200	44,100	55.8\%	43.8\%	0.5\%	
1967	90,700	74,400	200	165,300	54.9\%	45.0\%	0.1\%	
1968	432,900	347,400	200	780,500	55.5\%	44.5\%	0.0\%	
1969	295,800	298,400	600	594,800	49.7\%	50.2\%	0.1\%	
1970	499,400	471,300	1,300	972,000	51.4\%	48.5\%	0.1\%	
1971	61,700	49,400	800	111,900	55.1\%	44.1\%	0.7\%	
1972	801,500	1,123,900	100	1,925,500	41.6\%	58.4\%	0.0%	
1973	904,900	1,990,700	1,100	2,896,700	31.2\%	68.7\%	0.0\%	
1974	180,600	176,800	3,100	360,500	50.1\%	49.0\%	0.9\%	
1975	214,500	271,800	1,400	487,700	44.0\%	55.7\%	0.3\%	
1976	347,900	600,500	1,000	949,400	36.6\%	63.3\%	0.1\%	
1977	38,600	91,100	2,700	132,400	29.2\%	68.8\%	2.0\%	
1978	339,500	1,036,200	6,600	1,382,300	24.6\%	75.0\%	0.5\%	
1979	19,200	44,800	1,500	65,500	29.3\%	68.4\%	2.3\%	
1980	215,400	580,000	2,100	797,500	27.0\%	72.7\%	0.3\%	
1981	61,100	58,500	1,400	121,000	50.5\%	48.3\%	1.2\%	
1982	425,300	985,600	2,700	1,413,600	30.1\%	69.7\%	0.2\%	
1983	108,600	125,600	3,900	238,100	45.6\%	52.8\%	1.6\%	
1984	81,100	136,200	200	217,500	37.3\%	62.6\%	0.1\%	
AVERAGES								
60-69	176,450	163,080	230	339,760	51.9\%	48.0\%	0.1%	
70-79	340,780	585,650	1,960	928,390	36.7\%	63.1\%	0.2\%	
80-84	178,300	377,180	2,060	557,540	32.0\%	67.6\%	0.4\%	
60-84	242,552	374,928	1,288	618,768	39.2\%	60.6\%	0.2%	
NOTES:	DATA FROM BRITISH COLUMBIA CATCH STATISTICS. AREA $291983 \& 1984$ INCL. TEST FISHING DATA CATCH DOES NOT INCL. IFF DATA US ORIGIN FISH INCLUDED							
	DATE NOV/18/86							
	FILE. . BBSLM. WK 1Dec-86Dec-86		DISC.. CHUM CATCH (C)					

Table 9. Catch, escapement and total stock of summer and fall chum.

YEAR		CANADIAN CATCH		ESCAPEMENT		TOTAL STOCK	
		SUMMER	FALL	SUMMER	FALL	SUMMER	FALL
	1960	51,900	766,000	9,000	748,800	60,900	1,514,800
	1961	34,000	357,400	22,500	656,100	56,500	1,013,500
	1962	16,700	273,700	15,000	714,200	31,700	987,900
	1963	38,600	342,200	15,000	700,300	53,600	1,042,500
	1964	46,200	169,100	22,500	901,000	68,700	1,070,100
	1965	9,700	41,100	6,800	404,400	16,500	445,500
	1966	17,100	66,300	2,300	1,001,800	19,400	1,068,100
	1967	33,500	185,100	11,000	711,600	44,500	896,700
	1968	92,500	806,800	21,500	1,898,400	114,000	2,705,200
	1969	25,000	614,000	11,000	1,088,200	36,000	1,702,200
	1970	60,500	994,100	7,000	1,166,100	67,500	2,160,200
	1971	7,700	131,800	2,300	678,200	10,000	810,000
	1972	15,600	1,951,600	38,500	1,828,600	54,100	3,780,200
	1973	28,600	2,928,600	104,000	1,580,400	132,600	4,509,000
	1974	19,900	414,700	16,000	1,243,400	35,900	1,658,100
	1975	40,200	517,600	57,500	672,300	97,700	1,189,900
	1976	91,500	989,900	140,000	939,900	231,500	1,929,800
	1977	58,300	172,200	45,000	1,433,100	103,300	1,605,300
	1978	128,700	1,410,700	90,500	1,415,000	219,200	2,825,700
	1979	71,900	97,900	42,300	774,400	114,200	872,300
	1980	95,700	823,700	62,000	1,311,000	157,700	2,134,700
	1981	54,600	167,900	103,000	1,292,100	157,600	1,460,000
	1982	78,500	1,467,500	84,000	1,415,000	162,500	2,882,500
	1983	53,200	281,500	27,700	1,193,300	80,900	1,474,800
	1984	32,900	275,700	15,500	1,564,400	48,400	1,840,100
AVG.	60-69	36,520	362,170	13,660	882,480	50,180	1,244,650
AVG.	70-79	52,290	960,910	54,310	1,173,140	106,600	2,134,050
AVG.	80-84	62,980	603,260	58,440	1,355,160	121,420	1,958,420
AVG.	60-84	48,120	649,884	38,876	1,093,280	86,996	1,743, 164

FILE..ALLCATES.WK1 DISK..US TABLE
DATA INCLUDES AREA 11 TO 19, 29
FALL CATCH FROM 1ST WEEK IN SEPT ONWARD OF AREA 11 TO 19
SUMMER CATCH IS CATCH PRIOR TO 1 ST WEEK IN SEPT OF AREA 11 TO 19
total area 29 included in fall catch
ALL INDIAN FOOD FISH INCLUDED
15-Dec Dec-86

Table 10. Catch, escapement, total stock and harvest rate for Canadian caught Chum, 1960-1984.

YEAR	FALL ESCAPEMENT	CANADIAN COMMERCIAL CATCH	$\begin{array}{r} \text { INDIAN } \\ \text { FOOD } \\ \text { CATCH } \end{array}$	CANADIAN TOTAL STOCK	HARVEST RATE
1960	748,800	737,600	28,400	1,514,800	50.6\%
1961	656,100	335,100	22,300	1,013,500	35.3\%
1962	714,200	250,100	23,600	987,900	27.7\%
1963	700,300	318,700	23,500	1,042,500	32.8\%
1964	901,000	145,100	24,000	1,070,100	15.8\%
1965	404,400	26,500	14,700	445,600	9.2\%
1966	1,001,800	44,100	22,300	1,068,200	6.2%
1967	711,600	165,300	19,900	896,800	20.7\%
1968	1,898,400	780,500	26,300	2,705,200	29.8%
1969	1,088,200	594,900	19,100	1,702,200	36.1%
1970	1,166,100	972,000	22,000	2,160,100	46.0\%
1971	678,200	111,900	19,900	810,000	16.3\%
1972	1,828,600	1,925,600	26,100	3,780,300	51.6\%
1973	1,580,400	2,896,800	31,800	4,509,000	65.0\%
1974	1,243,400	360,500	54,200	1,658,100	25.0\%
1975	672,300	487,700	29,800	1,189,800	43.5\%
1976	939,900	949,400	40,500	1,929,800	51.3%
1977	1,433,100	132,400	39,700	1,605,200	10.7\%
1978	1,415,000	1,382,200	28,500	2,825,700	49.9\%
1979	774,400	65,500	32,400	872,300	11.2%
1980	1,311,000	797,500	26,200	2,134,700	38.6\%
1981	1,292,100	121,000	46,900	1,460,000	11.5\%
1982	1,415,000	1,413,600	53,900	2,882,500	50.9\%
1983	1,193,300	238, 100	43,400	1,474,800	19.1\%
1984	1,564,400	217,500	58,200	1,840,100	15.0\%
AVERAGES					
1960-1969	882,480	339,790	22,410	1,244,680	26.4\%
1970-1979	1,173,140	928,400	32,490	2,134,030	37.1\%
1980-1984	1,355,160	557,540	45,720	1,958,420	27.0%
1960-1984	1,093,280	618,784	31,104	1,743,168	30.8\%

(2) 1983-84 AREA 29 CATCHES FROM B.C. CATCH STATISTICS AN (3) DATA SOURCES:

ESCAPEMENTS DATA FROM B.C. 16's - FISHERY OF COMMERCIAL CATCH DATA FROM B.C. ANNUAL CATCH IFF (INDIAN FOOD FISHERY) CATCHES FROM FISHER
(5) Escapements of Fall chum only (exclude Orford and Ann FILE..HARVEST2 DISC..US TABLE ORIGINALLY FROM CHUM PRODUCTION (P)

TABLE 11. FALL COMMERCIAL CHUM CATCH BY MAJOR AREA, 1960-1984

	FALL	OMMERCIAL	CATCH		TOTAL
	\| --------				FALL
YEAR	\|AREA 11-13	AREA 14 A	AREA 15-19	AREA 29	CATCH
1960	592,400	11,300	66,600	67,300	737,600
1961	219,900	11,600	55,700	47,900	335,100
1962	119,200	11,600	71,700	47,600	250,100
1963	251,000	0	13,900	53,800	318,700
1964	80,800	0	3,500	60,800	145,100
1965	14,200	0	300	11,900	26,400
1966	29,600	0	600	13,900	44,100
1967	118,600	0	100	46,500	165,200
1968	566,200	0	11,900	202,400	780,500
1969	471,300	0	34,600	88,900	594,800
1970	697,800	6,300	89,000	178,900	972,000
1971	88,900	0	1,300	21,700	111,900
1972	1,351,800	134,300	183,100	256,400	1,925,600
1973	2,295,800	185,300	225,100	190,500	2,896,700
1974	237,500	12,500	17,400	93,200	360,600
1975	346,000	52,500	15,900	73,500	487,900
1976	702,100	67,000	6,200	174,100	949,400
1977	117,900	0	100	14,400	132,400
1978	1,156,900	100,200	400	124,800	1,382,300
1979	51,100	6,500	100	7,800	65,500
1980	641,100	80,700	100	75,500	797,400
1981	57,000	52,800	2,400	8,800	121,000
1982	1,111,900	197,400	41,100	63,300	1,413,700
1983	101,800	123,600	0	12,600	238,000
1984	38,300	164,100	0	15,100	217,500
AVERAGES					
60-69	246,320	3,450	25,890	64,100	339,760
	72.5\%	1.0\%	7.6\%	18.9\%	
70-79	704,580	56,460	53,860	113,530	928,430
	75.9\%	6.1\%	5.8\%	12.2\%	
80-84	390,020	123,720	8,720	35,060	557,520
	70.0\%	22.2\%	1.6\%	6.3\%	
60-84	458,364	48,708	33,644	78,064	618,780
	74.1\%	7.9\%	5.4\%	12.6\%	

NOTES: DATA FROM BRITISH COLUMBIA CATCH STATISTICS. AREA $291983 \& 1984$ INCL. TEST FISHING DATA
CATCH DOES NOT INCL. IFF DATA
DATE NOV/18/86
FILE..BBCAT.WK1 DISC..CHUM CATCH
Dec-86

Table 12. Annual catch, escapement and total stock estimates for Chum salmon in Area 22, 1951 - 1984.

YEAR	ESCAPEMENT	CATCH			TOTAL STOCK	HARVEST RATE
		GILLNET	SEINE	TOTAL		
1951	12,500	6,300	20,800	27,100	39.600	68.4
1952	46,000	0	0	0	46,000	0.0
1953	16,500	26,500	33,400	59,900	76,400	78.4
1954	86,000	39,000	178,200	217,200	303,200	71.6
1955	12,500	3,400	3,800	7,200	19,700	36.5
1956	46,100	23,500	94,800	118,300	164,400	72.0
1957	23,300	19,200	66,100	85,300	108,600	78.5
1958	19,000	37,000	168,800	205,800	224,800	91.5
1959	23,000	0	0	0	23,000	0.0
1960	44,100	6,500	41,700	48,200	92,300	52.2
1961	44,200	0	0	0	44,200	0.0
1962	18,700	0	0	0	18,700	0.0
1963	6,700	0	0	0	6,700	0.0
1964	44,200	0	0	0	44,200	0.0
1965	80,300	0	0	0	80,300	0.0
1966	8,500	0	0	0	8,500	0.0
1967	21,200	0	0	0	21,200	0.0
1968	124,700	0	0	0	124,700	0.0
1969	18,800	0	0	0	18,800	0.0
1970	8,700	0	0	0	8,700	0.0
1971	55,200	0	0	0	55,200	0.0
1972	264,600	246,400	1,044,100	1,290,500	1,555,100	83.0
1973	171,000	50,000	124,800	174,800	345,800	50.5
1974	98,100	0	0	0	98,100	0.0
1975	9,900	0	0	0	9,900	0.0
1976	19,700	0	0	0	19,700	0.0
1977	43,700	0	0	0	43,700.	0.0
1978	8,400	0	0	0	8,400	0.0
1979	4,500	0	0	0	4,500	0.0
1980	54,500	37,500	236,400	273,900	328,400	83.4
1981	115,000	0	0	0	115,000	0.0
1982	22,500	0	0	0	22,500	0.0
1983	8,000	0	0	0	8,000	0.0
1984	76.000	10,753	175,910	186,663	262,663	71.1
Data sources: Catches from BC Cach Statistics; escapements from						
Fishery officers Stream Reports.						
Catch and escapement numbers rounded to the nearest hundred.						
Zero catch indicates closed fishery or neglieible catch,						
(<50 pieces). Averages have not been included due to the						
large number of zero catch entries.						

Table 13. Annual catch by Eear type for chum salmon in Area 20, 1951-1984.

YEAR	Catch		
	Gillnet	Seine	Total
1951	406	7,125	7.531
1952	0	1,815	1.815
1953	539	8,303	8,842
1954	2.252	3,566	5,818
1955	7,726	10,302	18,028
1956	1,089	442	1,531
1957	1,922	938	2,860
1958	26,019	2. 493	28,512
1959	27,335	8,589	35,924
1960	14,669	1.114	15,783
1961	10,985	2,212	13,197
1962	11,192	2,479	13.671
1963	14,635	4,799	19,434
1964	35,737	1,500	37,237
1965	20,111	3,463	23, 574
1966	22,878	3,963	26,841
1967	13,725	6,850	20,575
1968	22,708	4.042	26,750
1969	16,778	1,580	18,358
1970	20,431	5,086	25,517
1971	18,752	5,684	24,436
1972	139,950	62,208	202,158
1973	62,881	111,183	174,064
1974	34,532	45,065	79,597
1975	16,235	24, 354	40,589
1976	35,960	77,045	113,005
1977	9,225	12,716	21,941
1978	30,951	24,069	55,020
1979	631	3,268	3,899
1980	46,409	14,162	60,571
1981	2,077	6,190	8,267
1982	734	13,788	14,522
1983	19	64	83
1984	112	450	$5 \in 2$
AVERAGES			
1951-59	7,476	4,841	12,318
1960-69	18,342	3,200	21,542
1970-79	36,955	37,068	74,023
1980-84	9,870	6.931	16,801
Data sources: catches from BC CatchStatistics.CHUMRPT84/D26			

	Table 'rEAR	I	Areo 20	Chum Trall C Area 21	ches (Piec Area 23	s) for Preas Area 24	$20-27,195$ Piree 25	$\begin{aligned} & -1984 \\ & \text { fires } 26 \end{aligned}$	Area 27	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Total For 'rear
,	1951	1	11	4	55	22	145	89	111	1	437
1	1952	1	0	11	64	0	22	0	0	1	97
1	1953	1	3	5	44	0	100	22	11	1	195
1	1954	1	-	18	105	78	66	11	22	1	300
!	1955	1	2	3	75	22	37	11	22	!	212
i	1 G56	1	1	2	96	3	22	18	3	,	1451
1	1957	1	18	2	117	14	114	110	39	1	414
1	1958	1	4	21	38	0	155	44	35	1	297
1	1959	1	246	9	173	11	46	207	31	:	723
1		1								1	
1	1960	1	27	3	27	31	12	73	41	1	2141
i	1961	1	75	12	127	49	96	192	201	:	7521
i	1962	i	8	16	72	58	105	565	450	!	1,284
i	1963	1	204	23	206	50	111	228	444	1	1,266
1	1964	1	21	10	190	35	$4 ?$	367	214	1	884
1	1965	1	10	14	128	82	36	118	516	1	904
I	1966	1	14	1	53	56	45	133	125	1	427
i	1967	!	43	20	180	91	57	41	181	1	613
1	$196 G$	1	2	28	201	233	176	224	943	1	1.807 1
1	1969	1	30	27	860	82	111	98	1,104	1	2,312
1		1								,	
1	1970	1	308	522	904	1,452	1,013	1,564	4,182	,	9,945
1	1971	1	33	84	700	409	807	354	3,300	1	5,687
,	1972	i	142	12	386	59	262	131	407	1	1.399
1	1973	I	69	624	2,723	759	1.163	908	1.121	!	?,367
1	1974	1	72	51	507	516	3,029	208	694	I	5,07?
1	1975	1	230	68	1,394	429	1,073	1,520	3.164	1	?, Brg
I	197E	1	490	74	. 355	885	990	1.07?	851	1	4,732
1	1977	;	131	196	2,400	1,354	424	610	3,5>1	1	8,686
1	1978	1	89	241	1.076	1.946	3,095	2,901	14,260	1	23,608
!	1979	1	16	118	2,687	3,392	2,403	887	6,349	1	15,852
1		1								,	-
;	1980	1	860	75	1.060	4,981	609	1.098	11,871	1	20,554
1	1981	1	162	103	1,04?	1,160	507	212	3,866	1	?,057
1	1982	1	0	443	5.531	11,514	7.576	2.085	35,510	1	62,659 1
;	1983	1	0	140	525	1 951	669	281	3,078	1	5,644
;	1984	1	1	100	306	225	404	428	7,842	1	9,506
1		1								!	
	1VERFGE	i								:	$1{ }^{1}$
	-951-59	1	32	8	85	$1 ?$	83	57	30	1	312
	660-69	1	43	15	204	37	80	204	423	1	1,046
	1980-79	1	158	199	1,314	1.120	1,426	1.016	3,790	1	9,023
	-980-84	1	205	1 12	1,694	3,766	1,953	821	12,433	I	21, 0.441

Eurce: Salmon Section Catch Databasen P.B.S.
No troll catch of chums in ares 22 .
PN/D26:TRCA5184

Table 15. WEEKLY TROLL CATCH OF CHUM SALMON IN AREA 27, 1980-84.

Table 16. Comparison of predictions and actual returns for Inside Chum, 1969 - 1984.

YEAR	PREDICTED RETURN	ACTUAL RETURN	ERROR	DIFF COMPARED TO PREDICTED
1969	1,597,000	1,702,200	105,200	6.6\%
1970	1,876,000	2,160,200	284,200	15.1\%
1971	1,573,300	810,000	763,300	48.5\%
1972	1,515,000	3,780,200	2,265,200	149.5\%
1973	3,900,000	4,509,000	609,000	15.6\%
1974	1,554,000	1,658,100	104,100	6.7\%
1975	1,350,000	1,189,900	160,100	11.9\%
1976	3,600,000	1,929,800	1,670,200	46.4\%
1977	2,577,000	1,605,203	971,700	37.7\%
1978	2,395,000	2,825,700	430,700	18.0\%
1979	1,205,000	872,300	332,700	27.6\%
1980	1,617,300	2,134,700	517,400	32.0\%
1981	1,809,500	1,460,000	349,500	19.3\%
1982	2,860,000	2,882,500	22,500	0.8\%
1983	1,864,600	1,474,800	389,800	20.9\%
1984	1,701,800	1,840,100	138,300	8.1\%
TOTAL AVG	2,062,200	2,052,175	569,619	29.0\%
1980-1984	1,970,600	1,958,400	283,500	16.2\%

File: EXPRACRE
Disc:U.S. TABLE
ORIGINALLY FROM DISK..CHUM PRODUCTION (P)
15-Dec-86

Table 17. Area 12 commercial seine catch for the third week of September compared to total stock size.

Year	Area 12 Seine Catch		Total Stock (million)
1965	3,300	0.58	0.45
1967	2,800	0.34	0.90
1969	7,600	1.45	1.70
1970	21,400	4.15	2.16
1971	9,600	1.06	0.81
1972	51,000	6.29	3.78
1973	89,400	8.22	4.51
1975	13,900	1.88	1.19
1976	26,800	3.60	1.93
1977	16,800	2.05	1.61
1978	85,700	10.28	2.83
1979	8,100	1.48	0.87
1980	37,300	6.70	2.13
1981	7,600	1.59	1.46
1982	46,100	8.73	2.88
1983	19,400	3.38	1.47
1984	12,100	2.08	1.84

r square $=0.69$
table 18. UPPER JOhnstone strait test fishing average catches by week for 1965-1985.

WEEK ENDING	1984	1983	1982	1981	1980	1979	1978	1977	1976	1975	1974	1972	1971	1969	1968	1967	1966	1965
9/1	18.8		27.0															
9/2	85.8	22.0	42.0								18.9							
9/3	84.0	33.7	282.4		63.7	14.5					79.9						16.7	
9/4	218.9	71.1	370.7	158.3	310.4	30.0				198.8	149.9	214.8		217.3	1087.5	11.4	28.5	21.0
10/1	71.0	123.6	583.9	59.7	292.0	120.9	237.1	103.2			420.1		41.0	145.7	1143.5	177.8	47.0	75.0
10/2	326.5	151.8	308.6	57.8	414.6	34.6	792.7	277.3	134.7	384.7	341.5		110.9	358.9	500.5	19.1	21.0	9.0
10/3	231.4	110.3	464.9	281.1	149.9	103.4	219.0	112.7	61.9	31.6	546.5		211.3	465.9	224.9	598.8	62.3	28.0
10/4	38.5	92.1	632.3	71.0	698.9	38.7	167.4	148.7	79.1				21.7	394.9	212.5	47.4	55.3	70.0
10/5		25.0	154.1		10.2	30.5	125.5	171.2	48.2	8.1	168.6		14.1	45.2	18.6	214.2	550.0	81.0
11/1										20.3			23.4	30.0	230.0	15.0	48.7	72.0
11/2																5.7	76.5	
11/3																	15.5	
$\begin{aligned} & \text { STOCK } \\ & \text { (MILLION } \end{aligned}$	$\begin{aligned} & 1.840 \\ & \text { NS) } \end{aligned}$	1.474	2.882	1.46	2.134	0.872	2.825	1.605	1.929	1.189	1.658	3.780		1.702	2.7052	0.896	1.068	0.445
NOTE : NO TEST FISHING RESULTS FOR 1970 AND 1973. : TOTAL STOCK IS STUDY AREA FALL CHUMS :FILE..TFSUMAVG.WK1 DISK..J.S. TEST FISHING DB (T)																		

Table 19. Clockwork Harvest Plan for Inside Chum Fishing Area For Years 1984 and 1985.

WILD RUN	ENHANGED ALLOTMENT	U.S. ALlotment	TOTAL RETURN
20\% Harvest Rate 1, 800,000 30\% Harvest Rate 2,500,000 40\% Harvest Rate 4,100,000	700,000	100,000	$2,600,000$

TOTAL RUNS
$0-2.5$ million
$2.6-3.2$ million
$3.3-4.8$ million
4.9 - Max.million

OVERALL HARVEST RATE
10\% Harvest Rate
20\% Harvest Rate
30\% Harvest Rate
40\% Harvest Rate

I. STOCK DESCRIPTIONS

A. Fuget Sound

Puget Sound managers recognize early, normal, and late timed chum stacks on the basis of three temporally distinct peak-spawning periods. In general, the early, normal, and late timed stocks peak in Octaber, November-December, and January, respectively. However, there are a wide variety of peak spawring dates for individual chum stocks within each of the three major run timed categories.

Puget Sound chum management and allocation are based on hatchery/wild production returning to each of six regions or allocation units (Figure 1). Within each region, management is directed to the spawner escapement needs of specific stocks, where practicable. Puget Sound chum run size and spawner escapement summaries are prouided in Tables 1 through b. Regionspecific return rate, harvest rate, enhanced stock production, escapement, age composition, and return per spawner estimates appear in Appendices A through E. Data from the Strait of Juan de Fuca tributaries region have been omitted due to law chum abundarice and inadequate data. Specific Puget Sound catch data for 1970 through 1984 (including cateh of all chum salmon stacks by area) are presented in Appendix F.

DIRECTGRY OF AFPENDICES

NOOKSACK-SAMISH
SKAGIT
STILLAGUAMISH-SNOHOMISH
GOUTH SOUND
HOOD CANAL
FUGET GOUND CATCH, 1970-1984

Most Puget Sound chum stocks are managed to achieve maximum sustained harvest (MSH). l, l ld early timed chum destined for South Sound and Hood Ganal are intercepted during coho fisheries with their harvests tased on the allowable coho harvest rate. Spawner escapement goals were established in 1979 bbased on 19681977 datal as interimestimates expected to yield MSH, and anmual fisheries are managed to achieve these goals. Postseason escapement estimates are determined from actual hatchery escapements and from spawner count surueys in stream index areas exparided to develop total areek or river system estimates.

A differential even/odd year run strength pattern is ewident in most Puget Sound chum stacke, with the even numbered years yielding the 1 arger run sizes on average. Escafement goals and
resultant harvests take this pattern into account. The 1968 to 1979 and 1980 to 1984 average total run sizes and ranges of observed values, grouped by even and odd return years, appear below.

TOTAL FUGET SOUND CHUM RUN SIZE

Total chum run size in Puget Sound (all stocks combined) has been increasing since the mid-1960s (Figure 2), averaging 733,600, with most of the increase in the normal timed stocks. Likewise, Puget Sound total spawing escapements between 1968 and 1984 (Figure 3) have increased averaging 319,300. Wild chum run size and escapement (Tables 2 and 5) have shown moderate increases since 1968 , averaging 588,600 and 279,700 , respectively. Enhanced (hatchery and off-station) run size and escapement (Tables 3 and 6) have increased markedly since the mid-1970s, with much of the increase in total run size likely attributable to increased hatchery production after 1976 iri Hood Canal. Puget Sound run sizes for each of the three major run timed categories are illustrated in Figure 4.

Early timed stacks
In Scuth Puget Sound, Hood Canal, and the Strait of Juan de Fuca, early timed chum occur in low abundance. Early stocks destined for South Sound and Hood Canal are harvested incidentally in coho directed fisheries in terminal and preterminal areas. Consequently, early chum abundance is expected to remain low because of anticipated high harvest rates for coho in the terminal area. No terminal area fisheries have been scheduled for Strait of Juan de Fuca early chum, with the majority of interceptions occurring incidentally during fisheries directed at sockeye, pink and coho salmon in the Strait of Juan de Fuca mixed stock area.

The 1968-1979 and 1980-1594 average early run size and range of observed values grouped by even and odd return years appear be 1 cur.

Early chum tatal run size deciined between 1968 and 1984, however, enhanced stack production has helped to stabilize run size in recent years. Returns of the enhanced early stocks began in 1976 and have averaged about 6,900 annually.

Normal timed stocks
Normal timed stocks are the main component of Puget Sound chum production and are present in all six regions. These runs have increased since 1968, with major increases since the mid-1970s (Figure 4). However, considerable annual variation and differential enhanced stock production is evident among the regions of Puget Sound. The 1968-1979 and 1980-1984 average normal run size and range of observed values grouped by even and odd returi years appear below.

NORMAL PUGET SOUND CHUM RUN EIZE

Normal wild run size has increased over 30 percent while the run size of enhanced stocks has almost tripled during the same time period (Figure 4). Enhancement of normal chum stocks in Puget Sound increased significantly during the mid-1970's. Hood Canal is the only region of Fuget Sound which is managed primarily for hatchery production, and accounts for over 75 fercent of total enhancement in Puget Sound. Wild chum returning to Hood Canal later than the hatchery run are offered additional protection to maximize spawner returns after incidental catches in fisheries directed at hatchery surfiluses. The remainimg regions are managed to achieve wild stock escapemerit, so major eriharicement within these regions is confined to areas and stocks that can be discriminately Harvested. Recent Puget Sound enhanced stock production levels are detailed in Table 7.

Late chum stocks origimate primarily from the Nisqually River in South Puget Sound. The 1968-1979 and 1980-1984 average laterun size and range of observed values grouped by even and odd return years appear below.

LATE PIGET SDIND CHLM FUN SIZE

AVERAGE

Even	$1968-1978$	55,800
	$1980-1984$	73,600
Odd	$1969-1979$	35,600
	$1981-1983$	45,500

$$
\begin{aligned}
& 48,200-61,600 \\
& 54,900-86,500 \\
& 14,700-55,300 \\
& 36,700-54,400
\end{aligned}
$$

The late wild run size has remairied relativeiy stable with increases in enhanced stocks during the same time period \&igure 4).

B. Washirigton Cosst

Grays Harbor and Willapa Bay chum stocks, as reflected by commercial catches, have declined during the 1960 's with some recovery evident in rerent years (Table B). Several Etrong returns to Grays Harbor in 1941-42, 1946, 1954, and 1959 boosted catches in the $1940^{\prime} s$ and 1950^{\prime} s. These strong returns were not evident in the $1960^{\prime} s$ and anly to a mirior extent in the 1970^{\prime} E.

Returns to Grays Harbor have shown some increase since 1980 and more restrictive management has resulted in good escapements at or above the spawning escapement goal of 21,000 (Table g). The Willapa Eay stock has shown a similar pattern with strong returns in 1941-43, 1950-51, and 1959-54. A rather dramatic decilie in 1960's is evident for this stack alsa. Run size and escapement data since 1769 show some recovery since 1980 but not to the levels of the $1940^{\prime} s$ and 1950 's. Spawring escapements have increased since 1960 approanhirig or exceedirig the present goal of 35,400.

Hatchery production in Erays Harbor remained at low levels until 1979 when $7,214,000$ chum fry and fingerlings were released (Table 10). Recent production has been lower and shifted entirely to firgerling releases. Hatchery production in Willapa Bay hatcheries began to build in 197s. The largest release wse made irı 1982 when $7,091,000$ chum were liberated into the willapa drairiage (Table 11).

Grays Harbor and willapa Bay chum are somewhat earlier than normal timed Fuget Sound chum stacks. Figures 5 and 6 illustrate their return timing to the extreme terminal area and the fairly high degree af overlap with chinook and coho. While willapa Eay chum terid to be earlier than the Grays Harbor fish, the general

Pattern in both areas is far a build-up in early october with peak abundances in the terminal area occurring in mid to late Ictober. Abundances decline after early November.

Migration routes for the coastal stocks are largely unkrown. It has been assumed that there are no prigr interceptions outside the terminal area, although in 1980 recoveries were made in both Willapa Bay and Grays Hartor from chum tagged in Canadian Area 20. N隹ile these recoueries may not point toward significant priar interceptions, they protably indicate that some harvest is oceurring beyond the termirial area. Future chum production at Makah National Fish Hatchery (NFH) may also be subject to preterminal interceptions, particularly in Canadian Area 20, the Nitirat Lake fishing area and the west coast Vancouver Island troll fishery.

Some data regarding return rates and productivity for Grays Harbor wild chum are availabile since 1969 . Four year old fish are normally the domiriant age at return to Grays Harbor although three year olds have beeri more aburidant in a few years (Tabile 12). Returns per spawner have averaged 4.55 and have ranged from 0.21 to 15.74. No otuious relationstip between spawners and subsequent recruits has been identified to describe a spawner/recruit function and a maximum sustainable harvest level.

Return rates for Willapa Bay chum sirice 1968 show an age structure very similar to the Grays Harbor stock with four year. olds normally dominating the retur.n (Tatile 13). Strong returis of three year olds appear to occur in the same years for toth stocks. Returns fer spawner to Willapa Ear auerage 3.44 with a renge of . 40 to 8.29. Again a good relationship between spawning escafement levels and future recruits is lacking. Nevertheless, fluctuations in productivity for the two stocks appear to be related. Total suruival rates far willapa hatchery releases have averaged 0.71 ranging from . 10 to 2.19.

The wild chum run in the Quinault River has shown a severe deciline between 1935 and 1970. Tribal ret catch during this period ranged from a high of 89,062 in 1936 to a low of 216 iri 1969. The tribal fishery is now supforted primarily by enharicement frograms at Quirault MFH and the Quinault Tribal hatchery, using walcott X Quinault stack. Coded-wire tagging conducted on Quinault NFH releases indicates suruival was relatively low, rariging from . 0 f to 1.01 percerit, over several brood years. However, returns from more recent releases are expected to be higher because the fish were released at a more optimum size for suruival. Hatchery returns of this stack are iritermediate in timirig between the native quirault and waleott stacks, with peak aburidances oceurring in late getober and early November. gristatigr relesses at Duinault NFH have increased since 1969 (Tatile 14) while pradurtion from the Tribal program has fluctuated since 1F7ヨ. The combined contribution from the two programs has achieved the production goal for the Quinault system of a $3,000,000$ chum release in most years.

C. Oreqon

The Columbia River and Oregon coastal chum stocks have a normal run timing with peak spawning occurring from the last week of November to the first week of December. Spawning escapement estlmates are not auailable for these stocks although some fish per mile and peak counts in spawner index areas are available. These counts are presented in Tables 15 through 16 . Escapement trends to Columbia River and Tillamook Bay tributaries exhibited declines at various times during the period 1950-80. The factors responsible for these fluctuations are not known. Chum escapements to the Nestucca River have not shown any real trends.

The odd/even year pattern of atundance characteristic of more northerly Etocks iE not readily apparent in the Columbia River or Oregon coastal returns. Detailed biological data are, however, lacking and it has not been possible to assess spawner/recruit relationships.

Chum releases into Oregon coastal rivers were first made in 1969 by Oregon State University at Whiskey Creek in Netarts Bay. In 1971, the Oregon Legislature authorized private rearing and release of salmon. Eleven private operatore were issued permits for chum culture. Most hatchery production from Oregon coastal rivers is now from sea ranching operations by these private hatcheries. Private operators have released chum as far south as Coos Bay. In most cases, returns to these private hatcheries have not been large enough to maintain brood programe.

The Oregon Defartment of Fi sh and Wildife has released some chum from lower Columbia River hatcheries and utilized egg boxes on the Necanicum River, a small stream south of the Columbia River. The Washington Department of Fisheries has also released chum into lower Columbia River tributaries (Table 17).

II. MANAGEMENT REGIME AND FISHERY DESCRIPTION

A. Puget Sound

The currently identified United States fisherles of concern which harvest a mix of Canadian and Washington origin chum stocks occur in the contiguous waters of areas 4E, $5,6 C$ (western Etrait of Juan de Futa) and 7 and $7 A$ (San Juan $I \equiv l a n d s$ and Point Roberts) (Figure 7). Fisheries in areas 6 and $纟 A$ (eastern Strait of Juan de Fuca) could potentially intercept Canadian origin chum tut little if any fishing occure in these areas. Area ba has been closed to chum fishing in recent years, with the last significant harvest in 1977. Eurrently, na significant harvests of chum occur in washington ocean waters. Terminal fisheries in Washington occur throughout the bays, estuaries, and rivers of Fuget Sound (Figure E).

The western Strait of Juan de Fuca fishery has historically been relatively low level and in recent years has been composed of Indian gill net effort only (Table 18). The San Juan Islands and Point Roberts (areas 7 and 7A) chum salmon fisheries have experienced a decline in amount of fishing time during October and November over the 1 ast 35 years (Table 19), with sutstantial reductions in recent years. The fishery was conducted only by WDF licensed fishermen until the mid 1970's when various court decisions established allocation sharing between Indians and nonIndians and independent management. WDF licensed fisheries were conducted in the Strait of Juan de Fuca until 1973.

Table 20 describes effort levels observed in these fisheries since 1978. The current fishery is composed primarily of gill net, purse seine, and reef net gears. The number of fishing days scheduled in areas 7 and $7 A$ in recent years has varied due to management action taken because of expressed Canadian concerns regarding the status of Fraser River chum. Daily effort has been variable due to such things as weather, alternative fishery openings elsewhere in Puget Sound, and days per week open.

Washington fisheries in areas other than areas 4B, 5, 6, 6A, 6C, 7 , and 7 A (Figures 7 and 8) gererally have been managed to achieve fixed spawner escapement goals. All major management units within Puget Sound, except for Hood Canal normal timed chum, have been managed for wild stock production.

Hatchery production in a region managed on a wild stock basis will typically result in a surplus return to the facility unless the hatchery stock can be discretely harvested. Certain extreme terminal areas have been managed on this basis. In recent years, Hood Canal normal timed Etocks have been managed primarily on a hatchery basis. Wild stocks in this region may not produce at the maximum level, but mitigative enhancement has often been applied to utilize available habitat.

The time periods during which directed management actions are taken for each species have been identified for each species and Puget Sound catch area (Table 21). These management periods typically reflect the central so percent of the run timing (estimated from catch statistics), and frequently overlap with management periods for other species (Figure \%). The Puget Saund Salmon Management Plan defines the rules for addressirig overlaps in management periods. In areas where data were lacking, management periods were developed based on neighboring area management periods or escapement timing curves. Directed management actions have accounted for escapement requiremerits and anticipated and observed incidental catches outside management periods.

Recent chum management in the western Strait of Juan de fuca (areas 4B, 5, 6C) has been tased on a fixed weekly fishing schedule for the Treaty Iridian Tribes in that area. A relatively low effort level (less than 30 gilliet landings/day) has been
observed (Table 20).
Area 7 has been managed on the basis of Canadian and Puget Sound stock requirements, while area 7 A has been considered a terminal harvest area for Canadian origin (Fraser River) stocks; however, due to domestic policy constraints, these areas have been opened concurrently. A reef ret fishery in areas 7 and 7 A has been conducted intermittently, even when other gears are closed for stock concerns, because of its limited harvest impact and lack of alternative fishing areas (immobility). Since 1977, harvest by gears other than reef nets has been predominantly based on the conservation needs of Canadian origin stocks and the status of fisheries on these stocks in Canadian waters.

The fishery in areas 7 and 7 A has varied in recent years with significant fisheries in only three of the last seven years (Table 19, Figure 10). For these three years fishing effort in these areas has averaged approximately 200 gill nets and 70 furse seines per day for the rom-Indian fleet, and 20 gill nets and 4 purse seines for the Indian fleet (Table 20), and has been extremely weather deperident.

Historic chum catch data for the feriod from 1935 through 1984 are presented in Table 22 and Figures 10 through 13 . The variability in total Puget Sound catch over this period is illustrated in Figure 13. Detailed chum catch for each Puget Sound commercial salmon catch area from 1970 to 1984 is available in Apfendix F.

In 1979, when Puget Sound origin chum returned in low numbers, and Canada expressed concern for Fraser River origir chum, areas 7 and 7A remained clased. The 1980 Fraser River chum run was also predicted to return below average and, as a result, rio area 7 and 7 A chum fisheries were anticipated prior to the season. However, fisheries were scheduled 3 days/week inseasori until agreement was reached closing both Canadian and U.S. fisheries on November 22. Fisheries were not allowed in 1981, 1983, and 1984 due to Canadian stock concerme, however, a limited fishery was scheduled in 1982 in response to Canadian chum fishing patterns.

B. Washington Coast

Chum stocks in Grays Hartor and Willapa Bay are managed for wild escapement needs while the fishery in the Quinault River is managed for hatchery escapement rieeds.

The Grays Harbor fishery occurs within the harbor and in the lower portions of the Chehalis and Humptulips rivers \&Figure 14). The chum management period runs from october 21 to November 10. The Washington Department of Fisheries (WDF) and the Quinault Trite manage the fi三hery to achieve allocation sharimg as ordered by the Federal Court. An Indian gillnet fiehery operates in the harbor and iri the chehalis and Humptulips rivers. The non-treaty gill net fishery occures within the harbor, while
a sport fishery takes place in the freshwater tributaries.
Grays Harbor catches have rariged from a high of 145,000 in 1954 to a low of 450 in 1979 (Table 8). Beginning with 1980 , the chum escapement goal of 21,000 has been met or exceeded every year, except 1981 when 18,050 fish escaped to spawn. Fishery management iri Grays Harbor has been hampered by the high degree of overlap in timing between chincok, coho, and chum. Guerlaps in run timirg with rigrmal and late timed roho stocks have been particularly difficult to manage. There has been little flexitility irigear, time or area closures which could prouide protection of one species while the others were harvested.

The commercial gill net fishery in Willapa Bay has been conducted in the harbor with sport fisheries occurring in the tributaries (Figure 15). The chum management period extends from Detober 15 November 1. Fishing effort has been directed upon the early portion of the management period to increase the quality of the catch. The commercial catch has ranged from a high of 203,000 in 1942 to a low of 1,200 in 1979 (Table B). The Willapa Bay chum escapement goal of 35,400 has been met or exceeded three out af the five years between 1980-1984. Haruest rates during this period ranged from 34-70 percent (Table 23). Fishery management in Willapa Bay is also complicated by timing overlaps between chiriook, coho, and chum.

A treaty Indian gillnet fishery for hatchery chum occurs in the lower Quinault River. Harvest rates are based upon hatchery escapement needs. Historical catches in the tribal fishery have followed a pattern samewhat similar to Grays Harbor and willapa Bay fisheries although wild chum have not recovered to the same exterit.

C. Dregon

Gill net fisheries for ehum aperated in Tillamook Bay and Nestucca Bay (Figure 16) before these stocks declined. The net fisheries in Tillamook (Table 24) and Nestucca bays were terminated in 1961 and 1927; respectively. Henry (1954) reported 62-113 gill net and 123 - 216 set. net licenses operating in Tillamook Bay from 1933-45. During the years this fishery operated, there was a decilie in both the catch and escapement to index streams. Sirice the closure, escapement has recouered in some spawning indexes.

The Columbia River net fietiery has haruested chum in fairly large numbers of up to 425, 000 iri 1942 (Table 25). However, as this run declined directed riet fisheries were terminated. Fresent net harvest of chum is takeri incidental to coho fisheries in october.

Qregori coastal chum are riow harvested by recreational hoak and line fisheries and at hatehery racks by private operators (small incidental catches in the ocean fisheries occur in some years). The recreational catch has increased in recent years due to
greater angler interest and pressure. Most of the catch comes from the Miami and Kilchis rivers (Table 26) which flow into Tillamook Bay. Small numbers of chum are caught in other Tillamook Bay rivers incidental to chinook and steelhead fisheries.

III. STOCK ASSESSMENT TEEHNIQUES

A. Fuget Sound

Freseason Forecast Methodalogies:
Since the early 1970 s, preseason forecasts for Puget gound chum have been made for the run size (net catch plus escapement) entering United States waters at the mouth of the Strait of Juan de Fuca (Area 4B). The methods used to forecast the ruris have varied from year to year with no single best preseason forecast method for Puget Sound chum stocks identified at this time.

Hatchery run sizes have been forecast using observed returns for Known releases by numbers, and/or pounds, of chum fry. These forecasts have been hatchery/facility specific in most cases. When information for a specific hatchery was not available information from the nearest facility with similar stocks was used until suitable information became auallable.

Prior to 1974 no wild stock run size forecasts were made and preseason planning was based on estimated relative changes in abundance. From 1974 through 1979 forecasts of wild run sizes were developed for major regions within Puget Sound based on the previous year's return of three year olds to predict four and five year old returns, and a mean recruit per spawner estimate to predict the three year old return. These forecasts were then further apportioned to individual stocks or management units based on the escapement goal proportions.

Beginning in 1980, total Puget Sound wild stock run size to United States waters was correlated with environmental variables (e.g. mean sea and air temperatures, stream flows, and salinities) to forecast total return. This forecast was then apportioned to regions using observed parent year escapements. In 1983 and 1984, indices of juvenile abundance were used in addition to envirormental variables. Also in 1983 and 1984, the correlation method forecasts were averaged with forecasts made for individual regions, using observed returis by age class and brood escapements, to abtain the final preseason wildrurisize forerasts.

The performance of the preseason forecast methodologies on an animal basis shown iri Table 27.

Inseason Run Size Estimation Methodologies:

Inseason estimates of Puget Sound chum run size have generally been made in each terminal region. These estimates have been derived using relationships between observed fishing statistics, e.g. catch per landing by purse seines or gillnets, and run sizes. For areas where ro satisfactory methods had been identified the preseason ruri size forecast directed management actions. The total run entering area $4 B$ was estimated by using inseason estimates of run strength entering the terminal areas and adding apportioned catches for mixed stock fisheries based on relative stock strength estimates for all contributing stocks in each catch area (Table 28).

The ferformance of the inseason run size estimation methodologies is also shown in Table 27.

Escapement Estimation:

Fuget Sound escapement estimation methods were re-evaluated in 1983 on the basis of results from several major tagging studies. This re-evaluation resulted in a number of significant changes in the chum escapement data base, particularly for north Puget Sound rivers; and consequentiy in the Puget Sound run reconstruction data base and escapement goals.

Chum salmon escapement estimates for Puget Sound stocks are developed from wisual spawning ground counts made primarily on foot or by boat. Approximately $1,000 \mathrm{miles}$ of chum salmon surveys are conducted each spawning season. The basic methodology used to convert spawner counts to total escapement is through the construction of escapement curves. Live counts for each stream or index area are used to generate a curve representing total spawner abundance. For smaller streams where the majority of the spawners can be counted, an average survey life value is used to convert the area under the curve into an estimate of total escapement. Escapement estimates for large rivers are derived by relating index area counts to base year estimates of total escapement developed from tagging studies.

Escapement Goals:

Escapement goals have been established for all management units within Puget Sound. For chum salmon, most management units correspond to stocks returning to each individual stream or river drairing directly into salt water, and terminal area management is directed to achieving these goals.

Escapement goals for Fuget Sound stocks are derived by a variety of methods. Generally, they are based on either an average of observed escafements for selected vears <e.g. the average of the three highest escapements in the last 10 years), or through an examination of spawner/recruit relationships. Mast Puget Eound
chum stocks exhibit an odd/even year difference in production, with even year returns the largest. For streams where this pattern can be demonstrated, the odd year escapement goals have been adjusted accordirigly.

Run Reconstruction, Etack Composition and Travel Time:

Stock composition estimates in areas 4B, 5, 6, 6A, 6C, 7, and 7A were originally established as a result of U.S./Canada consultations in 1971. Subsequent increases in chum production in Puget Sound led to modification of most of these estimates by the United States in 1979 (Table 28), and those estimates have been used to date for both inseason management and postseason run reconstruction.

Run reconstruction for Fuget Sound stocks has generally been accomplished using the assumed U. S./Canada stock composition estimates described above, and the fraction of the harvest in an area assigned to individual Puget Sound stocks on the basis of projectedrun strength for inseason analyses and spawning escapement and terminal area cateh for postseason analyses.

Genetic stock identification (GSI) of chum stocks is in its infancy in Washington State. WDF is in the process of establishing a production lab, and baseline samples were collected from all puget sound stocks in 1985. It is anticipated that, for mixed stack chum fisheries, GSI methods may provide useful estimates of Eatch composition. Use of GSI stock composition data will be implemented on a situational basis.

A review of past Washington Department of Fisheries tagging studies on chum salmon migration, found three sources for information on mixed stock marine area fisheries containing both U.S. and Canadian origiri chum:

Barker (1979) assembled and summarized travel time information from a variety of WDF tagging studies conducted between 1950 and 1974, The intent of these studies was to irivestigate the contribution, migration, and origin of Washington chum stocks, however incidental recoveries in Canadian waters were also documented.

Fiscue (1968) reported on the results of a major 1968 chum salmon tagging program at Discovery Bay (area 6B) arid various locations on Admiralty Inlet, with subsequent recoveries in fistieries and freshwater areas of Puget Sound. Of 2,247 total recoueries, 6 (0.27\%) were recovered in Canadian areas. This apparent coritribution level by Canadian fish must be below the actual contribution since no directed recovery efforts were made in Canadian waters. No travel time information has been assembled from this study (riot included iri Barker's summary), however, the Squaxin Island Tribe is currently attemptirig to develop travel time information through a re-analysis of the raw data.
Fiscus, et al. (1975) conducted a tagging study on the 1974
return of chum to the West Beach - Rosario Bluff region
(areas 6A and 7). A total of 30 chum (11.49\%) of the 261
recoveries came from Canadian waters. Other areas of
fishery recovery (e.g.- Salmon Banks) undoubtedly included
fish of Canadian origin, and as with the 1968 study,
estimates of Canadian contributions are probably
conservative because recovery efforts were limited to
Washington waters. Specific travel time information is not
included in the report, however, each tag recovery is
identified by taggirig date, tagging location, recovery date,
and recovery logation. Individual travel times can be
easily assembled.
Travel time data that are auailable are presented in Fiscue
(1968), Fiscus, et al. (1975), and WDF Technical Report 48
(Barker, 1979). Tables 27 and 30 provide summarles of these
results excerpted from these reports.

B. Washington Coast

Forecasted chum returns to Grays Harbor and Willapa Bay have been based upon auerage returns per spawner by age group adjusted by return rates observed for prior ages from the same brood. The averages are calculated separately for odd and even brood years which shoul different survival patterns. This methodology has been used for only the past four years and an evaluation of this technique is not completed.

Chum forecasts for the Quinault River are based upon average survival rates obserued at Quinault NFH.

Inseasgn updates of runi strength have been based upon a one week full fieet test fishery in willapa Bay. This update is used to adjust run sizes in both Grays Harbor and Willapa Bay.

Escapement estimates in the Grays Harbor drairiage are derived by comparing annual index area counts with a base year in which there was an estimate of the total escapement, In Willapa Bay, where no comprehensiue escapement studies have been made, escapement estimates are based upon live count curves where the area under the curve represents the estimated escapement. These estimates are then expanded to uncounted areas.

C. Oregon

Escapement estimates far the lower Columbia River and Oregon's naturally spawning chum stocks are mot available. Fopulation trends are monitored using 三paunimg index areas. Peak counts and average fish per mile in these indexes are used to monitor trends iri escapement.

Henry (1964) conducted a tagging study in 1553 to estimate the run size and escapement of the Tillamook Bay chum run. He estimated a total run of approximately 54,000 from which a commercial catch of 20,878 was taken. However, this study was conducted at a time when the stock was decilining and the relationship of this estimate to the present run is unknown.

IU. MANAGEMENT PROCESS
A. Puget Sound

The functional relationship between the treaty Tribes and the Washington Department of Fisheries (WDF), in regards to fisheries management, was originally established by the Federal Court ir 1974 at the same time that specific treaty and non-treaty allocations were established. Subsequentiy, at the direction of the court, the Puget Sound Tribes and WDF negotiated a set of rules governing that relationship and establishing a procedure for annual management planning. This plan, called the puget Sound Salmon Management Plan (PSSMP), was first negotiated between the parties and adopted by the court in 1977. After eight years of experience under the original PSSMP the parties had identified a number of shortcomings with the plan and a need to be more comprehensive. A revised PSSMP was negotiated between the parties and adopted by the court in 1985. This plan provides a detailed strategy and time schedule for preseason planning and inseason management.

A major objective of the FSSMP is to obtain preseason agreement on detailed management strategies and to document this agreement to minimize inseason disputes. Specifically, the PSSMP provides rules for establishing and modifying escapement goals, management periods, harvest rates and test and evaluation fisheries. It establishes a procedure for technical review and agreement on current and long term enhancement planning. The plan also provides a procedure for regulation notification; a schedule for the preparation of reports and a mechanism for dispute resolution.

Freseason planning under the PSSMP is conducted according to a fixed schedule (Table 31). In general, this schedule is based on the availability of spawning escapement data, hence total run size, from the immediately preceding return year. For runs to Puget Sound, preseason forecasts are first developed in April. Several weeks later the plan calls for a technical review and resolution of any forecasting disputes and final agreement on forecasts. Following the development and agreement on preseason forecasts, proposals are exchanged between the tribes and wDF on escapement goals, annual erihancement plans and management recommendations. This step occurs in the May-June time periad. Differences in proposals are first reviewed at the technical level and as many as possible are resolved. A consolidated draft
management recommendation report is then prepared and submitted to the administrative/policy level for resolution of any remainirig differences. Final preseason reports (status reports) are available in July. Separate reports are developed for inseason run size estimation methods. These reports are completed on a silghtly later time schedule.

If preseason planning is thorough, and occurs as scheduled in the PSSMP, and if the salmon runs return as expected, inseason disputes are relatively rare. The preseason agreements of the parties are generally binding inseason unless both parties agree to a modification. Inseason disputes most often arise when actual inseason conditions deviate significantly from what was anticipated preseason and the parties agree that the preseason plan is no longer appropriate, but cannot agree on the necessary ctianges. If agreement cannot be reached, for whatever reason, the PSSMF establishes a dispute resolution mechanism to resolue any disputes, preseason or inseason. In addition, the Federal Court maintains continuing jurisdiction over management and allocation and is available as a last resort for dispute resolution.

Fisheries in Puget Sound other than those in the Strait of Juan de Fuca, San Juan Islarids and Point Roberts areas, are generally managed to meet the needs of the weakest stock present. Most of these fisheries are terminal in nature and harvest only a few stocks or stock groupings. Specific harvest quotas are established for most stocks or stock groupings of concern (management units), based on the estimated run size entering Puget Sound minus the escapement goal. Fisheries in the inside areas of Puget Sound are initiated based on the preseason forecast of aburidance. Models for inseason updating of the run size estimates are used wherever technically feasible. Generally, these update models prouide inseason estimates of abundance after the first week or two of fishing, and provide successive updates, at weekly intervals, through the peak of the runs. Fisheries in any given area gerierally are closed once any management unit passirig through that area no longer has harvestable rumbers of fish remainirg. Openings and closures of fistieries are also dictated by domestic allocation requirements.

B. Washington Coast

Preseason forecasts and harvestable numbers of Grays Harbor and Willapa Bay chum are published by WDF and distributed to treaty managers and non-treaty fishermen. WDF and the tribes negotiate fishing schedules designed to achieve allocation quotas. Disputes are normally mediated by the Court's Fisheries Advisory Board. WDF also holds putilic hearings with mon-treaty fishermen to gather input on proposed fishirg schedules.

LITERATURE CITED

Anonymous. 1975. Status Report, Columbia River Fish Runs and Commercial Fisheries, $1938-70,1974$ addendum. Joint Investigational Report, Fish. Comm. of Oregon and Wash. Dept. Fish., Vol. 1, No. 5, pp. 1-44, January 1975.

Anonymous. 1985. Columbia River Fish Runs and Fisheries, 196084. Oregon Dept. Fish Wildl. and Wash. Dept. Fish. 70 pp.

Barker, M. 1979. Summary of salmorn travel time from tagging studies, 1950-1974. Wash. Dept. Fish., Tectinical Report No. 48, 30 PP .

Fiscus, G. 1968. State of Washington Department of Fisheries 1968 Annual Report, pp 12-19. Wash. Dept. Fish.

Fiscus, G.I., D.L. Hanson and F.J. Vanderwerff. 1975. The 1974 West Beach - Rosario Bluff chum tagging study. Wash. Dept. Fish. Unpublished report. 26 pp.

Henry, K.A. 1954. Age and Growth Study of Tillamook Bay Chum Salmon. Fish Comm. of Dregon, Contribution No. 19, Portland, Or., 28 pp.

Henry, K.A. 1964. Oregon Coastal Salman and Steelhead Tagging Program. Part 1, Tillamook Bay, pp. 1-41. Fish. Comm, of Oregon, Contribution No. 28, Portland, Or.

Northwest Indian Fisheries Commission, Puget Sound Indian Tribes and Wash. Dept. Fish. 1986. Puget Sound salmon management periads and their derivations. Rescurce Management Document. 16 PP .

Wash. Dept. Fish. and Puget Sound Indian Tribes. 1985. Puget Sound Salmon Management Plan. SAdopted U.S. District Court October 17, 1985-626 F. Suppl. 1527). 42 pp.

TOTAL PUGET SOLAND CHLM RLN SI2E BY RLIN TIME AND STOCK, 1968-1984

Source: WDF Stock Strength Calculation Summary, 18 April 86.

TABLE 2

WILD PUGET SOLND CHIM RIN SI2E BY RIN TIME AND STOCK, 1968-1984

YEAR		EARLY CHUR		:			NORTASL CHUM				: LATE CHUM:				
		SOUTH		:					S0uTh			SOUTH			
		PUGET	H000	;		NOOKS-		STILLY-	PUGET	H000		PUGET		AANLAL	
	STRAIT	SOLND	CAMAL	:	STRAIT	SAMISH	SKAGIT	SNOHOH	SOLND	CAMAL	:	SOLND		TOTAL	YEAR
1968															68
1969	1,694	8,310	16,063	:	3,022	32,725	23,695	37,401	78,177	43,325	:	35,125		279,537	1969
1970	1,658	11,244	21,800	:	3,081	38,736	134,653	102,892	97,388	65,455	:	49,444		526,351	1970
1971	1,562	14,363	26,384	:	3,936	12,874	51,451	22,713	110,847	59,598	:	22,299		326,027	1971
1972	1,917	135,422	52,358	:	4,303	31,941	168,078	70,966	279,408	97,883	:	59,919		902,195	1972
1973	1,477	41,245	25,525	:	2,999	43,826	91,964	31,020	189,758	62,391		54,869		545,074	1973
1974	1,570	22,589	13,991	:	2,037	21,322	180,956	78,634	171,831	92,844		61,142		646,916	1974
1975	1,873	8,493	27,327	;	1,074	14,222	19,676	12,427	60,049	28,579	:	14,724		188,444	1975
1976	2,470	76,534	76,773	:	4,883	24,636	133,631	89,608	247,800	116,392	:	54,217		826,944	1976
1977	1,611	9,925	25,837	:	2,096	52,506	44,148	36,612	215,594	114,916	;	53,439		556,684	1977
1978	2,354	15,098	26,552	:	2,194	32,952	231,214	121,936	298,729	353,512	:	55,414		139,955	1978
1979	785	1,529	7,742	:	464	30,743	39;021	10,093	26,841	29,886		28,941		176,045	1979
1980	5,450	14,543	16,058	:	12,851	31,759	112,489	69,243	275,969	77;167	-	73,010		688,539	1980
1981	1,060	13,365	7,440	:	8,709	78,112	76,842	61,814	151,957	73,224	:	51,664		524,187	1981
1982	2,047	6,881	12,132	:	4,226	99,825	273,123	248,383	190,646	89,066	:	51,133		977,462	1982
1983	1,607	4,775	7,561	:	5,808	67,722	31,164	23,252	136,389	46,282	!	27,809		352,369	1983
1984	1,559	18,914	5,736	:	10,161	122,664	51,592	99,123	225,784	96,799	;	64,645		696,977	1984
EWN PN	2,296	38,163	30,582		5,127	47,559	152,537	107,986	220,286	122,215					
ODD HN	1,459	12,751	17,985	:	3,514	41,591	47,245	29,417	121,202	57,275		36,109		368,546	ODD N
MEAN	1,902	26,204	24,654	;	4,368	44,751	102,988	71,012	173,658	91,655	;	47,410	;	588,601	MEAN

Source: WDF Stock Strength Calculation Sumary, 18 April 86.

ENHANCED PUGET SOLND CHIN RUN SIZE BY RIN TIME AND STOCK, 1968-1984

Year	STRAIT	EARLY CHIM SOUTH puget SOUND	$\begin{array}{r} \text { HOOD } \\ \text { CANAL } \end{array}$:\vdots	STRAIT	NOPWAL CHIM					: LATE CHIM :				
						NOOKS-	STILLY-		SOUTH	H000	South		:	A ANULAL	
									Puget			PUGET			
						SAMISH	SKAGIT	SNOHOY	SOLND	CAMAL		SOLND		TOTAL	Year
1968	0	0	0	:	0	145	0	0	553	11,911		0	:	12,609	1968
1969	0	0	0	:	0	1,101	0	0	126	9,393		0		10,620	1969
1970	0	0	0	:	0	307	0	0	1,431	19,533		0	:	21,271	1970
1971	0	0	0	:	0	194	0	0	512	15,192	:	0	:	15,898	1971
1972		0	0	:	0	160	91	0	1,834	20,790	:	0	:	22,875	1972
1973	0	0	0	:	0	202	0	0	1,204	29,988		0	:	31,394	1973
1974	0	0	0	:	0	79	0	0	1,172	43,795		0		45,046	1974
1975	0	0	0	;	0	0	0	-	79	18,738	:	0	:	18,817	1975
1976	,	19,528	0	:	0	0	103	0	20,014	72,086	:	470	:	112,201	1976
1977	0	1,250	0	:	0	1,761	7,956	408	4,417	97,707	:	1,827	:	115,326	1977
1978	0	2,192	0	:	0	3,153	494	190	73,982	247,864	:	6,177	:	334,052	1978
1979	0	842	0	:	56	1,786	13	1,010	7,601	95,550	:	2,280	,	109,138	1979
1980	0	8,458	0	;	1,233	3,448	98	17,810	123,360	166,453	:	6,063	:	326,923	1980
1981	0	3,517	0	:	320	6,923	1,284	8,415	64,927	120,472	:	2,688	:	208,546	1981
1982	0	6,658	0	;	565	12,908	2,638	3,127	148,395	195,615	:	3,739	:	373,645	1982
1983	0	8,906	0	:	108	6,880	40	6,660	60,600	160,071	:	8,875	:	252,140	1983
1984	0	10,066	0	:	857	5,443	0	24,096	63,611	327,669	;	22,292	:	454,034	1984
EWN	0	5,211		:	295	2,849	380	5,025	48,261	122,857	;	4,305	:	189,184	EN MN
ODD M	0	1,814	0	:	61	2,356	1,162	2,062	17,433	68,389	;	1,959	:	95,235	DDD ${ }_{\text {N }}$
MEAN	0	3,613	0	:	185	2,617	748	3,630	33,754	97,225	:	3,201	:	144,973	MEAN

Source: WDF Stock Strength Calculation Sumary, 18 April 86.

TOTAL PUGET SOLAD CHLM ESCAPEMENT BY RLN TIME AND STOCK, 1968-1984

Source: WDF Puget Sound Escapement Estimates, 17 May 86.

TABLE 5

WILD PUGET SOLND CHIM ESCAPEMENT BY RIN TIME AND STOCK, 1968-1984

Source: WDF Puget Sound Escapement Estimates, 17 May 86.

ENHANCED PUGET SOLND CHIM ESCAPEMENT BY RIN TIME AND STOCK, 196B-1984

		EARLY CHIM		:	NOPHAL CHLH						: LATE CHIM :						
							SOUTH			SOUTH	;						
		PUGET	H00D			NOOKS-		STILIY-	PUGET	H000		PUGET	:	ANNLAL			
YEAR	STRAIT			SOUND	CAAL	4	STRAIT	SAMISH	SKAGIT	9NOHOT	SOLND	CANAL		SOLND	:	TOTAL	YEAR
	,	0	0		-	------	------	0	----	----		---	:	6882	-----		
1968	0	0	0		0	120	0	0	111	6,651		0	;	6,882	1968		
1969	0	0	0		0	1,078	0	0	61	7,508		0	:	8,647	1969		
1970	0	0	0		0	302	0	0	550	15,557		0	:	16,409	1970		
1971	0	0	0		0	190	0	0	181	12,278		0	:	12,649	1971		
1972	0	0	0		0	148	79	0	385	12,786		0	:	13,398	1972		
1973.	0	0	0		0	158	0	0	319	20,427		0	:	20,904	1973		
1974	0	0	0		0	61	0	0	5,722	36,379		0	:	42,162	1974		
1975	0	0	0		0	0	0	0	9	15,566		0	:	15,575	1975		
1976	0	8,171	0		0	0	72	0	3,221	48,442		417	:	60,323	1976		
1977	0	448	0	.	0	454	6,486	167	597	35,066		938	:	44,156	1977		
1978	0	833	0		0	1,530	284	0	4,448	53,290		1,449	:	61,834	1978		
1979	0	486	0		40	1,595	8	0	4,812	53,423		1,964	:	62,328	1979		
1980	0	4,170	0		1,008	2,258	17	1,851	20,575	43,219		5,285	:	78,383	1980		
1981	0	1,607	0		309	2,565	283	1,793	7,831	21,661		2,537	:	38,586	1981		
1982	0	4,134	0		219	6,127	1,377	833	12,807	29,937		2,125	:	57,559	1982		
1983	0	3,126	0		93	2,970	4	2,597	8,403	23,983		1,503	:	42,679	1983		
1984	0	4,130	0	-	710	2,485	0	9,611	12,738	61,195		1,187	:	92,056	1984		
EWN M	0	2,382	0	;	215	1,448	203	1,----	6,729	34,162		1,163	:	------	EUN HN		
ODD M	0	708	0		55	1,126	848	570	2,777	23,739		868	,	30,691	ODD NN		
MEAN	0	1,594	0	,	140	1,297	506	991	4,869	29,257	;	1,024	;	39,678	MEAN		

Source: WDF Puget Sound Escapement Estimates, 17 May 86.

TABLE 7

WASHINGTON STATE

CHIM ENHANCEMENT BY REGION OF ORIGIN

(Number released in thousands.

REGION OF ORIGIN									
NOOKSACK-SAM1ISH	1,729	2,076	3,262	4,646	4,755	2,743	2,341	3,565	407
SKAGIT	3,230	3,136	514	8	24	0	741	0	0
STILLAGUAMI SH-SNOHOMI SH	5,140	5,568	617	168	2,312	1,680	1,993	1,948	10,147
SOUTH SOUND	23,479	9,001	23,211	17,160	24,044	11,151	16,106	12,081	15,832
HOOD CANAL	23,676	14,833	39,548	47,109	43,313	25,743	44,510	31,974	64,189
STRAIT OF JUAN DE FUCA	2,206	2,859	3,532	640	1,242	885	233	99	622
NORTH COAST, WASHINGTON	5,888	4,994	8,083	4,566	2,056	1,434	5,574	3,399	5,463
GRAYS HARBOR	1,624	914	7,305	2,015	4,291	1,007	5,249	765	897

SOURCE: WDF PROGRESS REPORTS, "A DETAILED LISTING OF THE LIBERATIONS OF SALMON INTD OPEN LATERS OF THE STATE OF WASHINGTON."

Number of chum salmon caught in Willapa Bay and Grays Harbor,
$1940-1984$.

Year	Willapa Bay	Grays Harbor
1940	50,900	23,900
1941	136,300	124,400
1943	25,300	85, 600
1944	44;300	15, 400
1945 1946	43, 600	24,400
1947	54;100	21,400
1948	78,400	26,'900
1949	41,100	17,600
Mean 1940-49	83,560	43,290
1950	104,900	41,500
1951	106,900	60,200
1953	80,600	46,800
1954	135,600	145, 100
1955	83,200	60,400
1956	59,300	26,100
1958	61, 600	37, 200
1959	67,100	73,500
Mean 1950-59	87,080	58,750
1960	43,900	19,700
1961	24,400	11,100
1963	12,100	21,100
1964	21,900	13, 600
1965	12,800	4,500
1966	7,500	11,400
1968	11,600	10, 800
1969	29,300	24,350
Mean 1960-69	20,750	12,925
1970	22,900	28,650
1971	17, 100	12,900
1973	35,400	35,'000
1974	35,700	29, 650
1975	23,600	13,200
1976	33,500	23,350
1978	29,700	17,400
1979	1,200	, 450
Mean 1970-79	26,400	21,005
1980	30,500	25,800
1981	19,500	20,900
1983	57,400	18, 650
1984	25,600	17,'850
Mean 1980-84	41,800	28,960

Catch and escapeeent data for Grays Harbor chue ruas, 1969-1984 (Hashington Departeent of Fisheries).

	Catch		Escapeeent				
Year	6ill Het	$\begin{aligned} & \text { River } \\ & \text { Sport } / 1 \end{aligned}$	Jotal	Hatchery	Mild	Total Run	Harvest Rate
1969	24,350		24,350	400	11,150	35,900	0.68
1970	28,650		28,650	450	15,700	44,800	0.64
1971	12,900		12,900	250	10,250	23,400	0.55
1972	46,900		46,900	350	8,000	55,250	0.85
1973	35,000		35,000	0	12,350	47,350	0.74
1974	29,350	300	29,650	0	8,300	37,950	0.78
1975	13,150	50	13,200	600	11,750	25,550	0.52
1976	23,000	350	23,350	1,200	11,650	36,200	0.65
1977	2,350	200	2,550	300	21,000	23,850	0.11
1978	17,050	350	17,400	1,400	11,000	29,800	0.58
1979	300	150	450	0	1,050	1,500	0.30
1980	25,650	150	25,800	2,550	24,700	53,050	0.49
1981	20,650	250	20,900	1,000	18,050	39,950	0.52
1982	59,300	2,300	61,600	2,900	35,100	99,600	0.62
1983	18,250	400	18,650	800	21,000	40,450	0.46
1984	16,450	1,400	17,850	1,050	23,700	42,600	0.42

11 River sport catches by species are unavailable prior to 1974.
Iotal run size and catch estieates from 1969-1973 will be biased low by the aeount of the actual sport catch.

Grays Harbor chue releases by brood year, 1965-1983 (releases \& 1000, Hashington Departeent of Fisheries).

FR

Mrood Year	Siepson	Hupptulips	Satsop Springs	$\begin{array}{r} \text { Egg } \\ \text { Boxes } \end{array}$	other $0 f f$	Total	Siepson	Humptulips	Satsop Springs	$\begin{array}{r} \text { Egg } \\ \text { Boxes } \end{array}$	0ther 0 Of	Total
1965	0	0	0	0	-	0	0	0	0	0	-	0
1966	0	0	0	- 0	-	0	0	0	0	0	-	0
1967	BO	0	189	0	-	269	0	0	0	0	-	0
1968	0	0	228	0	-	228	0	0	0	0	-	0
1969	0	0	422	0	-	422	0	0	0	0	-	0
1970	0	0	414	0	-	414	0	0	0	0	-	0
1971	0	0	612	0	-	612	0	0	0	0	-	0
1972	0	0	857	0	-	857	0	0	0	0	-	0
1973	0	0	932	0	-	932	0	0	0	0	-	0
1974	0	0	250	0	-	250	18	0	0	0	-	18
1975	0	0	0	0	-	0	250	0	0	0	-	250
1976	0	0	0	272	81	353	0	992	279	0	0	1,271
1977	0	0	0	0	0	0	0	586	139	189	0	914
1978	0	0	0	1,624	0	1,624	660	4,455	249	0	226	5,590
1979	0	0	0	0	90	90	0	24	0	0	0	24
19801	0	0	0	0	0	0	0	2,566	1,700	0	26	4,292
1981	0	0	0	0	0	0	0	154	854	0	0	1,008
1982	0	0	0	0	0	0	0	2,077	3,172	0	0	5,249
1983	0	0	0	0	0	0	0	440	325	0	0	765

1/ The Husptulips release includes large nuabers of Hood Canal stock.

Releases of chua salmon into the Hillapa Bay systen by brood year, 1966-1983 (releases X 1000, Washington Departaent of Fisheries).

Brood Year\qquad	Hillapa		Hemah		Haselle		Egg Roxes $04\{$	Co-op Projects	Total
	On	04%	0 O	048	On	$0 ¢ f$			
	----	----	----	----	----	----	---	----	--
1966	0	0	749	0	0	0	0	0	749
1967	0	0	412	- 0	0	0	0	0	412
1968	25	0	660	0	0	0	0	0	685
1969	0	0	667	0	0	0	0	0	667
1970	0	0	536	0	0	0	0	0	536
1971	0	0	965	0	0	0	0	0	965
1972	0	0	622	31	0	0	0	110	763
1973	0	0	771	0	0	0	0	200	971
1974	0	0	840	0	0	0	0	0	840
1975	0	0	922	0	0	0	0	0	922
1976 1/	0	0	954	0	0	0	475	1,368	2,797
1977	0	0	1,134	0	0	0	1,400	735	3,269
197821	0	0	1,540	0	0	0	960	218	2,718
1979	0	0	287	0	40	0	144	500	971
1980	0	0	2,000	0	1,858	0	0	476	4,334
1981	0	0	950	0	623	0	547	0	2,120
1982	0	0	2,159	0	4,127	0	805	0	7,091
1983	0	0	2,139	0	2,714	0	1,144	0	5,997

1/ Co-op projects include $1,055,000$ Hood Canal stock in the Maselle River systen.
21 Egg boxes include 500,000 Hood Canal stock in the Naselle Riyer systen.

Grays Harbor wild chue return rates by brood year. Age composition based upon scale sasples collected fros the conmercial catch (Hashington Departeent of Fisheries).

	Contributions				Return/Spawner			Total Contribution
Brood Year	Hild Escapement	3'5	$4 \cdot 5$	5 's	$3 \cdot 5$	4'5	5's	
1969	11,150	14,151	30,526	1,516	1.27	2.74	0.14	4.14
1970	15,700	13,225	25,431	413	0.84	1.62	0.03	2.49
1971	10,250	10,953	5,783	0	1.07	0.56	0.00	1.63
1972	8,000	18,104	29,356	846	2.26	3.67	0.11	6.04
1973	12,350	3,444	3,784	238	0.28	0.31	0.02	0.60
1974	8,300	18,871	24,130	180	2.27	2.91	0.02	5.20
1975	11,750	2,033	240	144	0.17	0.02	0.01	0.21
1976	11,650	1,080	21,645	983	0.09	1.86	0.08	2.04
1977	21,000	26,311	26,536	4,508	1.25	1.26	0.21	2.73
1978	11,000	10,282	B0,868	9,867	0.93	7.35	0.90	9.18
1979	1,050	6,440	9,633	455	6.13	9.17	0.43	15.74
1980	24,700	19,500	12,740		0.79	0.52		
1981	18,050	32,305			1.79			
1982	35,100							
1983	21,000							
1984	23,700							

Hillapa Bay wild chue return rates by brood year. Age coaposition based upon scale saeples collected from the comercial catch (lyashington Departeent of Fisheries).

		Contributions			Return/Spamner			Total
Brood Year	Wild Escapement	3's	4 [5	5's	3's	4'5	5's	Contribution
1968	13200	37708	58064	6664	2.86	4.4	0.5	7.76
1969	33900	17836	30940	760	0.53	0.91	0.02	1.46
1970	23100	9996	22708	0	0.43	0.98	0	1.41
1971	37600	21232	6620	143	0.56	0.18	0	0.74
1972	22400	27680	42494	0	1.23	1.9	0	3.13
1973	14500	5162	5700	0	0.36	0.39	0	0.75
1974	12200	41800	38682	900	3.43	3.17	0.07	7.42
1975	12600	3318	1725	0	0.26	0.14	0	0.4
1976	16500	4875	29014	2309	0.3	1.76	0.14	2.2
1977	40200	32586	25312	536	0.81	0.63	0.01	1.45
1978	18900	12758	117605	26199	0.68	6.22	1.39	8.29
1979	6400	15957	22544	1879	2.49	3.52	0.29	6.3
1980	35700	18956	29808		0.53	0.83		
1981	22100	32854			1.49			
1982	66400							

Releases of chum salmon into the Quinault river system by Quinault NFH and the Quinault Tribal hatchery, 1969-1984.

Release Year	Quinault NFH	Quinault Tribal
1970	38,600	
1971	619,700	
1972	$1,139,200$	250,000
1973	79,600	
1974	193,000	$1,500,000$
1975	$1,694,000$	669,000
1976	$3,121,900$	$1,330,000$
1977	$2,225,000$	$3,021,000$
1978	$1,961,500$	620,500
1979	$2,918,600$	150,000
1980	$1,980,000$	176,100
1981	$1,641,000$	$1,099,900$
1982	445,000	136,800

Peak counts of chum salmon in Tillamook Bay and Nestucea River tributaries, 1950-83.

TILLAMOOK BAY

YEAR	MIAMA RIVER	KILCHIS RIVER	$\begin{aligned} & \text { WILSON } \\ & \text { RIVER } \end{aligned}$	TILLAMOOK RIVER	NESTUCCA RIVER
	MOSS CR	CLEAR CR	LITTLE NO FORK	MAINSTEMa/	$\begin{aligned} & \text { CLEAR } \\ & \text { CREER } \end{aligned}$
1950	256	420	142	--	56
1951	193	699	712	--	73
1952	29	487	182	--	43
1953	330	780	104	--	5
1954	73	906	381	--	178
1955	14	201	97	--	35
1956	10	102	194	--	13
1957	54	351	172	--	88
1958	34	331	153	--	165
1959	7	87	152	--	36
1950-59					
AVERAGE	100	436	229		69
1960	0	2	20	4	6
1961 b/	6	13	27	39	57
1962	86	6	25	61	156
1963	39	5	109	62	196
1964	18	18	13	16	40
1965	0	0	61	18	35
1966	50	12	87	74	89
1967	31	3	25	41	72
1968	9	0	107	11	80
1969	4	1	50	15	35
1960-69 4 ${ }^{\text {19, }}$					
AVERAGE	24	6	52	34	77
1970	183	23	64	27	53
1971	73	2	94	13	45
1972	13	0	127	83	49
1973	333	3	474	68	109
1974	111	85	373	63	214
1975	173	22	310	66	34
1976	19	2	214	45	72
1977	--	--	124	122	116
1978	--	--	326	182	295
1979	--	--	82	14	18
1970-79					
AVERAGE	129	20	219	68	101
1980	4	75	724	43	87
1981	--	--	182	--	9
1982	191	532	825	--	45
1983	107	102	595	--	49
1980-83					
AVERAGE	101	236	582	43	48

a/ Nonstandard survey unit.
b/ Commercial gill net fisheries for chum salmon closed after the season.

Columbia River escapement of chum as measured by spawning ground counts from selected Washington tributaries, 1950-84.

YEAR	MILES SURVEYED	$\begin{gathered} \text { FISH } \\ \text { OBSERVED } \end{gathered}$	FISH/MILE
=======	==ニ====	$=======$	-
1950	0.5	475	950
1951	2.9	2,430	838
1952	2.9	2,087	720
1953	2.9	706	243
1954	0.9	650	722
1955	1.3	89	68
1956	1.2	242	202
1957	3.8	893	235
1958	2.5	412	165
1959	2.9	1,046	361
1950-59			
AVERAGE			450
1960	4.3	693	161
1961	2.6	854	328
1962	2.3	822	357
1963	5.4	1,041	193
1964	3.7	642	174
1965	6.5	528	81
1966	6.5	1,303	200
1967	6.5	909	140
1968	4.3	276	64
1969	6.5	600	92
1960-69			
AVERAGE			179
1970	4.0	414	104
1971	6.5	574	88
1972	6.5	1,086	167
1973	4.3	403	94
1974	6.5	277	43
1975	6.5	322	50
1976	6.5	271	42
1977	6.5	593	91
1978	6.5	426	66
1979	6.5	130	20
1970-79			
AVERAGE			77
1980	6.7	276	41
1981	4.0	56	14
1982	6.1	1,127	185
1983	5.8	317	55
1984	7.1	499	70
1980-84			
AVERAGE			73

FELEASES OF EHIH SALMDV INTG THE LOWEF EOLUMEIA AND DREGDN EOAGTAL FIUERE, 1972-1984.

RELEAEE YEAR	NUMEEFS THOUSAR		
	COLUMEIA FIVEF:	OFEGGN	TOTAL
1972	636	51	589
1973	564	277	841
1974	627	575	1,202
1975	0	2,793	- ,793
1976	1,127	2	1,127
1977	0	121	121
1978	50	465	515
1979	876	10,740	11,316
1980	835	8	843
1981	0	5,529	5,527
1982	625	1, 650	2,275
1983	125	5,572	5,717
1984	-	1,470	1,470

WEEKS-BEGINNING THE FIRST WEEK OF OCTOBEK
$\begin{array}{lllllllllll}\text { HEEK } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \text { TOTAL DAYS }\end{array}$

1950		6		6		6		6		6		6		6		6		5		53
51		5		5		5		5		5		5		5		5		5		45
52		3		6		6		6		6		6		6		6		6		51
53		6		6		6		6		5		6		1		0		0		36
54		6		6		6		6		0		0		1		6		3		34
55		5		5		5		5		3		4		0		0		0		27
56		2		2		2		2		2		2		2		2		1		17
57		0		0		0		0		4		1		0		0		0		5
58		2		4		4		4		4		4		4		4		4		34
59		1		0		4		4		4	-	4		4		1		1		29
1960		0		4		4		4		3		1		4		0		0		23
61		4		4		4		4		4		0		2		2		2		26
62		4		3		3		3		3		0		3		3		3		25
63		2		2		0		0		4		3		3		3		3		20
64		1		4		3		2		2		2		2		2		2		20
65		4		4		2		2		2		2		2		2		2		22
66		5		5		4		4		4		5		5		5		3		40
67		2		4		4		0		0		0		0		0		0		10
68		4		4		0		0		0		0		0		0		0		8
69		3		4		3		3		3		4		4		3		0		27
1970		1		5		4		2		2		2		2		0		0		18
71		4		4		2		2		2		2		2		0		0		18
72		4		3		4		4		4		4		2		0		0		25
73		3		3		3		3		3		3		3		3		3		27
74		0		0		0		0		0		0		0		0		0		0
75	a/	0	a/	0	a/	0	al	0	a/	0	a)	0	a/	0	a/	0	a/	0	$3 /$	0
76	7	0	7	0	7	0	7	0	7	0	7	0	0	0	0	0	0	0	42	0
77	7	0	7	0	7	0	7	0	7	0	7	0	7	0	7	0	7	0	63	0
78	7	0	7	0	7	0	7	0	7	0	7	0	7	0	7	0	7	0	63	0
79	6	0	5	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	16	0
1980	5	0	5	0	5	0	5	0	5	0	5	0	5	0	5	0	5	0	45	0
81	7	0	7	0	3	0	0	0	0	0	4	0	4	0	4	0	4	0	33	0
82	7	0	7	0	7	0	7	0	7	0	7	0	7	0	7	0	7	0	63	0
83	7	0	7	0	7	0	7	0	7	0	7	0	7	0	7	0	7	0	63	0
81	7	0	7	0	7	0	7	0	7	0	7	0	7	0	7	0	7	0	63	0

a/ Specific tribal regulations unavailable prior to 1976.

AREA 7,7A CHUH COMMERCIAL FISHERY OPERINGS (DAYS/HEEK)

HEEKS-BEGLHNJHG THE FIRST HEEK OF OCTOBER

1950		6		6		6		6		6		6		6		6		5		53
51		6		b		6		6		6		6		6		6		6		54
52		6		6		6		6		6		6		6		6		1		49
53		6		6		6		6		5		6		1		0		0		36
54		6		6		6		6		0		0		5		6		3		38
55		5		4		4		4		5		4		0		0		0		26
56		5		5		5		5		5		0		0		0		0		25
57		0		0		0		0		5		0		0		0		0		5
58		4		4		4		4		4		4		4		4		4		36
59		0		4		4		4		4		4		4		4		0		28
1960		0		4		4		4		4		4		4		0		0		24
61		4		4		4		4		4		0		2		2		2		26
62		4		3		3		3		3		0		3		3		3		25
63		3		2		0		0		4		3		3		3		3		21
64		4		3		2		2		2		2		2		2		0		19
65		5		4		2		2		2		0	.	0		0		0		15
66		5		5		5		0		0		0		0		0		0		15
67		2		4		4		0		0		0		0		0		0		10
68		4		4		4		2		4		4		4		2		2		30
69		4		4		311		5		4		4		3		0		0		27
1970		5		4		0		2		2		4		4		2		0		23
71		4		4		2		0		0		0		0		0		0		10
72		4		5		4		4		4		4		3		0		0		28
73		3		5		5		5		5		3		3		3		3		35
74		2		3		3		3		3		3		3		3		0		23
75		3		3		3		3		2		1		0		0		0		15
76	7	3	7	3	7	3	7	3	7	3	7	3	7	3	7	3	7	0	63	24
77	7	3	7	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	14	5
78	7	3	7	3	7	3	7	3	7	3	7	3	7	3	7	3	7	3	63	27
79	0	011	3	011	0	011	0	0	0	0	0	0	0	0	0	0	0	0	3	0
1980	7	3	7	3	7	3	7	3	7	3	7	3	7	3	7	0	0	0	56	21
81	0	011	0	$01 /$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
82	0	011	3	011	5	111	7	$21 /$	7	011	4	011	0	011	0	011	0	$01 /$	26	3
83	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
84	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Average and peak daily () fishing effort directed at Canadian origin chum salmon. (Data shown for fishery dates Dctober 01 - Nowewber 30 in years when there was a fishery). 1/

GERR TYPE

$1 /$ Effort in area 6 is included in area 7; area 6R was closed for all years reported. $2 /$ Directed chu fishing did not occur.

Pugget Sound Commercial Management Periods for Adult Salmon

MEA	SP CHIN	S/f CHIK	PINK	COHO	E CHU	n Chum	$\underset{=x=1 \text { CHUN }}{ }$	$\begin{align*} & \text { EARLY } \tag{1}\\ & \text { SOCK } \end{align*}$	
48	4/15-6/15	715-9/6	6/20-10/7	8/17-9/29	-----	$9 / 26-12 / 4$	11/4-12/14	6/1-7/28	6/20-10/1
5	4/15-6/15	7/5-9/6	6/20-1017	8/17-9/29	-----	9/26-12/4	11/4-12/14	6/1-7/28	6/20-1011
6	4/15-6/15	6/9-9/6	6/23-9/8	8/24-10/21		9129-1217	11/7-12/17	6/3-8/4	6/20-1011
6 A	4/15-6/15	6/9-9/6	6/23-9/8	8/24-10/21		9/29-12/7	11/7-12/17	$6 / 3-8 / 4$	6/20-10/1
68	4/15-6/15	7/1-9/2	7/9-9/11	8/31-10/14	8/9-10/4	10/5-11/23	11/14-12/24	6/3-8/2	
6 C	4/15-6/15	7/5-9/6	6/20-10/7	8/17-9/29		9/26-12/4	11/4-12/14	6/1-7/28	6/20-10/1
60	4/15-6/29	7/21-9/21	6/30-9/21	9/20-10/2B		10/27-12/7			
OUMGELESS R	4/15-7/20	7/21-9/21	717-9/21	9/24-11/13		11/14-12/18			
Eluta R	4/15-7/20	7/21-9/21	7/7-9/21	9/24-11/13		11/26-12/18			
SExIU R		8/18-9/28		9/22-11/2		11/3-11/30			
Hex R		8/18-9/28		9/22-11/2		11/3-11/30			
DISC/SEP BAY				10/2-11/30	9/15-11/2				
HISC STR TRIBS		8/18-9/28		9/24-11/2		11/3-11/30			
	4/15-6/15	6/9-9/6	6/23-9/8	8/24-10/21	-----	9/29-12/7	11/7-12/17	6/5-7/28	6/20-1011
7A	4/15-6/15	7/30-9/13	7/9-9/11	8/4-10/13	-----	10/6-11/11	11/7-12/17	6/5-7/28	6/20-10/1
7B	4/15- <2>	-917 (2)	6/30-8/17	9/8-10/26		10/27-12/14			
MOOKSACK R	4/15- $41 / 2\rangle$	-9/14 ${ }^{\text {(2) }}$	-9/14	9/15-11/2		11/3-1/15		-----	
	4/15-	- MID OCT		10/15-10/26		10/27-12/14			
SAMISH R		- HID OCT		10/15-11/2		11/3- <2			
78				9/8-10/26		10/27-12/14			
SKA6IT ${ }^{8}$	4/15- (2)	-8/31	8/22-9/15	9/2-10/27		10/25-11/28		6/24-7/13	
SKAGIT R ${ }^{\text {a }}$	4/15- 2 2	-8/31	$8 / 22-9 / 15$	9/2-10/27		10/25-11/28		$6 / 24-7 / 13$	
3	4/15- 415	-977	${ }_{\text {8/22-92- }}$	9/9-11/3		(11/1-12/5 $11 / 8-$		7/1-7/1/22	
4	4/15- 2 2	(2)	8/29-	9/23-		11/15-		7/1-7/22	
8A ${ }^{45}$	4/15- (2)	(2)	8/29-	$9130-$		11122-		7/1-7/22	
STILLAGUAMISH		7/21-9/9	8/9-9/9	9/10-10/21		10/22-11/30		----	
STILlaglamish SWOHOMISH R	4/15-6/29	7/1-9/21	8/9-9/23	9/7-10/28		10/29-12/7			
${ }^{\text {Smon }}$ BD		7/21-9/25	8/9-919	$9 / 90-10 / 21$		$\begin{aligned} & 10 / 22-11 / 30 \\ & 10 / 31-12 / 25 \end{aligned}$		----	
9	4/15-6/15	711-9/2	7/9-9/11	8/31-10/14	8/9-10/4	10/5-11/23	11/14-12/24	6/3-8/4	
9 A				9/18-11/11		11/12-12/21			
10	4/15-6/29	7/1-9/7	8/18-9/18	9/8-10/12	9/8-10/11	10/12-11/20	11/21-1/1	6/10-8/4	
CUA/GREEM R		7/1-9/14		9/15-11/2 $9 / 29-11 / 9$		$11 / 3-1 / 30$ $11 / 10-11 / 30$			
10 C		711-9/28		9/29-11/30				6/10-12/31	
100		7/15-10/5		10/6-12/14				6/10-12/3i	
100		7/1-9/13		9/14-10/11	9/28-10/11	10/12-12/31			
10 F		7/1-9/14		9/15-11/30				6/10-8	
111		711-9/28		9/29-11/30				6/10-12/31	
${ }_{11}^{11}$	4/15-6/29	7/1-9/10	8/18-9/10	9/11-10/21	9/10-10/11	10/12-11/20	11/21-1/8		
	4/15-6/29	7/1-9/5	8/18-9/5	9/6-10/18		10/19-12/10			
PU1TER	4/15-6/29 $4 / 15-9 / 28$	7/15-9/10	8/22-9/13	$9 / 11-10 / 23$ $9 / 14-10 / 23$		10/24-12/14			
12	4/15-6/29	7/17-9/6	7/16-8/24	9/7-10/18	8/16-9/22	10/16-11/20	11/21-12/7	-----	
12A	4/15-6/29			9/1-10/13	8/26-9/26	10/14-11/27	11/28-12/21		
Puilcere R	4/15-8/31			9/1-11/9	9/8-10/19	11/26-12/21			
12 B	4/15-6/29	7/17-9/6	7/16-8/24	917-10/18	8/16-9/22	10116-11/20	11/21-12/14	-----	
12 C	4/15-6/29	7/24-9/6	7/23-8/31	9/11-10/25	8/26-9/26	10/24-11/27	11/29-12/21	-----	
SkOKOR15 ${ }^{\text {a }}$	4/15-7/126	8/6-9/20	-----	9/18-11/6	9/8-10/19	11/9-11/30	12/1-1/4	-----	
	4/15-6/29	7/24-916		9/11-10/25	8/26-9/26	10/24-11/27	11/28-12/21		
H000 C TR1BS		8/6-9/20	9/1-10/19	9/18-11/6	9/8-10/19		11/9-1/4		
	4/15-6/29	7/1-9/24	8/10-9/25	9/25-11/6	9/17-10/11	10/12-11/30	12/1-1/15	-----	
MCALLISTER CR		7/1-9/30	8/25-9/30	$10 / 1-11 / 20$ $1011-11 / 30$			- $12 / 1 / 1-2 / 3$		
13 A	4/15-8/10	8/8-9/16	B/16-9/17	9/17-11/9		10/23-11/29	11/20-12/31		
135		7/15-10/13		10/14-11/30		10/13-11/30	12/1-1/16		
130		7/1-9/21		9/22-10/12		10/13-12/31			
13 F		7/1-9/21		9/22-10/12		10/13-12/31			
$13 F$		711-9/21		9/22-11/6		11/7-12/12			
136		7/1-9/21		9/22-11/6		11/7-12/12			
13.1		7/1-9/21		9/22-10/12		10/13-12/31			
131		711-9/21		9/22-10712		10/13-12/31			
${ }_{1}^{13 \mathrm{~J}}$		7/1-9/21		9/22-10/12	$\begin{aligned} & 9 / 22-10 / 26 \\ & 9 / 22-10 / 26 \end{aligned}$		$\begin{aligned} & 11 / 7-12 / 31 \\ & 11 / 7-12 / 31 \end{aligned}$		

<1, hamagement periods adusted ammually for adhinistration of fisheries.
(2) MAMAGEHENT PERIOD CURREMTLY UHDER TECHHICAL DISPUTE.
(--) ISTOCK PRESERT BUT WO MAMAGEHEHT PERIOD ESTABLISHED.
ISTICK
WOT PRESENT.
sOurce : puget solnd mahabehent periods and their derivations - tribal/wdF peport, hay 1986.

Commercial catch summary of chum salmon in Puget Sound by area(s) for 1935 through 1984 (continued next page)

MERR	GB-9		$\begin{array}{r} 6- \\ \text { IMDI } 8{ }_{1}^{6} \end{array}$	$\begin{aligned} & -7 \\ & \text { HONY-I MDIPN } \end{aligned}$	7 A IMOT PM	HOH-IMDI PM	IMDIFA	IMDI PN	IMDI F	HON-I WDI PW	OTHER PUGET SOUND RREAS	torar plaset gound catca
1935	0	299.016	0	42,633	0	24.952	0	1.742	0	118.471	203.095	718.631
1936	0	182.230	0	44.972	0	27.429	0	0	0	138,699	390,031	703,361
1937	0	303,096	0	26,858	0	35,248	0	0	0	126,000	275.201	765, 403
1938	0	360,968	0	12,918	0	13.992	0	0	0	94,061	325.234	807.173
1939	0	114.420	0	17.145	0	22.143	0	0	0	29.561	148,181	331,450
1935-1939												
PVERAEE	0	251,946	0	28.905	0	24.753	0	348	0	101,358	268,508	675.819
1940	0	156,717	0	13.133	0	11,687	675	0	0	94.019	288,824	565,055
1941	0	231.085	0	24.475	0	11.843	434	0	0	99. 130	304.224	671.191
1942	0	256,472	0	19,238	0	25.055	10	0	0	54, 139	258,257	613,161
1943	0	115.464	0	0	0	9,939	- 0	0	0	25,693	245,075	396,141
1944	0	59,305	0	3.033	0	5.451	0	577	0	38,150	193,098	308,550
1945	0	155.147	0	9.821	0	7.716	0	2	0	17.136	230,635	420,457
1946	0	483. 146	0	16.461	0	47.104	0	396	0	99,667	656,289	1.303.063
1947	0	232,891	0	12,354	0	7.8-66	0	0	0	44.639	279.630	577.360
1948	0	339,478	0	58,666	0	30,701	0	318	0	59,874	120,785	909,822
1949	0	102,490	0	29.922	0	6,335	0	0	0	35.725	263,553	437.825
1940-1941												
AVERAGE	0	213.220	0	18.710	0	16,368	111	129	0	56.817	314,014	619,369
1950	0	224.972	0	113,694	0	71,058	0	2.491	0	107.358	366,918	885. 991
1951	0	228.593	0	48. 125	0	72,247	0	71	0	65.975	361,009	796,010
1952	0	241,760	0	60,941	0	78.763	0	0	0	112.169	279.249	772,882
1953	0	128,488	0	29.578	0	19.126	0	0	0	35,135	133.966	346,293
1954	0	96,865	0	24.711	0	37.070	0	0	0	30,361	233,773	422,780
1955	0	50,220	0	34.892	0	30,632	0	29	0	16,204	80,303	212.360
1956	0	25.694	0	15.797	0	11,040	0	0	0	4.700	48. 115	105,346
1957	1	11,328	0	1,448	0	5.676	0	151	0	4.489	80.402	103.495
1958	0	103. 194	0	26,838	0	22,847	0	2.157	0	43.934	221,933	420,903
1959	0	69,316	0	29,963	0	26.464	0	3.113	0	36.318	195.923	361,097
1950-1959												
AUERAGE	0	118,042	0	38,599	0	37.492	0	801	0	47.672	200.159	442,766

- Total includes son catch (i.0. 27925 fish in 35 and 8936 fish in 49 not discriminoted by area.

VEPR	68-9		$6-7$		7R ${ }^{\text {TR }}$		IMOIPM 5,6C		${ }^{68}$		OTMER PUGET SOUN PREAS	total pleget SOUMD CATCH
1960	0	37.324	0	6.712	0	19,683	0	578	0	8, 182	62241	135,020
1961	0	26,779	0	10, 164	0	11,203	0	63	0	5,172	79863	133.244
1962	0	10,463	0	6,695	0	5,531	0	102	0	4.740	116150	173.681
1963	0	82,717	0	5,798	0	7.269	0	1.126	0	10,054	1875	295.362
1964	0	119,617	0	6,304	0	0,665	0	1.366	0	6,680	104714	247.346
1965	0	101,007	0	4.897	0	3. 161	0	634	0	1,427	80482	191,698
1966	90	185,878	0	3,484	0	9,010	0	676	0	2,150	203165	404. 462
1967	0	122,175	0	2,868	0	8.421	0	2.150	0	790	135242	231.6\%
1968	0	184. 418	0	21,980	0	72,197	0	2,698	0	30,256	150852	462. 101
1959	0	32,809	0	16,769	0	32,837	0	2.297	0	581	80073	145.365
1960-1969												
fuerage	9	93,327	0	8.567	0	17,798	0	1.169	0	7,114	118,038	20,022
1970	0	59,305	0	20,340	0	55,118	02	957	0	2,569	79294	217.651
1971	79	43,574	9	13,049	115	13,780	138	466	0	1,265	78916	151,386
1972	215	201,758	21	163.563	825	176,943	315	1.559	0	10,909	232053	788. 161
1973	37	92,686	4	135,736	591	137.614	818	1,191	0	943	165412	535,032
1974	107	11,480	619	104,801	1,319	94,380	3.801	197	$?$	52	179341	395.112
1975	2.051	1,637	589	41,374	258	50,499	454	365	101	840	77382	175,550
1976	7,067	94.210	27,860	143,471	3,830	102,055	2,738	781	1,410	10	374467	757.899
1977	1.066	65,160	7,261	24.779	161	23,001	612	1,344	4	4,763	327105	456,056
1978	2.058	28,661	27.599	234,054	20, 312	144,615	659	208	3	3	773219	1,231,791
1979	3.158	244	1.257	1,725	1,030	148	1,064	194	-	16	114883	124,597
1970-1979												
Prerate	1.655	59,872	6,522	88.289	2,964	79.816	1,068	726	153	2,137	240.206	483.418
1980	24.295	792	43,355	163.421	37,020	106, 165	11,288	167	147	1	561688	948.359
1981	5.769	41,413	1,949	6,105	290	1,707	2,200	169	5	114	431142	496.303
1982	40,018	135,151	14.926	26,459	24.215	10,571	5.090	64	2	3	720233	976.732
1983	17.309	55, 131	1,984	377	298	88	15.217	91	0	0	389141	479,6.33
1984	669	42	842	4	756	40	15,138	6	0	0	707027	724.524
$\begin{aligned} & 1980-1984 \\ & \text { RUERAGE } \end{aligned}$	17,611	46,506	12,611	39.273	12,516	23,714	9.793	99	31	29	563.047	725.226

Source: Commercial fish ticket data, WDF.

Catch and run size data for Hillapa Bay chum, 1968-1994 (Hashington Departeent of Fisheries).

	Catch		Escapement				
Year	Gill Het	River Sport 1/	Total	Hat chery	Hild	Total Run	Harvest Rate
1968	11,700		11,700	1,000	13,200	25,900	0.45
1969	29,300		29,300	2,000	33,900	65,200	0.45
1970	22,900		22,900	800	23,100	46,800	0.49
1971	17,100		17,100	1,400	37,600	56,100	0.30
1972	56,400		56,400	1,200	22,400	80,000	0.71
1973	35,400		35,400	1,000	14,500	50,900	0.70
1974	35,500	200	35,700	1,100	12,200	49,000	0.73
1975	23,500	100	23,600	1,400	12,600	37,600	0.63
1976	33,100	400	33,500	900	16,500	50,900	0.66
1977	8,100	400	8,500	4,400	40,200	53,100	0.16
1978	28,400	1,300	29,700	4,300	18,900	52,900	0.56
1979	1,200	0	1,200	600	6,400	8,200	0.15
1980	30,300	200	30,500	4,000	35,700	70,200	0.43
1981	19,300	200	19,500	1,100	22,100	42,700	0.46
1982	74,800	1,200	76,000	8,100	66,400	150,500	0.50
1983	55,000	2,400	57,400	4,500	20,600	82,500	0.70
1984	25,600	600	26,200	6,200	42,500	74,900	0.35

$1 /$ River sport catches by species are unavailable prior to 1974. Total pun size and catch estieates froe 1968-1973 will be biased low by the acount of the actual sport catch.

Estimated landings of chum salmon by the Tillamook Bay com－ mercial fishery，1927－61（from Oregon Research Briefs，Vol．12， No．1，1966）．

YEAR	POUNDS （ROUND）	ESTIMATED NUMBERS
二＝ニーニーニ	＝＝＝こ＝＝＝＝＝	＝＝＝＝＝＝＝＝＝＝
$\begin{aligned} & \text { 1927-36 } \\ & \text { AVERAGE } \end{aligned}$	965，795	91，110
1937－46		
AVERAGE	843，495	79，570
1947	373，664	35，830
1948	895，009	89， 320
1949	436，168	39，190
1950	191，677	18，200
1951	324，981	28，310
1952	167，546	14，390
1953	253，087	22，120
1954	296，593	26，990
1955	92，692	7，130
1956	102，322	9，330
1947－56 9，30		
AVERAGAE	313，374	29，081
1957	137，074	12，670
1958	112，678	9，930
1959	68，768	6，180
1960	11，978	1，150
1961	16，435	1，530
1957－61		
AVERAGE	69，387	6，292

Columbia River chum landinge (in thousands), 1938-84 (from Columbia River Fish Runs and Fisheries, 1938-70 and 1960-84).

NUMBERS LANDED BY ZONE

Chum salmon sport catch estimates (based on catch-card returns) for the Miami and Kilchis rivers, 1974-83 (from Oregon Department of Fish and Wildlife).

YEAR	MIAMI RIVER	KILCHIS RIVER
$=======$	$=============$	
1974	190	210
1975	100	200
1976	860	260
1977	780	330
1978	2,990	1,320
1979	1,210	610
1980	2,840	1,050
1981	2,200	950
1982	5,950	2,760
1983	1,300	1,710

Comparison between forecasted and final estimated run sizes
for Puget Sound chum stocks.

YEAR	UNIT	TIMIMG	PRESEASON FORECAST	FIWAL UPDATE	$\begin{array}{r} \text { FINAL } \\ \text { RUN SIZE } \end{array}$	PRESEASON FINAL	UPDATE FINAL
1978	STRAIT	NORMAL	2,300	2,300	1,400	-0.643	-0.643
	NOOKSACK/SAMISH		11,500	35,220	36,600	0.686	0.038
	SKAGIT		67,200	160,450	154,900	0.566	-0.036
	STILL/SNOHOMISH		29,900	51,512	58,800	0.491	0.124
	SOUTH SOLND	EARLY	14,600	14,600	15,900	0.082	0.082
		NORTAL	246,800	290,760	337,200	0.268	0.138
		LATE	41,400	52,640	56,400	0.266	0.067
	HOOD CANAL	EARLY	39,600	39,600	25,300	-0.565	-0.565
		NORTMAL	369,300	521,486	600,300	0.385	0.131
	TOTAL		822,600	1,168,568	1,286,800	0.361	0.092
1979	STRAIT	NORTAL	3,600	3,600	500	-6.200	-6.200
	NOOKSACK/SAMISH		18,950	15,300	29,800	0.364	0.487
	SKAGIT		22,700	49,400	31,900	0.288	-0.549
	STILL/SNOHOMISH		8,900	7,500	6,600	-0.348	-0.136
	SOUTH SOLAND	EARLY	5,100	5,100	1,900	-1.684	-1.684
		NORTMAL	72,300	72,300	33,900	-1.133	-1.133
		LATE	18,000	18,000	27,500	0.345	0.345
	HOOD CANAL	EARLY	20,100	20,100	7,500	-1.680	-1.680
		NORMAL	116,800	150,000	123,300	0.053	-0.217
	TOTAL		286,450	341,300	262,900	-0.090	-0.298
1580	STRAIT	NORMAL	17,800	17,800	6,800	-1.618	-1.618
	NOOKSACK/SAMISH		23,000	25,300	31,500	0.270	0.197
	SKAGIT		97,900	180,400	113,900	0.140	-0.584
	STILL'SNOHOMISH		42,500	58,700	58,100	0.269	-0.010
	SOUTH SOUND	EARLY	147,000	44,700.	23,199.	-5.336	-0.927
		NORTAL'	352,500	347,000	404,099	0.128	0.141
		Late	48,400	55,000	65,293	0.259	0.158
	HOOD CANAL	EARLY	44,700	44,700	16,900	-1.645	-1.645
		NORMAL	417,900	313,200	246,798	-0.693	-0.269
	total		1,191,700	1,086,800	966,589	-0.233	-0.124
1981		NORMAL					-1.839
	NOOKSACK/SAMISH		22,500	31,900	85,710	0.737	0.628
	SKAGIT		57,600	88,600	72,871	0.210	-0.216
	STILL/SNOHOMISH		33,100	56,700	56,618	0.415	-0.001
	SOUTH SOUND	EARLY	5,300	5,300	16,013	0.669	0.669
		NORMAL	103,300	238,000	218,909	0.528	-0.087
		LATE	33,700	58,500	48,943	0.311	-0.195
	HOOD CANAL	EARLY	18,300	18,300	7,521.	-1.433	-1.433
		NORMAL	209,200	232,600	191,909	-0.090	-0.212
	TOTAL		509,000	754,700	707,228	0.280	-0.067

1982	STRAIT	NORMAL	30,800	29,800	6,553	-3.700	-3.548
	NOOKSACK/SAMISH		42,500	99,900	109,744	0.613	0.090
	SKAGIT		126,300	146,300	217,524	0.419	0.327
	STILL/SNOHOMISH		70,800	141,000	166,256	0.574	0.152
	SOUTH SOLND	EARLY	9.800	11,440	12,486	0.215	0.084
		NORTMAL	279,100	392,100	343,086	0.187	-0.143
		LATE	78,400	62,300	55,352	-0.416	-0.126
	HOOD CANAL	EARLY	33,700	26,517	12,008	-1.806	-1.208
		NORTMAL	427,400	409,500	291,622	-0.466	-0.404
	TOTAL		1,098,800	1,318,857	1,214,631	0.095	-0.086
1983	STRAIT	NORMAL	11,600	11,300	7,470	-0.553	-0.513
	NOOKSACK/SAMISH		78,600	75,200	74,964	-0.049	-0.003
	SKAGIT		53,600	49,300	31,421	-0.706	-0.569
	STILL/SNOHOMISH		22,700	36,100	27,464	0.173	-0.314
	SOUTH SOUND	EARLY	6,700	12,160	13,603	0.507	0.106
		NORMAL	202,200	248,800	202,621	0.002	-0.228
		LATE	56,200	40,690	36,454	-0.542	-0.116
	HOOD CANAL	EARLY	8,600	8,967	7,577	-0.135	-0.183
		NORMAL	318,900	251,300	206,797	-0.542	-0.215
	TOTAL		759,100	733,817	608,371	-0.248	-0.206
1984	STRAIT	NORMAL	6,200	6,100	12,751	0.514	0.522
	NOOKSACK/SAMISH		121,800	98,100	128,618	0.053	0.237
	SKAGIT		48,700	47,800	51,201	0.049	0.066
	STILL/SNOHOMISH		103,400	40,600	121,489	0.149	0.666
	SOUTH SOUND	EARLY	15,400	31,400	28,542	0.460	-0.100
		NORTMAL	305,500	290,600	263,577	-0.159	-0.103
		LATE	113,800	113,800	87,028	-0.308	-0.308
	HOOD CANAL	EARLY	4,200	7,850	5,665	0.259	-0.386
		NORMAL	334,000	328,800	416,162	0.197	0.210
	TOTAL		1,053,000	965,050	1,115,033	0.056	0.135

FOR PUGET SOUND RUN RECONSTRUCTION

Area(s)	Years Applied	Percent Puget Sound	Apportionment for Puget Sound Stocks
4B, 5, 6C	$1977-78$ 1979 on	20 - Early 20 - Normal 100 - Late 30 - Early 60 - Normal 100 - Late	All Puget Sound units by run strength.
6	$1977-78$ 1979 on	20 - Early 20 - Normal 100 - Late 30 - Early 60 - Normal 100 - Late	All Puget Sound units by run strength.
6 A	$1977-78$ 1979 on	$\begin{aligned} 70 \text { - Early } \\ 70 \text { - Normal } \\ 100 \text { - Late } \\ 50 \text { - Early } \\ 95 \text { - Normal } \\ 100 \text { - Late } \end{aligned}$	All Puget Sound units by run strength. 80\% Skagit; 10\% Nooksack/Samish; 10\% all other Puget Sound units by run strength
7	$1977-78$ 1979 on	$\begin{aligned} & 15 \text { - Early } \\ & 15 \text { - Normal } \\ & 15 \text { - Late } \\ & 25 \text { - Early } \\ & 30 \text { - Normal } \\ & 20 \text { - Late } \end{aligned}$	All Puget Sound units by run strength.
7A	1977 on	$\begin{aligned} & 5 \text { - Early } \\ & 5 \text { - Normal } \\ & 5 \text { - Late } \end{aligned}$	All Puget Sound units by run strength.

Mean travel time in days between tagging area and area of recovery for chum for all years: 1950-1956, 1959, 1962, 1964 and 1971 (from WDF Technical Rpt 48).

Area Tagged	Area Recovered	Mean	Standard Deviation	Variance	n
West Beach (6A)	7B marine	6.5	0.71	0.50	2
Area Mean		6.5	0.71	0.50	2
Dungeness Bay (6D)	6B marine	12.0	19.76	390.50	5
	8B marine	11.0	-	-	1
	9 marine	3.5	2.37	5.61	10
	10 marine	6.1	2.52	6.36	9
	11 marine	5.8	1.64	2.70	5
	11 freshwater	58.0	-	-	1
	12C freshwater	58.0	12.12	147.00	5
	12C marine	4.0	-	-	1
	12D freshwater	46.0	1.41	2.00	5
	13B freshwater	33.0	-	-	1
Area Mean		18.7	22.11	488.97	43
San Juan Islands (7)	7 marine	2.6	2.07	4.30	5
	7A marine	8.3	9.05	81.87	
		5.7	7.18	51.62	11
Bellingham Bay (7B)	7B marine	3.0	-	-	1
	7B freshwater	6.8	3.27	10.70	5
Area Mean		6.2	3.31	10.97	6
Admiralty Inlet (9)	6A marine	6.5	5.68	32.30	6
	7 marine	6.8	2.87	8.25	4
	7a marine	7.0	-	-	1
	8 marine	12.7	5.13	26.33	3
	8 freshwater	15.0	-	-	1
	8A marine	15.0	-	-	1
	8B marine	13.2	8.04	64.57	6
	8C marine	8.0	7.44	55.33	4
	9 marine	4.9	2.75	7.55	8
	10 marine	8.3	7.90	62.42	11
	10A freshwater	63.0	-	-	1
	11 marine	8.8	6.34	40.16	21
	12 marine	16.0	1.41	2.00	2
	12A marine	34.0	-	-	1
	12A freshwater	33.0	-	-	1
	12C freshwater	30.0	3.00	9.00	3
	12D freshwater	41.5	19.99	399.50	6
	12E freshwater	39.0	-	-	1
	13A freshwater	27.8	8.38	70.15	2
	13B marine	51.0	24.56	603.33	2
	13B freshwater	45.0	-	-	1
Area Mean		18.8	15.89	252.35	115

Mean travel time in days between arem of tagging and area of recovery for chum salmon tagged in 1974 （from WDF Tech．Rpt 4日）．

Tag Recovery Area	n	West Beach Mean	```(6&) --- Tagging (6R) -- Range```	$\begin{array}{r} \text { Loca } \\ - \\ n \end{array}$	tion－－－－－－－ Rosario Bluff Mean	（7）－ Range
Pt．Roberts（7R）	6	B	3－26	e	6	4－13
Bellingham Bay（7日） （including Mooksack）	14	日	1－43	5	17	12－28
Lummi Island（7A）	0	－	－	9	6	4－18
Skagit BRy（ $\mathrm{B}^{\text {）}}$	59	7	1－21	5	9	3－15
Skagit River	52	28	1－43	B	28	25－32
Smlmon Bank（7）	25	5	1－12	θ	7	3－12
Puget Sound（ $10-138$ ）	7	21	5－32	1	33	－
Canada	3	15	5－34	5	16	11－32

Puget Sound Management Planning Time Schedules

 (Source: Puget Sound Salmon Management Plan, 1985)The various reporting and agreement requirements placed on the parties by this plan shall be fulfilled in accordance with the following scheduled deadlines for each species. Heeting these deadlines may necessitate omission of the most recent year of the data bases used to formulate run size forecasts.

	Spring chinook	Sockeye	Sumner/fall chinook	Pink	Coho	Chum
Co-op egg requests received	12/15	1/1	1/15	1/15	2/1	2/1
Escapement estimates compiled and available	12/15	1/15	2/15	2/15	3/1	3/15
Preliminary PSF established ${ }^{1 /}$	-	12/1	1/8	12/1	1/8	1/8
Post-season audit report and soft catch available	1/1	1/23	3/1	3/1	3/15	3/15
Pre-season forecasts completed/exchanged	1/8	2/1	3/8	3/8	3/23	4/23
Pre-season recreational management planning completed				2/15		
Scale data available						
CWT data available	3/1	3/1	3/1	3/1	3/15	3/15
Resolution of pre-season forecast conflicts completed	1/23	2/15	3/23	3/23	4/15	5/8
Future brood egg requests, commercial management recommendations, and proposed escapement goals exchanged	2/1	3/1	4/8	4/8	5/1	5/23
Draft status and future brood reports completed/ exchanged; including conflicting commercial management recoumendations	2/15	3/15	4/23	4/23	5/15	6/8
Resolution of pre-season comnercial management conflicts completed	3/1	4/1	5/23	5/23	6/15	7/8
Initial position statement on co-op egg requests sent out	2/15	3/15	4/23	4/23	5/15	6/8
In-season update methods exchanged/completed	2/15	4/1	5/1	5/1	5/15	6/15
Response from co-ops to initial position received	3/1	3/23	5/8	5/8	6/1	6/23
In-season update method conflicts resolved	3/1	4/15	5/23	5/23	6/8	7/8
Draft update method report released	3/15	4/23	6/1	6/1	6/15	7/15
Final position on co-op requests sent out	3/15	4/15	6/1	$6 / 1$	6/23	7/15
Final status and future brood reports released	3/15	4/15	6/1	6/1	6/23	7/15
Final update method report released ${ }^{\text {/ }}$	4/1	5/1	6/15	6/15	7/1	8/1
Conmercial hard data available						
Sport hard data available				/1		

[^1]FIGURE 1

PUGET SOUND TOTAL CHUM RUN SIZE

Fuget sound total chum escafement

$$
0.3-
$$

(Z] WID
$\triangle \square$ ENANCED

Timing of Grays Harbor salmon returns. (Washington Department of Fisheries)

Timing of Willapa Bay salmon returns. (Washington Department of Fisheries)

-8
WASHINGTON Depariment of FISHERIES

NORTHERN

PUGET SOUND COMMERCIAL SALMON

 MANAGEMENT AND CATCH REPORTING AREAS 1s-ap-6teADOPTED
1985

NOT FOR USE IN NAVIGATION

 adopted 1985

```
mot fom USE IN NAVIGAILON
```

FIGURE 9 -
Sumary of management periods for northern Puget Sound areas.

FIGURE 11

Willapa Harbor salmon management and catch reporting areas. (Washington Department of Fisheries)

FIGURE 16

Principal Oregon coastal river systems supporting anadromous fish.

APFENDIX A
NOKGACK-GAMIEH REGION OF ORIGIN

Table Al. Nooksack-Samish normal ehum return-year age composition (\%) from scale analysis.

Return Year		-----------Age-----------		
		Thiree	Four.	Five
	1968	3.8	95.7	0.5
	1969	25.8	68.3	5.9
	1970	4.4	94.5	1.1
	1971	27.6	69.6	2.8
	1972	9.5	87.8	2.7
	1973	11.2	69.8	19.0
	1974	21.5	76.0	2.5
	1975	50.6	45.8	3.6
	1976	7.7	92.1	0.2
	1977	11.4	84.7	3.9
	1978	7.8	90.7	1.5
	1979	9.2	86.0	4.8
	1980	65.8	31.2	3.0
	1981	16.2	82.7	1.1
	1982	13.1	83.5	3.4
	1983	37.4	50.0	12.6
	1984	44.3	53.5	2.2
1/ Source: WDF, 3/87; excludes immature two-year-old chum in samples. Rounding error may be present.				
$2 /$$3 /$	$\begin{aligned} & 1968- \\ & \text { tion } \end{aligned}$	$\begin{aligned} & \text { am } P i n l \\ & e s<19 \end{aligned}$	Chum ate	$\begin{aligned} & i c- \\ & 6) . \end{aligned}$
	1971	Skagit	sampl	
4/	$\begin{aligned} & 1972 \\ & \text { samp } 1 \end{aligned}$	$974+r$	miral	1et
5/	$\begin{aligned} & 1975- \\ & \text { sampl } \end{aligned}$	om 7A,	$A, \quad B B$	
6	1779-8	mriv	car	
71	$\begin{aligned} & \text { sampl } \\ & 1984 \end{aligned}$ mar irı	area 7 sampl	tor feren	and

Table A2. Nooksack-Gamish riormal wild chum return by age to Lrited States waters.

Return Year	-----------Age------------			
	Threes	Four.	Five	Total
1963	919	23,157	121	24,197
1965	8,443	22,351	1,931	32,725
1970	1,704	36,60	426	38,736
1971	3,553	8,760	360	12,874
1772	3,034	28,044	862	31,941
1973	4,909	30,591	8,327	43,826
1974	4,589	16,200	534	21,322
1975	7,176	6,514	512	14,222
1976	1,877	22,690	49	24,636
1977	5,986	44,473	2,048	52,506
1978	2,586	29,887	497	32,952
1979	2,828	26,439	1,476	30,743
1980	20,897	9,909	953	31,759
1981	12,654	64,599	859	78,112
1982	13,103	83,324	3,401	99,825
1783	25,328	33,661	8,533	67,722
1984	54,291	65,625	2,696	122,664

Source: WDF Stock Strength Calculation Summary, 18 April ge; rounding error may be present.

Tatle A3. Nooksack-Samish normal wild chum brood-year return by age to 山.

Brood Year.	Three	-Age Four.	Five	Br ood Retura
1965	919	22,351	426	23,697
1966	8,443	36,506	360	45,409
1967	1,704	8,960	862	11,527
1968	3,553	28,044	8,327	39,924
1969	3,034	30,591	534	34,159
1970	4,909	16,200	512	21, 621
1971	4,589	6,514	49	11,152
1972	7,196	22,690	2,048	31,934
1973	1,897	44,473	497	46,867
1774	5,786	27,887	1,476	37,349
1975	2,586	26,439	953	29,977
1976	2,828	9,907	859	13,596
1977	20,897	64,599	3,4011	88,897
1978	12,654	83,324	8,533	104,511
1979	13,103	33,861	2,596	47,660

Source: MDF, З/B7; rounding error may be present.

Table A4. Nook Eack-Samish normal wild chum spawners, brood return, and return-fier-spawner.

Brood Year.	Spawriers	Brood Return	Return/ Epawner.
1968	10,779	39,924	3.70
1969	26,785	34,159	1.28
1970	33,603	21,621	0.64
1971	7,340	11,152	1.17
1972	26,784	31,984	1.19
1973	26,006	46,867	1.80
1974	7,592	37,349	3.89
1975	6,011	29,977	4.99
1976	4,854	13,596	2.80
1977	21,263	88,877	4.18
1778	14,677	104,511	7.12
1979	27,388	49,660	1.81
Source: WDF Fuget Sound Escapement Estimates, 17 Jurie 86; rounding error may be present.			

Table A5. Nooksack-Sanish nomal wild chun catch and harvest rates by area(s) based on run size entering United States waters,

Run	<4	5, 6C)	Areas	Catch $-\cdots$, 7A)	cother	Puget Sound)	Total Harvest	Run
Year	Catch	Harv. Rate	Catch	Hary, Rate	Catch	Hary. Rate	Rate	Size
1968	7	0.00	264	0.01	13,084	0.54	0.55	24,197
1969	78	0.00	529	0.02	5,314	0.16	0.18	32,725
1970	0	0.00	428	0.01	6,499	0.17	0.18	38,736
1971	3	0.00	113	0.01	3,414	0.27	0.27	12,874
1972	4	0.00	1,476	0.05	3,651	0.11	0.16	31,941
1973	40	0.00	2,446	0.06	15,279	0.35	0.41	43,826
1974	48	0.00	705	0.03	10,969	0.51	0.55	21,322
1975	10	0.00	1,087	0.08	6,933	0.49	0.56	14,222
1976	36	0.00	1,455	0.06	17,706	0.72	0.78	24,636
1977	78	0.00	857	0.02	29,998	0.57	0.59	52,506
1978	3	0.00	2,228	0.07	15,844	0.48	0.55	32,952
1979	67	0.00	59	0.00	3,191	0.10	0.11	30,743
1980	206	0.01	2,232	0.07	3,597	0.11	0.19	31,759
1981	47	0.00	13	0.00	15,351	0.20	0.20	78,112
1982	195	0.00	1,025	0.01	53,590	0.54	0.55	99,825
1983	1,017	0.02	50	0.00	45,956	0.68	0.69	67,722
1984	981	0.01	33	0.00	68,899	0.56	0.57	122,664

Source: WDF Catch-Escapement Run Size Calculation Sumary, 17 June 86; rounding error nay be present.

AFFENDIX E
EKAGIT REGIGN OF ORIGIN

Table B1. Skagit normal chum return-year age composition (\%)
from scale analysis.

Return Year	Three	AgeFour.	Five
1968	2.7	97.3	0.0
1969	25.8	68.4	5.8
1970	3.6	96.1	0.3
1971	27.6	69.6	2.8
1972	9.5	87.8	2.7
1973	11.2	69.8	19.0
1974	21.5	76.0	2.5
1975	50.6	45.8	3.6
1976	7.8	91.9	0.3
1977	10.5	84.8	4.7
1978	12.0	86.9	0.1
1979	40.7	38.2	21.1
1980	14.7	84.9	0.4
1981	19.9	72.1	8.0
1982	4.1	93.9	2.0
1983	6.0	31.4	62.6
1984	38.0	60.5	1.5
1/ Source: WDF, 3/87; excludes immature two-year-old chum in samples. Rourding error may be present.			
2/ 1968-70 and 1976-84 from river,			
carcass and area 8 samples. $3 / 1971$ from Skagit Bay samples.			
3/1971 from Skagit Eay samples.			
samples. 5/ 1975 from 7A, 8, 8A, 8B and 8C samples.			

Table B2. Skagit normal wild chum retur. by age to United States waters.

Return Year	Three	Age Four.	Five	Total
1968	2,352	84,749	0	87,101
1969	6,113	14,207	1,374	23,695
1970	4,848	129,402	404	134,653
1971	14,200	35,810	1,441	51,451
1972	15,967	147,572	4,538	168,073
1973	10,300	64,191	17,473	91,964
1974	38,945	137,490	4,529	180,956
1975	7,756	9,012	708	17,676
1976	10,423	122,807	401	133,631
1977	4,636	37,446	2,075	44,148
1978	27,815	200,925	231	231,214
1979	15,882	14,890	8,226	39,021
1980	16,536	95,503	450	112,489
1981	15,272	55,403	6,147	76,842
1982	11,193	256,479	5,462	273,123
1983	1,870	9,785	19,509	31,164
1984	19,605	31,213	776	51,592

Source: WDF Stock Strength Calculation Summary, 18 April 87; rourding error may be present.

Table E3. Skagit normal wild chum brood-year return by age to United States waters.

Brood Year	Three	Age Four.	Five	Brood Return
1965	2,352	16,207	404	18,963
1966	6,113	129,402	1,441	136,955
1967	4,848	35,810	4,538	45,196
1958	14,200	147,572	17,473	179,246
1969	15,967	64,191	4,529	84,688
1970	10,300	137,490	708	148,499
1971	38,745	9,012	401	48,358
1972	7,756	122,807	2,075	134,838
1973	10,423	37,446	231	48,101
1974	4,686	200,925	8,226	213,786
1975	27,815	14,890	450	43,155
1976	15,882	95,503	6,147	117,532
1977	16,536	55,403	5,462	77,401
1978	15,292	256,479	19,509	291,279
1979	11,198	9,785	776	21,760

Table B4, Skagit normal wild chum spawners, trood return, arid return-per-spawner.

Brood Year.	Spawners	Brood Returns	Return/ Spawner
1968	44,049	179,246	4.07
1969	22,393	84,688	3.78
1970	127,588	148,497	1.16
1971	48,827	48,358	0.99
1972	144,732	134,838	0.93
1973	83,497	48,101	0.58
1974	160,248	213,786	1.33
1975	15,762	43,155	2.74
1976	93,000	117,532	1.26
1977	36,000	77,401	2.15
1978	132,895	291,279	2.19
1979	23,153	21,760	0.94

Source: WDF Puget Sound Escapement Estimates, 17 June 86; rounding error may be presennt.

Table 85. Skagit normal wild chum catch and harvest rates by area(s) based on run size entering United States waters.

$\begin{aligned} & \text { Run } \\ & \text { Year } \end{aligned}$	(4B, 5, 6C)		--------- Areas of Catch ---------				Total Harvest	Run
	Catch	Hary. Rate	Catch	Harv. Rate	Catch	Hary: Rate	Rate	
1968	27	0.00	968	0.01	42,057	0.48	0.49	87,101
1969	58	0.00	395	0.02	849	0.04	0.05	23,695
1970	1	0.00	1,502	0.01	5,562	0.04	0.05	134,653
1971	10	0.00	456	0.01	2,158	0.04	0.05	51,451
1972	22	0.00	7,837	0.05	15,487	0.09	0.14	168,078
1973	85	0.00	5,245	0.06	3,137	0.03	0.09	91,964
1974	409	0.00	6,024	0.03	14,275	0.08	0.11	180,956
1975	13	0.00	1,532	0.08	2,369	0.12	0.20	19,676
1976	208	0.00	8,150	0.06	32,273	0.24	0.30	133,631
1977	67	0.00	729	0.02	7,352	0.17	0.18	44,148
1978	23	0.00	15,837	0.07	82,459	0.36	0.43	231,214
1979	85	0.00	75	0.00	15,708	0.40	0.41	39,021
1980	764	0.01	8,291	0.07	84,009	0.75	0.83	112,489
1981	48	0.00	13	0.00	59,842	0.78	0.78	76,842
1982	562	0.00	2,950	0.01	127,070	0.47	0.48	273,123
1983	506	0.02	25	0.00	27,440	0.88	0.90	31,164
1984	443	0.01	14	0.00	4,318	0.08	0.09	51,592

Source: WDF Catch-Escapenent Run Size Calculation Sunnary, 17 June 86; rounding error nazy be present.

APFENDIX C

STILLAGUAMISH-ENOHOMISH REGION OF ORIGIN

Table C1. Stillaguamish normal chum return-year age composition (\%) from scale analysis.

	Return Year	Three	Four	Five
	1968	3.8	95.7	0.5
	1969	25.8	68.3	5.9
	1970	4.4	94.5	1.1
	1971	27.6	69.6	2.8
	1572	9.5	87.8	2.7
	1973	11.2	69.8	19.0
	1974	21.5	76.0	2.5
	1975	50.6	45.8	3.6
	1976	7.7	92.1	0.2
	1977	11.4	84.7	3.9
	1978	7.8	90.7	1.5
	1979	44.5	34.9	20.6
	1980	27.5	71.6	0.9
	1981	27.3	63.3	9.4
	1982	2.7	94.4	2.9
	1983	21.9	24.4	53.7
	1984	37.8	61.4	0.8
1/ Source: WDF, 3/87; excludes immature two-year-old chum in samples. Rounding error may be present.				
2/	1968-71 from Pink and Chum Prediction Studies (1973, Table 10 p36).			
	1971 +	Skagit	sample	
	$\begin{aligned} & 1972 \\ & \text { sampl } \end{aligned}$	$974+r$	miral	
	1975-79 and post 1981 from 7A, 8, 8A, 8 B and 8 C samples.			
	1980-81 from riwer and carcass samples.			

Table c2. Stillaguamish normal wild chum return by age to United States waters.

Retur.in Year.	Thiree	Four	Five	Total
1968	1,596	40,199	210	42,005
1969	8,250	21,840	1,887	31,976
1970	2,786	59,828	696	63,310
1971	4,135	10,427	419	14,981
1972	4,469	41,298	1,270	47,037
1973	2,307	14,377	3,914	20,598
1974	10,622	37,498	1,235	49,353
1975	2,392	2,165	170	4,727
1976	4,505	53,879	117	58,500
1977	1,691	12,560	578	14,829
1978	7,049	81,474	1,356	89,828
1979	2,009	1,577	930	4,518
1980	6,599	17,182	216	23,997
1981	6,724	15,591	2,315	24,630
1982	2,263	79,137	2,431	83,832
1983	2,098	2,337	5,144	9,579
1984	20,795	33,777	440	55,012

Source: WDF Stock Strength Calculation Summary, 18 April 86; rounding error may be present.

Table C3. Stillaguamish normal wild chum brood-year return by age to United States waters.

Brood Year.	Three	$\begin{aligned} & \text { Age-- } \\ & \text { Four. } \end{aligned}$	Five	Braod Retura
1965	1,596	21,840	696	24,132
1966	6,066	43,739	329	50,133
1967	2,037	8,167	586	10,790
1968	3,239	19,060	2,044	24,342
1969	2,062	7,508	881	10,452
1970	1,205	26,757	134	28,096
1971	7,579	1,703	56	7,338
1972	1,881	25,795	454	28,330
1973	2,173	9,857	1,095	13,125
1974	1,327	65,817	724	67,368
1975	5, 694	1,228	132	7,054
1976	1,565	10,466	731	12,762
1977	4,020	4,922	1,006	7,947
1978	2,123	32,743	1,763	36,628
1979	936	801	388	2,125

Source: WDF, 3/B7; rounding error may be present.

Table c4. Stillaguamish normal wild chum spawners, brogd return, and return-per-spawner.

Brood Year	Spawners	Returns	Return/ Spawner
1968	18,105	24,342	1.34
1969	23,510	10,452	0.44
1970	46,285	28,096	0.61
1971	11,734	9,338	0.80
1972	21,708	28,330	1.31
1973	10,757	13,125	1.22
1974	E5,216	67,868	1.93
1975	3,713	7,054	1.90
1976	20,225	12,762	0.45
1977	11,637	9,947	0.85
1978	72,566	36,628	0.50
1979	3,520	2,125	0.60

Source: WDF Puget Saund Escapement Estimates, 17 Jurie 86; rouridirig error may be present.

Table c5. Stillaguanish nornal wild chum catch and harvest rates by area(s) based on run size entering United States waters.

Run Year	(4B, 5, 6C)		\cdots $(6,7,7 A)$ Areas of Catch $-\ldots-\cdots,-\cdots$				(0ther Puget Sound)		Total Harvest Rate	$\begin{aligned} & \text { Run } \\ & \text { Size } \end{aligned}$
	Catch	Rate	Catch	Rate	Catch	Rate	Catch	Rate		
1968	13	0.00	467	0.01	17,786	0.42	5,634	0.13	0.57	42,005
1969	79	0.00	533	0.02	5,793	0.18	2,061	0.06	0.26	31,976
1970	1	0.00	706	0.01	12,133	0.19	$4 ; 185$	0.07	0.27	63,310
1971	3	0.00	133	0.01	2,729	0.18	382	0.03	0.22	14,981
1972	6	0.00	2,193	0.05	15,812	0.34	7,310	0.16	0.54	47,037
1973	19	0.00	1,175	0.06	5,368	0.26	3,279	0.16	0.48	20,598
1974	112	0.00	1,643	0.03	55	0.00	12,327	0.25	0.29	49,353
1975	3	0.00	368	0.08	129	0.03	509	0.11	0.21	4,727
1976	91	0.00	3,568	0.06	9,861	0.17	16,755	0.29	0.52	58,500
1977	22	0.00	245	0.02	1,967	0.13	958	0.06	0.22	14,829
1978	9	0.00	6,153	0.07	2,195	0.02	8,905	0.10	0.19	89,828
1979	10	0.00	8	0.00	34	0.01	946	0.21	0.22	4,518
1980	163	0.01	1,769	0.07	805	0.03	6,642	0.28	0.39	23,997
1981	15	0.00	4	0.00	2,397	0.10	14,439	0.59	0.68	24,630
1982	172	0.00	905	0.01	16,744	0.20	31,296	0.37	0.59	83,832
1983	156	0.02	8	0.00	1,584	0.17	4,548	0.47	0.66	9,579
1984	472	0.01	15	0.00	45	0.00	6,025	0.11	0.12	55,012

Source: UDF Catch-Escapenent Run Size Calculation Sumary, 17 June 86 ; rounding error nay be present.

Table C7. Snohomish normal wild chum return by age to Urited states water.s.

Return Year	Three	-AgeFour.	Five	Total
1968	1,865	46,971	245	49,082
1969	1,400	3,705	320	5,425
1970	1,742	37,405	435	39,582
1971	2,134	5,381	216	7,732
1972	2,273	21,010	646	23,929
1973	1,167	7,275	1,780	10,422
1974	6,302	22,248	733	29,281
1975	3,896	3,527	277	7,700
1976	2,395	28,650	62	31,108
1977	2,483	18,450	850	21,783
1978	2,520	29,122	485	32,108
1979	2,479	1,946	1,147	5,575
1980	12,443	32,396	407	45,246
1981	10,151	23,537	3,495	37,184
1982	4,443	155,336	4,772	164,551
1983	2,994	3,336	7,342	13,673
1984	16,674	27,084	353	44,111

Source: WDF Stock Strength Calculation Summary, 18 April 87; rounding error may be present.

Table c8. Snohomish normal wild chum brood-year return by age to United States waters.

Brood Year.	Three	Age Four.	Five	Br rod Return
1965	1,865	3,705	435	6,006
1966	1,400	37,405	216	39,021
1967	1,742	5,381	646	7,769
1968	2,134	21,010	1,980	25,124
1969	2,273	7,275	733	10,281
1570	1,167	22,243	277	23,692
1971	6,302	3,527	62	9,891
1972	3,896	28,650	850	33,396
1973	2,395	18,450	485	21,330
1974	2,483	29,122	1,147	32,753
1975	2,520	1,946	407	4,872
1976	2,479	32,396	3,495	38,370
1977	12,443	23,537	4,772	40,752
1978	10,151	155,336	7,342	172,830
1979	4,443	3,336	353	8,132

Source: WDF, 3/87; rounding error may be present.

Table C9. Snohomish normal wild chum spawners, brood return, and retur.n-per-spawrier.

Broor Year.	Eprawners	Retur.ris	ReturnSpawner
1968	21,155	25,124	1.19
1969	3,790	10,231	2.58
1970	28,938	23,692	0.82
1971	6,056	9,851	1.63
1972	11,043	33,396	3.02
1973	5,443	21,330	3.92
1974	20,894	32,753	1.57
1975	6,056	4,872	0.80
1976	15,100	38,370	2.54
1977	17,093	40,752	2.38
1978	25,938	172,830	6.66
1979	4,357	8,132	1.87

Source: WDF Puget Sound Escapement Estimates, 17 June 86; rounding error may te present.

Table C10. Snohonish normal wild chun catch and harvest rates by area(s) based on run size entering United States waters.

Run	(4B	6C)	$-\cdots--\cdots--$ Areas of Catch --------$(6,7,78) \quad$ (6B, 9)				(Other Puget Sound)		Total Harvest Rate	Run
Year	Catch	Rate	Catch	Rate	Catch	Rate	Catch	Rate		Size
1968	15	0.00	545	0.01	20,783	0.42	6,584	0.13	0.57	49,082
1969	13	0.00	90	0.02	983	0.18	349	0.06	0.26	5,425
1970	0	0.00	442	0.01	7,585	0.19	2,617	0.07	0.27	39,582
1971	2	0.00	68	0.01	1,409	0.18	197	0.03	0.22	7,732
1972	3	0.00	1,116	0.05	8,044	0.34	3,723	0.16	0.54	23,929
1973	10	0.00	594	0.06	2,716	0.26	1,659	0.16	0.48	10,422
1974	66	0.00	975	0.03	33	0.00	7,313	0.25	0.29	29,281
1975	5	0.00	600	0.08	211	0.03	828	0.11	0.21	7,700
1976	48	0.00	1,897	0.06	5,244	0.17	8,815	0.28	0.51	31,108
1977	33	0.00	360	0.02	2,890	0.13	1,407	0.06	0.22	21,783
1978	3	0.00	2,199	0.07	785	0.02	3,183	0.10	0.19	32,108
1979	12	0.00	11	0.00	42	0.01	1,153	0.21	0.22	5,575
1980	307	0.01	3,335	0.07	1,519	0.03	12,002	0.27	0.38	45,246
1981	23	0.00	6	0.00	3,618	0.10	19,987	0.54	0.64	37,184
1982	338	0.00	1,777	0.01	32,925	0.20	56,122	0.34	0.55	164,551
1983	222	0.02	11	0.00	2,262	0.17	5,447	0.40	0.58	13,673
1984	379	0.01	12	0.00	36	0.00	4,797	0.11	0.12	44,110

Source: WDF Catch-Escapement Run Size Calculation Sumary, 18 April 86 ; rounding error may be present,

AFFENDIX D

EOUTH SOUND REGIGN OF ORIGIN

Table D2. South Sound early wild chum return by age to United states waters.

Return Year	Three	Age Feur.	Five	Total
1968	11,278	30,581	380	42,239
1969	4,155	3,747	208	8,310
1570	3,407	7,837	0	11,244
1971	10,011	4,352	0	14,363
1972	17,199	116,172	2,031	135,422
1973	15,013	23,381	2,351	41,245
1574	7,748	14,098	745	22,589
1975	2,404	5,945	144	8,493
1976	4,278	72,179	77	76,534
1977	3,964	5,872	89	9,925
1978	5,148	9,768	181	15,098
1979	1,070	408	50	1,529
1980	9,404	5,110	29	14,543
1981	762	11,133	1,270	13,365
1982	2,718	3,262	812	6,881
1983	1,767	2,488	520	4,775
1984	5,788	12,956	170	18,914
Source: WDF Stock Strength Calculation Summary,				
April	roundin	error ma	pres	

Table D3. South Eound early wild chum brood-year return by age to United gtates waters.

Erood Year.	Three	-Age Feur.	Five	Brood Return
1965	11,278	3,947	0	15,225
1966	4,155	7,837	0	11,992
1567	3,407	4,352	2,031	7,790
1968	10,011	116,192	2,351	128,554
1969	17,199	23,881	745	41,825
1970	15,013	14,078	144	27,255
1971	7,748	5,945	77	13,770
1972	2,404	72,179	89	74,672
1973	4,278	5,872	181	10,331
1974	3,964	9,768	50	13,783
1975	5,148	408	29	5,586
1976	1,070	5,110	1,270	7,450
1977	9,404	11,133	812	21,349
1978	962	3,262	520	4,744
1979	2,718	2,488	170	5,376

Source: WDF, 3/87; rounding error may be present.

Table D4. South Sound early, normal and late wild chum spawners, brood return, and return-per-spawner.

Brood Year	----Early Spawners	Timed Stocks----		---Normal Timed Stocks---			-----Late Spawners	Timed Stocks----	
		Returns	R / S	Spawners	Returns	R / S		Returns	R / S
1968	22,008	128,554	5.84	46,964	327,809	6.98	27,553	70,080	2.54
1969	3,440	41,825	12.16	37,275	151,025	4.05	20,292	41,947	2.07
1970	5,411	29,255	5.41	41,630	177,143	4.26	34,068	65,156	1.91
1971	4,808	13,770	2.86	43,689	101,640	2.33	9,937	18,352	1.85
1972	33,523	74,672	2.23	65,163	101,947	1.56	34,388	30,412	0.88
1973	9,643	10,331	1.07	55,282	292,137	5.28	29,825	66,771	2.24
1974	19,730	13,783	0.70	99,539	297,288	2.99	34,676	45,434	1.31
1975	5,804	5,586	0.96	31,100	101,217	3.25	9,936	47,754	4.81
1976	32,743	7,450	0.23	63,304	60,304	0.95	23,311	25,392	1.09
1977	3,836	21,349	5.57	54,282	366,762	6.76	23,590	102,537	4.35
1978	5,873	4,744	0.81	105,451	103,771	0.98	29,608	34,770	1.17
1979	1,004	5,376	5.35	18,816	228,449	12.14	22,613	41,423	1.83

Source: WDF Puget Sound Escapement Estimates, 17 June 86; rounding error may be present.

Table D5. South Puget Sound early wild chum catch and harvest rate by area(s) based on run size entering United States waters.

Run Year	(4B, 5; 6C)		---------- Areas of Catch $(6,7,7 A)$ (6B, 9)				(Other Puget Sound)		Total Harvest Rate	$\begin{aligned} & \text { Run } \\ & \text { Size } \end{aligned}$
	Catch	Rate	Catch	Rate	Catch	Rate	Catch	Rate		
1968	207	0.00	566	0.01	4,401	0.10	15,057	0.36	0.48	42,239
1969	57	0.01	368	0.04	782	0.09	3,663	0.44	0.59	8,310
1970	67	0.01	257	0.02	1,484	0.13	4,025	0.36	0.52	11,244
1971	39	0.00	67	0.00	1,974	0.14	7,475	0.52	0.67	14,363
1972	294	0.00	1,381	0.01	31,500	0.23	68,724	0.51	0.75	135,422
1973	145	0.00	664	0.02	6,669	0.16	24,124	0.58	0.77	41,245
1974	68	0.00	304	0.01	117	0.01	2,370	0.10	0.13	22,589
1975	40	0.00	562	0.07	188	0.02	1,899	0.22	0.32	8,493
1976	220	0.00	4,467	0.06	2,373	0.03	36,731	0.48	0.57	76,534
1977	33	0.00	408	0.04	1,224	0.12	4,424	0.45	0.61	9,925
1978	61	0.00	644	0.04	1,297	0.09	7,223	0.48	0.61	15,098
1979	16	0.01	67	0.04	4	0.00	438	0.29	0.34	1,529
1980	131	0.01	1,375	0.09	19	0.00	5,465	0.38	0,48	14,543
1981	273	0.02	1,088	0.08	215	0.02	5,497	0.41	0.53	13,365
1982	58	0.01	94	0.01	0	0.00	2,641	0.38	0.41	6,881
1983	32	0.01	44	0.01	141	0.03	2,789	0.58	0.63	4,775
1984	60	0.00	3	0.00	14	0.00	10,804	0.57	0.58	18,914

Source: WDF Catch-Escapement Run Size Calculation Sumary, 17 June 86; rounding error may be present.

Table DG. South Sound riormal chum return-year age composition (\%) from scale analysis.

Retura Year.	Three	Age Four	Five
1968	26.7	72.4	0.9
1969	50.0	47.5	2.5
1970	30.3	69.7	0.0
1971	69.7	30.3	0.0
1972	12.7	85.8	1.5
1973	36.4	57.9	5.7
1974	34.4	62.3	3.3
1775	28.3	70.0	1.7
1976	66.3	33.5	0.2
1977	39.9	59.2	0.9
1978	29.8	70.2	0.1
1979	51.1	42.9	6.0
1980	83.2	16.5	0.3
1981	12.2	87.1	0.7
1982	57.3	40.2	2.5
1983	10.4	83.1	6.3
1984	60.5	36.9	2.6

1/ Source: WDF, 3/e7; exeludes immature two-year-old chum in samples.
Raunding error may be present.
2/ From marine areas $10(s), 11$ and $13(s)$ after week 41.

Table D7. South Sound normal wild chum return by age to United States waters.

Return Year	Three	AgeFour.	Five	Total
1768	52,069	141,192	1,755	195,016
1967	39,087	37,134	1,554	78,177
1770	29,509	67,879	0	97,388
1971	77,260	33,587	0	110,847
1972	35,485	239,732	4,171	279,408
1973	69,072	109,870	10,816	189,758
1974	59,110	107,051	5,670	171,831
1975	16,974	42,034	1,021	60,049
1976	164,291	83,013	495	247,800
1977	86,108	127,545	1,940	215,594
1978	88,872	209,561	300	298,729
1979	13,705	11,517	1,619	26,841
1980	229,661	45,535	828	275,969
1981	18,539	132,335	1,064	151,957
1982	109,240	76,640	4,766	190,646
1983	14,184	113,337	8,593	136,389
1984	136,587	83,307	5,870	225,764

Source: WDF Stock Strength Calculation Summary, 18 April 86; roundirg error may be present.

Table D8. Eouth Sound normal wild chum brood-year return by age to United States waters.

Brood Year	Three	Four.	Fiue	Brood Retura
1965	52,069	37,134	0	89,203
1966	39,089	67,879	0	106,968
1967	29,509	33,587	4,191	67,286
1968	77,260	239,732	10,816	327,809
1969	35,485	109,870	5,670	151,025
1970	69,072	107,051	1,021	177,143
1971	59,110	42,034	496	101,640
1972	16,994	83,013	1,940	101,947
1973	164,291	127,545	300	292,137
1974	86,108	209,561	1,619	297,288
1975	88,872	11,517	828	101,217
1976	13,705	45,535	1,064	60,304
1977	229,661	132,335	4,766	366,762
1978	18,539	76,640	3,593	103,771
1979	109,240	113,339	5,870	228,449

Table 09. South Puget Sound normal wild chum catch and harvest rate by area(s) based on run size entering United States waters.

Run	(4B, 5, 6C)						(0ther Puget Sound)		Total Harvest	Run
Year	Catch	Rate	Catch	Rate	Catch	Rate	Catch	Rate	Rate	Size
1968	59	0.00	2,168	0.01	82,576	0.42	63,249	0.32	0.76	195,016
1969	191	0.00	1,303	0.02	14,164	0.18	25,244	0.32	0.52	78,177
1970	1	0.00	1,101	0.01	18,664	0.19	35,986	0.37	0.57	97,388
1971	21	0.00	986	0.01	20,194	0.18	45,962	0.41	0.61	110,847
1972	36	0.00	13,112	0.05	93,928	0.34	107,255	0.38	0.77	279,408
1973	174	0.00	10,821	0.06	49,455	0.26	74,025	0.39	0.71	189,758
1974	388	0.00	5,720	0.03	196	0.00	65,991	0.38	0.42	171,831
1975	41	0.00	4,675	0.08	1,640	0.03	22,593	0.38	0.48	60,049
1976	385	0.00	15,113	0.06	41,771	0.17	137,227	0.55	0.78	247,800
1977	325	0.00	3,561	0.02	28,599	0.13	129,029	0.60	0.75	215,594
1978	31	0.00	21,006	0.07	7,299	0.02	165,489	0.55	0.65	298,729
1979	58	0.00	49	0.00	203	0.01	7,714	0.29	0.30	26,841
1980	1,875	0.01	20,339	0.07	9,268	0.03	160,230	0.58	0.69	275,969
1981	94	0.00	24	0.00	13,955	0.09	94,941	0.62	0.72	151,957
1982	394	0.00	2,058	0.01	38,146	0.20	119,670	0.63	0.84	190,646
1983	2,250	0.02	110	0.00	22,563	0.17	134,672	0.99	1.17	136,389
1984	2,221	0.01	62	0.00	186	0.00	151,276	0.67	0.68	225,784

Source: WDF Catch-Escapement Run Size Calculation Sumary, 17 June 86 ; rounding error may be present.

Table D10. South Sound late chum return-year age composition (\%) from scale analysis.

Table D11. South Sound late wild chum return by age to United States watere.

Return Year	Three	Age Four.	Five	Total
1968	12,864	34,883	434	48,181
1969	17,563	16,684	878	35,125
1970	14,782	34,462	0	47,444
1771	15,542	6,757	0	22,297
1972	7,610	51,411	899	59,919
1973	19,972	31,769	3,128	54,869
1974	13,390	45,184	2,568	61,142
1975	9,762	4,962	0	14,724
1976	34,048	20,167	0	54,217
1977	21,344	31,615	481	53,439
1978	30,533	23,773	1,108	55,414
1979	11,547	17,075	318	28,941
1980	59,795	13,069	146	73,010
1981	10,550	40,338	776	51,664
1982	25,567	23,163	2,403	51,133
1983	11,930	14,822	1,057	27,809
1784	19,070	44,540	1,034	64,645

Source: WDF Stock Etrength Calculation Summary, 18 April 86; rounding error may be preserit.

Table D12. South Sound late wild chum brood-year return by age to United States waters.

Brood	Thiree	Four	Five	Retur.
Year	Ren			
1965	12,864	16,684	0	29,549
1966	17,563	34,462	0	52,025
1967	14,982	6,757	899	22,637
1968	15,542	51,411	3,128	70,080
1969	7,610	31,769	2,568	41,947
1970	19,972	45,184	0	65,156
1971	13,390	4,962	0	18,352
1972	9,762	20,169	481	30,412
1973	34,048	31,615	1,108	66,771
1974	21,344	23,773	318	45,434
1975	30,533	17,075	146	47,754
1976	11,547	13,069	776	25,392
1977	59,795	40,338	2,403	102,537
1978	10,550	23,163	1,057	34,770
1979	25,567	14,822	1,034	41,423

Source: WDF, 3/87; rounding error may be present.

Table 013. South Puget Sound late wild chum catch and harvest rate by area(s) based on run size entering United States waters.

Run Year	(4B, 5, 6C)						(0ther Puget Sound)		Total Harvest Rate	$\begin{aligned} & \text { Run } \\ & \text { Size } \end{aligned}$
	Catch	Rate	Catch	Rate	Catch	Rate	Catch	Rate		
1968	0	0.00	0	0.00	1,481	0.03	19,147	0.40	0.43	48,181
1969	0	0.00	0	0.00	0	0.00	14,833	0.42	0.42	35,125
1970	0	0.00	0	0.00	0	0.00	15,376	0.31	0.31	49,444
1971	0	0.00	0	0.00	0	0.00	12,362	0.55	0.55	22,299
1972	0	0.00	0	0.00	0	0.00	25,531	0.43	0.43	59,919
1973	0	0.00	317	0.01	0	0.00	24,727	0.45	0.46	54,869
1974	22	0.00	0	0.00	0	0.00	26,337	0.43	0.43	61,142
1975	32	0.00	55	0.00	10	0.00	4,691	0.32	0.33	14,724
1976	1	0.00	852	0.02	3,830	0.07	26,223	0.48	0.57	54,217
1977	0	0.00	134	0.00	155	0.00	29,560	0.55	0.56	53,439
1978	0	0.00	1,679	0.03	141	0.00	23,986	0.43	0.47	55,414
1979	0	0.00	3	0.00	1,940	0.07	4,385	0.15	0.22	28,941
1980	12	0.00	19	0.00	477	0.01	31,487	0.43	0.44	73,010
1981	1	0.00	0	0.00	0	0.00	20,337	0.39	0.39	51,664
1982	21	0.00	0	0.00	1	0.00	20,534	0.40	0.40	51,133
1983	0	0.00	35	0.00	52	0.00	13,709	0.49	0.50	27,809
1984	20	0.00	0	0.00	0	0.00	30,899	0.48	0.48	64,645

Source: WDF Catch-Escapement Run Size Calculation Sumary, 17 June 86; rounding error may be present.

APFENDIX E
HOUD GANAL REGIGN OF ORIGIN

Return Year.	Thres	AgeFour.	Five
1968	29.8	67.2	3.0
1969	69.2	27.7	3.1
1970	37.6	58.7	3.7
1971	56.8	43.3	0.0
1972	26.8	61.8	11.4
1973	39.6	60.4	0.0
1974	82.5	16.5	0.0
1975	96.4	2.6	0.1
1976	11.2	88.4	0.4
1977	41.3	52.0	6.7
1978	51.9	47.7	0.4
1979	34.7	61.6	1.8
1980	59.3	39.9	0.2
1981	39.4	55.1	3.7
1782	35.9	62.0	1.9
1983	65.5	31.0	3.5
1984	33.3	61.1	0.0
1/ Source: WDF, 3/87; excludes immature two-year-old chum in samples. Rounding error may be present.			
2/ 1968-69 and 1971-75 from Big Beef CK samples.			
3/ 1970 average of even year samples 1958-76.			
4/ Post 1975 from area(s) 12			

Table EZ. Hood Canal early wild chum return by age to United States waters.

Return Year	Threes	Age Four.	Five	Total
1968	14, ES_{1}	33,489	1,475	49,835
1969	11,111	4,454	496	16,063
1570	8,197	12,792	807	21,800
1971	14,573	11,411	0	26,384
1972	14,032	32,357	5,969	52,358
1973	10,108	15,417	0	25,525
1974	11,543	2,302	0	13,991
1975	26,343	717	27	27,327
1976	8,568	67,867	307	76,773
1977	10,671	13,435	1,731	25,837
1978	13,781	12,665	106	26,552
1979	2,686	4,769	142	7,742
1980	9,522	6,407	32	16,058
1981	2,731	4,099	2F0	7,440
1982	4,355	7,522	231	12,132
1983	4,952	2,344	265	7,561
1984	1,910	3,505	0	5,736

Source: WDF Stock Etrength Calculation Summary, 18 April 8e; rounding error may be present.

Table E3. Hood Canal early wild chum brood-year return by age to Urited States waters.

Brood Year	Three	Four	Five	Brood Return
1965	14,851	4,454	807	20,112
1966	11,111	12,792	0	23,903
1967	8,197	11,411	5,969	25,577
1968	14,973	32,357	0	47,330
1969	14,032	15,417	0	29,449
1970	10,108	2,302	27	12,437
1971	11,543	717	307	12,567
1972	26,343	67,867	1,731	95,942
1973	8,568	13,435	106	22,109
1974	10,671	12,665	142	23,478
1975	13,780	4,769	32	18,582
1976	2,686	6,407	290	9,384
1977	9,522	4,099	231	13,853
1978	2,931	7,522	265	10,718
1979	4,355	2,344	0	6,699

Table E4. Hood Canal early and normal wild chum spawners, Erood return, and return-per-spawner.

Errood year.	----Ear. 1 y Spawners	Timed Stocks----Returns R / S		----Norm Spawners	Timed Returns	R / S
1968	43,620	47,330	1.09	47,468	59,598	1.26
1969	13,709	29,449	2.15	30,070	97,883	3.26
1970	18,228	12,437	0.68	41,699	62,391	1.50
1971	22,516	12,567	0.56	41,141	92,844	2.26
1972	39,452	95,942	2.43	41,601	28,579	0.69
1973	20,859	22,109	1.06	27,869	116,508	4.18
1974	10,519	23,478	2.23	52,223	114,916	2.20
1975	16,122	18,582	1.15	16,265	353,512	21.73
1976	28,268	9,384	0.33	48,079	27,856	0.62
1977	12,910	13,853	1.07	25,075	77,167	2.76
1978	16,987	10,718	0.63	79,153	73,224	0.93
1979	5,504	6,699	1.22	14,221	89,066	6.26

Source: WDF Puget Sound Escapement Estimates, 17 June B6; Rounding error may' be present.

Table E5. Hood Canal early wild chun catch and harvest rates by area(s) based on run size entering United States waters.

Run	(4B, 5, 6C)						(0ther Puget Sound)Catch Rate		Total Harvest Rate	$\begin{aligned} & \text { Rum } \\ & \text { Size } \end{aligned}$
Year	Catch	Rate	Catch	Rate	Catch	Rate				
1968	244	0.00	667	0.01	5,191	0.10	113	0.00	0.12	49,835
1969	110	0.01	710	0.04	1,513	0.09	21	0.00	0.15	16,063
1970	129	0.01	498	0.02	2,878	0.13	67	0.00	0.16	21,800
1971	72	0.00	121	0.00	3,627	0.14	48	0.00	0.15	26,384
1972	113	0.00	534	0.01	12,179	0.23	80	0.00	0.25	52,358
1973	90	0.00	412	0.02	4,128	0.16	36	0.00	0.18	25,525
1974	42	0.00	188	0.01	71	0.01	3,171	0.23	0.25	13,991
1975	130	0.00	1,809	0.07	607	0.02	8,659	0.32	0.41	27,327
1976	221	0.00	4,482	0.06	2,381	0.03	41,421	0.54	0.63	76,773
1977	84	0.00	1,062	0.04	3,186	0.12	8,595	0.33	0.50	25,837
1978	108	0.00	1,131	0.04	2,281	0.09	6,045	0.23	0.36	26,552
1979	78	0.01	325	0.04	21	0.00	1,804	0.23	0.29	7,742
1980	145	0.01	1,517	0.09	22	0.00	9,028	0.56	0.67	16,058
1981	152	0.02	605	0.08	120	0.02	3,682	0.49	0.61	7,440
1982	102	0.01	165	0.01	1	0.00	8,547	0.70	0.73	12,132
1983	50	0.01	71	0.01	223	0.03	5,917	0.78	0.83	7,561
1984	18	0.00	0	0.00	4	0.00	3,675	0.64	0.64	5,736

Source: WDF Catch-Escapement Run Size Calculation Sunmary, 18 April 86; rounding error may be present.

Table E7. Hood Canal normal wild chum return by age to United States waters.

Return Yesp.	-----------Age------------			
	Three	Fgur.	Five	Total
1968	20,500	88,429	1,884	110,813
1969	18,716	24,045	5.63	43,325
1970	20,483	44,841	131	65,455
1971	28.130	30,991	477	57,598
1972	16, 640	78,306	2,936	97,883
1973	23,334	34,502	4,555	62,371
1974	24,139	65,919	2,785	92,844
1975	11,060	16,976	543	28,579
1976	49,467	53,191	13,851	116,392
1977	42,979	71,937	0	114,916
1978	120,194	231,197	2,121	353,512
1979	25,373	717	3,766	29,886
1980	67,367	9,800	0	77,167
1981	0	71,686	1,538	73,224
1982	32,331	53,172	3,563	89,066
1983	11,339	30,500	4,443	46,282
1984	50,142	46, 657	0	96,799

Source: WDF Stock Strength Calculation Summary, 18 April 86; roundirig error may be present.

Table E8. Hood Eanal normal wild chum brood-year return by age to United States waters.

Brood Year	Three	Age Four.	Five	Brood Return
1965	20,500	24,045	131	44,677
1966	18,716	24,045	563	43,325
1967	20.483	44,841	131	65,455
1968	28,130	30,791	477	57,598
1949	16,640	78,306	2,936	97,883
1970	23,334	34,502	4,555	62,391
1971	24,137	65,919	2,785	92,844
1972	11,060	16,976	543	28,579
1973	49,467	53,191	13,851	116,508
1974	42,979	71,937	0	114,916
1975	120,194	231,197	2,121	353,512
1976	25,373	717	3,766	27,856
1977	67,367	7,800	0	77,167
1978	0	71,686	1,538	73,224
1979	32,331	53,172	3,563	89,066

Source: WDF, $3 / 87 ;$ rounding error may be present.

Table E9. Hood Canal normal wild chum catch and harvest rates by area(s) based on run size entering United States waters,

Run Year	(4B, 5, 6C)		\qquad Areas of Catch$(6,7,7 A)$$(68,9)$				(0ther Puget Sound)		Total Haruest Rate	$\begin{aligned} & \text { Run } \\ & \text { Size } \end{aligned}$
	Catch	Rate	Catch	Rate	Catch	Rate	Catch	Rate		
1968	33	0.00	1,231	0.01	46,923	0.42	15,158	0.14	0.57	110,813
1969	106	0.00	722	0.02	7,850	0.18	4,577	0.11	0.31	43,325
1970	0	0.00	730	0.01	12,545	0.19	10,481	0.16	0.36	65,455
1971	12	0.00	528	0.01	10,858	0.18	7,059	0.12	0.31	59,598
1972	14	0.00	4,565	0.05	32,904	0.34	18,799	0.19	0.57	97,883
1973	58	0.00	3,559	0.06	16,260	0.26	14,645	0.23	0.55	62,391
1974	210	0.00	3,091	0.03	105	0.00	37,215	0.40	0.44	92,844
1975	19	0.00	2,242	0.08	716	0.03	9,288	0.32	0.43	28,579
1976	183	0.00	7,147	0.06	19,806	0.17	41,414	0.36	0.59	116,392
1977	507	0.00	1,577	0.01	15,344	0.13	71,525	0.62	0.77	114,916
1978	6,290	0.02	18,484	0.05	8,870	0.03	241,472	0.68	0.78	353,512
1979	75	0.00	48	0.00	227	0.01	15,314	0.51	0.52	29,886
1980	791	0.01	5,462	0.07	2,608	0.03	47,212	0.61	0.73	77,167
1981	47	0.00	12	0.00	7,434	0.10	51,788	0.71	0.81	73,224
1982	189	0.00	980	0.01	17,930	0.20	56,521	0.63	0.85	89,066
1983	754	0.02	32	0.00	7,634	0.16	30,692	0.66	0.85	46,282
1984	823	0.01	23	0.00	100	0.00	72,893	0.75	0.76	96,799

[^2]| Return Year. | Three | Age Four. | Five |
| :---: | :---: | :---: | :---: |
| 1968 | 18.5 | 79.8 | 1.7 |
| 1969 | 43.2 | 55.5 | 1.3 |
| 1970 | 31.3 | 63.5 | 0.2 |
| 1971 | 47.2 | 52.0 | 0.8 |
| 1972 | 17.0 | 80.0 | 3.0 |
| 1973 | 37.4 | 55.3 | 7.3 |
| 1974 | 26.0 | 71.0 | 3.0 |
| 1975 | 29.0 | 71.0 | 0.0 |
| 1976 | 17.3 | 82.4 | 0.3 |
| 1977 | 40.1 | 54.3 | 5.6 |
| 1978 | 27.0 | 72.3 | 0.7 |
| 1979 | 22.6 | 76.3 | 1.1 |
| 1980 | 65.7 | 33.4 | 0.9 |
| 1981 | 42.4 | 56.3 | 1.3 |
| 1982 | 48.0 | 51.6 | 0.4 |
| 1983 | 21.5 | 70.0 | 8.1 |
| 1984 | 41.8 | 55.3 | 2.9 |
| 1/ Source: WDF, 3/87; excludes immature two-year-ald chum in samples. Rounding error may be present. | | | |
| 2/ 1969 from Admiralty Inlet samples. | | | |
| $3 / 1963$ and 1970-74 from areass) 12samples. | | | |
| 4/ Post 1974 from area 120 a hatchery samples. | | | |

Table Eil. Hond Canal normal hatchery chum return by age to United States waters.

Returis Year	Three	--AgeFour.	Five	Total
1968	2,2014	7,505	202	11,911
1769	4,058	5,213	122	9,393
1970	6,113	13,381	39	17,533
1971	7,171	7,900	122	15,172
1972	3,534	16,632	624	20,790
1973	11,216	16,583	2,189	29,988
1974	11,387	31,094	1,314	43,795
1975	5,434	13,304	0	18,738
1976	12,471	59,399	216	72,086
1977	39,181	53,055	5,472	97,707
1978	66,849	179,280	1,733	247,864
1579	21,443	72,393	1,044	94,879
1780	74,109	47,842	1,289	143,240
1981	36,564	48,491	1,116	86,176
1982	67,656	94,328	730	182,807
1983	33,018	107,500	12,490	153,571
1984	121,601	160,582	8,437	290,619

Source: WDF Stock Strength Calculation Summary, 18 April 86; rounding error may be present.

Table E12. Hogd Carial rigrmal hatchery chum broodyear return by age ta lirited states waters.

Brood Year	Three	Age Four.	Five	Brood Return
1965	2,204	5,213	39	7,456
1966	4,058	5,213	122	9,393
1967	6,113	13,391	39	19,533
1968	7,171	7,500	122	15,172
1969	3,534	16,632	624	20,790
1970	11,216	16,583	2,189	29,988
1971	11,387	31,094	1,314	43,795
1972	5,434	13,304	0	18,738
1973	12,471	59,397	216	72,086
1974	39.181	53,055	5,472	97,707
1975	66,845	179,280	1,733	247,862
1976	21,443	72,393	1,044	94,879
1977	94,109	47,842	1,289	143,240
1978	36, 564	48,491	1,116	86,172
1979	87,656	94,328	730	182,715

Source: WDF, 3/87; roundirigerror may be present.

AFFENDIX F

FUGET EGUND EIMAERCIAL CHLM GALMON CATCHES EY AREA AND GEAR 1970-1984

AREA DESCRIPTITN	NON-INDIAN				INDIN					TOTAL
	GILL NET	PURSE SEINE	OTHER	SUBTOTAL	GILL NET	PURSE SEINE	TROLL	OTHER S	SUETOTAL	
PRE-TEPTINTL										
48 (Tatoosh-5ail Rock)	719	2	2	723	82				82	805
5 (Challa 8ay)	213	16		229					0	229
6 (Partridgatank)				0					0	0
6A (Wast Beach)	1061	1503		2564					0	2564
6C (Port Angeles)	5			5					0	5
subtotal	1998	1521	2	3521	82	0	0	0	82	3603
7 (Gan Juans)	8347	11154	839	20348					0	20348
7A (Point Roberts)	31984	23134		55118					0	55118
Sibstotal	40331	34288	839	75458	0	0	0	0	-	75458
68 (Discouery 9ay)	6411	5586		11997					0	11997
9 (Adairalty inlet)	15714	31595		47309					0	47309
SIBTOTAL	22125	37181	0	59306	0	0	0	0	0	59306
GRAND TOTAL: PRE-TEFAINAL	64454	72990	841	138285	82	0	0	0	82	138367
TERTINAL										
Strait--										
60 (Dungeness Bay)				0					0	0
Strait Rivers				0	23				23	23
Simotal: Strait tern.	0	0	0	0	23	0	0	0	23	23
7 E (East Sound)				0					0	,
Nooksack/Smish--										
78 (Bellinghan tay)	5			5					,	5
7 (Smish 8ay)	1			1					0	1
70 (Lumi 8ay)				0					0	0
Nooksack River				0	4465				4465	4465
Saxish River				0					-	,
SUETOTAL: Nook./Sma. lecti.	6	0	0	6	4465	0	0	0	4465	4471
Skıgi t--										
8 (Skagit 8ay)	2824	8		2832	503			439	942	3774
Skagit River				0					0	0
SUBTOTAL: Skagit tern.	2824	8	0	2832	503	0	0	439	942	3774
Stillagumish/Snohmish--										
8A (Port Susan/Port Gardner)	3007			3007	2016			1699	3715	6722
80 (Tulalip Bay)				0					0	0
Stillaguanish River				0					0	0
Snohonish River				0					0	0
SUBTOTAL: Stilly/Snoh, tern.	3007	0	0	3007	2016	0	0	1699	3715	6722
South Sound--										
10 (Seattle)	17502	7734		25236					0	25236
11 (East-lest Passage)	6137	7996		14133					0	14133
SUBTOTAL	23639	15730	0	39369	0	0	0	0	0	39369
10 A (Elliott gay)				0					0	0
10E (East Kitsap)				,					0	0
If (Comencenent Bay)				0					0	0
13 (Nisqually Reach)				0					0	0
13 (Carr Inlet)	2	4		6					0	6
13t-K (South Sound Inlets)				0	1077				1077	1077
Subiotal s.s. nar ine ext, tern.	2	4	0	6	1077	0	0	0	1077	1083
Subtotal s.s. nar ine tern.	23641	15734	0	39375	1077	0	0	0	1077	40452
$10645=108$ (N. LK. Uash, \& Canal)									0	0
10C (S. Lk. Washington)				0					0	0
100 (Lake Samanish)				0					-	-
Oreen-Dumanish River				0					0	0
Puyallup River				0	22				22	22
Uhite River				0					0	0
Nisqually Rluer				0	13566				13566	13566
Misc. frestwater				0					0	0
SUBTOTAL: S.S. frestmater	0	0	0	0	13588	0	0	0	13588	13588
sLBTUTAL, S.S. terninal	23641	15734	0	39375	14665	0	0	0	14665	54040
Hood Canal--										
12 (Upper H.C.)				0					0	0
128 (Central H.C.)				0					0	0
SIIBTDTAL:	0	0	0	0	0	0	0	0	0	0
				0					0	0
12C (Louer Hood Canal)				0					0	0
120 (SE Hood Canal)				0					0	0
9 A (Port Gasble)				0					0	0
Subtotal: H.C. areine ext, tern.	- 0	0	0	0	0	0	0	,	0	0
subtotala marine terainal	0	0	0	0	0	0	1	,	0	0
Skokonish River				0	10254				10254	10254
Quilcene River				0					0	0
Misc. frestmater				0					0	0
SUBTOTAL: H.C. trestmator	0	0	0	0	10254	0	0	0	10254	10254
Subtotal: H.C. Remainal	0	0	0	0	10254	0	0	0	10254	10254
total: Terminal Marine	29478	15742	0	- 45220	3596	0	0	2138	5734	50954
total terninal frestwater	0	0	0	0	28330	0	0	0	- 28330	28330
GRALO TOTAL TERHINAL	29478	15742	0	45220	31926	0	0	2138	34064	79284
gravo total pre-terinkal	64454	72990	841	138285	82	0	0	0	- 82	138367
GRADO TOTAL CIAFERCIAL	93932	88732	841	183505	32008	0	0	2138	34146	217651

arte description	NON-INDIAN				INOIA					TOTAL
	GILL NET	PURSE SEINE	OTHER	SUSTITAL	GILL NET	PUASE SEINE	TROLL	OTHER	Sugtotal	
PRE-TEPIINAL										
48 (Tatoost-Sail Rock)	406	1	4	411	138				138	549
5 (Clalla bay)	54			54					,	54
6 (Partridge gank)				0					0	0
ΔA (West Beach)	729	536		1265					0	1265
6C (Port Angeles)	1			1					0	1
SUBTOTAL	1190	537	4	1731	138	0	0	0	138	1869
7 (San Juans)	2446	9914	684	13044	9				9	13053
7 A (Point Roberts)	8571	5209		13780	115				115	13895
subtotal	11017	15123	684	28824	124	0	0	0	124	26948
68 (0iscovery 8ay)	5833	4771		10604	6				6	10610
9 (Admiralty Injet)	14788	18184		32970	73				73	33043
SUBTJTAL	20619	22955	0	43574	79	0	0	0	79	43653
GRAO TOTAL, PRE-TENHINL	32826	38615	688	72129	341	0	0	0	341	72470
TERAITML										
Strait-										
60 (Dungentss 8ay)				0					0	0
Strait Rivers				0	5				5	5
Slbiotal: Strait term.	0	0	0	0	5	0	0	0	5	5
7 E (East Sound)				0					0	0
Nooksack/Smish--										
78 (8ell inghas 8ay)				0					0	0
70 (Samish 8ay)				0					0	0
70 (Luma gay)				0					0	0
Nooksack River				0	3310				3310	3310
Smish River				-					0	0
SUETOTAL: Hook./Sm, tern.	0	0	0	0	3310	0	0	0	3310	3310
Skagit--										
8 (Skagit 8ay)	265			265	767			281	1048	1313
Skagit River				0					0	0
SUPTOTAL: Skagit tera.	265	0	0	265	767	0	0	281	1048	1313
Stillaguaish/Snohoni sh--										
BA (Port Susan/Port Gardner)	202	2		204	246			118	364	568
80 (Tulalip lay)				0					0	0
Stillaguasish River				0					0	0
Snohonish River				0					0	0
SUBTOTAL: Stilly/Snoh, tern.	202	2	0	204	246	0	0	118	364	568
South Sound--										
10 (Seattle)	34745	12645		47390	33				33	47423
11 (East-Whst Passage)	3177	586		3763					0	3763
Slbitotal	37922	13231	0	51153	33	0	0	0	33	51186
10A (Elliott 8ay)				0					0	0
10E (East Kitsap)				0					0	0
IJA (Conamsement gay)				0					,	0
13 (Nisqually Reach)				0					0	0
13A (Carr Inlet)		100		100					0	100
13t-x (South Sound Inlets)				0	1986				1986	1986
Subiotal s.s. narine ext, tern.	0	100	0	100	1986	0	0	0	1986	2086
sugtotal s.s, marine tera.	37922	13331	0	51253	2019	0	0	0	2019	53272
106dfa 108 (N. LK, Wash. \& Canal)				0					-	0
10C (S. Lk. Washington)				0					0	0
100 (Lake Sammish)				0					0	0
Green-Dumaish River				0					0	0
Poyallup River				0	92				92	92
White River				0					0	0
Nisqually River				0	13663				13663	13663
Misc, treshater				0					0	0
SUBTOTAL: S.S. freshuater	0	0	-	0	13755	0	0	0	13755	13755
SUBTOTAL: S.S. teminal	37922	13331	0	51253	15774	0	-	0	15774	67027
Hood Canal--										
12 (Upper H,C.)				0					0	0
12 B (Central H.C.)				0					0	0
SU日total:	0	0	0	0	0	0	0	0	0	0
134 (2uilcene-0abob 8ays)				0					0	0
12 C (Lower Hood Canal)				0					0	0
120 (SE Hood Canal)				0					0	0
9A (Port Gamble)				0					0	0
SUBTOTAL: H.C. narine ext. tern.	0	1	0	0	0	0	0	0	0	0
Sugtotal: marine terininal	0	0	0	0	0	0	0	0	0	0
Skokonish River				0	6693				6693	6693
Guilcene River				0					0	0
Misc. freshuater				0					0	0
SUBTOTAL: H.C. freshuater	0	1	0	0	6693	0	0	0	6693	8693
Subtotal H.C. teminal	0	0	0	1	6693	0	0	0	6693	6693
Total: Terninal Marine	38389	13333	0	51722	3032	0	0	399	3431	55153
TOAAL: Terainal Frestmater	0	0	0	0	23763	0	,	0	23763	23763
GRAMO TOTAL TERHINGL	38389	13333	0	51722	26795	0	,	399	27194	78916
GRA10 TOTAL PRE-TEPAINAL	32826	38615	688	72129	341	0	,	0	341	72470
GRANO TOTAL COHTERCIAL	71215	51948	688	123851	27136	0	0	399	27535	151386

AREA DESCRIPTION	MON-INDIA				INDIA					TOTAL
	GILL NET	PURSE SEINE	THER	SUBTOTAL	6ILL NET	PURSE SEINE	TROLL	OTKER	SUBTOAL	
PRE-TEPNMAL										
48 (Tatoosh-Sail Rock)	1178		2	1180	315				315	1495
5 (Clallan Buy)	369			369					0	369
6 (Partridge Bank)				0					0	0
GA (West Brach)	6655	4254		10909					0	10909
6C (Port Argelis)	10			10					0	10
SUETOTAL	8212	4254	2	12468	315	0	0	0	315	12783
7 (Sam Juans)	29133	131544	2886	163563	21				21	163584
7A (Point Roberts)	79780	97042	121	176943	825				825	177768
Slbtotal	108913	228586	3007	340506	846	0	0	0	846	341352
68 (Discourry 8ay)	27906	11288		39194					0	39194
9 (Admiralty Inlit)	89329	73235		162564	215				215	162779
slabtotal	117235	84523	0	201758	215	0	0	0	215	201973
GAFOT TTAL: PRE-TERNINL	234360	317363	3009	554732	1376	0	0	0	1376	556108
TERAINAL										
Strait--										
60 (Dungeness Bay)				0					0	0
Strait Rivers				0	116				116	116
sugtotal: Strait tern,	0	0	0	0	116	0	0	0	116	116
7E (East Sound)				0					0.	0
Nooksack/Smish--										
78 (Bellingham Bay)		56		56					0	56
2c (Smish Bay)				0					0	0
70 (Lumal bay)				0					0	0
Nooksack River	718			718	1921				1921	2639
Saish River				0					0	0
Sugtotala Nook, /Sim. tern.	718	56	0	774	1921	0	0	0	1921	2695
Skagit--										
8 (Skagit 8ay)	5545	381		5926	1962			253	1715	7641
Skagit River				0					0	0
Slegtotal Skagit term.	5545	381	0	5926	1462	0	0	253	1715	7641
Stillaguai sh/Snohomish-as (Porl Susan/Port Gardmer)	3704	26		3730	6656			508	7164	10894
80 (Tulalip 8ay)				0					0	0
Stillagumish River				0					0	0
Snohonish River				0					0	0
StbTOTALI Stilly/Snoth. term.	3704	26	0	3730	6656	0	0	508	7164	10894
South Sound--										
10 (Suattle)	93833	16465		110298	681				681	110979
11 (East-dest Passigo)	39888	20861		60749					0	60749
SUETOTAL	133721	37326	0	171047	681	0	0	0	681	171728
10A (Elliott 8ay)				0					0	0
10E (East Kitsap)				0					0	0
11A (Comarncment Bay)				0					0	0
13 (Nisqually Reach)				0					0	0
13 A (Care Inlet)		85		85					0	85
$13 \mathrm{C}-\mathrm{K}$ (South Sound inlets)				0	3641				3641	3641
Subtotal s.s. aar ine oxt. tem.	0	85	0	85	3641	0	0	0	3641	3726
subtotal s.s. marine tera.	133721	37411	0	171132	4322	0	0	0	4322	175454
1068fal0s (N. LK. Wash, \& Canal)				0					0	0
10C (S. LK. Kashington)				0					0	0
100 (Lakt Samanish)				0					0	0
Grene-Tumanish River				0	20				20	20
Puyallup River				0	78				78	78
Uhite River				0					0	0
Nisqually River				0	16213				16213	16213
Misc. fristwater				0					0	0
SUBTdtal: 5.S. treshmater	0	0	0	0	16311	0	0	,	16311	16311
sugtotali S.s. temainal	133721	37411	0	171132	20633	0	0	0	20633	191765
Hood Canal--										
12 (Upper H.C.)				0					0	0
12B (Contral H.C.)				0					0	0
Subtotal:	0	0	1	0	0	0	0	0	0	0
134 (Ouilcene-Dabob 8ays)				0					0	0
12 C (Lourr Hood Canal)				0					0	0
120 (SE Hood Canal)				0					0	0
94 (Port fathle)				0					0	0
SUBTOTAL: H.C. marine ext. tern.	0	0	0	0	0	0	0	,	0	0
sugtotala mirine terainal	0	0	0	0	0	0	0	0	0	0
Skokonish River				0	18942				18942	18942
Quilcene Rluer				0					0	0
Misc. freshmater				0					0	0
SUBTOTAL: H.C. frestmater	,	,	0	0	18942	0.	0	0	18942	18942
SUBTOTAL: H.C. terninal	0	0	0	0	18942	0	0	0	18942	18942
totala Teminal Marine	142970	37874	0	180844	12440	0	0	761	13201	194045
TOTAL: Terninal Freshmater	718	0	-	718	37290	0		0	37290	3800B
GRACD TOTAL TEPAINGL	143688	37874	0	181562	49730	0	0	761	50491	232053
GRAND TOTAL PRE-TERHINAL	234360	317363	3009	554732	1376	0	0	0	1376	556108
GRAPD TOTAL COHECCIAL	378048	355237	3009	736294	51106	0	,	761	51867	788161

AREA DESCRIPTION	NON-INDIAN				INDIA					TOTAL
	GILL NET	PURSE SEINE	OTHER - SL	SUBTOTAE	GILL NE	PURSE SEIME	TROLL	OTHER	SUBTOTAL	
PRE-TEMITMAL										
48 (Tatoosh-Sail Rock)	736			736	813				813	1549
5 (Clallam Bay)	394	61		455	5				5	468
6 (Partridge 8ank)				0					0	0
SA (West Beach)	709	234		943					0	943
OC (Port Angeles)				0					0	0
sugtotal	1839	295	0	2134	818	0	0	0	818	2952
7 (San Juans)	55432	77140	3164	135736	4				4	135740
7 A (Point Roberts)	77145	60469		137614	591				591	138205
Sugtotal	132577	137809	3164	273350	593	0	0	0	595	273945
68 (Discourey 8ay)	11163	10540		21703					0	21703
9 (Admiralty inlet)	25847	45336		70983	37				37	71020
sugtotal	36850	55876	0	92686	37	0	0	0	37	92723
ghato total: PRE-TEAHINLL	171226	193780	3164	368170	1450	0	0	0	1450	369620
TEratinal										
Strait--										
60 (Oungeness Buy)				0					0	0
Strait Rivers				0	173				173	173
SUBTOTAL: Strait tern.	0	0	0	0	173	0	0	0	173	173
$7 E$ (East Sound)				0					0	0
Nooksack/ 5 mish--										
79 (Bellingham gay)		4		4					1	4
7C (Salish $\mathrm{Bay}^{\text {y }}$)				0	178				178	178
70 (Lumi gay)				0					0	0
Nooksack River	31			31	15029				15029	15060
Sanish River				,					-	0
SUBTOTAL: Nook, /San, tera.	31	4	0	35	15207	0	0	0	15207	15242
Skagit--										
8 (Skagit Bay)	83	6		89	2398			79	2477	2566
Skagit River				0					0	0
subtotal: Skagit tern.	83	6	0	89	2398	0	0	79	2477	2566
Still agumaish/Snohomish--										
BA (Port Susan/Port Gardner)	720	40		760	4086			84	4170	4930
80 (Tulalip Bay)				0					0	0
Stillaguanish River				0					0	0
Snohonish River				0					0	0
SUETOTAL: Stilly/Snoh, term.	720	40	0	760	4086	0	0	84	4170	4930
South Sound--										
10 (Seattle)	41696	12885		54581	307				307	54888
11 (East-hest Passage)	18097	20586		38683	28				29	39711
SUETOTAL	59793	33471	0	93264	335	0	0	0	335	93599
10A (Elliott gay)				0					0	0
10E (East Kitsap)				O					0	0
11 A (Conamiement gay)				0					0	0
13 (Nisqually Reath)				0					0	,
13 A (care Inlet)		49		49					,	49
13C-K (South Sound Inlets)				0	3974				3974	3974
sugtotal s.s. narine ext. tera.	0	49	0	49	3974	0	0	0	3974	4023
SUBTOTAL S.S, narine lera.	59793	33520	0	93313	4309	0	0	0	4309	97622
1084F=109 (N. LK. Uash. \& Canal)				0					0	0
IOC (S. Lk. Washington)				0					0	0
100 (Lake Samaish)				0					0	7
Green-Ouma ish River				0	227				227	227
Puyallup River				0	481				481	481
White River				0	5				5	5
Nisqually River				0	29528				29528	29528
Misc, freshmater				0					0	0
SUBTOTAL: S.S. frestmater	0	0	0	0	30241	0	0	0	30241	30241
SUGTOTAL: 5.5. Terminal	59793	33520	0	93313	34550	0	0	0	34550	127863
Hood Camal--										
12 (Upper H.C.)				0					0	0
128 (Central H.C.)				0					0	0
Subtotal:	0	0	0	0	0	0	0	0	0	0
134 (Ruilcene-Dabob gays)				0					0	0
12 C (Louer Hood Canal)				0					0	0
120 (SE Hood Canal)				0					0	0
9 A (Port Gable)				0	\cdot				0	0
Subtotal h hic. marine ext. tern.	. 0	0	0	0	0	0	0	0	0	0
Subtotala marine terninal	0	1	0	0		0	0	0	0	0
Skokonish River				0	14639				14639	14638
Quilcene River				0					0	0
Misc. frestuater				0					0	0
SUETOTAL: H.C. fresmater	0	1	0	0	14639	0	0	0	14638	14639
SUATOTAL: H.C. terninal	0	1	0	0	14638	0	0	0	14839	14638
Total: Terainal Marine	60596	33570	0	94166	10971	0	0	163	11134	105300
TGAL: Terainal Freshwater	31		0	31	60091	0	0	0	60091	60112
GRAD TOTAL TERINAL	60627	33578	0	94197	71052	0	0	163	71215	165412
gRAD TTAAL PRE-TERIMAL	171226	193780	3164	368170	1450	0	0	0	1450	369620
GRAD TOTAL COUERCIAL	231853	227350	3164	462367	72502	0	0	163	72665	535032

AREA DESCRIPTICN	NON-INDIAN				IMOIAN					
	61LL NEI	PURSE SEINE.	OTHER	SUATOTAL	61LL HET	PURSE SEINE	TROLL	OTHER	SUBTOTAL	TITAL
PRP-TERATINAL										
48 (Tatoosh-Sail Rock)	69			69	3651.				3651	3720
5 (Clallz Bay)	8			8	128°				128	136
6 (Partridepe Gank)				0					0	0
6 (ldest Beach)	17	35		52	7				7	59
\&f. (Por t Angeles)	120			120	22				22	142
SUBTUTAL	214	35	0	249	3808	0	0	0	3808	4057
7 (Sah Juans)	58402	43464	2935	104801	619				619	105420
7A (Point Roberts)	70372	24007	9	94388	1319				1319	95707
SUBTOTAL	128774	67471	2944	199189	1938	0	0	0	1938	201127
68 (Discovery bay)	474	55		529	107				107	638
9 (Adairalty lniet)	3462	7489		10951					0	10951
51870TAL	3936	7544	0	11480	107	0	0	0	107	11587
GRA*) TUTAL: PRE-TERAINL	132924	75050	2944	210918	5853	0	0	0	5893	216771
TERTITAL										
Strait--										
60 (Dungeness lay)				0					0	0
Strait Rivers				0	470				470	470
SUBTOTAL: Strait term.	0	0	0	0	470	0	0	0	470	470
7E (East Sound)				0					0	0
Nooksack/Smish--										
78 (Bellingha gay)		440		440					0	440
70 (Sxish 8ay)				0	84				84	84
70 (Luatil gay)				0					0	0
Nooksack River	3			3	10419				10419	10422
Smich River				0					0	0
SUgTOTAL: Nook./Sw. term.	3	440	0	443	10503	0	0	0	10503	10946
Skagit--										
8 (Skagit 8ay)	1362	48		1410	8169			96	8265	9675
Skagit River				0	4573				4573	4573
SLETOTAL: Skagit term.	1362	48	0	1410	12742	0	0	96	12838	14248
Stillaguaish/Snotonish-8 (Port Susan/Port Gardaer)	1427	4		1431	17773			437	8210	19641
80 (Tulalip 8ay)				0					0	0
Stillaguaish River				0					0	0
Snchonish River				0					0	0
SUBTOTAL: Stilly/Snoh. term.	1427	4	0	1431	17773	0	0	437	18210	19641
South Sound--										
10 (Seattle)	1722	12617		14339	24519				24519	38858
11 (East-West Passage)	301	713		1014	3317				3317	4331
SUBTOTAL	2023	13330	0	15353	27836	0	0	0	27836	43189
10A (Elliott gay)				0					0	0
10E (East Xitsap)				0					0	0
IIA (Conencment gay)				0					0	0
13 (Nisqually Reach)				0					0	0
13A (Carr lalet)	239	15		254	4662				4662	4916
136-K (South Sound liniets)				0	24129				24129	24129
SUBTOTAL S.S. nar ine ext. term.	239	15	0	254	28791	0	0	0	29791	29045
SURTOTAL S.S. narint tem.	2262	13345	0	15607	56627	0	0	0	56627	72234
1068F=108 (N. Lk. Wash. \& Canal)				0	26				26	26
10C (S. Lk. Washingtoa)				0					0	0
100 (Lake Samaish)				0					0	0
Green-Dumish River				0	609				609	609
Puyallup Rivep White River				0	1495				1495	1495 0
Nisqually River				0	24269				24269	24269
Misc. freshatep				0					0	0
SUPTOTAL: S.S. freshater	0	0	0	0	26399		0	0	26399	26399
SUBTOTAl: S.S. terminal	2262	13345	0	15607	83026	0	0	0	83026	98633

Hood Canal--
12 (Upper H.C.)
128 (Central H.C.) SURTOTAL:

Hood Canal--				
12 (Upper H.C.)				0
128 (Central H.C.)				0
SURTOTAL:	0	0	0	0
12A (Ouilcene-Dabob Bays)				0
12 C (Lower Hood Canal)				0
120 (SE Hood Canal)				0
9A (Port 6xible)				0
SUPTOTAL: H.C. narine ext, term.	0	0	0	0
SUBTOTAL: narine teminal	0	0	0	0
Skoknaish River				0
Quilcene River				0
Hisc. frestmater				0
SURTOTAL: H.C. freshater	0	0	0	0
SUBTOTAL: H.C. terminal	0	0	0	0
TOTAL: Terninal Marine	5051	13837	0	18888
TOTAL: Terninal Freshazter	3	0	0	3
GRAD TOTAL TEMIJNAL	5054	13837	0	18891
GRAND TOTAL PRE-TERU1NAL	132924	75050	2944	210918
GRAND TOTAL COPAERCIAL	137978	88897	2944	229809

AREA DESCRIPIION	NOH－INDIN				1H01AN					TOTAL
	GILL NET	PURSE SEIIE	OTHER	SUBTOTAL	GILL NET	PURSE SEINE	TROLL	OTHER	Subtital	
PRE－TERTINAL										
48 （Tatoosh－Sail Rock）	353		3	356	407		9		416	772
5 （Clallan 8ay）	9			9	38				38	47
6 （Partridge 8ank）				0					0	0
SA（West Beach）	407	433		840	101				101	941
6C（Port Angelis）				0					0	0
Subtotal	769	433	，	1205	546	，	9	0	555	1760
7 （San Juans）	20501	19934	939	41374	555	34			589	41963
7A（Point Roberts）	34709	15691	99	50499	179	79			258	50757
SUITOTAL	55210	35625	1038	91873	734	113	0	0	847	92720
68 （Discouery gay）	336			336					0	336
9 （Adairalty inlet）	1069	232		1301	723	1328			2051	3352
SUBTOTAL	1405	232	0	1637	723	1328	0	0	2051	3688
GRAND TOAL：PRE－TERAINAL	57384	36290	1041	94715	2003	1441	9	0	3453	98168
TERHINAL										
Strait－－										
60 （Dungeness 8ay）				0	397				397	397
Strait Rivers				0	380			29	409	409
Subtotala Strait tern．	0	0	0	0	777	0	0	29	806	806
7E（East Sound）				0					0	0
Nooksac／／Smish－－										
78 （8ellinghan ⿴囗十ay）	6	3		9	5651	104			5755	5764
7C（Samish 8ay）	31	1		32	235				235	267
70 （Lumi 8ay）				0	63	12			75	75
Nooksack River				0	1052				1052	1052
Sanish River				0					0	0
SUBTOTAL：Nook，／Sana，tern．	37	4	0	41	7001	116	0	0	7117	7158
Skagit－－										
8 （Skagit 8ay）	197	5		202	1311			172	1483	1685
Skagit River				0	316				316	316
Subtotal：Skagit tera．	197	5	0	202	1627	0	0	172	1799	2001
5tillaguanish／Snohonish－－										
8A（Port Susan／Port Gardner）	70	10		日0	1242	1		2	1245	1325
80 （Tulalip bay）				0					0	0
Stillagumish River				－					0	0
Snohenish River				0					0	0
SUBTOTAL：Stilly／Snoh，tern．	70	10	0	80	1242	1	0	2	1245	1325
South Sound－－										
10 （Seattle）	972	224		1196	4156	975			5131	6327
11 （East－West Passage）	736	274		1010	5471	，			5479	6489
SUITTAL	1708	498	0	2206	9627	983	0	0	10610	12816
10A（Elliott 8ay）	714	71		785	1567				1567	2352
10E（East Kitsap）	19			19	1891	32			1923	1942
11A（Commenctient 8ay）	16	27		43	162				162	205
13 （Nisqually Reach）				0					0	0
13 A （Care Inlet）	504	46		550	2718				2718	3268
13C－K（South Sound Inlets）	1			1	4830				4830	4831
SUBTOTAL S．S．nar ine ext．tern．	1254	144	0	1398	11168	32	0	0	11200	12598
SUETOTAL S．S．nar ine tera．	2962	842	0	3604	20795	1015	0	0	21810	25414
1008F＝108（N．LK．Wash．\＆Canal）				，	44				44	44
10C（S．Lk．Washington）				0					0	0
100 （Lake Smanaish）				0	96				96	96
Green－Dumanish River				0	116				116	116
Puyallup River				0	375				375	375
Uhite River				0	1				1	1
Nisqually River				0	20979			1	20980	20980
Misc，freshuater				0					0	0
SUBTOTALI S．S．treshmater	0	0	0	0	21611	0	0	1	21612	21612
SUETOTAL，g．S．terminal	2962	642	，	3604	42406	1015	0	1	43422	47026
Hood Canal－－										
12 （Upper H．C．）				0					0	0
12B（Central H，C．）				0					0	0
SUBTOTAL	0	0	0	0	0	0	0	0	0	0
124（Quilcene－Dabob Eays）	43	1		44	379	268			647	691
12C（Lower Hood Canal）	1382	3019		4401	7030	371			7401	11802
120 （SE Hood Canal）				0	59	52			111	111
9A（Port Ganble）				0					0	0
SUBTOTAL：H．C．nar ine ext．tem．	1425	3020	，	4445	7468	691	0	0	8159	12604
Sugtotal：areine terainal	1425	3020	，	4445	7468	691	0	0	8159	12604
Skokonish River				0	6462				6462	6462
Quilcone river				0					0	0
Misc．freshuater				0					0	0
SUBTOTAL：H．C．freskmater	0	0	0	0	6462	0	0	0	6462	6462
SUTETAL：H．C．teminal	1425	3020	0	4445	13930	691	0	0	14621	19066
Total：Terninal Marine	4691	3681	0	8372	37162	1823	0	174	39159	47531
TOTAL：Terninal Freshas ter	0	0	0	0	29821	0	0	30	29851	29951
GRAD TOTAL TERHINAL	4691	3681	0	8372	66983	1823	0	204	69010	77382
GRAND TOTAL PRE－TERAINAL	57384	36290	1041	94715	2003	1441	9	0	3453	98168
graio total catercial	62075	39971	1041	103087	68986	3284	9	204	72463	175550

AREA DESCRIPTID	NON-INDIAN				INDIAN					TOTAL
	GILL NET	Purse seine	OTHER	SUETOTAL	61LL NET	Purse selne	Trotil	OTHER	SUBtotal	
PRE-TEPAINAL										
48 (Tatoosh-Sail Rock)	134			134	1890				1890	2024
5 (Clalla gay)	178			178	528				528	706
6 (Partridge gank)				0					0	0
©A (West Beach)	10			10	643	767			1410	1420
dC (Port Angeles)	469			469	320				320	789
Sugtotal	791	0	0	791	3381	767	0	0	4148	4939
7 (San Juans)	68733	71735	3003	143471	16321	11539			27860	171331
7A (Point Roberts)	35724	66331		102055	1953	1877			3830	105985
sugtotal	104457	138066	3003	245526	18274	13416	0	0	31690	277216
68 (Discouery 8iy)	22094			22094	758	4			762	22856
9 (Adairalty Inlel)	72116			72116	3191	1114			6305	78421
SUBTOTAL	94210	0	0	94210	5949	1118	0	0	7067	101277
GRAO TOTAL: PRE-TERNINAL	199458	138066	3003	340527	27604	15301	0	0	42905	383432
TEP4INAL										
Strait-										
60 (Dungeness Bay)	32			32	472				472	504
Strait Rivers				0	1779			36	1835	1835
SUBTOTAL: Strait term.	32	0	0	32	2251	0	0	56	2307	2339
$7 E$ (East Sound)				,					0	0
Hooksack/Sanish--										
78 (Bellinghas Bay)	2668	653		3321	13673	10			13603	17004
7C (5xaish Bay)	55	156		211	560	42			602	813
70 (Lusai gay)				0					0	0
Nooksack River				0	339				338	338
Snish Riur				0					0	0
	2723	809	0	3532	14571	52	0	0	14623	18155
Skagit--										
8 (Skagit Bay)	6962	4315		11277	11552	1825		208	13585	24862
Skagit River				0	7019				7019	7019
Sugiotal: Skagit lema,	6962	4315	0	1127	18571	1823	0	208	20604	31881
Sthllaguanist/Snotonish-BA (Port Susan/Port Gardner)	638	1873		2511	20163	760		1344	22267	
80 (Tulalip gay)				2.1.		76			0	0
Stillagumish River				,	171				171	171
Snohonish River				0					,	,
SUBTOTA, Stilly/Snoh. tera.	638	1873	0	2311	20334	760	0	1344	22438	24949
South Sound--										
10 (Seattio)	48478	18039		66917	16608	21081			37689	104206
11 (East-West Passage)	16907	18005		34912	1705				1705	36617
SUBTOTAL	65385	36044	0	101429	18313	21081	0	0	39394	140823
10A (Elliott gay)	396	308		894	11742	49			11791	12485
10E (East Kitsup)					1244				1244	1244
11A (Comenchant gay)	10	12		22	1098				1098	1120
13 (Nisqually Reach)				1					-	0
13A (Carr Inlet)	24			24	11624	329		70	12023	12047
13c-k (South Sound Inlets)	246			246	26959			1147	28106	29352
SUBTOAL S.S. nurine ext. tern.	666	320	0	996	52667	378	0	1217	54262	55249
SUBTOTAL S.S. marine tera.	86051	36364	0	102415	70980	21459	0	1217	93658	196071
1068f=109 (N, LK. Wash. \& Canal)					20				20	20
10C (S. Lk, Hashington)				0					0	
100 (Lakt Sumaish)				0	1				1	9
Grefn-Dumatish River					839				639	839
Puyallup River				0	759				759	759
White River				0	20				20	20
Nisqually River				0	9938		-		9938	9938
Misc. fresmater				0					0	-
sugtotal: S.s. frestmater	0	0	,	0	11377	0	,	0	11377	11377
Sugtotal s.s. terninal	66051	36364	0	102415	82357	21459	0	1217	105033	207448
Hood Canal--										
12 (Spper H,C.)				0					0	0
128 (Crntral H.C.)		5247		5247	4030				4030	9277
SUBTOTAL:	0	5247	0	5247	4030	0	0	0	4030	9277
124 (Ouilcene-Dabob gays)				0	6944			529	7473	7473
12C. (Lower Hood Canal)		13199		13195	33188			7	33195	46390
120 (SE Hood Canal)				0	1626				1626	1626
9 A (Port Oamble)				0					0	0
Sugtotal H.C. marine ext, ters.	0	13199	,	13195	41759	-	,	536	42294	55489
SUBTOTAL: marine ternimal	0	18442	-	18442	45789	0	0	536	46324	64766
Skokoni sh River				0	24929				24929	24929
Quilcene River				0					0	0
Misc. freshus ter				0					0	0
SUBTOTAL: H.C. freshmater	0	,		0	24929	0	0	0	24929	24929
Stbrotala H.C. terninal	0	18442	0	18442	70717	0	0	536	71253	89895
TUtal: Terainal Marine	76406	61803	0	139209	163188	24096	0	3305	190599	329798
Tetal: Terninal Frestanter	0	,	-	0	43613	,	0	56	45659	45669
GRANO TOTAL TEPAINAL	76406	61803	0	138209	208901	24098	0	3361	236258	374467
GRANO TOTAL PRE-TEPMINAL	199458	139066	3003	340527	27604	15301	0	0	42905	393432
GRAND TOTAL COHERCIAL	275964	199869	3003	478736	236405	39397	0	3361	279163	757999

AREA DESCRIPTION	NON-INOLIA				ITD1**					TOAL
	6ILL NET	PURSE SEINE	OTHER	SUBTOTAL	61LL NET	PURSE SEINE	TROCL	OTHER	SUETOTAL	
Pre-TERMINL										
48 (Tatoost-Sal1 Rock)	127			127	382		4		386	513
5 (Clalla gay)	1197		2	1199	216				216	1415
6 (Partridge Bank)	3903			3903	1				1	3904
${ }_{\text {S }}$ (Whest Beach)	4715	48		4763	4				4	4767
6C (Port Angeles)	18			18	10				10	28
SURTOTAL	9960	48	2	10010	613	0	4	0	617	10627
7 (Sab Juans)	4402	14089	2395	20876	4647	2543	70		7260	28136
7A (Point Roberts)	9350	13651		23001	161				161	23162
SURTOAL	13752	27740	2385	43877	4809	2543	70	0	7421	51298
68 (Discovery 8ay)	8037	351		8388	124				124	9512
9 (Admiralty Inlet)	44226	12548		56772	1628	114			1742	58514
SURTOTAL	52263	12897	0	65160	1752	114	0	0	1866	67026
GRAN0 TOTAL: PRE-TERNIHAL	75975	40685	2387	119047	7173	2657	74	0	9904	128951
tepuinal										
Strait=-										
60 (Dungeness 8ay)				0					0	0
Strait Rivers				0	149			19	168	168
Slegtola Strait tern.	0	0	0	0	149	0	0	19	168	168
7 E (East Sound)				0					0	0
78 (881linghum 8ay)	7352	1109		8461	17166	62			17228	25689
7 C (Samish 8ay)	523	91		614	1578				1578	2192
70 (Lumi gay)				0					-	0
Nooksack River				0	3148				3149	3149
Smaish River				0	1				1	1
Subtetal: Nook./9m. Term.	7875	1200	0	9075	21893	62	0	0	21955	31030
Skagit--										
8 (Skagit 8ay)	29			28	4360			89	4449	4477
Skagit River				0	587				587	587
SUBTOTAL Stagit tera.	28	0	0	29	4947	0	0	89	5036	5064
Stillagumish/Snothemish--										
*A (Port SusanPort bardner)	43			43	2436			31	2467	2510
88 (Tulalip gay)				0					0	0
Stillaguaish River				0					0	0
Snohomish River				0					0	0
Sugtotal Stilly/Snot. tern.	43	0	0	43	2436	0	0	31	2467	2510
South Sound--										
10 (Seattle)	48302	18035		66337	20956	1759			22715	89052
11 (East-West Passige)	7050	4095		11145	921				921	12068
SUBTOTAL	55352	22130	0	77482	21877	1759	0	0	23636	101118
10A (Elliott gay)	196	569		765	4092	332			4424	5189
10E (East Kitsap)	187			187	7239	450			7689	7876
11A (Conpencement gay)	909	32		941	1362				1362	2303
13 (Nisqually Reach)	2488	9		2497	770				770	3267
13 A (Carr Inlet)	100	1		101	8004	3		2	8009	9110
$13 \mathrm{C}-\mathrm{X}$ (3outh Sound Inlets)	27			27	11163			133	11296	11323
SUBTOTAL S.S. marine ext. tern.	3907	611	0	4519	32636	795	0	135	33550	33068
Sugtotal s.g, narine tern.	59259	22741	0	82000	54507	2544	0	135	57186	13918
$10685=108$ (N. Lk. Hhsh. 4 Canal)				0	3				3	3
IOC (S, LK. Uashington)				0					0	0
100 (Lake Smamish)				0					0	0
Green-Dumamish River				0	215				215	215
Puyallup River				0	15				15	15
White River				0					0	0
Nisqually River				0	22667				22667	22867
Misc. frestuater				0	4				4	
SURTOTAL: S.S. froshmater	0	0	0	0	22904	0	0	0	22904	22904
Sugtotala S.s. terminal	59259	22741	,	82000	77411	2544	,	135	80090	162080
Hood Camal--										
12 (Upper H.C.)	54703	9935		84639	10015				10015	74653
128 (Central H.C.)	449			449	2191	200			2391	2840
SlItotal:	55152	9935	0	65097	12206	200	0	0	12406	77493
124 (Ruilcene-Dabob gays)	568			568	2457				2457	3025
12 C (Lower Hood Canal)	3940			3940	34353				34353	38293
120 (SE Hood Canal)				0	7				7	7
9 A (Port Gamblu)				0					0	
Subtotali h,C, marine ext, tern.	4509	0		4509	38817	0	0	0	36817	41325
Sugtotal: narine terainal	59660	3975	,	69595	49023	200	0	0	49223	118918
Skokonish River				0	7408				7406	7406
Quilcent River				0					0	0
Misc. freshmater				0	19				19	19
Sugtotal: H.C. fresmater	0	0		0	7425	0	0	0	7425	7425
SUBTOTAL: H,C. terainal	59660	9935	0	69995	56448	200	0	0	5648	126243
Total: Terminal Marine	128865	33876	-	160741	129070	2806	0	255	132131	292872
TOTAL: Terminal Frestwater	0		,	0	34214	0	0	19	34233	34233
GRATD TOTAL TERNITHE	126865	33876	0	160741	163284	2806	0	274	166344	327105
GRAND TOTAL PRE-TEMUNAL	75975	40685	2387	119047	7173	2657	74	0	9984	128951
GRANO TOTAL COPTERCIAL	202840	74561	2387	279798	170457	5463	74	274	176268	456056

AREA DESCRIPTION	NON－INDIN				INOLAN					TOTAL
	GILL NET	PURSE SEINE	OTHER	SUBTOTAL	G1LL NET	PLRSE SEINE	TROLL	OTHER	SUbT0TAL	
PPAETERTINA										
4 g （Tatoosh－5ail Rock）	133		2	135	473		6		479	614
5 （Clalla Bay）	65			65	188			．	180	245
6 （Partridge Batk）	39570	18		39588	85				85	39673
δA（West Beach）	3			3	3				3	6
6C（Port Angeles）	8			8					0	8
SIFTOTAL	39779	18	2	39799	741	0	6	0	747	40546
7 （San Juans）	97733	94331	2402	194466	23350	4164			27514	221980
7A（Point Roberts）	87594	56923	98	144615	10564	10148			20712	165327
SIUPTOTAL	185327	151254	2500	339081	33914	14312	0	0	48226	387307
6 B （Discovery Bay）	466	5		471	218			10	228	699
9 （Adaralty Inlot）	26986	1204		28190	1170	651		9	1838	30020
SLugTotal	27452	1209	0	28661	1388	651	0	19	2058	30719
GFAOM TOTAL：PRE－TENINAL	252558	152481	2502	407541	36093	14963	6	19	51031	458572
ternimal										
Strait－－										
60 （Dungeness Bay）				0					0	0
Strait Rivers				0	505			5	510	516
Subtotal：strait term．	0	0	0	0	505	0	0	5	510	510
7E（East Sound）				0					0	0
Nooksack／5ani th－－										
78 （8ellingha 8ay）	10514	333		10847	3835	18			3853	14700
7C（Smaish ⿴囗十y）	223			223	344				344	567
70 （Lumi 8 ly ）				0					0	0
Nooksack River				，	2233				2233	2233
Smaish River				0					0	0
Subtotal Nook．／Sm，tern．	10737	333	0	11070	6412	18	0	0	6430	17500
${ }^{5} \mathrm{k}$ agit－－										
8 （Skagit 8ay）	26238	11011		37249	23604			5	23609	60858
Skagit riure				0	21776				21776	21776
SIBTOTAL：Skagit tera．	26238	11011	0	37249	45388	0	0	5	45365	82639
Stillagumish／Snohoaish－－										
8A（Port Susan／Port Gardmer）	183	29		212	11221	2		1027	12250	12462
80 （Tulalip 8ay）				0						0
Sthlagumish River				0					0	0
Snohonish River				0					0	0
SUBTOTALI Stilly／Snoh，tera．	183	29	0	212	11221	2	0	1027	12250	12462
South Sound－o										
10 （Seattio）	40904	20429		61333	26996	105%			37591	98924
11 （East－West Passage）	16169	7545		23714	4820				4820	28534
SUBTOTAL	57073	27974	0	85047	31816	10595	0	0	42411	127458
10A（Elliott 8ay）	305			305	12009				12009	12314
LOE（East Kitsap）				0	27840				27840	27840
11A（Conamincrat Bay）				0	345				345	345
13 （Nisqually Reach）	3430			3430	625			3	628	4058
13 A （Carr Inlet）	25			25	30076	29		302	30407	30432
13c－K（South Sound Iniets）				0	16715			300	17015	17015
SUBTOTAL S．S．narine ext．tern．	3760	0	0	3760	87610	29	0	605	88244	92004
SUBTOALL S．S．marine tera．	60833	27974	0	88807	119426	10624	0	605	130655	219462
1064F＝10日（N．Lk．Wash．\＆Canal）				0	121				121	121
LOC（S．LK．Washington）				0					－	0
100 （Lake Smmaish）				0						0
Green－Duasaish River				，	201				201	201
Puyallup River				0	136				136	136
White River				0					0	0
Nisqually River				0	20519				20519	20519
Misc．frestmater				0	85				85	85
SUBTOAL：S．S．frestmater	0	0	0	0	21062		0	0	21062	21062
SLBTOTAL：S．s．terainal	60833	27974	0	88807	140488	10624	，	605	151717	240524
Hood Canal－－										
12 （Upper H．C．）	91129	55701		146830	33200	6364			39564	186394
128 （Central H．C．）	1177			1177	34681				34681	35858
SUGTOAL：	92306	55701	0	198007	67881	6364	0	0	24245	222252
12A（Owilcene－Dabob 8ays）	76			76	677				677	753
12 C （Lover Hood Canal）	17037	41664		58701	124849			122	124971	183672
120 （SE Hood Canal）				0					0	0
9 A （Port Gerble）				0					0	0
Subtutal：H．C．narine ext．tern，	17113	41864	0	58777	125526	0	0	122	125648	184425
Sugtotal：narine terainal	109419	97355	0	206784	193407	6364	0	122	199893	406677
Skokonish River				0	12772				12772	12772
Quilcene River				0	40				40	40
Misc．Freshater				0	100				100	100
SUgTOTAL：H．C．freskuater		1	，	0	12912	0	0	0	12912	12912
Sugtotal：H．C．terninal	109419	77369	0	206784	206319	6364	0	122	212805	419589
Totat：Tersinal Marine	207410	136712	0	344122	351837	17008	0	1759	370604	714726
TOTAL：Terainal Freshuater	0	0	，	0	58488	0		5	58993	58493
GRAOLTOAL TERNINAL	207410	136712	0	344122	410325	17008	0	1764	429097	773219
GRAD TOTAL PRE－TERUINAL	252558	152481	2502	407341	36043	14963		19	51031	458572
GRAD TOAL CANERCIAL	459968	289193	2502	751663	446368	31971	，	1783	480128	1231791

AREA DESCRIPTION	NON-1N01\%				INDIA					TOTAL
	GLL NET	PURSE SEINE	OTHER	SUETOTAL	GILL NET	PURGE SEIME	TROLL	OTHER	SUBTOTAL	
PRE-TERMIMAL										
48 (Tatoosh-8ail Rock)	108			108	429		3		432	545
5 (Clalla Bay)	85			85	632				632	717
o (Partridge 8ank)	221	1		222	17				17	239
6A (Hest Beach)	5	11		16	4	4			8	24
(C) (Port Angeles)	1			1					0	1
SUATOTAL	420	12	0	432	1082	4	3	0	1089	1521
7 (San Juans)	427	360	716	1503	786	454			1240	2743
7 A (Point Roberts)	25	122	1	148	994	836			1830	1978
SUBTOTAL	452	482	717	1651	1780	1290	0	0	3070	472!
68 (Discovery 8ay)				0					0	0
9 (Admiralty Inlet)	244			244	3168				3168	3412
SUPTOTAL	244	0	,	244	3168	0	0	0	3168	3412
GRANO TOTAL: PRE-TEPYINL	1116	494	717	2327	6030	1294	3	0	7327	9654
terainal										
Strait--										
60 (Dungeness 8ay)				0	33				33	33
Strait Rivers				0	56			9	65	65
Subtotal: Strait tera.	0	0	0	0	89	0	0	9	98	98
7E (East Sound)				0					0	0
Nooksack/Sanish--										
78 (8ellingham 8ay)	814	369		1183	2043	8			2051	3234
7C (Smish 8ay)	,			6	3	9			12	18
70 (Lunai 8ay)				0					0	0
Nooksack River				0	98				98	98
Smish River				0					,	0
Sugtotal Nook./Sma, tera.	820	369	0	1189	2144	17	0	0	2161	3350
Skagit--										
8 (Skagit Bay)	3623	750		4373	4048	188		2	4238	8611
Skagit River				0	7033				7033	7033
SLETOTAL: Skagit terin.	3623	750	0	4373	11081	188	0	2	11271	15644
Stillaguaish/Snohorish--										
$8{ }^{\text {8 }}$ (Port Susan/Port Garcher)	4			4	2974			106	3080	3084
80 (Tulalip Bay)				0					0	0
St\| llaguaish River				0	11				11	11
Snohonish River				0					0	0
SUATOTAL: Stilly/Snoh. tera.	4	0	0	4	2985	0	0	106	3091	3095
South Sound--										
10 (Seattle)	554	119		673	515	1			516	1189
11 (East-Kest Passaga)	8	34		42	1				1	43
Sugtotal	562	153	0	715	516	1	0	0	517	1232
ICA (Elliott 8ay)				0	671				671	871
10E (East Kitsap)				0	2249				2244	2244
11 A (Comatencrant Bay)				0	70				70	70
13 (Nisqually Reach)				0	947			29	976	976
13A (Carr Inlet)				0	2435			1	2439	2439
$13 \mathrm{C}-\mathrm{K}$ (South Sound Inlets)				0	1695			57	1752	1752
Sugtotal sis, marine ext. tera.	0	0	0	0	8062	0	0	90	8152	8152
Slegtotal s.s. marine tere.	562	153	0	715	8578	1	,	90	8669	9384
106dF= 108 (N, LK. Wash. \& Canal)				0					0	0
10C (S. Lk. Uashington)				0					0	0
100 (Lake Smmaish)				0	17				17	17
Green-Dumaish River				0	151				151	151
Puyallup Rives White River				0	29				29	29 0
Nisqually River				0	23693				23693	23693
Misc, frestmater				0	,				4	4
SLETOTAL: S.5. frestmater	0	0	0	0	23894	0	,	,	23894	23694
SUBTOTAL: S.S. terninal	562	153	0	715	32472	1	0	90	32563	33278
Hood Canal--										
12 (lupper H.C.)	6979	5669		12648	23059	379			23438	36086
128 (Central H.C.)	262	340		602	11674				11674	12276
SIETOTAL:	7241	6009	0	13250	34733	379		0	35112	48362
12A (avilsene-dabob 82ys)	17			17	2120			2	2122	2139
12. (Louer Hood Canal)	1276			1276	4654				4654	5930
120 (SE Hood Camal)				0					0	0
9 A (Port Ganble)				0					0	0
subtotal: K.C. parine ext. tera.	1293	0	0	1293	6774	0	0	2	6776	8069
SUBTOTAL: marine terainal	8534	6009	,	14543	41507	379	0	2	41888	58431
Skokonish River				0	2806				2806	2806
Quilene River				0	175			6	181	181
Misc. Erestwater				0					0	0
SUBTOTAL: H.C. Frestwater	0	0	0	0	2981	0	0	6	2987	2987
SIETOTAL: H.C. terninal	8534	6009	0	14543	44488	379	0	8	44875	59418
totali Terninal Marine	13543	7281	0	20824	59188	585	0	200	59971	80795
TOTAL: Terminal Freshater	0	0	0	0	34073	0	0	15	34088	34088
GRAD TOTAL TEPHIMAL	13543	7281	0	20824	93259	585	0	215	94059	114883
GRA10 TOTAL PRE-TERNIMAL	1116	494	717	2327	6030	1294	,	0	7327	9654
GRAD TOTAL COHERCIAL	14659	7775	717	23151	99289	1879	3	215	101386	124537

AREA DESCRIPTION	NON-INOIAN				INOIAN					TOTAL
	GILL NET	Purse seine	OTHER	suetotal	GILL HET	PUASE SEIME	TROLL	OTHER	SuBtotal	
PRE-TEPTINAL										
48 (Tatoosh-Sall Rock)	47			47	3923				3923	3976
5 (Clallual Bay)	106			106	7334				7334	7440
6 (Partridge Bank)	5070			5070	616				616	5686
6f (West Buach)	1			1	101	46			147	148
6C (Port Angeles)	14			14	31				31	45
Subtotal	5238	0	0	5238	12005	46	0	0	12051	17289
7 (San Juans)	79585	77160	1606	158351	22585	20154			42739	201099
7A (Point Roberts)	70708	35435	24	106165	27157	9863			37020	143185
SUETOTAL	150291	112595	1630	264516	49742	30017	0	0	79759	344275
68 (Discouery Bay)	66			66					0	66
9 (Adairalty Inlet)	30	696		726	9581	14714			24295	25021
SUSTOTAL	96	696	0	792	9581	14714	0	0	24295	25087
GAALV TOTAL: PRE-TEPAINAL	155625	113291	1630	270546	71328	44777	0	0	116105	386651
TEATINaL										
-Strait-										
60 (Dungeness Bay)				0	111				111	111
Strait Rivers				0	533			6	539	539
Sletotali Strait tern.	0	0	0	0	644	\bigcirc	0	6	658	650
7 E (East Sound)				0					0	0
Nooksack/Sumish --										
78 (8ell inghas fay)	668	1876		2544	1212	87			1299	3843
7C (Sualsh 日ay)	1	1		2	1				1	3
70 (Lueal gay)				0	539				539	539
Nooksack River				0	351				351	351
Smaish River				0					0	0
SLETOTAL: Noott./Sm.	669	1877	0	2546	2103	87	0	0	2190	4736
Skagit--										
8 (Skagit Bay)	22290	10721		33011	19497	265		1	19763	52774
Skagit River				0	31279				31279	31279
Subtotal: Skzgit tera.	22290	10721	0	33011	50776	265	0	1	51042	84053
Stillagumish/Snohomish--										
8 (Port Susan/Port Garcher)	6497	2217		8714	20657			2921	23578	32292
8 CD (Tulalip Bay)				0					0	0
Stillaguaish Rluer				0	274				274	274
Snohonish River				0					0	0
SugTotal: Stilly/Snoh, tera.	6497	2217	0	8714	20931	0	0	2921	23852	325.6
South Sound--										
10 (Seattle)	46610	34207		80817	15737	6028			2176	102582
11 (East-hest Prssage)	14753	21055		35008	444				444	36252
SUPTOTAL	61363	55262	0	118625	16181	6028	0	0	22209	138834
IOA (Elllott gay)				0	3820				3820	3820
10E (East Kitsap)				0	12884				12884	12884
11 A (Comathamet gay)				0	4513				4513	4513
13 (Nisqually Reach)	39			39	28960			33	28993	29032
13 A (Carr Inlet)	8			0	37589	19		8	37616	37625
$13 \mathrm{C}-\mathrm{K}$ (South Sound Inlets)				0	31441			129	31570	31570
SUBTOTAL S.S. marine ext. tena.	48	0	0	48	119267	19	0	170	119396	119444
SUETOTAL 5.5. marine ters.	61411	55262	0	116673	135388	6047	0	170	141605	258278
106af= 108 (N. Lk. Uash. \& Canal)				0	158				158	158
10C (S, LK. Washington)				0					0	0
100 (Lake Smanish)				0					2	2
Greth-Owmith River				0	2286			14	2300	2300
Puyallup River				0	1600				1600	1600
Nisqually River				-	16739				16739	16739
Misc. frishater				,					0	0
SUBTOTAL: S.S. freshwater	0	0	0	-	20785	0	0	14	20799	20799
Suftotal S.S. terninal	61411	55262	0	116673	156173	6047	0	184	162404	279077
Hood Canal--										
12 (Upper H.C.)	18400	58196		76596	41732	1545			43277	119873
128 (Central H.C.)				0	33445				33445	33445
SUETOTAL:	18400	58196	0	76596	75177	1545	0	0	76722	153318
12A (Quilcent-Dabob Bays)				0	180				180	180
12C (Lauer Hood Canal)				0	2349				2349	2349
120 (SE Hood Canal)				0					0	0
94 (Port Ganble)				0	4145				4145	4145
Sugtotal: h.C. narine ext. tera.	0	0	0	0	6674	0	0	0	6674	6674
SUGTOTALI marine terainal	18400	58198	0	76596	81851	1545	0	0	83396	159992
Skokonish River				0	305			42	347	347
Quilcene River				0	171			96	267	267
Misc, irestmater				0					0	0
SUBTOTAL: H.C. freshmater	0	0	0	0	476	0	0	138	614	614
Sugtotal: H,C, terninal	18400	58196	0	76596	82327	1545	0	138	84010	160606
TUTALI Terminal Marine	109267	128273	0	237540	259236	7944	0	3092	270292	507832
TOTAL: Terainal freshwater	0	0	0	0	53698	0	0	158	53896	53956
GRAF TOTAL TEAINAL	109267	128273		237540	312954	7944	0	3250	324148	561689
GRAW TOTAL PRE-TEMINAL	155625	113291	1630	270546	71328	44777	0	0	116105	386651
GRALD TOTAL COAFERCIAL	264892	241564	1630	508086	384282	52721	0	3250	440233	948339

AREA DESCRIPTIOH	NON-INDIAN				INO1**					TOTAL
	GILL NET	PURSE SEIME	OTHER	Subtotal	6ILL NET	PURSE SEIME	Troul	OTHER	Sugtotal	
PRE-TERNINAL										
48 (Tatoosh-Sail Rock)	11			11	173				173	184
5 (Clallan Bay)	146			146	1998				1998	2144
6 (Partridge Bank)	847	12		859	32				32	891
© (West bateh)	102	12		114	5				5	119
6C (Port Angeles)	12			12	69				69	81
Subtotal	1118	24	0	1142	2277	0	0	0	2277	3419
7 (San Juans)	649	3377	1220	5246	394	1467		56	1917	7163
7A (Point Roberts)	319	1388	2	1707	144	142		1	290	1997
Sletotal	988	4763	1222	S953	538	1809	0	60	2207	9160
SB (0iscruery gay)				0	9				9	9
9 (Amiralty Inlet)	19486	22927		41413	4158	1602			5760	47173
Sugtotal	18488	22927	0	41413	4187	1802	0	0	5769	47102
GRAO TOTALI PRE-TENHINAL	20572	27714	1222	49508	6982	3211	0	80	10253	59761
temerina										
Strait--										
60 (Oungeness 8ay)				0	131			1	132	132
Strait Rivers				0	630			3	633	633
Sugtotali Strait tera.	0	0	0	0	761	0	0	4	765	765
7E (East Sound)				0					0	0
Nooksack/Smish--										
78 (8 allingtan Bay)	3921	1109		5030	5926				5926	10956
75 (Smish Bay)	1			,	822				822	823
70 (Lumil gay)				0	3395				3393	3395
Nooksack River				0	4816				4816	4816
Samish River				0	54				54	54
SIBTOTAL: Nook, /Sian, tere.	3922	1109	0	5031	15013	0	0	0	15013	20044
Skagit--										
8 (Skagit 8ay)	16888	12599		29487	9885				9685	39172
Skagit River				0	21635				21635	21635
Subtotal: Skagit tern.	16888	12599	0	29487	31320	0	0	0	31320	60807
Stillaguanish/Snohanisho-										
88 (Port Susan/Port Gardner)	10498	4493		14991	22077			1878	23959	38946
80 (Tulalip gay)				0					0	0
Stillagunish River				0	1241				1241	1241
Snothonish River				0					0	0
SLBTOTAL: Stilly/Snoh. tern.	10498	4493	0	14991	23318	0	0	1878	25198	40187
South Sound--										
10 (Seattle)	28007	20769		48776	13051	5934			18895	67671
11 (East-West Passage)	7436	13218		20654	1330				1330	21984
Slatotal	35443	33987	0	69430	14391	5834	0	0	20225	99655
10A (Elliott gay)					4207				4207	4207
IOE (East Kitsap)				0	3226				3226	3226
IIA (Comencenent bay)				0	1905				1905	1905
13 (Nisqually Reach)				0	3827	827		23	4477	4477
134 (Care Inlet)				0	11034			125	11159	11159
130-K (South Sound Inlets)				0	25518			674	28192	28192
subtotal S.S, marine ext. tern.	0	0	0	0	49717	627	0	822	51166	51186
SUBTOTAL S.S. mar ine tern.	35443	33987	0	69430	84108	6461	0	822	71391	140821
106sfeliog (N. Lk. Hash, \& Canal)				,	34				34	34
IOC (S. Lk. Washington)					14				14	14
100 (Lake Samamish)				0					0	0
Green-Owazish River				0	995				995	995
Puyallup River				0	66				S6	86
White River				0	4				4	4
Nisqually River				0	19714				19714	19714
Hisc. frestuater				0	11438			136	11574	11574
SUBTOTAL: S.S. frestmater	0	0	,	0	32265	0		136	32401	32401
Sugtotal: s.S. terninal	35443	33987	0	89430	96373	6461	0	938	103792	173222
Hood Canal--										
12 (Lpper H.C.)	25808	24307		49915	53198	175		26	53397	103312
128 (Central H.C.)	2377	1966		4343	13565			38	13603	17946
SUGTOTAL:	27985	26273	0	54259	86781	175	0	84	67000	121259
124 (Nuilcene-Dabob Oays)					94			102	198	196
120 (Lower Hood Canal)				0	16868				16868	16868
120 (SE Hood Canal)				0					0	0
9 A (Port Ganblo)				0	2160				2160	2160
Slatotals h.C. narine ext. tern.	1	0	0	0	19122	0	0	102	19224	19224
Sugtotal: marine terninal	27989	26273	0	54258	85883	175	0	166	86224	140482
Skokonish River				0	1631				1631	1631
Quilicme River				0	3			1	4	4
Misc, freshuater				0					0	0
SUPTOTAL: H.C. frestmater			,	0	1634	0	0	1	1635	1635
SİPTOAL: H.C. teminal	27985	26273	,	54258	87517	175	0	167	87859	142117
TJTAL: Teminal Harine	94736	28481	0	173197	192027	8636	0	2867	201530	374727
TOTAL: Terainal Froskuater	0	0		0	82275	0	0	140	62415	62415
GRAOD TOTAL TEPWINL	94736	29461	0	173197	254302	6638	0	3007	263945	437142
GRAVO TTAAL PRE-TEPHINAL	20572	27714	1222	49508	6982	3211	0	60	10233	59761
GRHO TOTAL COFAEPCIAL	115908	106173	1222	222705	201284	9847	0	3067	274198	499903

AREA DESCRIPTION	MOH-INOIN				1H0184					TUTAL
	6ILL NET	PURSE SEINE	OTHER	SUBTOTAL	6ILL NET	PURSE SEITE	TROL	OHER	SUBTOTAL	
PFIE-TEAINKL										
4B (Tatoosh-Sail Rock)	40		3	43	658		5		663	706
5 (Challa Bay)	17			17	4382				4382	4399
6 (Partridge Bank)	104			104	6				6	110
SA (West Brach)	1	2		3	2				2	5
6C (Port Angeles)	4			4	45				45	49
SUBTOTAL	166	2	3	171	5093	0	5	0	5098	5269
7 (5an Juans)	9301	13085	3969	26355	5880	8931		309	14920	41273
7 A (Point Roberts)	4350	6047	174	10571	18702	7313			24215	34788
SUBTOTAL	13651	19132	4143	36926	22382	16444	0	309	39139	78081
6B (Discovery 8ay)				0					0	0
9 (Admiralty Inlet)	47558	87593		135151	23128	16892			40018	175169
Subtotal	47558	87593	0	135151	23128	16892	0	0	40018	175169
GRAD TOTAL: PRE-TEIATMAL	81375	106727	4146	172249	50601	33336	5	309	84251	258499
TEEATMAL										
Strait--										
6D (Dungeness 8ay)	307			307	53			2	55	362
Strait Rivers				0	1489			14	1499	1499
Sugtotal: strait term.	307	0	0	307	1538	0	0	16	1554	1881
7E (East Sound)				0					0	-
Nooksack/Smish--										
78 (8ell inghan 8ay)	16125	5802		21927	22479	1463			23942	45869
7C (5amish 8ay)	45			45					0	45
70 (Lumi 8ay)				0	899				899	899
Nooksack River				0	15388				15386	15386
Sanish River				0					0	0
SUBTOTAL: HOOK, /Sna. Tern.	18170	5802	0	21972	38744	1463	0	0	40227	62189
Skagit--										
8 (Skagit 8ay)	34959	56630		91589	14358	252			14808	106197
Skagit River	10			10	21978				21978	21988
Sugtotal: Skagit tera.	34969	56638	0	91599	36334	252	0	0	36585	128185
Stillaguasi sh/Snohomish--										
8A (Port SusanPort Gardner)	17333	27702		45035	37015	435		3870	41324	86355
80 (Tulalip 8ay)				,					0	0
Stillaguani sh River				0	2701				2701	2701
Snohonish River				0					0	0
SUBTOTAL: Stilly/Snoh. tera.	17333	27702	0	45035	39716	435	0	3878	44021	89056
South Sound--										
10 (Seattlo)	40867	33105		73772	12815	11077			23892	97564
11 (East-West Passage)	13699	31196		44895	1484				1484	46379
Subtotal	54386	84301	0	118667	14299	11077	0	0	25376	144043
10A (Elliott Bay)				0	883				883	883
10E (East Kitsap)				0	8105				8105	8105
11A (Conmenctant 8iy)				,	329				329	329
13 (Nisqually Reach)					3906			822	4728	4728
13A (Carr Inlet)				0	31425			884	32349	32309
13C-K (South Sound Inlets)				-	33578			3693	37273	37273
SUETOTAL S.S. har ine ixt. tern.	0	0	0	0	7822	,	0	5401	83627	83627
Subiotal S.S. nar ine tern.	54368	84301	0	118687	92525	11077	0	5401	109003	227670
1064F= 108 (N. Lk. Wash. \& Canal)				0	7				7	7
10C (S. Lk. Washington)				0					0	0
100 (Lake Smaraish)				0					0	0
Green-Dumaish River				0	210				210	210
Puyallup River				0	887				867	867
White River				0					0	0
Nisqually River				0	19011				19011	19011
Misc. froshater	4			4	1725				1725	1729
SUETOTAL: S.S. fresharater	4	0	0	1	21820	0	0	0	21820	21824
SUPTOTAL: S.S. ternimal	54370	64301	0	118671	114345	11077	0	5401	130823	249494
Hood Canal-										
12 (Upper H.C.)	16423	65089		81512	57363	2679			60042	141554
128 (Central H.C.)	12			12	14756				14756	14768
SUBTOTAL:	16435	85089	0	81524	72119	2879	0	0	74798	156322
12A (Ruilcene-Dabob 8ays)				,	133	194			327	327
12C (Lower Hood Canal)				0	28157				28157	28157
12 D (SE Hood Canal)				0					0	0
9 A (Port Ganble)				0	338			2	340	340
Sligiotal: h.C. narine ext. tern.	0	0	0	0	28878	194	0	2	28824	28824
Sugtotal: marine terainal	16435	65099	0	81524	100747	2873	,	2	103622	185146
Skokonish River				,	4233				4233	4233
Quilcene River				0	42			2	44	44
Misc. Irestwater				0	15				15	15
SUBTOTAL: H.C. treshuater	0	0	0	0	4280	0	0	2	4292	4292
SUETOTAL: H.C. terninal	16435	65069	0	81524	105037	2873	0	4	107914	189438
Tutal: Terainal Marine	139570	219524	0	359094	268074	16100	0	9275	293449	652543
TOTAL: Tersinal Frishwater	14	0		14	67660	0	0	16	87678	87690
GRAND TOTAL TEENTMAL	139584	219524	0	359100	335734	16108	0	9291	361125	720233
GRAD TOTAL PRE-TERAINAL	61375	108727	4146	172248	50601	33336	5	309	84251	258499
GRAD TOTAL COATERIAL	200959	326251	4146	531356	386335	49436	5	9600	445376	978732

AREA DESCRIPTION	NW-INOIA				INDIN					TOTAL
	GILL NET	Purse seine	OTHER	SUBTOTAL	GILL NET	PURSE SEINE	TROLL	OTHER	SUGTJTAL	
PRE-TERH1NaL										
48 (Tatoosh-Sail Rock)	16			16	1628		1		1627	1643
5 (Clallan 8ay)	74			74	13593.		3		13588	13662
8 (Partridge 8ank)	33			33	80				90	123
sA (West 8eath)				0					0	0
6C (Port Angeles)	1			1	2				2	3
Sugtotal	124	0	0	124	15303	0	4	0	15307	15431
7 (San Juans)	198	138	8	344	32	1861		1	1894	2238
7A (Point Roberts)	9	71	2	88	47	251			298	386
Subtotal	207	215	10	432	79	2112	0	1	2192	2624
68 (Discovery 8ay)				0					0	0
9 (Admiralty Inlet)	6497	48834		55131		9461			9481	61592
SUBTOTAL	6497	48634	0	55131	7842	9461	0	0	17303	72434
GRANO TQAL: PRE-TERAINAL	8828	48849	10	55887	23224	11573	4	1	34802	90489
teminal										
Strait-										
60 (Dungeness 8ay)	130	18		148	1				1	152
Strait Rivers				0	164				164	164
Slatotal: Strait tera.	130	18	0	148	168	0	0	0	168	316
Nooksack/5uaish--										
78 (8el linghay 8ay)	15217	4673		19890	18556	829			17385	37275
7C (5xaish 8ay)	198			198	1				1	199
70 (Lumai 8ay)				0	506				508	506
Nooksack River				0	15028			16	15044	15044
Saish River				0					0	0
SLBTOTAL: Nook./Sma, tera.	15415	4673	0	20088	32091	829	0	16	32936	53024
				0					0	0
5kagit--				0					0	0
8 (Skagit 8ay)	973	449		1422	7943				7943	9365
Skagit River				0	18159			1	18160	18180
SUBTOTAL: Skigit tem.	973	449	0	1422	26102	0	0	1	26103	27525
Stillaguxaish/Snohoaish--										
8A (Port Susan/Port Gardner)	2093	434		2527	9397			220	9817	12144
80 (Tulalip 8ay)				0	735				735	735
Stillaguaish River				0					0	0
Snohonish Rlver				0					0	
SUBTOTAL: Stilly/Snoh. tern.	2093	434	0	2527	10132	0	0	220	10352	12879
South Sound--										
10 (50attle)	30130	15804		45934	4809	979			5788	51722
11 (East-Kest Passage)	6723	12346		19069	3580	12			3592	22861
SUBTOTAL	36853	28150	0	65003	8389	991	0	0	9380	24383
10A (Elliott 8ay)				0	597				597	597
10E (East Kitsap)				0	1275				1275	1275
11A (Cowencment Bay)				0	105				105	105
13 (Nisqually Reach)				0	2945			48	2993	2993
13 A (Care Intet)				0	21311			545	21856	21856
138 (South Sound inlets)				0	28414			1615	30029	30029
slbtotal 5.5. mar ine ext, tern.	0	0	0	0	54647	0	0	2208	58835	56855
Subtotal S.s, mar ine tern.	36853	28150	0	85003	63036	991	0	2208	66235	131238
1084F=108 (N. LK, Uash. \& Canal)				0	10				10	10
IOC (S. LK. Washington)				0					0	0
100 (Laxt Sumataish)				0					0)
Green-Duwapish River				0	80				80	80
Puyallup River				0	112				112	112
White River				0					0	0
Nisqually River				0	20218				20218	20218
Misc. Trestmater				0	158				158	158
SUBTOTAL: S.S. freshmater	0	0	0	0	20578	,	0	0	20578	20578
Subtotal: s,s. teminal	36893	28150	0	65003	83614	991	0	2208	88813	151816
Hood Canal--										
12 (Uppor H.C.)	9216	54063		63279	37419	7384			44803	108082
128 (Central H.C.)	28	659		687	21538				21538	22225
Subtotali	9244	54722	0	63966	58957	7384	0	0	66341	130307
128 (duilcene-Dibob 8ays)				0	1089			67	1156	1156
12C (Lower Hood Canal)				0	6955				6955	6955
120 (SE Hood Canal)				0	30				30	30
9A (Port sunble)				0	806				806	806
SUBTOTAL: H.C. narine ext. tere.	1	0	0	0	8880	0	0	67	8947	8947
SUBTOAL matine terninal	374	54722	0	63966	67837	7384	0	67	75288	139254
Skokonish River				0	4019				4019	4019
Quilcene River				,	254			22	276	276
Misc. frestmater				,	35				35	35
SLBTOTAL: H.C. fresmater	-	0	0	0	4308		0	22	4330	4330
SubTotal: K.C. terninal	9244	54722	0	63966	72145	7384	0	89	79818	143584
Totalit Temainal Marine	64708	88446	0	153154	166015	9204	0	2495	177714	330889
TOAL: Tersinal Frestwater	0	0	0		58237	0	0	39	58278	58276
GRAD TOTAL TEPHINAL	64708	88446	0	153154	224252	9204	0	2534	235990	389144
GRATO TOTAL PRE-TEPUINGL	6828	48849	10	55887	23224	11573	1	1	34802	90469
gRato TOTAL COPYERCIAL	71536	137295	10	208841	247476	2077	4	2535	270792	479633

AREA DESCRIPTIDA	NCN-INDIAN				1M01AN					TOTAL	
	GILL NET	PURSE SEITE	OTHER	Slutital	BILL MET	PURSE SEINE	TROL	OTHER	Sugtotal		
PPI-TEPYINHL											
48 (Tatoosh-sail Rock)	1			,	986		5		991	992	
5 (Clallia Bay)	5			5	14136				14136	14141	
6 (Partridge 8ank)	1			1					,	1	
6 (lest Beach)				0					0	0	
OC (Port Angales)				0	11				11	11	
Sugtotal	7	0	0	7	15139	0	5	0	15138	15145	
7 (Sah Juans)	2	1		3	15	827			842	845	
7 A (Point Roberts)	3	37		40	2	754			756	796	
SUETOTAL	5	38	0	43	17	1581	0	0	1598	1641	
68 (Discovery 8ay)				0					0	0	
9 (Adsiralty Inlet)	42			42	669				669	711	
SIPTOTAL	42	0	0	42	669	0	0	0	669	711	
GRAN TOTAL: PRE-TEMINAL	54	38	0	92	15819	1581	5	0	17405	17497	
TEParinal											
Strait--											
60 (Puageness Bay)				0					50	0	
Strait Rivers Sugtotal: Strait tera.	0	0	0	0	508 508	0	0	1	509 509	509 509	
7E (East Sound) Nooksact/V/5mish--											
78 (Bellinghtal Bay)	31935 -	3181		35116	26058	684			26734	61850	
7 C (5ximish 8ay)				0					0	0	
70 (Luma 8ay)				,	18				18	18	
Nooksack River				-	14350				14350	14358	
Spish River				0					0	D	
SUBTOTAL: Hook./Sas. tera.	31935	3181	0	35116	40418	684	0	0	41102	76218	
Skagit--											
8 (5kıgil Bay)				0	1282				1282	1282	
Skagit River				0	3079				3079	3079	
Sugtotali Skgit tera.	0	0	0	0	4361	0	0	0	4361	4361	
Stillagumish/Snotioal sh--											
SA (Port Susan/Port Gardmer)	58	71		129	22882			1994	24876	25005	
80 (Tulalip gay)				0					44	44	
Stillaguanish River				0	44				45	45	
Snobanish River				0	1				ERR	ERR	
SUBTOTAL: Stilly/Snch. tern.	58	71	0	129	22927	0	0	1994	24921	25050	
South sound--											
10 (Seattle)	42286	35177		77463	16289	12159			28448	105911	
11 (East-dest Passage)	9272	19180		28452	7034				7034	35486	
SUETGTAL	51558	54357	0	105915	23323	12159	0	0	35482	141397	
10A (Elliott say)				0	904				904	904	
10E (East Kitsap)	5970	734		6704	6252	651			6903	13607	
11A (Conashctapat Bay)				0	308				308	308	
13 (Nisqually Reach)				0	278			85	363	363	
13 A (Carr Inlet)	13762	366		24128	18637			184	18821	32949	
$13 \mathrm{C}-\mathrm{X}$ (Sowth Sound Inlets)				-	45447	.		1052	46499	46499	
SLETgTAL S.S. narine ext, tern.	19732	1100	0	20832	71826	651	0	1321	73798	94630	
Suptotal S.s, mar ine tera.	71290	55457	0	126747	95149	12810	0	1321	109280	236027	
1064Fal08 (N. LK. Masth. \& Canal)					9					9	
IOC (5. LX. Washington)				0					0	0	
100 (Lake Samamish)				,	5				5	5	
Green-Dumamish River				0	277				277	277	
Puyallup River				0	243				243	243	
White River				0					0	0	
Nisqually River				0	23256				23256	23256	
Misc. freshater				0					0	0	
SUBTOTAL: S.S. frestuater		0	0	- 12647	23790	0	0	0	23790	23790	
Sustotal: S.s. terainal	71290	55457	0	126747	118939	12810	0	1321	133070	259817	
Heod Canai--											
12 (Lepper H.C.)	29926	98523		128349	62737				62737	191086	
128 (Central H.C.)	10639	6950		17589	29438				29438	47027	
SLETOTAL:	40465	105473	0	- 145938	92175	0	0	0	92175	238113	
12A (Suilcene-Dabob 8ays)	369	44		413	1211				1211	1624	
122 (Lawer Hood Canal)	2018	12357		14375	67370				67370	81745	
120 (SE Hood Canal)				0					0	0	
94 (Port Ganble)				0	10665				10665	10665	
SLBTOTAL: H.C. marine ext. tera.	2387	12401		O 14780	79246	0	0	0	79246	94034	
Sugtotal: narine tersinal	42852	117874		- 160726	171421	0	0	0	171421	332147	
Skokonish River				0	8126				8126	8126	
Quilcene Riure				0	71			16	87	87	
Misc. frestuater				0	712				712	712	
SUBTOTAL: H.C. freshater	0	0		00	8909	0	0	16	8925	8925	
SUBTOTAL: H.C. terninal	42852	117874		- 160726	180330	0	0	16	180346	341072	
TOTAL: Tersinal Marint	146135	176583		O 322718	316846	13494	0	3315	333655	656373	
TOTAL: Terainal Freshazter	0	0		0	50681	0	0	17	50698	50698	
GRALD TOTAL TEPINAL	148135	176583		322718	367493	13494	0	3332	384309	707027	
GRATD TOTAL PRE-TERHINL	54	38		- 92	15819	1581	5	0	17405	17497	
GRND TJTAL COMERCIAL	148189	176621		322810	383302	15075	5	3332	401714	724524	

[^0]: * served until 06/86
 ** served until 11/86

[^1]: 1/ These estimates are subject to revision and are established by the parties to meet administrative procedures and the planning needs of other agencies such as PFMC.
 2/ If hard catch data from the preceding year becone available prior to use of agreed-to in-season update models, and these data would significantly alter the models, the parties should consider corrections to the models using hard data.

[^2]: Source: WDF Catch-Escapement Run Size Calculation Sunary, 18 April 86; rounding error may be present.

