PACIFIC SALMON COMMISSION JOINT CHINOOK TECHNICAL COMMITTEE 1993 ANNUAL REPORT
 REPORT TCCHINOOK (94)-1

Canadian Members

Dr. Brian Riddell, Co-Chair, $\mathrm{CDFO}^{\text {a/ }}$
Dr. Brent Hargreaves, CDFO
Mr. Rob Kronlund, CDFO
Mr. Wilf Luedke, CDFO
Dr. Steve Macdonald, CDFO
Mr. Ken Pitre, CDFO
Mr. Paul Ryall, $\mathrm{CDFO}^{\text {b/ }}$
Mr. Neil Schubert, CDFO ${ }^{\text {b/ }}$
Mr. Tom Shardlow, CDFO
Ms. Barb Snyder, CDFO ${ }^{\text {b/ }}$

United States Members
Mr. Jim Scott, Co-Chair, NWIFC ${ }^{\text {a/ }}$
Mr. Dave Gaudet, Co-Chair, ADF\&G
Mr. Jim Berkson, CRITFC
Dr. Don Bevan, UW
Mr. John Carlile, ADF\&G ${ }^{\text {a/ }}$
Mr. Steve Elliot, ADF\&G
Mr. Gary Freitag, ADF\&G ${ }^{\text {b/ }}$
Dr. Kenneth Henry, NMFS
Ms. Marianne Johnson, CRITFC a/b/
Mr. Scott McPherson, ADF\&G
Dr. Richard Moore, WDF
Dr. Sandra Moore, WDF ${ }^{\text {b/ }}$
Dr. Gary S. Morishima, QIN ${ }^{a /}$
Mr. Dexter Pitman, IDFG
Mr. Stephen Riley, IDFG ${ }^{\text {b/ }}$
Mr. Timothy W. Roth, USFWS
Dr. Norma Jean Sands, ADF\&G ${ }^{\text {b/ }}$
Mr. C. Dell Simmons, USFWS ${ }^{\text {a/h }}$
Mr. Paul Suchanek, ADF\&G
Mr. Alex Wertheimer, NMFS
Mr. Ronald H. Williams, ODFW ${ }^{\text {b/ }}$
Dr. Gary Winans, NMFS
a) Individuals primarily responsible for completion of Chapter 3, Exploitation Rate Analysis
b/ Individuals primarily responsible for completion of Chapter 2, Escapement Assessment

ADF\&G	Alaska Department of Fish \& Game	NMFS	National Marine Fisheries Service
AEQ	Adult Equivalent	NOC	Oregon Coastal North
AWG	Analytical Working Group of the CTC	NPS	Migrating Stocks North Puget Sound
C\&S	Ceremonial \& Subsistence	NPS-S/F	North Puget Sound
CBC	Central British Columbia Fishing area - Kitimat to Cape Caution	NPS-Sp	Summer/Fall chinook stock North Puget Sound Spring chinook stock
CDFO	Canadian Department of Fisheries \& Oceans	NR NWIFC	Not Representative Northwest Indian Fisheries
CNR	Chinook Nonretention - all species except chinook fisheries	ODFW	Commission Oregon Department of Fish \& Wildlife
CR	Columbia River	OTAC	Outside Troll Advisory
CRITFC	Columbia River Intertribal Fish Commission	PFMC	Committee Pacific Fisheries Management
CTC	Chinook Technical Committee		Council
CUS	Columbia Upriver Spring chinook stock	PS PSC	Puget Sound Pacific Salmon Commission
CWT	Coded Wire Tag	PSMFC	Pacific States Marine Fisheries
ESA	U.S. Endangered Species Act		Commission
est +fw	Estuary Plus Fresh Water Area	PST	Pacific Salmon Treaty
FR	Fraser River	QIN	Quinault Nation
GS	Strait of Georgia	SEAK	Southeast Alaska - Cape
IDFG	Idaho Department of Fish \& Game	SPS	Suckling to Dixon Entrance South Puget Sound
IDL	InterDam Loss (fishing mortalitiy)	SSRAA	Southern Southeast Region Aqualculture Association
LFR	Lower Fraser River	TBR	Transboundary Rivers
LGS	Lower Strait of Georgia	TBTC	Transboundary Technical Committee
mar	Marine Area	UFR	Upper Fraser River
mar +fw	Marine Plus Fresh Water Area	UGS	Upper Strait of Georgia
MRP	Mark-Recovery Program	USFWS	U.S. Fish \& Wildlife Service
MSY	Maximum Sustainable Yield for a stock, in adult equivalents	UW WA/OR	University of Washington Ocean areas off Washington
MSY ER	Exploitation Rate sustainable at the escapement goal for a stock, in adult equivalents	WAC	and Oregon North of Cape Falcon North Washington Coastal
NA	Not Available		Area (Grays Harbor
NBC	Northern British Columbia Dixon Entrance to Kitimat including Queen Charlotte	WACO	northward) Washington, Oregon, Columbia River chinook stock
NCBC	Islands North Central British Columbia - Dixon Entrance to Cape Caution	WCVI WDF	West Coast Vancouver Island excluding Area 20 Washington Department of Fisheries

Table of Contents

Page
List of Tables iv
List of Figures v
List of Appendices vi
INTRODUCTION vii
EXECUTIVE SUMMARY ix
CHAPTER 1. 1993 Chinook Catch 1
1.11993 CHINOOK SALMON CATCHES IN FISHERIES WITH CEILINGS 1
1.2 CUMULATIVE DEVIATIONS FROM CATCH CEILINGS 1
1.3 REVIEW OF FISHERIES WITH CATCH CEILINGS 1
1.3.1 Southeast Alaska (SEAK) Fisheries 1
1.3.2 Canadian Fisheries 5
1.4 REVIEW OF OTHER FISHERIES 7
1.4.1 Canadian Fisheries 7
1.4.2 Southern U.S. Fisheries 9
CHAPTER 2. ESCAPEMENT ASSESSMENT OF REBUILDING THROUGH 1993 15
2.1 INTRODUCTION 15
2.2 FRAMEWORK 16
2.2.1 Escapement Indicator Stocks 16
2.2.2 Escapement and Terminal Run Data 16
2.2.3 Escapement Goals 19
2.2.4 Assessment Period 20
2.3 METHODS 20
2.3.1 Stocks Without Escapement Goals 20
2.3.2 Stocks With Escapement Goals 21
2.3.3 Effects of 1993 Methods Change 22
2.4 RESULTS 23
2.4.1 Effects of 1993 Methods Change 23
2.4.2 Stock Assessment 23
2.4.3 Results Relative to 1992 30
2.5 STOCKS CONSIDERED FOR STATUS CHANGES 30
2.5.1 Taku 30
2.5.2 Unuk 30
2.5.3 Upper Fraser 30
2.5.4 Grays Harbor spring and fall 31
2.6 SUMMARY 31
2.6.1 Stocks Without Escapement Goals 31
2.6.2 Stocks With Escapement Goals 32
CHAPTER 3. EXPLOITATION RATE ASSESSMENT 35
3.1 INTRODUCTION 35
3.1.1 Fishery Indices 35
3.1.2 Nonceiling Fishery Indices 36
3.1.3 Brood Exploitation Rates and Indices 36
3.1.4 Stock Indices 37
3.1.5 Survival Indices 37
3.1.6 Stock Catch Distribution 37
3.2 ESTIMATION OF EXPLOITATION RATES 37
3.2.1 Theory and Procedures 40
3.2.2 Assumptions of the Analyses 41
3.2.3 Reported Catch Versus Total Mortalities 42
3.3 FISHERY INDICES FOR CEILING FISHERIES 43
3.3.1 Overview 43
3.3.2 Southeast Alaska 46
3.3.3 North/Central B.C. 47
3.3.4 West Coast Vancouver Island 48
3.3.5 Strait of Georgia 49
3.4 NONCEILING FISHERIES 50
3.5 BROOD EXPLOITATION RATES 55
3.5.1 Southeast Alaska/Transboundary Rivers Inside Stock Group (SEAK/TBR-I) 55
3.5.2 West Coast Vancouver Island Stock Group (WCVI) 55
3.5.3 Upper Strait of Georgia Summer/Fall Stock Group (UGS) 57
3.5.4 Lower Strait of Georgia Fall Stock Group (LGS) 57
3.5.5 North Puget Sound Summer/Fall Stock Group (NPS-S/F) 57
3.5.6 South Puget Sound Summer/Fall Stock Group (SPS) 57
3.5.7 Washington Coastal Spring/Summer/Fall, Columbia River Summer/Fall, and North Oregon Coast Stock Group (WACO) 60
3.6 SURVIVAL RATE INDICES 61
3.7 STOCK CATCH DISTRIBUTION 63
3.8 SUMMARY AND CONCLUSIONS 64
CHAPTER 4. CHINOOK MODEL ASSESSMENT 67
4.1 INTRODUCTION 67
4.2 METHODS 67
4.2.1 Model Calibration and Prediction 67
4.2.2 Rebuilding Response to Survival and Harvest Assumptions 69
4.2.3 Assumptions of the Analyses 69
4.3 RESULTS 70
4.3.1 Model Estimates of Fishery Abundance Indices 70
4.3.2 Model Estimates of Fishery Indices 70
4.3.3 Model Estimates of Incidental Mortality 74
4.3.4 Model Estimates of Stock Composition and Mortality Distribution 74
4.3.5 Rebuilding Response to Surival and Harvest Assumptions 77
4.4 DISCUSSION 78
4.4.1 Predictions for Fishery Abundance 79
4.4.2 Model Estimates of Fishery Indices 79
4.4.3 Incidental Mortality 80
4.4.4 Rebuilding Response to Harvest Reductions 81
CHAPTER 5. INTEGRATED ASSESSMENTS 83
5.1 INTRODUCTION 83
5.2 METHODS 83
5.3 STOCK GROUP SUMMARIES 87
5.3.1 Southeast Alaska/ Transboundary Rivers Inside (SEAK/TBR-I) 88
5.3.2 Southeast Alaska/ Transboundary Rivers Outside (SEAK/TBR-O) 90
5.3.3 North/Central B.C. Spring/Summer (NCBC) 91
5.3.4 West Coast Vancouver Island Fall (WCVI) 93
5.3.5 Upper Strait of Georgia Summer/Fall (UGS) 95
5.3.6 Lower Strait of Georgia Fall (LGS) 97
5.3.7 Upper Fraser Spring/Summer (UFR) 99
5.3.8 Lower Fraser (Harrison) Fall (LFR) 101
5.3.9 North Puget Sound Spring (NPS-Sp) 103
5.3.10 North Puget Sound Summer/Fall (NPS-S/F) 105
5.3.11 South Puget Sound Summer/Fall (SPS) 107
5.3.12 Columbia River Upriver Spring (CUS) 109
5.3.13 Washington Coastal Spring/Summer/Fall, Columbia River Summer/Fall, and Oregon Coastal Fall North Migrating (WACO) 110
5.4 FISHERY SUMMARIES 113
5.4.1 SEAK Fishery 113
5.4.2 NCBC Fishery 113
5.4.3 WCVI Fishery 115
5.4.4 GS Fishery 115
5.4.5 U.S. Nonceiling Fisheries 116
5.5 SUMMARY AND CONCLUSIONS 117
REFERENCES CITED 119

List of Tables

1-1. Summary of the 1990-1993 chinook catches in fisheries relevant to the U.S./Canada Pacific Salmon Treaty 2
1-2. Annual catches and cumulative deviations from catch ceilings since 1987. 3
2-1. Distribution of escapement indicator stocks by run timing and area of origin 16
2-2. Terminal run composition for those stocks with terminal fisheries, broodstock removal, or rack sales 17
2-3. Summary of recent escapement data and analysis of escapement declines for natural chinook stocks without escapement goals 24
2-4. Summary of recent escapement data (1989-1993) for natural chinook indicator stocks with escapement goals 25
2-5. Assessment scores and status through 1993 of natural chinook indicator stocks with escapement goals 26
2-6. Distribution of chinook escapement indicator stocks among the four rebuilding categories, based on data through 1993 27
2-7. Rebuilding status through 1993 of natural chinook indicator stocks with escapement goals. 28
2-8. Level three assessment for natural chinook indicator stocks with escapement goals, that were classified as Indeterminate or Not Rebuilding 29
2-9. Comparison of 1992 and 1993 assessment results for escapement indicator stocks with escapement goals. 30
3-1. List of exploitation rate indicator stocks, the stock name, the run type, and the age of smolts at release. 38
3-2. Indicator stocks, associated stock group, analyses in which each indicator stock was used, and the availability of quantitative escapement recoveries and base period tagging data. 39
3-3. Brood years used in the brood exploitation and survival indices for the base period and projected period. 40
3-4. Fisheries included in the nonceiling fishery index. 41
3-5. Percent change from the 1979-1982 base period in the fishery index for reported AEQ catch, total AEQ mortality, and the 1979-1984 and 1985-1993 averages for these statistics. 45
4-1. Responses of wild model stocks to survival and harvest assumptions. 77
4-2. Comparison of recent five-year average survival to long term average survival for 15 wild model indicator stocks. 78
4-3. Summary of rebuilding responses to survival and harvest assumptions by 12 wild model indicator stocks. 78
5-1. Fisheries included in the total mortality distribution and in the fishery index for each ceiling fishery. 86
5-2. Exploitation indicator stocks and associated fisheries excluded from the total mortality distribution, nonceiling index, and stock indices. 86
5-3. Stock groups, escapement indicator stocks, model stocks, abundance indices, and fishery indices for the four ceiling fisheries and US nonceiling fisheries. 114
Page
1-1. West Coast of Vancouver Island conservation areas. 13
2-1. Distribution of stocks among rebuilding categories 23
2-2. Summary of escapements in 1993 27
3-1. The estimated fishery indices for reported catch and total mortality in the SEAK troll fishery. 46
3-2. The estimated fishery indices for reported catch and total mortality in the NCBC troll fishery. 47
3-3. The estimated fishery indices for reported catch and total mortality for the WCVI troll fishery. 48
3-4. The estimated fishery indices for reported catch and total mortality for the GS sport and troll fishery 49
3-5. The estimated nonceiling fishery indices for the UGS stock in Canadian fisheries 52
3-6. The estimated nonceiling fishery indices for the LGS stock in Canadian fisheries. 52
3-7. The estimated nonceiling fishery indices for the Skagit, Stillaguamish, and Snohomish summer/fall stocks in U.S. fisheries 53
3-8. The estimated nonceiling fishery indices for the Grays Harbor fall and Columbia River summer stock in U.S. fisheries. 53
3-9. The estimated fishery indices for reported catch and total fishing mortality for the U.S. South ocean sport and troll fishery for Columbia River stocks. 54
3-10. The estimated fishery indices for reported catch and total fishing mortality for the U.S. South ocean sport and troll fishery for Puget Sound stocks. 54
3-11. Estimated brood total exploitation indices for the SEAK/TBR-I stock group. 56
3-12. Estimated brood ocean exploitation indices for the WCVI stock group 56
3-13. Estimated brood total exploitation indices for the UGS stock group. 58
3-14. Estimated brood total indices for the LGS stock group 58
3-15. Estimated brood ocean exploitation indices for the SPS-S/F stock group. 59
3-16. Estimated brood ocean exploitation indices for the NPS-S/F stock group. 59
3-17. Estimated brood ocean exploitation indices for the WACO stock group in ocean fisheries. 60
3-18. Percent change from the base period for the age 2-3 survival indices for selected stock groups contributing to the SEAK and NCBC fisheries (a), WCVI fisheries (b), and GS fisheries (c) in 1994 and 1995. 62
4-1. Fishery abundance indices for the SEAK and NCBC troll fisheries. 71
4-2. Fishery abundance indices for the WCVI troll and GS sport and troll fisheries. 71
4-3. Model and CWT estimates of the fishery indices for the SEAK troll fishery. 72
4-4. Model and CWT estimates of the fishery indices for the NCBC troll fishery. 72
4-5. Model and CWT estimates of the fishery indices for the WCVI troll fishery. 73
4-6. Model and CWT estimates of the fishery indices for the GS sport and troll fishery. 73
4-7. Model estimates of the ratio of AEQ incidental mortalities to the AEQ reported catch for the NCBC troll, WCVI troll, and Southern U.S. troll fisheries (a) and the SEAK troll, GS troll, and GS sport fisheries (b). 75
4-8. Model estimates of total AEQ incidental mortalities for regions (a) and for select Canadian fishery groups (b). 76

List of Appendices

Appendix Page
A Tables of escapements and terminal runs. A-1
B Stock specific chinook escapement figures. B-1
C CWT data used. C-1
D Total mortality exploitation rate and fishery index data. D-1
E Reported catch exploitation rate and fishery index data. E-1
F Annual distribution of reported catch and total fishing mortality by stock. F-1
G Brood year exploitation rates. G-1
H Brood year ocean exploitation rate figures. H-1
I Survival rate figures. I-1
J Chinook model estimations of stock composition of total fishing mortality in J-1 ceiling fisheries, percent of total stock mortality occurring in fishery, and status of associated escapement indicator stock.
K Modeled AEQ mortality estimates and indices. K-1
L Model estimates of fishery abundance indices. L-1
M Catch by fishery, troll CNR, and add-on, 1975-1993. M-1

INTRODUCTION THE PACIFIC SALMON TREATY CHINOOK REBUILDING PROGRAM

The Pacific Salmon Treaty established a system of fishery-specific catch and harvest-rate restrictions intended to:
"halt the decline in spawning escapements of depressed stocks; and attain by 1998, escapement goals established in order to restore production of naturally spawning chinook stocks, as represented by indicator stocks identified by the Parties, based on a rebuilding program begun in 1984".

The goal of the program is to rebuild depressed naturally-spawning stocks and restore production through progressive increases in spawning escapements achieved through a combination of catch ceilings in selected mixed-stock fisheries and harvest rate restrictions in nonceiling, passthrough fisheries. The Pacific Salmon Commission instructed the Chinook Technical Committee to "develop procedures to evaluate progress in the rebuilding of naturally spawning chinook stocks". The February 1987 Chinook Technical Committee Report, "Assessing Progress Toward Rebuilding Depressed Chinook Stocks", established an evaluation framework that documented an indicator stock program, identified information requirements, and recommended analytical procedures for the assessment of rebuilding. The Committee also identified a number of policy issues that had to be resolved before final conclusions could be reached regarding the status of rebuilding on a regional or coastwide basis. Agreement on those issues has not yet been reached.

In assessing the status of individual stocks under the rebuilding program, the Committee identified three main elements that must be examined: 1) spawning escapement levels; 2) fishery harvest and stock-specific exploitation rates; and 3) production responses to increases in spawning escapements. The Committee recommended that rebuilding assessment be stratified into 3 phases corresponding with three 5-year chinook life-cycles in the rebuilding period: 1984-1988; 1989-1993; and 1994-1998. The Committee felt that a three-phase approach to assessment would address the problems of changing data availability and quality over time.

This report provides an evaluation through the final year of the second phase of the rebuilding program using data through 1993. This report includes recent catch in fisheries of concern to the Pacific Salmon Commission (Chapter 1), assessment of spawning escapements for 44 escapement indicator stocks (Chapter 2), fishery-harvest and stock-specific-exploitation rates based on 35 exploitation rate indicator stocks (Chapter 3), a summary of the Chinook Model assessment (Chapter 4), and and an integration of results from Chapters 2-4 (Chapter 5).

EXECUTIVE SUMMARY

This report contains the Chinook Technical Committee's (CTC) assessment of the chinook rebuilding program through 1993. Major conclusions of the assessment are:

- Through 1993, only 50% of the escapement indicator stocks are rebuilding.
- Declines in escapements have not been halted for 8 of the 18 stocks classified as "Indeterminate" or "Not Rebuilding."
- Harvest rates for all fisheries constrained by PSC ceilings have not been reduced to levels projected when the rebuilding program was established in 1984.
- Observed survivals for recent years have been below long-term averages.
- Under existing management regimes and depressed marine survival conditions, only one-third of the model stocks representing naturally spawning chinook stocks are projected to achieve their escapement goals by 1998.

Since the rebuilding program is scheduled for completion in 1995 for Southeast Alaska and Transboundary stocks and in 1998 for other stocks, options for completing the rebuilding program become more limited and potential management measures become more restrictive with each passing year.

Therefore, the CTC recommends that substantial reductions in total fishing mortality should be implemented, beginning in 1995. For example, a 50% reduction in fishing mortality rates for all fisheries from recent levels would rebuild additional major stocks, sustain stocks that have been rebuilding, and provide protection for stocks that have not responded positively to the rebuilding program. The level of harvest rate reduction examined does not represent a CTC recommendation. Rather, the actual reductions implemented would depend upon policy choices regarding the stocks to be rebuilt and the management objectives and constraints for particular fisheries.

The CTC, therefore, further recommends that the Parties explicitly state their objectives for the remaining years and:
i) identify the set of indicator stocks that are to be rebuilt by 1998; and
ii) establish management objectives and constraints (e.g., minimum catch levels for fisheries, target harvest rates, etc.) for individual fisheries.

After these policy determinations are made, the CTC can provide assistance in evaluating alternative means of accomplishing the rebuilding objectives of the Parties in the years remaining in the rebuilding program. Further delays in responding to reduced abundances would increase the potential for even more severe disruptions of future fisheries to successfully complete the rebuilding program.

Even with substantial reductions in fishing mortalities some stocks are not expected to rebuild by 1998. The highly variable status of stocks within geographic areas indicates that it will not be possible to rebuild all stocks by 1998 through management of mixed-stock ocean fisheries. The CTC recommends, therefore, additional stock-specific management or rehabilitation actions to achieve escapement goals for these stocks.

Key Points in the 1993 Annual Report

1) Catch in Ceiling Fisheries and Exploitation Rates in Nonceiling Fisheries (Chapter 1)

In 1993, catch in fisheries with catch ceilings established by the PSC were either within the $+7.5 \%$ management range (SEAK and NCBC fisheries) or below the -7.5% range (WCVI troll and Strait of Georgia troll and sport). Through 1993, the cumulative deviations in each fishery under these ceilings are all within the 7.5% management range, if the 1992 and 1993 add-ons presented by Canada are accepted (Chapter 1). In nonceiling fisheries, harvest rates were generally consistent with obligations for passthrough (as estimated by applying the nonceiling index suggested by the CTC, 1991) except for the stocks in the North Puget Sound summer/fall stock group in the southern U.S. marine fisheries (Chapters 3). However, in terminal fisheries, harvest rates have increased relative to the base period in eight of 24 escapement indicator stocks (Chapter 5).

2) Rebuilding Status of Escapement Indicator Stocks (Chapter 2)

This year's assessment of escapement trends included 44 naturally spawning escapement indicator stocks following the addition of the Deschutes fall stock and the splitting of coastal Oregon into two stock aggregates. Further, procedures for categorizing the rebuilding status of the escapement indicator stocks were revised, and resulted in a reduced number of stocks assessed as Indeterminate. Stocks that were assessed as Indeterminate or Not Rebuilding were further examined to determine if the decline in escapements had been stopped. As of $1993,50 \%$ of the 36 escapement indicator stocks with goals were assessed as being Above Goal or Rebuilding, 44\% were assessed as Not Rebuilding, and 6% were assessed as Indeterminate. Further, for eight of the 18 stocks that were assessed as Not Rebuilding or Indeterminate, we have apparently not stopped the decline in spawning escapements. Comparing escapement assessments through 1993 with previous years indicates that we are not progressively achieving the spawning escapement goals of the
 indicator stocks. Rather, the assessments have been very similar for the past four years and slightly poorer than during 1987-1990. The above figure was based on the 1993 assessment methods, data, and escapement goals and only accounts for CTC re-categorization of Indeterminate stocks in 1993. Explanation of these changes (5 Indeterminate stocks changed to Rebuilding) is presented in Chapter 2. Among the eight indicator stocks without escapement goals, six stocks were assessed as having 1989-1993 average escapements above base level, one stock was assessed as having average escapements below base level, and one stock has not changed from the base level.

3) Exploitation Rate Indicator Stocks (Chapter 3)

Examination of coded-wire tag data for 35 exploitation rate indicator stocks indicated that:
a) Reductions in fishery indices did not meet the 1984 projected reduction in any of the four ceiling fisheries (SEAK troll, NCBC troll, WCVI troll, and GST troll and sport), and increased in three of four fisheries compared to 1992. The 1985 target harvest rate reduction used previously in the CTC Annual Reports was replaced by the time trend of harvest rate indices projected by the 1984 version of the CTC chinook model. The CTC replaced the 1985 target for the reasons detailed in Section 3.3.1 of this report. Across ceiling fisheries, the average harvest rate reduction, compared to the base period, was only 5% in 1993, compared to the longer term average (1985-1993) reduction of 18%. Fishery indices calculated for 1993 fisheries were -26% in SEAK troll, -23% in NCBC troll, -1% in WCVI troll, and $+29 \%$ for GS troll and sport fisheries.
b) In 1993, ocean total mortality exploitation rates were reduced from the base period in 13 of 17 stocks for which this comparison is possible (median reduction 10%, range from 21% to $+9 \%$). Combined ocean and terminal fishery total exploitation rates were also reduced in 13 of 17 comparisons (median reduction 5%, range from -23% to $+23 \%$). However, incidental mortalities increased relative to the base period in 14 of these 17 comparisons (median increase 4%, range -1% to $+14 \%$).
c) The age 2-3 survival indices for broods contributing to fisheries in 1994 and 1995 indicate that survival rates will be well below the base period levels for all stock groups with the exception of the SEAK/TBR-I groups. The largest reductions are projected for the Lower GS Falls (-97%), Upper GS Summer/Falls (-92%), North PS Summer/Falls (91%), and WCVI Falls (-90%).

4) Model Projections for Rebuilding and Abundance (Chapter 4)

The CTC chinook model was used to estimate expected changes in chinook abundance in fisheries, and to project the status of the rebuilding program in 1998 under two marine survival and two harvest reduction scenarios. Chinook abundance in fisheries is expected to decline from the 1994 level in three of the four ceiling fisheries. In the SEAK and NCBC troll, the abundance is expected to return to base period levels (approximately a 50% decline in abundance from recent levels); in the WCVI troll, abundance is expected to continue decreasing to approximately 34% below the base period level. In contrast, in GS fisheries, abundance is expected to recover to base period levels by 1995. The rebuilding status of chinook stocks predicted by the model in 1998 is highly dependant on the marine survival rates assumed and the management actions taken in fisheries. For example, if future marine survivals are assumed to equal those of the most recent five years and existing management regimes are maintained, only one-third of the model indicator stocks representing naturally spawning chinook stocks would be predicted to rebuild by 1998. Previous modelling assessments have frequently assumed that future marine survivals would equal the long-term average survival rate. However, in almost every indicator stock, the more recent survivals are substantially less than this long-term average.

5) Variability in Response of Stocks (Chapter 5)

The integrated assessment continues to demonstrate the highly variable response of stocks to the rebuilding program. In only one of the 13 stock groups identified, were the component stocks assessed as having the same escapement rebuilding status (NPS-Summer/Fall, all three stocks categorized as Not Rebuilding). In all other stock groups, the component stocks ranged in escapement assessment categories from Above Goal to Not Rebuilding.

6) Deviations from Assumptions of Rebuilding Program

The PSC catch ceilings were established in 1984 (see PSC 1991 for details) with the expectation that the initial reduction of harvest rates associated with imposition of the ceilings would be followed by further progressive harvest rate reductions as chinook abundance increased during the rebuilding program. The initial reduction was expected to occur as a result of setting the ceiling for each fishery at a reduced level relative to recent catches, assuming that:
a) cohort survival rates would remain equal to the average rate observed in the base period;
b) the harvest rates in non-ceiling fisheries would not increase from base period values and would actually be reduced by 25% in Canadian net fisheries; and
c) that management actions would not alter the ratio of incidental fishing mortalities to reported catch observed in the base period used in the model analyses.

Further, in years in which abundance precluded harvesting the full ceiling without an increase in the harvest rate, the CTC recommended that further restrictions (e.g., restricting the season length) be implemented to restrict harvest.

The CTC's assessment through 1993 indicates that many of the assumptions used in developing the PSC chinook rebuilding program have been violated. These violations include reductions in survival rates, an increased ratio of incidental to reported catch mortalities, and the possible increase in exploitation rates in non-ceiling fisheries affecting the wild stocks in the North Puget Sound Summer/Fall stock group. As a consequence, exploitation rate reductions required to rebuild naturally spawning chinook stocks have been under-estimated and the fishery exploitation rates have exceeded those projected by the 1984 model. Under these survival and incidental mortality conditions, and the limited time remaining to rebuild, the exploitation rate reductions currently required for rebuilding will be substantially greater than originally predicted.

Previous Recommendations

Unfortunately, many recommendations presented in previous CTC reports have not been addressed and continue to be appropriate. Given expected reductions in chinook abundance, the CTC recommends that the Parties:
a) Consider alternatives to fixed quotas for controlling harvest rates. The wide fluctuation observed in chinook abundance suggests that required reductions in harvest rates will not be achieved with fixed catch quotas. Alternatives include the use of catch levels linked to predictions of chinook abundance obtained from the chinook model and/or methods that can effectively control harvest rates through fishing effort limitations.
b) Reduce incidental fishing mortality or set allowable harvests based on total mortality. Reductions in stock exploitation rates for reported catch have been offset to a significant extent by increases in incidental mortality. Incidental mortality reductions would increase the number of chinook available for harvest and/or escapement.
c) Initiate stock-specific investigations to evaluate stocks assessed as Not Rebuilding and develop stock-specific actions that compliment harvest controls, including enhancement and the reduction of nonfishing related sources of mortality. The investigations may include evaluation of escapement goals, escapement monitoring programs, fisheries management, and non-fishing sources of mortality. The severely depressed status of some stocks and the lack of a positive response in escapements suggest that, to rebuild some stocks, management actions additional to the control of harvests in mixed stock ocean fisheries will be necessary.

To continue the development of chinook stock assessments and facilitate understanding of the factors affecting chinook production, the CTC continues to recommend the following (see CTC, 1992b):
i) Conduct research on factors affecting freshwater and marine survival of chinook stocks. Factors such as predation, El Nino events, habitat destruction, and enhancement practices can significantly affect chinook production and the rebuilding program. Examination of environmental factors may also improve our capacity to predict abundance of chinook.
ii) Provide data required by the CTC to complete the escapement and exploitation rate assessments, specifically:
a) Report estimated CWT recoveries to the PSMFC by July of the year following the fishery. In the past, the estimated recoveries for Puget Sound sport fisheries, tributary sport recoveries in the Columbia River, and escapement recoveries for most southern U.S stocks have not been available by July.
b) Collect and provide information on the age and sex composition of the spawning escapement. Age- and sex-specific escapement data are essential to evaluate brood production, stock productivity, and escapement goals. Age- specific data also improve the quality of the calibration of the CTC chinook model.
c) Tag representative exploitation rate indicator stocks at sufficient levels. The CTC is especially concerned about the lack of adequate representation of spring and summer stocks and the lack of an indicator stock (with escapement data) for the Harrison River stock.
d) Establish consistent and standardized recovery programs for CWT fish at hatcheries and on spawning grounds. Accurate estimates of escapement are essential for the Exploitation Rate Assessment.
e) Provide estimates of sublegal encounter rates in fisheries with size limits, and legal and sublegal encounter rates in chinook non-retention and net fisheries. The CTC has estimated that incidental fishing mortality is approximately $30-50 \%$ of the reported catch (CTC 1987). However, sampling programs to determine the magnitude and stock composition of the nonlanded catch mortality are virtually nonexistent.
f) Provide estimates of nonreported chinook catches by Canadian Native fisheries. The CTC is unable to fully evaluate impacts of these fisheries on chinook stocks and the rebuilding program until these data are provided.

CHAPTER 1. 1993 CHINOOK CATCH

1.1 1993 CHINOOK SALMON CATCHES IN FISHERIES WITH CEILINGS

Estimates of 1993 catches for each fishery managed under a harvest ceiling established by the Pacific Salmon Commission (PSC) are presented below. These data are preliminary, but major changes are not expected. Catches in all chinook fisheries of interest to the PSC for the years 1990-1993 are documented in Table 1-1.

Area/lishertesalal	Ceiling	Catcla	Difference	
			Numbers.	Percent
Southeast Alaska (T,N,S) b/	263	268.2	+5.2	+2.0\%
North/Central B.C. (T,N,S) c/, d/	263	256.5	-6.5	-2.5\%
West Coast Vancouver Island (T)	360	273.7	-86.3	-24.0\%
Strait of Georgia (T,S) e/	275	152.3	122.7	-44.6\%

a/ T=Troll; N=Net; S = Sport
b/ The actual total catch was 304,100 chinook, including a hatchery add-on of 35,900 .
c/ Excludes 7,673 chinook caught in terminal areas.
d/ Canada has submitted a proposal to exclude hatchery add-ons from the 1993 northern troll fisheries, value of the exclusion would be 4,852 for 1993 but this catch is presently included in this table.
e/ Due to budget restraints, the catch in the Strait of Georgia recreational fishery was only estimated through September in 1993 (based on past averages, this period accounts for approx. 92% of the annual catch).

1.2 CUMULATIVE DEVIATIONS FROM CATCH CEILINGS

A 7.5\% cumulative management range was established by the PSC in 1987. Annual catches (without add-on) and deviations from catch ceilings since 1987 (in thousands of fish) are given in Table 1-2.

1.3 REVIEW OF FISHERIES WITH CATCH CEILINGS

1.3.1 Southeast Alaska (SEAK) Fisheries

In 1993, SEAK fisheries were managed under the following provisions established by the PSC:

1) An all-gear base-catch ceiling of 263,000 chinook salmon.
2) An Alaska hatchery add-on calculated on the basis of coded-wire-tag (CWT) sampling.
3) To maintain a total cumulative deviation in numbers of fish since 1987 within the 7.5% management range. For SEAK, the management range is equivalent to $+/-19,700$ chinook salmon for a ceiling of 263,000 .

Table 1-1. Summary of the 1990-1993 chinook catches in fisheries relevant to the U.S./Canada Pacific Salmon Treaty (numbers in thousands of fish).

	Troll				Net				Sport				Total			
Area	1993	1992	1991	1990	1993	1992	1991	1990	1993	1992	1991	1990	1993	1992	1991	1990
S.E. ALASKA a/	227	184	264	288	28	32	33	28	49	44	60	51	304	260	357	367
BRITISH COLUMBIA b/c/																
North/Cent. Coast	182	182	221	179	45	54	57	47	37	38	32	31	264	274	310	257
W. Vanc. Island d/	274	347	203	298	28	9	60	30	66	47	80	61	368	403	343	389
Georgia St./Fraser e/	33	37	32	34	16	9	15	15	119	117	116	112	168	163	163	161
Johnstone St.		3	1	2	15	9	13	18	12	15	10	10	31	27	24	30
Juan de fuca Strait	0	0	0	0	2	10	8	7	-	-	-	-	2	10	8	7
subtotal	493	569	457	513	106	91	153	117	234	217	238	214	833	877	848	844
WASHINGTON INSIDE f/																
San Juans (mar) h/		0	0	1	14	14	12	9	7	7	5	7	21	21	17	17
Other PS (\quad ar +fW) $\mathrm{i} /$	0	0	0	0	55	63	89	180	NA	55	49	71	NA	118	138	251
Coastal (mar+fw) i/	0	0	0	0	59	64	54	58	NA	7	6	5	NA	71	59	63
subtotal	10	31	37	48	129	142	158	252	NA	107	100	134	NA	277	294	434
columbia river j/k/	-	-	-	-	51	53	107	148	83	68	83	95	134	121	190	243
WA/OR N OF FALCON I/	55	69	51	65	0	0	0	0	14	19	17	30	69	88	68	95
OREGON Inside Waters m/	<1	<1	0	0	-	-	-	-	52	39	45	38	52	39	45	38
GRAND TOTAL	786	854	809	914	314	318	451	545	NA	494	543	562	NA	1662	1802	2021

NA Data not available.
a/ Southeast Alaska troll chinook catches shown for Oct. 1 - Sept. 30 catch counting year.
b/ British Columbia net catches includes only fish over 5 lb . round weight. Native food fishery catches are not included. N/Cent. Coast 1989, 1990, 1991 and 1992 exclude catch from terminal gillnet fisheries (4 year total of 22,495 which are excluded from the catch ceiling).
c/ Sport catches are for tidal waters only.
d/ Estimates of WCVI tidal sport catches are from creel surveys in Barkley Sound only. Survey times and areas may vary from year to year.
e/ GS sport catches include Juan de Fuca Strait sport catches.
f/ All WA inside sport numbers adjusted for punch card bias. See " 1988 WA State Sport Catch Report" for details.
g/ Strait troll catch includes all catch in areas 5 and 6C and catch in area 4B outside of the PFMC management period (Jan.-May and Oct.-Dec.).
h/ San Juan net catch includes catch in areas 6, 6A, 7 and 7A; sport catch includes area 7.
i/ Coastal and Puget Sound sport catches include marine and freshwater, but only adults in freshwater.
j/ Columbia River net catches include Oregon, Washington and treaty catches, but not ceremonial.
k/ Columbia River sport catches include adults only, for Washington, Oregon, Idaho and Buoy 10 anglers.
1/ North of Falcon troll catch includes catch in area 4B during the PFMC management period (May-Sept.), and area 2.2 (Grays Harbor) when area 2 is open.
$\mathrm{m} /$ Troll = late season troll off Elk River mouth (Cape Blanco); sport = estuary and inland (preliminary for 1993).

Table 1-2. Annual catches and cumulative deviations from catch ceilings since 1987.

	SEAK (, N,			NCBC(TINSS)			WCMII		GS(ISS)	
	Ceiling	Catch	Ada-On	Ceiling	Catch	Proposed Terminal Exclusion \& Add-ol		Catch	Ceiling	Catch
1987	263	265.2	16.7	263	282.8		360	379.0	275	159.7
1988	263	255.2	23.7	263	247.1		360	408.7	275	139.6
1989	263	264.4	26.7	263	301.2	4.8	360	203.7	275	161.3
1990	302	313.2	53.7	302	253.0	5.5	360	298.0	275	146.3
1991	273	295.6	61.4	273	304.3	6.1	360	202.9	275	147.8
1992	263	221.7	38.3	263	267.5	$\begin{gathered} 6.7 \& \\ 15.8 \end{gathered}$	360	346.8	275	153.9
1993	263	268.2	35.9	263	256.5	\% 11848	360	273.7	275	$152.3 \mathrm{~d} /$
Cumulative a/ Deviation (Fish)		-6.5			+22.7			-27.0 a/		-20.6 a/
Cumulative a/ Deviation (\%)		$-2.5 \% \mathrm{c} /$			+8.6\% c/			-7.5\% b/		-7.5\% b/

a/ Cumulative deviations calculated since 1987.
b/ Negative deviations below the 7.5% management range are not accumulated.
c/ Percent deviation calculated from a ceiling of 263,000 , and before adjustment for add-on in NCBC troll fisheries.
d/ Due to budget restraints, the catch in the Strait of Georgia recreational fishery was only estimated through September in 1993 (based on past averages, this period accounts for approx. 92% of the annual catch).
4) To comply with requirements of the U.S. Endangered Species Act (ESA).

Catch data for 1993 indicate the following:

1) The 1993 all gear harvest (commercial and recreational) of 304,100 , including a hatchery addon of 35,900 , consisted of a commercial catch of 254,900 and a recreational catch of 49,200 .
2) The total estimated catch of Alaska hatchery produced chinook salmon was $42,900(14.1 \%$ of the total catch). The add-on was calculated by reducing this by 5,000 for the estimated preTreaty harvest of Alaska hatchery chinook and by 2,068 for risk adjustment.
3) The deviation of the 1993 SEAK chinook salmon catch from the catch ceiling was $+5,200$. The cumulative deviation since 1987 is $-6,500$.

Troll Fisheries: The troll fishery harvested a total of 226,800 chinook salmon of which 18,300 (8.1%) were of Alaska hatchery origin. Catches were as follows:

Fishery	Total Catch	AK Hatchery Catch	AK Hatchery Percent
Winter Fishery (October 11, 1992 - April 14, 1993)	62,700	3,900	6.2\%
Hatchery Access (did not occur)	0	0	0.0\%
Experimental and Terminal	18,700	9,400	50.3\%
Summer Fishery (July 1-6, August 21-25, Sept. 12-20)	145,400	5,000	3.4\%
Total Troll	226,800	18,300	8.1\%

The start of the winter troll fishery was delayed 10 days to begin on October 11. The fishery operated as in past years and continued through April 14. The total winter harvest was 62,700 chinook, with 3,900 from Alaska hatcheries.

Following the winter fishery, consultation occurred with NMFS in order to comply with the listing of Snake River Fall chinook salmon under the ESA. As a result of the consultation, the spring hatchery access fishery did not occur so that the chinook from this fishery could instead be harvested in the summer fishery. The experimental and terminal fisheries did occur and harvested 18,700 chinook, of which 9,400 were Alaska hatchery fish.

The general summer troll fishery opened on July 1 for six days. Beginning on July 7, the troll fishery was then closed for five days, in order to comply with the results of the NMFS consultation. The fishery reopened on July 12, with chinook nonretention (CNR). During this period, areas of high chinook abundance were closed. The fishery closed in August for coho management. The fishery reopened on August 21, with CNR allowed for five days. There was poor weather during this period and it appeared that the total catch would be low. The chinook retention fishery again opened on September 12 and remained open until the close of the season on September 20. There were a total of 20 days of chinook fishing and 49 days of CNR.

Net Fisheries: The SEAK net fisheries have a guideline harvest of 20,000 non-Alaska hatchery chinook. The 1993 commercial net catch was 28,000 chinook, of which 15,600 were from Alaska hatcheries. Of these hatchery chinook, 8,900 were taken in terminal area fisheries. Net harvest of chinook salmon in the purse seine fishery is limited by a 28 " (70 cm) size limit and the use of CNR regulations. In addition, chinook between $21^{\prime \prime}$ and $28^{\prime \prime}$ may never be retained, while chinook below 21 " may be retained at all times. Gillnet harvest of chinook is limited by a delayed season opening.

Recreational Fisheries: The recreational fishery harvested 49,200 chinook, of which 9,000 were from Alaska hatcheries. There was a one fish bag limit beginning June 16. In addition, the use of downriggers was banned from June 16 through August 16. This fishery also has a $28^{\prime \prime}$ size limit.

1.3.2 Canadian Fisheries

The minimum size limit for troll fisheries remained at 62 cm (24.5 inches) fork length in the Strait of Georgia and at 67 cm (26.5 inches) fork length in all other areas. Catch statistics for commercial fisheries are still preliminary for 1993, but no major changes are expected.

North/Central British Columbia (NCBC): The 1993 NCBC fisheries were managed under the following provisions:

1) An all-gear base-catch ceiling of 263,000 chinook salmon.
2) A 7.5% management range, with cumulative deviations calculated since 1987. Based on preliminary 1992 catch estimates, and terminal exclusion calculation procedures; the cumulative deviation at the beginning of the 1993 season was estimated as $+28,900(+11.0 \%)$.

The estimated 1993 all-gear catch was 256,520 excluding terminal exclusions of 7,673 . These preliminary catch statistics indicate a 1993 catch deviation of $-5,844$ and a cumulative deviation through 1993 of $+22,382$ chinook ($+8.5 \%$ of the catch ceiling). However, if the add-on estimated for the catch of Canadian hatchery production in the 1992 NCBC troll fishery is accepted $(15,800$ chinook), the cumulative deviation through 1993 would be reduced to $+6,838$ fish $(+2.6 \%$ of the catch ceiling). Canada also proposes to exclude a further 4,852 chinook for add-on estimated in the 1993 NCBC troll fishery.

Terminal exclusions, as allowed in the Letter of Transmittal, are calculated as follows:

A. Area	Base	$\begin{aligned} & 1993 \\ & \text { Catch } \end{aligned}$	1993 Exclusion
Skeena	2,900	9,283	6,383
Bella Coola	2,950	4,240	1,290
Kitimat	2,400		0
Total			7,673

Troll Fisheries: The 1993 troll fishery opened for all species on July 1. The following management actions were taken throughout the season:

1) From August 2-4, all North coast areas were closed to retention and possession of chinook salmon as the catch ceiling was estimated to have been achieved.
2) For August 5 and 6, all North coast areas were closed for all salmon fishing pending the start of fishing for Fraser River sockeye.
3) Closure for chinook retention continued August 7-15, followed by another closure to all species (August 16-18).
4) Troll fishing in northern B.C. re-opened August 19, with nonretention for chinook and sockeye. Nonretention continued through August 28.
5) Chinook and sockeye fishing re-opened August 29, following an increase in the estimated return of Fraser River sockeye and determination that 16,000 chinook remained in the ceiling.
6) Area closures were used to pace chinook catch rates to avoid further periods of CNR.
7) The fishery closed to all salmon fishing on September 12th, with the exception of Areas 11 and 111; CNR was implemented in these areas.
8) Fishing in Areas 11 and 111 closed for the season on September 30th.

The reported catch in NCBC troll fisheries was 182,480 and involved 32 days of CNR.
Net Fisheries: Catch of chinook in NCBC areas was 44,701 . Catches by fishery were 3,272 in the Queen Charlotte Islands, 30,934 for the Skeena/Nass and 10,495 in Central British Columbia (CBC). These catches are the preliminary total catches of chinook greater than 5 pounds, including the catch eligible for terminal exclusion.

Recreational Fisheries: The tidal water sport fishery catch of chinook was 37,330 . Catch by fishery was 24,395 for the Queen Charlotte Islands, 3,279 for the Skeena/Nass and 9,656 for the Central Coast.

West Coast Vancouver Island (WCVI) Troll: In 1993, the WCVI troll fishery was managed under the following provisions:

1) A catch ceiling of 360,000 .
2) A 7.5% management range about the catch ceiling with cumulative deviations calculated since 1987.
3) To manage the fishery consistent with the spirit and intent of the Pacific Salmon treaty and the chinook rebuilding program.

The 1993 troll season started on July 1 and continued until September 30 with no CNR fisheries. The conservation areas F1, S, G and H were closed at the start of the season (Fig. 1-1). On July 24th areas $\mathrm{F} 1, \mathrm{~S}, \mathrm{G}$ and H were opened for the remainder of the season.

When trolling closed on September 30, it was estimated that 36,170 boat days had been expended during the troll season. This compares to 50,500 boat days for the 1985-1987 average. Chinook catch in 1993 for the WCVI troll fishery was $273,749$.

Strait of Georgia (GS): Chinook catch in 1993 for the combined GS troll and recreational fisheries was 152,257 but this total only accounts for recreational catch through September, 1993. Monitoring of this recreational fishery was limited due to continued budget reductions.

Troll: The management objective was a domestic catch ceiling of 31,000 chinook. The ceiling was reduced to this level in 1988 to achieve a 20% harvest rate reduction, relative to 1987 levels, as part of a conservation plan for lower GS chinook.

The troll fishery was opened for chinook retention on June 28 and continued until July 22 without interruption. After July 22, CNR was in effect until August 31. The chinook fishery resumed on September 1st and closed again on September 18. In order to reduce chinook shaker mortalities, a regulation for single barbless hooks was implemented for part of the CNR period. The 1993 GS troll catch was 33,412 with 52 days of CNR.

Recreational: The 1993 management objective for the GS recreational fishery was to maintain a 20% harvest rate reduction, relative to 1987 levels, on lower GS chinook. Consequently, the management plan implemented in 1989 was continued in 1992. This plan consists of the following management actions:

Fishing Area	Daily Bas Limit		Minal Bi8 Limil			Sizelimil (cm)	
	$\begin{aligned} & 19899 \\ & 1 \text { lresint } \end{aligned}$	$\begin{aligned} & 19898 \\ & 11888 \end{aligned}$	1989. Present	1988	$\begin{aligned} & 1985 . \\ & 1987 . \end{aligned}$	$\varliminf_{\text {Iresent }}^{10899}$	1985 1988
Strait of Georgia (S.A. 13-18, 19B, 28 \& 29)	2	2	15	8	20	62	45
Juan de Fuca (S.A. 19A)	2	2	20	8	20	45	45
Johnstone Strait (S.A. 12)	2	4	15	30	30	62	45

The 1993 catch in the creel survey area (including the Victoria area, but excluding Johnstone Strait) was 118,845 through September. Fishing through September would be expected to account for approximately 92% of the total year's catch, based on past creel survey data. The estimated total annual catch for 1993 would therefore have been 129,200. Effort through September 1993 totalled 498,026 boat trips, which is very similar to 1989-1992 average effort levels $(488,706)$.

1.4 REVIEW OF OTHER FISHERIES

1.4.1 Canadian Fisheries

Transboundary Rivers: Chinook catches in the Canadian gillnet fisheries were: Taku River, 1619 chinook adults and 171 jacks, and Stikine River, 874 chinook adults and 166 jacks. The catch of chinook in these rivers is limited to incidental catch during fisheries targeting on sockeye salmon.

Southern British Columbia Fisheries:

Commercial Net: The catch of chinook in the net fisheries is limited to incidental catch during fisheries targeting on sockeye, pink, or chum, with the exception of the August/September gillnet fishery in Alberni Inlet (Area 23). This fishery is a terminal gillnet fishery for returns to the Robertson Creek Hatchery. Small numbers of chinook may also be harvested incidentally during gillnet and seine fisheries on sockeye salmon in Barkley Sound in July. Catches for 1992 are given below.

Area (Statistical Area)	
Johnstone Strait (11-13)	14,878
Strait of Georgia (14-19) and Fraser R. $(28,29)$	15,761
Juan de Fuca Strait (20)	2,136
Barkley Sound (23)	22,476
Other WCVI (21,22,24-27)	6,029

The management objective of southern B.C. net fisheries is to reduce the base period harvest rate on chinook by 25% (an obligation in the PSC chinook rebuilding program). Further, the Johnstone Strait net fisheries have the added objective of reducing harvest rates since 1987 by an additional 20% as part of the conservation program for chinook stocks in the lower Strait of Georgia.

In all the fisheries, regulations and research programs are attempting to limit the incidental mortality of juvenile chinook and coho. Fishing time, location, and gear are limited in southern B.C. net fisheries to conserve juvenile and adult chinook salmon. In Johnstone and Juan de Fuca straits, known areas of high chinook vulnerability are closed and minimum depth strata are set to reduce the catch of juvenile chinook and coho. In Juan de Fuca, a maximum number of juvenile chinook and coho salmon per set has been established, beyond which the fishing area is further restricted or even closed. Chinook catch in the Fraser River area is usually limited to gillnet fishing and chinook catch is incidental. Also, in recent years gillnet fishing in the Fraser River has been restricted to limit fishing time during September in order to restrict catch of Harrison River chinook returning to spawn.

Area 12 Troll: Catch is reported as 4,056 chinook for 1993. This fishery is a small localized group of trollers at the southern limit of Queen Charlotte Sound. The fishery is limited to a catch ceiling of 5,000 chinook, which is included in the overall WCVI catch ceiling of 360,000 .

Tidal Recreational: The catch estimate for the 1993 Barkley Sound recreational fishery is 59,635 , of which 10,187 were taken in the terminal fishery inside Alberni Canal and 49,448 in Barkley Sound. The survey period covered July 15 -September 30 . The early to midsummer fishery primarily occurs in outer Barkley Sound and is limited by size limit, catch per day, and possession limits. The Alberni Canal portion occurs primarily in August and is directed on returns to the Robertson Creek Hatchery. A separate creel survey was conducted for Clayoquot Sound in 1993 and a catch of 6,375 was recorded. A creel survey was conducted in Johnstone Strait in 1993 covering the period April through August. The estimated chinook catch in the Johnstone Strait area was 12,363.

Non-tidal Recreational: Non-tidal recreational fisheries occur in most B.C. rivers, including the Alsek, Skeena, Nass, Kitimat, Bella Coola, Somass and Fraser Rivers and various streams on the east coast of Vancouver Island. Most of these are small, localized fisheries to provide the local public with some access to salmon fishing. Recent fisheries in the Fraser River have been limited to the larger chinook populations that have responded well to the chinook rebuilding program and most are limited by catch ceilings.

Chinook catch was estimated at 171 in the Alsek, 10,693 in northern B.C. rivers (Areas 1-10). Eleven small sport fisheries operate in the upper Fraser but the 1993 catch estimate has not been prepared. Past catches have been small, about 1,000 to 1,500 chinook. Sport fisheries also occur in the Vedder-Chilliwack River and lower Fraser mainstem but were not assessed.

Indian Fisheries:

Iishing Areas	Adull Catel	Jack catch
North/Central B.C.	24,628	-
Somass River	32,632	-
Fraser River	19,522	-
Stikine	929	130
Alsek	152	-
Taku	25	-
Cowichan	650	-
Squamish	NA*	-

* NA indicates that a 1993 catch estimate is not available.

Each of these fisheries involves directed chinook fishing periods and the incidental catch of chinook during fisheries on other species. Small portions of the catch may be taken in marine waters, with the exception of the Stikine and Alsek catches. Catch in these fisheries is mostly limited by fishing time, but allocation to meet food fishing requirements is the first priority use of allowable catches. The Fraser River fisheries were managed to fixed allocations with the sale of catch permitted.

1.4.2 Southern U.S. Fisheries

Strait of Juan de Fuca: As in previous years, management measures were taken in the Strait of Juan de Fuca and other mixed stock areas to protect depressed spring chinook stocks. No directed spring fisheries were permitted and no commercial fisheries were permitted during the spring chinook management period (April 16-June 15). Recreational fisheries were also restricted by a maximum size limit of $30^{\prime \prime}$ during the spring chinook management period.

Further actions were taken in all mixed stock areas to protect depressed summer/fall stocks from Puget Sound. Purse seine and reef net fisheries were restricted by a $28^{\prime \prime}$ chinook minimum size limit. Most seine fisheries were required to have a 5 " net strip to reduce the catch of small chinook. Gillnet fisheries had no chinook minimum size, but mesh size restrictions were used to reduce chinook catch. It was recognized that the combined actions for chinook salmon would also serve to protect depressed Canadian-origin chinook stocks (primarily Fraser River runs).

Preliminary estimates of 1993 net catch in the Strait of Juan de Fuca total 1,500 chinook, compared to 900 in 1992. These fisheries take chinook incidental to the harvest of other species. Preliminary estimates of 1993 tribal troll catch in the Straits (Areas 4B, 5, and 6C) total 9,800 chinook, down substantially from the 31,000 caught in 1992 . This is a chinook directed fishery. Note that tribal troll catch estimates from this area do not include tribal catch in Area 4B during the May 1-September 30 PFMC management period; catches during this period are included in the North of Cape Falcon troll summary.

In 1993, about 200 chinook were caught in the Area 4B state waters fishery, after the PFMC fishery, compared to 30 in 1992. Preliminary estimates of 1993 recreational chinook catch for Areas 5 and 6 total 32,400 , compared to 38,400 in 1992. For the second consecutive year, a creel census was conducted in Area 5. The 1993 census was conducted between July 16 and September 6. Chinook catch during this time is estimated at 6,700 for Area 5 only, compared to 22,300 in 1992 for Areas 5 and 6.

Preliminary 1993 estimates of chinook net catch in the San Juan Islands total 14,000, compared to 14,000 in 1992. Preliminary 1993 estimates of recreational chinook catch for Area 7 total 6,900 , compared to 6,800 in 1992.

Puget Sound: The status of many Puget Sound chinook stocks continued to be poor in 1993. As in past years, recreational and commercial fisheries in Puget Sound were regulated by time and area closures to avoid direct harvest and minimize incidental harvest of these depressed stocks. Some directed harvest was allowed on a few Puget sound summer/fall stocks. However, no directed chinook net fisheries were allowed in the Skagit and Stillaguamish/Snohomish terminal areas, in order to protect depressed summer/fall stocks. As in the Strait of Juan de Fuca, purse seine fisheries were restricted by a 28 " chinook minimum size limit. Most seine fisheries were required to use a $5^{\prime \prime}$ net strip to reduce the catch of small chinook. Gillnet fisheries had no chinook minimum size, but mesh restrictions were used to reduce chinook catch.

Net catch of chinook was down again in 1993 due to a combination of poor catch rates (in part due to low abundance) and management actions taken to protect both chinook and coho. Preliminary estimates of 1993 net catch in Puget Sound marine areas total 42,800 chinook, compared to 52,000 in 1992. Preliminary estimates of 1993 net catch in Puget Sound freshwater areas total 12,200 chinook, compared to 11,300 in 1992.

Total Puget Sound recreational catch estimates for 1993 are not available at this time. Recreational fisheries were managed in the same general manner as in recent years. Preliminary Puget Sound marine (Areas 8-13) recreational chinook catch for 1993 is estimated at 41,000 , compared to 53,000 in 1992. The 1992 Puget Sound freshwater recreational catch was 1,649 adult chinook and 1,074 jack chinook.

Washington Coast: Preliminary 1993 estimates of Grays Harbor and Willapa Bay net catch total 47,100 chinook, compared to 51,200 in 1992.

The 1993 commercial net fisheries in north coastal rivers have harvested an estimated 12,000 chinook, compared to 13,100 in 1992. The pre-season spring/summer chinook estimate for the Queets River just met the escapement floor. Consequently, a limited harvest of only 48 fish was taken to maintain the age structure database, to allow estimation of brood year contributions.

Spring chinook comprised $69 \%(1,117)$ of the 1993 chinook catch on the Quillayute River. On the Hoh River, roughly 50% of the total chinook catch (approximately 520) were spring chinook, although 139 of these were considered "dip-ins."

Washington coastal recreational catch estimates for 1993 are not available at this time. Chinook catch for coastal rivers in 1992 is estimated at 6,600, compared to 6,000 in 1991.

Ocean Fisheries North of Cape Falcon: In 1993, ocean commercial and recreational fisheries operating in the Pacific Fisheries Management Council (PFMC) region north of Cape Falcon were regulated by domestic quotas for both chinook and coho salmon. Separate quotas were established for the tribal troll and non-tribal fisheries.

Under PFMC quota management, ocean fisheries are terminated either when coho or chinook quotas are achieved or when seasons expire. In 1993, coho quotas were set based upon conservation concerns for Skagit and Stillaguamish wild coho stocks. The allowable chinook harvest was set at 34,400 (35,000 total allowable harvest minus 600 estimated hooking mortality in the pink-only fishery). Preliminary non-tribal troll chinook catches are estimated at 30,400 (400 Oregon and 30,000 Washington), about 88% of the 34,400 allowable chinook harvest and substantially down from the 45,900 landed in 1992. Approximately 25,400 of these non-tribal troll-caught chinook were taken during the early season chinook fishery, May 1 through June 15, 1993.

Preliminary recreational catches are estimated at 13,700 (900 Oregon and 12,800 Washington), about 55% of the 25,000 chinook quota and down from 18,900 in 1992. In 1993, an all salmon except coho fishery was conducted in Area 4B during May. The catch of 200 chinook counted against the ocean chinook quota. This fishery landed 100 chinook in 1992.

Preliminary 1993 tribal troll chinook catch is estimated at $24,700,73 \%$ of the 33,000 chinook quota and up slightly from 22,500 in 1992.

As of September 23, 1993, all on-going non-tribal ocean fisheries north of Cape Falcon (Westport, llwaco, La Push, and 4B recreational fisheries and the all-salmon troll fishery) were closed. This action was taken because of strong conservation concerns for Puget Sound and Washington Coastal natural coho stocks.

Columbia River: Since 1988, all in-river management of Columbia River fish runs and fisheries has been based on the Columbia River Fish Management Plan (CRFMP). "The purpose of this management plan is to provide a framework....to protect, rebuild, and enhance upper Columbia River fish runs while providing harvest for both treaty Indian and non-Indian fisheries" (CRFMP, 1988, p.2). The CRFMP specifies management goals, season timing, catch limits, and maximum incidental impacts for all depressed upriver runs of anadromous fish in the Columbia River.

The 1993 in-river commercial catch of chinook was 50,800 , compared to 53,200 in 1992 and 106,900 in 1991. Preliminary freshwater recreational catch estimates for 1993 total 82,500 (including a Buoy 10 catch of 5,300) compared to 68,300 in 1992 and 82,700 in 1991.

The 1993 total catch of upriver spring chinook was 8,970 fish, consisting of 662 caught in the nonIndian sport and commercial fisheries, 7,256 caught in Zone 6 Ceremonial and Subsistence (C\&S) fisheries, and 1,052 caught in C\&S fisheries in Idaho. The Idaho C\&S catch of 1,052 includes both spring and summer chinook. The CRFMP provides that for run sizes between 50,000 and 128,800 , the mainstem harvest below Bonneville Dam is limited to the 1983-1985 average impact (4.1%) on the upriver run. However, due to ESA concerns, the Columbia River Compact chose to limit the lower river impact to a maximum of 3.4% of the run. Under the CRFMP, treaty C\&S fisheries in Zone 6 are limited to 7% of the run. Postseason estimates of 1993 impacts of lower river and treaty C\&S fisheries are 0.6% and 6.5% respectively.

There has not been a mainstem fishery targeting upriver summer chinook since 1964. In the past, incidental harvest of summer chinook occurred during commercial sockeye fisheries. However, no commercial sockeye fisheries have occurred below McNary Dam since 1988. There is a very small catch of summer chinook in the mainstem treaty C\&S sockeye fishery. The total 1993 catch of summer chinook in this fishery was 369 fish.

Commercial catch of Columbia River fall chinook in 1993 totaled 48,441 (17,000 in lower river nontreaty fisheries and 31,078 in treaty fisheries). An additional 2,150 fish were caught in treaty C\&S fisheries. Management constraints included achieving the Spring Creek Hatchery escapement goal of 8,200 adult chinook, and an adult management goal of 45,000 Upriver Bright chinook over McNary Dam. By agreement of the CRFMP parties in 1990, the Upriver Bright management goal at McNary Dam was increased from 40,000 to 45,000 adults, to account for increased broodstock hatchery needs and to provide additional protection for Snake river fall chinook.

Ocean Fisheries Cape Falcon to Humbug Mountain: Ocean troll and sport fisheries off Oregon's central coast harvest predominantly southern stocks not involved in the PSC rebuilding program; these stocks do not migrate north into PSC jurisdiction to any great extent. Some stocks that spawn in Oregon coastal rivers do migrate into PSC fisheries, including the stocks comprising the North Oregon Coastal (NOC) and Mid Oregon Coastal (MOC) groups. Less than 5% of the harvest of the NOC group occur in this catch area, while the MOC group is harvested more intensively in this area. We can presently best account for the MOC harvest in the late-season near-shore troll fishery off the mouth of the Elk River. In 1993, this fishery caught an estimated 649 chinook, compared to a catch of 384 in 1992. In both 1990 and 1991, the near shore fishery was not conducted due to conservation concerns.

Both stock groups are harvested intensively in estuarine and freshwater terminal sport fisheries. Preliminary 1993 catch is estimated as 52,391 chinook, this compares to a catch of 39,302 in 1992.

Figure 1-1. West Coast of Vancouver Island conservation areas for chinook and coho salmon in 1992.

CHAPTER 2. ESCAPEMENT ASSESSMENT OF REBUILDING THROUGH 1993

2.1 INTRODUCTION

The Pacific Salmon Treaty (PST) established a system of fishery specific catch and harvest rate restrictions intended to:
"...halt the decline in spawning escapements of depressed stocks; and attain by 1998, escapement goals established in order to restore production of naturally spawning chinook stocks, as represented by indicator stocks identified by the Parties, based on a rebuilding program begun in 1984." (Annex IV, Chapter 3)

In this chapter, our objective is to use escapement data to evaluate the rebuilding status of naturally spawning chinook stocks with respect to these stated PST objectives of: 1) halting escapement declines, and 2) attaining escapement goals by 1998. It should be recognized that while coastwide chinook stocks were generally depressed before PST implementation, not all individual stocks were declining.

Because it was hoped that the decline in escapements would be quickly halted, previous CTC analyses focused on evaluating the rate at which stocks were rebuilding to their escapement goals. However, as we near the end of the rebuilding program, it becomes clear that some chinook stocks are not going to achieve their escapement goals by their rebuilding target dates. For these stocks, it is appropriate to ask, "Has the decline in spawning escapements at least been halted?" This question can also be asked of stocks without established escapement goals, even though rebuilding progress of these stocks can not be measured.

Escapement information has been compiled for a set of indicator stocks representing the majority of naturally spawning chinook stocks from central Oregon to Southeast Alaska (SEAK). Spawning escapements were assessed as one measure of rebuilding progress since implementation of management actions under the PST. Because escapements are a product of brood year adult abundance, freshwater and marine survival rates, and fishery harvest rates, the escapement assessment alone is not sufficient to determine if management actions since PST implementation have been effective in rebuilding chinook stocks. For a more complete picture, the results of this assessment should be considered together with the Exploitation Rate Assessment in Chapter 3, the Chinook Model Assessment in Chapter 4 and the Integrated Assessment in Chapter 5.

The CTC used several methods to assess escapement declines and rebuilding progress for the indicator stocks. For stocks with escapement goals, the escapement assessment first identified stocks with escapements in recent years greater than their goals. For the remaining stocks with escapement goals, the assessment focused on: 1) comparison of recent escapements and the recent 5-year average escapement to a linear trend from the base period to the goal at the rebuilding target date, and 2) trends in recent escapements. This first portion of the assessment identified stocks that are and are not expected to rebuild by their target dates. For those not on schedule to rebuild, recent 5 -year average escapements were compared to base period escapements to see if escapement declines have been halted. Escapement declines were also evaluated for stocks without escapement goals.

Two different rebuilding schedules are recognized in the PST. For SEAK and Transboundary River (TBR) stocks, conservation actions began in 1981 as part of a 15 -year rebuilding program initiated by

Alaska. The PST stipulates that the TBR Stikine and Taku stocks should achieve their escapement goals by 1995. For all other chinook stocks, the PST establishes a 15 -year rebuilding program beginning in 1984 with a rebuilding target date of 1998. Although not specified by the PST, for all SEAK and TBR stocks, the target date of 1995 has always been used for analytical purposes, to allow direct comparison among stocks in the same region.

Caution should be used when comparing escapement levels or goals among stocks since escapements are measured in different units. Annual escapement estimates used were measures of total escapement where available or indices of escapement. Differences in escapements may not represent differences among stocks in population abundance, but trends in escapement should reflect population changes.

2.2 FRAMEWORK

2.2.1 Escapement Indicator Stocks

Indicator Stocks: This year's assessment included 44 naturally spawning escapement indicator stocks. This is an increase of two stocks over recent years due to the addition of the Deschutes fall stock and the splitting of the Oregon Coast group into two stock aggregates (see section 2.2.2). These 44 stocks represent distinct populations or management groups that originate from individual rivers or watersheds. Some stocks represent several populations aggregated by region and life history type. Distribution of the indicator stocks by run timing and area of origin is shown in Table 2-1.

Table 2-1. Distribution of escapement indicator stocks by run timing and area of origin.

ARUA OF ORIGIA	RUN ILMING					
	Sbring	Springt Sinmmer	Simmer	Simmer Tall	Ial	Total
Southeast Alaska	5					5
Transboundary	5					5
North/Central B.C.	1	3	3			7
Southern B.C.	1	1	1	1	3	7
Washington/Oregon/Idaho	3	2	2	3	10	20
TOTALS	15	6	6	4	13	44

${ }^{1}$ These run timings are determined by management agencies; criteria used for categorization may differ among agencies.

2.2.2 Escapement and Terminal Run Data

Data Sources: The escapement and terminal run data used in this report were provided by management agencies in each jurisdiction. Data for each stock are presented in Appendix A tables and Appendix B graphs. For each stock with terminal harvest or broodstock removal, Table 2-2 lists the sources of mortality included in estimates of terminal run size.

Estimation Methods: Methods of estimating escapement varied depending on river characteristics and agency resources. Most escapement estimates were measures of actual spawner abundance,

Table 2-2. Terminal run composition for those stocks with terminal fisheries, broodstock removal, or rack sales.

\checkmark : A fishery occurs or broodstock is collected, and the take is included in the terminal run size estimate.
NI: A fishery occurs or broodstock is collected, but the take is not included in the terminal run size eatimate.
1 Because this report only presents unexpanded index escapement estimates for TBR rivers, tenminal run size estimates are not reported; terminal catch estimates ean be found in TBTC (1993). Sport catch is Canadian only.
Includes catch from the River/Gap/Slough gillnet fishery.
WCVI temminal run size is not estimated.
Puget Sound estimates include reconstructed, stock-specific catches from Areas 8, 8a, 10, and 10a.
Escapement eatimates include fish taken for brood stock.
where available, or estimates (or indices) of abundance measured at a point of migration beyond the effect of major fisheries. Estimates were made using weirs and counting fences, aerial or foot surveys, dam passage counts, electronic counting devices, or mark-recapture studies.
Escapements of the two Oregon Coast stock aggregates are estimates of the density of spawners per river mile for standard survey areas. For some stocks, estimates of natural spawners are adjusted to make them a more representative measure of natural stock escapements:

1) Many of the Canadian escapement indicator stocks are influenced, to some degree, by enhanced production. In most cases, this enhancement is an integral part of the rebuilding program and may increase the rate of rebuilding compared to a natural population. However, to account for this enhanced production during assessment of chinook rebuilding, the Canadian Department of Fisheries and Oceans (CDFO) has employed two procedures:
a) Some streams with major enhancement programs are excluded from the escapement indices (e.g., Kitimat River in Area 6, Atnarko River in Area 8).
b) In streams with more limited enhancement, collected broodstock is excluded from the natural spawners recorded, although enhanced returns are included in these numbers (e.g., Yakoun, Lower Strait of Georgia, and Harrison).
2) For the Columbia upriver spring stock, mainstem dam counts adjusted for hatchery fish were used. Annual estimates of the total number of hatchery fish returning to the Columbia River were deducted from the total return in order to estimate the natural return.
3) For the North Oregon Coast (NOC) and Mid-Oregon Coast (MOC) aggregates, surveys conducted in areas influenced by enhancement have been excluded.

Stock-specific Notes:

Chilkat: This stock was removed from the 1990 rebuilding assessment when it was discovered through a 1991-1992 radio-tagging study that the previous index was not representative of the escapement to the entire Chilkat drainage. ADF\&G has estimated total escapement to the Chilkat drainage since 1991. It is anticipated that these estimates will continue and that, despite the lack of base period data, the Chilkat will be included in future assessments when sufficient new data are available. Available data for this stock are included in Appendix A.

Area 6 Index: In 1993, as in recent years, poor visibility during the escapement survey prevented estimation of escapement for the main contributor to the Area 6 indicator stock group, the Kemano River. This resulted in a very low escapement estimate for the Area 6 indicator stock. It is the opinion of the local CDFO staff that escapement enumeration for this stock is too inconsistent for use in the escapement assessment. Future inclusion of this stock is currently under review.

Stillaguamish River: All harvest of the Stillaguamish and Snohomish stocks occurs incidental to the harvest of other species (see Section 1.4.2). Run reconstruction methods are used to allocate incidental harvest between the two stocks. Management actions taken in the terminal area to protect the Stillaguamish stock have been in effect since 1985, but run reconstruction methods do not reflect these management changes. As such, reported Stillaguamish terminal run sizes (and thus terminal catches) for 1985-1993 are likely overestimated, while those for Snohomish are likely underestimated.

Quillayute summers: For this stock, escapements represent a composite of naturally spawning fish from the summer stock and strays from enhancement. The designation "summer" is used to distinguish this native stock from an earlier nonnative enhanced spring run. While the summer run is managed for natural production, run timing of the two stocks overlaps to some extent.

Oregon Coast (NOC and MOC): River-specific spawner density indices (peak fish/mile) are calculated from observations made at several survey sites. A simple unweighted average across all rivers in the aggregate is then used as the annual measure for this analysis.

Changes Relative to the 1992 Annual Report: There were four notable changes from the 1992 report (CTC 1993). Minor updates to catch and escapement data, including updates to preliminary estimates for the most recent years, are not described.

Behm Canal: In 1994, ADF\&G adopted new escapement goals for the Behm Canal stocks (Unuk, Chickamin, Blossom, and Keta), following a stock-recruitment analysis by ADF\&G staff (McPherson and Carlile, in prep.). After review of the stock-recruit analysis (CTC 1994), the CTC decided to use index escapements, rather than total escapements, to evaluate the four stocks in this year's escapement assessment. It is hoped that questions about system expansion factors will soon be resolved and that total escapement estimates will be used in the 1994 CTC Annual Report.

Green River: Changes made in the run reconstruction database affected the allocation of catch to this stock. This resulted in minor changes to all Green River historical terminal run estimates.

Deschutes Falls: This Columbia River bright fall chinook stock was added as a stock without goal. Deschutes River fall chinook spawn in the lower 100 miles of the Deschutes River below the PeltonRound Butte hydroelectric project. The ocean distribution of the stock appears to differ from that of the Upriver Bright stock and it is harvested primarily in the WCVI area. Terminal run and spawning escapement data are available from 1977-1993. The CTC recommends that the management entities develop an escapement goal so that the rebuilding status of this stock can be assessed.

Oregon Coast Falls: In previous years, chinook salmon originating from 17 Oregon coastal rivers were aggregated into a single escapement indicator stock group. Recent analysis of catch distribution and age at maturity of these 17 populations has shown that two distinct groups exist. Stocks from 12 rivers along the north Oregon coast are harvested mainly in the far northern PSC fisheries, and are composed of older age classes. Populations from five rivers along the mid-coast are caught mainly in Oregon and Washington ocean fisheries or off WCVI and are an earlier-maturing group. The 12 north coast rivers have been grouped as the North Oregon Coast (NOC) indicator stock aggregate while the five mid-coast river populations are designated the Mid-Oregon Coast (MOC) aggregate.

2.2.3 Escapement Goals

Origin of Goals: The escapement goals provided by each management agency define long-term stock rebuilding objectives. Most of these goals were established by the managing agencies for each stock. The Transboundary Technical Committee (TTC) jointly determined goals for the three major transboundary rivers in 1991 (TBTC 1991) based on an index system; the goals are not expanded to represent the river-wide drainages. Where possible, agency goals were based on estimates of stock productivity, usable spawning habitat, or other factors, and represent estimates of escapement levels that produce maximum average production or sustained harvest.

For most stocks, interim escapement goals were developed recognizing the uncertainty in data used for establishing goals. For example, Canadian goals are interim targets based on a doubling of base period average escapements. Some goals have changed since 1984 and other goals may change as new information is acquired. The CTC has recently adopted guidelines for the acceptance of new indicator stocks and the revision of existing escapement goals for use in the CTC rebuilding assessment (CTC 1994b).

Eight of the indicator stocks have no specific escapement goals: NOC, MOC, Deschutes, Quillayute fall, Hoh spring/summer, Hoh fall, Queets spring/summer and Queets fall. These eight stocks, referred to as stocks without goals, are discussed separately in this chapter. The Washington coastal stocks are managed for escapement floors and inriver harvest rates; when terminal runs are predicted to exceed the escapement floor, terminal fisheries are managed on the basis of stepped harvest rates.

Changes Relative to the 1992 Annual Report: In 1994, ADF\&G adopted new escapement goals for the Unuk, Chickamin, Blossom, and Keta stocks. For this year's escapement assessment, the CTC used index goals rather than total escapement goals to evaluate the four stocks (see Section 2.2.2).

2.2.4 Assessment Period

For assessment purposes, a base period and a rebuilding assessment period were established for each stock. Base and rebuilding assessment periods differ among stocks:

SEAK and TBR Stocks: For SEAK and TBR stocks, a 15 -year rebuilding program was initiated in 1981, prior to implementation of the PST. The target date for completion of rebuilding is 1995. For these stocks, the base period includes the years 1975-1980 and the rebuilding assessment period includes the years 1981-1993.

Harrison Stock: Since data pre-1984 are unavailable for the Harrison stock, the Harrison base period is defined as 1984 and the rebuilding assessment period includes the years 1985-1993.

All Other Stocks: For all other stocks, a 15 -year rebuilding program was established for the years 1984-1998. For these stocks, the base period includes the years 1979-1982 and the rebuilding assessment period includes the years 1984-1993.

2.3 METHODS

2.3.1 Stocks Without Escapement Goals

While it is not possible to assess rebuilding progress for stocks without escapement goals, in this report, these stocks were included in the evaluation of escapement declines. Halting escapement declines is a stated PST objected; however, a review of escapement data shows that, in 1985, some indicator stocks did not have declining escapements. For such stocks, the CTC interpreted the PST language to mean that escapements should not decline after the start of the rebuilding program. Thus, the evaluation of escapement declines includes some stocks with stable escapements prior to 1985.

Evaluating escapement declines. To determine if escapement declines have been halted, recent 5 -year average escapement was compared to the average base period escapement. The standard error of the mean was calculated for each stock, based on the stock's 1975-1993 escapements (or
all available escapements within this period). The standard error was used as a measure of stock specific escapement variability. For stocks with recent average escapements more than one standard error below the base period average, it was concluded that escapement declines have not been halted. For stocks with escapement increases more than one standard error above the base period average, it was concluded that escapement declines have been halted. For stocks with recent average escapements within one standard error of the base period average, escapement variation was too great and/or the change in escapements was too small to determine if declines have been halted. Plus or minus one standard error was used as an arbitrary cut off, since the lack of independence among years of escapement data precluded use of significance testing.

Other stock characteristics. The results of the escapement decline evaluation are reported, as well as: base period average escapements; recent 5 -year average escapements; and recent 5 -year average escapements, expressed as a percent of the base period average. These are included to provide some information about where stock escapements are now, relative to where they were before implementation of the rebuilding program.

2.3.2 Stocks With Escapement Goals

For this report, the CTC developed a new approach for evaluating chinook rebuilding that is designed to: 1) separate those stocks that are on or ahead of their rebuilding schedules from those stocks that are behind schedule, 2) determine if spawning escapement declines have been halted for stocks that are behind schedule, and 3) provide information to facilitate evaluation of the stocks behind schedule.

The new approach has three levels of evaluation. First, stocks that are above goal are identified in a manner similar to previous years. Second, stocks that are meeting their rebuilding schedule are identified using short term criteria that assess rebuilding progress. Finally, for those stocks not judged to be meeting their rebuilding schedules, a third level of evaluation is performed to determine if escapement declines have been halted and to summarize attributes of these stocks.

The new three-level system was implemented as follows:

1. Stocks above goal were identified. These were stocks with at least four of the last five escapements at or above goal and recent 5 -year average escapements equal to or greater than the goal.
2. For those stocks not above goal, those that were rebuilding were identified. This determination was made using the following three criteria based on data from the last five years.

Modified Mean Criterion. A test value was calculated as the average of the 1989-1993 data points from the stock's base to goal line. This test value was then compared to the average observed escapement for the last five years. If the observed average was greater than or equal to the test value, a score of +1 was assigned. Otherwise, a score of -1 was assigned.

Modified Line Criterion. Observed escapements were compared with the base to goal line. If, in three or more of the last five years, the actual escapements were on or above the base to goal line, then a score of +1 was assigned. Otherwise, a score of -1 was assigned.

Short Term Trend Criterion. If in at least four of the last five years an escapement exceeded the previous year's escapement, then a score of +1 was assigned. If in at least four of the last
five years an escapement was equal to or below the previous year's escapement, then a score of -1 was assigned. Otherwise, a score of 0 was assigned.

The scores of these three criteria were then added, resulting in a total score ranging from +3 to -3 . Rebuilding classifications were assigned as follows:

Total Score	Classification
+3, +2,	Rebuilding
+1, 0	Indeterminate
-1, -2, -3	Not Rebuilding

Stocks were classified into four categories under the new assessment system: Above Goal, Rebuilding, Indeterminate, and Not Rebuilding. Indeterminate stocks were further reviewed by the CTC and considered for a status change. After this review, all stocks classified as Rebuilding were considered to be on their rebuilding schedules, and no further assessment was performed. Those stocks classified as Indeterminate or Not Rebuilding were considered in the third level of assessment.
3. Those stocks that were classified as Indeterminate of Not Rebuilding were further characterized. The third level consisted of an evaluation of whether or not escapement declines have been halted, and a tabulation of some stock characteristics.

Evaluating escapement declines. Escapement declines were evaluated in the same manner as for stocks without escapement goals (see Section 2.3.1).

Other stock characteristics. All of the stock characteristics presented for stocks without goals are also presented for stocks with goals (see Section 2.3.1). Also included are recent 5-year average escapements expressed as a percent of goal.

2.3.3 Effects of 1993 Methods Change

In this year's assessment, the criteria used in the first two levels of evaluation are modified from those used in previous years. The CTC investigated the development of new criteria due to problems found in the performance of the old criteria that had become increasingly troublesome as the rebuilding program progressed. Before the decision was made to change the methods, however, hindcasting was used to assess the performance of the new methods. Based on the hindcasting results, the CTC was satisfied that the modified methods represented an improvement. This is principally because the new criteria focus on comparing recent data to a stock's base to goal line. Complete hindcasting methods and results will be reported in an upcoming CTC Technical Note.

To identify how the new methods used in this report affect the outcome of the rebuilding assessment, assessment results for the years 1989-1992 were compared using both the old and new methods. Assessments from 1987 and 1988 were excluded because of data problems with several indicator stocks. The evaluation of the old methods used actual assessment results (as reported in the 19891992 CTC Annual Reports), except for the five SEAK stocks with escapement goal changes (Situk, Unuk, Chickamin, Blossom, and Keta) and the Quillayute summer stock (which had an incorrect goal
prior to 1991). For all years in this evaluation, rebuilding status of these six stocks was recalculated using the old methods and the new escapement goals. For comparison, the 1989-1992 data were reassessed using the new methods, new escapement goals, and corrected escapement data.

2.4 RESULTS

2.4.1 Effects of 1993 Methods Change

Fig. 2-1 documents the change resulting from the use of new methods in this report. Fig. 2-1(a) shows the proportions of stocks in the rebuilding categories based on actual CTC assessments done in 1989-1992. For comparison, Fig. 2-1(b) shows the proportion of stocks in the rebuilding categories when assessment results are recalculated for 1989-1992 using the new 1993 assessment methods.

Both figures show a similar pattern across the years, with the proportion of stocks in the upper categories declining and the proportion of stocks in the lower categories increasing. One notable difference is that, under the new methods, fewer stocks fall into the Indeterminate category.

(b)

Figure 2-1. Distribution of stocks among rebuilding categories for the years 1989-1992, (a) based on actual CTC assessment results corrected for new escapement goals, and (b) when assessment results are recalculated using 1993 assessment methods. In Fig. (a), Probably Not Rebuilding has been included with Not Rebuilding and Probably Rebuilding has been included with Rebuilding.

2.4.2 Stock Assessment

Stocks Without Escapement Goals: Escapement and terminal run data for stocks without goals are graphed and tabled in the Appendices. Recent escapements and results from the evaluation of escapement declines are shown in Table 2-3. Escapement declines have been halted for the five Washington Coastal stocks and the NOC stock, but not for the MOC stock. For the Deschutes stock, it is not currently possible to conclude if escapement declines have been halted.

Stocks With Escapement Goals: Individual stock results for the rebuilding criteria are shown in Table 2-4, assessment scores and status are shown in Table 2-5. Stock escapements in 1993 ranged from 8\% (Area 6 Index) to 226% (Andrew Creek) of escapement goals (Table 2-5).

Table 2-3. Summary of recent escapement data and analysis of escapement declines for natural chinook stocks without escapement goals. SE $=$ Standard Error of the mean for 1975-1993 escapements.

					\# Base月月4.			
Decline Halted: Stocks With Current Escapements Above Base								
Quillayute	WAC	fall	3000	6000	5925	8460	143\%	866
Hoh Spr/sum	WAC	spr/sum	900	1400	1325	2420	183\%	249
Hoh Fall	WAC	fall	1200	2300	2875	3400	118\%	291
Queets Spr/sum	WAC	spr/sum	700	700	925	1220	132\%	129
Queets Fall	WAC	fall	2500	3600	3875	6320	163\%	577
North Oregon Coast ${ }^{2}$	NOC	fall	NA	42	50	70	140\%	3
Inconclusive: Stocks With Current Escapements Not Distinguishable From Base								
Deschutes	CR	fall	NA	8239	3477	3118	90\%	421
Continued Decline: Stocks With Current Escapements Below Base								
Mid-Oregon Coast ${ }^{2}$	MOC	fall	NA	66	62	50	81\%	3

[^0]Table 2-4. Summary of recent escapement data (1989-1993) for natural chinook indicator stocks with escapement goals, for evaluation of the mean, line, and trend criteria used to assess rebuilding status.

					MEAN CRITERION				LINE CRITERION		TREND CRITERION	
Stock Name	Region	Run Type	Esc. Goal	$\begin{aligned} & 1993 \\ & \text { Esc. } \end{aligned}$	$\begin{aligned} & 1993 \text { \% } \\ & \text { of Goal } \end{aligned}$	Mean Base Period Escapement	$\begin{array}{r} \text { Mean } \\ 1989-93 \\ \text { Test Value } \end{array}$	apement 1989-93 Average	Comp with \# Above	arison line \# Below	Number $>$ Year Before	$\begin{aligned} & \text { Number } \\ & <\text { or = Year } \\ & \text { Before } \end{aligned}$
Situk	SEAK	spring	600	790	132\%	1299		883				
King Salmon	SEAK	spring	250	280	112\%	92	208	187	2	3	2	3
Andrew Creek	SEAK	spring	750	1696	226\%	379		1098				
Blossom (index)	SEAK	spring	300	303	101\%	102	247	259	3	2	1	4
Keta (index)	SEAK	spring	300	362	121\%	255	288	522	3	2	2	3
Alsek	TBR	spring	4700	3302	70\%	2697	4166	2165	0	5	3	2
Taku	TBR	spring	13200	13204	100\%	4582	10902	11229	2	3	4	1
Stikine	TBR	spring	5300	11449	216\%	1945	4405	6338	5	0	3	2
Unuk (index)	TBR	spring	875	1068	122\%	918	875	869	3	2	3	2
Chickamin (index)	TBR	spring	525	389	74\%	314	469	544	3	2	2	3
Yakoun	NBC	summer	1580	1000	63\%	788		1940				
Nass	NBC	spr/sum	15890	9715	61\%	7944	12182	9138	2	3	3	2
Skeena	NBC	spr/sum	41770	66977	160\%	20883		59260				
Area 6 Index	CBC	summer	5520	462	8\%	2761	4232	558	0	5	2	3
Area 8 Index	CBC	spring	5450	700	13\%	2725	4178	2267	0	5	3	2
Rivers Inlet	CBC	spr/sum	4950	10610	214\%	2475	3795	6910	4	1	4	1
Smith Inlet	CBC	summer	2110	500	24\%	1055	1618	447	0	5	1	4
W. Coast Van. Is.	WCVI	fall	11040	4740	43\%	5520	8464	6407	1	4	2	3
Upper Geor. St.	GS	sum/fall	5090	2216	44\%	2546	3910	3913	2	3	3	2
Lower Geor. St.	GS	fall	21940	7100	32\%	10968	16820	9071	0	5	2	3
Upper Fraser	FR	spring	24460	17534	72\%	12229		25983				
Middle Fraser	FR	spr/sum	18430	25926	141\%	9216		22602				
Thompson	FR	summer	55710	30880	55\%	22059	42711	38468	2	3	2	3
Harrison	FR	fall	241670	118974	49\%	120837	185297	118417	1	4	3	2
Skagit spring	PS	spring	3000	788	26\%	1247	2182	1261	0	5	1	4
Skagit sum/fall	PS	sum/fall	14900	5916	40\%	13265	14137	8717	1	4	2	3
Stillaguamish	PS	sum/fall	2000	928	46\%	817	1448	999	1	4	4	1
Snohomish	PS	sum/fall	5250	4019	77\%	5028	5146	3371	0	5	2	3
Green	PS	fall	5800	2479	43\%	5723	5764	7368	3	2	2	3
Quillayute sum.	WAC	summer	1200	1300	108\%	1250		1480				
Grays Hrb. spr.	WAC	spring	1400	1300	93\%	450	957	1600	5	0	1	4
Grays Hrb. fall	WAC	fall	14600	14200	97\%	8575	11788	17580	5	0	1	4
Col. Upr. spring	CR	spring	84000	28350	34\%	28050	57890	23490	0	5	2	3
Col. Upr. sum.	CR	summer	85000	21600	25\%	23100	56113	21820	0	5	1	4
Col. Upr. bright	CR	fall	40000	52500	131\%	28325		58760				
Lewis	CR	fall	5700	7025	123\%	13021		12219				

Table 2-5. Assessment scores and status through 1993 of natural chinook indicator stocks with escapement goals.

Stock Name	Region	Run type	Assessment Scores				Rebuilding Status Through 1993	Status Change from 1992
			Mean	Line	Trend	Total		
Situk	SEAK	spring					Above Goal	
King Salmon	SEAK	spring	-1	-1	0	-2	Not Rebuilding	
Andrew Creek	SEAK	spring					Above Goal	
Blossom	SEAK	spring	1	1	-1	1	Indeterminate	Improvement
Keta	SEAK	spring	1	1	0	2	Rebuilding	Improvement
Alsek	TBR	spring	-1	-1	0	-2	Not Rebuilding	
Taku	TBR	spring	1	-1	1	1	Rebuilding 1/	
Stikine	TBR	spring	1	1	0	2	Rebuilding	
Unuk	TBR	spring	-1	1	0	0	Rebuilding 1/	Improvement
Chickamin	TBR	spring	1	1	0	2	Rebuilding	Improvement
Yakoun	NBC	summer					Above Goal	
Nass	NBC	spr/sum	-1	-1	0	-2	Not Rebuilding	Decline
Skeena	NBC	spr/sum					Above Goal	
Area 6 Index	NBC	summer	-1	-1	0	-2	Not Rebuilding	
Area 8 Index	CBC	spring	-1	-1	0	-2	Not Rebuilding	
Rivers Inlet	CBC	spr/sum	1	1	1	3	Rebuilding	
Smith Inlet	CBC	summer	-1	-1	-1	-3	Not Rebuilding	
W. Coast Van. Is.	WCVI	fall	-1	-1	0	-2	Not Rebuilding	
Upper Geor. St.	GS	sum/fall	1	-1	0	0	Indeterminate	
Lower Geor. St.	GS	fall	-1	-1	0	-2	Not Rebuilding	
Upper Fraser	FR	spring	1	1	-1	1	Above Goal 1/	
Middle Fraser	FR	spr/sum					Above Goal	
Thompson	FR	summer	-1	-1	0	-2	Not Rebuilding	
Harrison	FR	fall	-1	-1	0	-2	Not Rebuilding	
Skagit spring	PS	spring	-1	-1	-1	-3	Not Rebuilding	
Skagit sum/fall	PS	sum/fall	-1	-1	0	-2	Not Rebuilding	
Stillaguamish	PS	sum/fall	-1	-1	1	-1	Not Rebuilding	
Snohomish	PS	sum/fall	-1	-1	0	-2	Not Rebuilding	
Green	PS	fall	1	1	0	2	Rebuilding	
Quillayute summer	WAC	summer					Above Goal	
Grays Harbor spring	WAC	spring	1		-1	1	Rebuilding 1/	Decline
Grays Harbor fall	WAC	fall	1	1	-1	1	Rebuilding 1/	Decline
Col. UpR. spring	CR	spring	-1	-1	0	-2	Not Rebuilding	
Col. UpR. summer	CR	summer	-1	-1	-1	-3	Not Rebuilding	
Col. UpR. bright	CR	fall					Above Goal	
Lewis River	CR	fall					Above Goal	

1/ The status of these stocks was changed from Indeterminate due to stock-specific circumstances.

Additional stock assessment information can be found in Fig. 2-2, Table 2-6, and Table 2-7. Fig. 2-2 summarizes 1993 escapements, expressed as a percent of goal, to provide a snapshot of rebuilding progress. In 1993, 19 stocks had escapements less than 76% of goal and 13 stocks had escapements above goal. Table 2-6 summarizes the distribution of stocks among the four rebuilding categories. A combined summary across all stocks is provided, as well as separate summaries for SEAK and TBR stocks and for other stocks. A stock specific list of final rebuilding status is shown in Table 2-7.

Figure 2-2. Summary of escapements in 1993, expressed as a percent of the escapement goal, for the 36 escapement indicator stocks with escapement goals.

Table 2-6. Distribution of chinook escapement indicator stocks among the four rebuilding categories, based on data through 1993.

	SEAK, IHISIBR		Otherstocks		Total	
	\#:	$\%$	\#\#	\%	\#,	\%
Above Goal	2	20\%	7	27\%	9	25\%
Rebuilding	5	50\%	4	15\%	9	25\%
Indeterminate	1	10\%	1	4\%	2	6\%
Not Rebuilding	2	20\%	14	54\%	16	44\%
TOTAL	10	100\%	26	100\%	36	100\%

Additional information about those 18 stocks classified as Indeterminate or Not Rebuilding is shown in Table 2-8. Escapement declines have been halted for 7 (39%) of these 18 stocks, while $8(44 \%)$ have shown continued escapement declines. For the remaining 3 stocks (17%), it is not currently possible to determine if escapement declines have been halted. Ten (56%) of the 18 stocks had recent 5 -year average escapements that were 50% or less of their escapement goals and $10(56 \%)$ had recent 5 -year average escapements that were below base period averages.

Table 2-7. Rebuilding status through 1993 of natural chinook indicator stocks with escapement goals.

STOCKS IN 13TH YEAR OF REBUILDING

ABOVE GOAL	REGION	RUN TYPE	CHAPTER 5 GROUP
Situk	SEAK	spring	SEAK/TBR-O
Andrew Creek	SEAK	spring	SEAK/TBR-I
REBUILDING			
Keta	SEAK	spring	SEAK/TBR-I
Taku 1/	TBR	spring	SEAK/TBR-O
Stikine	TBR	spring	SEAK/TBR-O
Unuk 1/	TBR	spring	SEAK/TBR-I
Chickamin	TBR	spring	SEAK/TBR-I
INDETERMINATE			
Blossom	SEAK	spring	SEAK/TBR-I
NOT REBUILDING			
King Salmon	SEAK	spring	SEAK/TBR-I
Alsek	TBR	spring	SEAK/TBR-O
STOCKS IN 10TH YEAR OF REBUILDING			
ABOVE GOAL			
Yakoun	NBC	summer	NCBC
Skeena	NBC	spring/summer	NCBC
Upper Fraser 1/	FR	spring	UFR
Middle Fraser	FR	spring/summer	UFR
Quillayute summer	WAC	summer	WACO
Col. Upriver Bright	CR	fall	WACO
Lewis River	CR	fall	WACO
REBUILDING			
Rivers Inlet	CBC	spring/summer	NCBC
Green	PS	fall	SPS
Grays Harbor spring 1/	WAC	spring	WACO
Grays Harbor fall 1 /	WAC	fall	WACO
INDETERMINATE			
Upper Georgia Strait	GS	summer/fall	UGS
NOT REBUILDING			
Nass	NBC	spring/summer	NCBC
Area 6 Index	NBC	summer	NCBC
Area 8 Index	CBC	spring	NCBC
Smith Inlet	CBC	summer	NCBC
W. Coast Vancouver Island	WCVI	fall	WCVI
Lower Georgia Strait	GS	fall	LGS
Thompson	FR	summer	UFR
Harrison	FR	fall	LFR
Skagit spring	PS	spring	NPS-Sp
Skagit summer/fall	PS	summer/fall	NPS-S/F
Stillaguamish	PS	summer/fall	NPS-S/F
Snohomish	PS	summer/fall	NPS-S/F
Col. Upriver spring	CR	spring	CUS
Col. Upriver summer	CR	summer	CUS

1/ Status of these stocks was altered from Indeterminate (see text for details).

Table 2-8. Level three assessment for natural chinook indicator stocks with escapement goals, that were classified as Indeterminate or Not Rebuilding. SE $=$ Standard Error of the mean for 1975-1993 escapements.

Decline Halted: Stocks With Current Escapements Above Base

King Salmon	SEAK	spring	250	92	187	75\%	204\%	17
Blossom ${ }^{1}$	SEAK	spring	300	102	247	82\%	242\%	86
Nass	NBC	spr/sum	15890	7944	9138	58\%	115\%	707
W. Coast Van. Is.	WCVI	fall	11040	5920	6407	55\%	116\%	427
Upper Geor. St. ${ }^{1}$	GS	sum/fall	5090	2546	3913	77\%	154\%	794
Thompson	FR	summer	55710	22059	38468	69\%	174\%	2231
Stillaguamish	PS	sum/fall	2000	817	999	50\%	122\%	101

Inconclusive: Stocks With Current Escapements Not Distinguishable From Base

Harrison	FR	fall	241670	120837	118417	49\%	98\%	14866
Skagit spring	PS	spring	3000	1247	1261	42\%	101\%	147
Col. UpR. summer	CR	summer	85000	23100	21820	26\%	94\%	1361

Continued Decline: Stocks With Current Escapements Below Base

Alsek	TBR	spring	4700	2697	2165	46\%	80\%	182
Area 6 Index	CBC	summer	5520	2761	558	10\%	20\%	270
Area 8 Index	CBC	spring	5450	2725	2267	42\%	83\%	323
Smith Inlet	CBC	summer	2110	1055	447	21\%	42\%	106
Lower Geor. St.	GS	fall	21940	10968	9071	41\%	83\%	666
Snohomish	PS	sum/fall	5250	5028	3371	64\%	67\%	294
Skagit sum/fall	PS	sum/fall	14900	13265	8717	59\%	66\%	962
Col. UpR. spr.	CR	spring	84000	28050	23490	28\%	84\%	4442

${ }^{1}$ Stocks with an Indeterminate rebuilding status. Blossom escapements and goal are index numbers.

2.4.3 Results Relative to 1992

Five of the 36 stocks with escapement goals (14%) showed status declines relative to the 1992 assessment, while four stocks (11%) showed improvement (Table 2-5). The four status improvements resulted from the four Behm Canal escapement goal changes. Three of the status declines were from Above Goal to Rebuilding. Table 2-9 shows the actual 1992 and 1993 assessment as well as the assessment that would have resulted if current methods had been used in 1992.

Table 2-9. Comparison of 1992 and 1993 assessment results for escapement indicator stocks with escapement goals.

2.5 STOCKS CONSIDERED FOR STATUS CHANGES

After the initial assessment, seven stocks were Classified as Indeterminate. The CTC examined each of these stocks and considered whether to change its status. The Blossom and Upper Strait of Georgia stocks remain in the Indeterminate category. A decision was made to change the status of the following five stocks:

2.5.1 Taku

The CTC revised the Taku stock classification to Rebuilding because: 1) the stock has been closely following its base to goal line, 2) the three points that fall below the base to goal line are all very close to the line; recent escapements have been near the escapement goal.

2.5.2 Unuk

The CTC revised the Unuk stock classification to Rebuilding. Although average recent escapements have been below the escapement goal, they have been fairly close to the goal and have increased over the past three years.

2.5.3 Upper Fraser

The CTC revised the Upper Fraser stock classification to Above Goal. Although escapements were below goal in two of the last five years (1992 and 1993) the 1992 escapement did not include an estimate for the Stuart River, because an overflight count was not conducted. A 1992 ground survey
recovered several thousand carcasses in the river. Although there is currently no method for using the ground survey data to adjust the escapement count, the CTC believed the survey provided sufficient evidence that 1992 escapement was above goal.

2.5.4 Grays Harbor spring and fall

The CTC revised the classification of both the Grays Harbor spring and fall stocks to Rebuilding. A -1 score for the modified trend criterion is responsible for their classification as Indeterminate. While extended declines may be cause for concern, for these two stocks the declines that caused the negative scores began from levels well above goal. Escapements of both stocks remain near goal.

2.6 SUMMARY

The CTC examined the escapement histories of 44 natural chinook salmon indicator stocks to evaluate the effectiveness of management actions, since PST implementation, in attaining the two Treatydefined objectives of: 1) halting escapement declines; and 2) attaining escapement goals by 1998. It should be noted that although natural chinook stocks coastwide were generally in a state of decline during negotiation of the PST, not all stocks were declining or below their respective goals at the time. The 44 indicator stocks were chosen in part to give a reasonable representation of coastwide natural chinook escapements at the time of PST implementation.

The CTC used a hierarchical approach to assess whether or not the two Treaty objectives had been met. First, stocks with escapement goals were assessed. Stocks above goal and stocks on schedule to rebuild by their target dates were identified. For all of these stocks, escapement declines were also considered to be halted. Next, the Not Rebuilding stocks, the Indeterminate stocks, and the stocks without escapement goals were directly assessed to determine if escapement declines have been halted.

Of the 44 escapement indicator stocks, only the 36 stocks with escapement goals could be assessed for rebuilding status. Of these, $18(50 \%)$ were classified as Above Goal or Rebuilding, two (5\%) as Indeterminate, and 16 (45\%) as Not Rebuilding.

All 44 indicator stocks were assessed to determine if spawning escapement declines have been halted. Declines are considered halted for $31(70 \%)$ of the stocks, and continued decline was indicated for 9 (20\%) of the stocks. The CTC judged that the information on the remaining four stocks (10%) was inconclusive for determining whether or not declines have been halted.

2.6.1 Stocks Without Escapement Goals

Escapement declines have been halted for all five Washington Coastal stocks: Hoh spring/summer, Hoh fall, Queets spring/summer, Queets fall and Quillayute fall. The recent 5-year average escapements of all five stocks were above their escapement floors and above base period levels. These stocks all showed steady terminal run increases during the early years of the rebuilding program. This pattern of increase peaked in the late 1980s and was followed by sharply reduced terminal runs and escapements over the last several years. For all coastal stocks, 1993 escapements were at or above their escapement floors.

The 1993 escapement of the Queets spring/summer stock was at its escapement floor, despite restricted terminal catch. This followed two years of returns below the escapement floor. While it is
not possible to assess the rebuilding status of stocks without escapement goals, the Queets stock should be carefully monitored to determine if additional management actions are needed.

The Oregon Coast stock groups have shown a mixed response during the rebuilding period. Escapements of the NOC group increased rapidly after initiation of PST management and remain well above the base period average. Escapements of the MOC group have been highly variable during the rebuilding assessment period, and the recent 5 -year average is 20% below the base period average. Because neither stock group has a defined goal and neither was considered severely depressed during the base period, it is difficult to fit them into the present assessment scheme. Clearly, any decline in escapements of the NOC group has been halted. For the MOC group, however, the situation is less clear. Although the evaluation criterion suggests that MOC escapement declines have not been halted, until pre-Treaty stock status is defined, it will be difficult to discern any change in escapement status for this stock group.

During the rebuilding assessment period, escapements of the Deschutes fall stock have generally been below the base period average. The recent 5 -year average is approximately 10% below the base period average, although the 1993 escapement was more than double the base period average. It is not currently possible to conclude if this stock's escapement decline has been halted.

2.6.2 Stocks With Escapement Goals

The number of stocks classified as Above Goal or Rebuilding increased from 15 in 1992 to 18 in 1993. This increase is due to the improved status of the four Behm Canal stocks that resulted from their escapement goal changes. The proportion of stocks in these categories has declined from 60% in 1989 to 50% in 1993. The stocks in these categories have all shown a positive response during the rebuilding period and are currently meeting the rebuilding objectives. Their positive response is likely the combined result of PSC actions, local management actions, and periods of favorable marine survival.

The remaining 18 stocks are classified Indeterminate (2) and Not Rebuilding (16). Under current survival conditions (both ocean and inriver) and management regimes, none of the Indeterminate or Not Rebuilding stocks is expected to rebuild by the rebuilding target dates. For both Indeterminate stocks and five of the Not Rebuilding stocks, escapement declines have been halted. Escapement patterns for these stocks indicate that, although they are not on schedule to rebuild by their target dates, they have at least shown some positive response since implementation of the rebuilding program. For three of the 18 stocks, it is not currently possible to conclude if escapement declines have been halted.

For eight of the 18 Indeterminate and Not Rebuilding stocks, escapement declines have not been halted. All of these stocks are classified as Not Rebuilding and have shown either no positive response during the rebuilding program or an initial positive response followed by a decline. These stocks are now further from their escapement goals and the outlook for them is worse than when the rebuilding program started. Under recent survival conditions, management regimes have not been effective in rebuilding these stocks or even in halting their escapement declines.

CHAPTER 3. EXPLOITATION RATE ASSESSMENT

 Based on CWT Recovery Data Through Calendar Year 1993
3.1 INTRODUCTION

The Exploitation Rate Assessment relies on CWT release and recovery data from a set of indicator stocks to estimate: 1) harvest rate indices for the ceiling fisheries and the U.S. South ocean sport and troll fishery, 2) exploitation rate indices for depressed wild stocks harvested in nonceiling fisheries, 3) brood year exploitation rates and indices, 4) age 2-3 and cohort survival rate indices, 5) stock indices for ceiling and nonceiling fisheries, and 6) the distribution of catch and total mortality among fisheries. With the exception of the cohort survival indices and the brood exploitation indices, the statistics presented are similar to those reported in the 1992 annual report (CTC 1993). Additional information on the rationale for all of the statistics is provided below.

Most of the statistics reported in the Exploitation Rate Assessment are derived from an analytical procedure called cohort analysis. Cohort analysis simply reconstructs the production of a CWT group by starting with the escapement, catch, and incidental mortality of the oldest age class and working backwards in time to calculate the total abundance of ocean age 2 chinook at the beginning of fishing. These reconstructions are based on CWT recoveries by stock, age, and fishery.

3.1.1 Fishery Indices

It was expected when the PST was negotiated that catch ceilings and increases in stock abundance would reduce harvest rates in fisheries managed under PST catch ceilings. The fishery index provides a means to assess this expectation. The fishery index is the ratio of stock and age-specific exploitation rates in a fishery in the current year to the 1979-1982 base period. An index can also be computed for a specific stock and age class by dividing the exploitation rate in a given year by the average exploitation rate in the base period. In either case, an index less than 1.0 represents a decrease from base period harvest rates while an index greater than 1.0 represents an increase. The relative magnitude of the change is the difference of the index from 1.0.

Fishery indices are presented for both reported catch and total mortalities (reported catch plus estimated incidental mortality). Both are expressed as adult equivalents (AEQ), where the AEQ factor is used as an adjustment to reflect the proportion of fish of a given age that would, in the absence of fishing, subsequently leave the ocean to spawn. The total mortality index provides a consistent means of representing changes in reported catch and incidental mortalities, including those associated with regulatory measures such as minimum size limits and chinook nonretention (CNR) periods. Direct estimates of incidental mortality cannot be obtained from CWT recoveries; mortality estimates are computed using estimates of the proportion of fish less than the size limit, the relative contributions of indicator stocks during periods of chinook retention, and estimates of the total number of encounters with chinook during CNR periods.

In the SEAK and NCBC fisheries, indices are presented for troll gear only although the ceilings are applicable to net and sport gear as well. Only the recoveries from the troll fishery have been used in past years because the majority of the catch, and the most reliable CWT sampling, occurred in these fisheries. Because the allocation of the catch among gear types has changed in some fisheries (e.g., the proportion of the catch harvested by the sport fishery has increased in the SEAK and NCBC
fisheries), the indices may not represent the harvest impact of all gear types. The CTC is evaluating how to include other gear types in the indices for the SEAK and NCBC fisheries.

3.1.2 Nonceiling Fishery Indices

The passthrough provision of the PST requires that "the bulk of depressed stocks preserved by the conservation program ... principally accrue to escapement." The ambiguity of the passthrough definition, and the lack of direction from the PSC, has prevented the CTC from analytically assessing if this provision of the PST has been satisfied. As an interim measure, this report includes a nonceiling index previously suggested by the CTC (CTC 1991) as a measure of passthrough. The index compares the expected AEQ mortalities (assuming base period exploitation rates and current abundance) with the observed AEQ mortalities, by calendar year, over all nonceiling fisheries of a Party. Index values greater than 1.0 for nonceiling fisheries indicate that the exploitation rates have increased relative to the base period. Consistent with Canadian commitments to reduce harvest rates by 25% for Canadian nonceiling net fisheries, the index should be evaluated with respect to 0.75 for the Canadian nonceiling net fisheries. The CTC is unable to include the WCVI sport fishery in the index at this time because of the absence of base period data.

The wild stocks subject to the passthrough provision were identified from the list of escapement indicator stocks provided in Chapter 2. A stock was included in the analysis if the following three conditions were met: 1) the escapement goal was not achieved, 2) the stock was harvested in nonceiling fisheries (the same criteria were used as for the fishery indices), and 3) an exploitation indicator stock with base period tagging and estimates of escapement existed in the stock group.

3.1.3 Brood Exploitation Rates and Indices

Brood year exploitation rates provide the best measure of the cumulative impact of fisheries upon all age classes of a stock. The rates are computed as the ratio of AEQ total mortality to AEQ total mortality plus escapement. The numerator may be partitioned into components for AEQ reported catch and AEQ incidental mortality, with each component occurring in either ocean fisheries (generally marine sport, troll, and recoveries of ages 2 and 3 chinook in nonterminal net fisheries) or all fisheries. In order to simplify the interpretation of trends in the estimates of brood exploitation rates, this report also includes a new index that relates the brood exploitation rate in each year to the average rate in the base period. The base period in this instance is defined in terms of the primary brood years that contributed to fisheries in 1979-1982 (see Section 3.2.1).

The productivity function of a stock determines an optimal brood exploitation rate at which the stock should be exploited if the maximum sustainable yield (MSY) is to be maintained. If the escapement of a stock is less than the MSY level, escapements can be increased by reducing the brood exploitation rates. If the brood exploitation rate is reduced to the MSY level, the escapement of the stock will eventually increase until the MSY escapement level is reached. However, a reduction to a level less than that at the maximum sustainable yield (the MSY ER) may be required if the rebuilding is to be achieved within a specified period of time. For example, brood exploitation rates would need to be reduced by a greater extent if the stock is to achieve its escapement goal in 5 years rather than 15 years. The extent of the reduction necessary to achieve the exploitation rate sustainable at the escapement goal will depend upon the productivity of the stock, current escapement relative to the goal, and the target rebuilding date.

3.1.4 Stock Indices

Stock indices provide information on the annual impact of fisheries for a specific stock relative to the 1979-1982 base period. The index is computed by dividing the age-specific total mortality exploitation rates expressed relative to the initial cohort of that age (the cohort size prior to fishing) in one or more selected fisheries in a given year by the average total age-specific exploitation rate during the base period. Since exploitation rates used to compute the stock index are expressed relative to the initial cohort, values of 1.0 or more would be expected for the nonceiling fisheries if harvest rates remained equal to the base period level and exploitation rates declined in the ceiling fisheries. Indices less than 1.0 are expected for the ceiling fisheries. The stock indices computed in the Exploitation Rate Assessment are reported in Chapter 5.

3.1.5 Survival Indices

Two types of survival measures, a cohort survival rate and an age 2-3 survival rate, are included in the Exploitation Rate Assessment. The cohort survival rate provides the best estimate of the overall survival for a brood. It includes the estimated CWT recoveries in catch and escapement, the estimated incidental mortality, and the estimated natural mortality of the ocean age 2 and older age classes. Although it provides the best estimate, it has little direct use in predicting future contributions, since all ages must be accounted for before the cohort survival rate can be computed.

Alternatively, the ocean age 2-3 survival rate can be estimated when catch recoveries of these age classes are available. For example, an age 2-3 survival rate for the 1991 brood could be computed when catch and escapement recoveries became available after the 1994 season. The age 2-3 survival rate could then be used to predict the survival rates for age classes of the 1991 brood contributing to fisheries in 1995 and 1996.

To simplify presentation of both the cohort and age 2-3 survival rates, they were converted to indices by dividing the rate for each brood by the brood year base period average.

The CTC has frequently been asked how well the age 2-3 index predicts the cohort survival rate. In order to assist in evaluating that question, this year's report includes graphs with each index and the correlation of the age 2-3 and cohort survival indices. These results are provided in Section 3.6.

3.1.6 Stock Catch Distribution

The distributions of reported catch and total mortalities for each indicator stock are presented for nine fishery categories: one for each set of fisheries operating under a PSC ceiling and one for each gear type of Canadian and U.S. fisheries that do not operate under PSC ceilings. Distributions are presented as percentages of both the reported catch and the total fishing mortality (expressed in AEQ). Distributions were computed only for calendar years in which CWT recovery data were present for at least three brood years for a given exploitation rate indicator stock.

3.2 ESTIMATION OF EXPLOITATION RATES

Analyses in this chapter are specific to the 35 exploitation rate indicator stocks: 1 from Southeast Alaska, 9 from British Columbia, 13 from Puget Sound, 2 from the Washington Coast, 9 from the Columbia River, and 1 from the Oregon Coast (Table 3-1). Extrapolation of results to similar stocks

Table 3-1. List of exploitation rate indicator stocks, the stock name, the run type, and the age of smolts at release.

Stock Name	Location	Run Type	Smolt Age
Alaska Spring	Southeast Alaska	Spring	Age 1
Kitsumkalum	North/Central BC	Spring/Summer	Age 0
Snootli Creek	North/Central BC	Spring/Summer	Age 0
Kitimat River	North/Central BC	Spring/Summer	Age 0
Robertson Creek	WCVI	Fall	Age 0
Quinsam	Georgia Strait	Fall	Age 0
Puntledge	Georgia Strait	Summer	Age 0
Big Qual icum	Georgia Strait	Fall	Age 0
Chehalis (Harrison Stock)	Lower Fraser River	Fall	Age 0
Chilliwack (Harrison Stock)	Lower Fraser River	Fall	Age 0
South Puget Sound Fall Yearling	South Puget Sound	Summer/Fall	Age 1
Squaxin Pens Fall Yearling	South Puget Sound	Summer/Fall	Age 1
University of Washington Accelerated	Central Puget Sound	Summer/Fall	Age 0
Samish Fall Fingerling	North Puget Sound	Summer/Fall	Age 0
Stillaguamish Fall Fingerling	Central Puget Sound	Summer/Fall	Age 0
George Adams Fal! Fingerling	Hood Canal	Summer/Fall	Age 0
South Puget Sound Fall Fingerling	South Puget Sound	Summer/Fall	Age 0
Kalama Creek Fall Fingerling	South Puget Sound	Summer/Fall	Age 0
Elwha Fall Fingerling	Strait of Juan de Fuca	Summer/Fall	Age 0
Hoko Fall Fingerling	Strait of Juan de Fuca	Summer/Fall	Age 0
Skagit Spring Yearling	Central Puget Sound	Spring	Age 1
Nooksack Spring Yearling	North Puget Sound	Spring	Age 1
White River Spring Yearling	South Puget Sound	Spring	Age 1
Sooes Fall Fingerling	North Washington Coast	Fall	Age 0
Queets Fall Fingerling	North Washington Coast	Fall	Age 0
Cowlitz Tule	Columbia River (WA)	Fall Tule	Age 0
Spring Creek Tule	Columbia River (WA)	Fall Tule	Age 0
Bonneville Tule	Columbia River (OR)	Fall Tule	Age 0
Stayton Pond Tule	Columbia River (OR)	Fall Tule	Age 0
Upriver Bright	Upper Columbia River	Fall Bright	Age 0
Hanford Wild	Upper Columbia River	Fall Bright	Age 0
Leavenworth Spring 1/	Upper Columbia River	Spring	Age 1
Lewis River Wild	Lower Columbia River	Fall Bright	Age 0
Lyons Ferry	Snake River	Fall Bright	Age 0
Willamette Spring	Lower Columbia River	Spring	Age 1
Salmon River	North Oregon Coast	Fall	Age 0
	Idaho	Spring	
Rapid River Spring 1/	1 daho	Spring	Age 1
McCal 1 Summer 1/	Idaho	Summer	Age 1

1/ Tagged PSC indicator stocks with too few recoveries for analysis.

Table 3-2. Indicator stocks, associated stock group, analyses in which each indicator stock was used, and the availability of quantitative escapement recoveries and base period tagging data. All of these stocks are used in the distribution analysis. The brood exploitation rate column lists the appropriate statistic to use (Tot = Total; Ocn = Ocean) when using the exploitation rate indicator stock as a representative for the regional stock group. (NC Index = CTC recommended index for nonceiling fisheries; Brood Exp = brood exploitation rates; Esc $=$ quantitative estimates of escapement.)

Stock Name	Stock Group ${ }^{1 /}$	Fishery Index	$\begin{gathered} \text { NC } \\ \text { Index } \end{gathered}$	Brood Exp	Survival Index	Esc	$\begin{aligned} & \text { Base } \\ & \text { Tagging } \end{aligned}$
Alaska Spring	SEAK/TBR-I	yes	- -	Tot	yes	yes	yes
Kitsumkalum	NCBC	--		-			yes
Snootli Creek	NCBC						- -
Kitimat River	NCBC	- -	- -	- -	- -	- -	- -
Robertson Creek	WCVI	yes	- -	Ocn	yes	yes ${ }^{2 /}$	yes
Quinsam	UGS	yes	yes	Tot	yes	yes	yes
Punt ledge	LGS	yes	yes	Tot	yes	yes	yes
Big Qualicum	LGS	yes	yes	Tot	yes	yes	yes
Chehalis $3 /$	LFR	- -	- -	--	- -	- -	- -
Chilliwack ${ }^{3 /}$	LFR	- -	$-$	-	- -		- -
South Puget Sound Fall Yearling		yes	$4 /$		yes	yes ${ }^{2 /}$	yes
Squaxin Pens Fall Yearling		--	$4 /$	41	yes	yes ${ }^{2 /}$	--
Univ of Washington Accelerated		yes	4/	4/	yes	yes ${ }^{2 /}$	yes
Samish Fall Fingerling	NPS-S/F	yes	yes	Ocn	yes	yes ${ }^{2 /}$	yes
Stillaguamish Fall Fingerling George Adams Fall Fingerling	NPS-S/F	- -	-4]	47	yes	yes ${ }^{-21}$	yes
South Puget Sound Fall Fnglg	SPS	yes		Ocn	yes	yes ${ }^{2 /}$	yes
Kalama Creek Fall Fingerling	SPS	- -	- -	- -	- -		yes
Elwha Fall Fingerling		- -	- -	--	- -	- -	- -
Hoko Fall Fingerling				Tot	yes	yes ${ }_{21}$	
Skagit Spring Yearling	NPS-Sp			Tot	yes	yes ${ }^{2 /}$	
Nooksack Spring Yearling	NPS-Sp			Tot	yes	yes ${ }^{2 /}$	
White River Spring Yearling		yes		Tot	yes	yes ${ }^{2 /}$	yes
Sooes Fall Fingerling	WACO	- -		Ocn	yes	yes	- -
Queets Fall Fingerling	WACO	- -	47	47	- -	- -	yes
Cowlitz Tule	CRT	yes			yes	yes	yes
Spring Creek Tule	CRT	yes	41		yes	yes	
Bonneville Tule	CRT	yes	41	41	yes	yes	yes
Stayton Pond Tule	CRT	yes	4/	$4 /$	yes	yes	yes
Upriver Bright	WACO	yes	yes	Ocn	yes	yes	yes
Hanford Wild	WACO	yes	--	Ocn	yes	yes	- -
Lewis River Wild	WACO	yes	yes	Ocn	yes	yes	yes
Lyons Ferry	WACO	--	--	$0{ }^{\circ} \mathrm{n}$	yes	yes	--
Willamette Spring		yes			yes	yes	yes
Salmon River	WACO	yes	yes	Ocn	yes	yes	yes

[^1]and/or generalizations about fishery impacts will only be appropriate to the extent that these indicator stocks are representative of the array of stocks harvested in the fisheries or the stock groupings which they represent. As in previous years, these indicators are dominated by fall stocks (adult migration to terminal areas during the fall months). The analysis includes 5 spring stocks, 3 spring/summer stocks, 1 summer stock, 10 summer/fall stocks, and 16 fall stocks. In addition, 3 stocks in Idaho (Sawtooth Spring, Rapid River Spring, and McCall Summer) and 1 in Washington (Leavenworth Spring) are tagged as PSC indicator stocks but are not included in the analysis because of the limited number of recoveries in ocean fisheries.

Since the types of data collected for each indicator stock vary, all indicator stocks are not used in all of the analyses (Table 3-2). For example, some stocks do not have base period data (recoveries in the years 1979-1982), or lack estimates of escapement. Additional information on the indicator stocks and tag codes used in the analysis may be found in Appendix C.

3.2.1 Theory and Procedures

Theory and procedures employed in the Exploitation Rate Assessment are consistent with those used in previous years (CTC 1988; CTC 1989; CTC 1990; CTC 1991; CTC 1992) except as noted below:

1) The cohort survival rate was computed by dividing the estimated age 2 cohort size by the number of tagged fish released. An index was computed by dividing the estimated cohort survival rate for each brood by the average of the cohort survival rates during the base period. A regional index was computed as the average of the indices for stocks within the stock group. Brood years used in the base period are given in Table 3-3.
2) A brood exploitation rate index was computed by dividing the brood exploitation rate in each year by the average brood exploitation rate in the base period. A regional index was computed as the average of the indices for stocks within the stock group. Brood years used in the base period are given in Table 3-3.

Table 3-3. Brood years used in the brood exploitation and survival indices for the base period and projected period.

Time Period	SEAKITBR InSIde. Migrating	Ouinsam.	All Other Stocks
Base	1978	1976-1980	1976-1979
Projected (1992 Analysis)	1988-1989	1989-1990	1989-1990
Projected (1993 Analysis)	1989-1990	1990-1991	1990-1991

Many of the exploitation rate indicator stocks are of hatchery origin and subject to terminal fisheries directed at harvesting surplus hatchery production. As a result, the exploitation rate on the indicator stock may differ from the exploitation rate on the wild stock that it represents because the stocks are subjected to different fisheries. This concern is most evident when attempting to compute the
nonceiling fishery index and brood exploitation rates, two statistics that may include terminal fisheries.

In order to address this concern, the nonceiling fishery indices excluded terminal fisheries if the exploitation rate indicator stocks were subject to different fishing patterns than the associated wild stocks. Nonceiling fisheries included in the analysis are given in Table 3-4 and fisheries that were excluded are listed on a stock specific basis in Section 3.4. Additional information on terminal fishery harvest rates on wild stocks is presented in Chapter 5.

A similar concern regarding representation existed for the brood exploitation rates, since some terminal fisheries might be included that harvested the exploitation indicator stock at a greater rate than the wild stock it represents. In the case of the brood exploitation rate, this was addressed by computing a rate for ocean fisheries and a total for all fisheries. Ocean fisheries were defined to include marine sport and troll fisheries, and CWT recoveries of ocean ages 2 and 3 fish in all nonterminal net fisheries. By partitioning the fisheries in this way, the most appropriate measure of brood exploitation rates on wild stocks could be selected. The method selected for each exploitation rate indicator stock is given in Table 3-2.

Table 3-4. Fisheries included in the nonceiling fishery index.

Fisheries Included in Nonceiling Inder.	
United States	Canada
Washington/Oregon/California Ocean Troll	West Coast Vancouver Island Net
Puget Sound Northern Net	Juan de Fuca Net
Puget Sound Other Net	Johnstone Net
Washington Coastal Net	Fraser Net
Washington/Oregon/California Ocean Sport	Strait of Georgia Net
Puget Sound Northern Sport	
Puget Sound Southern Sport	

3.2.2 Assumptions of the Analyses

Assumptions for the cohort analysis and other procedures used in the Exploitation Rate Assessment are summarized below. Detailed discussions of assumptions and parameter values have been reported previously (CTC 1988).

Cohort Analysis: The primary assumptions of the cohort analysis are:

1) CWT recovery data are obtained in a consistent manner from year to year or can be adjusted to make them comparable. Many of the analyses rely upon indices that are computed as the ratio of a statistic in a particular year to the value associated with a base period. Use of ratios may reduce or eliminate the effect of data biases that are consistent from year to year.
2) For ocean age 2 and older fish, natural mortality varies by age but is constant across years.
3) All stocks within a fishery have the same size distribution for each age and the size distribution at age is constant among years.
4) The catch distribution of sublegal-sized fish is the same as legal-sized fish.
5) Incidental mortality rates per encounter are constant and are equal to 30% for troll and sport fisheries and 90% for net fisheries.
6) In the absence of an independent estimate of incidental mortality during nonretention periods, the procedure for estimating the mortality of CWT fish of legal size assumes that the stock distribution remains unchanged from the period of legal catch retention. Gear and/or area restrictions during the CNR fishery are believed to reduce the number of encounters of legalsized fish. To account for this, the number of legal encounters during the nonretention fishery was adjusted by a selectivity factor. A factor of 0.34 was used for the WCVI and GS troll fisheries. This value is the average selectivity factor calculated from 3 years of observer data in the Alaska troll fishery (Mel Seibel, pers. comm.). A factor of 0.20 is used in the NCBC troll fishery. This factor corresponds to the proportion of fishing areas that remain open during nonretention periods. Note that this parameter in itself is not used to estimate the number of encounters during the CNR period; instead, the selectivity parameter is used in conjunction with the gear days data presented in Appendix C. A selectivity factor is not required for the SEAK troll fishery since an independent estimate of encounters is used.
7) Maturation rates for broods for which all ages have not matured (incomplete broods) are equal to the average of the available estimates.

Fishery Indices: The temporal and spatial distributions of stocks in and between fisheries are assumed to be stable from year to year.

Age 2-3 Survival Indices: The age 2-3 survival indices will provide accurate estimates of cohort survival rates if the following assumptions hold: 1) Variations in natural mortality occur primarily before ocean age 2 and 2) variation in natural mortality is large in comparison to variation in fishery exploitation rates and maturation rates.

3.2.3 Reported Catch Versus Total Mortalities

Fishery indices are presented for both reported catch and total mortality. The difference between reported catch and total mortality is incidental mortality, which includes the mortality of legal-sized fish in CNR fisheries and the mortality of sublegal-sized fish in retention and CNR fisheries. Management strategies have changed considerably for fisheries constrained by PSC catch ceilings. Regulatory changes that have been implemented include size limit changes and extended periods of CNR. Estimates of incidental mortality are crucial for assessment of total fishery impacts, yet they cannot be determined directly from CWT recovery data. Procedures to estimate these incidental mortality losses and incorporate them into the Exploitation Rate Assessment have been previously described (CTC 1988).

3.3 FISHERY INDICES FOR CEILING FISHERIES

3.3.1 Overview

Successful completion of the rebuilding program requires a substantial initial reduction in the harvest rates in ceiling fisheries combined with further reductions over time. The initial reduction was expected to occur as a result of implementing a ceiling for each fishery that would reduce catches below pretreaty levels. Hence, if abundance remained stable or increased, the harvest rate would decline. Further reductions in harvest rates for PSC ceiling fisheries were expected as the rebuilding program progressed, due to decreases in harvest rates in previous years and increases in production resulting from higher spawning escapements.

Fishery indices provide a means to assess the effectiveness of the PSC ceilings in reducing harvest rates. The fishery indices were computed for both reported catch and total mortality. The total mortality index includes the mortality of legal-sized fish from CNR fisheries and from sublegal sized fish in the retention and CNR periods. Given a stable age structure, the fishery index for reported catch and the index for total mortality index should give similar results in the absence of regulatory changes that alter the ratio of reported catch to incidental fishing mortality (e.g., size limit changes, CNR fishing periods).

As in the CTC briefing at the postseason plenary session in 1993, the graphs presented in this section also include the time trend of harvest rate indices projected by the 1984 version of the CTC chinook model. Previous annual reports compared the estimates with the 1985 target reduction, which was simply the reduction in the harvest rate that would have occurred in 1985, when the PST ceilings were implemented, if abundance was equal to the average in the base period. The CTC has elected to replace the 1985 target reduction for the following reasons:

1) the 1985 target reduction was only applicable to the first year of ceiling management, since further reductions were expected in subsequent years;
2) the indices from the 1984 chinook model provide an indication of the relative change in harvest rates that were required to rebuild the 1984 model stocks by 1998; and
3) comparison of the estimated indices with the 1984 model projections provides a means to evaluate the assumptions used in the model, and hence, the original technical basis for the analysis used to develop the chinook rebuilding program.

Table 3-5 provides a summary of the fishery indices for reported catch and total fishing mortality for each year since 1985 as well as the 1985-1993 average. In addition, graphs of the index for total mortality are included for each fishery with a PST ceiling. In the graphs, the heavy black line indicates the estimated fishery index for total mortality, the dashed line indicates the fishery index for reported catch, and the light line indicates the 1984 projection of the fishery index.

Detailed stock and age specific information on the fishery indices are provided in appendices D and E. Large variability is often evident when comparing indices of several stocks. This variation may be due to sampling, departures from assumptions, and differential harvest rates. The appendices also include indices for components of two of the PST ceiling fisheries and the U.S. South ocean sport and
troll fishery. These additional indices are provided when the information can be of assistance in evaluating the fishing regimes.

The NCBC troll fishery was partitioned into the NBC and CBC components. Analysis of CWT data has indicated that the stock composition of these fisheries differs substantially, with the LGS and Harrison stocks more prevalent in the CBC fishery. Since 1984, a substantial shift in the relative catch in these fisheries has occurred with a reduced proportion of the catch now occurring in CBC. For example, 24% of the 1979-1982 catch occurred in CBC versus an average of 9% in the period 1989 through 1992.

The GS ceiling fishery was partitioned into the sport and troll components. CWT data indicates that the stock composition of these fisheries differs, with the Harrison stock contributing more to the troll fishery. Since the implementation of the PST, the catch in the troll fishery has been reduced to a greater extent than that in the sport fishery. Although a fishery index is presented for the GS troll fishery, the CTC is concerned about the general applicability of the index, since the estimates are primarily dependent upon only a single stock (Big Qualicum).

The reliability of the fishery indices for the CBC and GS troll fisheries for years after 1985 may be reduced because of the limited number of CWT recoveries that are now obtained. Although the CTC inclusion criteria are designed to screen out stocks that have an insufficient number of CWT recoveries to be included in the fishery index, it is based on the average number of recoveries in all years for which recovery data are available. Since catches in the GS and CBC troll fishery have declined substantially from pretreaty levels, it is likely that some stocks now included in the index would be excluded if the average was over a more recent time period.

Estimates of the indices presented in this report for years prior to 1993 may differ from previous estimates, particularly for more recent years, due to a number of factors including: 1) addition of new stocks in the index, 2) revised estimates of nonretention mortality, 3) revised estimates of CWT recoveries, or 4) revised estimates of the cohort size for broods that were previously incomplete.

Table 3-5. Percent change from the 1979-1982 base period in the fishery index for reported AEQ catch, total AEQ mortality, and the 1979-1984 and 1985-1993 averages for these statistics.

Year	SEAK Troll		NCBC Troll		WCYITroll		GS SportITroll		USS. South Ocean Sportirioll					
			CollunharR. Stheks,	Puget Sound Stocks										
	Reported	Total			Reported	Total								
1979	5\%	2\%	-1\%	0\%			1\%	1\%	- 10\%	- 10\%	- 20%	- 22%	- 30\%	-30\%
1980	2\%	-1\%	8\%	8\%	-1\%	- 1\%	8\%	8\%	2\%	1\%	5\%	5\%		
1981	11\%	9\%	21\%	20\%	-17\%	-17\%	36\%	36\%	-6\%	-5\%	11\%	10\%		
1982	-14\%	-9\%	- 25%	-25\%	12\%	12\%	- 26%	-26\%	15\%	15\%	16\%	16\%		
1983	32\%	37\%	-9\%	-9\%	22\%	21\%	-24\%	-24\%	-34\%	-35\%	13\%	11\%		
1984	-6\%	0\%	-1\%	-3\%	45\%	43\%	11\%	12\%	-76\%	-77\%	-21\%	- 22%		
$\begin{aligned} & 19791984 \\ & \text { Average } \\ & \text { and } \end{aligned}$	5%	6\%	I\%	$\text { \% } 1 \%$	1\%\%	10\%	.1\%	0\%.	20\%	20\%	\%\%\%	1\%		
1985	-3\%	11\%	- 11%	- 12%	- 12%	-11\%	-37\%	- 37\%	-39\%	-36\%	- 51\%	-51\%		
1986	-33\%	- 28%	-21\%	-20\%	- 2%	-3\%	-1\%	3\%	-44\%	-46\%	$1 /$	$1 /$		
1987	-16\%	2\%	- 22%	-18\%	- 34\%	-26\%	- 31%	- 30\%	- 36\%	- 36\%	9\%	18\%		
1988	- 32%	- 27%	-47\%	-44\%	-13\%	-4\%	- 41\%	-40\%	- 37%	- 36%	356\%	356\%		
1989	-43\%	-33\%	- 33%	-32\%	- 57\%	-55\%	- 36\%	-22\%	-12\%	- 10\%	362\%	372\%		
1990	- 24%	-16\%	-31\%	-28\%	- 22%	- 16\%	- 38%	-29\%	-35\%	-36\%	398\%	418\%		
1991	- 31%	-14\%	- 30\%	-28\%	-34\%	-31\%	-17\%	-1\%	-49\%	-49\%	364\%	374\%		
1992	-50\%	-35\%	- 23%	-21\%	-13\%	-9\%	-1\%	20\%	-31\%	-26\%	346\%	373\%		
1993	-34\%	- 26%	26\%	\% 23%	7\%	1\%	0\%	29\%	27\%	28\%	202\%	196\%		
$\begin{aligned} & 1985-1993 \\ & \text { Average } \end{aligned}$	29\%	$\because 18 \%$	27\%	25\%	22\%	.17\%	22\%	\%12\%	34\%	34\%	248\%	257\%		

$1 /$
No stocks satisfied CTC inclusion criteria.

3.3.2 Southeast Alaska

Southeast Alaska Troll

Figure 3-1. The estimated fishery indices for reported catch and total mortality in the SEAK troll fishery, and the projected indices from the 1984 CTC chinook model.

The fishery indices for the SEAK troll fishery indicate that the harvest rate for total AEQ mortality has been reduced since 1985 by an average of 18% from the base period, and was 26% below the base period in 1993. However, the harvest rate reductions for the years 1990-1993 have not been as great as the projections by the 1984 CTC chinook model (Fig. 3-1).

Reductions for the reported catch index have been greater than for total fishing mortality (Table 3-5). The 1985-1993 average index for the reported catch shows a reduction that is 11 percentage points greater than the index for total mortality. The disparity in the indices is due to the SEAK management regime and the high chinook availability and/or abundance in the SEAK fisheries. The result has been a reduction in the number of days of directed chinook fishing in the summer and an increase in the number of CNR days.

The proportion of the harvest occurring in the SEAK sport fishery has increased from an average of 7% in the base period to 21% in 1993. Since the fishery index currently includes only recoveries from the troll fishery, the reduction in the fishery index for all gear types included in the SEAK ceiling may not be as great as for the troll fishery. The CTC is evaluating the potential for including additional gear types in the index.

3.3.3 North/Central B.C.

Figure 3-2. The estimated fishery indices for reported catch and total mortality in the NCBC troll fishery, and the projected indices from the 1984 CTC chinook model.

The fishery indices for total AEQ mortality in the NCBC troll fishery indicate that harvest rates have been reduced in the range of 12% to 44% from 1985 to 1992 , with an average reduction of 25%. In 1993, the index was reduced by 23% from the base period. As in the SEAK troll fishery, the reductions in harvest rates were not as great as the projections of the 1984 CTC chinook model for the years 1990 through 1993 (Fig. 3-2).

The reduction has been disproportionate between the NBC and CBC troll fisheries (Appendix D), with reductions in the CBC fishery averaging 63% for 1985-1993. In contrast, the indices in the NBC troll fishery were estimated to have decreased by an average of 8% for the period 1985-1993. The greater reduction in the harvest rate in the CBC troll fishery may have benefitted the Lower Strait of Georgia (LGS) and Harrison stocks, since analysis of CWT data has indicated that these stocks are more prevalent in the CBC troll fishery than in the NBC troll fishery.

As in all of the ceiling fisheries, the reduction in the harvest rate for reported catch exceeds the reduction for total mortality. However, the differential in the NCBC troll fishery (2 percentage points on average since 1985) is relatively small for three reasons: 1) the change in the minimum size limit in 1987 had a relatively small effect since the fishery primarily harvests ocean ages 4 and 5 year old fish, 2) fishery managers have attempted to manage catch rates to minimize CNR periods, and 3) areas with a high incidence of legal-sized chinook have been closed during CNR periods.

3.3.4 West Coast Vancouver Island

WCVI Troll

Fishery Index

Figure 3-3. The estimated fishery indices for reported catch and total mortality for the WCVI troll fishery, and the projected indices from the 1984 CTC chinook model.

Since the inception of the PST, the fishery indices indicate that harvest rates for total AEQ mortality in the WCVI troll fishery have been reduced by an average of 17% from the base period. A greater reduction has been achieved for reported catch than for total mortality (Table 3-5) due to the increase in the minimum size limit instituted in 1987 and CNR fisheries in 1985, 1987, and 1988. Reductions in harvest rates in this fishery have varied about the 1984 projection but were less than projected for 1992 and 1993.

Since 1990, catch in the WCVI troll fishery has been controlled primarily through restrictions in fishing areas and by limitations on total effort. Fishing effort, both in terms of days open and total boat days, was restricted to the average 1985-1987 level in each year. This strategy appears to be effectively reducing the exploitation rate on most stocks with the exception of the Robertson Creek stock in 1992 and 1993. In those years, the fishery remained open until the end of September. CWT recovery data indicate that during late August and September many of the fish harvested originated from the Robertson Creek Hatchery. As a result, the indices for the Robertson Creek stock were 4.24 in 1992 and 2.84 in 1993. If the WCVI wild stock has a similar temporal and geographic distribution as Robertson Creek, rebuilding will be retarded if this fishing pattern persists. The fishery index for total AEQ mortality for all other stocks in 1992 and 1993 was 0.71 and 0.89 , respectively.

3.3.5 Strait of Georgia

GS Sport and Troll

Figure 3-4. The estimated fishery indices for reported catch and total mortality for the GS sport and troll fishery, and the projected indices of the 1984 CTC chinook model.

Although the fishery indices for the GS sport and troll fishery indicate that the harvest rate has been reduced by an average of 12% since the inception of the PST, the indices have increased in each year since 1990. The fishery index for 1993 indicated that harvest rates exceeded the base period average by 29%. Estimated reductions in the GS sport and troll fishery harvest rates have not been as great as the projections from the 1984 CTC chinook model in any year following 1985.

The increase in 1993 resulted primarily from the GS sport fishery, for which the 1993 index exceeded the base period by 74% (Appendix D). Management actions that have been taken in the sport fishery are summarized in Chapter 1. Despite these actions, the fishery indices for the sport fishery from 1991 through 1993 indicates that the harvest rate was an average of 54% greater than the base period.

Incidental mortalities in the sport and troll fisheries also contribute to the maintenance of the indices near the base period level. In 1993, a 29 percentage point difference existed between the indices for reported catch and for total mortality (Table 3-5). This difference has resulted from changes in minimum size limits and CNR fisheries. However, even the reported catch index was near the base period level in the years 1992-1993.

3.4 NONCEILING FISHERIES

Estimates of the nonceiling fishery indices for U.S. and Canadian fisheries are presented in Figs. 3-5 through 3-8. Each figure provides the estimated indices for wild stocks represented by an exploitation rate indicator stock. For example, the LGS wild stock is represented by two exploitation rate indicator stocks (Puntledge and Big Qualicum; Table 3-2). Although the passthrough provision applies to all depressed wild stocks harvested in a nonceiling fishery, insufficient CWT recoveries were available to estimate the index for Canadian stocks in U.S. nonceiling fisheries and U.S. stocks in Canadian nonceiling fisheries. Nonceiling fishery indices could not be estimated for the Skagit Spring, Columbia Upriver Spring, and Harrison River stocks because of the absence of a suitable exploitation rate indicator stock.

For U.S. nonceiling fisheries, indices that are less than 1.0 indicate that exploitation rates have been reduced relative to the base period. All U.S. nonceiling fisheries are included in the indices with the exception of freshwater sport and freshwater net fisheries for all stocks, marine terminal net fisheries in Puget Sound for stocks in the NPS-S/F and SPS stock groups, and marine Washington Coastal net fisheries for stocks in the WACO stock group. Harvest rate indices for terminal fisheries may be found in Chapter 5.

The nonceiling fishery indices for depressed stocks in the NPS-S/F group (Skagit Summer/Fall, Stillaguamish Summer/Fall, and Snohomish Summer/Fall) harvested in U.S. fisheries have exceeded 1.0 in each year since 1990. The index for 1993 indicated that exploitation rates in the fisheries included in the index have increased by 26% from the base period. For the years 1987-1993, the base period exploitation rates were exceeded by an average of 7%. Estimates of the index are not possible for the years 1985 and 1986 because of the absence of CWTs representing this stock group. The passthrough provision was not applicable to the Skagit stock in 1985-1986 and 1990, since the escapement goal was exceeded. The escapement for the Green River stock failed to achieve the objective only in 1993; the nonceiling index for that year was 0.66 .

The nonceiling index for depressed wild stocks in the WACO group (Grays Harbor Fall and Columbia River Summer) was less than 1.0 in each year with the exception of 1990, and the average value of the nonceiling fishery index was 0.67 . The passthrough provision was not applicable to the Grays Harbor Fall stock in 1987-1990 and 1992, since the escapement goal was achieved.

For the Canadian nonceiling fisheries, indices that are 0.75 or less indicate that exploitation rates in nonceiling net fisheries have been reduced to the target of 25% below the base period. The WCVI sport fishery is not included in the index since estimated recoveries during the base period are not available. Since this fishery has grown since the base period, failure to include it may lead to an underestimate of the index.

Mean values of the indices for Canadian stocks were less than 0.75 , and year-specific indices exceeded the target value in only two of the 16 stock-year combinations when the passthrough provision would apply. Indices were not computed for the UGS stock in 1987 and 1989 because escapement exceeded the escapement goal.

Since the CTC is frequently asked questions about the U.S. South ocean sport and troll fisheries (including the Strait of Juan de Fuca troll), the indices for these fisheries are presented separately in Figs. 3-9 and 3-10. These fisheries are one component of the aggregate of U.S. nonceiling fisheries
to which the passthrough provision is applicable, and are included in the nonceiling index discussed above. The indices for the U.S. South ocean sport and troll fishery are presented separately for Columbia River and Puget Sound stocks, since these stocks are harvested in different areas. Columbia River stocks are primarily harvested in fisheries off the coasts of Washington and Oregon while the Puget Sound stocks are primarily harvested in the Strait of Juan de Fuca.

The fishery indices for the Columbia River stocks (Fig. 3-9) indicate that harvest rates have been reduced by an average of 34% since 1985, and the index for 1993 remained 28% below the base period level. In contrast, the indices for the Puget Sound stocks (Fig. 3-10) indicate that harvest rates on these stocks have increased. The average increase since the 1985 is estimated as 257%.

Figure 3-5. The estimated nonceiling fishery indices for the UGS stock in Canadian fisheries. Indices not computed for 1987 and 1989 as escapement exceeded goal.

LGS Stock
 Canadian Nonceiling Fishery Index

Figure 3-6. The estimated nonceiling fishery indices for the LGS stock in Canadian fisheries.

Figure 3-7. The estimated nonceiling fishery indices for the Skagit, Stillaguamish, and Snohomish summer/fall stocks in U.S. fisheries. Not applicable to Skagit in 1990 as escapement exceeded goal.

WACO Stocks
 U.S Nonceiling Fishery Index

Figure 3-8. The estimated nonceiling fishery indices for the Grays Harbor fall and Columbia River summer stock in U.S. fisheries. Not applicable to Grays Harbor in 1987-1990 and 1992 as escapement exceeded goal.

U.S. South Ocean Sport \& Troll Columbia River Stocks

Figure 3-9. The estimated fishery indices for reported catch and total fishing mortality for the U.S. South ocean sport and troll fishery for Columbia River stocks.

U.S. South Ocean Sport \& Troll Puget Sound Stocks

Figure 3-10. The estimated fishery indices for reported catch and total fishing mortality for the U.S. South ocean sport and troll fishery for Puget Sound stocks.

3.5 BROOD EXPLOITATION RATES

Estimates of the brood year exploitation rates for each of the exploitation indicator stocks are tabulated in Appendix G and graphed in Appendix H. The tables in Appendix G provide estimates of the average brood exploitation rates during the base period and annual and average exploitation rates for broods contributing to fisheries since 1985. Changes from base period levels are expressed both in terms of percentage point reductions and percent reductions (e.g., if the brood year exploitation rates during the base period and 1987 were estimated at 50% and 45% respectively, the percentage point change would be -5 and the percent change would be -10%). Although Appendix G provides estimates of the brood year exploitation rates in both ocean fisheries and in total for all fisheries, the total brood exploitation rate for an exploitation rate indicator stock may not always be indicative of the exploitation rate on the wild stock group that it represents (see Section 3.2.1). In particular, the wild stocks may not always be subject to the same terminal fisheries as the exploitation rate indicator stocks, which are typically of hatchery origin. The appropriate statistic to use for each stock, ocean or total brood exploitation rates, is listed in Table 3-2.

Sections 3.5.1-3.5.7 provide estimates of the brood exploitation indices for each of the seven stock groups with an exploitation rate indicator stock. Also included, where available, are the projected brood year indices from the 1984 CTC chinook model. Projected indices are not available for all stock groups because the 1984 model included only four stocks.

3.5.1 Southeast Alaska/Transboundary Rivers Inside Stock Group (SEAK/TBR-I)

The indices for the total mortality brood exploitation rate for the SEAK/TBR-I stock group were near the base period average of 55% for the 1982-1985 broods. For the $1986-1988$ broods, the indices indicated that total mortality brood exploitation rates had increased by 22% relative to the base period average.

The indices for reported catch were less than 1.0 in each year with the exception of the 1986 brood. The disparity between the indices for reported catch and total mortality has resulted primarily from periods of CNR in the SEAK troll and net fisheries. For the 1981-1988 broods, incidental mortality has contributed an average of 40% of the total mortality for the brood exploitation rate.

3.5.2 West Coast Vancouver Island Stock Group (WCVI)

Brood exploitation rates on the WCVI stock group in ocean fisheries have increased for each brood year since 1984. The index for the 1989 brood was 8% above the base period and well above the projection of the 1984 CTC chinook model.

The increases in the indices can be attributed to increases in both the reported catch and incidental mortality. The detailed stock specific fishery indices presented in Appendix D indicate that much of the increase in the exploitation rate for the 1989 brood may have resulted from the WCVI troll fishery. Harvest of the Robertson Creek Hatchery stock in that fishery in 1992 and 1993 is discussed in greater detail in Section 3.3.4.

The 1982 and 1983 broods were not included in Fig. 3-8 due to difficulties in estimating incidental mortality. Current CTC procedures do not estimate incidental mortality well when survival rates are near zero, as was the case with the 1983 brood of the Robertson Creek indicator stock.

SEAK Brood Total Exploitation Index

Figure 3-11. Estimated brood total exploitation indices for the SEAK/TBR-I stock group.

WCVI Brood Ocean Exploitation Index

Figure 3-12. Estimated brood ocean exploitation indices for the WCVI stock group and the projected indices from the 1984 CTC chinook model.

3.5.3 Upper Strait of Georgia Summer/Fall Stock Group (UGS)

The total mortality indices for the UGS stock group have declined since the base period, but have been relatively constant for the 1980 and subsequent broods. For the 1982-1988 broods, brood exploitation rates were reduced by an average of 15% from the base period. Beginning with the 1983 brood, a more substantial reduction occurred in the brood exploitation rates associated with reported catch. For the 1983-1988 broods, the rate was reduced by an average of 27% from the base period.

3.5.4 Lower Strait of Georgia Fall Stock Group (LGS)

The indices for the LGS stock group indicate that brood exploitation rates have been reduced by an average of 9% from the base period for the 1982-1989 broods. However, the indices have been greater than the 1984 CTC chinook model projections for 5 of the last 7 broods.

Brood exploitation rates for reported catch have shown a more substantial reduction. For the 19821989 broods, brood exploitation rates for reported catch have been reduced by an average of 29%. However, the reduction in the exploitation rates associated with reported catch has been offset by a $\mathbf{2 8 3 \%}$ increase in incidental mortality. Since this stock group is primarily harvested within GS, changes in the minimum size limit in the GS sport and troll fisheries and periods of CNR in the troll fishery have resulted in a substantial increase in incidental mortality. For the 1989 brood, incidental mortality was estimated to comprise 36% of the total fishing related mortality.

3.5.5 North Puget Sound Summer/Fall Stock Group (NPS-S/F)

Since only the 1975 and 1980 broods of the NPS-S/F were tagged prior to the start of consistent tagging beginning with the 1985 brood, it is difficult to develop an understanding of the time trend in exploitation rates and changes in incidental mortality. However, the total mortality indices have increased for each brood since 1985, and was greater than the base period average for the 1988 brood. This is likely a result of both increases in exploitation rates in the GS sport and troll fisheries and in the U.S. nonceiling fisheries. As shown in Appendix F, the proportion of the mortality of this stock that occurred in the GS fisheries increased from an average of 20% in the years 1989-1991 to 37% in 1993.

3.5.6 South Puget Sound Summer/Fall Stock Group (SPS)

The indices for the total mortality in ocean fisheries showed a declining trend from 1978 to 1985, and increased from 1986-1988. In 1988, the index indicated that brood exploitation rates in ocean fisheries had declined by 13% from the base period average. The indices for reported catch have shown a greater decline, and in 1988 the index was 24% below the base period average.

UGS Brood Total Exploitation Index

Figure 3-13. Estimated brood total exploitation indices for the UGS stock group.

Figure 3-14. Estimated brood total indices for the LGS stock group and the projected indices from the 1984 CTC chinook model.

Figure 3-15. Estimated brood ocean exploitation indices for the SPS-S/F stock group.

Figure 3-16. Estimated brood ocean exploitation indices for the NPS-S/F stock group.

WACO Brood Ocean Exploitation Index

Exploitation Index

Figure 3-17. Estimated brood ocean exploitation indices for the WACO stock group in ocean fisheries and the projected indices from the 1984 CTC chinook model.

3.5.7 Washington Coastal Spring/Summer/Fall, Columbia River Summer/Fall, and North Oregon Coast Stock Group (WACO)

The index for the 1989 brood of the WACO stock group was 1% above the base period level and well above the projection of the 1984 CTC chinook model. Results for the 1989 brood were similar to those of the 1986 and 1988 broods, for which the indices averaged only 3% less than the base period. As with the other stocks, reductions in the brood exploitation rate associated with reported catch have been offset by increases in incidental mortality. For the 1982-1989 broods, incidental mortality increased by an average of 33% over the base period.

Of the wild stocks included within this stock group, the increasing ocean brood exploitation rates are of greatest concern for the Columbia River Summer stock. This stock is assessed as Not Rebuilding, with escapements indistinguishable from the base period (see Chapter 2). Continued increases in brood exploitation rates coupled with declines in survival rates may also retard the rebuilding progress of stocks currently assessed as Rebuilding.

3.6 SURVIVAL RATE INDICES

The age 2-3 survival indices for broods contributing to fisheries in 1994 and 1995 indicate that survival rates will be well below the base period level for all stock groups except SEAK/TBR-I. The largest reductions are for Lower GS Falls (-97%), Upper GS Summer/Falls (-92%), North PS Summer/Falls (-91%), and WCVI Falls (-90%).

Projections of the changes in survival rates from the base are provided in Fig. 3-18 for each of the ceiling fisheries. For each fishery, a stock group is included within the graph if at least 10% of that stock group's total fishing mortality occurs in the fishery. For comparative purposes, the graphs include the 1987-1988 broods reported in the 1992 annual report and new projections based on the 1988-1989 broods (brood years included for spring yearlings were 1986-1987 and 1987-1988).

Graphs of the age 2-3 and cohort survival rate indices are presented in Appendix I. With the exception of the White River stock ($\mathrm{r}=-.23$), correlation coefficients for the two indices were generally high: 71% of the stocks had correlation coefficients between $0.90-1.00,17 \%$ had correlation coefficients between $0.80-0.89$, and 8% of the stocks had correlation coefficients between $0.70-0.79$. These correlations indicate that the age 2-3 indices are generally a good predictor of the cohort survival rate for a brood, and that the assumptions listed in Section 3.2.2 generally hold. Those assumptions were that 1) variations in natural mortalities occur primarily before ocean age 2 and 2) variations in natural mortalities are large in comparison to variations in fishery exploitation rates and maturation rates.

The age 2-3 indices include only recoveries from ocean age 2 fish for the most recent brood included in the index. Since the predictive capability of the age 2-3 index might decline when only a single age class is available, the correlation analysis was repeated using only ocean age 2 recoveries. For this comparison, 48% of the stocks had correlation coefficients between $0.90-1.00,13 \%$ had correlation coefficients between $0.80-0.89,9 \%$ of the stocks had correlation coefficients between $0.70-0.79$, and the remainder of stocks had smaller correlation coefficients. These correlations indicate that even when only one age class is available, the correlation between indices generally remains strong.

Since these projections for the survival indices are from the exploitation rate indicator stocks, their applicability to associated wild stocks is uncertain. However, at the very least, reduced abundance of hatchery stocks contributing to fisheries operating under PSC ceilings suggests that exploitation rates on co-mingling wild stocks would be expected to increase in the short term.

Projections of the relative abundance of chinook in the ceiling fisheries are also available from the CTC chinook model (see Section 4.3.1). The model projections for 1994 and 1995 rely upon preseason forecasts of abundance provided by the management agencies. Since the agency estimates are generally derived independently from CWT recovery data, the model projections provide a second source of information for evaluating trends in abundance. Unlike the CWT survival projections, the model predictions 1) use the base period distributions of the model stocks to predict abundance by fishery; 2) include multiple stocks and broods; and 3) tend to show less variability since the survival variations are averaged over a number of stocks.

(c) Stocks in GS Fisheries

Figure 3-18. Percent change from the base period for the age 2-3 survival indices for selected stock groups contributing to the SEAK and NCBC fisheries (a), WCVI fisheries (b), and GS fisheries (c) in 1994 and 1995.

3.7 STOCK CATCH DISTRIBUTION

The annual distributions of reported catch and total fishing mortality for the exploitation rate indicator stocks can be found in Appendix F and are summarized on a stock group basis in Chapter 5. Results presented in Appendix F will differ from Appendix J, in which the estimates are obtained from the CTC chinook model. Estimates of the mortality distribution obtained from the model are based upon the base period (1979-1981) exploitation pattern adjusted for changes in stock abundance and fishery exploitation rates. In contrast, the Exploitation Rate Assessment uses annual CWT recoveries to estimate yearly distributions. Since actual recovery data are used, the exploitation rate analysis responds to changes in the ocean distribution of stocks and changes in fishing patterns within major fisheries.

3.8 SUMMARY AND CONCLUSIONS

The objectives of the PST chinook rebuilding program are to halt the decline of depressed stocks and attain by 1998 the escapement goals of naturally spawning chinook stocks. In order to achieve these objectives, the PST established two types of fishery management measures, which together were designed to reduce fishery exploitation rates on depressed wild stocks: 1) fixed catch ceilings were established for the all gear catch in SEAK and NCBC, the WCVI troll fishery, and the GS sport and troll fisheries; and 2) passthrough requirements were identified for the remainder of the fisheries.

The catch ceilings were established with the expectation that the initial reduction of harvest rates associated with imposition of the ceilings would be followed by a further progressive reduction of the harvest rates as chinook abundance increased during the rebuilding program. The initial reduction was expected to occur as a result of setting the ceiling for each fishery at a reduced level relative to recent catches, assuming that abundance would remain stable or increase. Further reductions in harvest rates in PSC ceiling fisheries were expected in subsequent years as a result of the increased production resulting from the rebuilding escapements. In years in which abundance precluded harvesting the full ceiling without an increase in the harvest rate relative to the base period, the CTC recommended that further restrictions (e.g., the length of the season) designed to limit harvest rates should be implemented (PSC 1991). Since 1985, the SEAK and NCBC all gear fisheries and GS troll fishery have been managed through the use of ceilings. GS sport fisheries (since 1989) and WCVI troll (since 1990) have implemented additional restrictions related to area closures and effort or bag limits to control harvest rates.

The passthrough provision of the PST applies to the remainder of the fisheries. It requires that "the bulk of depressed stocks preserved by the conservation program...principally accrue to escapement." Although variations exist in the interpretation of this provision, it is evident that the intent was to prevent the harvest of depressed wild stocks in the nonceiling fisheries from offsetting the benefits accruing from the harvest restrictions in the ceiling fisheries.

The primary technical basis of the PST chinook rebuilding program was provided by the 1984 version of the chinook model developed by the ad hoc CTC. The model, which included only 4 stocks and 11 fisheries, implicitly or explicitly included a number of important assumptions regarding incidental mortality and survival rates. The Exploitation Rate Assessment provides a means to assess these assumptions and model projections, and hence, the technical basis for the analysis used to develop the PST chinook management regime. (See PSC (1991) for a more complete description of the model, assumptions, and assessments completed during the development of the chinook rebuilding program).

One crucial assumption of the 1984 model was that survival rates would remain equal to the average rate observed during the base period. Early reports of the CTC indicated that the model projections were extremely sensitive to variations from this assumption. One example provided by the CTC was for a three cycle rebuilding program. The committee noted that with base period survival rates and stock productivity parameters, a stock could be rebuilt with a $25 \%-30 \%$ reduction in exploitation rates in all fisheries. However, if survival rates dropped by only 10%, a $45 \%-55 \%$ reduction in fishery exploitation rates would be required to rebuild the stock in three cycles (see Fig. 6, CTC 1984).

The Exploitation Rate Assessment indicates that survival rates have varied substantially from year to year, and more importantly, have generally been well below the base period. With the exception of SEAK/TBR-I, all stocks groups are projected to have substantial reductions in survival rates in 1994
and 1995, ranging from -65% for the SPS group to -97% for the LGS group. Although most of the indicator stocks are of hatchery origin, wild stocks will display a similar trend if factors regulating survival are similar to those affecting hatchery stocks. Further, reduced contributions of hatchery fish to fisheries operating under PSC ceilings will increase harvest rates on all co-mingled stocks.

The 1984 analyses also assumed management measures would not be instituted that altered the ratio of incidental fishing mortality to reported catch, relative to the base period used in the model analyses. Hence, the effect of a ceiling on the reported catch was assumed equal to the effect of a ceiling on total mortality.

The assumption of a constant ratio between incidental mortality and reported catch has not been borne out by subsequent events. The expansion of CNR fisheries and increases in minimum size limits have both resulted in increased incidental fishing mortality. On average, since 1985, indices for harvest rates which include incidental mortality have not decreased to as great an extent as the indices computed only for landed catch. The proportion of the reduction for reported catch achieved for total mortality has averaged only 54% for the GS sport and troll fisheries, 62% for the SEAK troll fishery, 77% for the WCVI troll fishery, and 93% for the NCBC troll fishery.

Since the 1984 model assumed that survival rates would be constant, that the ceiling levels were fixed, and that a constant ratio existed between reported catch and incidental mortality, harvest rates in the ceiling fisheries were projected to decline each year until 1998. Although year to year variation has been evident, the estimated fishery indices for total mortality showed a trend similar to the projections through 1989 in the northern ceiling fisheries, 1990 in the WCVI fishery, and 1988 in the GS sport and troll fishery. Subsequently, the estimated indices for the ceiling fisheries have remained constant or increased. This is most evident for the GS sport and troll fishery, where the index has increased by 69 percentage points relative to 1988. As a result, the harvest rate reductions estimated for the ceiling fisheries in 1993 are all substantially less than the reductions projected in 1984.

An additional assumption of the model was that exploitation rates in the nonceiling fisheries would not increase relative to the base period, or in the case of the Canadian nonceiling net fisheries, would be reduced by 25%. In effect, this was the interpretation by the CTC of the passthrough provision included in the PST Chinook Annex.

The nonceiling indices included in this chapter indicate that exploitation rates in the nonceiling fisheries have been consistent with the projections in 1984 for three out of the four stock groups evaluated. Exploitation rates in Canadian nonceiling fisheries have generally been reduced below target values and, on average, are twice the target value. The analysis indicates that exploitation rates in nonceiling fisheries harvesting depressed wild stocks in the WACO stock group have generally been reduced. However, from 1990 to 1993, the U.S nonceiling fishery index for the North Puget Sound Summer/Fall stock group increased by 25% from the base period. Although additional information presented in Chapter 5 suggests that this increase may have been offset by reductions in harvest rates in terminal net fisheries, further analysis of the nonceiling fisheries affecting this stock group would be helpful.

Brood exploitation rates provide the best measure of the combined effect of the ceiling and nonceiling fisheries upon a particular stock. They also provide a link between the fishery exploitation rates and the productivity of a stock. CTC analyses in 1983 and 1984 suggested that brood exploitation rates
exceeded the MSY level by 9 to 16 percentage points (PSC 1991). Thus, for the stocks to eventually rebuild, brood exploitation rates would need to be reduced by at least this amount. However, to rebuild by 1998, the reductions would have to be more substantial. For example, the 1984 CTC chinook model estimate of the 1980 brood exploitation rate for the LGS stock exceeded the MSY ER by 16 percentage points, but the exploitation rate on the 1994 brood was predicted to be reduced by 25 percentage points. Similarly, by 1998, ocean brood exploitation rates were expected to be reduced by 31 percentage points for a stock represented by Robertson Creek Hatchery and by 18 percentage points for the Columbia Upriver Bright stock.

Consistent with the previous discussion of exploitation rates in the ceiling and nonceiling fisheries, the Exploitation Rate Assessment indicates that brood exploitation rates have declined, but not to the extent expected in 1984. Significant deviations from the 1984 projections were apparent for the three wild stocks in the 1984 CTC chinook model, and the most recent brood exploitation rates were greater than or equal to the base period average for 50% of the stock groups.

The Exploitation Rate Assessment indicates that many of the assumptions used in the development of the PSC chinook rebuilding program have been violated. These violations include reductions in survival rates from the base period, an increased ratio of incidental mortality to reported catch, and the potential increase in exploitation rates in nonceiling fisheries affecting the wild stocks in the North Puget Sound Summer/Fall stock group. Violations of the assumptions have generally led to exploitation rates that have exceeded the 1984 projections and are likely to delay the rebuilding of wild stocks.

The potential for departures from the assumptions of the model, and the risks to the rebuilding program, were apparent to the CTC in 1984. When discussing the model projections, the committee noted that the "...primary management implication is that progress toward rebuilding will require periodic assessment and correction to keep on schedule. It will be especially important to establish firm schedules rather than to attempt to institutionalize harvest levels for lengthy periods of time" (CTC 1984). Those recommendations are equally valid at this juncture in the PST chinook rebuilding program.

CHAPTER 4. CHINOOK MODEL ASSESSMENT

4.1 INTRODUCTION

The PSC chinook model is the primary tool employed by the CTC to evaluate how proposed fishery regimes and enhancement could impact the rebuilding program. Model predictions are based on biological information (e.g., productivity, escapement goals, age at maturity, catch distribution patterns, survival rates, enhancement levels) for representative stocks, estimates of fishing mortalities, and observed and projected management actions. At present, the model incorporates 30 stocks and 25 fisheries and is capable of assessing past impacts and predicting future impacts of changing size limits, catch ceilings, enhancement programs, and harvest rate strategies.

The model may be thought of as a book-keeping tool in which production from stocks is distributed among fisheries based on stock-age-fishery exploitation rates and specified fishing strategies. Fishing mortalities for past seasons are estimated according to regulations then in effect (e.g., size limits and CNR). For future years, fishing mortalities are predicted using expectations of stock production and algorithms that model impacts of fishing regimes. The model operates on an annual time step, with the following sequence of events: 1) natural mortality, 2) preterminal fisheries, 3) maturation, 4) terminal fisheries, 5) spawning escapement, and 6) production of progeny (wild and hatchery). Fish that are not harvested, do not die from natural mortality, or do not mature to spawn are recruited to the next age in the cohort for the following year. During the annual model calibration, parameters of the model are re-estimated using new information on the conduct of fisheries (e.g., catch levels, CNR), escapements, survival, and abundance projections. Through the calibration process, the model estimates brood year survivals for each stock represented in the model.

Model predictions can be used both for comparison with and supplementation of the CTC evaluations presented in the previous chapters. For example, model predictions of the fishery indices and stock mortality distributions can be compared with estimates derived from the Exploitation Rate Assessment. A more powerful feature of the model is its ability to integrate information on the abundance and productivity of stocks and provide estimates of the abundance indices for the fisheries and predicted rebuilding schedules for wild stocks. For short-term (1-2 year) predictions, estimates of stock abundance may be obtained directly from the calibration. Long-term predictions are less certain since they depend upon projected management actions, estimates of stock production, and assumptions regarding future brood year survival rates.

4.2 METHODS

Abundance indices, fishery indices, and incidental mortality estimates were calculated using methods presented in the 1992 Annual Report (Sections 4.2.2-4.2.4 of Report TCCHINOOK (93)-2). Model estimates of the stock composition and distribution of AEQ total mortality were computed based upon model estimates of stock mortality.

4.2.1 Model Calibration and Prediction

All model assessments presented in this report rely on the October, 1994 calibration of the chinook model (Calibration 1094). Data used in the calibration were similar in most cases to the data used in the April 1994 calibration, including estimates of fishery harvest rates through 1992, estimates of
terminal runs or escapements through 1993, and predictions of terminal runs in 1994. For most stocks, future brood survivals (generally brood years 1992 to 1996) were set to the long term average survival of each stock. Specific changes to the April 1994 calibration are noted below.

Ocean catch updates:

1) In SEAK, preliminary estimates of actual 1994 catches, adjusted for add-on, were used for troll, net and sport fisheries.
2) Preliminary 1994 catch in the WCVI troll fishery was used. The WCVI sport catch was assumed to be 50 percent of the 1993 catch.
3) Preliminary 1994 catch estimates in the GS troll and sport fisheries were included.
4) Preliminary 1994 catch estimates for NCBC troll, net and sport fisheries were used.
5) The Washington/Oregon troll catch (North of Cape Falcon) was set to 5,500, and the ocean sport catch was set to zero.

Terminal run updates:
The 1994 terminal run sizes (ocean escapement) for all Columbia River stocks (except Snake River Wild) were updated with preliminary 1994 return estimates.

Future brood survivals:

1) Upper Georgia Strait: The projected survival of the 1991 brood was estimated by multiplying the model estimate of the survival rate of the 1990 brood by the ratio of the age 2-3 index for the 1991 brood to the age 2-3 index for the 1990 brood.
2) WCVI Natural and Hatchery: The projected survival of the 1992 brood was set equal to the 1983 brood, due to abnormal oceanographic conditions and associated mackerel predation.
3) Columbia River stocks: All changes to projected survivals were based on jack returns. The brood 1991 survival of the Willamette spring stock was set equal to the 1990 brood survival. The projected survival of 1992 brood Spring Creek, Bonneville, Cowlitz Falls, and Mid-Columbia Brights was set equal to the 1991 brood survival of each stock. The projected 1991 brood survival of the Upriver Bright stock was set equal to the 1987 brood survival based on record low jack counts in 1993. The 1992 brood survival was set to the average survival of the 1989 and 1990 broods.

Maturity Schedules:
Future brood year maturity schedules were modified to reflect the results of the Exploitation Rate Assessment.

Model projections assumed no changes in future size limits and the following fishery regimes for the
ceiling fisheries:

1) Ceilings of 263,000 in the SEAK and NCBC ceiling fisheries.
2) A 24% reduction in harvest rates from the 1979-1982 base period for the WCVI troll fishery (the 1985 target reduction).
3) Harvest rates from the 1979-1982 base period for the GS sport fishery (the average reduction estimated by the Exploitation Rate Assessment for the period 1983 through 1991).
4) A catch of 31,000 in the GS troll fishery (Canadian domestic ceiling).

Escapement Goals:
The escapement goals used by ADF\&G through 1993 for the Alaska South Southeast stock were used in the model analysis.

4.2.2 Rebuilding Response to Survival and Harvest Assumptions

Given the limited time remaining in the rebuilding program and recent poor marine survivals, the CTC evaluated the sensitivity of the rebuilding projections to the reduced survival rates observed for many stocks in recent years. To determine if large exploitation rate reductions could compensate for reduced survivals and the lack of rebuilding by some stocks, the CTC also evaluated the effect of a 50% reduction in total mortality exploitation rates. Other harvest reductions could be explored to find a blend of harvest restrictions and rebuilding responses that is acceptable to the Parties.

The chinook model was used to estimate rebuilding status in 1998, using current harvest management regimes, first using long term average survivals for future years, and then using recent five-year average survivals for future years. For comparison, rebuilding status in 1998 was estimated, for both survival scenarios, using a 50% reduction (relative to the 1990-1993 average) in total mortality exploitation rates in all fisheries.

4.2.3 Assumptions of the Analyses

Since the model uses cohort analysis, assumptions of that analysis apply to the model as well, particularly assumptions 2 through 6 (Chapter 3, Section 3.2.2). The following additional assumptions apply to the model assessment:

1) The distribution of the stocks across fisheries is unchanged from the base period.
2) Estimates of escapement and/or terminal run are unbiased.
3) Current escapement goals are equal to the escapement at MSY.
4) For fisheries with ceilings in the model, the proportion of the catch contributed by stocks not included in the model remains constant.

4.3 RESULTS

4.3.1 Model Estimates of Fishery Abundance Indices

In the SEAK troll fishery, the model estimates that fishery abundance has been greater than the base period level in each year from 1982 through 1994 (Fig. 4-1 and Appendix M). Abundance is estimated to have increased from 1981-1988 to a level over twice the base period average. Abundance remained greater than twice the base period level through 1993, but is projected to drop to near the base period level by 1995.

The abundance trend in the NCBC troll fishery mirrors that in SEAK, although the magnitude of the increase over the base period abundance was roughly half as large (Fig. 4-1 and Appendix M). Abundance in NCBC is expected to decrease to near the base period level by 1995.

In contrast, the model estimates that fishery abundance in the WCVI troll fishery has been equal to or less than the base period level in all but one year since 1985 (Fig. 4-2 and Appendix M). Abundance began declining steadily in 1987 and is projected to be 34% below the base period in 1995.

Of the ceiling fisheries, the abundance index for the GS troll and sport showed the greatest 1985-1993 reduction from the base (Fig. 4-2 and Appendix M). However, the index has shown an increasing trend in recent years, with 1995 abundance projected to be nearly equal to base period levels.

4.3.2 Model Estimates of Fishery Indices

Model estimates of the fishery indices for the ceiling fisheries are shown in Figs. 4-3 through 4-6. For comparative purposes, the indices obtained from the Exploitation Rate Assessment (Chapter 3, Section 3.3) and the 1984 projection lines are also included. The results of the Exploitation Rate Assessment are labeled CWT-based, since results come from annual CWT recoveries. The 1984 projection lines indicate the time series of harvest rate reductions anticipated when the rebuilding program was initiated (introduced in Section 3.3.1).

The model-based fishery index for the SEAK troll fishery indicates that the harvest rate in the fishery has been reduced by $40 \%-55 \%$ since 1988 . The model-based fishery index follows the same year to year trend as the CWT-based index, although the model-based index is lower in all years. Since 1990, the model-based index has been below the 1984 projection line, and the CWT-based index has been above the projection line.

The model estimates that harvest rates have been reduced in the NCBC troll fishery as well. Since 1985, the reduction in the harvest rate from the base period has ranged from 16% to 43%. The model-based and CWT-based indices have been similar in each year, and both indices for 1991-1993 are above the 1984 projection line.

Similar to the CWT-based index, the model estimates of the fishery indices suggest that harvest rates in the WCVI fishery have been highly variable since 1985. Both indices show a similar trend in most years, with indices falling above and below the 1984 projection line. One difference between the two indices came in 1992, when the model-based index showed a sharp decline while the CWT-based index increased. The increase in the CWT-based index for this year is partially due to an unusually large catch of Robertson Creek chinook (Section 3.3.4). The CWT-based indices for WCVI,

SEAK TROLL AND NCBC TROLL FISHERY ABUNDANCE INDEX

Figure 4-1. Fishery abundance indices for the SEAK and NCBC troll fisheries.

Figure 4-2. Fishery abundance indices for the WCVI troll and GS sport and troll fisheries.

SEAK TROLL FISHERY INDICES

Figure 4-3. Model and CWT estimates of the fishery indices for the SEAK troll fishery.

NCBC TROLL FISHERY INDICES

Figure 4-4. Model and CWT estimates of the fishery indices for the NCBC troll fishery.

WCVI TROLL
 FISHERY INDICES

Figure 4-5. Model and CWT estimates of the fishery indices for the WCVI troll fishery.

GS SPORT/TROLL
 FISHERY INDICES

Figure 4-6. Model and CWT estimates of the fishery indices for the GS sport and troll fishery.
excluding the Robertson Creek stock, were 0.71 and 0.89 in 1992 and 1992, respectively. The exclusion of Robertson Creek substantially reduces the differences between the two indices.

The CWT-based and model-based fishery indices for the GS sport and troll fisheries have been greater than the 1984 model projection in every year since 1985. Both indices indicate that harvest rates increased in 1991-1993 relative to 1985-1990. However, the CWT-based estimates indicate a larger increase in 1992-1993 than the model-based estimates. This divergence may result from biased estimates of the abundance of the Harrison River stock in 1992 and 1993 and/or from the limited number of exploitation rate indicator stocks included in the CWT-based fishery index for the GS fisheries.

4.3.3 Model Estimates of Incidental Mortality

Model estimates of total AEQ incidental mortalities for the ceiling and nonceiling fisheries are provided in Appendix K. The ratios of AEQ incidental mortality to AEQ catch (incidental mortality ratio) are presented in Figs. 4-7a and 4-7b for the following six fisheries: SEAK troll, NCBC troll, WCVI troll, GS troll, GS sport, and nonceiling U.S. troll fisheries. The incidental mortality ratio may be simply interpreted as the number of fish that die from incidental mortality for every fish reported caught, where both quantities are expressed in AEQ. For example, a ratio of 0.5 would indicate that one AEQ fish died from incidental mortality for every two AEQ fish landed.

The six fisheries can be divided into two groups. Incidental mortality ratios have been fairly stable for fisheries grouped in Fig. 4-7a (NCBC troll, WCVI troll, and South US troll); the relative proportion of incidental mortality has neither increased or decreased over the time period. Fisheries grouped in Fig. 4-7b (SEAK troll, GS troll, and GS sport) show increased incidental mortality ratios since the base period. For GS sport and GS troll fisheries, the highest ratio values were reached in 1993.

Fig. 4-8a shows total AEQ incidental mortalities by regions. Incidental mortalities in the Southern U.S. have a decreasing trend over time. Canadian incidental mortalities have usually been greater than SEAK or Southern U.S. values. Since 1990, total AEQ incidental mortality has ranged from 411,130 to 479,104 chinook in the U.S. and Canada combined.

Fig. 4-8b illustrates total AEQ incidental mortalities for select Canadian fishery groups. Incidental mortalities remained small for nonceiling fisheries but showed an increasing trend from 1987 for the Georgia Strait sport fishery. Incidental mortalities for Canadian ceiling fisheries (without the GS sport) varied widely, although large increases occurred in 1987 and 1988. Size limits increased in 1987 and CNR fisheries occurred in 1987 and 1988.

4.3.4 Model Estimates of Stock Composition and Mortality Distribution

Model estimates of the stock composition in the ceiling fisheries and the proportion of the AEQ mortality that occurred in each fishery are presented in Appendix I.

Figure 4-7. Model estimates of the ratio of AEQ incidental mortalities to the AEQ reported catch for the NCBC troll, WCVI troll, and Southern U.S. troll fisheries (a) and the SEAK troll, GS troll, and GS sport fisheries (b).

INCIDENTAL MORTALITIES

(a)
(b)

Figure 4-8. Model estimates of total AEQ incidental mortalities for regions (a) and for select Canadian fishery groups (b).

4.3.5 Rebuilding Response to Survival and Harvest Assumptions

Table 4-1 lists wild model indicator stocks (those that represent natural chinook stocks), associated escapement indicator stocks, and stock rebuilding results under the two survival and two management scenarios. When long term average survivals and current management regimes are assumed, six wild model stocks are not predicted to rebuild and one stock is predicted to be less than half of its escapement goal in 1998. With a 50% reduction in exploitation, four stocks are not predicted to rebuild and no stock is predicted to be less than half its escapement goal in 1998. Recent five-year average survivals were lower than the long term average for 13 of 15 wild model stocks (Table 4-2). When recent average survivals are used, eight wild model stocks are not predicted to rebuild and six stocks are predicted to be less than half of their escapement goals in 1998 (Table 4-1). Under this reduced survival assumption, if exploitation rates are decreased by 50%, five stocks are not predicted to rebuild and three are predicted to be less than half of their escapement goals in 1998. The effects on rebuilding of the survival and management assumptions are summarized in Table 4-3.

Table 4-1. Responses of wild model stocks to survival and harvest assumptions. The table reports the year the stock rebuilds or the percent of goal achieved in 1998.

STOCK YAMES		Long Tern, Ayg Sinvivalin Siture		Recent 5 yea, 4 y , Survival in Guture	
Model Indicators	Escapment indicators	Current Mgmi.	$50 \% \mathrm{ER}$. Reduction	Current Mgnit.	$50 \% \mathrm{EL}, \mathrm{R}$ Redirtion
Alaska South SE ${ }^{1}$	King Salmon, Andrew Cr., Blossom, Keta, Unuk, Chickamin	NA	NA	NA	NA
NCBC	Yakoun, Nass, Skeena, Areas 6 \& 8 Indices, Rivers \& Smith Inlets	1992	1992	1997	1992
Fraser Early	Upper and Middle Fraser, Thompson R.	1994	1994	84\%	1995*
Fraser Late	Harrison River	1998	1995	1998	1995
WCVI Natural	WCVI Index (7 streams)	69\%	1997 *	45\%	1997 *
Georgia Strait Upper	UGS Index (6 streams)	59%	79%	17\%	27\%
Georgia St. Lower Wild	LGS Index (3 streams)	1998	1995	1998	1995
Skagit Wild	Skagit summer/fall	58\%	83\%	28\%	42\%
Stillaguamish Wild	Stillaguamish	56%	81\%	40\%	60\%
Snohomish Wild	Snohomish	62\%	1996 *	37\%	66\%
WA Coastal Wild ${ }^{1}$	Quillayute summer \& fall, Grays Harbor spring \& fall, Hoh spr/sum \& fall, Queets spr/sum \& fall	NA	NA	NA	NA
Upriver Brights	Col. Upriver Bright	1996	1995	77\%	1995 *
Lewis Wild	Lewis River	1996	1994	1997	1996
Col. River Summer	Col. Upriver summer	48\%	58\%	28\%	36\%
Oregon Coast ${ }^{1}$	NOC \& MOC	NA	NA	NA	NA

[^2]Table 4-2. Comparison of recent five-year average survival to long term average survival for 15 wild model indicator stocks.

Molel Indicator Stock	Syear Aym. Simyinal is a Proportion of long Tem. hys. Survival	Model Indicator Stock	SMear a ye Sumyival as a Proportion of liong Term. Ays. Suryival
Alaska South SE	0.43	Stillaguamish Wild	0.77
NCBC	0.83	Snohomish Wild	0.64
Fraser Early	0.66	WA Coastal Wild	0.96
Fraser Late	1.17	Upriver Brights	0.28
WCVI Natural	0.91	Lewis Wild	0.49
Georgia Strait Upper	0.35	Col. River Summer	0.63
Georgia St. Lower Wild	1.07	Oregon Coast	0.56
Skagit Wild	0.62		

Table 4-3. Summary of rebuilding responses to survival and harvest assumptions by 12 wild model indicator stocks.

Surinal Irifiection	\#oi Stocl Not Rebuil in 1998					
	Current Haryes Meme.	50\% L.R. Reduction	\% Change	Cument Hismes Mgmt.	50% E. R. Reduction	\% Change
Long Term Average	6	4	-33\%	1	0	-100\%
Recent 5-Year Average	8	5	-38\%	6	3	-50\%

4.4 DISCUSSION

Since the early 1980s, the CTC chinook model has been the primary tool employed by the CTC to evaluate impacts of proposed fishery regimes and enhancement upon the rebuilding program. The model estimates fishery abundance indices and incidental mortality by fishery, quantities not provided by any other tool. The model also provides some alternative assessments that can be compared with results from other chapters. For example, model predictions of the fishery indices and stock mortality distributions can be compared with estimates derived from the CWT-based Exploitation Rate Assessment.

Analysis of alternative management strategies using an early version of the CTC chinook model formed the foundation for the coast wide chinook conservation program adopted by the Parties in 1984. That model was conceptually much less complex than the current model. It included data for only four stock types: 1) Columbia Upriver Brights (represented by Priest Rapids Hatchery stock), an indicator for far-north migrating fall-type stocks originating in Washington and Oregon; 2) Columbia River Tule (represented by Spring Creek hatchery stock), an indicator for early-maturing chinook stocks harvested off the coast of WCVI and Washington; 3) WCVI fall (represented by Robertson Creek Hatchery stock), an indicator for far-north, fall-type stocks originating in Canada;
and 4) GS fall (represented by the Big Qualicum Hatchery stock), an indicator for fall-type stocks that contribute primarily to GS fisheries.

This early version of the model was used to develop a set of management actions that would rebuild depressed natural stocks by 1998 in a manner acceptable to the Parties. The challenge of rebuilding WCVI and GS stocks was most critical in the development of initial management regimes, since the Upriver Bright stock was close to its escapement goal and the Columbia River tule stock primarily represented hatchery production. The response of individual stocks represented by the indicators was expected to vary depending upon stock-specific attributes, including distribution and productivity.

4.4.1 Predictions for Fishery Abundance

The chinook model is the only method that the CTC currently has to predict the relative abundance of chinook available to fisheries. Estimates of stock productivity and forecasts of abundance may be integrated with expectations for management regimes to predict future stock abundance and rebuilding schedules. For short-term (1-2 year) predictions, estimates of changes in chinook abundance by fisheries may be obtained directly from the model calibration. However, recall that fishery-specific estimates assume base-period stock distributions. Since abundance in a given fishery may vary with stock distribution, our best estimate of abundance will be by stock and age across fisheries.

Fishery abundance predictions are highly dependent on the availability of key information, such as stock specific forecasts. In October and November, the months during which this report is prepared, few 1995 forecasts are available. As this information becomes available, the reliability of fishery abundance estimates increases. Abundance estimates made in November provide a preliminary projection of abundance for the upcoming year. Predictions made in November are most useful for predicting trends of abundance in the fisheries.

For SEAK, NCBC, and WCVI, abundance is expected to decrease in 1994 and 1995. If fishery regimes are unchanged, fishery indices in these years can be expected to increase.

It should be noted that there are early indications of abnormally low survivals for several stocks. Consequently, it is recommended that data available through 1994, and forecasts of abundance for 1995, be incorporated into the model before future management regimes are established.

4.4.2 Model Estimates of Fishery Indices

Fishery indices estimated from the model show similar patterns to CWT-based fishery indices, but the values differ for some fisheries. These differences have four primary causes:

1) The CWT based estimates may be biased if not all stock types are proportionately represented and changes in exploitation rates have differentially affected the stocks. Although the model includes more stocks, analyses generally assume that changes in the harvest rates in a fishery affect all stocks equally.
2) Unlike the model-based fishery indices, which are calculated using a fixed set of stocks, the set of stocks included in the CWT-based fishery indices may differ from year to year. This is because the index calculation relies on criteria for including stocks, based on yearly CWT recoveries. If the index for a particular stock is biased, then inclusion or
exclusion of this stock would affect the fishery index estimate.
3) The model employs CWT data collected during the 1979-1982 base period (for most stocks) as an average representation of the harvest pattern of each stock. These average data mask year to year variations in both the spatial distribution of stocks and harvest patterns within a fishery. The CWT-based index captures the variability by using tags recovered annually from fisheries.
4) Procedures used to develop input data and calibrate the model may result in fishery indices that are similar in pattern but different in magnitude from the estimates obtained from the CWT-based assessment. These procedures include the following:
a) Aggregation of tag groups during the model base period.
b) Scaling of stock abundance in the initial year represented in the model (1979).
c) Scaling of exploitation rates for the years between the base period and 1985, when ceilings were imposed.

While model-generated patterns of fishery indices are consistent with those produced by the CWT analysis, the index values differ substantially for some fisheries. For example, the model-based indices for the SEAK fishery are consistently lower than the CWT-based indices. The CTC believes that the fishery index generated by the CWT-based Exploitation Rate Assessment is the best available estimate of the fishery index for the stocks represented in the analysis. Conversely, the model estimates are useful for examining trends within a fishery since 1985, for predicting the effect of future changes in stock abundance upon the fishery indices, and for examining fisheries where few exploitation rate indicator stocks have sufficient recovery data to be used in the fishery index, such as the Georgia Strait sport and troll fisheries.

4.4.3 Incidental Mortality

Although the theory underlying estimation of incidental mortalities is similar for both model representation and CWT-based exploitation rate assessment, the methods do not provide identical information. The CWT-based methods provide estimates of incidental mortality for a CWT group, while the model estimates incidental mortalities on a fishery basis and then distributes those mortalities across all stocks harvested by the fishery. For this reason, only the model can estimate total fishing mortalities by stock and fishery.

In construction of the initial chinook model, assumptions were necessary to represent processes that were not fully understood or for which data were not currently available. One such process involved the estimation of impacts of incidental fishing mortalities. The 1984 model projected impacts of PSC management regimes assuming that the ratio between reported catch and incidental mortality would remain constant. As the Parties implemented catch ceilings, a number of new regulatory measures increased incidental mortalities, e.g., CNR and size limit increases. Algorithms were incorporated into the model to estimate and account for these sources of incidental mortality.

The yearly magnitude of incidental mortalities is a function of fish abundance and management actions. Increasing size limits and conducting CNR fisheries will increase the number of incidental
mortalities regardless of abundance. Since 1985, total incidental mortalities in the PSC management area have ranged from 380,000 to 460,000 . This compares to a 1979-1981 average of 330,000 . The incidental mortality increase since 1982 in SEAK fisheries is due to increased abundance in the SEAK ceiling fishery and increased CNR days. This is in spite of a delay in the starting date for the SEAK troll fishery that has partially offset the increase in CNR days. In Canadian fisheries, only NCBC has been affected by high abundance. Canadian incidental mortality increases have been primarily due to changes in size limits (Table 4-4), with CNR fisheries (Appendix J) making a limited contribution. The increase is particularly apparent in the GS fishery. The incidental mortality decrease in Southern fisheries has been primarily due to an abundance decrease in hook and line fisheries.

Table 4-4. Changes in minimum size limits in troll and sport fisheries since 1979.

Fislieny	Base Mininum Siye Linit		
		Yearor Change	New Minimini. Size Linil
NBC and CBC Troll WCVI Troll	62 cm Fork Length	1987	67 cm Fork Length
Georgia Strait Troll	48 cm Fork Length	$\begin{aligned} & 1983 \\ & 1986 \end{aligned}$	54 cm Fork Length 62 cm Fork Length
Georgia Strait Sport	30 cm Fork Length	$\begin{aligned} & 1981 \\ & 1989 \end{aligned}$	45 cm Fork Length 62 cm Fork Length
Puget Sound Sport	51 cm Total Length	1982	56 cm Total Length

4.4.4 Rebuilding Response to Harvest Reductions

Survival rates, in general, have been decreasing over time and show no indication of improving in the near future. As such, it may be more realistic to model future years using recent five-year average survivals. When recent survivals and current harvest management regimes are assumed, eight stocks are not predicted to rebuild by 1998 . With a 50% exploitation rate reduction, three of these eight stocks are predicted to rebuild: Fraser Early, WCVI, and Upriver Brights. It is important to note that these three stocks are major contributors to both ceiling and nonceiling fisheries. When a 50% exploitation rate reduction is modelled, the number of stocks predicted to be less than 50% of their escapement goal in 1998 also decreases, from six to three.

However, even with a 50% exploitation rate reduction, some natural stocks are not predicted to rebuild by 1998. For some stocks this is because too little time remains in the rebuilding program for this level of exploitation reduction to be effective. For other stocks, it is likely because factors other than harvest are limiting rebuilding. For all of these stocks, additional harvest and non-harvest management actions will be required to achieve rebuilding goals.

The level of exploitation rate reduction examined by the CTC (-50%) does not represent a recommendation. Rather, it was chosen as a large magnitude change implemented equally over all stocks, to investigate rebuilding success under selected survival assumptions. Actual reductions will depend upon policy choices regarding the stocks to rebuild by 1998 and constraints on the management actions that can be taken in the fisheries.

CHAPTER 5. INTEGRATED ASSESSMENTS

5.1 INTRODUCTION

This chapter integrates information from all of the CTC assessments and presents the information in a summarized form for 1) groups of naturally spawning chinook stocks (Section 5.3) and for 2) the four ceiling fisheries and the U.S. nonceiling fisheries (Section 5.4).

Stock groups used in the integrated assessments include wild and hatchery populations that are considered representative of wild chinook stocks in an area. Hatchery populations that are not representative of wild stocks (e.g., Columbia River Tules) are not evaluated in this chapter. Stock groups were defined based on geographic proximity, run timing, and similarity of catch distributions. Grouping stocks is advantageous in that: 1) the consistency of responses within the group may be evaluated; 2) data gaps for a stock may be covered by other stocks within the group; 3) multiple observations within a stock group may reduce errors; 4) results are easier to present and summarize; and 5) appropriate management actions may be more readily discernable. If the stock groupings are appropriate, the variation in the rebuilding response of stocks within a group is likely due to factors other than fishing mortality in the ceiling fisheries.

5.2 METHODS

Analytical methods used in the integrated assessments were described in detail in the 1989 Annual Report (CTC 1990). The following sections provide a brief description of the information presented in this chapter and note changes that have occurred since the 1992 assessment.

Information contained in the summary tables is divided into four major parts:
Part A - Assessment of Escapements, Terminal Harvest Rates, and Predicted Rebuilding Dates;
Part B - MSY Exploitation Rates and Brood Exploitation Rates;
Part C - Distribution of Fishing Mortality and Fishery Exploitation Rates; and
Part D - Abundance and Survival Indices.
Note that in the summary tables, the notation NA indicates that the data are not available while NR indicates that the data are not representative of the naturally spawning stocks associated with each group.

Part A - Assessments of Escapements, Terminal Harvest Rates, and Predicted Rebuilding Dates

Escapement Indicator Stocks. The stocks in each group are ordered by rebuilding status (column 3) for stocks with escapement goals and in alphabetical order for those without defined spawning escapement goals.

The indicator stock name is followed by an index of the average harvest rate in the terminal area during the rebuilding period. The annual terminal harvest rate estimates are converted to an index by dividing the observed harvest rate for each year by the average harvest rate during the 1979-1982 base period used in the Exploitation Rate Assessment (Chapter 3). These annual indices are then averaged for years with valid data during the 1985-1993 period. The terminal harvests reported in Part A of the summary tables are not included in the nonceiling fishery indices computed in Part C of the summary tables. This is because the stocks used to calculate the nonceiling fishery index are typically hatchery stocks and do not necessarily represent the terminal harvest rates of wild stocks.

The third column contains the indicator stock rebuilding status (from Chapter 2) and the fourth contains the escapement goal for the stock. Next are two columns with the escapements averages for the base period and for the last five years (1989-1993), both expressed as a percentage of the escapement goal. Base periods used in this calculation differ among stocks (see Chapter 2, Section 2.2.4).

PSC Chinook Model. The first column lists stocks included in the PSC chinook model that are associated with the stock group.

The second column reports the year in which the stock is predicted to rebuild or the percentage of the escapement goal achieved in 1998. The year rebuilt is defined as the earliest year in which the spawning escapement goal is predicted to be achieved and met in each subsequent year through 1998 . The rebuilding predictions were developed using procedures discussed in Chapter 4.

Part B - MSY Exploitation Rates and Brood Exploitation Rates.

Part B presents information on both the estimated MSY and brood year exploitation rates. Both rates are calculated as actual proportions.

PSC Chinook Model. The first column lists the stocks included in the PSC chinook model (as in Part A). The next column reports the model estimated MSY ER which is the exploitation rate (using AEQ) that is sustainable when spawning escapement is maintained at the stock's established escapement goal. Estimates of the MSY ER are dependent upon the stock-specific productivity estimate used in the chinook model, adjusted for survival patterns estimated through calibration procedures. These productivity estimates were derived using the following procedure:

1) An estimate was made of the stock specific intrinsic rate of increase (Ricker A value) for a Ricker type stock/recruitment function. A procedure was developed for estimating the relative stock productivity using available information on harvest rates and trends in abundance (CTC-AWG Model Documentation 1989). This approach relies on the following key assumptions:
a) harvest rates (as estimated from CWT recovery data on the stock group of interest) and annual survivals were constant during the base period and the four years prior to the base period;
b) escapements are estimated in a consistent manner and without bias;
c) the escapement goals supplied by the agencies are optimum goals and are expressed in units consistent with spawning escapement estimates; and
d) assumptions used in the calibration procedure are valid.
2) During the calibration phase of the model, the productivity function was adjusted (by brood year) by fitting it to observed stock abundance data. This provided an annual time series of correction factors for the initial productivity estimate and that incorporates variations in year to year survival.

The MSY ER was computed using the following formulas. First, the AEQ returning run size $\left(\mathrm{R}_{\mathrm{o}}\right)$ at
optimum escapement was estimated as:

$$
R_{o}=O * s * \exp ^{\left(A *\left(1-\frac{O}{B}\right)\right)}
$$

where :
O : optimum escapement
$A, B \quad$ Ricker stock productivity parameters
s : average productivity adjustment factor
The MSY ER was then computed as:

$$
M S Y E R=1-\frac{O}{R_{o}}
$$

Exploitation Rate Assessment. This section of Part B lists the estimated brood year exploitation rates, presented as an average for the stock group. The exploitation indicator stocks used in each group are shown in Table 3-2 (Chapter 3).

The average brood exploitation rates for the stock group are partitioned into ocean and total mortality. The exploitation rate is reported for brood years contributing to the base period and the rebuilding period. Comparing the exploitation rates for each period gives an indication of the change under PSC management regimes. The amount by which the total value exceeds the estimate of MSY ER for the associated model stocks indicates the minimum reduction required if the escapement goal is ever to be achieved. However, to achieve rebuilding within a specified time, reductions in total exploitation may have to be substantially below the estimated MSY ER.

Part C - Distribution of Fishing Mortality and Fishery Exploitation Rates.

Part C presents results from the Exploitation Rate Assessment (Chapter 3), including distribution of total fishing mortality and indices of total exploitation rates (i.e., stock, fishery and nonceiling indices).

Fisheries included in the total fishing mortality distribution and the fishery index for each ceiling fishery are given in Table 5-1. For the SEAK and NCBC fisheries, all gear types are included in the distribution calculations but the fishery index is reported for the troll gear only. Therefore, caution should be used when comparing the fishery index with the catch distribution information.

Table 5-1. Fisheries included in the total mortality distribution and in the fishery index for each ceiling fishery.

Ceiling Fistiery	Pisheries Included in Distribution of Total Mortality	Eisheries Included in Fishery Index
Southeast Alaska	Troll, Net, Sport	Troll
North/Central British Columbia	Troll, Net, Sport	Troll
West Coast Vancouver Island	Troll	Troll
Strait of Georgia	Troll, Sport	Troll, Sport

Terminal catches are not included in the summary tables when the exploitation rate indicator stock (generally a hatchery stock) was subject to terminal fisheries from which the associated natural stock was not subjected. Fisheries excluded from the total fishing mortality distribution, nonceiling index and from the stock index are identified in Table 5-2. The total fishing mortality distribution data presented in the summary tables differ from those presented in Appendix F due to this exclusion.

Table 5-2. Exploitation indicator stocks and associated fisheries excluded from the total mortality distribution, nonceiling index, and stock indices.

Explorition Indieator. Stocks	Fisheries Excluded
Robertson Creek	WCVI net and sport fisheries.
Samish, Stillaguamish, South Puget Sound Fall Fingerling	Puget Sound terminal net fisheries.
Queets, Sooes Fall Fingerling	Washington coastal net fisheries.
Upriver Bright, Lewis River Wild, Lyons Ferry, Hanford Wild	Columbia River net and sport fisheries.

Distribution of Total Fishing Mortality. The first column lists the ceiling and nonceiling fisheries. The second column reports the 1985-1993 average distribution of total AEQ fishing mortality for the exploitation rate indicator stocks in each stock group.

Stock Index. The first column lists the 1993 stock index for the ceiling and nonceiling fisheries. The second column lists the 1985-1993 average stock index. A stock index was not calculated for fisheries in which the stock group had a low incidence of occurrence (equal to or less than 1% of the total fishing mortality).
Fishery Index. The first column lists the 1993 fishery index for the ceiling fisheries. The second column lists the 1985-1993 mean total mortality fishery index for each ceiling fishery. Values in this portion of
the summary tables are extracted from Table 3-5.
Nonceiling Index. The remaining columns of this section list the nonceiling fishery index. Values are obtained from the exploitation rate assessment (Chapter 3).

Part D - Abundance and Survival Indices.
Survival. The survival indices are based upon CWT release and recovery data for the exploitation rate indicator stocks. The brood year survival indices for individual stocks in each stock group are computed as described in Section 3.1.1 and then are averaged and indexed to the base period. If survival of the exploitation rate indicator stocks is representative of the survival of the stock group, the 1990 and 1991 brood year indices should be an indicator of the brood abundance expected to contribute to fisheries in 1994 and 1995.

Abundance. Abundance indices represent chinook model estimates of age 2 abundance for CTC model stocks associated with the stock group. The index is created by dividing the model estimates of annual abundance of age 2 cohort (age 3 for spring type stocks) by the average initial cohort size during the base period. If the estimated abundance of the chinook model stocks is representative of the abundance of the associated stock group, the 1990 and 1991 brood indices should be an indicator of the brood abundance expected to contribute to fisheries in 1994 and 1995.

5.3 STOCK GROUP SUMMARIES

The remainder of this section contains the stock group summaries as described in part 5.2.

5.3.1 Southeast Alaska/ Transhoundary Rivers Inside (SEAK/TBR-I)

Synopsis. Among the six stocks, rebuilding status ranges across the full spectrum, but ònly one stock (King Salmon) was classified as Not Rebuilding. These stocks are harvested predominantly in SEAK fisheries, with a minor proportion taken in NCBC. Although the fishery index has declined in both SEAK and NCBC, the stock index has not. The stock index has increased 20\% (1985-1993 mean) over the base period, but the stock index may not be indicative of wild stock harvest rates because of limited base period data from sport and net fisheries. The estimated net gear exploitation rate was very small (0.5%) during the base period and any small increase in net catch affects the estimate. For example, the 1993 stock index (25% increase over base) was composed of an estimated 36% decrease in the troll, a 4% decrease in the sport, and a $1,493 \%$ increase in the gillnet components of the stock index.
A. Assessments of Escapements, Terminal Harvest Rates, and Predicted Rebuilding Date

Escapement Indicator Stocks PSC Chinook Model

Indicator Stocks	1985-1993 Terminal HR Index	Status	Goal	$\frac{\%}{\text { Base }}$	$\frac{\text { f Goal }}{1989-1993}$	Indicator Stocks	Year Rebuilt or \% of Goal in 1998
Andrew Creek	NA	Above Goal	750	51\%	146\%	Alaska South SE	1997
Keta Index	NA	Rebuilding	300	85\%	174\%		
Chickamin Index	NA	Rebuilding	525	60\%	104\%		
Unuk Index	NA	Rebuilding	875	105\%	99\%		
Blossom Index	NA	Indeterminate	300	34\%	86\%		
King Salmon	NA	Not Rebuilding	250	37\%	75\%		

B. HSY Exploitation Rates and Brood Exploitation Rates

PSC Chinook Model
Exploitation Rate Assessment (SEAK/TBR-I Stock Group)

Indicator Stocks	MSY ER	Type	Brood Exploitation Rates	
				$\begin{aligned} & \text { Rebuilding } \\ & 1981-1989 \end{aligned}$
Alaska South SE	NA*	Ocean Total	$\begin{aligned} & 0.54 \\ & 0.55 \end{aligned}$	$\begin{aligned} & 0.54 \\ & 0.60 \end{aligned}$

* New escapement goals were not included in the October, 1994 recalibration of the Chinook Model. MSY ER for this stock group will be included in the 1994 assessment.

D. Abundance and Survival Indices

Comments. Results from ADF\&G tagging studies of four of these escapement indicator stocks indicate that ocean rearing of fish from stocks in this group occurs primarily in SEAK inside waters (Pahlke in press, ADF\&G unpublished data). Prior to rebuilding, it was hypothesized that these stocks had excessive exploitation rates in SEAK fisheries. Large-scale time and area reductions during spring SEAK troll and gillnet fisheries contributed to the high escapements in the mid-1980s in the four Behm Canal stocks. These conservation measures remain in place. The recent declines in Behm Canal escapements appear to be due to a combination of reduced marine survival and density dependent freshwater mortality (McPherson and Carlile in prep.). The 1990 brood year survival index has increased from .328 in 1989 to 2.23 for the 1990 brood. Results from a 1994 study on the Unuk River to estimate escapement and spawning distribution indicate that exploitation on the Unuk River is between 13% and 20% in all sampled SEAK fisheries. This study indicates that current exploitation rates are not excessive. ADF\&G believes that a similar study needs to be performed for the Chickamin stock to determine if exploitation rates are excessive. Of the other two stocks in this group, Andrew Creek has consistently been Above Goal since the mid-1980s and King Salmon River has remained relatively static.

5.3.2 Southeast Alaska/ Transboundary Rivers Outside (SEAK/TBR-O)

Synopsis. The Situk is Above Goal and the Taku and Stikine are Rebuilding. The Alsek is classified as Not Rebuilding. These stocks are harvested as mature fish in SEAK fisheries and (with the exception of the Situk) in Canadian inriver fisheries. Exploitation rates of these stocks cannot be directly measured at this time because no indicator stocks are currently marked. This situation may be remedied in future years because the Taku stock has been tagged beginning with the 1991 brood.
A. Assessments of Escapements, Terminal Harvest Rates, and Predicted Rebuilding Date

Escapement Indicator Stocks
PSC Chinook Model

Indicator Stocks	$\begin{array}{r} \text { 1985-1993 } \\ \text { Terminal } \\ \text { HR Index } \end{array}$	Status	Goal	$\frac{\% ~}{\text { Base }}$	$\frac{f \text { Goal }}{1989-1993}$	Indicator Stocks	Year Rebuilt or \% of Goal in 1998
Situk	0.78	Above Goal	600	217\%	147\%	None	
Stikine(TBR)	NA	Rebuilding	5,300	37\%	120\%		
Taku (TBR)	NA	Rebuilding	13,200	35\%	85\%		
Alsek (TBR)	NA	Not Rebuild	4,700	57\%	46\%		

Tables B, C, D. No model or exploitation rate indicator stocks.
Comments. Results from ADF\&G and NMFS tagging of all four escapement indicator stocks indicate that these stocks are not harvested as immature fish in SEAK fisheries (Kissner 1986; Hubartt and Kissner 1987; NMFS unpublished data). The Taku and Stikine Rivers support the largest chinook stocks in SEAK. Both have responded well during the rebuilding period. Prior to 1976, these stocks were targeted primarily in SEAK troll and terminal gillnet fisheries in April through early July. Data from fishwheels operated at mile 12 of the Taku River indicate that 10% of the spawning migration is inriver by May 14 and 90% by June 26 (McGregor et al. 1991); timing in the Stikine is similar. In the late 1970s and early 1980s, increasing time restrictions eliminated most of the spring troll fishery. The troll fishery in the outside area presently does not begin until July 1. Since 1975, the spring SEAK terminal gillnet fisheries have been delayed until late June. The harvest has been reduced to small numbers in the SEAK June troll hatchery access fishery (last conducted in 1992), terminal gillnet and sport fisheries, and in the Canadian inriver fisheries.

The Alsek and Situk are located on the outside coast in the northwest corner of SEAK. Harvest of Situk fish is primarily by inriver SEAK fisheries; tags show little exploitation by the troll fishery. Harvest of Alsek fish is primarily by Canadian and SEAK inriver fisheries. The SEAK gillnet fishery at the river mouth is restricted in the spring to reduce incidental catch of chinook salmon. Neither stock initially responded to rebuilding efforts, even though fisheries in both rivers underwent restrictions to protect returning adults. ADF\&G examined spawner-recruit data for the Situk (which is the most complete set of data of any SEAK stock) and found that harvest rates were below the MSY level and revised the escapement goal downward to 600 (from 2100). It is not obvious why the Alsek has not met the rebuilding schedule, but it is apparent that harvest rates are low. One explanation is that rearing habitat may be reduced, since over the last century much of Dry Bay, at the Alsek river mouth, has filled with sediment.

ADF\&G analysis of information on run timing and distribution from past tagging studies on the Taku, Stikine, and Situk indicates that current ocean harvest of these stocks is probably low. Preliminary indications from a current tagging study on the Alsek suggest that harvest in SEAK salmon fisheries may have little effect on the Alsek rebuilding (ADF\&G, CDFO, unpublished data).

5.3.3 North/Central B.C. Spring/Summer (NCBC)

Synopsis. The rebuilding status of NCBC stocks is similar to last year, with the north coast stocks remaining Above Goal, and the central coast stocks still not rebuilding. One exception is the Nass River which dropped this year to a Not Rebuilding status. The 1985-1993 average terminal harvest rates on the Nass stock were about double the base period level. Although escapements to the Central Coast escapement indicator stocks continue to be depressed (with the exception of Rivers Inlet), the trends in their escapements are highly uncertain. Exploitation rates on central coast stocks can not be estimated due to a lack of quantitative escapement data on tagged stocks. Further, there is increasing concern that the escapements reported have not been monitored with consistent methods.
A. Assessment of Escapements, Terminal Harvest Rates, and Predicted Rebuilding Date

Escapement Indicator Stocks
PSC Chinook Model

Indicator Stocks	$\begin{array}{r} \text { 1985-1993 } \\ \text { Terminal } \\ \text { HR Index } \end{array}$	Status	Goal	$\frac{\%}{\text { Base }}$	$\frac{\text { f Goal }}{1989-1993}$	Indicator Stocks	Year Rebuilt or \% of Goal in 1998
Yakoun	NA	Above Goal	1,580	50\%	123\%	North/Cent BC	1992
Skeena	0.75	Above Goal	41,770	50\%	142\%		
Rivers Inlet	NA	Rebuilding	4,950	50\%	140\%		
Area 6 Index	NA	Not Rebuilding	5,520	50\%	10\%		
Area 8 Index	NA	Not Rebuilding	5,450	50\%	42\%		
Nass	2.00	Not Rebuilding	15,900	50\%	57\%		
Smith Inlet	NA	Not Rebuilding	2,110	50\%	21\%		

B. MSY Exploitation Rates and Brood Exploitation Rates

PSC Chinook Model
Exploitation Rate Assessment (NCBC Stock Group)

		Brood Exploitation Rates Indicator Stocks	MSY ER

C. Fishing Mortalities and Catch Distribution

Exploitation Rate Assessment (NCBC Stock Group)

D. Abundance and Survival Indices

Comments. Terminal area exclusion catches have been included in terminal run and harvest rate estimates. Terminal runs to the Nass River have increased since the base period but increased terminal catches, particularly between 1991-1993, have resulted in reduced spawning escapements.

Interpretation of the NCBC escapement trends are further complicated by inconsistency in escapement monitoring programs. The Yakoun and Skeena data are considered to provide consistent indices of escapement since the base period. However, changes in methods, and annual variation in which streams were surveyed, have complicated each of the other NCBC indices. In the Nass, CDFO monitoring effort has been reduced and monitoring through Native programs increased. The comparability of these data is uncertain. In Area 6, assessments in three of the past four years have not included the largest chinook population, the Kemano River, due to inaccessibility and the glacial nature of that river. In Area 8 escapement monitoring is now largely limited to the Dean River but the monitoring has been quite consistent. The Dean does comprise the vast majority of the Area 8 Natural index. In Smith Inlet, the methods used are poorly documented but recent observations are not considered to be comparable to past observations. Staff presently conducting escapement counts do not expand to total escapement estimates since past methods for expansion are not known. Escapement to Rivers Inlet has been estimated by adult mark-recapture programs since 1991. Frequently, such programs over-estimate stock size due to tag loss and/or tagging mortality. Such an error, however, is difficult to detect and measure. CDFO will review the historical data and stock status of this stock.

In spite of these inconsistencies, CDFO agrees that the escapements to most naturally spawning chinook stocks in central B.C. continue to be depressed. The reason for the lack of rebuilding may be associated with the lower productivity in these populations, or interception of these stocks in local net fisheries. However, due to a lack of tagging or stock identification programs, these alternatives can not be evaluated.

5.3.4 West Coast Vancouver Island Fall (WCVI)

Synopsis. The WCVI populations have recently experienced very rapid declines in marine survivals (brood years 1990 through 1992) and are not expected to meet rebuilding goals by 1998. Total exploitation rates are not presented for this stock since the intensive terminal fisheries on the exploitation rate indicator stocks (Robertson Creek hatchery) are not considered representative of these smaller WCVI populations. Terminal fisheries do impact these populations, but the catches are reported to be small.
A. Assessment of Escapements, Terminal Harvest Rates, and Predicted Rebuilding Date

Escapement Indicator Stocks
PSC Chinook Model

B. HSY Exploitation Rates and Brood Exploitation Rates

PSC Chinook Model
Exploitation Rate Assessment (WCVI Stock Group)

			Brood Exploitation Rates Indicator Stocks	
WCVI Hild	MSY ER	Type	Rebuilding 1976-1979	1982-1989

C. Fishing Mortalities and Catch Distribution

Exploitation Rate Assessment (WCVI Stock Group)

Comments. No terminal harvest rate data are available for these natural populations but terminal catch does occur by both Native and recreational fisheries. The ocean exploitation rate estimated for this stock is less than the MSY ER value, but catch in these terminal fisheries will increase the exploitation rates.

Escapement trends for the stock group do not show continued declines (Chapter 2) but these values are confounded by returns from enhancement programs in many of these rivers.

The lack of response in spawning escapement and recent sharp declines in marine survival is of significant concern to the CTC. This stock group and associated hatchery stocks make important contributions to ocean troll fisheries and their reduced production will change stock compositions in these fisheries. Poor survival and recent ocean exploitation rates will also result very poor terminal runs. This problem will be compounded if exploitation of the stock by the WCVI troll fishery does not decline from the 1992 and 1993 levels.

Marine survival of the exploitation rate indicator stock has now been observed to vary by over two orders of magnitude!

Returns of age 2 males to the Somass River in 1994 were consistent with the poor survival rate assumed during the 1094 model calibration.

5.3.5 Upper Strait of Georgia Summer/Fall (UGS)

Synopsis. While the brood exploitation rates have been substantially reduced, rates remain above MSY levels and this stock continues to be assessed as Indeterminate. This assessment is largely the result of highly variable escapement returns (Appendix A and B). In 1993 the escapement was less than half the goal while in 1992 the escapement was above goal. The average total exploitation rate remains higher than the MSY ER value largely due to the exploitation in SEAK (Stock Index $+41 \%$). It is of particular concern that continued poor survival of the exploitation rate indicator stock is projected. If the poor survival and exploitation levels are representative of the natural stocks, it is unlikely that this stock group will rebuild by 1998.
A. Assessment of Escapements, Terminal Harvest Rates, and Predicted Rebuilding Date

Escapenent Indicator Stocks
PSC Chinook Model

Indicator Stocks	$\begin{array}{r} \text { 1985-1993 } \\ \text { Terminal } \\ \text { HR Index } \end{array}$	Status	Goal	$\frac{\% ~ o}{\text { Base }}$	$\frac{f \text { Goal }}{1989-1993}$	Indicator Stocks	Year Rebuilt or \% of Goal in 1998
Upper Geor St	NA	Indeterminate	5,090	50\%	77\%	Upper Geor St	59\%

B. MSY Exploitation Rates and Brood Exploitation Rates

PSC Chinook Model
Exploitation Rate Assessment (UGS Stock Group)

			Brood Exploitation Rates Indicator Stocks	
MSY ER	Type	Rebuilding $1976-1979$		
Upper Geor St	0.66	Ocean	0.71	0.62
		Total	0.8689	0.73

C. Distribution of Fishing Mortality and Fishery Exploitation Rates

Exploitation Rate Assessment (UGS Stock Group)

| | Distrib Total
 AEQ Mortality
 Fishery | 1985-1993 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Comments. While no terminal harvest rate information is available for these indicator stocks, the terminal harvest is believed to be very low. Total exploitation on the exploitation rate indicator stock, Quinsam Hatchery, remains above the MSY ER value but fishery indices for the major fisheries harvesting this stock are estimated to have been reduced (SEAK, NCBC, and Johnstone St. nets). The apparent reasons for the total exploitation rate value could be: stock specific impacts in SEAK fisheries ($+41 \%$ stock index), harvest in GS fisheries (GS fishery index -12%), and/or reduced productivity of the stock due to poor marine survival. Since the harvest in GS fisheries is limited on this stock, the other two are more likely explanations. The major concern for this stock is the continued recent poor marine survival, particularly for returns to the exploitation rate indicator stock.

Past reports have noted that the use of Quinsam as the exploitation rate indicator stock could misrepresent the natural stocks. There is no other tagged stock to use as the indicator. The Quinsam/Campbell system is located on the mid-east coast of Vancouver Island. Major components of the natural stock group are located north of Johnson Strait on Vancouver Island (Nimpkish River) and in the mainland inlets.

5.3.6 Lower Strait of Georgia Fall (LGS)

Synopsis. The escapement indicator stock was assessed as Not Rebuilding and the 1993 escapement is below the base period level. Terminal harvest rates are double base period values contributing to the reduction in spawning escapements. Contrary to the escapement assessment the model projects that the stock will rebuild in 1998. This apparent inconsistency results from brood exploitation rates that are below MSY ER levels (due to increased enhancement in this stock group) and model assumptions about longer term survival trends (long term average survivals are substantially greater than recently observed survival rates). Given the recent low survival of the exploitation rate indicator stock and limited reductions in brood total exploitation rate, it seems unlikely that this suite of stocks will rebuild by 1998 without additional management actions to reduce exploitation rates.
A. Assessment of Escapements, Terminal Harvest Rates, and Predicted Rebuilding Date

Escapement Indicator Stocks
PSC Chinook Model

Indicator Stocks	$\begin{array}{r} \text { 1985-1993 } \\ \text { Terminal } \\ \text { HR Index } \end{array}$	Status Goal	$\frac{\% \text { of Goal }}{\text { Base 1989-1993 }}$	Indicator Stocks	Year Rebuilt or \% of Goal in 1998
Lower Geor St	2.06*	Not Rebuilding 21,940	50\% 41\%	Lower Geor St	1998

* includes Native inriver harvest but not brood stock removals as included in the terminal run data in Appendix A
B. MSY Exploitation Rates and Brood Exploitation Rates

PSC Chinook Model Exploitation Rate Assessment (LGS Stock Group)

Indicator Stocks	MSY ER	Type	Brood Exploitation Rates	
			$\begin{gathered} \text { Base } \\ 1976-1979 \end{gathered}$	$\begin{aligned} & \hline \text { Rebuilding } \\ & \text { 1982-1989 } \end{aligned}$
Lower Geor St	0.76	Ocean	0.75	0.67
		Total	0.79	0.72

C. Distribution of Fishing Mortality and Fishery Exploitation Rates

Exploitation Rate Assessment (LGS Stock Group)

D. Abundance and Survival Indices

Comments. The rebuilding of this stock continues to be limited by poor survival rates and exploitation in the GS sport fishery (Appendix D). A large portion of the total mortality of the stock occurs in the GS sport fishery due to major incidental mortality increases in the fishery.

The increased MSY ER value in this assessment compared to the value in last year's report results from increased enhancement production. The objective of these increased enhancement releases was to increase chinook production and to supplement the number of natural spawners. Survival of the enhanced production is being monitored to determine whether the production required for rebuilding will be achieved.

5.3.7 Upper Fraser Spring/Summer (UFR)

Synopsis. Two of the indicator stocks in this group are classified as Above Goal and one as Not Rebuilding. The escapements of all three stocks have increased substantially from the base period, although the Thompson stock has remained relatively static for eight consecutive years. Rebuilding progress has likely been achieved through reductions in ocean exploitation and terminal harvest rates. This group is not represented by an exploitation rate indicator stock; therefore, direct measures of exploitation rate cannot be made.
A. Assessment of Escapements, Terminal Harvest Rates, and Predicted Rebuilding Date

Escapement Indicator Stocks PSC Chinook Model

Indicator Stocks	$\begin{array}{r} \text { 1985-1993 } \\ \text { Terminal } \\ \text { HR Index } \end{array}$	Status	Goal	$\frac{\%}{\text { Base }}$	$\frac{f \text { Goal }}{1989-1993}$	Indicator Stocks	Year Rebuilt or \% of Goal in 1998
Upper Fraser	0.50	Above Goal	24,460	50\%	106\%	Fraser Early	1994
Middle Fraser	0.50	Above Goal	18,430	50\%	123\%		
Thompson	0.50	Not Rebuilding	55,710	50\%	69\%		

B. HSY Exploitation Rates and Brood Exploitation Rates PSC Chinook Model

Exploitation Rate Assessment (UFR Stock Group)

		Brood Exploitation Rates Indicator Stocks	
MSY ER	Type	Rebuilding 1976-1979	
Fraser early	0.62	Ocean Total	No indicator stock

C. Distribution of Fishing Mortality and Fishery Exploitation Rates

Exploitation Rate Assessment (UFR Stock Group)
(Note: distribution for this stock group is based on PSC model predictions)
$\left.\begin{array}{|lccccc|}\hline & \begin{array}{c}\text { Distrib Total } \\ \text { AEQ Mortality } \\ \text { 1985-1993 }\end{array} & \text { Stock Index }\end{array}\right)$

D. Abundance and Survival Indices

Comments. Terminal harvest rates for this group declined by 52% from the base period, a result of management actions that reduced catches in the native and commercial gill net fisheries. Distribution estimates from the chinook model show that most fishing mortality for this group occurs in the SEAK and NCBC ceiling fisheries and in the Canadian nonceiling fisheries. It has not been possible to directly measure the impact of these fisheries on this group, however, because CWT's could not be recovered from the inriver native fishery. Recent changes under Canada's Aboriginal Fisheries Strategy may permit the development of several exploitation rate indicator stocks in the future.

5.3.8 Lower Fraser (Harrison) Fall (LFR)

Synopsis. The Harrison River stock is assessed as Not Rebuilding because escapements during the rebuilding period have been trendless and have averaged only 49% of the goal. The more optimistic model prediction is based on improved survivals for the brood years since 1990. Survivals are projected to improve from the poor levels early in the rebuilding program to levels above the longterm average.

Harrison chinook are harvested primarily in the GS and WCVI fisheries, fisheries that have not achieved the projected reductions in harvest rates. This stock is not represented by an exploitation rate indicator stock with escapement estimates. Direct measures of the exploitation rate are, therefore, not available.
A. Assessment of Escapements, Terminal Harvest Rates, and Predicted Rebuilding Date

Escapement Indicator Stocks PSC Chinook Model

Indi cator Stocks	1985-1993 Terminal HR Index	Status Goal	$\frac{\% \text { of Goal }}{\text { Base 1989-1993 }}$	Indicator Stocks	Year Rebuilt or \% of Goal in 1998
Harrison	. 45	Not Rebuilding 241,700	50\% 49\%	Fraser Late	1998

* Indexed to 1984.
B. HSY Exploitation Rates and Brood Exploitation Rates

PSC Chinook Model
Exploitation Rate Assessment (LFR Stock Group)

			Brood Exploitation Rates Indicator Stocks
MSY ER	Type	Rasuilding 1976-1979	
Fraser Late	0.72	Ocean Total	No indicator stock

C. Distribution of Fishing Hortality and Fishery Exploitation Rates

Exploitation Rate Assessment (LFR Stock Group)

FisheryDistrib Total AEQ Mortality		Stock Index		Fishery Index		$\frac{\text { Nonceiling_Index }}{1985-1993}$	
			$\begin{gathered} 1985-1993 \\ \text { Mean } \end{gathered}$	1993	$\begin{gathered} 1985-1993 \\ \text { Mean } \end{gathered}$	Target	$\begin{gathered} 1985-1993 \\ \text { Mean } \end{gathered}$
Ceiling Fisheries							
SEAK	1.4\%		indicator	-26\%	-18\%		
NCBC	3.0\%		indicator	-23\%	-25\%		
WCVI	29.0\%	No	indicator	-1\%	-17\%		
GS	40.3\%		indicator	29\%	-12\%		
Nonceil	isheries						
Canada	7.2\%		indicator			-25\%	No indicator
US	19.1\%		indicator			0\%	No indicator

D. Abundance and Survival Indices

Comments. Terminal harvest rates for this group declined by 50% from the base period, a result of management actions that reduced effort directed at chinook in the Indian fishery and by-catch in the commercial gill net fishery. Distribution estimates from the chinook model show that most fishing mortality for this group occurs in the GS and WCVI ceiling fisheries (neither of which have achieved target harvest rate reductions) and in the U.S. nonceiling fisheries. It has not been possible to directly estimate the impact of these fisheries, however, because of the lack of escapement estimates for the exploitation rate indicator stock. Exploitation rates can be developed if more CWT's are recovered on the spawning grounds, through either increased CWT group size, increased recovery effort, or both.

Exploitation rate trends for Harrison River chinook can be inferred from data for the LGS stock because a large proportion of each stock is harvested in GS and maturity rates are similar between these stocks. Big Qualicum ocean exploitation rates were 70% for the 1987 and 1988 brood years. Harrison River exploitation rates are likely to be at least as high because, outside of GS, exploitation on this stock occurs mainly in WCVI where harvest rates on average have not achieved target reduction levels. The Big Qualicum stock, on the other hand, occurs mainly in the NBC and CBC fisheries where the fishery index has declined substantially and the troll fisheries have moved north and outside, suggesting that impacts would be reduced in the inside waters where LGS are more prevalent. Current exploitation rates on Harrison River chinook, therefore, probably exceed the MSY exploitation rate for this stock.

Survival of this stock during the rebuilding period have been highly variable; however, future survival is predicted to exceed the long-term average. Further, of the stocks harvested in the GS and WCVI fisheries, the Harrison is the only stock where survivals are expected to improve substantially over recent levels. Reduced overall abundance in fisheries managed under catch ceilings may result in an increased harvest rate on the contributing stocks. Increased harvest rates would further limit the rebuilding progress of this stock.

5.3.9 North Puget Sound Spring (NPS-Sp)

Synopsis. Under current management and survival conditions, the Not Rebuilding status of the Skagit spring stock is not likely to improve. Recent year average escapements of this stock have been less than half of the escapement goal and similar to base period levels. The stock group is harvested primarily by GS fisheries and by U.S. nonceiling fisheries. During the rebuilding program, exploitation rates in GS fisheries have not declined as projected, but have actually increased above base period levels. Given its poor survival and low abundance, additional harvest restrictions and/or other measures will need to be taken to rebuild this stock group.

Indicator Stocks	$\begin{array}{r} \text { 1985-1993 } \\ \text { Terminal } \\ \text { HR Index } \end{array}$	Status	Goal	$\frac{\% \text { of Goal }}{\text { Base 1989-1993 }}$	Indicator Stocks	Year Rebuilt or \% of Goal in 1998
Skagit Spr	NA	Not Rebuilding	3,000	42\% 42\%	None	

B. MSY Exploitation Rates and Brood Exploitation Rates PSC Chinook Model

Exploitation Rate Assessment (NPS-Sp Stock Group)

Indicator Stocks	MSY ER	Type	Brood Exploitation Rates	
			$\begin{gathered} \hline \text { Base } \\ \text { 1976-1979 } \end{gathered}$	$\begin{aligned} & \text { Rebuilding } \\ & \text { 1982-1989 } \end{aligned}$
None		Ocean	NA	0.59
		Total	NA	0.68

C. Distribution of Fishing Mortality and Fishery Exploitation Rates

Exploitation Rate Assessment (NPS-Sp Stock Group)

D. Abundance and Survival Indices:No model indicator stock for abundance estimates; no base period data for survival estimates.

Comments. There is little information with which to evaluate this stock group. Lack of base period data precludes the use of the exploitation rate indicator stocks to estimate base period exploitation rates or to estimate the 1985-1993 average stock index.

For many years, conservation measures have been taken to minimize impacts on the maturing component of the spring run. Puget Sound recreational and commercial fisheries have been managed to avoid all direct harvest and minimize incidental harvest of depressed spring chinook stocks. In addition, there has been no terminal harvest of the Skagit spring stock except for 1989 when escapement was predicted (incorrectly) to be above goal.

The Skagit spring stock has not achieved its escapement for more than three consecutive years. This triggered a PFMC review that concluded that the "chronically depressed status...is likely due to a combination of exploitation rates which are too great and reduced productivity due to degradation of habitat" (PSSSRG 1992).

Like the other Puget Sound stock groups, this group is unusual in that a large proportion of its mortality occurs in U.S. nonceiling fisheries. Because of this, harvest reductions in ceiling fisheries benefit escapement less for this stock than for many other stock groups.

5.3.10 North Puget Sound Summer/Fall (NPS-S/F)

Synopsis. The current condition of this stock group is especially poor. All three escapement indicator stocks are classified as Not Rebuilding, with recent year average escapements 60% or less than goal. The model currently predicts that none of the three stocks will rebuild by 1998. For two of the three stocks, escapement declines have not been halted. Harvest rates in terminal fisheries have been reduced by $28-45 \%$. On average, the U.S. nonceiling index has increased by 7% and from 1990-1992 this index was 26% above base period levels. Brood exploitation rates in ocean fisheries alone remain near the MSY ER level. This stock group has experienced extremely poor survival, with recent brood survival less than 10% of base period levels. Abundance has been below base period levels since the early 1980s. Given its poor survival and low abundance, additional harvest restrictions and/or other measures will need to be taken to rebuild this stock group.
A. Assessment of Escapements, Terminal Harvest Rates, and Predicted Rebuilding Dates

Escapement Indicator Stocks PSC Chinook Model

Indicator Stocks	$\begin{array}{r} \text { 1985-1993 } \\ \text { Terminal } \\ \text { HR Index } \end{array}$	Status	Goal	\% of Goal		Indicator Stocks	Year Rebuilt or \% of Goal in 1998
Skagit Sum/Fall	0.55	Not Rebuilding	14,900	89\%	59\%	Skagit	58\%
Stillaguamish	0.60	Not Rebuilding	2,000	41\%	50\%	Stillaguamish	56\%
Snohomish	0.72	Not Rebuilding	5,250	96\%	64\%	Snohomish	62\%

B. MSY Exploitation Rates and Brood Exploitation Rates

PSC Chinook Model
Exploitation Rate Assessment (NPS-S/F Stock Group)

			Brood Exploitation Rates Indicator Stocks	MSY ER

C. Distribution of Fishing Mortality and Fishery Exploitation Rates

Exploitation Rate Assessment (NPS-S/F Stock Group)

D. Abundance and Survival Indices

Comments. In this group, the Stillaguamish is the only stock for which the average escapement has increased relative to the base period. The increased escapement of the Stillaguamish may result from a natural stock supplementation program conducted in this system.

For this stock group, terminal harvest rates have declined since the base period, while the Nonceiling Index (which does not include terminal fisheries) has increased. Across all nonceiling U.S. fisheries, it is currently not possible to tell if impacts have increased or declined since the base period.

While terminal harvest rates have declined substantially for this group, base period levels were high, so actual harvest rates may still be quite high. Further, the run reconstruction method used to estimate terminal harvest of the Stillaguamish and Snohomish stocks probably does not provide a very accurate description of actual conditions. Better estimates of terminal and pre-terminal harvest of this stock group would be very useful.

The Stillaguamish and Snohomish summer/fall stocks have failed to achieve their escapement objectives for more than three consecutive years. This triggered a PFMC review that concluded that the "chronically depressed status... is likely due to a combination of exploitation rates which are too great and reduced productivity due to degradation of habitat" (PSSSRG 1992).

Like the other Puget sound stock groups, this group is unusual in that a large proportion of its mortality occurs in U.S. nonceiling fisheries. Because of this, exploitation rate reductions in ceiling fisheries benefit escapement less than for many other stock groups.

5.3.11 South Puget Sound Summer/Fall (SPS)

Synopsis. Average escapements of the Green River stock have increased substantially since the base period. Escapement declined dramatically in 1993 to less than 50% of the escapement goal. However, this stock is classified as Rebuilding. This stock has likely benefitted both from reduced exploitation rates in ceiling fisheries and from hatchery supplementation of the natural run. Ocean exploitation rates have been reduced by an average of 19 percentage points since the base period. The nonceiling index is not calculated for this stock because it is not considered depressed.
A. Assessment of Escapements, Terminal Harvest Rates, and Predicted Rebuilding Date

Escapement Indicator Stocks
PSC Chinook Model

Indicator Stocks	1985-1993 Terminal HR Index	Status	Goal	$\frac{\% \text { of Goal }}{\text { Base 1989-1993 }}$	Indicator Stocks	Year Rebuilt or \% of Goal in 1998
Green	1.19	Rebuilding	5,800	$99 \% \quad 127 \%$	None	

B. HSY Exploitation Rates and Brood Exploitation Rates

PSC Chinook Model Exploitation Rate Assessment (SPS Stock Group)

			Brood Exploitation Rates Indicator Stocks	
MSY ER	Type	Rebuilding 1976-1979	1982-1989	

C. Distribution of Fishing Hortality and Fishery Exploitation Rates

Exploitation Rate Assessment (SPS Stock Group)

D. Abundance and Survival Indices

Comments. Because escapements of this stock were above goal from 1987 through 1991, harvest in nonceiling fisheries, including terminal fisheries, has averaged above base period levels. As predicted in the 1992 Annual Report, returns declined substantially in 1993, and escapement fell substantially below goal. Survival improved for the 1990 brood, which should lead to improved returns in 1994.

Like the other Puget Sound stock groups, this group is unusual in that a large proportion of its mortality occurs in U.S. nonceiling fisheries. Because of this, exploitation rate reductions in ceiling fisheries benefit escapement less than for many other stocks.

5.3.12 Columbia River Upriver Spring (CUS)

Synopsis. This stock group is classified as Not Rebuilding, and recent average returns have been below base period levels. The outlook for this stock is very poor. Preliminary data show that the 1994 adult wild spring chinook return was only 5,500, less than 7 percent of the escapement goal and a record low. The 1994 jack return was also a record low, suggesting another low adult return in 1995. Although the terminal harvest rate index has increased compared to base period levels, harvest is typically less than 10% of the river mouth run size. Given record low escapements and already low exploitation rates, rebuilding this stock will require actions to increase survival and productivity. The Snake River component of Columbia Upriver Springs was listed (with Snake River summers) as threatened under the U.S. Endangered Species Act (ESA) in 1992 and reclassified as endangered in 1994.
A. Assessment of Escapements, Terminal Harvest Rates, and Predicted Rebuilding Date

Escapement Indicator Stocks PSC Chinook Model

Indicator Stocks	$\begin{array}{r} \text { 1985-1993 } \\ \text { Terminal } \\ \text { HR Index } \end{array}$	Status Goal	$\frac{\% \text { of Goal }}{\text { Base }} 1989-1993$	Indicator Stocks	Year Rebuilt or \% of Goal in 1998
Col UpR Spr	1.61	Not Rebuilding 84,000	33\% 28\%	None	

Tables B, C, D. No model or exploitation rate indicator stocks.

Comments. There is very little information with which to evaluate this stock. Even though some components of the stock have been tagged at levels of 300,000 juveniles since 1984, no exploitation rate or model information is available due to very few tag recoveries in ocean fisheries.. Low numbers of ocean tag recoveries for this stock group suggest that harvest reductions in the PSC ceiling fisheries may not contribute to increased escapement of this stock.

5.3.13 Washington Coastal Spring/Summer/Fall, Columbia River Summer/Fall, and Oregon Coastal Fall North Migrating (WACO)

Synopsis. Except for the Columbia Upriver Summer stock, all stocks in this stock group with escapement goals are classified as Above Goal or Rebuilding. (Although the Columbia Upriver Brights are Above Goal, the Snake River component of this stock was listed as threatened under the U.S. ESA in 1992 and reclassified as endangered in 1994). These stocks benefitted from greater than average survivals during the early years of the rebuilding program. However, survival rates have declined substantially, and have been below base period levels since 1985. The 1991 brood group survival index is only 5 percent of the base period average. The terminal run size for most of these stocks has declined since the mid 1980s, even though the nonceiling fishery index shows harvest rates have been reduced 33% in preterminal fisheries. Terminal fishery harvest rates have also been significantly reduced. In spite of these harvest management measures, further management actions may be required to maintain rebuilding progress of some stocks in this group.

The escapement status of the Columbia Upriver Summer stock is of particular concern. Recent escapements are below base period levels, and extremely poor juvenile survival has contributed to poor recruitment. The chinook model predicts that the stock will achieve only 48% of its escapement goal by 1998 under the current management regime. Additional actions to increase survival and productivity will be required to rebuild the Columbia Upriver Summer stock by 1998. The Snake River component of the summer run has recently been reclassified as endangered (with Snake River springs) under the U.S. ESA.
A. Assessment of Escapements, Terminal Harvest Rates, and Predicted Rebuilding Dates

Escapement Indicator Stocks
PSC Chinook Model

Indicator Stocks	$\begin{gathered} \text { 1985-1993 } \\ \text { Terminal } \\ \text { HR Index } \end{gathered}$	Status	Goal	$\frac{\% ~ o}{\text { Base }}$	$\frac{f \text { Goal }}{1989-1993}$	Indicator Stocks	Year Rebuilt or \% of Goal in 1998
Quillayute Sum	0.61	Above Goal	1,200	104\%	123\%	WA Coastal Wild	NA
Col UpR 8right	1.70	Above Goal	40,000	71\%	147\%	Col UpR Sum	48\%
Lewis River	1.03	Above Goal	5,700	228\%	214\%	Col UpR Bright	1996
Grays Hbr Spr	0.16	Rebuilding	1,400	32\%	114\%	Lewis	1996
Grays Hbr Fall	1.08	Rebuilding	14,600	59\%	120\%	Oregon Coastal	NA
Col UpR Sum	0.58	Not Rebuilding	85,000	27\%	26\%		
Deschutes Fall	0.67	NA	NA	NA	NA		
Hoh Fall	1.56	NA	NA	NA	NA		
Hoh Spr/Sum	1.16	NA	NA	NA	NA		
Mid Ore Coast	NA	NA	NA	NA	NA		
North Ore Coast	NA	NA	NA	NA	NA		
Queets Fall	0.70	NA	NA	NA	NA		
Queets Spr/Sum	1.02	NA	NA	NA	NA		
Quillayute Fall	1.10	NA	NA	NA	NA		

B. MSY Exploitation Rates and Brood Exploitation Rates

PSC Chinook Model
Exploitation Rate Assessment (WACO Stock Group)

			Brood Exploitation Rates Indicator Stocks	MSY ER

C. Distribution of Fishing Mortality and Fishery Exploitation Rates Exploitation Rate Assessment (WACO Stock Group)

D. Abundance and Survival Indices

Comments. No exploitation rate indicator stock is currently assessed for Columbia Upriver Summers. The Wells Hatchery indicator stock for the Mid-Columbia component of Columbia Upriver Summers has been contaminated with fall chinook broodstock. PSC indicator stock tagging at McCall Hatchery for the Snake River component of Columbia Upriver Summers can not be assessed due to very few CWT recoveries, despite annual releases of over 300,000 tagged fish.

The CTC uses Lyons Ferry Hatchery CWT releases of fingerling fall chinook to represent Snake River wild fall chinook in both the exploitation rate assessment and the PSC chinook model. The CTC encourages the tagging and release of Lyons Ferry fingerlings to allow continued evaluation of
this stock.

In the chinook model, a single stock is used to represent both Priest Rapids Hatchery production and natural stock production. Because of this, the MSY ER for the Columbia Upriver Bright stock is not representative of natural production.

The chinook model predicts that the Columbia Bright and Lewis Wild stocks will not reach their escapement goals in 1995. This may not be realistic. While ocean escapements of these stocks are predicted to be down considerably in 1995, inriver harvest rates were assumed to remain at a long term average in the model run. In fact, Columbia River fall fisheries are managed to achieve escapement goals, and reduced returns would result in reduced harvest rates.

With the addition of two stocks this year, this stock group has grown to include 14 escapement indicator stocks and seven exploitation indicator stocks. The CTC is considering splitting this group into two stock groups, perhaps based on geographic location of adult returns.

5.4 FISHERY SUMMARIES

Unlike all other sections of this report, Table 5.3 presents information from a fisheries perspective on the rebuilding status of contributing stocks. The four ceiling fisheries and the nonceiling U.S. fisheries are considered; Canadian nonceiling fisheries were excluded because of small catch magnitudes in the net fisheries and lack of data in the WCVI recreational fishery. For each fishery, a stock grouping is listed if at least 10% of its total fishing mortality occurs in that fishery, and model stocks are listed that cumulatively account for 90% of the total catch in the fishery. Rebuilding status of the escapement indicator stocks for the stock groupings listed for each fishery are presented in Table 5.3 with the fishery abundance index and fishery (exploitation) index for the fishery.

5.4.1 SEAK Fishery

Seven of the 13 stock groups have at least 10% of their harvest in the SEAK fishery. These stock groups originate from the Pacific Northwest (excluding Puget Sound) to Southeast Alaska, and include 33 of the escapement indicator stocks. Declines in escapement have not been halted for six (18%) of these stocks. Of the 25 escapement indicator stocks in these stock groups that have escapement goals, 56% are Above Goal or Rebuilding, while 36% are Not Rebuilding.

Eight model stocks account for 90% of the catch, including stocks from the Oregon Coast to Northern British Columbia. Four of these are wild stocks for which model projections of future rebuilding status can be made: Upriver Brights, NCBC, Fraser Early, WCVI Natural. Three are projected to rebuild by 1998; the exception is WCVI Natural.

Overall abundance of stocks in the SEAK fishery has been substantially above pre-treaty levels, averaging double the base period from 1985-1993. Abundance has declined in recent years, however, and is projected to be near base period levels in 1995.

The SEAK fishery index has declined since 1984, although not to the extent projected by the 1984 model. On average since 1985 , the exploitation rate indices have decreased by 18%, which is 38% above the projected average. The decrease in exploitation observed in 1993 was 26%, which is 45% above the projection for 1993.

5.4.2 NCBC Fishery

Six of the 13 stock groups have at least 10% of their harvest in the NCBC fishery. These stock groups originate from the Pacific Northwest (excluding Puget Sound) to Northern British Columbia, and include 27 of the escapement indicator stocks. Declines in escapement have not been halted for six (22%) of these stocks. Of the 19 escapement indicator stocks in these stock groups that have escapement goals, 53% are Above Goal or Rebuilding, while 42% are Not Rebuilding.

Eleven model stocks account for 90% of the catch, including stocks from the Oregon Coast to Northern British Columbia. Six of these are wild stocks for which model projections of future rebuilding status can be made: Upriver Brights, NCBC, Fraser Early, Fraser Late, Upper GS, and WCVI Natural. Four are projected to rebuild by 1998; the exceptions are WCVI Natural and Upper GS.

Table 5-3. Stock groups, escapement indicator stocks, model stocks, abundance indices, and fishery indices for the four ceiling fisheries and US nonceiling fisheries.

\%月\&\%. L / Statistic	SEAK		NCBC		WCYI		GS		US Monceling	
Stock groups with at least 10% of their total mortality caused by the fishery The proportion of total fishing mortality caused by the fishery is in parenthesis.	SEAK/TBR-I UGS NCBC WCVI WACO UFR LGS	$\begin{aligned} & (98.2 \%) \\ & (50.7 \%) \\ & (47.4 \%) \\ & (42.2 \%) \\ & (32.7 \%) \\ & (32.0 \%) \\ & (18.3 \%) \end{aligned}$	NCBC UGS UFR waco WCVI LGS	$\begin{aligned} & (42.7 \%) \\ & (34.7 \%) \\ & (30.5 \%) \\ & (22.8 \%) \\ & (21.6 \%) \\ & (19.6 \%) \end{aligned}$	LFR WACO NPS-S/F SPS WCVI	$\begin{aligned} & (29.0 \%) \\ & (27.1 \%) \\ & (23.4 \%) \\ & (21.3 \%) \\ & (10.3 \%) \end{aligned}$	LGS LFR NPS-Sp NPS-S/F SPS	(50.5%) (40.3%) (39.4%) (24.8%) (11.1%)	SPS NPS-S/F NPS-Sp LFR WACO UFR	$\begin{aligned} & (61.0 \%) \\ & (39.0 \%) \\ & (38.1 \%) \\ & (19.1 \%) \\ & (14.5 \%) \\ & (12.2 \%) \end{aligned}$
Escapement Indicator Stocks Total Stocks with Goals Above Goal or Rebuilding Not Rebuilding Indeterminate Total Stocks Decline Not Halted	$\begin{array}{r} 25 \\ 14 \\ 9 \\ 2 \\ 33 \\ 6 \end{array}$	(56\%) (36\%) (8\%) (18\%)	$\begin{array}{r} 19 \\ 10 \\ 8 \\ 1 \\ 27 \\ 6 \end{array}$	$\begin{aligned} & (53 \%) \\ & (42 \%) \\ & (5 \%) \\ & (22 \%) \end{aligned}$	$\begin{array}{r} 12 \\ 6 \\ 6 \\ 0 \\ 20 \\ 4 \end{array}$	(50\%) (50\%) (20\%)	$\begin{aligned} & 7 \\ & 1 \\ & 6 \\ & 0 \\ & 7 \\ & 3 \end{aligned}$	(14\%) (86%) (43\%)	$\begin{array}{r} 13 \\ 6 \\ 7 \\ 0 \\ 21 \\ 4 \end{array}$	(46\%) (54\%) (19\%)
Model stocks that account for 90% percent of total catch in the fishery (listed in order of contribution)	WCVI Hatchery Upriver Brights NCBC Oregon Coast Fraser Early WCVI Natural WA Coastal Wild Mid. Col. Brights		WCVI NCBC Upriver Oregon Fraser Fraser Upper WCVI Wa Coa Willame WA Co	y Id chery atchery	WCVI Hatc Fraser Late Lower Bonn Upriver Bri Nooksack F PS Hatchery WCVI Natu Oregon Coa PS Natural Spr Creek Mid. Col. B WA Coastal	ry Hatchery ts Fing 1 tchery ghts Wild	Fraser La Nooksack Lower GS Lower GS PS Hatcher PS Yearlin PS Natural WCVI Ha Lower Bo	tchery Fing ry Hatchery	Varies by Fishery	
Fishery Abundance Index (Base Period $=1.00$) 1985-1993 Average 1995 Projection	$\begin{aligned} & 2.00 \\ & 1.00 \end{aligned}$		$\begin{aligned} & 1.45 \\ & 0.94 \end{aligned}$		$\begin{aligned} & 0.88 \\ & 0.66 \end{aligned}$		$\begin{aligned} & 0.67 \\ & 0.97 \end{aligned}$		Varies by Fishery	
Fishery Index Change from Base 1985-1993 Projection in 1984 1985-1993 CWT Estimated	$\begin{aligned} & -29 \% \\ & -18 \% \end{aligned}$		$\begin{aligned} & -32 \% \\ & -25 \% \end{aligned}$		$\begin{aligned} & -25 \% \\ & -17 \% \end{aligned}$		$\begin{aligned} & -47 \% \\ & -12 \% \end{aligned}$		0%	
1993 Projection in 1984 1993 CWT Estimated	$\begin{aligned} & -47 \% \\ & -26 \% \end{aligned}$		$\begin{aligned} & -51 \% \\ & -23 \% \end{aligned}$		$\begin{aligned} & -27 \% \\ & -1 \% \end{aligned}$		$\begin{aligned} & -61 \% \\ & 29 \% \end{aligned}$		0%	

Overall abundance of stocks in the NCBC fishery has been substantially above pre-treaty levels, averaging 1.45 of the base period from 1985-1993. Abundance has declined in recent years, however, and is projected to be near base period levels in 1995.

The NCBC fishery index has declined since 1984, although not to the extent projected by the 1984 model. On average since 1985, the exploitation rate has decreased 25%, which is 22% above the projected average. The decrease in exploitation observed in 1993 was 23%, which is 55% above the projection for 1993.

5.4.3 WCVI Fishery

Five of the 13 stock groups have at least 10% of their harvest in the WCVI fishery. These stock groups originate from the Pacific Northwest (including Puget Sound) and Southern British Columbia, and include 20 of the escapement indicator stocks. Declines in escapement have not been halted for four (20%) of these stocks. Of the 12 escapement indicator stocks in these stock groups that have escapement goals, 50% are Above Goal or Rebuilding, while 50% are Not Rebuilding.

Twelve model stocks account for 90% of the catch, including stocks from the Oregon Coast to Southern British Columbia. Three of these are wild stocks for which model projections of future rebuilding status can be made: Upriver Brights, Fraser Late, and Upper GS. Three of these are projected to rebuild by 1998; the exception is WCVI Natural.

Overall abundance of stocks in the NCBC fishery has declined relative to pre-Treaty levels, averaging 0.88 of the base period from 1985-1993. Relative abundance in 1995 is projected to be 66% of the base period, which would be the lowest since 1979.

The WCVI fishery index has declined on average since 1984, although not to the extent projected by the 1984 model. On average since 1985, the exploitation rate indices have decreased by 17%, which is 32% above the projected average. The exploitation rate has increased since 1991 , and was 1% below base in 1993. This is 96% above the 1984 model projection for 1993.

5.4.4 GS Fishery

Five of the 13 stock groups have at least 10% of their harvest in the WCVI fishery. These stock groups originate from Puget Sound and Southern British Columbia, and include seven of the escapement indicator stocks. Declines in escapement have not been halted for three (43\%) of these stocks. All seven of the escapement indicator stocks in these stock groups have escapement goals; 14% are Above Goal or Rebuilding, while 86% are Not Rebuilding.

Nine model stocks account for 90% of the catch, including stocks from the Columbia River to Southern British Columbia. Two of these are wild stocks for which model projections of future rebuilding status can be made: Fraser Late, Lower GS, and PS Natural. Both of these are projected to rebuild by 1998.

Overall abundance of stocks in the GS fishery has generally been below pre-treaty levels, averaging 0.67 of the base period from 1985-1993. Abundance has increased since 1991, however, and is projected to be close to base period in 1995.

The GS fishery index has declined on average since 1984, although not to the extent projected by the 1984 model. On average since 1985 , the exploitation rate indices have decreased 12%, which is 74% above the projected average. The exploitation rate has increased since 1990 , and was 29% above base in 1993. This is 148% above the 1984 model projection for 1993.

5.4.5 U.S. Nonceiling Fisheries

Six of the 13 stock groups have at least 10% of their harvest in the suite of fisheries included in the US nonceiling fisheries. These stock groups originate from the Columbia River, Washington Coast, Puget Sound, and the Fraser River, and include 21 of the escapement indicator stocks. Declines in escapement have not been halted for four (19%) of these stocks. Of the 13 escapement indicator stocks in these stock groups that have escapement goals, 46% are Above Goal or Rebuilding, while 56% are Not Rebuilding.

Model stocks that account for most of the catch vary widely among the different fisheries that comprise the US nonceiling fisheries; it was inappropriate to pool across the component fisheries to derive overall contribution or abundance estimates.

The fishery index for nonceiling fisheries also varies by fishery and by stock. For Puget Sound stocks, exploitation rates in the nonceiling fisheries have averaged 7% above base period since 1987, and 26% above base in 1993. In contrast, exploitation rates for WACO stocks have averaged 33% below base since 1985, and were 21% below base in 1993.

5.5 SUMMARY AND CONCLUSIONS

The Integrated Assessment of the stock groups indicates that the response of stocks to the PST management regime has been highly variable. Among the stock groups which included more than one escapement indicator stock, there is only one instance (NPS-S/F) in which the rebuilding status of all stocks is equivalent, and in some instances, the status ranges from Above Goal to Not Rebuilding. In general, any similarity in response of stock groups can be related to the fishing patterns shared by stock groups and brood year survival variation within the group.

In contrast, with the exception of the GS fishery, the Integrated Assessment by fishery indicates a degree of consistency among the ceiling and U.S. nonceiling fisheries:

1) the percentage of the escapement indicator stocks assessed as Decline Not Halted ranged from 18% in the SEAK fishery to 22% in the NCBC fisheries;
2) the percentage of the escapement indicator stocks assessed as Not Rebuilding ranged from 36% in SEAK to 54% in the U.S. nonceiling fishery;
3) abundance is projected to be near the base period level in 1995 in the SEAK, NCBC, and GS fisheries.

The status of stocks in the GS fishery is worse than for the other fisheries, with six of seven escapement indicator stock not rebuilding.

The projections for 1995 of abundance near or less than the base period level are of particular concern. With 44% of the escapement indicator stocks assessed as Not Rebuilding, and at most 4 years remaining in the rebuilding program, drops in abundance of this magnitude coupled with catches fixed at the current ceiling levels would make it unlikely that the objectives of the chinook rebuilding would be achieved. Further delays in responding to reduced abundances would increase the potential for even more severe disruptions of future fisheries to successfully complete the rebuilding program. More accurate projections of fishery abundance indices and analyses of fishery management options can be provided by the CTC when revised estimates of abunclance become available in January of 1995.

Rebuilding some specific stocks should be expected to require more detailed stock-specific investigations (e.g., examination of the biological basis of the escapement goal) and actions (e.g., habitat improvements, supplementation). Management of ocean fisheries using catch ceilings must be responsive to changes in abundance and stock productivities in order to achieve target harvest rate reductions but detailed stock-specific actions will likely also be required to rebuild all the indicator stocks.

REFERENCES CITED

ADF\&G. 1993. 1993 annex: Chinook salmon plan for southeast Alaska. ADF\&G Commercial Fisheries Management and Development Division, Juneau, Alaska.

Andrew, J.H., M. Lightly, and T.M. Webb. 1988. Abundance, age, size, sex and coded wire tag recoveries for chinook salmon escapements of Campbell and Quinsam Rivers, 1985. Can. MS Rep. Fish. Aquat. Sci. 2007: 46p.

Bocking, R.C., K.L. English, and T.M. Webb. 1990. Abundance, age, size, sex, and coded wire tag recoveries for chinook salmon escapements of Campbell and Quinsam Rivers, 1986-1988. Can. MS Rep. Fish. Aquat. Sci. 2065: 136p.

Bocking, R.C. 1991 Abundance, age, size, sex, and coded wire tag recoveries for chinook salmon escapements of Campbell and Quinsam Rivers, 1989-90. Can. MS Rep. Fish. Aquat. Sci. 2124: $\mathrm{X}+109 \mathrm{p}$.

CRFMP. 1988. Columbia River Fisheries Management Plan.
CTC (Chinook Technical Committee). 1984. Report of the U.S./Canada technical committee on chinook salmon.
-"- 1987. Assessing progress towards rebuilding depressed chinook stocks. Pacific Salmon Commission, Report TCCHINOOK (87)-2. Vancouver, British Columbia, Canada.
-"- 1987b. Chinook technical committee report to the November, 1987 meeting of the Pacific Salmon Commission. Pacific Salmon Commission, Report TCCHINOOK (88)-5. Vancouver, British Columbia, Canada.
-"- 1988. 1987 annual report. Pacific Salmon Commission, Report TCCHINOOK (88)-2. Vancouver, British Columbia, Canada.
-"- 1989. 1988 annual report. Pacific Salmon Commission, Report TCCHINOOK (89)-2. Vancouver, British Columbia, Canada.
-"- 1990. 1989 annual report. Pacific Salmon Commission, Report TCCHINOOK (90)-3. Vancouver, British Columbia, Canada.
-"- 1990b. Estimates of chinook salmon interceptions: A report to the Joint Interceptions Committee. Pacific Salmon Commission, Report TCCHINOOK (90)-2. Vancouver, British Columbia, Canada.
-"- 1991. Perspectives, concepts and definitions involved in the PSC chinook rebuilding program.Pacific Salmon Commission, unpublished report. Vancouver, British Columbia, Canada.
-"- 1991b. 1990 annual report. Pacific Salmon Commission, Report TCCHINOOK (91)-3. Vancouver, British Columbia, Canada.
-"- 1992. 1991 annual report. Pacific Salmon Commission, Report TCCHINOOK (92)-4. Vancouver, British Columbia, Canada.
-"- 1992b. Long-term research plans for coastwide Pacific chinook stocks. Pacific Salmon Commission, Report TCCHINOOK (92)-3. Vancouver, British Columbia, Canada.
-"- 1993. 1992 annual report. Pacific Salmon Commission, Report TCCHINOOK (93)-2. Vancouver, British Columbia, Canada.
-"- 1994. Review of escapement goal change for Behm Canal stocks. Pacific Salmon Commission, CTC Technical Note 9404. Vancouver, British Columbia, Canada.
-"- 1994b. Chinook Technical Committee protocol for addressing escapement goal changes. Pacific Salmon Commission, CTC Technical Note 9403. Vancouver, British Columbia, Canada.

Firth, H. R., B.L. Nass, and T.C. Nelson. 1993. Abundance, age, size, sex, and coded wire tag recoveries for chinook salmon escapements of Campbell and Quinsam Rivers, 1991. Can. MS Rep. Fish. Aquat. Sci. 2199.

Hubartt, D., and P. Kissner. 1987. A study of chinook salmon in Southeast Alaska. Alaska Department of Fish and Game, Division of Sport Fish, Fisheries Data Series No. 32, Juneau.

Kissner, P. 1987. A study of chinook salmon in Southeast Alaska. Alaska Department of Fish and Game, Division of Sport Fish, Annual Report 1986-1987. Vol. 26, AFS41-12. Juneau.

Kuhn, B.R., L. Lapi, and J.M. Hamer. 1988. An introduction to the Canadian database on marked Pacific salmon. Can. Tech. Rep. Fish. Aquat. Sci. 1649: 54p.

McGregor, A.J., P.A. Milligan, and J.E. Clark. 1989. Adult mark-recapture studies of Taku River salmon stocks in 1989. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Fisheries Report 91-05, Juneau.

McPherson, S.A. and J.K. Carlile. In prep. Spawner-recruit analysis of Behm Canal chinook salmon stocks.

ODFW \& WDF (Washington Department of Fisheries \& Oregon Department of Fish \& Wildlife). 1994. Status Report: Columbia River fish runs \& fisheries, 1938-93. The Columbia River Management Joint Staff, 1994.

Pahlke, K.A. In prep. Behm Canal wild chinook salmon coded-wire-tagging studies, 1983-1993. ADF\&G, Commercial Fisheries Management and Development Division, Fisheries Research Bulletin, Juneau, Alaska.

PSC (Pacific Salmon Commission). 1991. A report to the Pacific Salmon Commission on a workshop held at Vancouver, B.C. January 10 and 11 1991, to explore alternative chinook management approaches. Pacific Salmon Commission, file 72006.

PSSSRG (Puget Sound Salmon Stock Review Group). 1992. Assessment of the status of five stocks
of Puget Sound chinook and coho as required under the PFMC definition of overfishing: Technical report. Pacific Fisheries Management Council, Portland, Oregon.

Shardlow, T.F., T. Webb, and D.T. Lightly. 1986. Chinook salmon escapement estimation of the Campbell and Quinsam River in 1984; accuracy and precision of mark/recapture techniques using tagged salmon carcasses. Can. Tech. Rep. Fish. Aquat. Sci. 1507: 52 p.

TBTC (Transboundary Technical Committee). 1991. Escapement goals for chinook salmon in Alsek, Taku, and Stikine rivers. Pacific Salmon Commission, Report TCTR(91)-4. Vancouver, British Columbia, Canada.
-"- 1993. Transboundary river salmon production, harvest and escapement estimates, 1991. Pacific Salmon Commission, Report TCTR(93)-1. Vancouver, British Columbia, Canada.

APPENDIX A

Tables of Escapements and Terminal Runs

Page
Southeast Alaska A-1
Transboundary Rivers A-1
Northern B.C A-2
Southern B.C. A-2
Fraser River A-2
Puget Sound A-3
Washington Coast A-3
Columbia River A-4
Oregon A-4

Escapements and terminal runs of PSC Chinook Technical Committee natural chinook escapement indicator stocks, 1975-1993.

Year	Southeast Alaska					
		t.run	King Salmon esc.	Andrew esc.	Blossom (index) esc.	Keta (index) esc.
1975	1510	2099	53	416	146	203
1976	1433	2676	81	404	68	84
1977	1732	2833	168	456	112	230
1978	814	1456	71	388	143	392
1979	1400	2735	89	327	54	426
1980	905	2284	88	282	89	192
1981	702	1752	113	536	159	329
1982	434	772	286	672	345	754
1983	592	1043	245	366	589	822
1984	1726	2439	250	389	508	610
1985	1521	2597	171	510	709	624
1986	2067	2393	245	1131	1278	690
1987	1884	2698	193	1261	1349	768
1988	885	1453	206	760	384	575
1989	652	1081	238	848	344	1155
1990	700	1214	168	1062	257	606
1991	875	1865	134	640	239	272
1992	1400	2912	117	1245	150	217
1993	790	2237	280	1696	303	362
Goal	600		250	750	300	300

	Transboundary Rivers				
Year	Alsek (Klukshu) esc.	Taku (6 stocks) esc.	S Sikine (L.Tahltan) esc.	Unuk (index) esc.	Chickamin (index) esc.
1975		2089	1400		370
1976	1153	4726	800		157
1977	2894	5671	1600	974	363
1978	2676	3305	1264	1106	308
1979	4274	4156	2332	576	239
1980	2487	7544	4274	1016	445
1981	1963	9786	6668	731	384
1982	1969	4813	5660	1351	571
1983	2237	2062	1188	1125	559
1984	1572	3909	2588	1837	1102
1985	1283	7208	3114	1184	956
1986	2607	7520	2891	2126	1745
1987	2491	5743	4783	1973	975
1988	1994	8626	7292	1746	786
1989	2289	9480	4715	1149	934
1990	1742	12249	4392	591	564
1991	2248	10153	4506	655	487
1992	1246	11058	6627	883	346
1993	3302	13204	11449	1068	389
Goal	4700	13200	5300	875	525

Escapements and terminal runs of PSC Chinook Technical Committee natural chinook escapement indicator stocks, 1975-1993 (continued).

Year	Northern B.C.								
	AREA 1 Yakaun esc.		$\begin{aligned} & 3 \\ & \text { t.run } \end{aligned}$	AREA Skeen esc.	t.run	AREA 6 Index	AREA 8 Index	AREA 9 Rivers Inlet	AREA 10 Smith Inlet
1975	1500	6025		20319		2225	4425	3280	960
1976	700	5590		13078		2765	3550	1640	1000
1977	800	9060	11460	29018	39606	1820	3600	2225	1050
1978	600	10190	11975	22661	35055	3912	4000	2800	2100
1979	400	8180	9788	18488	28166	3455	4600	2150	500
1980	600	9072	11186	23429	38626	1935	2529	2325	1200
1981	750	7950	9443	24523	42018	1502	3550	3175	1020
1982	1400	6575	8426	17092	35185	4150	220	2250	1500
1983	600	8055	13949	23562	39510	2845	650	3320	1050
1984	300	12620	14380	37598	53516	1914	4700	1400	770
1985	1500	8002	11121	53599	76544	1509	4550	3371	230
1986	500	17390	22775	59968	87566	2615	3362	7623	532
1987	2000	11431	15849	59120	76349	1566	1456	5239	1050
1988	2000	10000	14140	68705	102563	3165	1650	4429	1050
1989	2800	12525	17526	57202	83439	998	2535	3265	225
1990	2000	12123	15607	55976	89447	281	2385	4039	510
1991	1900	4017	12162	52753	79343	709	2470	6635	500
1992	2000	7312	18003	63392	92184	340	3247	10000	500
1993	1000	9715	16850	66977	96018	462	700	10610	500
Goal	1580	15890		41770		5520	5450	4950	2110

Year	Southem B.C.				Fraser River					
	W. Coast Vancouver 1. esc.	\qquad	o. t.run	Upper Geo. Strait esc.	Upper Fraser esc.	Middle Fraser esc.	Thompson asc.	Fraser spr/sum t.run	Harr esc.	t.run
1975	1675	9525	10940	11800	7028	15050	37035	119081		
1976	1275	9240	10640	15150	7612	10975	14875	98691		
1977	3875	10655	12665	3880	10135	13320	30321	132553		
1978	6275	8035	8975	6150	14015	13450	28465	109119		
1979	3058	12400	13271	3610	12495	8595	25145	104568		
1980	6392	11530	13847	1367	15796	9625	19330	68973		
1981	5108	10420	12980	1945	9021	8175	23375	65677		
1982	7523	9520	10916	3260	11603	10470	20385	82820		
1983	3824	9080	10102	3820	17185	15404	20381	72999		
1984	5012	11150	12292	4600	21938	13957	29972	95878	120837	131757
1985	4900	5010	6518	4600	34527	17595	39997	124380	174778	179255
1986	4810	3038	4955	1630	41207	27349	45130	. 145652	162596	176740
1987	3520	2630	4729	5700	39420	27330	36730	127582	79038	82025
1988	5500	7040	9353	3300	34400	25924	47103	128654	35116	39487
1989	8480	6830	9389	6607	25310	15095	37975	107136	74685	75090
1990	6760	7635	10117	2200	35902	26060	41995	134022	177375	180758
1991	5756	12895	16063	3276	27317	21150	36483	112527	90638	93472
1992	7300	10893	15165	5268	23853	24779	45008	111206	130411	132478
1993	4740	7100	9943	2216	17534	25926	30880	104975	118974	120340
Goal	11040	21940		5090	24460	18430	55710		241670	

Escapements and terminal runs of PSC Chinook Technical Committee natural chinook escapement indicator stocks, 1975-1993 (continued).

Year	Puget Sound									
	Skagit spring esc. t.run		Skagit sum/fall		Stillaguamish osc. t.run		Snohomish		Green	
1975	803	803	11555	24625	1198	1635	4485	6123	3394	6238
1976	812	812	14479	23306	2140	4002	5315	9889	3140	7732
1977	1049	1049	9497	17693	1475	2549	5565	9618	3804	5366
1978	1220	1220	13209	20030	1232	1959	7931	12591	3304	4349
1979	968	968	13605	21243	1042	2366	5903	12706	9704	10730
1980	1803	1803	20345	28938	821	2647	6460	16688	7743	10608
1981	1250	1250	8670	19675	630	2783	3368	8968	3606	4912
1982	965	965	10439	21022	773	3058	4379	8470	1840	3850
1983	710	710	9080	14671	387	925	4549	10386	3679	13290
1984	747	747	13239	15005	374	883	3762	8480	3353	5381
1985	3249	3249	16298	25075	1409	2641	4873	9005	2908	7444
1986	1978	1978	18127	21585	1277	2416	4534	8267	4792	5784
1987	1979	1979	9647	13037	1321	1906	4689	6670	10338	11724
1988	2064	2064	11954	14647	717	1176	4513	7389	7994	9207
1989	1515	1924	6776	12787	811	1642	3138	6142	11512	15000
1990	1592	1627	17206	19172	842	1739	4209	8345	7035	15200
1991	1411	1448	6014	8425	1632	2913	2783	4964	10548	14965
1992	1001	1025	7671	9201	780	1254	2708	4319	5267	9941
1993	788	818	5916	6842	928	1298	4019	5622	2479	5237
Goal	3000		14900		2000		5250		5800	

Year	Washington Coast															
	Quillayute summer		Quillayute fall		Hoh spr/sum		Hoh fall		Queets spr/sum		Queets fall		Grays Harbor spring		Grays Harbor fall	
1975																
1976	1300	1700	2500	4700	600	1300	2500	3100	500	700	1200	2500	600	1000	1800	8900
1977	3800	5300	3300	7600	1000	2000	2100	3800	700	1200	3600	5500	800	1700	5200	13200
1978	2300	2700	4700	6200	1400	2500	1900	2900	1100	1400	2200	3100	1000	1600	4600	10600
1979	2100	3900	3900	6600	1400	2300	1700	2200	900	1400	3900	4700	400	1100	9400	12100
1980	900	1500	6700	7600	800	1000	2200	2800	1000	1200	3200	5800	200	600	11700	22000
1981	800	1700	6000	7100	1500	2100	3100	4000	1000	1300	4300	8000	600	900	7600	12400
1982	1200	2700	7100	9700	1600	2300	4500	5800	800	1200	4100	6200	600	700	5600	13700
1983	1400	1800	3100	5500	1800	1800	2500	3300	1000	1200	2600	3800	800	900	5500	9100
1984	600	1000	9100	10400	1500	2400	1900	2600	1000	1200	3900	5300	1100	1100	21000	22600
1985	600	700	6100	8400	1000	1400	1800	2900	700	900	3700	5200	1200	1200	9400	15000
1986	600	1000	10000	13500	1500	2500	5000	6000	900	1200	7800	8900	2000	2000	10500	17500
1987	600	1600	12400	20700	1700	2600	4000	6100	600	1500	6500	10000	900	1100	18800	31200
1988	1300	2600	15200	22200	2600	3900	4100	6900	1800	2300	8400	11000	3500	3600	28200	39100
1989	2400	3400	10000	17100	4700	7000	5100	8700	2600	4000	8700	11200	2100	2400	26400	56000
1990	1500	1800	13700	16900	3900	5700	4200	6400	1800	2500	10100	12300	1600	1700	17500	39600
1991	1200	1500	6300	7700	1100	1800	1400	2600	600	800	4500	5900	1300	1500	13600	29500
1992	1000	1300	6300	7900	1000	1600	4000	5200	400	500	4700	6400	1700	1800	16200	30300
1993	1300	1500	6000	6800	1400	2000	2300	3700	700	800	3600	5300	1300	1400	14200	30500
Goal	1200		NA		1400		14600									

Escapements and terminal runs of PSC Chinook Technical Committee natural chinook escapement indicator stocks, 1975-1993 (continued).

Year	Columbia River									
	Col. Uprivar spring		Col. Upriver summer		Col. Upriver bright		Lowis		Deschutes	
	esc.	t.run								
1975			33000	33000	29600	112500	13859	36800		
1976			26600	26700	28800	115100	3371	14900		
1977	64900	92700	33300	34300	37600	95100	6930	29800	5631	7492
1978	89600	95300	37600	38700	27300	85300	5363	18500	4154	6125
1979	22300	23300	26700	27800	31200	89200	8023	32700	3291	4883
1980	26700	27600	25800	27000	29900	76800	16394	38800	2542	4493
1981	31500	33700	21100	22400	21100	66600	19297	25000	3183	5020
1982	31700	34800	18800	20100	31100	79000	8370	13000	4890	6906
1983	23600	25200	17700	18000	48700	86100	13540	16800	3669	5165
1984	18600	20400	22100	22400	61000	131400	7132	13300	2025	2995
1985	27200	28800	22400	24200	90800	196400	7491	13300	2645	3452
1986	36500	39800	25500	26200	109900	281500	11983	24500	3801	4954
1987	41400	45000	30900	33000	149700	420600	12935	37900	4097	6154
1988	35100	40700	29000	31300	110400	340000	12059	41700	3520	5911
1989	27000	30000	28700	28800	92900	261100	21199	38600	3358	5088
1990	20100	22900	25000	25000	55200	153600	17606	20300	1399	2369
1991	15500	17300	18800	18900	44400	102100	9060	19900	906	1060
1992	26500	28700	15000	15100	48800	80600	6307	12600	1689	1726
1993	28350	30550	21600	22000	52500	102900	7025	13400	8239	8250
Goal	84000		85000		40000		5700		NA	

Year	Oregon	
	Density Index	
	North Oregon Coast	Mid-Oregon Coast
1975	33	47
1976	25	28
1977	39	60
1978	40	58
1979	48	67
1980	51	68
1981	47	50
1982	54	64
1983	36	42
1984	68	41
1985	83	35
1986	94	37
1987	81	63
1988	138	76
1989	84	45
1990	66	34
1991	78	39
1992	80	67
1993	42	66
Goal	NA	NA

APPENDIX B

Stock Specific Chinook Escapement Figures

Situk B-1
King Salmon B-1
Andrew Creek B-2
Blossom River B-2
Keta River B-3
Alsek River B-3
Taku River B-4
Stikine River B-4
Unuk River B-5
Chickamin River B-5
Yakoun River B-6
Nass River B-6
Skeena River B-7
Area 6 Index B-7
Area 8 Index B-8
Rivers Inlet B-8
Smith Inlet B-9
WCVI B-9
Upper Strait of Georgia B-10
Lower Strait of Georgia B-10
Upper Fraser River B-11
Middle Fraser River B-11
Thompson River B-12
Harrison River B-12
Skagit Spring B-13
Skagit Summer/Fall B-13
Stillaguamish River B-14
Snohomish River B-14
Green River B-15
Quillayute Summer B-15
Grays Harbor Spring B-16
Grays Harbor Fall B-16
Columbia River Spring B-17
Columbia River Summer B-17
Columbia River Bright B-18
Lewis River Fall B-18
Deschutes R. Fall B-19
Quillayute Fall B-19
Hoh Spring/Summer B-20
Hoh Fall B-20
Queets Spring/Summer B-21
Queets Fall B-21
North Oregon Coastal B-22
Mid Oregon Coastal B-22

Situk Chinook Escapements Above Goal

King Salmon Chinook Escapements Not Rebuilding

Andrew Creek Chinook Escapements Above Goal

Blossom River Chinook Escapements Indeterminate

Keta River Chinook Escapements Rebuilding

Alsek R. Chinook Escapements Not Rebuilding

Taku Chinook Escapements Rebuilding

Stikine River Chinook Escapements Rebuilding

Unuk River Chinook Escapements Rebuilding

Chickamin River Chinook Escapements Rebuilding

Yakoun River Chinook Escapements Above Goal

Nass River Chinook Escapements Not Rebuilding

Skeena River Chinook Escapements Above Goal

Area 6 Index Chinook Escapements

 Not Rebuilding

Area 8 Index Chinook Escapements Not Rebuilding

Rivers Inlet Chinook Escapements Rebuilding

Smith Inlet Chinook Escapements Not Rebuilding

WCVI Chinook Escapements Not Rebuilding

Upper Georgla Str. Chinook Escapements Not Rebuilding

Lower Georgia Str. Chinook Escapements Not Rebuilding

Upper Fraser R. Chinook Escapements Above Goal

Numbers (Thousands)

Middle Fraser R. Chinook Escapements Above Goal

Thompson R. Chinook Escapements Not Rebuilding

Harrison R. Chinook Escapements Not Rebuilding

Skagit Spring Chinook Escapements Not Rebullding

Skagit Sum./Fall Chinook Escapements Not Rebuilding

Stillaguamish River Chinook Escapements Not Rebuilding

Snohomish River Chinook Escapements Not Rebuilding

Numbers (Thousands)

- Escapement - Terminal Run - Base-to-Goal Line

Green River Chinook Escapements Rebuilding

Quillayute Summer Chinook Escapements Above Goal

Grays Harbor Spring Chinook Escapement

 RebuildingNumbers (Thousands)

Escapement - Terminal Run -- Base-to-Goal Line

Grays Harbor Fall Chinook Escapements Rebuilding

Columbia R. Spring Chinook Escapements Not Rebuilding

Columbia R. Summer Chinook Escapements Not Rebuilding

Columbia R. Bright Chinook Escapements Above Goal

Lewis R. Fall Chinook Escapements Above Goal

Deschutes R. Fall Chinook Escapements

Quillayute Fall Chinook Escapements

Hoh Spr/Sum Chinook Escapements

Hoh Fall Chinook Escapements

Queets Spr/Sum Chinook Escapements

Queets Fall Chinook Escapements

North Oregon Coastal Chinook Escapements

Mid Oregon Coastal Chinook Escapements

APPENDIX C

CWT Data Used

CWT Groups Used and Brood Years Represented C-1
Sources of CWT Data Used C-1
Canadian Commercial Fisheries C-1
Canadian Sport Fisheries C-1
Canadian Escapement C-2
SEAK Fisheries C-2
SEAK Escapement C-3
Southern U.S. Fisheries C-4
Southern U.S. Escapement C-4
Estimates of Incidental Catch Mortality C-6
Brood years included by stock for Exploitation Rate Assessment C-7
Tag Codes Used for Exploitation Rate Assessment C-8
Sources and estimates of legal and sublegal encounters in the SEAK troll fishery during chinook nonretention fisheries. C-19
Sources and estimates of legal and sublegal encounters in the SEAK net fishery during chinook nonretention fisheries. C-20
Number of days (or gear days) of chinook retention, chinook nonretention fishery C-21
Number of days or gear days of chinook retention, chinook nonretention fishery, C-22
Number of days of chinook retention, chinook nonretention fishery, and source of information for the WCVI troll fishery. C-23
Sources and estimates of CNR parameters for the GS troll fishery. C-24

Introduction

The Exploitation Rate Assessment provided in Chapter 3 relies upon CWT release and recovery data and estimates of CNR mortality to estimate a variety of statistics for the exploitation rate indicator stocks. This appendix discusses the CWT groups used in the analysis, the brood years represented for each indicator stock, the sources of the recovery data, and the estimates of CNR mortality provided by the management agencies.

CWT Groups Used and Brood Years Represented

The brood years for which CWT groups are available for the indicator stocks as well as the youngest age and oldest age are provided in Appendix Table 3.1. Tag codes used in the Exploitation Rate Assessment are listed by stock and brood in Appendix Table C-2.

Sources of CWT Data Used

Sources of CWT recovery data and expansion procedures employed in the Exploitation Rate Assessment are summarized below. In a few cases, small samples from commercial fisheries have resulted in very large expansion factors. To avoid very large expansion factors associate with small samples, expansion factors were constrained to the range of 1 to 50 .

Canadian Commercial Fisheries: Estimated recoveries for commercial fisheries in Canada were obtained from the Mark-Recovery Database maintained by the CDFO at the Pacific Biological Station.

Canadian Sport Fisheries: Observed recoveries for sport fisheries in Canada were obtained from the Mark-Recovery Program (MRP) database maintained by the CDFO at the Pacific Biological Station. As in the analyses of the previous three years, expansion factors were computed using the following procedures. Starting in 1980, recoveries made in GS and the WCVI during the summer months (MaySeptember) were expanded as documented in Kuhn et al. (1988). Recoveries made in other months were expanded using the average expansion factor for the summer period in the same recovery year. Recoveries in areas outside of GS or WCVI used the corresponding expansion factor for the average of GS and WCVI, unless an expansion factor based on creel survey data was available. Recoveries made prior to 1980 in GS continued to be expanded by the default value of four.

GS sport recoveries were expanded using these procedures because of potential tag expansion biases associated with inadequate sampling and infrequent overflights of the sport fishery during winter months. The application of GS expansion factors to sport recoveries in other areas was necessary because reliable catch and mark incidence estimates are normally unavailable for these areas.

Terminal sport recoveries for the Big Qualicum Hatchery stock have been removed from the GSPT catch region. Examination of sport location files in the CDFO Mark-Recovery Database identified that tags from the Big Qualicum River recovery location had been inconsistently recorded as freshwater or marine recoveries. Further, during this examination, a consistent pattern of terminal marine recoveries, off the mouth of the Big Qualicum River in late August and September, was identified. Recoveries from this time/area stratum have been almost exclusively of $B Q R$ origin. $B Q R$ recoveries in this terminal stratum and from freshwater sport fisheries have been removed from the GSPT catch region. The effect of this correction is to reduce the GSPT exploitation rate on this indicator stock; particularly during the base period when this correction had its greatest effect. However, since the CTC Fishery Index is created by dividing annual exploitation rates by the base period average values, these corrections tend to increase
the Fishery Index values, for the BQR stock, compared to those previously reported.
Canadian Escapement: Escapement data for Canadian stocks were determined directly from hatchery records, from the Salmon Stock Assessment database at the Pacific Biological Station, and from documents prepared through the Canadian key stream program. Details regarding the source of escapement data for each of the three Canadian hatcheries used in the fishery index analysis are as follows:

Robertson Creek. A proportion of the tagged fish returning to the Robertson Creek Hatchery spawn in the Stamp River; however, fish in the river have been sampled only since 1984. These recoveries have not been included in the exploitation rate analysis because comparable sampling was not conducted in the base period. Because the exploitation rate analysis for this stock assumes that a consistent portion of the return enters the hatchery, the exploitation rate will be overestimated. Further, native catch in the Somass River has increased recently, but this fishery is not sampled for coded-wire tags or included in the exploitation rate analysis. This nonreported catch will result in an overestimation of ocean exploitation rates and an underestimation of the total exploitation.

Big Qualicum. Since 1971, escapement for the Big Qualicum River has been enumerated and checked for CWTs at a counting fence with two exceptions. First, the early part of the run, which was allowed to spawn naturally, was enumerated but not sampled for CWTs prior to 1988. This was accounted for by expanding the sampled fraction of the run to represent the total run (expansions were stratified by adult and jacks). Second, a few hundred fish which spawn below the fence (which is less than one kilometer above tidewater) were not enumerated or sampled. Fish in this latter group which had a CWT are excluded from the analysis.

Ouinsam Hatchery. The Quinsam Hatchery obtains brood stock primarily by seining spawning adults from both the Campbell River (the main river) and the Quinsam River (a relatively small tributary). Brood stock captures are examined for marks and are added to the estimates of CWT escapement to the rivers. These are also stratified by sex for the purposes of sample expansions and for adjustments for lost pins and no data recoveries. Chinook entering the hatchery have not been an important factor until 1989. In addition, hatchery staff have sampled the carcasses in the river for CWT from 1978 to 1983. Since 1984, escapement has been estimated by a mark recapture program (Andrew et al. 1988; Bocking et al. 1990; Bocking 1991; Firth et al., 1993; Shardlow et al. 1986). Estimates of the CWT escapement to each river were made by expanding the CWTs recovered during the dead pitch by the fraction of the estimated total escapement which was sampled. Both the escapement and the dead pitch were stratified by sex, combining adult and jack males into a single stratum. CWTs recovered during carcass recovery prior to 1984 were expanded by using the average fraction sampled from the period 1984 to 1990 , stratified by river with both sexes combined.

SEAK Fisheries: Recoveries from SEAK commercial fisheries were obtained from the MRP with the exception of recoveries in the fall of 1978 and all of 1979. The 1978 and 1979 commercial data and all estimated sport recoveries were obtained from ADF\&G.

Data anomalies were corrected using procedures discussed in Appendix II of the 1987 CTC Annual Report (CTC 1988). Two important adjustments are:

1) CWT recoveries from commercial fisheries were expanded to account for unsampled catches by multiplying by the ratio of the total catch to the sampled catch. For net and
trap gear, adjustments were computed for a district or group of districts by calendar year. For troll gear, a single adjustment factor was used for all time and area strata.
2) CWT recovery data for the SEAK sport fishery during the 1979-1982 base period are of poor quality due to very limited sampling. The sport fishery sampling program expanded from 1983 to 1986, resulting in more reliable estimates in recent years. To estimate CWT recoveries for this fishery in years prior to 1988, sport recoveries were estimated from troll recoveries and the relative size of the sport and troll catch (CTC 1990).

SEAK Escapement: Escapement data for the Alaska stock are provided by the following agencies: ADF\&G (Crystal Lake Hatchery and Deer Mountain Hatchery), National Marine Fisheries Service (NMFS) (Little Port Walter) and Southern Southeast Regional Aquaculture Association (SSRAA) (Carroll Inlet, Neets Bay, and Whitman Lake). Methods used to compute the escapement for SEAK tag groups are summarized below in instances in which modifications from the agency reported escapement data were necessary. The escapement to SSRAA facilities includes recoveries from cost recovery fisheries since the catch in these terminal area fisheries is not included in the Alaska ceiling.

Crystal Lake. The total return of CWTs was known for all years; however, returns from brood years 1979, 1983, 1984, 1985 (two of the three codes), 1987 and 1988 were not recorded by tag code. The recoveries by tag code were estimated in the following manner. For each return-year brood-year combination, the estimated escapement by tag code was the product of the total recoveries of the brood and the proportion of the tagged brood release that belonged to each tag code. This method assumes that all tag codes in a brood year had equal survival from release.

Deer Mountain. The total returns of CWTs was known for all years; however, returns from brood years 1978, 1979, and 1980 were not broken down by tag code in the return years 1980, 1982, and 1983. The recoveries by tag code were estimated in the same manner as the Crystal Lake recoveries.

SSRAA. Marks on fish returning to SSRAA hatcheries were sampled using one of two methods:

1) Random sampling of fish for marks was conducted throughout the return for defined time periods of variable length. The target number of marks in each time period was 200; however, the actual numbers varied and the number of fish examined for marks was not always recorded.
2) Marked fish were deliberately selected from the return during each time period. The number of fish examined to obtain this select sample was not recorded. These marked fish were then randomly sampled for approximately 200 CWTs.

Neither of these methods provides a usable estimate of mark incidence. Hence the recoveries by tag code for these hatcheries were estimated as follows:

1) The tagged recoveries in each sample were expanded by the marked to total release ratio and summed across tag codes.
2) The total return (tagged and untagged) during each time period was then multiplied by the proportion of the expanded sum which belonged to each tag code. These estimates were then summed for all the return periods to obtain a total estimated return for each
tag code.
3) As a result of this estimation procedure, the return estimates for each tag code include both the marked and unmarked portions of the release. To estimate the number of returning tags, this total estimate was divided by the release ratio.

This method assumes that the survival of marked and unmarked fish was equal.
Southern U.S. Fisheries: Recoveries by Washington, Oregon, and California fisheries were obtained from the MRP database with the following exceptions: 1993 tributary sport data and terminal sport recovery data for Columbia River basin and Oregon coastal stocks except Willamette Spring were obtained from ODFW and WDF; and 1993 Puget Sound sport catch/sample expansion factors were obtained from WDF.

Data were obtained directly from WDFW or ODFW only when those data had not yet been provided to CDFO through PSMFC. It should remain a high priority of all agencies to provide this information to PSMFC in a timely manner since the work of the CTC is slowed considerably when data must be sought and integrated from a number of individual agencies.

Southern U.S. Escapement: Escapement recovery data for southern U.S. stocks were obtained from the MRP database with the following exceptions:

1) Recoveries for WDFW facilities in Puget Sound for 1993 were obtained from WDFW;
2) Recoveries for tribal facilities in Puget Sound and the Washington Coast for 1993 were obtained from the NWIFC;
3) Recoveries to the U.S. Fish and Wildlife Service (USFWS) Makah National Fish Hatchery in 1993 were obtained from the USFWS; and
4) Columbia River Basin escapements for 1993 (except to USFWS facilities) were obtained from WDFW and ODFW.
5) Pre-1982 escapement data for the Stayton Pond and Willamette Spring stocks and escapement for the Bonneville stock through 1982 were obtained from ODFW.

Methods for calculating dam conversion rates and interdam loss (IDL, one minus the dam conversion rate) did not change from the 1991 annual report (CTC 1992). Currently, the conversion from Bonneville Dam to McNary Dam for Columbia Upriver Brights and Hanford Wild (URBs) is calculated for the exploitation rate analysis as:

McNary Count

(Bonneville URBs)-(Zone 6 Comm Catch)-(Deschutes Turnoff)

Bonneville Upriver Bright counts are calculated by the WDFW by first calculating the stock composition (URBs vs. mid-Columbia brights or MCBs) of all brights above Bonneville Dam, and then applying the proportion of URBs in the upriver run to the Bonneville Dam counts of brights based on visual observation of skin color. Zone 6 commercial catches are taken from the Columbia River Status Report (ODFW \& WDFW 1993). Ceremonial, subsistence, and sport catches between Bonneville and McNary Dams were provided by Columbia River trealy tribes and WDFW. The number of fish returning to the Deschutes River is estimated annually by ODFW. Fish entering other tributaries below McNary Dam are not accounted for; this will again result in a slight overestimate of IDL.

The Lyons Ferry Hatchery conversion rate is the product of the conversion rate of URBs and an additional conversion rate for losses between McNary Dam (the last dam before the Snake River) and Ice Harbor Dam (the first dam on the Snake River and where Lyons Ferry escapement is measured for the exploitation analysis). Estimation of conversion between McNary Dam and Ice Harbor Dam is complicated by extensive straying and fallback over Ice Harbor Dam. An estimate was calculated by averaging the Columbia River per pool conversion rate (from Bonneville Dam to McNary Dam) and the Snake River per pool conversion rate (from Lower Monumental Dam to Lower Granite Dam). Escapements of tagged fish above Ice Harbor Dam, tag recovery rates and Snake River conversion rates were used to estimate total escapement of tagged Lyons Ferry Hatchery fish at Ice Harbor Dam.

Estimates of Incidental Catch Mortality

Fishery-specific estimates of incidental mortality or parameters used to estimate incidental catch mortality have been provided by regional management agencies and are listed in appendix tables $\mathrm{C}-3$ through $\mathrm{C}-8$.

Appendix Table C-1. Brood years included by stock for Exploitation Rate Assessment (x=valid).

Stock Name	Younge Age	ldest Age	71																				
Alaska Spring	3	6	-	-	-	-	-	-	-	X	X	X	X	X	X	X	X	X	X	X	X	X	-
Kitsumkalum	3	7	-	-	-	-	-	-	-	-	X	X	X	X	X	X	X	X	X	X	X	X	X
Snootli Creek	2	6	-	-	-	-	x	X	x	X	-	-	x	x	x	X	x	x	X	x	x	x	x
Kitimat River	2	6	-	-	-	-	-	-	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Robertson Creek	2	5	-	X	X	x	X	x	x	x	X	x	X	X	x	X	X	X	X	X	X	X	X
Quinsam	2	6	-	-	-	x	x	x	x	x	x	x	x	x	x	x	X	X	x	x	x	x	x
Puntledge	2	5	-	-	-	-	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Big Qualicum	2	5	X	X	X	X	x	x	x	x	x	x	x	x	x	x	X	x	x	x	X	X	x
Chehal is	2	5	-	-	-	-	-	-	-	-	-	-	X	X	X	X	X	X	X	X	X	X	-
Chilliwack	2	5	-	-	-	-	-	-	-	-	-	-	X	X	X	X	X	X	X	X	X	X	-
South Puget Sound Fall Yearling	g 2	5	-	-	-	-	-	-	-	x	x	x	x	-	-	-	-	x	x	x	x	-	X
Squaxin Pens Fall Yearling	2	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	x	x	X	x	X	-
Univ of Washington Accelerated	2	5	-	-	-	-	x	x	x	x	x	x	x	X	X	X	-	-	-	-	-	-	-
Samish Fall Fingerling	2	5	-	-	-	-	x	-	-	-	x	-	-	-	-	-	X	X	X	X	X	X	X
Stillaguamish Fall Fingerling	2	5	-	-	-	-	-	-	-	-	-	x	x	X	X	-	-	X	x	x	x	x	X
George Adams Fall Fingerling	2	5	-	-	-	-	X	-	-	x	X	x	x	-	-	-	x	x	x	x	x	x	x
SPS Fall Fingerling	2	5	-	-	-	-	K	-	-	x	x	x	X	X	X	x	x	X	x	x	x	x	x
Kalama Fall Fingerling	2	5	-	-	-	-	-	-	-	-	X	x	x	x	x	x	X	X	X	x	x	x	X
Elwha Fall Fingerling	2	5	-	-	-	-	-	-	-	-	-	-	-	x	x	x	x	x	-	x	x	x	-
Hoko Fall Fingerling	2	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	X	X	X	-	X	X	X
Skagit Spring Yearling	2	5	-	-	-	-	-	-	-	-	-	-	x	x	X	X	X	x	x	-	-	x	-
Nooksack Spring Yearling	2	5	-	-	-	-	-	-	-	-	-	-	X	X	-	X	-	X	X	X	X	X	-
White River Spring Yearling	2	5	-	-	-	-	-	-	-	-	X	X	X	x	X	X	X	X	x	x	X	x	x
Sooes Fall Fingerling	2	6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	X	X	X	-	X	X	X
Queets Fall Fingerling	2	6	-	-	-	-	-	-	X	X	X	X	X	X	X	-	x	x	x	x	x	x	-
Cowlitz Tule	2	5	-	-	-	-	-	-	X	x	X	x	X	X	X	X	x	x	X	x	x	x	X
Spring Creek Tule	2	5	-	X	X	X	X	X	X	X	X	X	x	X	X	X	X	X	X	X	X	X	X
Bonneville Tule	2	5	-	-	-	-	-	X	x	x	x	X	x	x	x	x	-	-	-	-	-	-	
Stayton Pond Tule	2	5	-	-	-	-	-	-	-	x	x	x	x	x	x	x	x	x	X	x	x	x	X
Upriver Bright	2	5	-	-	-	-	X	x	X	X	X	X	X	X	X	X	x	X	x	X	x	x	X
Hanford Wild	2	5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	x	x	x	x	x	X
Lewis River Wild	2	5	-	-	-	-	-	-	X	X	X	-	-	X	X	X	X	X	X	X	X	X	
Lyons Ferry	2	5	-	-	-	-	-	-	-	-	-	-	-	-	-	X	x	x	x	X	x	x	
Willamette Spring	3	6	-		-	-	x	X	X														
Salmon River	2	5	-	-	-	-	-	-	X	X	X	x	-	x	X	x	x	x	x	x	X	X	

Appendix Table C-2. Tag Codes Used for Exploitation Rate Assessment

Tag codes for Alaska Spring
 031661031716031753031761031655031826031901031957032027032037030116030218030227 031703031717031754031762031807031827031902031958032028032038030119030219030228 031704041917041944031763031808031828031903031959032029032039030121030220030229 031705041943042121031801031809031829031904031960032030032040030122030221030230 031706041945042202031802031810031830031905031961032031032041030125030222030231 031707042039044005031803031811031831031906031962032032032042030216030223030232 031708042040 031708042040 031709042042 031710042043 031711042045
031712
03171
031715
041932
041938
041938
041940 031804031812031832031907031963032033032043030217030224031618 036303031813031833031908032001032034032044031947030225032216 036304031814031834031909032002032113032045032138030226032217 036305031815031835031910032003032114032131032141032052032218 042222031816031836031911032004032116032132032201032203032219 042223031817031837031912032005032119032135032202032204032220 042227031818031838031913032006032121036226036237032205032221 042229031819031839031914032007032122036228036238032206032222 042230036306031843031915032008036213036231036329032207032223 B40907 036307031844031916032009036214036232036330032208032224 340908036308031845031917032010036216036319036331032209032225 041940

036309031846031918032011036219036321043247032210032226 042255031847031919032012036221036322043249032211032227 04254031849031921032014036225036324043252032213032229 042355031849031921032014036225036324043252032213032229 042356031850031922032015036310036325043255032214032230 $\begin{array}{lllllllllll}042430 & 031851 & 031923 & 032016 & 036311 & 036326 & 043303 & 032215 & 032231\end{array}$ 042431031852031924032017036312036327043304043232032232 031853031925032018036313036328043305043449036333 031854031926032019036314042737043306043450036334 031855031927032101036315042738043319043501042945 031856031928032102036316043027043320043502043701 031857031929032103036317043028043323043504043702 031858031930032104042754043029043324043507043704 031859031931042626042908043030043406043530043705 031860031932042628042909043031043407043531043706 031861031933042631042960043032 031862031934042632043101043058 031863031935042633043102043059 040321031936042634043104043141 042463031937042713043107043142 $\begin{array}{llllll}042463 & 031937 & 042713 & 043107 & 043142 \\ 042503 & 042731 & 043108 & 043144\end{array}$ $042511031939042732 \quad 043147$ 042512031940042733043149 042513031941042825

043532043707
043533043708 043606043745 043607043746 043608043747 043748 043749 043750 043821

Appendix Table C-2. Continued

Tag codes for Alaska Spring (continued)
 031942
031943
031944
031945
031946
031948
040329
040330
040331
040332
040333
040336
040342
040343
040344
040345
040346
040347
040348
040349
040350
042321
042530
042531
042534
042535
042536
042537
042538
042539
042540

Appendix Table C-2. Continued

Tag codes for Kitsumkalum
 021852021951022149022533022758023346023704024414024944026039020940021133023116 $022311022534 \quad 023347023705024413024941026040020941021134021010$ 022312 022313 023348023706024412024942026041020942021135021011 $\begin{array}{lllllll}023349 & 023707 & 024411 & 024943 & 026042 & 020943 & 021136 \\ 023350 & 024410 & 025060 & 026043 & 020944 & 021137\end{array}$ 023350 023351 023352
023353 025061026044020945021138 026045020946021139 026137
026138

Tag codes for Snootli creek

Tag codes for Kitimat River

 022048

0218440221370225270227430232540236290242110025152025529020433021518180432 022222022745023255 023631024220025153025530020434021519180431 02363202422102515525532020436021533180429 023633024222025156 020437021560020310 020438
020618

Appendix Table C-2. Continued

Tag codes for Robertson
 020203020606020408021629022217021615021827021661022202022541022662023131023734024256024311025014020645021549180620 $020406020906020409021630022218021635021829 \quad 022405082225022663023132023735024257024802025836020646021550180621$ 020506021206021305021631 020602021406 022753023134023737024362024810025838020949021552180623 08224702313502373802436302495102583902094802155318080 08224702313502313602373902440102495202605502064802153818080 $023142023740 \quad 024958026056020647021209180804$ $\begin{array}{lllllll}023142 & 023740 & 024958 & 026056 & 020647 & 021209 & 180804 \\ 023143 & 023741 & 024959 & 026057 & 020153 & & 180805\end{array}$ $023143023741 \quad 024959026057020153$ $023145-024960020152$ $023151 \quad 025326$
023203
023206

Tag codes for Quinsam
 020403020108021916021736021759021757021657022303022518022631023322023522024152024419025814026062020956180422 $021737 \quad 021758021943022304022519022632023323023523024153024420025815026063020957180421$
 $\begin{array}{llllllll}023324 & 023524 & 024154 & 024421 & 025816 & 026101 & 020958 & 180420 \\ 023525 & 024155 & 024956 & 025817 & 026102 & 020959 & 180419\end{array}$ 023326023554024156025358025818020361021448180418 023327023555024157025359025819020360021450180417 023328023556024158025360025820020359021451180416 023329023557024159025361025821020358026019180415 023330023558024160025362025822020357

Tag codes for Puntledge
 021402020308021816021634021731021854021947022302022556022710023357023727024701023701026034020809180315180817 022557022711023358024702

020810180316180816
023359
180815
180814

Appendix Table C-2. Continued

Tag codes for Big Qualicum
 021002020206021716021726021612021824021810022223022543022661023217023742024260024416026010020660021312180863 $021727021613021825021944022306 \quad 022747023320023743024261024742026047020661021313180862$ 021656021826 022748023321023744024262024761026048020662021314180861 022824023333023745024263024762026049020663021315021335 022825023334024047024357024957026050020727180253021334 022826023335024048024358024962026051020952180254021333 023336024049024359024963026052020953180255021332 $\begin{array}{llllllll}023336 & 024049 & 024359 & 024963 & 026052 & 020953 & 180255 \\ 023337 & 024050 & 024360 & 025001 & 026053 & 020954 & 180256\end{array}$ 023338002605050020250 $\begin{array}{lr}023338 & 026054 \\ 023345 & 026323\end{array}$

026324
Tag codes for Chehal is
 022205022520022655022819023754024402024738025761020641021547180336 022521022701022901023755024403024739025762020642021548180335 022523022702023041023756024404024740 020643 022525022725023042023757024405024741

022759023043023758024406
$022760 \quad 023759024407$
022761024051024408
024052024409
Tag codes for Chilliwack
 022163022422022658023414024101024547025542025747020242180330180334 022659023415 025748020243 180332 022660023416

023417
023418
023419

Appendix Table C-2. Continued

Appendix Table C-2. Continued

Tag codes for George Adams Fall Fingerling

Tag codes for South Puget Sound Fall Fingerling
 $150010151010151313011403130604 \quad 631935631943632233051047051346211622211657211901211961212542213137211831634024634339$ $\begin{array}{lllllllll}150010 & 151010 & 151313011403130604 & 631935631943632233051047 & 051346211622211657211901 & 211961212542213137 & 611831634024634339 \\ 150109 & 151012 & 011404 & 631936631944632253632256 & 63643634116635221635238630261212014212217\end{array}$

633643634116635221635238630261212014212217 633644634121635222
633645
633646
634104
150114
150200
150203
150806

631940	632158	633645
631945		633646
	634104	

Tag codes for Kalama Fall Fingerling
 050722050839051048051344211628211706211759211962212541213138211836211833212206 050840051049051345211629211707211761

Tag codes for Elwha Fall Fingerling
 $051363211616211658211919212208 \quad 213132211827212015$ 632721633038633419211920

211828 632722633039633420211921

633543
633544
633547
633548

Tag codes for Hoko Fall Fingerling
 211935212216211907 211829212018212218

Appendix Table C-2. Continued

Tag codes for Skagit Spring Yearling

Tag codes for Nooksack Spring Yearling

Tag codes for White River Spring Yearling
 $130208131010 \quad 631834632047632136632341632853633049632508633131633246634702630161635542635908634224$ 632604633009633050633060633648634145634704630162 633108

Tag codes for Sooes Fall Fingerling
 051746 052355052824 052356052825

Tag codes for Queets Fall Fingerling
 $050361050520050661050830050962051425211621 \quad 211908212101212835213144211835212010$ 050522050833051016 050525

Tag codes for Cowlitz Tule
 $631802631942632154632156632462632503633019633235634108634126635231635250630452634056 \quad 634526$ 632255

633020633236
633124633237
633125633238

Appendix Table C-2. Contimued

Tag codes for Spring Creek Tule
 050101050401050901050202054101055501050433050639050740051050051142051151051534 B50109 051855051445052013052207052106052127 050201050501051001050302054201055601050434050640050741051051051143051152051535 B50110 051856051449052015052208052109052129 050301050601051101050402054401055701050444050641050742051052

051201050502054501056001050446 050748
051301050602054601056201
050749
051401050702
050750
050802050751

051536 B50111 051857051450052016052209052110052130 051537 B50112 051858051451052017052210052112052544 051538 в50113 051859051659052018052211052115052545 051539 B50114 051860051660052019052212052117052553 B50114 051860051660052019052212052117052553 $\begin{array}{lllll}850115 & 051861051661 & 052020 & 052213 & 052118 \\ 850208 & 051862 & 051662 & 052021 & 052214 \\ 052123 & 052557\end{array}$ 850208051862051662052021052214052123052557 0205051863051912052023052216052124052558 051905051912052024052216 051906051913052025052217 051909051914052032052218 $051923052033052335 \quad 052562$ 051924052336 051925

052563 052605

Tag codes for Bonneville Tule
BY 71 BY 72 BY 73 BY $74 \quad$ BY 75 BY 76 BY 77 BY 78 BY 79 BY 80 091605071656071842072157072156072407072729073120073322

072163072329072408072730073121073323
072341072411
072342
Tag codes for Stayton Pond Tule
 071841072055072335072662072328073144073352073818074050074526075012075218075227071601 072830073145073353073819074051074527075015075219075228071602 072831073146073354073820074052074528075017075220075229071603 072832073147073355073821074053074529075018075221075230071604 072833073148073356073822074054074530075020075222075231075905 072834

Tag codes for Upriver Bright

 $\begin{array}{lllllllll}130713 & 631662631741 & 631821 & 631948 & 632155 & 632252 & 632611 & 632859 & 63322\end{array}$
131202

Appendix Table C-2. Continued
Tag codes for Hanford Wild

Tag codes for Lewis River Wild
 $\begin{array}{llllllllllll}631611631813 & 632123 & 632737 & 633126 & 633411633821634151635061 & 630456 & 631350634217634206\end{array}$ 631618631858632124
631618631858632124
631619631859632125
631902632207
631920632208
632002632214 632213

Tag codes for Lyons Ferry
 633226633638634259635214630226635544634143 633227633639634261635216630228635547634160 633228633640

Appendix Table C-2. Continued

Tag codes for willamette Spring

Tag codes for Salmon River
 $071643071849072239072504 \quad 1 \quad 072647072726073051073329073342074629075131075458075705071559$ 071644071850072240072505 073052073330074321074635075132075459075706071560 074322074636075133075460075707071561 074323074637075134075461075708071562 074324074638075135075462075709071563 075136

Appendix Table C-3. Sources and estimates of legal and sublegal encounters in the SEAK troll fishery during chinook nonretention fisheries.

Year	Legal CNR Encounters	Sublegal CNR Encounters	Source
1981	18,225	18,578	$\mathrm{a} /$
1982	89,100	90,827	$\mathrm{a} /$
1983	74,925	76,378	$\mathrm{a} /$
1984	87,075	88,763	$\mathrm{a} /$
1985	118,191	131,011	$\mathrm{~b} /$
1986	78,763	104,820	$\mathrm{c} /$
1987	191,956	171,156	$\mathrm{~d} /$
1988	60,930	91,200	$\mathrm{e} /$
1989	150,600	162,900	$\mathrm{f} /$
1990	117,807	116,523	$\mathrm{~g} /$
1991	179,131	185,851	$\mathrm{~g} /$
1992	135,735	198,456	$\mathrm{~g} /$
1993	72,816	120,724	$\mathrm{~g} /$

a/ Alaska Dept. Fish and Game and National Marine Fisheries Service. 1987. Associated fishing induced mortalities of chinook salmon in southeast Alaska. Alaska Dept. Fish Game, unpublished report.
b/ Davis, A., J. Kelley, and M. Seibel. 1986. Observations on chinook salmon hook and release in the 1985 southeast Alaska troll fishery. Alaska Dept. Fish Game, unpublished report.
c/ Davis, A., J. Kelley, and M. Seibel. 1987. Observations on chinook salmon hook and release in the 1986 southeast Alaska troll fishery. Alaska Dept. Fish Game, unpublished report.
d/ Seibel, M., A. Davis, J. Kelley, and J.E. Clark. 1988. Observations on chinook salmon hook and release in the 1987 southeast Alaska troll fishery. Alaska Dept. Fish Game, unpublished report.
e/ Seibel, M., A. Davis, J. Kelley, and J.E. Clark. 1989. Observations on chinook salmon hook and release in the 1988 southeast Alaska troll fishery. Alaska Dept. Fish Game, unpublished report.
f/ Data collected from a limited survey of the chinook nonretention fishery in 1989 indicated that encounter rates were similar to those which had occurred in previous years. For this reason, the number of encounters was estimated by multiplying the 1985-1988 average CNR encounters per gear day times the gear days for 1989. (Spreadsheet CNR90.WQ1, J. Carlile ADFG, 2/2/91)
g/ The number of encounters during the CNR fishery in 1990-1993 were estimated from a linear regression (see text for description).

Appendix Table C-4. Sources and estimates of legal and sublegal encounters in the SEAK net fishery during chinook nonretention fisheries.

Legal CNR Encounters		Sublegal CNR Encounters	Source
1985	12,352	60,506	$\mathrm{a} /$
1986	13,773	26,850	$\mathrm{~b} /$
1987	4,497	13,923	$\mathrm{c} /$
1988	8,574	28,357	$\mathrm{~d} /$
1989	8,557	28,301	$\mathrm{~d} /$
1990	6,383	22,601	$\mathrm{~d} /$
1991	7,443	24,615	$\mathrm{~d} /$
1992	12,783	42,277	$\mathrm{~d} /$
1993	4,696	15,532	$\mathrm{~d} /$

${ }^{\text {a/ Van Alen, B.W. and M. Seibel. 1986. Observations on chinook salmon non-retention in the } 1985}$ Southeast Alaska purse seine fishery. In, 1985 salmon research conducted in Southeast Alaska by the Alaska Department of Fish and Game in conjunction with the National Marine Fisheries Service Auke Bay Laboratory for joint U.S./Canada interception studies. Final Report Contract No./ 85-ABC00142. Juneau, Alaska.
b/ Van Alen, B.W. and M. Seibel. 1987. Observations on chinook salmon non-retention in the 1986 Southeast Alaska purse seine fishery. In, 1986 salmon research conducted in Southeast Alaska by the Alaska Department of Fish and Game in conjunction with the National Marine Fisheries Service Auke Bay Laboratory for joint U.S./Canada interception studies. Final Report. Contract No. NA-87-ABH00025. Juneau, Alaska.
c/ Rowse, M.L. and S. Marshall. 1988. Estimates of catch and mortality of chinook salmon in the 1987 southeast Alaska purse seine fishery. Alaska Department of Fish and Game, Regional Information Report 1J88-18.
${ }^{\mathrm{d} /}$ Computed by multiplying 1985-1987 average ratio of legal (or sublegal) encounters by the reported catch.

Appendix Table C-5. Number of days (or gear days) of chinook retention, chinook nonretention fishery, and source of information for the NBC troll fishery.

Year	Chinook Retention	Chinook Nonretention	Source
1987	60	9	$\mathrm{a} /$
1988	43	17	$\mathrm{~b} /$
1989	66	9	$\mathrm{c} /$
1990	18,964	6,431	$\mathrm{~d} /$
1991	26,754	3,042	$\mathrm{~d} /$
1992	15,798	5,778	$\mathrm{~d} /$
1993	16,483	3,513	$\mathrm{~d} /$

a/ Chinook Technical Committee. 1987. Chinook Technical Committee report to the November, 1987 meeting of the Pacific Salmon Commission. Pacific Salmon Commission, TCCHINOOK (87)-5.
b/ Chinook Technical Committee. 1988. Preliminary review of 1988 fisheries. Pacific Salmon Commission, TCCHINOOK (88)-3.
c/ Chinook Technical Committee. 1990. 1989 annual report. Pacific Salmon Commission, TCCHINOOK (90)-3.
d/ Computed by multiplying the number of days during the chinook retention fishery by the ratio of the number of boat days during the nonretention fishery to the number of boat days during the chinook retention fishery.

Appendix Table C-6. Number of days or gear days of chinook retention, chinook nonretention fishery, and source of information for the CBC troll fishery.

Year	Chinook Retention	Chinook Nonretention	Source
1987	60		
1988	43	17	$\mathrm{a} /$
1989	66	9	$\mathrm{~b} /$
1990	6,032	1,591	$\mathrm{c} /$
1991	4,891	641	$\mathrm{~d} /$
1992	5,739	1,070	$\mathrm{~d} /$
1993	2,889	1,155	$\mathrm{~d} /$
			$\mathrm{d} /$

a/ Chinook Technical Committee. 1987. Chinook Technical Committee report to the November, 1987 meeting of the Pacific Salmon Commission. Pacific Salmon Commission, TCCHINOOK (87)-5.
${ }^{\text {b/ }}$ Chinook Technical Committee. 1988. Preliminary review of 1988 fisheries. Pacific Salmon Commission, TCCHINOOK (88)-3.
c/ Chinook Technical Committee. 1990. 1989 annual report. Pacific Salmon Commission, TCCHINOOK (90)-3.
${ }^{\mathrm{d} /}$ Computed by multiplying the number of days during the chinook retention fishery by the ratio of the number of boat days during the nonretention fishery to the number of boat days during the chinook retention fishery.

Appendix Table C-7. Number of days of chinook retention, chinook nonretention fishery, and source of information for the WCVI troll fishery.

Year	Chinook Retention	Chinook Nonretention	Source
1985	105	5	$\mathrm{a} /$
1987	47	7	$\mathrm{~b} /$
1988	55	15	$\mathrm{c} /$

${ }^{\text {a/ Anonymous. 1986. } 1985 \text { Canadian agency report on chinook salmon. Canadian Department of }}$ Fisheries and Oceans, unpublished report.
${ }^{\text {b/ Chinook Technical Committee. 1987. Chinook Technical Committee report to the November, } 19871020}$ meeting of the Pacific Salmon Commission. Pacific Salmon Commission, TCCHINOOK (87)-5.
c/ Chinook Technical Committee. 1988. Preliminary review of 1988 fisheries. Pacific Salmon Commission, TCCHINOOK (88)-3.

Appendix Table C-8. Sources and estimates of CNR parameters for the GS troll fishery.

Year	Legal CNR	Sublegal CNR	Gear Days		Source
			Retention	Nonretention	
1985	12,412	12,184			a/
1986	5,151	17,834			a/
1991			4,589	1,867	b/
1992			3,744	2,414	b/
1993			4,177	3,028	b/

${ }^{\text {a/ Anonymous. 1986. Data Report on Unaccounted for Sources of Fishing Associated Mortalities of }}$ Chinook Salmon in B.C. Fisheries (1977-1986). Canadian Department of Fisheries and Oceans, unpublished report. 47p. Data reported is number of encounters.
${ }^{\text {b/ }}$ Computed by multiplying the number of days during the chinook retention fishery by the ratio of the number of boat days during the nonretention fishery to the number of boat days during the chinook retention fishery.

APPENDIX D

Total Mortality Exploitation Rate and Fishery Index Data

Page
Southeast Alaska Troll D-1
North/Central B.C. Troll D-2
North B.C. Troll D-3
Central B.C. Troll D-4
West Coast Vancouver Island Troll D-5
Strait of Georgia Troll and Sport D-6
Strait of Georgia Troll D-7
Strait of Georgia Sport D-8
U.S. South Ocean Troll and Sport: Puget Sound Stocks D-9
U.S. South Ocean Troll and Sport: Columbia River Stocks D-10

Fishery: Southeast Alaska Troll

TOTAL Year	MORTALI AKS Age 4			RATES RBT Age 3	$\begin{array}{r} \text { RBT } \\ \text { Age } 4 \end{array}$	$\begin{array}{r} \text { RBT } \\ \text { Age } 5 \end{array}$	SRH Age 3	$\begin{array}{r} \text { SRH } \\ \text { Age } 4 \end{array}$	$\begin{array}{r} \text { SRH } \\ \text { Age } 5 \end{array}$	$\begin{array}{r} \text { URB } \\ \text { Age } 3 \end{array}$	URB Age 4	$\begin{array}{r} \text { URB } \\ \text { Age } 5 \end{array}$	$\begin{array}{r} \text { WSH } \\ \text { Age } 4 \end{array}$
79	NA	0.000	0.097	0.070	0.274	0.562	NA	NA	NA	0.014	0.160	NA	NA
80	NA	0.108	0.065	0.077	0.280	0.328	0.040	NA	NA	0.043	0.142	0.266	0.143
81	NA	0.111	0.111	0.083	0.349	0.420	0.042	0.123	NA	NA	0.179	0.241	0.095
82	0.120	0.133	0.173	0.068	0.276	0.319	0.013	0.123	0.142	0.023	0.107	0.151	0.080
83	0.114	0.209	0.225	0.072	0.313	0.474	0.027	0.066	0.418	0.020	0.226	NA	0.120
84	0.093	0.114	0.214	0.100	0.292	0.227	NA	0.061	0.143	0.019	0.203	0.345	0.054
85	0.095	0.168	0.246	0.093	0.124	0.343	0.019	NA	0.256	0.016	0.159	0.261	0.183
86	0.105	0.104	0.154	NA	0.276	0.039	0.018	0.137	NA	0.016	0.105	0.177	NA
87	0.091	0.136	0.149	0.034	NA	NA	0.024	0.040	0.198	0.031	0.136	0.249	0.128
88	0.106	0.113	0.093	0.011	0.159	NA	NA	0.053	0.176	0.023	0.068	0.195	0.067
89	0.081	0.115	0.155	0.023	0.153	0.202	0.015	0.033	0.211	NA	0.043	0.172	0.039
90	0.183	0.179	0.117	0.059	0.190	0.260	0.023	0.055	0.164	NA	0.137	0.118	0.088
91	0.133	0.106	0.131	0.049	0.221	0.265	0.046	0.096	0.232	NA	NA	0.153	0.047
92	0.083	0.115	0.139	0.047	0.178	0.344	0.005	0.036	0.041	NA	0.044	NA	0.037
93	0.076	NA	0.173	0.057	0.163	0.258	0.013	0.059	0.164	0.045	0.088	NA	0.072
Base	0.120	0.088	0.112	0.075	0.295	0.407	0.032	0.123	0.142	0.027	0.147	0.219	0.106

TOTAL Year	MORTALI AKS Age 4		oitatio QUI Age 5		INDEX RBT Age 4	$\begin{array}{r} \text { RBT } \\ \text { Age } 5 \end{array}$	$\begin{array}{r} \text { SRH } \\ \text { Age } 3 \end{array}$	SRH Age 4	$\begin{array}{r} \text { SRH } \\ \text { Age } 5 \end{array}$	$\begin{array}{r} \text { URB } \\ \text { Age } 3 \end{array}$	$\begin{array}{r} \text { URB } \\ \text { Age } 4 \end{array}$	$\begin{array}{r} \text { URB } \\ \text { Age } 5 \end{array}$	$\begin{array}{r} \text { WSH } \\ \text { Age } 4 \end{array}$	Fishery
79	NA	0.000	0.868	0.940	0.930	1.380	NA	NA	NA	0.516	1.087	NA	NA	1.023
80	NA	1.221	0.586	1.031	0.951	0.805	1.256	NA	NA	1.629	0.969	1.212	1.350	0.990
81	NA	1.264	0.998	1.116	1.182	1.032	1.345	0.999	NA	NA	1.215	1.099	0.894	1.094
82	1.000	1.515	1.548	0.913	0.937	0.783	0.398	1.001	1.000	0.856	0.729	0.689	0.757	0.914
83	0.952	2.375	2.014	0.970	1.061	1.164	0.870	0.536	2.946	0.736	1.536	NA	1.130	1.366
84	0.778	1.290	1.919	1.336	0.989	0.557	NA	0.495	1.007	0.714	1.379	1.576	0.514	1.003
85	0.797	1.908	2.205	1.245	0.421	0.842	0.590	NA	1.801	0.597	1.081	1.194	1.725	1.110
86	0.878	1.178	1.379	NA	0.935	0.096	0.565	1.115	NA	0.612	0.717	0.810	NA	0.721
87	0.759	1.546	1.335	0.451	NA	NA	0.763	0.328	1.395	1.181	0.927	1.139	1.208	1.024
88	0.881	1.282	0.838	0.141	0.539	NA	NA	0.432	1.238	0.879	0.463	0.891	0.632	0.733
89	0.676	1.303	1.390	0.310	0.519	0.497	0.489	0.269	1.488	NA	0.294	0.787	0.368	0.667
90	1.525	2.035	1.047	0.791	0.643	0.640	0.740	0.445	1.153	NA	0.930	0.537	0.828	0.843
91	1.107	1.200	1.173	0.663	0.749	0.652	1.459	0.781	1.637	NA	NA	0.699	0.444	0.861
92	0.689	1.301	1.243	0.634	0.603	0.846	0.150	0.294	0.288	NA	0.297	NA	0.352	0.649
93	0.634	NA	1.554	0.766	0.553	0.634	0.402	0.480	1.156	1.682	0.602	NA	0.682	0.738

Stack Identifiers

AKS = ALASKA SPRING	QUI $=$ QUINSAM	RBT $=$ ROBERTSON CREEK
SRH $=$ SALMON RIVER	URB $=$ COLUMBIA UPRIVER BRIGHT	WSH $=$ WILLAMETTE SPRING

Fishery: North/Central B.C. Troll

TOTAL Year	MORTALI AKS Age 4				$\begin{array}{r} \text { QUI } \\ \text { Age } 4 \end{array}$	$\begin{array}{r} \text { QUI } \\ \text { Age } 5 \end{array}$	$\begin{array}{r} \text { RBT } \\ \text { Age } 3 \end{array}$	$\begin{array}{r} \text { RBT } \\ \text { Age } 4 \end{array}$	$\begin{array}{r} \text { RBT } \\ \text { Age } 5 \end{array}$	SRH Age 3	$\begin{array}{r} \text { SRH } \\ \text { Age } 4 \end{array}$	$\begin{array}{r} \text { SRH } \\ \text { Age } 5 \end{array}$	URB Age 3	URB Age 4	URB Age 5	$\begin{array}{r} \text { WSH } \\ \text { Age } 4 \end{array}$
79	NA	0.086	0.093	0.047	0.192	0.113	0.103	0.154	0.110	NA	NA	NA	0.011	0.091	NA	NA
80	NA	0.098	0.089	0.049	0.163	NA	0.087	0.149	0.154	0.077	NA	NA	0.027	0.070	0.073	0.138
81	NA	0.096	0.098	0.077	0.180	0.193	0.061	0.139	0.235	0.112	0.158	NA	NA	0.076	0.091	0.105
82	0.004	0.069	0.087	0.032	0.079	0.128	0.066	0.160	0.123	0.040	0.123	0.081	0.026	0.034	0.020	0.028
83	0.007	NA	0.099	0.062	0.141	0.218	0.073	0.114	0.076	0.034	0.091	0.098	0.035	0.077	NA	0.060
84	0.005	0.068	NA	0.011	0.063	0.078	0.036	0.135	0.227	NA	0.094	0.316	0.025	0.107	NA	0.024
85	0.003	0.034	NA	0.015	0.046	0.036	0.061	0.213	0.197	0.041	NA	0.230	0.024	0.082	0.075	0.023
86	0.003	0.062	0.193	0.047	0.079	0.081	NA	0.115	NA	0.017	0.063	NA	0.020	0.072	0.084	NA
87	0.002	0.015	0.075	0.026	0.074	0.122	0.044	NA	NA	0.026	0.056	0.191	0.039	0.102	0.143	0.027
88	0.008	NA	NA	0.016	0.048	0.021	0.029	0.083	NA	NA	0.044	0.131	0.018	0.057	0.095	0.038
89	0.004	0.024	NA	0.023	0.035	0.036	0.030	0.099	0.146	0.018	0.040	0.191	NA	0.054	0.196	0.015
90	0.009	0.030	0.106	0.027	0.095	0.047	0.030	0.104	0.096	0.021	0.035	0.242	NA	0.064	0.115	0.016
91	0.003	0.018	NA	0.033	0.116	0.084	0.040	0.103	0.193	0.021	0.056	0.196	NA	NA	NA	0.011
92	0.001	0.040	0.200	NA	0.155	0.168	0.033	0.104	0.138	0.016	0.036	0.102	NA	NA	NA	0.004
93	0.001	0.026	NA	0.014	NA	NA	0.028	0.095	0.140	0.019	0.125	0.227	0.009	0.078	NA	0.008
Base	0.004	0.087	0.092	0.051	0.154	0.145	0.079	0.150	0.156	0.076	0.140	0.081	0.021	0.068	0.061	0.090

TOTAL Year	MORTAL AKS Age 4		BQR Age 4		INDEX QUI Age 4	$\begin{array}{r} \text { QUI } \\ \text { Age } 5 \end{array}$	$\begin{array}{r} \text { RBT } \\ \text { Age } 3 \end{array}$	$\begin{array}{r} \text { RBT } \\ \text { Age } 4 \end{array}$	$\begin{array}{r} \text { RBT } \\ \text { Age } 5 \end{array}$	$\begin{array}{r} \text { SRH } \\ \text { Age } 3 \end{array}$	$\begin{array}{r} \text { SRH } \\ \text { Age } 4 \end{array}$	$\begin{array}{r} \text { SRH } \\ \text { Age } 5 \end{array}$	URB Age 3	$\begin{array}{r} \text { URB } \\ \text { Age } 4 \end{array}$	$\begin{array}{r} \text { URB } \\ \text { Age } 5 \end{array}$	$\begin{array}{r} \text { USH } \\ \text { Age } 4 \end{array}$	Fishery
79	NA	0.983	1.015	0.910	1.252	0.781	1.301	1.022	0.709	NA	NA	NA	0.520	1.346	NA	NA	0.997
80	NA	1.127	0.965	0.965	1.059	NA	1.095	0.990	0.990	1.004	NA	NA	1.270	1.034	1.189	1.529	1.080
81	NA	1.099	1.066	1.505	1.171	1.334	0.769	0.925	1.509	1.468	1.125	NA	NA	1.122	1.488	1.165	1.201
82	1.000	0.790	0.954	0.619	0.518	0.885	0.834	1.063	0.791	0.528	0.875	1.000	1.210	0.497	0.324	0.306	0.755
83	1.579	NA	1.082	1.204	0.918	1.510	0.928	0.758	0.487	0.445	0.647	1.213	1.638	1.137	NA	0.666	0.907
84	1.117	0.778	NA	0.217	0.411	0.541	0.459	0.899	1.457	NA	0.671	3.901	1.163	1.575	NA	0.271	0.970
85	0.702	0.392	NA	0.297	0.297	0.248	0.772	1.416	1.263	0.537	NA	2.841	1.127	1.219	1.232	0.258	0.883
86	0.634	0.713	2.101	0.923	0.513	0.561	NA	0.768	NA	0.218	0.447	NA	0.951	1.059	1.369	NA	0.796
87	0.590	0.177	0.821	0.506	0.479	0.844	0.557	NA	NA	0.338	0.399	2.357	1.817	1.511	2.338	0.305	0.821
88	1.865	NA	NA	0.309	0.310	0.144	0.372	0.555	NA	NA	0.310	1.616	0.839	0.836	1.548	0.425	0.562
89	0.917	0.280	NA	0.457	0.228	0.246	0.378	0.661	0.938	0.232	0.287	2.357	NA	0.799	3.201	0.163	0.679
90	2.109	0.346	1.155	0.530	0.620	0.323	0.385	0.689	0.619	0.279	0.249	2.990	NA	0.952	1.879	0.176	0.724
91	0.690	0.211	NA	0.650	0.755	0.584	0.504	0.687	1.239	0.272	0.401	2.419	NA	NA	NA	0.123	0.721
92	0.279	0.459	2.181	NA	1.006	1.164	0.414	0.691	0.884	0.212	0.257	1.259	NA	NA	NA	0.045	0.795
93	0.307	0.296	NA	0.264	NA	NA	0.359	0.634	0.899	0.247	0.889	2.801	0.429	1.149	NA	0.087	0.767

Stock Identifiers

AKS $=$ ALASKA SPRING	BQR $=$ BIG QUALICUM	QUI $=$ QUINSAM
SRH $=$ SALMON RIVER	URB $=$ COLUMBIA UPRIVER BRIGHT	USH $=$ UILLAMETTE SPRING

Fishery: North B.C. Troll

TOTAL Year	MORTAL AKS Age 4		OITATION QUI Age 4	RATES RBT Age 3	$\begin{array}{r} \text { RBT } \\ \text { Age } 4 \end{array}$	$\begin{array}{r} \text { RBT } \\ \text { Age } 5 \end{array}$	$\begin{array}{r} \text { SRH } \\ \text { Age } 3 \end{array}$	$\begin{array}{r} \text { SRH } \\ \text { Age } 4 \end{array}$	$\begin{array}{r} \text { SRH } \\ \text { Age } 5 \end{array}$	URB Age 3	$\begin{array}{r} \text { URB } \\ \text { Age } 4 \end{array}$	URB Age 5	$\begin{array}{r} \text { HSH } \\ \text { Age } 4 \end{array}$
79	NA	0.020	NA	0.054	0.074	0.078	NA	NA	NA	0.009	0.059	NA	NA
80	NA	0.028	0.057	0.048	0.072	0.079	0.070	NA	NA	0.021	0.053	0.062	0.134
81	NA	0.069	0.084	0.033	0.087	0.172	0.112	0.151	NA	NA	0.063	0.079	0.101
82	0.004	0.027	0.029	0.042	0.105	NA	0.033	0.123	0.081	0.023	0.034	0.020	0.028
83	0.007	0.041	0.080	0.043	0.059	0.055	0.034	0.085	0.098	0.030	0.065	NA	0.059
84	0.005	0.008	0.025	0.027	0.110	0.198	NA	0.083	0.259	0.017	0.092	NA	0.022
85	0.003	0.008	0.028	0.055	0.213	0.197	0.035	NA	0.230	0.021	0.080	0.075	0.021
86	0.003	0.029	0.038	NA	0.115	NA	0.010	0.063	NA	0.017	0.062	0.074	NA
87	0.002	0.015	0.033	0.030	NA	NA	0.024	0.056	0.191	0.030	0.092	0.132	0.023
88	0.008	0.010	0.035	0.021	0.076	NA	NA	0.044	0.109	0.016	0.052	0.091	0.033
89	0.004	0.016	0.024	0.025	0.095	0.133	0.018	0.040	0.191	NA	0.051	0.196	0.015
90	0.009	0.016	0.051	0.023	0.085	0.083	0.020	0.035	0.242	NA	0.059	0.108	0.014
91	0.003	0.018	0.034	0.030	0.080	0.153	0.021	0.055	0.191	NA	NA	NA	0.011
92	0.001	NA	0.097	0.026	0.070	0.098	0.014	0.036	0.095	NA	NA	NA	0.004
93	0.001	0.005	NA	0.023	0.072	0.116	0.019	0.124	0.221	NA	0.078	NA	0.008
Base	0.004	0.036	0.057	0.044	0.084	0.110	0.072	0.137	0.081	0.018	0.052	0.054	0.088

TOTAL Year	MORTAL AKS Age 4		oitation QUI Age 4		I NDEX RBT Age 4	$\begin{array}{r} \text { RBT } \\ \text { Age } 5 \end{array}$	$\begin{array}{r} \text { SRH } \\ \text { Age } 3 \end{array}$	$\begin{array}{r} \text { SRH } \\ \text { Age } 4 \end{array}$	$\begin{array}{r} \text { SRH } \\ \text { Age } 5 \end{array}$	URB Age 3	URB Age 4	URB Age 5	$\begin{array}{r} \text { WSH } \\ \text { Age } 4 \end{array}$	Fishery
79	NA	0.565	NA	1.223	0.873	0.710	NA	NA	NA	0.539	1.132	NA	NA	0.856
80	NA	0.773	1.007	1.093	0.853	0.717	0.981	NA	NA	1.169	1.015	1.154	1.534	1.017
81	NA	1.907	1.474	0.739	1.027	1.572	1.563	1.103	NA	NA	1.208	1.477	1.151	1.296
82	1.000	0.754	0.519	0.945	1.247	NA	0.456	0.897	1.000	1.292	0.645	0.369	0.315	0.755
83	1.579	1.126	1.414	0.983	0.704	0.503	0.473	0.622	1.213	1.683	1.247	NA	0.677	0.840
84	1.117	0.232	0.439	0.611	1.304	1.810	NA	0.607	3.188	0.938	1.766	NA	0.257	1.191
85	0.702	0.220	0.501	1.240	2.520	1.793	0.485	NA	2.841	1.198	1.530	1.403	0.238	1.381
86	0.634	0.803	0.674	NA	1.366	NA	0.133	0.459	NA	0.994	1.188	1.379	NA	0.801
87	0.590	0.415	0.577	0.683	NA	NA	0.336	0.409	2.357	1.724	1.772	2.461	0.265	0.981
88	1.865	0.273	0.623	0.487	0.901	NA	NA	0.318	1.340	0.898	0.999	1.693	0.382	0.756
89	0.917	0.450	0.422	0.578	1.120	1.209	0.247	0.294	2.357	NA	0.975	3.645	0.167	0.987
90	2.070	0.450	0.894	0.526	1.004	0.760	0.282	0.256	2.990	NA	1.138	2.006	0.162	0.912
91	0.690	0.485	0.596	0.673	0.950	1.398	0.289	0.405	2.350	NA	NA	NA	0.127	0.836
92	0.279	NA	1.715	0.586	0.825	0.890	0.199	0.264	1.168	NA	NA	NA	0.046	0.652
93	0.307	0.149	NA	0.520	0.847	1.059	0.262	0.903	2.723	NA	1.492	NA	0.089	0.941

Stock Identifiers

AKS = ALASKA SPRING	QUI $=$ QUINSAM	RBT $=$ ROBERTSON CREEK
SRH $=$ SALMON RIVER	URB $=$ COLUMBIA UPRIVER BRIGHT	WSH $=$ HILLAMETTE SPRING

Fishery: Central B.C. Troll

TOTAL Year	$\begin{gathered} \text { MORTALI } \\ \text { BQR } \\ \text { Age } 3 \end{gathered}$	$\begin{gathered} \text { TY EXPL } \\ \text { QUUI } \\ \text { Age } 4 \end{gathered}$	$\begin{gathered} \text { OITATIO } \\ \text { RBT } \\ \text { Age } 3 \end{gathered}$	$\begin{gathered} \text { N RATES } \\ \text { RBT } \\ \text { Age } 4 \end{gathered}$
79	0.074	NA	0.049	0.080
80	0.051	0.106	0.038	0.077
81	0.086	0.096	0.028	0.052
82	0.036	0.050	0.024	0.054
83	NA	0.061	0.030	0.054
84	0.053	0.038	NA	0.025
85	0.018	0.017	NA	NA
86	0.057	0.041	NA	NA
87	NA	0.041	0.014	NA
88	NA	0.012	0.008	0.007
89	0.003	0.011	0.004	0.005
90	NA	0.045	0.007	0.019
91	0.010	0.082	0.010	0.023
92	NA	0.057	0.007	0.034
93	0.014	NA	0.005	0.024
Base	0.062	0.084	0.035	0.066

total Year	$\begin{gathered} \text { MORTAL } \\ \text { BQR } \\ \text { Age } 3 \end{gathered}$	$\begin{gathered} \text { TY EXPI } \\ \text { QuI } \end{gathered}$	$\begin{gathered} \text { OITATIO } \\ \text { RBT } \\ \text { Age } 3 \end{gathered}$	$\begin{gathered} \text { NRATE } \\ \text { RBT } \\ \text { Age } 4 \end{gathered}$	IndEX Fishery
79	1.198	NA	1.399	1.212	1.247
80	0.819	1.257	1.099	1.166	1.101
81	1.401	1.147	0.807	0.795	1.068
82	0.581	0.596	0.694	0.826	0.668
83	NA	0.724	0.859	0.827	0.786
84	0.853	0.455	NA	0.378	0.547
85	0.297	0.205	NA	NA	0.244
86	0.921	0.483	NA	NA	0.669
87	NA	0.487	0.398	NA	0.461
88	NA	0.146	0.226	0.110	0.148
89	0.049	0.133	0.126	0.072	0.095
90	NA	0.531	0.209	0.285	0.382
91	0.165	0.979	0.290	0.350	0.510
92	NA	0.682	0.196	0.518	0.532
93	0.222	NA	0.157	0.361	0.264

Stock Identifiers

```
BQR = BIG QUALICUM RBT \(=\) ROBERTSON CREEK
```


Fishery: West Coast Vancouver Island Troll

tOTAL Year	$\begin{aligned} & \text { MORTALITY } \\ & \text { BON } \\ & \text { AGE> } 3 \end{aligned}$	EXPLO BON 4	ITATION CWF 4	$\begin{aligned} & \text { N RATES } \\ & \text { GAD } \\ & 3 \end{aligned}$	GAD 4	$\begin{gathered} \text { LRW } \\ 4 \end{gathered}$	$\begin{gathered} \text { RBT } \\ 3 \end{gathered}$	$\begin{gathered} \text { RBT } \\ 4 \end{gathered}$	$\begin{gathered} \text { RBT } \\ 5 \end{gathered}$	$\begin{gathered} \text { SAM } \\ 3 \end{gathered}$	$\begin{gathered} \text { SAM } \\ 4 \end{gathered}$	$\begin{gathered} \text { SAM } \\ 5 \end{gathered}$	$\begin{gathered} \text { SPR } \\ 3 \end{gathered}$	$\begin{gathered} \text { SPR } \\ 4 \end{gathered}$	$\begin{gathered} \text { SPS } \\ 3 \end{gathered}$	$\begin{gathered} \text { SPS } \\ 4 \end{gathered}$	$\begin{gathered} \text { SRH } \\ 3 \end{gathered}$	$\begin{gathered} \text { SRH } \\ 4 \end{gathered}$	$\begin{gathered} \text { STP } \\ 3 \end{gathered}$	$\begin{gathered} \text { STP } \\ 4 \end{gathered}$	$\begin{aligned} & \text { URB } \\ & 3 \end{aligned}$	$\begin{gathered} \text { URB } \\ 4 \end{gathered}$	$\begin{aligned} & \text { UWA } \\ & 3 \end{aligned}$	$\begin{gathered} \text { UWA } \\ 4 \end{gathered}$	$\begin{gathered} \text { HSH } \\ 4 \end{gathered}$
79	0.23	NA	NA	NA	NA	NA	0.03	0.06	NA	NA	0.22	0.20	0.20	0.18	NA	0.26	NA	NA	NA	NA	0.04	0.08	0.07	0.17	NA
80	0.11	0.15	NA	NA	NA	NA	0.04	0.07	NA	NA	NA	NA	0.23	0.30	NA	NA	0.04	NA	NA	NA	0.04	0.05	0.14	0.12	0.06
81	0.18	0.16	0.13	0.04	NA	0.06	0.02	0.03	0.03	NA	NA	NA	0.18	0.15	0.06	NA	NA	0.02	0.26	NA	0.01	0.05	0.10	0.20	0.02
82	0.28	0.35	0.20	0.08	0.21	0.08	0.02	0.03	NA	0.06	NA	NA	0.19	0.26	0.10	0.21	NA	NA	0.25	0.30	0.03	0.02	0.14	0.23	0.05
83	0.33	0.29	0.23	NA	0.29	0.07	0.01	0.03	0.07	NA	0.20	NA	0.28	0.21	0.12	0.20	0.03	0.02	0.35	0.51	0.01	0.02	0.09	0.21	0.03
84	0.29	0.55	0.22	0.12	NA	NA	0.04	0.05	0.05	NA	NA	0.19	0.25	0.31	0.11	0.23	NA	0.02	0.44	0.53	0.02	0.06	0.20	0.16	0.02
85	0.26	0.29	0.15	NA	0.18	NA	0.02	0.00	NA	NA	NA	NA	0.11	0.23	0.06	0.16	NA	NA	0.22	0.20	0.02	0.05	0.10	0.22	0.01
86	NA	NA	0.21	NA	NA	0.03	NA	NA	NA	NA	NA	NA	0.24	0.20	0.07	0.27	NA	0.01	0.20	0.23	0.04	0.03	0.10	0.24	NA
87	0.22	NA	0.14	NA	NA	0.10	0.01	NA	NA	NA	NA	NA	0.09	NA	0.07	0.15	0.01	0.01	0.23	NA	0.03	0.05	0.06	0.10	0.02
88	NA	0.27	0.15	0.04	NA	0.08	0.02	0.04	NA	0.04	NA	NA	0.21	NA	0.03	0.18	NA	0.03	0.26	0.32	0.02	0.10	NA	0.17	0.02
89	NA	NA	0.09	0.03	0.11	0.04	0.01	0.02	0.00	0.02	0.14	NA	0.13	0.10	0.03	0.10	0.01	NA	0.06	0.11	NA	0.05	NA	NA	0.02
90	NA	NA	0.13	0.09	0.21	0.09	0.02	0.04	0.07	0.04	0.20	NA	0.18	0.17	0.08	0.22	0.02	0.02	0.22	0.09	NA	0.08	NA	NA	0.02
91	NA	NA	NA	NA	0.21	0.05	0.02	0.03	0.03	0.03	0.13	0.23	0.12	0.13	0.04	0.14	0.02	0.02	0.14	NA	NA	NA	NA	NA	0.00
92	NA	NA	0.19	NA	0.11	0.02	0.08	0.17	0.22	0.06	0.06	NA	0.10	0.18	0.05	0.17	0.04	0.13	0.14	NA	NA	NA	NA	NA	0.01
93	NA	NA	NA	NA	0.38	NA	0.06	0.15	0.10	0.08	0.10	NA	0.13	0.24	0.06	0.13	0.03	0.09	0.16	0.14	0.05	0.14	NA	NA	0.01
Base	0.20	0.22	0.17	0.06	0.21	0.07	0.03	0.05	0.03	0.06	0.22	0.20	0.20	0.22	0.08	0.23	0.04	0.02	0.25	0.30	0.03	0.05	0.11	0.18	0.04

TOTAL Year	$\begin{aligned} & \text { MORTALITY } \\ & \text { BON } \\ & \text { AGE> } 3 \end{aligned}$	EXPLO 4	ITATION CWF 4	$\begin{aligned} & \text { N RATE } \\ & \text { GAD } \\ & 3 \end{aligned}$	$\begin{gathered} \text { INDEX } \\ \text { GAD } \\ 4 \end{gathered}$	$\begin{gathered} \text { LRW } \\ 4 \end{gathered}$	$\begin{gathered} \text { RBT } \\ 3 \end{gathered}$	$\begin{gathered} \text { RBT } \\ 4 \end{gathered}$	$\begin{gathered} \text { RBT } \\ 5 \end{gathered}$	$\begin{gathered} \text { SAM } \\ 3 \end{gathered}$	$\begin{gathered} \text { SAM } \\ 4 \end{gathered}$	$\begin{gathered} \text { SAM } \\ 5 \end{gathered}$	$\begin{gathered} \text { SPR } \\ 3 \end{gathered}$	$\begin{gathered} \text { SPR } \\ 4 \end{gathered}$	$\begin{gathered} \text { SPS } \\ 3 \end{gathered}$	$\begin{gathered} \text { SPS } \\ 4 \end{gathered}$	$\begin{gathered} \text { SRH } \\ 3 \end{gathered}$	$\begin{gathered} \text { SRH } \\ 4 \end{gathered}$	$\begin{gathered} \text { STP } \\ 3 \end{gathered}$	$\begin{gathered} \text { STP } \\ 4 \end{gathered}$	$\begin{gathered} \text { URB } \\ 3 \end{gathered}$	$\begin{gathered} \text { URB } \\ 4 \end{gathered}$	$\begin{gathered} \text { UHA } \\ 3 \end{gathered}$	$\begin{gathered} \text { UHA } \\ 4 \end{gathered}$	$\begin{gathered} \text { WSH } \\ 4 \end{gathered}$	Fishery
79	1.13	NA	NA	NA	NA	NA	1.18	1.29	NA	NA	1.00	1.00	0.98	0.81	NA	1.10	NA	NA	NA	NA	1.46	1.63	0.61	0.93	NA	1.01
80	0.55	0.69	NA	NA	NA	NA	1.37	1.47	NA	NA	NA	NA	1.15	1.37	NA	NA	1.00	NA	NA	NA	1.35	1.00	1.22	0.69	1.46	0.99
81	0.89	0.72	0.79	0.71	NA	0.83	0.67	0.56	1.00	NA	NA	NA	0.92	0.66	0.74	NA	NA	1.00	1.02	NA	0.22	0.96	0.91	1.09	0.36	0.83
82	1.42	1.59	1.21	1.29	1.00	1.17	0.77	0.68	NA	1.00	NA	NA	0.95	1.17	1.26	0.90	NA	NA	0.98	1.00	0.96	0.40	1.26	1.29	1.18	1.12
83	1.68	1.33	1.38	NA	1.39	0.96	0.38	0.65	2.34	NA	0.92	NA	1.41	0.96	1.47	0.87	0.62	0.75	1.40	1.66	0.35	0.43	0.76	1.16	0.63	1.21
84	1.47	2.49	1.31	1.90	NA	NA	1.51	0.94	1.69	NA	NA	0.95	1.23	1.42	1.37	0.99	NA	0.75	1.74	1.73	0.75	1.20	1.75	0.91	0.47	1.43
85	1.32	1.33	0.90	NA	0.84	NA	0.69	0.00	NA	NA	NA	NA	0.57	1.05	0.70	0.69	NA	NA	0.90	0.65	0.68	0.95	0.90	1.24	0.34	0.89
86	NA	NA	1.26	NA	NA	0.45	NA	NA	NA	NA	NA	NA	1.17	0.92	0.79	1.14	NA	0.40	0.80	0.75	1.30	0.67	0.87	1.35	NA	0.97
87	1.10	NA	0.83	NA	NA	1.44	0.38	NA	NA	NA	NA	NA	0.45	NA	0.87	0.64	0.15	0.53	0.92	NA	1.11	0.96	0.48	0.53	0.40	0.75
88	NA	1.21	0.92	0.57	NA	1.07	0.63	0.81	NA	0.73	NA	NA	1.03	NA	0.39	0.79	NA	1.41	1.06	1.05	0.54	1.91	NA	0.96	0.52	0.96
89	NA	NA	0.54	0.41	0.53	0.58	0.24	0.41	0.00	0.37	0.63	NA	0.64	0.45	0.38	0.43	0.20	NA	0.24	0.36	NA	0.90	NA	NA	0.37	0.45
90	NA	NA	0.77	1.38	0.99	1.22	0.84	0.76	2.24	0.72	0.91	NA	0.91	0.77	0.93	0.95	0.39	0.97	0.88	0.29	NA	1.59	NA	NA	0.46	0.84
91	NA	NA	NA	NA	1.02	0.75	0.84	0.68	1.03	0.45	0.60	1.18	0.58	0.58	0.44	0.61	0.52	0.83	0.56	NA	NA	NA	NA	NA	0.04	0.69
92	NA	NA	1.13	NA	0.54	0.33	2.56	3.32	7.44	0.96	0.28	NA	0.52	0.80	0.65	0.74	0.97	5.80	0.57	NA	NA	NA	NA	NA	0.34	0.91
93	NA	NA	NA	NA	1.82	NA	2.07	2.95	3.41	1.37	0.46	NA	0.64	1.07	0.78	0.57	0.72	3.99	0.65	0.47	1.49	2.69	NA	NA	0.31	0.99

Stock Identifiers

Fishery: Strait of Georgia Troll and Sport

TOTAL Year	MORTAL BQR Age 3		PPS Age 3	Age 3	$\begin{array}{r} \text { SAM } \\ \text { Age } 4 \end{array}$	$\begin{array}{r} \text { SPS } \\ \text { Age } 3 \end{array}$	$\begin{array}{r} \text { SPS } \\ \text { Age } 4 \end{array}$	$\begin{array}{r} \text { UHA } \\ \text { Age } 3 \end{array}$
79	0.226	0.155	0.234	NA	0.096	NA	0.061	0.041
80	0.276	0.192	0.263	NA	NA	NA	NA	0.059
81	0.307	0.372	0.290	NA	NA	0.068	NA	0.038
82	0.142	0.145	0.152	0.107	NA	0.056	0.096	0.023
83	0.183	0.164	0.177	NA	0.103	0.030	0.042	0.035
84	0.271	0.283	0.260	NA	NA	0.055	0.055	0.052
85	0.161	0.117	0.145	NA	NA	NA	0.054	0.032
86	0.243	0.177	0.308	NA	NA	NA	NA	0.025
87	0.151	0.221	0.081	NA	NA	0.065	NA	0.035
88	0.196	0.093	NA	0.056	NA	0.027	NA	NA
89	0.160	0.187	0.232	0.076	0.088	0.023	0.035	NA
90	0.188	0.144	NA	0.050	0.130	0.014	0.037	NA
91	0.262	0.296	0.269	0.119	0.058	0.011	0.012	NA
92	0.401	0.227	0.270	0.069	0.213	0.027	0.027	NA
93	0.346	NA	NA	0.162	0.114	0.023	NA	NA
Base	0.238	0.216	0.235	0.107	0.096	0.062	0.078	0.040

total Year	MORTALI BQR Age 3	$\begin{gathered} \text { TY EXPL } \\ \text { BQR } \\ \text { Age } 4 \end{gathered}$	OITATION PPS Age 3		INDEX SAM Age 4	$\begin{array}{r} \text { SPS } \\ \text { Age } 3 \end{array}$	$\begin{array}{r} \text { SPS } \\ \text { Age } 4 \end{array}$	$\begin{array}{r} \text { UWA } \\ \text { Age } 3 \end{array}$	Fishery
79	0.952	0.716	0.998	NA	1.000	NA	0.781	1.016	0.901
80	1.160	0.889	1.120	NA	NA	NA	NA	1.476	1.084
81	1.291	1.723	1.234	NA	NA	1.090	NA	0.934	1.358
82	0.597	0.671	0.648	1.000	NA	0.910	1.219	0.574	0.739
83	0.770	0.760	0.754	NA	1.075	0.491	0.535	0.878	0.762
84	1.138	1.309	1.106	NA	NA	0.890	0.701	1.304	1.122
85	0.677	0.543	0.617	NA	NA	NA	0.682	0.804	0.631
86	1.023	0.821	1.311	NA	NA	NA	NA	0.621	1.034
87	0.636	1.023	0.344	NA	NA	1.044	NA	0.877	0.699
88	0.823	0.432	NA	0.521	NA	0.442	NA	NA	0.597
89	0.673	0.864	0.989	0.709	0.917	0.365	0.449	NA	0.776
90	0.788	0.667	NA	0.472	1.365	0.219	0.466	NA	0.706
91	1.103	1.369	1.144	1.119	0.606	0.174	0.151	NA	0.995
92	1.686	1.051	1.149	0.642	2.229	0.441	0.350	NA	1.197
93	1.456	NA	NA	1.521	1.195	0.377	NA	NA	1.287

Stock Identifiers

BQR $=$ BIG QUALICUM	PPS $=$ PUNTLEDGE SAM $=$ SAMISH FALL FING
SPS $=$ SO SOUND FALL FING UWA $=U O F W$ FALL ACCEL	

Fishery: Strait of Georgia Troll

TOTAL Year	MORTALI BQR Age 3		oitation rates SAM Age 3
79	0.147	0.154	NA
80	0.151	0.127	NA
81	0.120	0.119	NA
82	0.079	NA	0.017
83	0.112	0.102	NA
84	0.085	NA	NA
85	0.018	NA	NA
86	0.066	NA	NA
87	0.033	NA	NA
88	0.009	NA	0.003
89	0.011	NA	0.005
90	0.056	NA	0.024
91	0.050	NA	NA
92	0.116	NA	NA
93	0.024	NA	0.023
Base	0.124	0.133	0.017

TOTAL MORTALITY EXPLOI TATION RATE INDEX BQR						PPS SAM
Year	Age 3	Age 3	Age 3	Fishery		
79	1.182	1.155	NA	1.168		
80	1.213	0.952	NA	1.078		
81	0.968	0.892	NA	0.929		
82	0.638	NA	1.000	0.681		
83	0.900	0.770	NA	0.832		
84	0.681	NA	NA	0.681		
85	0.148	NA	NA	0.148		
86	0.533	NA	NA	0.533		
87	0.268	NA	NA	0.268		
88	0.074	NA	0.193	0.088		
89	0.090	NA	0.313	0.116		
90	0.447	NA	1.416	0.563		
91	0.401	NA	NA	0.401		
92	0.930	NA	NA	0.930		
93	0.193	NA	1.378	0.335		

Stock Identifiers

[^3]
Fishery: Strait of Georgia Sport

TOTAL Year	MORTALI BQR Age 3	$\begin{gathered} \text { TY EXPL } \\ \text { BQR } \\ \text { Age } 4 \end{gathered}$	OITATION PPS Age 3		$\begin{array}{r} \text { SAM } \\ \text { Age } 4 \end{array}$	$\begin{array}{r} \text { SPS } \\ \text { Age } 3 \end{array}$	$\begin{array}{r} \text { SPS } \\ \text { Age } 4 \end{array}$	UWA Age 3
79	0.080	0.097	0.081	NA	0.075	NA	0.052	0.027
80	0.125	0.111	0.136	NA	NA	NA	NA	0.057
81	0.187	0.295	0.171	NA	NA	0.062	NA	0.033
82	0.063	0.060	0.061	0.090	NA	0.052	0.060	0.022
83	0.071	0.118	0.075	NA	0.093	0.029	0.037	0.025
84	0.186	NA	0.150	NA	NA	0.046	0.055	0.047
85	0.143	0.117	0.145	NA	NA	NA	0.050	0.032
86	0.177	0.174	0.197	NA	NA	NA	NA	0.025
87	0.118	0.214	0.081	NA	NA	0.065	NA	0.026
88	0.187	0.073	NA	0.052	NA	0.026	NA	NA
89	0.149	0.187	0.232	0.070	0.088	0.022	0.033	NA
90	0.132	0.144	NA	0.026	0.105	0.011	0.035	NA
91	0.213	0.296	NA	0.099	0.049	0.009	0.012	NA
92	0.286	0.208	0.246	0.053	0.194	0.027	0.027	NA
93	0.322	NA	NA	0.139	0.102	0.019	NA	NA
Base	0.114	0.141	0.112	0.090	0.075	0.057	0.056	0.035

TOTAL Year	MORTALI BQR Age 3	$\begin{gathered} \text { TY EXPL } \\ \text { BQR } \\ \text { Age } 4 \end{gathered}$		RATE SAM Age 3	INDEX SAM Age 4	$\begin{array}{r} \text { SPS } \\ \text { Age } 3 \end{array}$	$\begin{array}{r} \text { SPS } \\ \text { Age } 4 \end{array}$	UWA Age 3	Fishery
79	0.700	0.688	0.719	NA	1.000	NA	0.932	0.766	0.772
80	1.103	0.788	1.215	NA	NA	NA	NA	1.635	1.069
81	1.645	2.098	1.524	NA	NA	1.089	NA	0.951	1.633
82	0.552	0.426	0.542	1.000	NA	0.911	1.068	0.649	0.675
83	0.628	0.841	0.666	NA	1.240	0.506	0.666	0.721	0.761
84	1.637	NA	1.332	NA	NA	0.807	0.979	1.351	1.293
85	1.256	0.834	1.292	NA	NA	NA	0.894	0.932	1.066
86	1.559	1.239	1.754	NA	NA	NA	NA	0.720	1.429
87	1.037	1.524	0.719	NA	NA	1.135	NA	0.753	1.099
88	1.641	0.521	NA	0.582	NA	0.458	NA	NA	0.843
89	1.310	1.326	2.069	0.783	1.174	0.383	0.586	NA	1.211
90	1.160	1.024	NA	0.294	1.414	0.186	0.621	NA	0.852
91	1.870	2.101	NA	1.102	0.650	0.153	0.210	NA	1.271
92	2.513	1.476	2.191	0.587	2.599	0.480	0.489	NA	1.615
93	2.836	NA	NA	1.548	1.372	0.335	NA	NA	1.739

Stock Identifiers

BQR $=$ BIG QUALICUM	PPS $=$ PUNTLEDGE SAM $=$ SAMISH FALL FING
SPS $=$ SO SOUND FALL FING UHA $=U$ OF W FALL ACCEL	

Fishery: U.S. South Ocean Troll and Sport: Puget Sound Stocks

TOTAL Year	MORTALI SAM Age 3			RATES GAD Age 4	$\begin{array}{r} \text { SPS } \\ \text { Age } 3 \end{array}$	$\begin{array}{r} \text { SPS } \\ \text { Age } 4 \end{array}$	$\begin{array}{r} \text { UWA } \\ \text { Age } 3 \end{array}$
79	NA	0.017	NA	0.205	NA	0.021	0.012
80	NA	NA	NA	NA	NA	NA	0.024
81	NA	NA	0.013	NA	0.007	NA	0.027
82	0.009	NA	0.019	0.031	0.007	0.044	0.028
83	NA	0.039	0.012	0.015	0.005	0.027	0.017
84	NA	NA	0.019	0.000	0.007	0.025	0.008
85	NA	NA	NA	0.010	0.000	0.018	0.014
86	NA	NA	NA	NA	0.036	0.026	0.014
87	NA	NA	NA	NA	0.033	0.096	0.027
88	0.025	NA	0.043	NA	0.033	0.092	NA
89	0.028	0.055	0.069	0.123	0.052	0.077	NA
90	0.045	0.079	0.079	0.109	0.059	0.082	NA
91	0.072	0.069	0.033	0.085	0.042	0.090	NA
92	0.046	0.110	0.098	0.171	0.052	0.094	NA
93	0.013	0.091	0.000	0.081	0.017	0.068	NA
Base	0.009	0.017	0.016	0.118	0.007	0.033	0.023

TOTAL Year	MORTAL SAM Age 3	$\begin{gathered} \text { TY EXPL } \\ \text { SAM } \\ \text { Age } 4 \end{gathered}$	OITATION GAD Age 3	N RATE GAD Age 4	INDEX SPS Age 3	$\begin{array}{r} \text { SPS } \\ \text { Age } 4 \end{array}$	$\begin{array}{r} \text { UHA } \\ \text { Age } 3 \end{array}$	Fishery
79	NA	1.000	NA	1.740	NA	0.650	0.539	1.343
80	NA	NA	NA	NA	NA	NA	1.054	1.054
81	NA	NA	0.801	NA	0.960	NA	1.193	1.020
82	1.000	NA	1.199	0.260	1.040	1.350	1.213	0.672
83	NA	2.347	0.757	0.129	0.765	0.812	0.743	0.542
84	NA	NA	1.209	0.000	1.046	0.756	0.338	0.301
85	NA	NA	NA	0.089	0.000	0.564	0.595	0.236
86	NA	NA	NA	NA	5.316	0.778	0.598	1.209
87	NA	NA	NA	NA	4.874	2.918	1.176	2.496
88	2.903	NA	2.658	NA	4.840	2.794	NA	2.991
89	3.240	3.285	4.253	1.045	7.688	2.334	NA	2.031
90	5.201	4.733	4.921	0.929	8.584	2.499	NA	2.282
91	8.214	4.114	2.052	0.724	6.220	2.741	NA	1.967
92	5.237	6.588	6.093	1.453	7.560	2.876	NA	2.872
93	1.491	5.410	0.000	0.692	2.550	2.083	NA	1.362

Stock Identifiers
SAM $=$ SAMISH FALLL FING GAD $=G$ G ADAMS FALL FING
SPS $=$ SO SOUND FALL FING UHA $=U$ OF W FALL ACCEL

Fishery: U.S. South Ocean Troll and Sport: Columbia River Stocks

total Year	MORTAL BON Age 3		OITATION CHF Age 4	RATES SPR Age 3	$\begin{array}{r} \text { SPR } \\ \text { Age } 4 \end{array}$	$\begin{array}{r} \text { STP } \\ \text { Age } 3 \end{array}$
79	0.125	NA	NA	0.193	0.145	NA
80	0.208	0.121	NA	0.296	0.103	NA
81	0.206	0.095	0.162	0.274	0.214	0.201
82	0.182	0.157	0.272	0.322	0.106	0.357
83	0.118	0.075	0.183	0.116	0.040	0.202
84	0.073	0.011	0.040	0.072	0.000	0.055
85	0.174	0.087	0.042	0.162	0.021	0.218
86	0.086	0.114	0.052	0.066	0.044	0.248
87	0.154	0.066	0.116	0.207	0.000	0.143
88	NA	0.073	0.148	0.143	0.143	0.203
89	NA	0.064	0.272	0.221	0.118	0.258
90	NA	0.106	0.137	0.168	0.107	0.172
91	NA	0.056	0.070	0.190	0.027	0.143
92	NA	0.095	0.032	0.284	0.080	0.280
93	NA	0.041	0.450	0.239	0.171	0.138
Base	0.180	0.124	0.217	0.271	0.142	0.279

TOTAL Year	MORTAL BON Age 3				I NDEX SPR Age 4	$\begin{array}{r} \text { STP } \\ \text { Age } 3 \end{array}$	Fishery
79	0.691	NA	NA	0.711	1.022	NA	0.780
80	1.156	0.973	NA	1.090	0.724	NA	1.014
81	1.145	0.763	0.746	1.011	1.508	0.719	0.949
82	1.008	1.264	1.254	1.188	0.746	1.281	1.150
83	0.656	0.604	0.845	0.428	0.284	0.723	0.605
84	0.403	0.092	0.185	0.266	0.000	0.197	0.207
85	0.963	0.699	0.196	0.596	0.148	0.782	0.580
86	0.479	0.917	0.241	0.244	0.308	0.888	0.503
87	0.855	0.533	0.534	0.764	0.000	0.511	0.565
88	NA	0.587	0.684	0.526	1.006	0.729	0.687
89	NA	0.516	1.255	0.816	0.828	0.926	0.903
90	NA	0.856	0.633	0.620	0.751	0.615	0.668
91	NA	0.453	0.324	0.699	0.188	0.514	0.471
92	NA	0.764	0.150	1.046	0.560	1.005	0.746
93	NA	0.335	2.075	0.883	1.207	0.496	1.007

Stock Identifiers
BON $=$ BONNEVILLE TULE \quad CWF $=$ COWLITZ FALL TULE
SPR $=$ SPRING CREEK TULE STP $=$ STAYTON POND TULE

APPENDIX E

Reported Catch Exploitation Rate and Fishery Index Data

Page
Southeast Alaska Troll E-1
North/Central B.C. Troll E-2
North B.C. Troll E-3
Central B.C. Troll E-4
West Coast Vancouver Island Troll E-5
Strait of Georgia Troll and Sport E-6
Strait of Georgia Troll E-7
Strait of Georgia Sport E-8
U.S. South Ocean Troll and Sport: Puget Sound Stocks E-9
U.S. South Ocean Troll and Sport: Columbia River Stocks E-10

Fishery: Southeast Alaska Troll

REPORT Year	ED CATCH AKS Age 4		ITATION QUI Age 5	RATES RBT Age 3	$\begin{array}{r} \text { RBT } \\ \text { Age } 4 \end{array}$	$\begin{array}{r} \text { RBT } \\ \text { Age } 5 \end{array}$	$\begin{array}{r} \text { SRH } \\ \text { Age } 3 \end{array}$	$\begin{array}{r} \text { SRH } \\ \text { Age } 4 \end{array}$	$\begin{array}{r} \text { SRH } \\ \text { Age } 5 \end{array}$	$\begin{array}{r} \text { URB } \\ \text { Age } 3 \end{array}$	URB Age 4	$\begin{array}{r} \text { URB } \\ \text { Age } 5 \end{array}$	$\begin{array}{r} \text { WSH } \\ \text { Age } 4 \end{array}$
79	NA	0.000	0.095	0.036	0.273	0.562	NA	NA	NA	0.000	0.159	NA	0.024
80	NA	0.107	0.065	0.050	0.279	0.328	0.029	NA	NA	0.025	0.142	0.265	0.121
81	NA	0.108	0.108	0.057	0.340	0.412	0.026	0.119	NA	0.000	0.174	0.236	0.073
82	0.080	0.120	0.155	0.030	0.247	0.290	0.003	0.111	0.128	0.006	0.095	0.135	0.060
83	0.075	0.191	0.206	0.023	0.286	0.436	0.010	0.060	0.385	0.001	0.209	0.192	0.092
84	0.054	0.102	0.193	0.046	0.260	0.204	NA	0.053	0.129	0.004	0.182	0.310	0.040
85	0.058	0.142	0.210	0.039	0.104	0.292	0.002	NA	0.219	0.005	0.135	0.224	0.111
86	0.066	0.093	0.139	0.000	0.250	0.039	0.006	0.122	NA	0.005	0.095	0.161	0.045
87	0.031	0.109	0.119	0.018	0.196	0.525	0.004	0.032	0.157	0.004	0.108	0.199	0.082
88	0.046	0.103	0.087	0.003	0.146	0.375	0.000	0.048	0.163	0.000	0.061	0.180	0.045
89	0.040	0.094	0.129	0.010	0.127	0.169	0.001	0.026	0.176	0.003	0.035	0.143	0.026
90	0.117	0.157	0.101	0.032	0.166	0.229	0.009	0.048	0.145	0.000	0.119	0.103	0.060
91	0.039	0.085	0.105	0.015	0.178	0.214	0.009	0.076	0.188	0.000	0.034	0.126	0.031
92	0.013	0.090	0.109	0.005	0.140	0.275	0.002	0.029	0.033	0.000	0.035	0.150	0.016
93	0.026	0.052	0.157	0.008	0.145	0.233	0.004	0.052	0.148	0.021	0.080	0.106	0.055
Base	0.080	0.084	0.106	0.043	0.285	0.398	0.019	0.115	0.128	0.008	0.142	0.212	0.070

REPORT Year	$\begin{gathered} \text { ED CATCH } \\ \text { AKS } \\ \text { Age } 4 \end{gathered}$		ITATION QUI Age 5	RATE RBT 3 Age 3	NDEX RBT Age 4	$\begin{array}{r} \text { RBT } \\ \text { Age } 5 \end{array}$	$\begin{array}{r} \text { SRH } \\ \text { Age } 3 \end{array}$	$\begin{array}{r} \text { SRH } \\ \text { Age } 4 \end{array}$	$\begin{array}{r} \text { SRH } \\ \text { Age } 5 \end{array}$	URB Age 3	URB Age 4	URB Age 5	$\begin{array}{r} \text { WSH } \\ \text { Age } 4 \end{array}$	Fishery
79	NA	0.000	0.895	0.826	0.957	1.412	NA	NA	NA	0.000	1.117	NA	0.342	1.011
80	NA	1.280	0.618	1.165	0.980	0.824	1.515	NA	NA	3.207	0.996	1.250	1.744	1.033
81	NA	1.289	1.025	1.317	1.195	1.035	1.352	1.037	NA	0.000	1.222	1.113	1.046	1.116
82	1.000	1.431	1.462	0.693	0.868	0.729	0.132	0.963	1.000	0.793	0.665	0.637	0.867	0.864
83	0.940	2.287	1.945	0.532	1.006	1.097	0.552	0.522	3.001	0.138	1.467	0.907	1.326	1.284
84	0.679	1.221	1.828	1.058	0.914	0.513	NA	0.465	1.007	0.540	1.278	1.462	0.580	0.945
85	0.729	1.701	1.984	0.913	0.366	0.734	0.130	NA	1.707	0.602	0.953	1.055	1.589	0.980
86	0.829	1.112	1.318	0.000	0.878	0.098	0.312	1.063	NA	0.682	0.668	0.761	0.645	0.655
87	0.383	1.303	1.125	0.423	0.689	1.320	0.235	0.275	1.223	0.574	0.760	0.941	1.183	0.939
88	0.581	1.234	0.817	0.079	0.513	0.943	0.000	0.417	1.269	0.000	0.432	0.851	0.651	0.745
89	0.499	1.125	1.216	0.233	0.446	0.424	0.035	0.223	1.367	0.404	0.243	0.674	0.377	0.579
90	1.470	1.877	0.956	0.749	0.583	0.576	0.469	0.415	1.133	0.000	0.834	0.486	0.863	0.762
91	0.486	1.018	0.997	0.355	0.624	0.539	0.484	0.661	1.465	0.000	0.240	0.595	0.439	0.652
92	0.168	1.079	1.029	0.118	0.492	0.691	0.083	0.254	0.254	0.000	0.246	0.708	0.233	0.531
93	0.331	0.624	1.488	0.187	0.511	0.587	0.193	0.456	1.155	2.789	0.566	0.500	0.787	0.645

Stock Identifiers

| AKS $=$ ALASKA SPRING | QUI $=$ QUINSAM | RBT $=$ ROBERTSON CREEK |
| :--- | :--- | :--- |\quad SRH $=$ SALMON RIVER

Fishery: North/Central B.C. Troll

REPORT Year	ED CATCH AKS Age 4		ITATION BQR Age 4	RATES QUI Age 3	$\begin{array}{r} \text { QUI } \\ \text { Age } 4 \end{array}$	$\begin{array}{r} \text { QUI } \\ \text { Age } 5 \end{array}$	$\begin{array}{r} \text { RBT } \\ \text { Age } 3 \end{array}$	$\begin{array}{r} \text { RBT } \\ \text { Age } 4 \end{array}$	$\begin{array}{r} \text { RBT } \\ \text { Age } 5 \end{array}$	$\begin{array}{r} \text { SRH } \\ \text { Age } 3 \end{array}$	$\begin{array}{r} \text { SRH } \\ \text { Age } 4 \end{array}$	$\begin{array}{r} \text { SRH } \\ \text { Age } 5 \end{array}$	URB Age 3	$\begin{array}{r} \text { URB } \\ \text { Age } 4 \end{array}$	$\begin{array}{r} \text { URB } \\ \text { Age } 5 \end{array}$	$\begin{array}{r} \text { WSH } \\ \text { Age } 4 \end{array}$
79	NA	0.075	0.093	0.038	0.192	0.113	0.089	0.153	0.110	NA	NA	NA	0.008	0.091	NA	0.119
80	NA	0.089	0.089	0.040	0.162	0.242	0.078	0.148	0.154	0.068	NA	NA	0.023	0.069	0.073	0.121
81	NA	0.085	0.098	0.066	0.177	0.193	0.054	0.139	0.235	0.103	0.156	NA	0.000	0.075	0.091	0.091
82	0.004	0.061	0.087	0.027	0.079	0.128	0.056	0.159	0.123	0.034	0.120	0.081	0.022	0.034	0.020	0.022
83	0.006	0.102	0.099	0.056	0.139	0.218	0.065	0.113	0.076	0.027	0.089	0.098	0.030	0.075	0.096	0.053
84	0.004	0.062	0.076	0.009	0.063	0.078	0.026	0.134	0.227	NA	0.094	0.316	0.021	0.106	0.077	0.020
85	0.003	0.031	0.078	0.012	0.045	0.036	0.046	0.211	0.197	0.035	NA	0.230	0.021	0.082	0.075	0.021
86	0.002	0.051	0.190	0.043	0.079	0.081	0.000	0.115	0.182	0.012	0.061	NA	0.017	0.071	0.084	0.051
87	0.002	0.005	0.074	0.015	0.071	0.122	0.035	0.059	0.125	0.011	0.053	0.188	0.022	0.099	0.142	0.018
88	0.006	0.009	0.073	0.010	0.045	0.021	0.023	0.080	0.000	0.013	0.040	0.128	0.006	0.054	0.093	0.029
89	0.003	0.019	0.000	0.017	0.033	0.036	0.021	0.097	0.144	0.007	0.037	0.189	0.003	0.050	0.193	0.012
90	0.007	0.019	0.103	0.016	0.091	0.047	0.019	0.099	0.094	0.010	0.032	0.236	0.000	0.062	0.113	0.011
91	0.002	0.013	0.087	0.018	0.112	0.084	0.026	0.100	0.192	0.007	0.053	0.195	0.017	0.000	0.090	0.008
92	0.001	0.025	0.196	0.000	0.149	0.168	0.017	0.099	0.135	0.012	0.034	0.100	0.005	0.026	0.000	0.002
93	0.001	0.021	0.085	0.008	0.078	0.102	0.010	0.090	0.137	0.006	0.121	0.224	0.000	0.075	0.094	0.007
Base	0.004	0.078	0.092	0.043	0.152	0.169	0.069	0.150	0.156	0.068	0.138	0.081	0.013	0.067	0.061	0.088

REPORT Year		BQR Age 3	ITATION BQR Age 4		NDEX QUI Age 4	$\begin{array}{r} \text { QUI } \\ \text { Age } 5 \end{array}$	$\begin{array}{r} \text { RBT } \\ \text { Age } 3 \end{array}$	$\begin{array}{r} \text { RBT } \\ \text { Age } 4 \end{array}$	$\begin{array}{r} \text { RBT } \\ \text { Age } 5 \end{array}$	SRH Age 3	SRH Age 4	$\begin{array}{r} \text { SRH } \\ \text { Age } 5 \end{array}$	$\begin{array}{r} \text { URB } \\ \text { Age } 3 \end{array}$	URB Age 4	URB Age 5	$\begin{array}{r} \text { HSH } \\ \text { Age } 4 \end{array}$	Fishery
79	NA	0.968	1.015	0.889	1.261	0.668	1.290	1.020	0.709	NA	NA	NA	0.601	1.353	NA	1.348	1.005
80	NA	1.147	0.965	0.939	1.060	1.432	1.120	0.989	0.990	0.992	NA	NA	1.728	1.032	1.189	1.372	1.123
81	NA	1.096	1.066	1.538	1.164	1.142	0.776	0.930	1.509	1.510	1.130	NA	0.000	1.113	1.488	1.035	1.163
82	1.000	0.789	0.954	0.635	0.515	0.758	0.813	1.061	0.791	0.498	0.870	1.000	1.671	0.502	0.324	0.245	0.739
83	1.723	1.320	1.082	1.294	0.915	1.292	0.937	0.756	0.487	0.403	0.643	1.213	2.291	1.123	1.570	0.600	0.941
84	1.217	0.799	0.830	0.210	0.414	0.463	0.372	0.895	1.457	NA	0.682	3.901	1.632	1.578	1.265	0.232	0.966
85	0.730	0.405	0.853	0.286	0.293	0.212	0.661	1.409	1.263	0.510	NA	2.841	1.603	1.231	1.232	0.236	0.870
86	0.678	0.651	2.067	0.990	0.517	0.481	0.000	0.772	1.168	0.174	0.441	NA	1.283	1.063	1.369	0.581	0.770
87	0.583	0.066	0.803	0.339	0.465	0.722	0.502	0.393	0.803	0.164	0.380	2.315	1.702	1.472	2.312	0.204	0.727
88	1.762	0.118	0.800	0.230	0.297	0.123	0.332	0.537	0.000	0.185	0.290	1.576	0.470	0.799	1.517	0.324	0.441
89	0.942	0.248	0.000	0.402	0.220	0.211	0.307	0.649	0.924	0.101	0.265	2.330	0.235	0.742	3.155	0.135	0.603
90	1.848	0.239	1.122	0.361	0.598	0.276	0.272	0.665	0.602	0.146	0.233	2.915	0.000	0.923	1.840	0.128	0.670
91	0.625	0.170	0.948	0.428	0.732	0.500	0.374	0.668	1.233	0.101	0.387	2.399	1.270	0.000	1.471	0.095	0.703
92	0.164	0.325	2.139	0.000	0.979	0.996	0.246	0.662	0.866	0.174	0.244	1.228	0.382	0.391	0.000	0.027	0.678
93	0.309	0.265	0.931	0.189	0.513	0.606	0.151	0.604	0.881	0.089	0.875	2.762	0.000	1.121	1.536	0.076	0.742

Stock Identifiers

AKS = ALASKA SPRING
SRH = SALMON RIVER
$B Q R=B I G$ QUALICUM
URB = COLUMBIA UPRIVER BRIGHT

QUI = QUINSAM WSH = WILLAMETTE SPRING

Fishery: North B.C. Troll

REPORT Year	ED CATCH AKS Age 4		ITATION QUI Age 4	RATES RBT Age 3	$\begin{array}{r} \text { RBT } \\ \text { Age } 4 \end{array}$	$\begin{array}{r} \text { RBT } \\ \text { Age } 5 \end{array}$	SRH Age 3	SRH Age 4	$\begin{array}{r} \text { SRH } \\ \text { Age } 5 \end{array}$	URB Age 3	URB Age 4	URB Age 5	WSH Age 4
79	NA	0.017	0.077	0.047	0.073	0.078	NA	NA	NA	0.007	0.059	NA	0.119
80	NA	0.025	0.057	0.043	0.072	0.079	0.062	NA	NA	0.017	0.052	0.062	0.118
81	NA	0.063	0.082	0.028	0.087	0.172	0.103	0.149	NA	0.000	0.062	0.079	0.088
82	0.004	0.025	0.029	0.035	0.105	0.058	0.028	0.120	0.081	0.020	0.034	0.020	0.022
83	0.006	0.037	0.080	0.039	0.059	0.055	0.027	0.083	0.098	0.025	0.063	0.096	0.052
84	0.004	0.007	0.025	0.019	0.109	0.198	NA	0.083	0.259	0.014	0.091	0.077	0.019
85	0.003	0.007	0.028	0.039	0.211	0.197	0.029	NA	0.230	0.018	0.080	0.075	0.018
86	0.002	0.026	0.038	0.000	0.115	0.104	0.006	0.061	NA	0.015	0.061	0.074	0.051
87	0.002	0.010	0.031	0.024	0.000	0.125	0.010	0.053	0.188	0.016	0.089	0.131	0.015
88	0.006	0.005	0.034	0.016	0.074	0.000	0.013	0.040	0.105	0.005	0.049	0.089	0.024
89	0.003	0.012	0.022	0.018	0.092	0.130	0.007	0.037	0.189	0.003	0.046	0.193	0.012
90	0.007	0.009	0.049	0.014	0.082	0.081	0.009	0.032	0.236	0.000	0.057	0.106	0.010
91	0.002	0.011	0.032	0.019	0.078	0.152	0.007	0.053	0.189	0.017	0.000	0.090	0.008
92	0.001	0.000	0.094	0.014	0.066	0.095	0.010	0.034	0.092	0.005	0.026	0.000	0.002
93	0.001	0.003	0.061	0.009	0.068	0.114	0.006	0.120	0.218	0.000	0.075	0.094	0.007
Base	0.004	0.032	0.061	0.038	0.084	0.097	0.064	0.135	0.081	0.011	0.052	0.054	0.087

REPORT Year	ED CATCH AKS Age 4		ITATION QUI Age 4	RATE Age 3	NDEX RBT Age 4	$\begin{array}{r} \text { RBT } \\ \text { Age } 5 \end{array}$	$\begin{array}{r} \text { SRH } \\ \text { Age } 3 \end{array}$	$\begin{array}{r} \text { SRH } \\ \text { Age } 4 \end{array}$	$\begin{array}{r} \text { SRH } \\ \text { Age } 5 \end{array}$	$\begin{array}{r} \text { URB } \\ \text { Age } 3 \end{array}$	$\begin{gathered} \text { URB } \\ \text { Age } 4 \end{gathered}$	$\begin{array}{r} \text { URB } \\ \text { Age } 5 \end{array}$	$\begin{array}{r} \text { USH } \\ \text { Age } 4 \end{array}$	Fishery
79	NA	0.539	1.254	1.216	0.872	0.805	NA	NA	NA	0.630	1.136	NA	1.370	1.032
80	NA	0.764	0.922	1.126	0.852	0.813	0.968	NA	NA	1.559	1.008	1.154	1.363	1.011
81	NA	1.935	1.343	0.739	1.032	1.782	1.602	1.107	NA	0.000	1.205	1.477	1.017	1.279
82	1.000	0.762	0.480	0.919	1.244	0.599	0.431	0.893	1.000	1.811	0.651	0.369	0.249	0.725
83	1.723	1.157	1.306	1.003	0.703	0.570	0.427	0.617	1.213	2.333	1.224	1.787	0.602	0.903
84	1.217	0.223	0.405	0.487	1.296	2.052	NA	0.617	3.188	1.252	1.766	1.440	0.217	1.231
85	0.730	0.201	0.456	1.025	2.507	2.032	0.444	NA	2.841	1.682	1.543	1.403	0.212	1.405
86	0.678	0.814	0.623	0.000	1.373	1.074	0.093	0.453	NA	1.354	1.191	1.379	0.590	0.772
87	0.583	0.296	0.511	0.618	0.000	1.292	0.157	0.390	2.315	1.481	1.727	2.433	0.168	0.866
88	1.762	0.153	0.551	0.421	0.877	0.000	0.196	0.298	1.300	0.442	0.950	1.659	0.282	0.576
89	0.942	0.377	0.364	0.462	1.098	1.347	0.107	0.272	2.330	0.284	0.900	3.593	0.138	0.957
90	1.811	0.288	0.793	0.355	0.971	0.834	0.143	0.239	2.915	0.000	1.098	1.962	0.115	0.863
91	0.625	0.352	0.527	0.488	0.924	1.575	0.108	0.391	2.330	1.536	0.000	1.675	0.097	0.823
92	0.164	0.000	1.529	0.366	0.788	0.986	0.154	0.250	1.138	0.462	0.507	0.000	0.027	0.549
93	0.309	0.084	0.993	0.230	0.811	1.181	0.094	0.888	2.685	0.000	1.453	1.750	0.078	0.969

Stock Identifiers

AKS $=$ ALASKA SPRING	QUI $=$ QUINSAM	RBT $=$ ROBERTSON CREEK
URB $=$ COLUMBIA UPRIVER BRIGHT	HSH $=$ HILLAMETTE SPRING	

Fishery: Central B.C. Troll

REPORTED CATCH BQR						EXPLOITATION QUI RBT	RATES RBT
Year	Age 3	Age 4	Age 3	Age 4			
79	0.065	0.115	0.043	0.079			
80	0.045	0.105	0.034	0.076			
81	0.077	0.095	0.025	0.052			
82	0.031	0.049	0.021	0.054			
83	0.068	0.059	0.026	0.054			
84	0.049	0.038	0.007	0.025			
85	0.016	0.017	0.006	0.000			
86	0.046	0.041	0.000	0.000			
87	0.005	0.040	0.011	0.059			
88	0.000	0.012	0.007	0.007			
89	0.003	0.011	0.003	0.005			
90	0.005	0.043	0.005	0.018			
91	0.008	0.079	0.007	0.022			
92	0.008	0.056	0.003	0.033			
93	0.010	0.017	0.002	0.022			
Base	0.055	0.091	0.031	0.065			

REPORTED CATCH BQR							EXPLOITATION QUI RBT	RATE INDEX RBT
Year	Age 3	Age 4	Age 3	Age 4	Fishery			
79	1.190	1.266	1.383	1.211	1.249			
80	0.826	1.152	1.113	1.165	1.077			
81	1.411	1.044	0.823	0.800	1.033			
82	0.573	0.538	0.682	0.825	0.642			
83	1.246	0.651	0.856	0.825	0.859			
84	0.891	0.419	0.229	0.380	0.491			
85	0.287	0.184	0.207	0.000	0.160			
86	0.837	0.445	0.000	0.000	0.357			
87	0.094	0.433	0.358	0.898	0.473			
88	0.000	0.126	0.221	0.101	0.103			
89	0.055	0.122	0.113	0.072	0.093			
90	0.084	0.467	0.169	0.272	0.290			
91	0.148	0.870	0.231	0.339	0.482			
92	0.153	0.609	0.096	0.500	0.411			
93	0.188	0.191	0.051	0.339	0.212			

Stock Identifiers

```
BQR = BIG QUALICUM
RBT = ROBERTSON CREEK
```

Fishery: West Coast Vancouver Island Troll

REPORTED Year AGE	CATCH BON >3	$\begin{gathered} \text { EXPLOI } \\ \text { BON } \\ 4 \end{gathered}$	tATION CWF 4	RATES GAD 3	$\begin{gathered} \text { GAD } \\ 4 \end{gathered}$	$\begin{gathered} \text { LRU } \\ 4 \end{gathered}$	$\begin{gathered} \text { RBT } \\ 3 \end{gathered}$	$\begin{gathered} \text { RBT } \\ 4 \end{gathered}$	$\begin{gathered} \text { RBT } \\ 5 \end{gathered}$	$\begin{aligned} & \text { SAM } \\ & 3 \end{aligned}$	$\begin{gathered} \text { SAM } \\ 4 \end{gathered}$	$\begin{gathered} \text { SAM } \\ 5 \end{gathered}$	$\begin{gathered} \text { SPR } \\ 3 \end{gathered}$	$\begin{gathered} \text { SPR } \\ 4 \end{gathered}$	$\begin{gathered} \text { SPS } \\ 3 \end{gathered}$	$\begin{gathered} \text { SPS } \\ 4 \end{gathered}$	$\begin{gathered} \text { SRH } \\ 3 \end{gathered}$	$\begin{gathered} \text { SRH } \\ 4 \end{gathered}$	$\begin{gathered} \text { STP } \\ 3 \end{gathered}$	${ }_{4}^{\text {STP }}$	$\begin{aligned} & \text { URB } \\ & 3 \end{aligned}$	$\begin{gathered} \text { URB } \\ 4 \end{gathered}$	$\begin{aligned} & \text { UHA } \\ & 3 \end{aligned}$	$\begin{gathered} \text { UHA } \\ 4 \end{gathered}$	$\begin{gathered} \text { HSH } \\ 4 \end{gathered}$
79	0.21	NA	NA	NA	NA	NA	0.03	0.06	NA	NA	0.21	0.20	0.18	0.17	NA	0.25	NA	NA	NA	NA	0.04	0.08	0.06	0.17	NA
80	0.10	0.15	NA	NA	NA	NA	0.04	0.07	NA	NA	NA	NA	0.21	0.30	NA	NA	0.04	NA	NA	NA	0.04	0.05	0.13	0.12	0.06
81	0.16	0.15	0.13	0.04	NA	0.06	0.02	0.03	0.03	NA	NA	NA	0.17	0.14	0.05	NA	NA	0.02	0.23	NA	0.01	0.05	0.10	0.20	0.01
82	0.26	0.35	0.20	0.07	0.21	0.08	0.02	0.03	NA	0.05	NA	NA	0.17	0.25	0.09	0.21	NA	NA	0.23	0.30	0.03	0.02	0.13	0.23	0.05
83	0.31	0.29	0.23	NA	0.29	0.07	0.01	0.03	0.07	NA	0.20	NA	0.27	0.21	0.11	0.20	0.02	0.02	0.32	0.50	0.01	0.02	0.08	0.21	0.03
84	0.27	0.54	0.22	0.11	NA	NA	0.04	0.05	0.05	NA	NA	0.19	0.24	0.31	0.10	0.23	NA	0.02	0.40	0.52	0.02	0.06	0.19	0.16	0.02
85	0.22	0.29	0.15	NA	0.17	NA	0.02	0.00	NA	NA	NA	NA	0.10	0.22	0.05	0.16	NA	NA	0.20	0.19	0.02	0.05	0.10	0.22	0.01
86	NA	NA	0.21	NA	NA	0.03	NA	NA	NA	NA	NA	NA	0.21	0.20	0.06	0.27	NA	0.01	0.20	0.23	0.04	0.03	0.09	0.24	NA
87	0.18	NA	0.13	NA	NA	0.10	0.01	NA	NA	NA	NA	NA	0.08	NA	0.05	0.14	0.00	0.01	0.15	NA	0.02	0.04	0.04	0.09	0.01
88	NA	0.25	0.14	0.02	NA	0.07	0.02	0.04	NA	0.03	NA	NA	0.18	NA	0.02	0.17	NA	0.03	0.19	0.28	0.00	0.09	NA	0.16	0.02
89	NA	NA	0.09	0.01	0.11	0.04	0.01	0.02	0.00	0.01	0.13	NA	0.11	0.09	0.02	0.10	0.01	NA	0.05	0.11	NA	0.04	NA	NA	0.01
90	NA	NA	0.12	0.06	0.20	0.08	0.02	0.04	0.07	0.02	0.18	NA	0.16	0.16	0.05	0.21	0.01	0.02	0.19	0.08	NA	0.08	NA	NA	0.02
91	NA	NA	NA	NA	0.20	0.05	0.02	0.03	0.03	0.01	0.12	0.23	0.10	0.12	0.02	0.13	0.02	0.02	0.13	NA	NA	NA	NA	NA	0.00
92	NA	NA	0.19	NA	0.11	0.02	0.05	0.16	0.22	0.05	0.06	NA	0.08	0.16	0.04	0.17	0.03	0.13	0.11	NA	NA	NA	NA	NA	0.01
93	NA	NA	NA	NA	0.36	NA	0.04	0.14	0.10	0.07	0.09	NA	0.10	0.23	0.05	0.13	0.02	0.09	0.14	0.13	0.03	0.13	NA	NA	0.01
Base	0.18	0.22	0.16	0.05	0.21	0.07	0.03	0.05	0.03	0.05	0.21	0.20	0.18	0.22	0.07	0.23	0.04	0.02	0.23	0.30	0.03	0.05	0.11	0.18	0.04

REPORTED Year AGE	CATCH BON 3	EXPLOI BON 4	TATION CHF 4	RATE GAD 3	INDEX GAD 4	$\begin{gathered} \text { LRH } \\ 4 \end{gathered}$	$\begin{gathered} \text { RBT } \\ 3 \end{gathered}$	$\begin{gathered} \text { RBT } \\ 4 \end{gathered}$	$\begin{gathered} \text { RBT } \\ 5 \end{gathered}$	$\begin{gathered} \text { SAM } \\ 3 \end{gathered}$	$\begin{gathered} \text { SAM } \\ 4 \end{gathered}$	$\begin{gathered} \text { SAM } \\ 5 \end{gathered}$	$\begin{gathered} \text { SPR } \\ 3 \end{gathered}$	$\begin{gathered} \text { SPR } \\ 4 \end{gathered}$	$\begin{gathered} \text { SPS } \\ 3 \end{gathered}$	$\begin{gathered} \text { SPS } \\ 4 \end{gathered}$	$\begin{gathered} \text { SRH } \\ 3 \end{gathered}$	$\begin{gathered} \text { SRH } \\ 4 \end{gathered}$	$\begin{gathered} \text { STP } \\ 3 \end{gathered}$	$\begin{gathered} \text { STP } \\ 4 \end{gathered}$	$\begin{aligned} & \text { URB } \\ & 3 \end{aligned}$	$\begin{gathered} \text { URB } \\ 4 \end{gathered}$	$\begin{gathered} \text { UHA } \\ 3 \end{gathered}$	${ }_{4}^{\text {UWA }}$	$\begin{gathered} \text { HSH } \\ 4 \end{gathered}$	Fishery
79	1.15	NA	NA	NA	NA	NA	1.15	1.27	NA	NA	1.00	1.00	0.99	0.80	NA	1.10	NA	NA	NA	NA	1.46	1.62	0.61	0.93	NA	1.01
80	0.54	0.70	NA	NA	NA	NA	1.40	1.48	NA	NA	NA	NA	1.17	1.37	NA	NA	1.00	NA	NA	NA	1.37	1.00	1.24	0.69	1.46	1.00
81	0.88	0.71	0.79	0.71	NA	0.83	0.68	0.56	1.00	NA	NA	NA	0.93	0.66	0.72	NA	NA	1.00	1.02	NA	0.19	0.97	0.93	1.10	0.33	0.83
82	1.43	1.60	1.21	1.29	1.00	1.17	0.77	0.68	NA	1.00	NA	NA	0.91	1.16	1.28	0.90	NA	NA	0.98	1.00	0.98	0.41	1.22	1.28	1.22	1.12
83	1.67	1.35	1.38	NA	1.40	0.97	0.34	0.65	2.34	NA	0.92	NA	1.46	0.96	1.51	0.87	0.63	0.73	1.41	1.67	0.34	0.40	0.75	1.17	0.66	1.22
84	1.50	2.48	1.32	2.05	NA	NA	1.55	0.93	1.69	NA	NA	0.96	1.30	1.44	1.38	0.99	NA	0.81	1.75	1.73	0.76	1.19	1.81	0.90	0.46	1.45
85	1.22	1.35	0.92	NA	0.82	NA	0.72	0.00	NA	NA	NA	NA	0.53	1.03	0.69	0.69	NA	NA	0.87	0.64	0.66	0.94	0.91	1.26	0.36	0.88
86	NA	NA	1.28	NA	NA	0.45	NA	NA	NA	NA	NA	NA	1.16	0.91	0.80	1.16	NA	0.43	0.86	0.76	1.32	0.66	0.86	1.34	NA	0.98
87	0.97	NA	0.81	NA	NA	1.42	0.35	NA	NA	NA	NA	NA	0.44	NA	0.64	0.61	0.12	0.58	0.67	NA	0.88	0.87	0.38	0.49	0.39	0.66
88	NA	1.12	0.85	0.44	NA	1.02	0.57	0.77	NA	0.56	NA	NA	1.00	NA	0.27	0.75	NA	1.40	0.83	0.95	0.07	1.76	NA	0.91	0.48	0.87
89	NA	NA	0.54	0.25	0.52	0.56	0.22	0.41	0.00	0.20	0.61	NA	0.58	0.43	0.30	0.42	0.15	NA	0.20	0.37	NA	0.82	NA	NA	0.37	0.43
90	NA	NA	0.72	1.09	0.95	1.18	0.76	0.73	2.24	0.36	0.86	NA	0.88	0.74	0.66	0.91	0.33	0.96	0.83	0.25	NA	1.50	NA	NA	0.44	0.78
91	NA	NA	NA	NA	0.97	0.72	0.76	0.65	1.00	0.23	0.58	1.19	0.54	0.56	0.29	0.58	0.42	0.79	0.57	NA	NA	NA	NA	NA	0.04	0.66
92	NA	NA	1.16	NA	0.51	0.31	2.04	3.19	7.33	0.98	0.27	NA	0.42	0.76	0.60	0.74	0.86	6.17	0.47	NA	NA	NA	NA	NA	0.30	0.87
93	NA	NA	NA	NA	1.72	NA	1.51	2.81	3.28	1.34	0.44	NA	0.56	1.04	0.66	0.55	0.48	4.11	0.61	0.45	0.98	2.56	NA	NA	0.33	0.93

Stock Identifiers

Fishery: Strait of Georgia Troll and Sport

REPORT Year			ITATION PPS Age 3	RATES SAM Age 3	$\begin{array}{r} \text { SAM } \\ \text { Age } 4 \end{array}$	$\begin{array}{r} \text { SPS } \\ \text { Age } 3 \end{array}$	$\begin{array}{r} \text { SPS } \\ \text { Age } 4 \end{array}$	UWA Age 3
79	0.226	0.155	0.234	NA	0.096	NA	0.061	0.041
80	0.276	0.191	0.263	NA	NA	NA	NA	0.059
81	0.307	0.372	0.290	NA	NA	0.068	NA	0.038
82	0.142	0.145	0.152	0.106	NA	0.056	0.096	0.023
83	0.183	0.164	0.177	NA	0.103	0.030	0.042	0.035
84	0.269	0.283	0.252	NA	NA	0.055	0.055	0.052
85	0.159	0.117	0.145	NA	NA	0.020	0.053	0.032
86	0.227	0.174	0.293	NA	NA	0.065	0.031	0.025
87	0.146	0.221	0.081	NA	NA	0.065	0.061	0.034
88	0.193	0.093	0.333	0.055	NA	0.027	0.150	NA
89	0.114	0.179	0.168	0.058	0.088	0.016	0.034	NA
90	0.153	0.138	0.000	0.032	0.127	0.008	0.036	NA
91	0.191	0.287	0.204	0.101	0.055	0.008	0.012	NA
92	0.313	0.212	0.198	0.039	0.209	0.021	0.027	NA
93	0.256	0.329	0.351	0.120	0.110	0.016	0.041	NA
Base	0.237	0.216	0.235	0.106	0.096	0.062	0.078	0.040

REPORTE Year	$\begin{gathered} \text { ED CATCH } \\ \text { BQR } \\ \text { Age } 3 \end{gathered}$		ITATION PPS Age 3	RATE SAM Age 3	NDEX SAM Age 4	$\begin{array}{r} \text { SPS } \\ \text { Age } 3 \end{array}$	$\begin{array}{r} \text { SPS } \\ \text { Age } 4 \end{array}$	UHA Age 3	Fishery
79	0.950	0.717	0.996	NA	1.000	NA	0.781	1.016	0.900
80	1.161	0.886	1.121	NA	NA	NA	NA	1.476	1.084
81	1.291	1.725	1.235	NA	NA	1.090	NA	0.934	1.359
82	0.598	0.672	0.648	1.000	NA	0.910	1.219	0.574	0.739
83	0.772	0.761	0.755	NA	1.075	0.491	0.535	0.878	0.762
84	1.132	1.310	1.073	NA	NA	0.880	0.701	1.304	1.111
85	0.668	0.544	0.618	NA	NA	0.325	0.674	0.804	0.606
86	0.957	0.808	1.248	NA	NA	1.051	0.390	0.621	0.939
87	0.616	1.024	0.344	NA	NA	1.044	0.776	0.845	0.699
88	0.811	0.433	1.420	0.514	NA	0.442	1.915	NA	0.911
89	0.482	0.830	0.714	0.542	0.917	0.262	0.439	NA	0.638
90	0.643	0.641	0.000	0.302	1.333	0.133	0.454	NA	0.480
91	0.805	1.330	0.870	0.946	0.573	0.130	0.151	NA	0.832
92	1.318	0.980	0.845	0.363	2.189	0.337	0.350	NA	0.989
93	1.076	1.526	1.494	1.126	1.154	0.257	0.522	NA	1.187

Stock Identifiers

BQR $=$ BIG QUALICUM	PPS $=$ PUNTLEDGE	SAM $=$ SAMISH FALL FING
SPS $=$ SO SOUND FALL FING UHA $=U$ OF H FALL ACCEL		

Fishery: Strait of Georgia Troll

REPORTE Year	$\begin{gathered} \text { ED CATC } \\ \text { BQR } \\ \text { Age } 3 \end{gathered}$	$\begin{gathered} \text { EXPLO } \\ \text { PPS } \\ \text { Age } 3 \end{gathered}$	ITATION RATES SAM Age 3
79	0.146	0.153	NA
80	0.150	0.127	NA
81	0.120	0.119	NA
82	0.079	0.091	0.017
83	0.112	0.102	NA
84	0.083	0.102	NA
85	0.016	0.000	NA
86	0.051	0.096	NA
87	0.031	0.000	NA
88	0.006	0.000	0.002
89	0.009	0.000	0.004
90	0.051	0.000	0.020
91	0.039	0.000	0.017
92	0.092	0.024	0.012
93	0.019	0.000	0.018
Base	0.124	0.123	0.017

REPORTED CATCH					
Year	EXPLOITATION PPS SAM	RATE INDEX			
Age 3	Age 3	Fishery			
79	1.180	1.250	NA	1.215	
80	1.214	1.035	NA	1.125	
81	0.966	0.970	NA	0.968	
82	0.640	0.745	1.000	0.712	
83	0.904	0.836	NA	0.870	
84	0.668	0.835	NA	0.752	
85	0.127	0.000	NA	0.064	
86	0.409	0.783	NA	0.595	
87	0.249	0.000	NA	0.125	
88	0.049	0.000	0.146	0.033	
89	0.074	0.000	0.219	0.049	
90	0.412	0.000	1.177	0.269	
91	0.312	0.000	1.014	0.212	
92	0.747	0.194	0.731	0.489	
93	0.152	0.000	1.058	0.139	

Stock Identifiers
$\overline{B Q R}=$ BIG QUALICUM
SAM $=$ SAMISH FALL FING \quad PPS $=$ PUNTLEDGE

Fishery: Strait of Georgia Sport

REPORT Year	ED CATCH BQR Age 3		ITATION PPS Age 3	RATES SAM Age 3	$\begin{array}{r} \text { SAM } \\ \text { Age } 4 \end{array}$	$\begin{array}{r} \text { SPS } \\ \text { Age } 3 \end{array}$	$\begin{array}{r} \text { SPS } \\ \text { Age } 4 \end{array}$	$\begin{array}{r} \text { UHA } \\ \text { Age } 3 \end{array}$
79	0.080	0.097	0.081	NA	0.075	NA	0.052	0.027
80	0.125	0.111	0.136	NA	NA	NA	NA	0.057
81	0.187	0.295	0.171	NA	NA	0.062	NA	0.033
82	0.063	0.060	0.061	0.090	NA	0.052	0.060	0.022
83	0.071	0.118	0.075	NA	0.093	0.029	0.037	0.025
84	0.186	0.283	0.150	NA	NA	0.046	0.055	0.047
85	0.143	0.117	0.145	NA	NA	0.020	0.050	0.032
86	0.177	0.174	0.197	NA	NA	0.065	0.031	0.025
87	0.115	0.214	0.081	NA	NA	0.065	0.061	0.025
88	0.187	0.073	0.333	0.052	NA	0.026	0.150	NA
89	0.105	0.179	0.168	0.054	0.088	0.016	0.032	NA
90	0.102	0.138	0.000	0.012	0.103	0.005	0.034	NA
91	0.153	0.287	0.204	0.084	0.045	0.007	0.012	NA
92	0.221	0.196	0.175	0.026	0.190	0.021	0.027	NA
93	0.237	0.293	0.351	0.102	0.098	0.013	0.041	NA
Base	0.114	0.141	0.112	0.090	0.075	0.057	0.056	0.035

REPORT Year	$\begin{gathered} \text { ED CATCH } \\ \text { BQR } \\ \text { Age } 3 \end{gathered}$		ITATION PPS Age 3	RATE SAM Age 3	NDEX SAM Age 4	$\begin{array}{r} \text { SPS } \\ \text { Age } 3 \end{array}$	$\begin{array}{r} \text { SPS } \\ \text { Age } 4 \end{array}$	UWA Age 3	Fishery
79	0.700	0.688	0.719	NA	1.000	NA	0.932	0.766	0.772
80	1.103	0.788	1.215	NA	NA	NA	NA	1.635	1.069
81	1.645	2.098	1.524	NA	NA	1.089	NA	0.951	1.633
82	0.552	0.426	0.542	1.000	NA	0.911	1.068	0.649	0.675
83	0.628	0.841	0.666	NA	1.240	0.506	0.666	0.721	0.761
84	1.637	2.009	1.332	NA	NA	0.803	0.979	1.351	1.488
85	1.256	0.834	1.292	NA	NA	0.353	0.882	0.932	0.986
86	1.554	1.239	1.754	NA	NA	1.143	0.545	0.720	1.300
87	1.015	1.524	0.719	NA	NA	1.135	1.084	0.734	1.091
88	1.641	0.521	2.969	0.583	NA	0.458	2.674	NA	1.443
89	0.927	1.273	1.494	0.603	1.174	0.274	0.572	NA	0.996
90	0.896	0.983	0.000	0.138	1.384	0.093	0.605	NA	0.613
91	1.342	2.040	1.820	0.933	0.608	0.118	0.210	NA	1.229
92	1.940	1.394	1.555	0.294	2.548	0.367	0.489	NA	1.329
93	2.082	2.080	3.125	1.139	1.319	0.230	0.729	NA	1.762

Stock Identifiers

BQR $=$ BIG QUALICUM	PPS $=$ PUNTLEDGE
SPS $=$ SO SOUND FALL FING UWA $=U$ OF W FALL ACCEL	

Fishery: U.S. South Ocean Troll and Sport: Puget Sound Stocks

REPORTED CATCH EXPLOITATION RATES SAM SAM GAD									GAD	SPS	SPS	UWA
Year	Age 3	Age 4	Age 3	Age 4	Age 3	Age 4	Age 3					
79	NA	0.017	NA	0.205	NA	0.020	0.011					
80	NA	NA	NA	NA	NA	NA	0.021					
81	NA	NA	0.012	NA	0.004	NA	0.025					
82	0.007	NA	0.017	0.031	0.006	0.043	0.024					
83	NA	0.039	0.012	0.015	0.004	0.026	0.015					
84	NA	NA	0.017	0.000	0.006	0.025	0.006					
85	NA	NA	NA	0.010	0.000	0.018	0.013					
86	NA	NA	NA	NA	0.033	0.026	0.012					
87	NA	NA	NA	NA	0.027	0.096	0.022					
88	0.020	NA	0.035	NA	0.028	0.092	NA					
89	0.023	0.053	0.059	0.120	0.042	0.073	NA					
90	0.036	0.076	0.063	0.105	0.049	0.079	NA					
91	0.063	0.066	0.025	0.082	0.034	0.086	NA					
92	0.040	0.110	0.080	0.163	0.047	0.093	NA					
93	0.010	0.091	0.000	0.081	0.014	0.068	NA					
Base	0.007	0.017	0.014	0.118	0.005	0.032	0.020					

REPORT Year	SAM Age 3		ITATION GAD Age 3	RATE GAD Age 4	NDEX SPS Age 3	$\begin{array}{r} \text { SPS } \\ \text { Age } 4 \end{array}$	UWA Age 3	Fishery
79	NA	1.000	NA	1.740	NA	0.645	0.555	1.358
80	NA	NA	NA	NA	NA	NA	1.050	1.050
81	NA	NA	0.811	NA	0.861	NA	1.232	1.033
82	1.000	NA	1.189	0.260	1.139	1.355	1.163	0.647
83	NA	2.311	0.857	0.129	0.712	0.824	0.724	0.537
84	NA	NA	1.228	0.000	1.125	0.784	0.310	0.287
85	NA	NA	NA	0.089	0.000	0.564	0.616	0.234
86	NA	NA	NA	NA	6.433	0.807	0.615	1.239
87	NA	NA	NA	NA	5.243	3.025	1.092	2.534
88	2.949	NA	2.463	NA	5.579	2.896	NA	3.031
89	3.319	3.183	4.167	1.023	8.298	2.299	NA	1.929
90	5.242	4.524	4.444	0.892	9.677	2.496	NA	2.124
91	9.117	3.927	1.743	0.695	6.638	2.729	NA	1.850
92	5.837	6.588	5.607	1.383	9.213	2.944	NA	2.773
93	1.484	5.410	0.000	0.692	2.755	2.159	NA	1.377

Stock Identifiers
SAM $=$ SAMISH FALL FING GAD $=G$ ADAMS FALL FING
SPS $=S O$ SOUND FALL FING UWA $=U$ OF WALL ACCEL

Fishery: U.S. South Ocean Troll and Sport: Columbia River Stocks

REPORTED Year	$\begin{gathered} \text { ED CATCH } \\ \text { BON } \\ \text { Age } 3 \end{gathered}$		ITATION CWF Age 4	RATES SPR Age 3	$\begin{array}{r} \text { SPR } \\ \text { Age } 4 \end{array}$	$\begin{array}{r} \text { STP } \\ \text { Age } 3 \end{array}$
79	0.113	NA	NA	0.175	0.141	NA
80	0.187	0.108	NA	0.272	0.095	NA
81	0.171	0.083	0.152	0.251	0.209	0.182
82	0.169	0.143	0.268	0.276	0.093	0.327
83	0.104	0.069	0.183	0.107	0.040	0.187
84	0.068	0.008	0.039	0.069	0.000	0.049
85	0.144	0.085	0.042	0.133	0.014	0.194
86	0.086	0.105	0.049	0.059	0.044	0.245
87	0.139	0.057	0.113	0.198	0.000	0.116
88	NA	0.055	0.142	0.134	0.143	0.184
89	NA	0.043	0.266	0.192	0.108	0.235
90	NA	0.097	0.137	0.154	0.103	0.157
91	NA	0.052	0.070	0.173	0.022	0.136
92	NA	0.095	0.032	0.241	0.065	0.239
93	NA	0.031	0.450	0.217	0.165	0.128
Base	0.160	0.111	0.210	0.243	0.134	0.254

REPORT Year	$\begin{aligned} & \text { ED CATCH } \\ & \text { BON } \\ & \text { Age } 3 \end{aligned}$		ITATION CWF Age 4	RATE SPR Age 3	NDEX SPR Age 4	$\begin{array}{r} \text { STP } \\ \text { Age } 3 \end{array}$	Fishery
79	0.706	NA	NA	0.718	1.046	NA	0.796
80	1.166	0.973	NA	1.117	0.709	NA	1.020
81	1.070	0.748	0.724	1.030	1.554	0.715	0.941
82	1.058	1.279	1.276	1.136	0.690	1.285	1.146
83	0.652	0.621	0.873	0.441	0.301	0.736	0.621
84	0.428	0.068	0.185	0.284	0.000	0.193	0.209
85	0.901	0.762	0.202	0.548	0.104	0.762	0.550
86	0.539	0.947	0.234	0.242	0.325	0.962	0.528
87	0.872	0.512	0.541	0.814	0.000	0.457	0.561
88	NA	0.498	0.678	0.549	1.063	0.725	0.691
89	NA	0.383	1.268	0.789	0.803	0.923	0.885
90	NA	0.874	0.654	0.633	0.764	0.616	0.680
91	NA	0.471	0.335	0.709	0.163	0.534	0.475
92	NA	0.850	0.155	0.991	0.486	0.940	0.706
93	NA	0.274	2.143	0.890	1.226	0.502	1.037

Stock Identifiers
$\begin{array}{ll}\text { BON }=\text { BONNEVILLE TULE } & \text { CWF }=\text { COWLITZ FALL TULE } \\ \text { SPR }=\text { SPRING CREEK TULE } & \text { STP }=\text { STAYTON POND TULE }\end{array}$
SPR $=$ SPRING CREEK TULE STP = STAYTON POND TULE

APPENDIX F

Annual Distribution of Reported Catch and Total Fishing Mortality
by Stock

Page
Alaska Spring F-1
Kitsumkalum F-2
Kitimat F-3
Snootli Creek F-4
Robertson Creek F-5
Quinsam F-6
Puntledge F-7
Big Qualicum F-8
Chehalis F-9
Chilliwack F-10
South Puget Sound Fall Yearling F-11
Squaxin Pens Fall Yearling F-12
University of Washington Accelerated F-13
Samish Fall Fingerling F-14
Stillaguamish Fall Fingerling F-15
George Adams Fall Fingerling F-16
South Puget Sound Fall Fingerling F-17
Kalama Fall Fingerling F-18
Elwha Fall Fingerling F-19
Hoko Fall Fingerling F-20
Skagit Spring Yearling F-21
Nooksack Spring Yearling F-22
White River Spring Yearling F-23
Sooes Fall Fingerling F-24
Queets Fall Fingerling F-25
Cowlitz Tule F-26
Spring Creek Tule F-27
Bonneville Tule F-28
Stayton Pond Tule F-29
Columbia River Upriver Bright F-30
Hanford Wild Brights F-31
Lewis River Wild F-32
Lyons Ferry F-33
Willamette Spring F-34
Salmon River F-35

Stock: Alaska Spring

Distribution of Reported Catch

Catch Year	$\begin{array}{r} \text { Fish } \\ \text { All } \\ \text { Alaska } \end{array}$	eries with All Nth/Cent	ceilings WCVI Troll	$\begin{array}{r} \text { All } \\ \text { Geo St } \end{array}$	Canada Net	Other Canada Sport	fisher U.S. Troll	U.S. Net	U.S. Sport
83	94.5\%	5.3\%	0.0\%	0.0\%	0.0\%	0.0\%	0.2\%	0.0\%	0.0\%
84	94.8\%	3.7\%	0.0\%	0.0\%	0.0\%	0.0\%	1.5\%	0.0\%	0.0\%
85	96.5\%	2.9\%	0.0\%	0.0\%	0.0\%	0.0\%	0.6\%	0.0\%	0.0\%
86	98.1\%	1.7\%	0.0\%	0.0\%	0.0\%	0.0\%	0.2\%	0.0\%	0.0\%
87	98.1\%	1.9\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
88	97.5\%	2.4\%	0.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
89	98.0\%	2.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
90	96.6\%	3.4\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
91	98.3\%	1.7\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
92	98.7\%	1.3\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
93	98.8\%	1.2\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
(83-93)	97.3\%	2.5\%	0.0\%	0.0\%	0.0\%	0.0\%	0.2\%	0.0\%	0.0\%
(85-93)	97.8\%	2.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.1\%	0.0\%	0.0\%

Distribution of Total Mortalities

Catch Year	Fisheries with ceilings-All All \quad WCVI AllAlaska Nth/Cent Groll Geo St				Canada Net	- Other Canada Sport	fisher U.S. Troll	U.S. Net	U.S. Sport
83	95.7\%	4.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.3\%	0.0\%	0.0\%
84	96.1\%	2.7\%	0.0\%	0.0\%	0.0\%	0.0\%	1.1\%	0.0\%	0.0\%
85	97.5\%	2.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.4\%	0.0\%	0.0\%
86	98.7\%	1.2\%	0.0\%	0.0\%	0.0\%	0.0\%	0.1\%	0.0\%	0.0\%
87	98.6\%	1.4\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
88	97.9\%	2.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
89	98.5\%	1.5\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
90	97.0\%	3.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
91	98.7\%	1.4\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
92	99.0\%	1.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
93	99.1\%	0.9\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
(83-93)	97.9\%	1.9\%	0.0\%	0.0\%	0.0\%	0.0\%	0.2\%	0.0\%	0.0\%
(85-93)	98.3\%	1.6\%	0.0\%	0.0\%	0.0\%	0.0\%	0.1\%	0.0\%	0.0\%

Stock: Kitsumkalum

Distribution of Reported Catch

Catch Year	Fisheries with ceilings_- ALI All \quad ALI Alaska Nth/Cent Troll Geo St				Canada Net	$\begin{array}{r} \text { Otr } \\ \text { Canada } \\ \text { Sport } \end{array}$	fisher U.S. Troll	U.S. Net	U.S. Sport
83	44.2\%	55.8\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
84	55.4\%	44.6\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
85	54.6\%	45.4\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
86	31.7\%	68.3\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
87	26.0\%	74.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
88	41.4\%	58.7\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
89	41.9\%	58.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
90	38.3\%	61.7\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
91	35.2\%	64.8\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
92	46.2\%	52.7\%	1.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
93	35.7\%	64.3\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
(83-93)	41.0\%	59.0\%	0.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
(85-93)	39.0\%	60.9\%	0.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%

Distribution of Total Mortalities

Catch Year			ceilings WCVI Troll	$\begin{array}{r} \mathrm{AlL} \\ \text { Geo } \end{array}$	Canada Net		fisher U.S. Troll	U.S. Net	U.S. Sport
83	50.1\%	49.9\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
84	61.7\%	38.3\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
85	59.4\%	40.6\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
86	37.1\%	62.9\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
87	35.6\%	64.4\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
88	50.5\%	49.5\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
89	48.1\%	51.9\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
90	43.9\%	56.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
91	44.6\%	55.4\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
92	57.3\%	41.9\%	0.8\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
93	43.1\%	56.9\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
(83-93)	48.3\%	51.6\%	0.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
(85-93)	46.6\%	53.3\%	0.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%

Stock: Kitimat

Distribution of Reported Catch

Catch Year	-Fisheries with All All Alaska Nth/Cent		ceiling WCVI Troll	$\begin{array}{r} \mathrm{AlL} \\ \mathrm{Geo} \end{array}$	Canada Net		fisher U.S. Troll	U.S. Net	U.S. Sport
81	40.6\%	56.4\%	0.0\%	2.5\%	0.4\%	0.0\%	0.0\%	0.0\%	0.0\%
82	36.3\%	63.5\%	0.0\%	0.0\%	0.2\%	0.0\%	0.0\%	0.0\%	0.0\%
83	46.3\%	53.7\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
84	59.9\%	40.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
85	73.8\%	26.2\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
86	49.1\%	50.9\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
87	52.6\%	46.6\%	0.0\%	0.7\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
88	63.7\%	36.1\%	0.0\%	0.0\%	0.1\%	0.0\%	0.0\%	0.0\%	0.0\%
89	30.2\%	69.8\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
90	43.6\%	56.0\%	0.0\%	0.4\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
91	38.2\%	61.8\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
92	51.8\%	47.6\%	0.6\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
93	53.0\%	46.2\%	0.0\%	0.8\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
(81-93)	49.2\%	50.4\%	0.0\%	0.4\%	0.1\%	0.0\%	0.0\%	0.0\%	0.0\%
(85-93)	50.7\%	49.0\%	0.1\%	0.2\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%

Distribution of Total Mortalities

Catch Year	\qquad Alaska	heries with All Nth/Cent	ceilings WCVI Troll	$\begin{array}{r} \text { All } \\ \text { Geo } \mathrm{St} \end{array}$	Canada Net	$\begin{aligned} & \text { Other } \\ & \text { Canada } \\ & \text { Sport } \end{aligned}$	fisher U.S. Troll	$\begin{aligned} & \text { U.S. } \\ & \text { Net } \end{aligned}$	U.S. Sport
81	44.2\%	53.3\%	0.0\%	2.2\%	0.3\%	0.0\%	0.0\%	0.0\%	0.0\%
82	40.4\%	59.4\%	0.0\%	0.0\%	0.2\%	0.0\%	0.0\%	0.0\%	0.0\%
83	51.3\%	48.7\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
84	65.0\%	35.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
85	82.1\%	17.9\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
86	59.3\%	40.7\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
87	66.3\%	33.2\%	0.0\%	0.5\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
88	71.0\%	28.8\%	0.0\%	0.0\%	0.1\%	0.0\%	0.0\%	0.0\%	0.0\%
89	39.9\%	60.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
90	53.3\%	46.2\%	0.0\%	0.6\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
91	51.4\%	48.6\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
92	68.5\%	31.1\%	0.4\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
93	63.4\%	35.9\%	0.0\%	0.7\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
(81-93)	58.2\%	41.5\%	0.0\%	0.3\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
(85-93)	61.7\%	38.1\%	0.0\%	0.2\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%

Stock: Snootli Creek

Distribution of Reported Catch

Catch Year	$\begin{array}{r} \text { Fish } \\ \text { All } \\ \text { Alaska } \end{array}$	heries with All Nth/Cent	ceilings WCVI Troll	$\begin{gathered} \text { All } \\ \text { Geo St } \end{gathered}$	Canada Net	Other Canada Sport	fisher U.S. Troll	U.S. Net	U.S. Sport
79	57.1\%	16.4\%	0.0\%	17.0\%	9.5\%	0.0\%	0.0\%	0.0\%	0.0\%
80	30.2\%	66.5\%	0.0\%	3.3\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
81	33.9\%	53.4\%	0.0\%	3.9\%	8.9\%	0.0\%	0.0\%	0.0\%	0.0\%
82	32.9\%	62.3\%	4.8\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
83	49.9\%	50.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
84	28.3\%	71.7\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
85	36.0\%	62.3\%	0.0\%	0.0\%	1.7\%	0.0\%	0.0\%	0.0\%	0.0\%
86	21.3\%	78.8\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
87	26.3\%	73.7\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
88	27.4\%	72.6\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
89	16.4\%	81.1\%	2.5\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
90	29.0\%	71.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
91	21.4\%	77.4\%	1.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
92	25.2\%	73.6\%	0.8\%	0.0\%	0.0\%	0.0\%	0.4\%	0.0\%	0.0\%
93	32.2\%	66.5\%	1.3\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
(79-93)	31.2\%	65.2\%	0.7\%	1.6\%	1.3\%	0.0\%	0.0\%	0.0\%	0.0\%
(85-93)	26.1\%	73.0\%	0.6\%	0.0\%	0.2\%	0.0\%	0.0\%	0.0\%	0.0\%

Distribution of Total Mortalities

Catch Year	$\begin{array}{r} \text { Fish } \\ \text { All } \\ \text { Alaska } \end{array}$	heries with All Nth/Cent	ceilings WCVI Troll	$\begin{gathered} \text { All } \\ \text { Geo St } \end{gathered}$	Canada Net	Other Canada Sport	fisher U.S. Troll	U.S. Net	U.S. Sport
79	56.1\%	21.2\%	0.0\%	14.5\%	8.2\%	0.0\%	0.0\%	0.0\%	0.0\%
80	35.9\%	61.2\%	0.6\%	2.2\%	0.1\%	0.0\%	0.0\%	0.0\%	0.0\%
81	41.1\%	48.2\%	0.2\%	3.2\%	7.3\%	0.0\%	0.0\%	0.0\%	0.0\%
82	37.8\%	57.7\%	4.4\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
83	50.8\%	49.1\%	0.0\%	0.0\%	0.1\%	0.0\%	0.0\%	0.0\%	0.0\%
84	35.4\%	64.6\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
85	45.8\%	52.9\%	0.0\%	0.0\%	1.3\%	0.0\%	0.0\%	0.0\%	0.0\%
86	28.1\%	71.5\%	0.4\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
87	37.7\%	62.3\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
88	31.8\%	68.2\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
89	21.9\%	75.6\%	2.5\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
90	35.6\%	64.4\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
91	29.3\%	69.6\%	1.2\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
92	37.7\%	61.2\%	0.7\%	0.0\%	0.0\%	0.0\%	0.4\%	0.0\%	0.0\%
93	37.3\%	61.5\%	1.2\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
(79-93)	37.5\%	59.3\%	0.8\%	1.3\%	1.1\%	0.0\%	0.0\%	0.0\%	0.0\%
(85-93)	33.9\%	65.2\%	0.7\%	0.0\%	0.1\%	0.0\%	0.0\%	0.0\%	0.0\%

Stock: Robertson Creek

Distribution of Reported Catch

Catch Year	Fisheries wit All All Alaska Nth/Cent		$\begin{aligned} & \text { ceiling } \\ & \text { WCVI } \\ & \text { Troll } \end{aligned}$	$\begin{gathered} \mathrm{All} \\ \mathrm{Geo} \end{gathered}$	Canada Net	Canada Sport	fisher U.S. Troll	U.S.	U.S. Sport
79	34.4\%	41.8\%	11.0\%	2.3\%	3.1\%	7.2\%	0.0\%	0.1\%	0.0\%
80	47.4\%	25.2\%	9.0\%	0.3\%	13.8\%	4.0\%	0.0\%	0.2\%	0.0\%
81	40.2\%	29.7\%	6.1\%	1.2\%	16.0\%	6.2\%	0.0\%	0.5\%	0.0\%
82	36.2\%	30.4\%	6.7\%	1.0\%	17.4\%	7.5\%	0.1\%	0.7\%	0.2\%
83	47.2\%	22.3\%	5.6\%	0.3\%	19.3\%	4.9\%	0.0\%	0.3\%	0.0\%
84	36.1\%	21.1\%	6.9\%	0.8\%	18.4\%	16.5\%	0.0\%	0.2\%	0.0\%
85	32.5\%	33.2\%	2.9\%	1.1\%	5.3\%	22.1\%	0.0\%	2.9\%	0.0\%
86	30.2\%	19.6\%	6.5\%	0.0\%	2.1\%	40.1\%	0.0\%	0.0\%	1.5\%
87	17.7\%	25.9\%	4.9\%	1.2\%	2.1\%	47.3\%	0.0\%	0.6\%	0.3\%
88	26.3\%	19.6\%	7.6\%	1.2\%	15.1\%	29.3\%	0.0\%	0.6\%	0.3\%
89	18.9\%	16.5\%	2.5\%	1.2\%	31.6\%	29.1\%	0.0\%	0.1\%	0.1\%
90	33.7\%	19.4\%	10.4\%	0.7\%	17.2\%	18.5\%	0.0\%	0.0\%	0.1\%
91	30.9\%	19.5\%	6.6\%	0.5\%	22.0\%	20.3\%	0.0\%	0.0\%	0.1\%
92	33.9\%	20.7\%	31.0\%	0.2\%	1.1\%	13.2\%	0.0\%	0.0\%	0.0\%
93	28.3\%	16.1\%	20.1\%	0.9\%	12.0\%	22.5\%	0.1\%	0.0\%	0.0\%
(79-93)	32.9\%	24.1\%	9.2\%	0.9\%	13.1\%	19.2\%	0.0\%	0.4\%	0.2\%
(85-93)	28.0\%	21.2\%	10.3\%	0.8\%	12.1\%	26.9\%	0.0\%	0.5\%	0.3\%

Distribution of Total Mortalities

Catch Year		eries with All Nth/Cent	ceilings WCVI Troll	$\begin{array}{r} \text { All } \\ \text { Geo St } \end{array}$	Canada Net	Other Canada Sport	fisher U.S. Troll	U.S. Net	U.S. Sport
79	38.1\%	39.3\%	10.6\%	1.9\%	2.7\%	7.3\%	0.0\%	0.2\%	0.0\%
80	48.3\%	25.3\%	9.1\%	0.3\%	12.8\%	3.8\%	0.1\%	0.3\%	0.0\%
81	44.2\%	28.4\%	6.0\%	1.0\%	13.5\%	6.4\%	0.0\%	0.6\%	0.0\%
82	41.5\%	28.5\%	6.4\%	0.9\%	14.8\%	7.1\%	0.1\%	0.7\%	0.2\%
83	51.3\%	21.1\%	5.4\%	0.3\%	17.1\%	4.6\%	0.0\%	0.3\%	0.0\%
84	39.9\%	20.2\%	6.8\%	0.7\%	16.7\%	15.4\%	0.0\%	0.2\%	0.0\%
85	47.7\%	25.9\%	2.3\%	0.8\%	3.9\%	17.1\%	0.0\%	2.4\%	0.0\%
86	43.7\%	19.2\%	5.8\%	0.0\%	1.6\%	28.6\%	0.0\%	0.0\%	1.1\%
87	23.1\%	22.3\%	4.4\%	0.9\%	1.4\%	47.2\%	0.0\%	0.5\%	0.2\%
88	32.5\%	19.3\%	7.7\%	1.1\%	12.2\%	26.3\%	0.0\%	0.6\%	0.2\%
89	29.0\%	17.0\%	2.6\%	1.5\%	23.9\%	25.7\%	0.0\%	0.1\%	0.1\%
90	44.9\%	18.2\%	9.0\%	0.8\%	12.1\%	14.9\%	0.0\%	0.0\%	0.1\%
91	38.7\%	18.8\%	6.3\%	0.6\%	17.7\%	17.7\%	0.0\%	0.0\%	0.1\%
92	45.9\%	17.4\%	25.7\%	0.1\%	0.8\%	10.1\%	0.0\%	0.0\%	0.0\%
93	34.1\%	15.6\%	19.5\%	0.9\%	10.1\%	19.8\%	0.1\%	0.0\%	0.0\%
(79-93)	40.2\%	22.4\%	8.5\%	0.8\%	10.7\%	16.8\%	0.0\%	0.4\%	0.1\%
(85-93)	37.7\%	19.3\%	9.3\%	0.7\%	9.3\%	23.1\%	0.0\%	0.4\%	0.2\%

Stock: Quinsam

Distribution of Reported Catch

Catch Year	\qquad Fisheries with $\underset{\text { Alaska }}{\text { Alth/Cent }}$ Alaska Nth/Cent		eiling WCVI Troll	$\begin{array}{r} \text { All } \\ \text { Geo St } \end{array}$	Canada Net	Canada Sport	fisher U.S. Troll	U.S.	U.S. Sport
79	23.3\%	59.3\%	0.0\%	10.9\%	6.6\%	0.0\%	0.0\%	0.0\%	0.0\%
80	37.4\%	46.5\%	0.0\%	7.0\%	9.1\%	0.0\%	0.0\%	0.0\%	0.0\%
81	25.8\%	50.8\%	0.7\%	14.7\%	8.0\%	0.0\%	0.0\%	0.0\%	0.0\%
82	43.0\%	42.8\%	0.4\%	4.7\%	9.1\%	0.0\%	0.0\%	0.0\%	0.0\%
83	35.7\%	49.5\%	0.7\%	5.1\%	9.0\%	0.0\%	0.0\%	0.0\%	0.0\%
84	40.4\%	39.4\%	1.1\%	10.4\%	8.7\%	0.0\%	0.0\%	0.0\%	0.0\%
85	56.3\%	27.1\%	0.1\%	5.7\%	10.8\%	0.0\%	0.0\%	0.0\%	0.0\%
86	36.7\%	47.4\%	0.0\%	8.1\%	7.8\%	0.0\%	0.0\%	0.0\%	0.0\%
87	31.2\%	51.6\%	0.5\%	5.9\%	10.3\%	0.5\%	0.0\%	0.0\%	0.0\%
88	53.6\%	29.6\%	1.3\%	6.6\%	7.1\%	1.5\%	0.0\%	0.0\%	0.3\%
89	41.0\%	23.6\%	0.5\%	12.6\%	22.3\%	0.0\%	0.0\%	0.2\%	0.0\%
90	42.1\%	43.7\%	2.0\%	5.5\%	6.7\%	0.0\%	0.0\%	0.0\%	0.0\%
91	31.3\%	55.1\%	0.7\%	6.7\%	5.1\%	1.2\%	0.0\%	0.0\%	0.0\%
92	33.0\%	56.4\%	0.6\%	5.9\%	4.2\%	0.0\%	0.0\%	0.0\%	0.0\%
93	22.4\%	56.3\%	1.8\%	14.3\%	5.2\%	0.0\%	0.0\%	0.0\%	0.0\%
(79-93)	36.9\%	45.3\%	0.7\%	8.3\%	8.7\%	0.2\%	0.0\%	0.0\%	0.0\%
(85-93)	38.6\%	43.4\%	0.8\%	7.9\%	8.8\%	0.4\%	0.0\%	0.0\%	0.0\%

Distribution of Total Mortalities

Catch Year		eries with All Nth/Cent	$\begin{aligned} & \text { ceilings- } \\ & \text { WCVI } \\ & \text { Troll } \end{aligned}$	$\begin{array}{r} \mathrm{All} \\ \mathrm{Geo} \end{array}$	Canada Net	$\begin{aligned} & \text { Other } \\ & \text { Canada } \\ & \text { Sport } \end{aligned}$	$\begin{aligned} & \text { fisher } \\ & \text { U.s. } \\ & \text { Troli } \end{aligned}$	$\begin{aligned} & \text { U.s. } \\ & \text { Net } \end{aligned}$	$\begin{aligned} & \text { U.S. } \\ & \text { Sport } \end{aligned}$
79	26.8\%	57.5\%	0.1\%	9.4\%	6.3\%	0.0\%	0.0\%	0.0\%	0.0\%
80	38.2\%	46.7\%	0.0\%	6.4\%	8.7\%	0.0\%	0.0\%	0.0\%	0.0\%
81	27.0\%	51.1\%	0.7\%	13.6\%	7.6\%	0.0\%	0.0\%	0.0\%	0.0\%
82	46.4\%	40.7\%	0.4\%	4.4\%	8.2\%	0.0\%	0.0\%	0.0\%	0.0\%
83	39.3\%	47.0\%	0.7\%	5.1\%	7.9\%	0.0\%	0.0\%	0.0\%	0.0\%
84	43.8\%	37.5\%	1.1\%	9.7\%	7.9\%	0.0\%	0.0\%	0.0\%	0.0\%
85	65.7\%	21.5\%	0.1\%	4.5\%	8.2\%	0.0\%	0.0\%	0.0\%	0.0\%
86	50.8\%	36.8\%	0.0\%	6.7\%	5.7\%	0.0\%	0.0\%	0.0\%	0.0\%
87	51.6\%	37.2\%	0.5\%	3.8\%	6.6\%	0.3\%	0.0\%	0.0\%	0.0\%
88	62.1\%	24.7\%	1.2\%	5.3\%	5.4\%	1.2\%	0.0\%	0.0\%	0.2\%
89	54.3\%	18.3\%	0.4\%	10.9\%	15.9\%	0.0\%	0.0\%	0.1\%	0.0\%
90	54.5\%	34.4\%	1.7\%	4.6\%	4.8\%	0.0\%	0.0\%	0.0\%	0.0\%
91	45.3\%	43.7\%	0.6\%	5.7\%	3.7\%	0.9\%	0.0\%	0.0\%	0.0\%
92	41.7\%	48.2\%	0.4\%	6.7\%	3.1\%	0.0\%	0.0\%	0.0\%	0.0\%
93	30.1\%	47.9\%	1.7\%	16.4\%	3.9\%	0.0\%	0.0\%	0.0\%	0.0\%
(79-93)	45.2\%	39.5\%	0.6\%	7.5\%	6.9\%	0.2\%	0.0\%	0.0\%	0.0\%
(85-93)	50.7\%	34.7\%	0.7\%	7.2\%	6.4\%	0.3\%	0.0\%	0.0\%	0.0\%

Stock: Puntledge

Distribution of Reported Catch

Catch Year	$\begin{gathered} \text { Fishe } \\ \text { All } \\ \text { Alaska } \end{gathered}$	eries with All Nth/Cent	ceilings WCVI Troll	$\begin{gathered} \mathrm{All} \\ \mathrm{Geo} \end{gathered}$	Canada Net	$\begin{aligned} & \text { Other } \\ & \text { Canada } \\ & \text { Sport } \end{aligned}$	$\begin{aligned} & \text { fisher } \\ & \text { U.S: } \end{aligned}$ Troll	$\begin{aligned} & \text { U.S. } \end{aligned}$	U.S. Sport
79	3.7\%	27.2\%	1.4\%	58.3\%	9.4\%	0.0\%	0.0\%	0.0\%	0.0\%
80	6.4\%	20.2\%	7.3\%	57.4\%	8.7\%	0.0\%	0.0\%	0.0\%	0.0\%
81	1.1\%	22.7\%	0.0\%	70.0\%	6.2\%	0.0\%	0.0\%	0.0\%	0.0\%
82	2.9\%	36.7\%	2.8\%	33.0\%	24.7\%	0.0\%	0.0\%	0.0\%	0.0\%
83	1.7\%	49.8\%	3.9\%	40.3\%	4.2\%	0.0\%	0.0\%	0.0\%	0.0\%
84	2.3\%	28.1\%	4.8\%	58.6\%	6.1\%	0.0\%	0.0\%	0.0\%	0.0\%
85	19.1\%	29.7\%	0.0\%	44.0\%	7.1\%	0.0\%	0.0\%	0.0\%	0.0\%
86	12.0\%	23.1\%	3.8\%	58.6\%	2.5\%	0.0\%	0.0\%	0.0\%	0.0\%
87	18.6\%	47.2\%	0.0\%	27.1\%	0.0\%	7.1\%	0.0\%	0.0\%	0.0\%
88	30.5\%	31.9\%	0.0\%	36.3\%	1.3\%	0.0\%	0.0\%	0.0\%	0.0\%
89	6.2\%	0.0\%	0.0\%	93.8\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
90	30.5\%	39.7\%	0.0\%	19.0\%	10.8\%	0.0\%	0.0\%	0.0\%	0.0\%
91	24.9\%	20.1\%	0.0\%	44.0\%	10.9\%	0.0\%	0.0\%	0.0\%	0.0\%
92	0.0\%	16.6\%	0.0\%	62.0\%	21.4\%	0.0\%	0.0\%	0.0\%	0.0\%
93	0.0\%	19.3\%	0.0\%	80.7\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
(79-93)	10.7\%	27.5\%	1.6\%	52.2\%	7.5\%	0.5\%	0.0\%	0.0\%	0.0\%
(85-93)	15.8\%	25.3\%	0.4\%	51.7\%	6.0\%	0.8\%	0.0\%	0.0\%	0.0\%

Distribution of Total Mortalities

Catch Year	Fisheries with All Alaska Nth/Cent		ceilings WCVI Troll	$\begin{array}{r} \mathrm{All} \\ \mathrm{Geo} \\ \mathrm{St} \end{array}$	Canada Net	$\begin{aligned} & \text { Other } \\ & \text { Canada } \\ & \text { Sport } \end{aligned}$	fisher U.S. Troll	$\begin{aligned} & \text { U.S. } \\ & \text { Net } \end{aligned}$	U.S. Sport
79	4.5\%	29.2\%	1.5\%	55.5\%	9.2\%	0.0\%	0.0\%	0.0\%	0.0\%
80	7.2\%	21.6\%	8.0\%	54.5\%	8.7\%	0.0\%	0.0\%	0.0\%	0.0\%
81	1.6\%	24.7\%	0.0\%	67.5\%	6.2\%	0.0\%	0.0\%	0.0\%	0.0\%
82	3.1\%	36.5\%	2.8\%	35.0\%	22.5\%	0.0\%	0.0\%	0.0\%	0.0\%
83	2.3\%	51.2\%	4.1\%	38.4\%	4.0\%	0.0\%	0.0\%	0.0\%	0.0\%
84	2.2\%	28.2\%	4.9\%	59.0\%	5.6\%	0.0\%	0.0\%	0.0\%	0.0\%
85	28.7\%	26.2\%	0.0\%	39.5\%	5.6\%	0.0\%	0.0\%	0.0\%	0.0\%
86	15.1\%	21.4\%	3.5\%	57.8\%	2.2\%	0.0\%	0.0\%	0.0\%	0.0\%
87	29.8\%	43.3\%	0.0\%	21.4\%	0.0\%	5.6\%	0.0\%	0.0\%	0.0\%
88	32.3\%	31.1\%	0.0\%	35.5\%	1.1\%	0.0\%	0.0\%	0.0\%	0.0\%
89	5.9\%	0.0\%	0.0\%	94.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
90	39.1\%	33.0\%	0.0\%	19.6\%	8.2\%	0.0\%	0.0\%	0.0\%	0.0\%
91	32.3\%	13.9\%	0.0\%	47.3\%	6.6\%	0.0\%	0.0\%	0.0\%	0.0\%
92	0.0\%	13.0\%	0.0\%	70.8\%	16.2\%	0.0\%	0.0\%	0.0\%	0.0\%
93	0.0\%	14.3\%	0.0\%	85.7\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
(79-93)	13.6\%	25.9\%	1.7\%	52.1\%	6.4\%	0.4\%	0.0\%	0.0\%	0.0\%
(85-93)	20.4\%	21.8\%	0.4\%	52.4\%	4.4\%	0.6\%	0.0\%	0.0\%	0.0\%

Stock: Big Qualicum

Distribution of Reported Catch

Catch Year	$\begin{gathered} \text { Fish } \\ \text { All } \\ \text { Alaska } \end{gathered}$	eries with All Nth/Cent	ceilings WCVI Troll	$\begin{array}{r} \text { All } \\ \text { Geo St } \end{array}$	Canada Net	Other Canada Sport		$\begin{aligned} & \text { U.S. } \\ & \text { Net } \end{aligned}$	U.S. Sport
79	10.6\%	21.4\%	3.0\%	53.5\%	10.8\%	0.1\%	0.0\%	0.4\%	0.1\%
80	5.4\%	21.4\%	5.7\%	54.0\%	12.7\%	0.0\%	0.2\%	0.4\%	0.3\%
81	3.6\%	20.9\%	1.8\%	61.5\%	11.1\%	0.3\%	0.0\%	0.2\%	0.7\%
82	10.7\%	27.2\%	6.2\%	36.5\%	17.0\%	0.0\%	0.0\%	1.5\%	0.9\%
83	10.7\%	22.2\%	1.4\%	46.3\%	18.8\%	0.0\%	0.0\%	0.0\%	0.7\%
84	3.9\%	21.8\%	1.9\%	64.6\%	7.8\%	0.0\%	0.0\%	0.0\%	0.0\%
85	9.1\%	20.0\%	2.0\%	48.0\%	17.3\%	0.0\%	0.0\%	3.6\%	0.0\%
86	4.6\%	30.1\%	1.7\%	54.7\%	8.9\%	0.0\%	0.0\%	0.0\%	0.0\%
87	19.9\%	17.6\%	6.4\%	47.1\%	6.9\%	0.0\%	1.2\%	1.0\%	0.0\%
88	8.8\%	23.3\%	4.4\%	51.0\%	7.5\%	3.2\%	0.0\%	1.7\%	0.0\%
89	15.7\%	9.8\%	6.7\%	54.2\%	11.8\%	0.0\%	0.4\%	0.0\%	1.4\%
90	21.4\%	23.2\%	4.2\%	34.0\%	14.3\%	0.0\%	0.2\%	0.0\%	2.7\%
91	6.8\%	11.9\%	2.9\%	67.8\%	8.1\%	0.0\%	0.8\%	0.6\%	1.0\%
92	4.8\%	29.7\%	4.7\%	55.9\%	4.9\%	0.0\%	0.0\%	0.0\%	0.0\%
93	4.5\%	16.7\%	2.6\%	67.4\%	8.8\%	0.0\%	0.0\%	0.0\%	0.0\%
(79-93)	9.4\%	21.1\%	3.7\%	53.1\%	11.1\%	0.2\%	0.2\%	0.6\%	0.5\%
(85-93)	10.6\%	20.3\%	4.0\%	53.3\%	9.8\%	0.4\%	0.3\%	0.8\%	0.6\%

Distribution of Total Mortalities

Catch Year	$\begin{array}{r} \text { Fish } \\ \text { All } \\ \text { Alaska } \end{array}$	eries with All Nth/Cent	ceilings WCV! Troll	$\begin{array}{r} \mathrm{All} \\ \text { Geo } \mathrm{St} \end{array}$	Canada Net	\qquad	fisher U.S. Troll	$\begin{aligned} & \text { U.S. } \\ & \text { Net } \end{aligned}$	U.S. Sport
79	12.6\%	22.7\%	3.3\%	50.4\%	10.3\%	0.1\%	0.0\%	0.4\%	0.1\%
80	6.0\%	22.6\%	6.3\%	51.5\%	12.7\%	0.0\%	0.2\%	0.4\%	0.3\%
81	4.3\%	22.5\%	2.0\%	58.9\%	11.1\%	0.3\%	0.0\%	0.2\%	0.7\%
82	12.4\%	26.9\%	6.3\%	35.5\%	16.3\%	0.0\%	0.0\%	1.6\%	0.9\%
83	11.8\%	21.7\%	1.4\%	47.0\%	16.8\%	0.0\%	0.0\%	0.0\%	1.2\%
84	4.3\%	21.1\%	1.8\%	66.1\%	6.7\%	0.0\%	0.0\%	0.0\%	0.0\%
85	14.9\%	18.4\%	1.9\%	47.4\%	13.6\%	0.0\%	0.0\%	3.8\%	0.0\%
86	9.2\%	29.2\%	1.6\%	52.1\%	7.9\%	0.0\%	0.0\%	0.0\%	0.0\%
87	28.5\%	16.1\%	6.3\%	41.1\%	5.8\%	0.0\%	1.1\%	1.0\%	0.0\%
88	13.3\%	20.6\%	4.6\%	50.5\%	6.0\%	2.8\%	0.0\%	2.2\%	0.0\%
89	26.1\%	7.8\%	5.6\%	51.5\%	7.7\%	0.0\%	0.3\%	0.0\%	1.0\%
90	31.8\%	18.2\%	3.3\%	35.0\%	9.6\%	0.0\%	0.2\%	0.0\%	1.9\%
91	11.6\%	9.6\%	2.5\%	68.8\%	5.5\%	0.0\%	0.6\%	0.5\%	0.8\%
92	5.3\%	25.1\%	4.0\%	62.0\%	3.6\%	0.0\%	0.0\%	0.0\%	0.0\%
93	4.9\%	11.9\%	1.8\%	76.2\%	5.2\%	0.0\%	0.0\%	0.0\%	0.0\%
(79-93)	13.1\%	19.6\%	3.5\%	52.9\%	9.3\%	0.2\%	0.2\%	0.7\%	0.5\%
(85-93)	16.2\%	17.4\%	3.5\%	53.8\%	7.2\%	0.3\%	0.3\%	0.8\%	0.4\%

Stock: Chehalis

Distribution of Reported Catch

Catch Year	Fisheries wit All All Alaska Alaska Nth/Cent		ceiling WCVI Troll	$\begin{array}{r} \text { All } \\ \text { Geo } \mathrm{St} \end{array}$	Canada Net	$\begin{aligned} & \text {-Othe } \\ & \text { Canada } \\ & \text { Sport } \end{aligned}$	fisher U.S. Troll	$\begin{aligned} & \text { U.S. } \\ & \text { Net } \end{aligned}$	U.S. Sport
85	0.3\%	5.8\%	32.2\%	44.5\%	4.6\%	0.9\%	1.5\%	5.2\%	5.1\%
86	2.2\%	6.8\%	21.3\%	50.3\%	12.4\%	0.6\%	0.0\%	1.4\%	5.1\%
87	0.9\%	3.5\%	13.0\%	55.9\%	5.9\%	0.0\%	5.0\%	12.5\%	3.2\%
88	3.7\%	5.9\%	5.9\%	42.2\%	8.4\%	5.2\%	7.5\%	16.7\%	4.4\%
89	0.3\%	1.8\%	30.8\%	34.9\%	8.2\%	1.5\%	8.9\%	7.3\%	6.3\%
90	0.8\%	3.6\%	35.9\%	27.5\%	4.2\%	2.6\%	10.9\%	5.7\%	8.9\%
91	0.3\%	2.8\%	39.1\%	25.1\%	6.4\%	0.0\%	17.2\%	3.5\%	5.7\%
92	0.0\%	1.5\%	40.6\%	53.6\%	3.6\%	0.0\%	0.7\%	0.0\%	0.0\%
93	1.7\%	2.1\%	41.0\%	28.4\%	3.4\%	0.0\%	22.1\%	1.3\%	0.0\%
(85-93)	1.1\%	3.8\%	28.9\%	40.3\%	6.4\%	1.2\%	8.2\%	6.0\%	4.3\%
(85-93)	1.1\%	3.8\%	28.9\%	40.3\%	6.4\%	1.2\%	8.2\%	6.0\%	4.3\%

Distribution of Total Mortalities

Catch Year	$\begin{array}{r} \text { Fish } \\ \text { All } \\ \text { Alaska } \end{array}$	eries with All Nth/Cent	ceilings WCVI Troll	$\begin{array}{r} \text { All } \\ \text { Geo St } \end{array}$	Canada Net	\qquad Other Canada Sport	fisher U.S. Troll	U.S. Net	$\begin{gathered} \text { U.S. } \\ \text { Sport } \end{gathered}$
85	0.6\%	5.8\%	31.9\%	44.7\%	4.4\%	0.9\%	1.5\%	5.4\%	4.9\%
86	2.7\%	6.6\%	21.0\%	51.7\%	11.1\%	0.5\%	0.0\%	1.5\%	4.9\%
87	1.2\%	3.2\%	13.4\%	54.7\%	4.9\%	0.0\%	4.9\%	14.8\%	2.9\%
88	7.6\%	5.2\%	5.3\%	38.6\%	5.8\%	4.6\%	6.0\%	18.4\%	8.5\%
89	0.3\%	1.7\%	30.4\%	39.6\%	6.4\%	1.2\%	8.4\%	6.6\%	5.2\%
90	1.0\%	3.3\%	32.2\%	30.3\%	3.7\%	2.4\%	10.2\%	7.8\%	9.1\%
91	0.6\%	2.3\%	37.3\%	30.6\%	4.9\%	0.0\%	15.7\%	3.6\%	5.1\%
92	0.0\%	1.5\%	37.9\%	57.3\%	2.7\%	0.0\%	0.6\%	0.0\%	0.0\%
93	2.2\%	2.2\%	41.2\%	29.5\%	2.9\%	0.0\%	20.9\%	1.2\%	0.0\%
(85-93)	1.8\%	3.5\%	27.8\%	41.9\%	5.2\%	1.1\%	7.6\%	6.6\%	4.5\%
(85-93)	1.8\%	3.5\%	27.8\%	41.9\%	5.2\%	1.1\%	7.6\%	6.6\%	4.5\%

Stock: Chilliwack

Distribution of Reported Catch

Catch Year	Fish Alaska	heries with All Nth/Cent	ceilings WCVI Troll	$\begin{gathered} \mathrm{All} \\ \mathrm{Geo} \end{gathered}$	Canada Net	$\begin{aligned} & \text { Other } \\ & \text { Canada } \\ & \text { Sport } \end{aligned}$	fisher U.S. Troll	$\begin{aligned} & \text { U.S. } \\ & \text { Net } \end{aligned}$	U.s. Sport
85	0.7\%	4.2\%	39.8\%	33.7\%	6.9\%	0.0\%	4.8\%	4.8\%	5.0\%
86	0.0\%	6.2\%	24.4\%	35.2\%	15.7\%	0.0\%	3.2\%	7.0\%	8.3\%
87	0.1\%	2.6\%	24.7\%	53.4\%	3.2\%	0.8\%	5.8\%	5.5\%	3.9\%
88	1.4\%	0.6\%	36.3\%	39.1\%	4.5\%	0.0\%	8.6\%	6.1\%	3.4\%
89	0.6\%	1.0\%	37.5\%	33.1\%	7.1\%	0.0\%	10.6\%	7.5\%	2.6\%
90	2.0\%	3.2\%	15.7\%	25.9\%	7.3\%	4.0\%	10.8\%	21.5\%	9.6\%
91	0.7\%	2.5\%	25.9\%	31.0\%	5.8\%	1.0\%	18.9\%	7.5\%	6.8\%
92	1.5\%	3.1\%	49.0\%	43.5\%	2.7\%	0.3\%	0.0\%	0.0\%	0.0\%
93	0.4\%	0.9\%	33.0\%	41.2\%	3.9\%	1.0\%	19.6\%	0.0\%	0.0\%
(85-93)	0.8\%	2.7\%	31.8\%	37.3\%	6.4\%	0.8\%	9.1\%	6.7\%	4.4\%
(85-93)	0.8\%	2.7\%	31.8\%	37.3\%	6.4\%	0.8\%	9.1\%	6.7\%	4.4\%

Distribution of Total Mortalities

Catch Year	Fisheries with All All Alaska Nth/Cent		ceiling WCVI Troll	$\begin{gathered} \text { All } \\ \mathrm{St} \end{gathered}$	Canada	\qquad other Canada Sport	fishe U.S. Troll	U.S.	U.S. Sport
85	0.8\%	4.1\%	37.8\%	34.6\%	6.3\%	0.0\%	4.5\%	6.2\%	5.7\%
86	0.0\%	5.8\%	23.6\%	36.6\%	13.4\%	0.0\%	3.2\%	8.2\%	9.2\%
87	0.1\%	2.7\%	28.1\%	50.8\%	2.9\%	0.7\%	5.9\%	5.3\%	3.5\%
88	1.5\%	0.6\%	34.5\%	37.8\%	4.1\%	0.0\%	8.0\%	8.0\%	5.5\%
89	0.5\%	0.7\%	35.3\%	42.2\%	4.6\%	0.0\%	9.3\%	5.5\%	2.0\%
90	2.2\%	2.2\%	13.8\%	36.4\%	4.4\%	2.8\%	8.3\%	21.3\%	8.7\%
91	1.1\%	2.1\%	24.2\%	37.1\%	4.4\%	0.8\%	16.9\%	7.4\%	6.0\%
92	2.3\%	2.8\%	45.9\%	46.7\%	2.1\%	0.2\%	0.0\%	0.0\%	0.0\%
93	0.5\%	0.7\%	32.8\%	43.9\%	3.1\%	0.8\%	18.2\%	0.0\%	0.0\%
(85-93)	1.0\%	2.4\%	30.7\%	40.7\%	5.0\%	0.6\%	8.2\%	6.9\%	4.5\%
(85-93)	1.0\%	2.4\%	30.7\%	40.7\%	5.0\%	0.6\%	8.2\%	6.9\%	4.5\%

Stock: South Puget Sound Fall Yearling

Distribution of Reported Catch

Catch Year		eries with All Nth/Cent	ceilings WCVI Troll	$\begin{gathered} \mathrm{All} \\ \mathrm{Geo} \end{gathered}$	Canada Net	$\begin{aligned} & \text { Other } \\ & \text { Canada } \\ & \text { Sport } \end{aligned}$	fisher U.s. Troll	$\begin{aligned} & \text { U.S. } \\ & \text { Net } \end{aligned}$	$\begin{aligned} & \text { U.s. } \\ & \text { sport } \end{aligned}$
82	0.0\%	2.7\%	3.1\%	3.8\%	0.0\%	0.0\%	1.2\%	15.8\%	73.5\%
83	0.0\%	1.9\%	6.2\%	0.5\%	0.0\%	0.0\%	0.0\%	10.5\%	81.0\%
84	0.0\%	0.0\%	8.4\%	1.9\%	0.0\%	0.0\%	0.0\%	38.8\%	50.9\%
90	0.0\%	0.3\%	0.3\%	0.0\%	0.5\%	0.0\%	1.5\%	36.2\%	61.1\%
91	0.0\%	0.0\%	7.0\%	1.1\%	0.0\%	0.0\%	4.6\%	16.0\%	71.4\%
92	0.0\%	0.0\%	5.2\%	0.9\%	0.0\%	0.9\%	5.2\%	32.1\%	55.8\%
93	0.0\%	0.0\%	1.8\%	3.2\%	0.0\%	0.0\%	1.4\%	21.6\%	72.5\%
(82-93)	0.0\%	0.7\%	4.6\%	1.6\%	0.1\%	0.1\%	2.0\%	24.4\%	66.6\%
(85-93)	0.0\%	0.1\%	3.6\%	1.3\%	0.1\%	0.2\%	3.2\%	26.5\%	65.2\%

Distribution of Total Mortalities

Catch Year	$\begin{aligned} & \text { Fish } \\ & \text { All } \\ & \text { Alaska } \end{aligned}$	heries with All Nth/Cent	ceilings WCVI Troll	$\begin{gathered} \mathrm{All} \\ \text { Geo st } \end{gathered}$	Canada Net	$\begin{aligned} & \text { Other } \\ & \text { Canada } \\ & \text { Sport } \end{aligned}$	fisher U.S. Troll	U.S.	$\begin{gathered} \text { U.s. } \\ \text { Sport } \end{gathered}$
82	0.0\%	2.5\%	4.0\%	3.1\%	0.0\%	0.0\%	0.9\%	14.4\%	75.2\%
83	0.0\%	2.1\%	6.4\%	0.5\%	0.0\%	0.0\%	0.0\%	10.1\%	80.9\%
84	0.0\%	0.0\%	8.6\%	1.8\%	0.0\%	0.0\%	0.0\%	39.1\%	50.0\%
90	0.0\%	0.2\%	1.0\%	0.2\%	0.5\%	0.0\%	1.9\%	36.4\%	59.7\%
91	0.0\%	0.0\%	7.0\%	1.2\%	0.0\%	0.0\%	4.5\%	14.5\%	73.0\%
92	0.0\%	0.0\%	6.0\%	1.0\%	0.0\%	0.8\%	5.6\%	31.4\%	55.0\%
93	0.0\%	0.0\%	0.5\%	5.5\%	0.0\%	0.0\%	0.4\%	4.6\%	88.9\%
(82-93)	0.0\%	0.7\%	4.8\%	1.9\%	0.1\%	0.1\%	1.9\%	21.5\%	68.9\%
(85-93)	0.0\%	0.1\%	3.7\%	2.0\%	0.1\%	0.2\%	3.1\%	21.7\%	69.1\%

Stock: Squaxin Pens Fall Yearling

Distribution of Reported Catch

Catch Year	Fisheries with All All Alaska Nth/Cent		$\begin{aligned} & \text { ceiling } \\ & \text { HCVI } \\ & \text { Troll } \end{aligned}$	$\begin{gathered} \text { All } \\ \text { Geo } 5 t \end{gathered}$	Canada Net	Canada Sport	fisher U.S. Troll	$\begin{aligned} & \text { U.S. } \\ & \text { Net } \end{aligned}$	U.S.
90	0.0\%	0.1\%	3.4\%	0.8\%	1.3\%	0.4\%	4.1\%	33.6\%	56.3\%
91	0.0\%	0.0\%	4.4\%	1.6\%	0.6\%	0.0\%	9.5\%	33.6\%	50.4\%
92	0.0\%	0.7\%	2.5\%	3.9\%	1.3\%	0.6\%	7.7\%	23.8\%	59.4\%
93	0.0\%	1.0\%	11.2\%	9.6\%	1.7\%	1.0\%	15.5\%	3.6\%	56.4\%
(90-93)	0.0\%	0.4\%	5.4\%	4.0\%	1.2\%	0.5\%	9.2\%	23.7\%	55.6\%
(90-93)	0.0\%	0.4\%	5.4\%	4.0\%	1.2\%	0.5\%	9.2\%	23.7\%	55.6\%

Distribution of Total Mortalities

Catch Year	-Fisheries with Alaska Nth/Cent		ceiling WCVI Troll	$\begin{gathered} \text { All } \\ \mathrm{Geo} \end{gathered}$	Canada	Canada Sport	fishe U.S. Troll	U.S.	U.S. Sport
90	0.0\%	0.1\%	3.5\%	1.4\%	1.1\%	0.4\%	4.4\%	34.1\%	55.0\%
91	0.0\%	0.0\%	4.7\%	1.7\%	0.5\%	0.0\%	10.1\%	33.2\%	49.6\%
92	0.0\%	0.7\%	2.2\%	4.5\%	1.0\%	0.5\%	6.8\%	23.5\%	60.6\%
93	0.0\%	0.9\%	11.5\%	10.9\%	1.6\%	0.9\%	15.6\%	4.4\%	53.6\%
(90-93)	0.0\%	0.4\%	5.5\%	4.6\%	1.1\%	0.5\%	9.2\%	23.8\%	54.7\%
(90-93)	0.0\%	0.4\%	5.5\%	4.6\%	1.1\%	0.5\%	9.2\%	23.8\%	54.7\%

Stock: University of Washington Accelerated

Distribution of Reported Catch

Catch Year	Fisheries with All All Alaska Nth/Cent		$\begin{gathered} \text { ceiling } \\ \text { WCVI } \\ \text { Troll } \end{gathered}$	$\begin{gathered} \mathrm{All} \\ \mathrm{Geo} \\ \mathrm{St} \end{gathered}$	Canada Net	$\begin{aligned} & \text { Other } \\ & \text { Canada } \\ & \text { Sport } \end{aligned}$	fisher U.S. Troll	$\underset{\text { Uet }}{\text { U.s. }}$	U.s. Sport
79	0.0\%	0.4\%	18.8\%	7.9\%	5.2\%	0.1\%	2.0\%	7.2\%	58.2\%
80	0.0\%	0.4\%	8.6\%	7.0\%	1.8\%	0.1\%	1.4\%	16.4\%	64.3\%
81	0.0\%	0.7\%	12.7\%	6.8\%	5.0\%	0.0\%	2.7\%	14,8\%	57.2\%
82	0.2\%	0.5\%	24.5\%	6.1\%	1.3\%	0.4\%	3.4\%	20.1\%	43.7\%
83	0.0\%	1.6\%	13.4\%	6.5\%	2.1\%	0.1\%	1.7\%	32.5\%	42.0\%
84	0.0\%	0.8\%	25.1\%	7.0\%	1.3\%	0.3\%	2.5\%	31.0\%	32.1\%
85	0.0\%	0.5\%	21.2\%	6.9\%	6.7\%	1.8\%	3.1\%	21.1\%	38.7\%
86	0.0\%	0.6\%	22.3\%	5.4\%	9.4\%	1.1\%	1.8\%	31.8\%	27.4\%
87	0.4\%	0.4\%	12.8\%	7.5\%	0.4\%	1.4\%	4.8\%	56.9\%	15.7\%
(79-87)	0.1\%	0.7\%	17.7\%	6.8\%	3.7\%	0.6\%	2.6\%	25.8\%	42.1\%
(85-93)	0.1\%	0.5\%	18.8\%	6.6\%	5.5\%	1.4\%	3.2\%	36.6\%	27.3\%

Distribution of Total Mortalities

Catch Year	$\begin{aligned} & \text { Fish } \\ & \text { All } \\ & \text { Alaska } \end{aligned}$	eries with All Nth/Cent	ceilings WCVI Troll	$\begin{array}{r} \mathrm{All} \\ \mathrm{Geo} \mathrm{St} \end{array}$	Canada Net	$\begin{aligned} & \text { Other } \\ & \text { Canada } \\ & \text { Sport } \end{aligned}$	$\begin{aligned} & \text { fisher } \\ & \text { U.S. } \\ & \text { Troll } \end{aligned}$	U.S. Net	U.s. Sport
79	0.0\%	0.4\%	18.8\%	7.2\%	4.9\%	0.1\%	2.2\%	8.0\%	58.4\%
80	0.0\%	0.4\%	9.4\%	5.2\%	1.6\%	0.1\%	1.6\%	16.2\%	65.5\%
81	0.0\%	0.7\%	12.7\%	5.6\%	4.5\%	0.0\%	2.8\%	14.3\%	59.5\%
82	0.2\%	0.5\%	25.6\%	5.8\%	1.1\%	0.3\%	3.8\%	20.5\%	42.2\%
83	0.0\%	1.3\%	11.4\%	6.0\%	1.6\%	0.1\%	1.5\%	30.8\%	47.2\%
84	0.0\%	0.7\%	23.2\%	6.4\%	1.3\%	0.3\%	2.3\%	29.9\%	35.9\%
85	0.0\%	0.6\%	19.8\%	6.8\%	6.0\%	1.6\%	2.8\%	19.5\%	43.1\%
86	0.0\%	0.6\%	21.8\%	5.4\%	8.1\%	1.1\%	2.0\%	29.6\%	31.5\%
87	0.5\%	0.6\%	14.9\%	7.0\%	0.3\%	1.2\%	5.2\%	55.3\%	14.9\%
(79-87)	0.1\%	0.6\%	17.5\%	6.2\%	3.3\%	0.5\%	2.7\%	24.9\%	44.2\%
(85-93)	0.2\%	0.6\%	18.8\%	6.4\%	4.8\%	1.3\%	3.3\%	34.8\%	29.8\%

Stock: Samish Fall Fingerling

Distribution of Reported Catch

Catch Year	Fisheries with All All Alaska Nth/Cent		ceiling WCVI Troll	$\begin{gathered} \text { All } \\ \text { Geo } \mathrm{St} \end{gathered}$	$\begin{aligned} & \text { Canada } \\ & \text { Net } \end{aligned}$	$\begin{gathered} \text { Canada } \\ \text { Sport } \end{gathered}$	fisher U.S. rroll	U.S.	U.S. Sport
89	0.1\%	1.1\%	8.4\%	21.0\%	4.0\%	0.7\%	9.1\%	43.8\%	11.9\%
90	0.2\%	0.9\%	22.6\%	16.8\%	1.6\%	0.9\%	11.0\%	37.1\%	8.9\%
91	0.0\%	0.6\%	18.4\%	15.8\%	3.5\%	3.2\%	12.5\%	31.6\%	14.6\%
92	0.0\%	0.9\%	15.5\%	21.6\%	2.8\%	0.7\%	13.6\%	21.2\%	23.5\%
93	0.0\%	1.3\%	16.9\%	27.6\%	2.8\%	4.1\%	5.0\%	25.3\%	17.1\%
(89-93)	0.1\%	1.0\%	16.4\%	20.6\%	2.9\%	1.9\%	10.2\%	31.8\%	15.2\%
(89-93)	0.1\%	1.0\%	16.4\%	20.6\%	2.9\%	1.9\%	10.2\%	31.8\%	15.2\%

Distribution of Total Mortalities

Catch Year	$\begin{array}{lll}\text { Fisheries with ceilings- } & \\ \text { All ACVI All } \\ \text { Alaska Nth/Cent } & \text { Troll Geo St }\end{array}$				Canada Net	-other Canada Sport		U.S. Net	U.S. Sport
89	0.1\%	1.1\%	11.0\%	23.2\%	3.5\%	0.6\%	9.7\%	39.0\%	11.7\%
90	0.2\%	1.0\%	24.1\%	17.7\%	1.5\%	0.8\%	11.3\%	34.7\%	8.6\%
91	0.0\%	0.6\%	19.4\%	17.8\%	3.2\%	3.1\%	12.7\%	28.8\%	14.4\%
92	0.0\%	0.8\%	13.4\%	30.8\%	2.1\%	0.6\%	11.6\%	15.9\%	24.8\%
93	0.0\%	1.3\%	16.1\%	36.7\%	2.1\%	3.5\%	4.4\%	19.9\%	16.1\%
(89-93)	0.1\%	1.0\%	16.8\%	25.2\%	2.5\%	1.7\%	9.9\%	27.6\%	15.1\%
(89-93)	0.1\%	1.0\%	16.8\%	25.2\%	2.5\%	1.7\%	9.9\%	27.6\%	15.1\%

Stock: Stillaguamish Fall Fingerling

Distribution of Reported Catch

Catch Year	Fisheries wit Alaska Nth/Cent		$\begin{aligned} & \text { ceiling } \\ & \text { WCVI } \\ & \text { Troll } \end{aligned}$	$\begin{gathered} \mathrm{All} \\ \mathrm{Geo} \\ \mathrm{St} \end{gathered}$	Canada Net	Canada Sport	fisher U.S. Troll	$\begin{aligned} & \text { U.s. } \\ & \text { Net } \end{aligned}$	U.S. Sport
84	0.0\%	29.8\%	7.1\%	16.7\%	22.6\%	0.0\%	0.0\%	4.8\%	19.0\%
85	11.8\%	7.8\%	28.4\%	9.8\%	10.8\%	8.8\%	0.0\%	8.8\%	15.7\%
86	5.6\%	4.5\%	31.5\%	21.3\%	0.0\%	0.0\%	0.0\%	16.9\%	20.2\%
90	0.7\%	17.7\%	25.9\%	12.1\%	5.7\%	3.2\%	6.7\%	11.3\%	16.7\%
91	0.8\%	1.6\%	17.3\%	12.9\%	3.1\%	5.9\%	15.3\%	20.0\%	23.5\%
92	0.0\%	3.7\%	22.9\%	7.7\%	3.4\%	4.1\%	7.5\%	16.2\%	34.7\%
93	0.0\%	8.2\%	18.4\%	18.4\%	1.9\%	6.8\%	6.8\%	2.3\%	37.6\%
(84-93)	2.7\%	10.5\%	21.6\%	14.1\%	6.8\%	4.1\%	5.2\%	11.5\%	23.9\%
(85-93)	3.1\%	7.3\%	24.1\%	13.7\%	4.2\%	4.8\%	6.0\%	12.6\%	24.7\%

Distribution of Total Mortalities

Catch Year	Fisheries wit Alaska Nth/Cent		ilin WCVI Troll	$\begin{array}{r} \mathrm{All} \\ \mathrm{Geo} \\ \mathrm{St} \end{array}$	Canada Net	\qquad Canada Sport	fisher U.S. Troll	U.S. Net	U.S. Sport
84	1.8\%	24.1\%	9.8\%	17.0\%	18.8\%	0.9\%	0.0\%	3.6\%	23.2\%
85	15.0\%	7.1\%	27.6\%	8.7\%	8.7\%	7.9\%	0.0\%	7.1\%	18.1\%
86	7.4\%	4.3\%	31.9\%	20.2\%	0.0\%	0.0\%	0.0\%	16.0\%	19.1\%
90	1.1\%	15.7\%	24.2\%	15.4\%	4.7\%	3.3\%	8.0\%	9.9\%	17.9\%
91	1.0\%	1.3\%	16.9\%	16.0\%	2.9\%	5.1\%	15.3\%	17.3\%	24.0\%
92	0.0\%	2.7\%	19.3\%	13.6\%	2.2\%	3.3\%	6.2\%	11.4\%	41.2\%
93	0.0\%	7.8\%	21.6\%	21.2\%	1.6\%	5.7\%	7.3\%	2.0\%	32.4\%
(84-93)	3.8\%	9.0\%	21.6\%	16.0\%	5.5\%	3.7\%	5.3\%	9.6\%	25.1\%
(85-93)	4.1\%	6.5\%	23.6\%	15.8\%	3.3\%	4.2\%	6.1\%	10.6\%	25.5\%

Stock: George Adams Fall Fingerling

Distribution of Reported Catch

Catch Year	-Fisheries wit All All Alaska Nth/Cent		cilin WCVI Troll	$\begin{gathered} \text { All } \\ \text { Geo } \mathrm{St} \end{gathered}$	Canada Net	$\begin{gathered} \text { Otr } \\ \begin{array}{c} \text { Canada } \\ \text { Sport } \end{array} \end{gathered}$	fisher U.S. Troll	$\begin{aligned} & \text { U.S. } \\ & \text { Net } \end{aligned}$	U.S. Sport
82	0.0\%	1.0\%	26.6\%	5.6\%	0.5\%	0.0\%	3.9\%	48.9\%	13.7\%
83	0.0\%	3.8\%	18.8\%	5.6\%	4.8\%	0.6\%	0.2\%	35.4\%	31.0\%
84	0.1\%	5.7\%	21.3\%	7.5\%	1.4\%	0.0\%	2.6\%	36.8\%	24.4\%
89	0.1\%	0.3\%	9.9\%	4.4\%	5.4\%	0.6\%	14.9\%	44.6\%	19.9\%
90	0.2\%	1.6\%	21.5\%	5.9\%	0.8\%	1.3\%	16.7\%	31.5\%	20.6\%
91	0.4\%	0.0\%	21.8\%	2.9\%	0.5\%	3.9\%	10.1\%	39.4\%	21.2\%
92	0.0\%	0.6\%	17.8\%	2.3\%	5.2\%	0.0\%	23.6\%	10.3\%	40.8\%
93	0.0\%	0.0\%	44.2\%	5.8\%	0.0\%	4.7\%	8.1\%	7.0\%	30.2\%
(82-93)	0.1\%	1.6\%	22.7\%	5.0\%	2.3\%	1.4\%	10.0\%	31.7\%	25.2\%
(85-93)	0.1\%	0.5\%	23.0\%	4.3\%	2.4\%	2.1\%	14.7\%	26.5\%	26.6\%

Distribution of Total Mortalities

Catch Year	$\begin{aligned} & \text { Fish } \\ & \text { All } \\ & \text { Alaska } \end{aligned}$	$\begin{aligned} & \text { es wi } \\ & \text { All } \\ & \text { Cent } \end{aligned}$	$\begin{gathered} \text { ciling } \\ \text { WCVI } \\ \text { Troll } \end{gathered}$	$\begin{array}{r} \mathrm{All} \\ \mathrm{Geo} \\ \mathrm{St} \end{array}$	Canada Net	$\begin{aligned} & \text { Other } \\ & \text { Canada } \\ & \text { Sport } \end{aligned}$	$\begin{aligned} & \text { fisher } \\ & \text { U.s. } \\ & \text { Troli } \end{aligned}$	$\begin{aligned} & \text { U.S. } \\ & \text { Net } \end{aligned}$	U.S. Sport
82	0.0\%	1.2\%	26.3\%	6.0\%	0.6\%	0.0\%	3.8\%	47.1\%	15.2\%
83	0.0\%	2.6\%	13.9\%	5.0\%	3.3\%	0.5\%	0.1\%	28.0\%	46.6\%
84	0.2\%	5.7\%	21.8\%	7.2\%	1.4\%	0.0\%	2.8\%	37.2\%	23.5\%
89	0.3\%	0.5\%	11.9\%	5.6\%	4.6\%	0.8\%	15.0\%	40.4\%	21.0\%
90	0.3\%	1.7\%	24.1\%	6.5\%	0.7\%	1.2\%	17.5\%	29.1\%	18.9\%
91	0.5\%	0.0\%	23.1\%	2.9\%	0.5\%	3.7\%	10.4\%	37.9\%	20.8\%
92	0.0\%	0.5\%	19.6\%	2.1\%	4.8\%	0.0\%	24.3\%	10.1\%	38.1\%
93	0.0\%	0.0\%	43.0\%	7.5\%	0.0\%	4.7\%	7.5\%	6.5\%	31.8\%
(82-93)	0.2\%	1.5\%	23.0\%	5.4\%	2.0\%	1.4\%	10.2\%	29.5\%	27.0\%
(85-93)	0.2\%	0.5\%	24.3\%	4.9\%	2.1\%	2.1\%	15.0\%	24.8\%	26.1\%

Stock: South Puget Sound Fall Fingerling

Distribution of Reported Catch

Catch Year	Fish Allaska	heries with All Nth/Cent	ceilings WCVI Troll	$\begin{gathered} \text { All } \\ \text { Geo St } \end{gathered}$	Canada Net	- Other Canada Sport	fisheri U.S. Troll	U.S. Net	U.S. Sport
82	0.3\%	1.6\%	25.6\%	16.0\%	1.8\%	0.1\%	3.1\%	27.7\%	23.8\%
83	0.2\%	3.6\%	19.9\%	6.6\%	3.0\%	0.3\%	1.9\%	31.6\%	32.9\%
84	0.4\%	3.0\%	25.0\%	10.9\%	1.2\%	0.3\%	1.8\%	30.1\%	27.4\%
85	1.1\%	1.0\%	22.9\%	7.6\%	2.0\%	0.9\%	2.3\%	35.7\%	26.5\%
86	0.0\%	1.8\%	26.6\%	11.2\%	2.4\%	0.0\%	5.7\%	15.4\%	36.9\%
87	0.0\%	0.0\%	20.8\%	20.8\%	6.8\%	0.0\%	11.7\%	22.3\%	17.4\%
88	0.2\%	2.8\%	8.0\%	11.1\%	5.6\%	2.3\%	10.7\%	38.5\%	20.7\%
89	0.2\%	1.0\%	11.2\%	6.8\%	6.1\%	1.2\%	16.7\%	32.4\%	24.5\%
90	0.1\%	1.1\%	30.7\%	5.2\%	1.1\%	1.5\%	12.1\%	31.6\%	16.5\%
91	0.6\%	0.2\%	21.5\%	2.4\%	1.1\%	2.3\%	15.3\%	39.6\%	16.9\%
92	1.4\%	2.1\%	20.3\%	4.8\%	3.3\%	1.9\%	12.1\%	27.5\%	26.6\%
93	0.4\%	1.2\%	23.5\%	8.2\%	3.0\%	3.5\%	7.3\%	21.7\%	31.5\%
(82-93)	0.4\%	1.6\%	21.3\%	9.3\%	3.1\%	1.2\%	8.4\%	29.5\%	25.1\%
(85-93)	0.4\%	1.3\%	20.6\%	8.7\%	3.5\%	1.5\%	10.4\%	29.4\%	24.2\%

Distribution of Total Mortalities

Catch Year	$\begin{gathered} \text { Fish } \\ \text { All } \\ \text { Alaska } \end{gathered}$	eries with All Nth/Cent	ceilings WCV! Troll	$\begin{array}{r} \text { All } \\ \text { Geo St } \end{array}$	Canada Net	-Other Canada Sport		U.S. Net	U.S. Sport
82	0.3\%	1.7\%	26.0\%	15.2\%	1.7\%	0.1\%	3.1\%	26.6\%	25.2\%
83	0.2\%	3.5\%	19.1\%	6.5\%	2.6\%	0.3\%	1.9\%	28.7\%	37.3\%
84	0.4\%	3.1\%	25.9\%	10.4\%	1.2\%	0.3\%	1.9\%	30.0\%	26.8\%
85	1.2\%	1.0\%	22.9\%	7.5\%	2.0\%	1.0\%	2.3\%	35.4\%	26.7\%
86	0.0\%	1.8\%	25.3\%	11.3\%	2.3\%	0.0\%	5.5\%	13.5\%	40.8\%
87	0.0\%	0.0\%	28.9\%	20.2\%	4.4\%	0.0\%	12.9\%	14.9\%	18.9\%
88	0.4\%	2.9\%	13.1\%	15.1\%	3.6\%	1.7\%	10.1\%	26.7\%	26.3\%
89	0.2\%	1.2\%	13.1\%	8.4\%	5.4\%	1.1\%	18.2\%	29.9\%	22.6\%
90	0.2\%	1.2\%	32.1\%	5.5\%	1.0\%	1.5\%	12.3\%	30.0\%	16.3\%
91	0.8\%	0.2\%	22.9\%	2.7\%	1.2\%	2.2\%	16.1\%	37.3\%	16.5\%
92	2.0\%	1.9\%	18.3\%	7.5\%	2.6\%	1.7\%	10.8\%	21.6\%	33.4\%
93	1.0\%	1.1\%	26.5\%	10.3\%	2.5\%	3.0\%	7.6\%	19.3\%	28.6\%
(82-93)	0.6\%	1.6\%	22.8\%	10.0\%	2.5\%	1.1\%	8.6\%	26.2\%	26.6\%
(85-93)	0.7\%	1.2\%	22.6\%	9.8\%	2.8\%	1.3\%	10.6\%	25.4\%	25.6\%

Stock: Kalama Fall Fingerling

Distribution of Reported Catch

Catch Year	\qquad Fisheries with Al All Alaska Nth/Cent		eilin WCVI Troll	$\begin{gathered} \mathrm{All} \\ \mathrm{Geo} \\ \mathrm{St} \end{gathered}$	Canada Net	Canada Sport	fishe U.S. Troll	U.S.	U.S. Sport
83	0.0\%	2.5\%	16.5\%	13.5\%	6.0\%	0.0\%	4.5\%	11.0\%	46.0\%
84	0.0\%	0.0\%	30.5\%	2.1\%	2.7\%	0.0\%	1.6\%	40.1\%	23.0\%
85	0.0\%	0.0\%	32.8\%	0.0\%	6.6\%	3.3\%	1.6\%	34.4\%	23.0\%
86	0.0\%	0.0\%	18.1\%	16.0\%	2.1\%	0.0\%	0.0\%	43.6\%	21.3\%
87	0.0\%	3.9\%	12.4\%	16.3\%	0.8\%	0.0\%	6.2\%	40.3\%	21.7\%
88	0.0\%	7.3\%	7.9\%	25.7\%	6.8\%	0.0\%	12.6\%	25.1\%	14.7\%
89	0.0\%	1.1\%	5.1\%	2.9\%	4.1\%	2.2\%	15.2\%	48.5\%	20.9\%
90	0.0\%	0.3\%	25.6\%	4.0\%	0.2\%	1.7\%	11.5\%	43.1\%	13.7\%
91	0.0\%	2.4\%	9.7\%	4.4\%	2.9\%	1.5\%	19.9\%	27.2\%	32.0\%
92	0.0\%	1.4\%	13.1\%	4.5\%	4.1\%	4.5\%	12.7\%	31.2\%	28.5\%
93	0.0\%	1.0\%	18.7\%	7.5\%	2.9\%	0.8\%	4.2\%	36.1\%	28.6\%
(83-93)	0.0\%	1.8\%	17.3\%	8.8\%	3.5\%	1.3\%	8.2\%	34.6\%	24.8\%
(85-93)	0.0\%	1.9\%	15.9\%	9.0\%	3.4\%	1.5\%	9.3\%	36.6\%	22.7\%

Distribution of Total Mortalities

Catch Year	-Fisheries with All Alaska Nth/Cent		$\begin{gathered} \text { ceiling } \\ \text { WCVI } \end{gathered}$ Troll	$\begin{array}{r} \mathrm{All} \\ \mathrm{Geo} \mathrm{St} \end{array}$	Canada Net	Canada Sport	$\begin{aligned} & \text { fisher } \\ & \text { U.S. } \\ & \text { Troli } \end{aligned}$	U.S. Net	U.S. Sport
83	0.0\%	1.8\%	15.1\%	10.5\%	4.9\%	0.0\%	3.2\%	9.5\%	54.7\%
84	0.0\%	0.0\%	31.2\%	1.8\%	2.8\%	0.0\%	1.8\%	38.1\%	24.3\%
85	0.0\%	0.0\%	32.5\%	0.0\%	5.2\%	3.9\%	1.3\%	32.5\%	26.0\%
86	0.0\%	0.0\%	18.3\%	16.5\%	1.8\%	0.0\%	0.0\%	38.5\%	23.9\%
87	0.0\%	4.1\%	15.9\%	15.9\%	0.6\%	0.0\%	6.5\%	32.4\%	24.1\%
88	0.0\%	7.9\%	7.0\%	27.0\%	4.4\%	0.0\%	10.2\%	19.4\%	23.8\%
89	0.0\%	1.3\%	6.2\%	3.8\%	3.8\%	2.0\%	17.2\%	46.5\%	19.5\%
90	0.0\%	0.2\%	27.0\%	4.1\%	0.2\%	1.6\%	11.9\%	41.2\%	13.8\%
91	0.0\%	2.6\%	10.8\%	5.2\%	2.6\%	1.7\%	20.7\%	25.0\%	31.9\%
92	0.0\%	1.5\%	9.3\%	10.8\%	2.6\%	3.1\%	9.0\%	21.6\%	42.2\%
93	0.0\%	1.2\%	18.9\%	12.3\%	2.3\%	0.8\%	4.1\%	30.0\%	30.7\%
(83-93)	0.0\%	1.9\%	17.5\%	9.8\%	2.8\%	1.2\%	7.8\%	30.4\%	28.6\%
(85-93)	0.0\%	2.1\%	16.2\%	10.6\%	2.6\%	1.5\%	9.0\%	31.9\%	26.2\%

Stock: Elwha Fall Fingerling

Distribution of Reported Catch

Catch Year	-Fisheries with All All Alaska Nth/Cent		ceiling WCVI Troll	$\begin{gathered} \text { All } \\ \text { Geo } \mathrm{St} \end{gathered}$	Canada	$\begin{aligned} & \text { Othe } \\ & \begin{array}{c} \text { Canada } \\ \text { Sport } \end{array} \end{aligned}$	fisher U.S. Troll	$\begin{aligned} & \text { U.S. } \\ & \text { Net } \end{aligned}$	$\begin{gathered} \text { U.S. } \\ \text { Sport } \end{gathered}$
86	32.0\%	9.5\%	19.3\%	8.0\%	1.5\%	1.0\%	1.0\%	13.5\%	14.5\%
87	20.3\%	15.6\%	16.8\%	12.9\%	0.6\%	2.4\%	3.5\%	7.6\%	20.6\%
88	13.1\%	14.4\%	25.0\%	0.0\%	0.8\%	3.8\%	8.1\%	22.0\%	13.1\%
89	17.3\%	20.3\%	12.0\%	0.0\%	0.0\%	0.0\%	5.3\%	22.6\%	23.3\%
90	0.0\%	50.0\%	50.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
91	0.0\%	7.1\%	14.3\%	0.0\%	0.0\%	0.0\%	7.1\%	71.4\%	0.0\%
92	3.7\%	5.6\%	44.4\%	0.0\%	3.7\%	3.7\%	16.7\%	0.0\%	22.2\%
93	8.2\%	0.0\%	20.0\%	16.5\%	0.0\%	9.4\%	4.7\%	0.0\%	41.2\%
(86-93)	11.8\%	15.3\%	25.2\%	4.7\%	0.8\%	2.5\%	5.8\%	17.1\%	16.9\%
(86-93)	11.8\%	15.3\%	25.2\%	4.7\%	0.8\%	2.5\%	5.8\%	17.1\%	16.9\%

Distribution of Total Mortalities

Catch Year	Fisheries with All All Alaska Nth/Cent		ceiling WCVI Troll	$\begin{gathered} \text { All } \\ \text { Geo St } \end{gathered}$	Canada Net	$\begin{aligned} & \text { Other } \\ & \text { Canada } \\ & \text { Sport } \end{aligned}$	fisher U.S. Troll	$\underset{\text { Net }}{\text { U.S. }}$	U.S. Sport
86	35.8\%	9.9\%	18.1\%	7.5\%	1.3\%	1.2\%	1.3\%	11.7\%	13.5\%
87	26.3\%	14.9\%	17.4\%	11.2\%	0.5\%	2.1\%	3.3\%	6.3\%	17.9\%
88	15.9\%	14.1\%	26.7\%	0.0\%	0.7\%	3.3\%	7.8\%	19.6\%	11.5\%
89	26.1\%	18.3\%	11.1\%	0.0\%	0.0\%	0.0\%	4.6\%	19.6\%	20.3\%
90	0.0\%	45.5\%	54.5\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
91	4.0\%	4.0\%	24.0\%	4.0\%	0.0\%	0.0\%	8.0\%	40.0\%	12.0\%
92	4.1\%	4.1\%	38.4\%	4.1\%	2.7\%	4.1\%	15.1\%	0.0\%	26.0\%
93	8.8\%	0.0\%	20.9\%	18.7\%	0.0\%	8.8\%	4.4\%	0.0\%	38.5\%
(86-93)	15.1\%	13.8\%	26.4\%	5.7\%	0.7\%	2.4\%	5.5\%	12.2\%	17.5\%
(86-93)	15.1\%	13.8\%	26.4\%	5.7\%	0.7\%	2.4\%	5.5\%	12.2\%	17.5\%

Stock: Hoko Fall Fingerling

Distribution of Reported Catch

Catch Year	Fisheries wit All All Alaska Nth/Cent		ceiling WCVI Troll	$\begin{gathered} \mathrm{All} \\ \mathrm{Geo} \\ \mathrm{St} \end{gathered}$	Canada Net	$\begin{aligned} & \text { Other } \\ & \text { Canada } \\ & \text { Sport } \end{aligned}$	$\begin{aligned} & \text { fisher } \\ & \text { U.s. } \\ & \text { Troli } \end{aligned}$	U.S. Net	U.S. Sport
89	7.2\%	19.9\%	15.5\%	2.8\%	22.1\%	0.0\%	1.1\%	1.1\%	31.5\%
90	29.8\%	16.6\%	25.3\%	1.7\%	3.0\%	0.0\%	0.7\%	1.7\%	21.3\%
91	38.9\%	17.2\%	17.4\%	1.0\%	1.5\%	0.8\%	0.4\%	2.7\%	20.1\%
92	32.4\%	23.7\%	31.2\%	1.7\%	0.0\%	2.3\%	0.0\%	1.2\%	8.1\%
93	18.7\%	24.4\%	37.4\%	2.4\%	5.7\%	0.0\%	0.0\%	0.0\%	12.2\%
(89-93)	25.4\%	20.4\%	25.4\%	1.9\%	6.5\%	0.6\%	0.4\%	1.3\%	18.6\%
(89-93)	25.4\%	20.4\%	25.4\%	1.9\%	6.5\%	0.6\%	0.4\%	1.3\%	18.6\%

Distribution of Total Mortalities

Catch Year	-Fisheries with All All Alaska Nth/Cent		ceiling WCVI Troll	$\begin{gathered} \text { All } \\ \text { Geo St } \end{gathered}$	Canada Net	Other Canada Sport	fisher U.S. Troll	U.S. Net	U.S. Sport
89	19.6\%	19.2\%	17.8\%	2.4\%	14.3\%	0.0\%	0.7\%	0.7\%	25.5\%
90	37.5\%	16.0\%	23.4\%	1.4\%	2.4\%	0.0\%	0.8\%	1.4\%	17.4\%
91	45.4\%	15.5\%	16.0\%	0.8\%	1.3\%	0.7\%	0.3\%	2.3\%	17.3\%
92	40.0\%	20.9\%	27.0\%	1.9\%	0.0\%	1.9\%	0.0\%	0.9\%	7.0\%
93	22.4\%	23.1\%	36.6\%	2.2\%	5.2\%	0.0\%	0.0\%	0.0\%	11.2\%
(89-93)	33.0\%	18.9\%	24.1\%	1.8\%	4.7\%	0.5\%	0.4\%	1.1\%	15.7\%
(89-93)	33.0\%	18.9\%	24.1\%	1.8\%	4.7%	0.5\%	0.4\%	1.1\%	15.7\%

Stock: Skagit Spring Yearling

Distribution of Reported Catch

Catch Year	-Fisheries wit All AllAlaska Nth/Cent		eiling WCVI Troll	$\begin{array}{r} \text { All } \\ \text { Geo St } \end{array}$	Canada Net	Canada Sport	fisher U.S. Troll	$\begin{aligned} & \text { U.S. } \\ & \text { Net } \end{aligned}$	U.S. Sport
85	0.0\%	0.0\%	7.3\%	31.8\%	29.1\%	0.0\%	0.0\%	10.9\%	21.8\%
86	2.3\%	13.5\%	7.6\%	52.6\%	3.5\%	7.0\%	0.0\%	4.1\%	9.9\%
87	0.0\%	14.8\%	4.9\%	14.8\%	7.4\%	0.0\%	2.5\%	29.6\%	25.9\%
88	0.0\%	7.9\%	2.3\%	19.9\%	10.2\%	3.8\%	2.3\%	36.0\%	17.3\%
89	0.0\%	1.3\%	5.2\%	25.4\%	4.8\%	0.8\%	6.5\%	44.2\%	12.0\%
90	0.0\%	4.9\%	6.7\%	21.5\%	5.5\%	4.1\%	4.5\%	21.1\%	31.7\%
(85-90)	0.4\%	7.1\%	5.7\%	27.7\%	10.1\%	2.6\%	2.6\%	24.3\%	19.8\%
(85-93)	0.4\%	7.1\%	5.7\%	27.7\%	10.1\%	2.6\%	2.6\%	24.3\%	19.8\%

Distribution of Total Mortalities

Catch Year	Fisheries with ceilings- All ACVI				Canada Net	Canada Sport	fishe U.S. Troll	U.S. Net	U.S. Sport
85	0.0\%	0.8\%	7.6\%	31.9\%	26.9\%	0.0\%	0.0\%	10.1\%	21.8\%
86	3.7\%	12.7\%	7.4\%	51.9\%	3.2\%	6.3\%	0.0\%	3.7\%	11.1\%
87	0.0\%	11.1\%	3.5\%	16.0\%	4.9\%	0.0\%	1.4\%	19.4\%	44.4\%
88	0.0\%	7.8\%	3.2\%	19.6\%	9.7\%	3.7\%	2.8\%	35.0\%	18.2\%
89	0.0\%	1.4\%	5.6\%	31.1\%	4.4\%	0.8\%	6.7\%	37.8\%	12.7\%
90	0.0\%	4.6\%	7.1\%	23.1\%	5.4\%	3.8\%	5.0\%	20.6\%	30.2\%
(85-90)	0.6\%	6.4\%	5.7\%	28.9\%	9.1\%	2.4\%	2.6\%	21.1\%	23.1\%
(85-93)	0.6\%	6.4\%	5.7\%	28.9\%	9.1\%	2.4\%	2.6\%	21.1\%	23.1%

Stock: Nooksack Spring Yearling

Distribution of Reported Catch

Catch Year	$\begin{array}{r} \text { Fish } \\ \text { All } \\ \text { Alaska } \end{array}$	heries with All Nth/Cent	ceilings WCVI Troll	$\begin{array}{r} \text { All } \\ \text { Geo St } \end{array}$	Canada Net	\qquad Other Canada Sport	fisher U.S. Troll	U.S. Net	U.S. Sport
86	0.0\%	0.0\%	0.0\%	55.9\%	26.5\%	0.0\%	0.0\%	2.9\%	14.7\%
89	0.0\%	0.0\%	0.0\%	23.3\%	0.0\%	0.0\%	0.0\%	50.0\%	26.7\%
90	0.0\%	6.5\%	0.0\%	25.8\%	12.9\%	0.0\%	3.2\%	6.5\%	45.2\%
91	0.0\%	1.1\%	3.4\%	53.6\%	9.5\%	7.8\%	3.4\%	13.4\%	8.4\%
92	1.1\%	4.1\%	39.0\%	29.5\%	2.4\%	2.7\%	2.4\%	0.8\%	17.9\%
93	0.0\%	5.6\%	9.1\%	34.1\%	11.1\%	4.5\%	0.7\%	11.8\%	23.3\%
(86-93)	0.2\%	2.9\%	8.6\%	37.1\%	10.4\%	2.5\%	1.6\%	14.2\%	22.7\%
(86-93)	0.2\%	2.9\%	8.6\%	37.1\%	10.4\%	2.5\%	1.6\%	14.2\%	22.7\%

Distribution of Total Mortalities

Catch Year	$\begin{array}{r} \text { Fish } \\ \text { All } \\ \text { Alaska } \end{array}$	eries with All Nth/Cent	ceilings WCVI Troll	$\begin{array}{r} \text { All } \\ \text { Geo St } \end{array}$	Canada Net	-Other Canada Sport	fisher U.S. Troll	U.S. Net	U.S. Sport
86	0.0\%	0.7\%	3.9\%	66.7\%	7.2\%	1.3\%	0.7\%	12.4\%	7.2\%
89	0.0\%	0.0\%	0.0\%	37.0\%	0.0\%	0.0\%	0.0\%	37.0\%	23.9\%
90	0.0\%	4.1\%	7.1\%	57.1\%	6.1\%	1.0\%	1.0\%	2.0\%	20.4\%
91	0.0\%	0.6\%	2.5\%	67.5\%	5.8\%	5.2\%	2.5\%	8.9\%	7.1\%
92	2.1\%	3.5\%	36.6\%	34.6\%	1.7\%	2.3\%	2.1\%	0.6\%	16.2\%
93	0.0\%	5.3\%	9.6\%	36.3\%	10.6\%	4.6\%	0.7\%	11.2\%	22.1\%
(86-93)	0.4\%	2.4\%	9.9\%	49.9\%	5.2\%	2.4\%	1.2\%	12.0\%	16.2\%
(86-93)	0.4\%	2.4\%	9.9\%	49.9\%	5.2\%	2.4\%	1.2\%	12.0\%	16.2\%

Stock: White River Spring Yearling

Distribution of Reported Catch

Catch Year	Fisheries with Alaska Nth/Cent		$\begin{aligned} & \text { ceiling } \\ & \text { WCVI } \\ & \text { Troll } \end{aligned}$	$\begin{array}{r} \mathrm{All} \\ \mathrm{Geo} \\ \mathrm{St} \end{array}$	Canada	Canada Sport	$\begin{aligned} & \text { fishe } \\ & \text { U.S. } \\ & \text { Troli } \end{aligned}$	$\begin{aligned} & \text { U.S. } \\ & \text { Net } \end{aligned}$	U.s. Sport
83	0.0\%	2.1\%	5.5\%	0.0\%	0.0\%	0.0\%	2.1\%	14.4\%	76.0\%
84	0.0\%	11.3\%	8.8\%	10.0\%	0.0\%	0.0\%	5.0\%	17.5\%	48.8\%
85	0.0\%	0.0\%	0.0\%	0.0\%	3.0\%	2.3\%	0.0\%	31.9\%	62.8\%
86	0.0\%	0.4\%	0.7\%	2.9\%	2.2\%	0.0\%	0.4\%	21.5\%	72.0\%
87	0.0\%	0.0\%	0.0\%	2.7\%	0.8\%	0.0\%	5.9\%	21.1\%	69.5\%
88	0.0\%	0.0\%	0.4\%	4.1\%	0.3\%	0.4\%	2.1\%	20.9\%	72.0\%
89	0.0\%	0.0\%	1.9\%	1.9\%	1.6\%	0.0\%	9.0\%	20.5\%	65.0\%
90	0.0\%	0.0\%	2.8\%	1.3\%	0.9\%	0.0\%	7.6\%	22.1\%	65.6\%
91	0.0\%	0.0\%	1.4\%	2.3\%	0.0\%	1.9\%	7.4\%	19.4\%	68.1\%
92	0.0\%	0.6\%	3.9\%	3.5\%	3.5\%	0.4\%	3.9\%	12.6\%	71.5\%
93	0.0\%	0.0\%	0.0\%	3.7\%	0.0\%	0.0\%	6.5\%	11.2\%	78.5\%
(83-93)	0.0\%	1.3\%	2.3\%	3.0\%	1.1\%	0.5\%	4.5\%	19.4\%	68.2\%
(85-93)	0.0\%	0.1\%	1.2\%	2.5\%	1.4\%	0.6\%	4.8\%	20.1\%	69.4\%

Distribution of Total Mortalities

Catch Year	Fisheries wit All All Alaska Nth/Cent		eilin WCVI Troll	$\begin{array}{r} \mathrm{All} \\ \mathrm{Geo} \\ \mathrm{St} \end{array}$	Canada Net	Canada Sport	fisher U.S. Troll	$\begin{aligned} & \text { U.s. } \\ & \text { Net } \end{aligned}$	U.S. Sport
83	0.0\%	2.6\%	5.2\%	0.0\%	0.0\%	0.0\%	2.0\%	14.4\%	75.8\%
84	0.0\%	7.1\%	5.8\%	6.4\%	0.0\%	0.0\%	2.6\%	10.3\%	67.9\%
85	0.0\%	0.0\%	0.0\%	0.0\%	2.6\%	1.9\%	0.0\%	26.9\%	68.8\%
86	0.0\%	0.5\%	0.7\%	2.8\%	2.2\%	0.0\%	0.5\%	21.1\%	72.2\%
87	0.0\%	0.0\%	0.0\%	2.0\%	0.6\%	0.0\%	3.8\%	12.4\%	81.1\%
88	0.0\%	0.0\%	0.5\%	3.9\%	0.3\%	0.4\%	2.5\%	20.9\%	71.7\%
89	0.0\%	0.0\%	2.1\%	2.3\%	1.5\%	0.0\%	9.4\%	18.1\%	66.5\%
90	0.0\%	0.0\%	2.9\%	1.6\%	0.8\%	0.0\%	8.3\%	19.5\%	66.9\%
91	0.0\%	0.0\%	1.4\%	3.1\%	0.0\%	1.7\%	6.8\%	18.5\%	69.2\%
92	0.0\%	0.6\%	4.4\%	4.2\%	3.3\%	0.4\%	4.4\%	12.5\%	69.8\%
93	0.0\%	0.0\%	0.0\%	4.3\%	0.0\%	0.0\%	7.0\%	11.3\%	79.1\%
(83-93)	0.0\%	1.0\%	2.1\%	2.8\%	1.0\%	0.4\%	4.3\%	16.9\%	71.7\%
(85-93)	0.0\%	0.1\%	1.3\%	2.7\%	1.3\%	0.5\%	4.7\%	17.9\%	71.7\%

Stock: Sooes Fall Fingerling

Distribution of Reported Catch

Catch Year	Fisheries withAll AllAlaska Nth/Cent		ceiling WCVI Troll	$\begin{gathered} \text { All } \\ \text { Geo } \mathrm{St} \end{gathered}$	Canada Net	$\xrightarrow[\substack{\text { Canada } \\ \text { Sport }}]{0 t l}$	fisher U.S. Troll	$\begin{aligned} & \text { U.S. } \\ & \text { Net } \end{aligned}$	U.S.
89	44.8\%	24.1\%	10.3\%	0.0\%	10.3\%	13.8\%	0.0\%	0.0\%	0.0\%
90	24.4\%	25.6\%	27.8\%	11.1\%	3.3\%	0.0\%	2.2\%	0.0\%	5.6\%
91	33.3\%	32.5\%	14.6\%	0.0\%	5.7\%	0.0\%	0.0\%	0.0\%	13.8\%
92	19.7\%	23.2\%	40.1\%	2.1\%	7.0\%	2.1\%	0.7\%	0.0\%	4.9\%
93	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
(89-93)	24.5\%	21.1\%	18.6\%	2.6\%	5.3\%	3.2\%	0.6\%	0.0\%	4.9\%
(89-93)	24.5\%	21.1\%	18.6\%	2.6\%	5.3\%	3.2\%	0.6\%	0.0\%	4.9\%

Distribution of Total Mortalities

Catch Year	Fisheries wit All All Alaska Nth/Cent		$\begin{aligned} & \text { ceilings } \\ & \text { WCVI } \\ & \text { Troll } \end{aligned}$	$\begin{gathered} \text { All } \\ \text { Geo } \end{gathered}$	Canada Net	$\begin{aligned} & \text { Other } \\ & \text { Canada } \\ & \text { Sport } \end{aligned}$	$\begin{aligned} & \text { fisher } \\ & \text { U.S. } \\ & \text { Troli } \end{aligned}$	$\begin{aligned} & \text { U.S. } \end{aligned}$	U.S. Sport
89	44.1\%	22.1\%	13.2\%	1.5\%	7.4\%	5.9\%	0.0\%	0.0\%	5.9\%
90	32.5\%	26.0\%	24.4\%	8.9\%	2.4\%	0.0\%	1.6\%	0.0\%	4.1\%
91	37.4\%	29.3\%	16.3\%	0.7\%	4.8\%	0.0\%	0.0\%	0.0\%	11.6\%
92	24.8\%	21.7\%	37.9\%	2.5\%	6.2\%	1.9\%	0.6\%	0.0\%	4.3\%
93	0.0\%	0.0\%	100.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%
(89-93)	27.8\%	19.8\%	38.4\%	2.7\%	4.2\%	1.5\%	0.4\%	0.0\%	5.2\%
(89-93)	27.8\%	19.8\%	38.4\%	2.7\%	4.2\%	1.5\%	0.4\%	0.0\%	5.2\%

Stock: Queets Fall Fingerling

Distribution of Reported Catch

Catch Year	Fisheries witAll AllAlaska Nth/Cent		ceiling WCVI Troll	$\begin{array}{r} \mathrm{All} \\ \text { Geo } \mathrm{St} \end{array}$	Canada Net	Canada Sport	fisher U.S. Troll	U.S. Net	U.S. Sport
81	15.3\%	23.6\%	15.3\%	0.0\%	1.4\%	0.0\%	1.4\%	40.3\%	4.2\%
82	17.7\%	33.1\%	14.4\%	0.0\%	0.0\%	0.0\%	0.0\%	34.3\%	0.0\%
83	43.6\%	8.9\%	9.9\%	0.0\%	3.0\%	0.0\%	1.0\%	33.7\%	0.0\%
84	20.6\%	28.0\%	10.3\%	0.0\%	0.0\%	0.0\%	2.8\%	38.3\%	0.0\%
85	24.5\%	47.2\%	3.1\%	0.0\%	2.5\%	0.0\%	0.0\%	22.1\%	1.2\%
86	38.8\%	25.9\%	13.7\%	0.0\%	2.2\%	0.0\%	0.0\%	19.4\%	0.0\%
87	38.3\%	22.3\%	1.2\%	0.0\%	0.0\%	0.0\%	0.9\%	36.7\%	0.9\%
88	31.4\%	20.6\%	7.7\%	0.0\%	0.0\%	1.8\%	0.0\%	31.9\%	6.6\%
89	18.9\%	18.3\%	12.9\%	0.0\%	0.0\%	0.0\%	0.0\%	47.3\%	2.7\%
90	31.7\%	17.6\%	16.2\%	0.0\%	0.0\%	0.0\%	0.0\%	34.4\%	0.0\%
91	40.8\%	20.2\%	8.9\%	0.0\%	0.0\%	0.0\%	0.0\%	29.2\%	0.8\%
92	21.1\%	16.3\%	30.1\%	0.0\%	0.0\%	0.0\%	0.0\%	31.4\%	1.4\%
93	30.0\%	28.2\%	22.0\%	0.0\%	0.0\%	0.0\%	0.9\%	13.6\%	5.0\%
(81-93)	28.7\%	23.9\%	12.7\%	0.0\%	0.7\%	0.1\%	0.5\%	31.8\%	1.8\%
(85-93)	30.6\%	24.1\%	12.9\%	0.0\%	0.5\%	0.2\%	0.2\%	29.6\%	2.1\%

Distribution of Total Mortalities

Catch Year	-Fisheries with All All Alaska Nth/Cent		ceilings WCVI Troll	$\begin{array}{r} \text { All } \\ \text { Geo St } \end{array}$	Canada Net		fisher U.S. Troll	U.S. Net	U.S. Sport
81	21.1\%	24.4\%	14.4\%	0.0\%	1.1\%	0.0\%	2.2\%	34.4\%	3.3\%
82	21.9\%	32.8\%	13.4\%	0.0\%	0.0\%	0.0\%	0.0\%	31.8\%	0.0\%
83	55.1\%	8.7\%	7.2\%	0.0\%	2.9\%	0.0\%	0.7\%	26.1\%	0.0\%
84	23.4\%	29.8\%	9.7\%	0.0\%	0.0\%	0.0\%	3.2\%	33.9\%	0.0\%
85	29.7\%	46.4\%	2.9\%	0.0\%	1.9\%	0.0\%	0.0\%	17.7\%	1.4\%
86	48.4\%	22.5\%	11.5\%	0.0\%	1.6\%	0.0\%	0.0\%	15.4\%	0.0\%
87	45.8\%	20.1\%	2.4\%	0.0\%	0.0\%	0.0\%	0.7\%	29.8\%	1.0\%
88	37.2\%	21.3\%	9.5\%	0.0\%	0.0\%	1.4\%	0.0\%	25.1\%	5.3\%
89	27.9\%	19.2\%	13.5\%	0.0\%	0.0\%	0.0\%	0.0\%	37.1\%	2.3\%
90	35.8\%	18.2\%	15.8\%	0.0\%	0.0\%	0.0\%	0.0\%	30.1\%	0.0\%
91	48.0\%	18.4\%	8.2\%	0.0\%	0.0\%	0.0\%	0.0\%	24.6\%	0.7\%
92	29.3\%	16.2\%	28.5\%	0.0\%	0.0\%	0.0\%	0.0\%	24.9\%	1.1\%
93	34.7\%	26.3\%	21.0\%	0.0\%	0.0\%	0.0\%	0.8\%	12.4\%	4.6\%
(81-93)	35.3\%	23.4\%	12.2\%	0.0\%	0.6\%	0.1\%	0.6\%	26.4\%	1.5\%
(85-93)	37.4\%	23.2\%	12.6\%	0.0\%	0.4\%	0.2\%	0.2\%	24.1\%	1.8\%

Stock: Cowlitz Fall Tule

Distribution of Reported Catch

Catch Year	Fisheries withAll AllAlaska Nth/Cent		ceilings WCVI Troll	$\underset{\mathrm{Geo}}{\mathrm{All}} \mathrm{St}$	Canada Net	$\begin{aligned} & \text { Other } \\ & \text { Canada } \\ & \text { Sport } \end{aligned}$	fisher U.S. Troll	U.S.	$\begin{aligned} & \text { U.s. } \\ & \text { Sport } \end{aligned}$
81	8.9\%	12.1\%	22.7\%	0.0\%	3.3\%	0.0\%	13.6\%	21.2\%	18.2\%
82	5.9\%	5.9\%	22.1\%	0.0\%	1.9\%	1.4\%	29.0\%	14.8\%	19.0\%
83	6.0\%	17.1\%	27.7\%	0.9\%	0.8\%	0.0\%	10.7\%	7.6\%	29.1\%
84	7.5\%	15.7\%	38.1\%	0.0\%	2.7\%	0.0\%	6.9\%	23.5\%	5.6\%
85	8.6\%	17.0\%	22.8\%	0.9\%	2.2\%	0.0\%	8.7\%	12.9\%	27.0\%
86	0.8\%	2.3\%	17.6\%	0.5\%	1.4\%	0.0\%	17.3\%	42.7\%	17.5\%
87	5.3\%	6.2\%	11.8\%	0.0\%	1.0\%	0.6\%	14.3\%	32.5\%	28.3\%
88	2.9\%	2.9\%	22.0\%	0.0\%	0.9\%	0.0\%	21.3\%	33.4\%	16.6\%
89	7.7\%	9.2\%	12.7\%	0.0\%	2.0\%	0.0\%	34.2\%	13.8\%	20.5\%
90	8.9\%	15.3\%	29.8\%	0.0\%	1.8\%	0.0\%	19.6\%	0.0\%	24.6\%
91	18.9\%	8.3\%	10.7\%	0.0\%	0.0\%	4.8\%	18.8\%	20.9\%	17.6\%
92	5.2\%	8.3\%	43.4\%	0.0\%	0.0\%	0.0\%	17.8\%	13.2\%	12.2\%
93	6.2\%	5.3\%	11.2\%	0.0\%	0.0\%	0.0\%	27.9\%	5.2\%	44.2\%
(81-93)	7.1\%	9.7\%	22.5\%	0.2\%	1.4\%	0.5\%	18.5\%	18.6\%	21.6\%
(85-93)	7.2\%	8.3\%	20.2\%	0.1\%	1.0\%	0.6\%	20.0\%	19.4\%	23.2\%

Distribution of Total Mortalities

Catch Year		heries with All Nth/Cent	ceilings WCVI Troll	$\begin{array}{r} \text { All } \\ \text { Geo St } \end{array}$	Canada Net	Other Canada Sport		U.S. Net	$\begin{aligned} & \text { U.S. } \\ & \text { Sport } \end{aligned}$
81	9.5\%	11.0\%	23.6\%	0.0\%	3.1\%	0.0\%	16.0\%	19.6\%	17.2\%
82	7.7\%	5.6\%	22.6\%	0.0\%	1.7\%	1.5\%	29.7\%	13.6\%	17.5\%
83	7.8\%	17.2\%	27.9\%	0.8\%	0.8\%	0.0\%	11.4\%	7.0\%	27.1\%
84	8.8\%	15.8\%	38.1\%	0.0\%	2.6\%	0.0\%	7.2\%	22.1\%	5.4\%
85	11.7\%	16.0\%	22.8\%	0.9\%	2.0\%	0.0\%	9.2\%	11.4\%	25.9\%
86	1.2\%	2.3\%	18.3\%	0.5\%	1.3\%	0.0\%	18.6\%	39.0\%	18.7\%
87	7.9\%	7.0\%	13.2\%	0.0\%	0.8\%	0.5\%	14.5\%	29.0\%	27.1\%
88	4.0\%	3.1\%	24.2\%	0.0\%	0.8\%	0.0\%	21.5\%	30.9\%	15.6\%
89	9.9\%	9.4\%	13.1\%	0.0\%	1.8\%	0.0\%	34.1\%	12.6\%	19.2\%
90	10.4\%	15.3\%	30.0\%	0.0\%	1.7\%	0.0\%	19.3\%	0.0\%	23.3\%
91	24.8\%	8.9\%	11.1\%	0.0\%	0.0\%	4.2\%	18.2\%	17.2\%	15.7\%
92	6.9\%	9.3\%	42.6\%	0.0\%	0.0\%	0.0\%	17.6\%	12.4\%	11.1\%
93	7.8\%	5.7\%	11.8\%	0.0\%	0.0\%	0.0\%	27.8\%	4.4\%	42.5\%
(81-93)	9.1\%	9.7\%	23.0\%	0.2\%	1.3\%	0.5\%	18.9\%	16.9\%	20.5\%
(85-93)	9.4\%	8.6\%	20.8\%	0.2\%	0.9\%	0.5\%	20.1\%	17.4\%	22.1\%

Stock: Spring Creek Tule

Distribution of Reported Catch

Catch Year	$\begin{array}{r} \text { Fish } \\ \text { All } \\ \text { Alaska } \end{array}$	heries with All Nth/Cent	ceiling WCVI Troll	$\begin{array}{r} \mathrm{All} \\ \text { Geo St } \end{array}$	Canada Net	-other Canada Sport		U.S. Net	U.S. Sport
79	0.0\%	1.2\%	29.4\%	1.8\%	2.9\%	0.1\%	19.7\%	28.7\%	16.2\%
80	0.1\%	0.8\%	29.1\%	3.2\%	1.1\%	0.1\%	27.0\%	26.6\%	12.0\%
81	0.0\%	0.5\%	25.8\%	1.8\%	2.3\%	0.2\%	28.9\%	25.1\%	15.5\%
82	0.0\%	0.6\%	25.1\%	1.3\%	0.2\%	0.0\%	22.5\%	40.8\%	9.5\%
83	0.0\%	0.5\%	42.1\%	2.2\%	0.0\%	0.7\%	12.1\%	28.4\%	14.2\%
84	0.0\%	3.4\%	38.7\%	0.0\%	1.8\%	0.6\%	8.4\%	36.7\%	10.4\%
85	0.0\%	0.3\%	23.6\%	0.0\%	0.3\%	1.1\%	22.6\%	45.3\%	7.0\%
86	0.0\%	3.7\%	26.9\%	2.5\%	2.1\%	3.3\%	4.1\%	47.1\%	10.3\%
87	0.0\%	0.0\%	9.8\%	0.0\%	0.0\%	0.0\%	17.4\%	47.8\%	25.0\%
88	0.0\%	1.1\%	27.4\%	1.1\%	2.2\%	0.9\%	20.2\%	36.7\%	10.7\%
89	0.0\%	0.2\%	17.2\%	0.5\%	0.5\%	1.2\%	29.3\%	41.2\%	9.9\%
90	0.0\%	1.0\%	23.8\%	0.9\%	0.8\%	2.0\%	19.4\%	34.4\%	17.7\%
91	0.0\%	0.5\%	17.1\%	0.3\%	0.5\%	1.3\%	21.8\%	44.3\%	14.4\%
92	0.0\%	0.4\%	17.6\%	1.0\%	0.7\%	2.1\%	39.1\%	21.6\%	17.5\%
93	0.0\%	0.0\%	25.6\%	0.0\%	0.4\%	2.6\%	25.4\%	30.9\%	15.4\%
(79-93)	0.0\%	1.0\%	25.3\%	1.1\%	1.1\%	1.1\%	21.2\%	35.7\%	13.7\%
(85-93)	0.0\%	0.8\%	21.0\%	0.7\%	0.8\%	1.6\%	22.1\%	38.8\%	14.2\%

Distribution of Total Mortalities

Catch Year	-Fisheries with All All Alaska Nth/Cent		ceilings WCVI Troll	$\begin{array}{r} \text { All } \\ \text { Geo St } \end{array}$	Canada Net	\qquad	fisher U.S. Troll	U.S. Net	U.S. Sport
79	0.0\%	1.2\%	30.6\%	1.5\%	2.7\%	0.1\%	21.6\%	26.1\%	16.1\%
80	0.1\%	0.8\%	29.8\%	2.7\%	1.0\%	0.1\%	28.6\%	24.7\%	12.2\%
81	0.0\%	0.5\%	26.1\%	1.6\%	2.2\%	0.2\%	30.3\%	23.9\%	15.3\%
82	0.0\%	0.6\%	25.5\%	1.2\%	0.2\%	0.0\%	25.3\%	38.4\%	8.9\%
83	0.0\%	0.6\%	42.4\%	2.4\%	0.0\%	0.6\%	12.5\%	25.5\%	16.0\%
84	0.0\%	3.2\%	36.0\%	0.0\%	1.6\%	0.5\%	8.0\%	32.9\%	17.7\%
85	0.0\%	0.2\%	24.1\%	0.0\%	0.2\%	1.0\%	25.5\%	42.5\%	6.5\%
86	0.0\%	3.8\%	27.9\%	2.6\%	2.3\%	3.4\%	4.5\%	45.3\%	10.6\%
87	0.0\%	0.0\%	11.9\%	0.0\%	0.0\%	0.0\%	18.7\%	45.5\%	24.6\%
88	0.0\%	1.3\%	30.7\%	1.3\%	1.7\%	1.0\%	20.3\%	30.7\%	13.2\%
89	0.0\%	0.3\%	19.2\%	0.8\%	0.5\%	1.1\%	31.2\%	36.5\%	10.4\%
90	0.0\%	1.1\%	25.8\%	1.3\%	0.8\%	2.0\%	20.4\%	29.8\%	18.9\%
91	0.0\%	0.5\%	19.1\%	0.5\%	0.5\%	1.2\%	23.4\%	39.5\%	15.2\%
92	0.0\%	0.5\%	19.6\%	1.2\%	0.6\%	1.8\%	40.4\%	19.1\%	16.8\%
93	0.0\%	0.0\%	27.5\%	0.0\%	0.3\%	2.6\%	26.7\%	27.2\%	15.5\%
(79-93)	0.0\%	1.0\%	26.4\%	1.1\%	1.0\%	1.0\%	22.5\%	32.5\%	14.5\%
(85-93)	0.0\%	0.8\%	22.9\%	0.9\%	0.8\%	1.6\%	23.5\%	35.1\%	14.6\%

Stock: Bonneville Tule

Distribution of Reported Catch

Catch Year	Fish All Alaska	heries with All Nth/Cent	$\begin{aligned} & \text { ceilings- } \\ & \text { WCVI } \\ & \text { Troll } \end{aligned}$	$\begin{array}{r} \text { All } \\ \text { Geo St } \end{array}$	Canada Net	Other Canada Sport	fisher U.S. Troll	U.S. Net	U.S. Sport
80	1.3\%	2.0\%	26.2\%	1.0\%	2.5\%	1.0\%	29.5\%	10.9\%	25.5\%
81	0.0\%	1.1\%	36.4\%	5.5\%	4.3\%	0.0\%	37.2\%	3.6\%	11.8\%
82	0.0\%	1.7\%	45.5\%	0.0\%	0.8\%	0.9\%	11.8\%	31.4\%	8.0\%
83	0.0\%	4.4\%	54.5\%	4.2\%	0.8\%	0.5\%	14.5\%	9.9\%	11.0\%
84	0.0\%	7.4\%	51.6\%	0.0\%	3.2\%	0.0\%	8.3\%	23.8\%	5.7\%
85	0.0\%	1.1\%	53.7\%	0.0\%	2.6\%	2.0\%	23.5\%	9.9\%	7.2\%
86	0.0\%	0.0\%	8.1\%	4.4\%	14.6\%	5.7\%	3.7\%	39.2\%	24.4\%
87	0.0\%	2.7\%	33.8\%	0.7\%	0.3\%	1.1\%	21.7\%	28.7\%	11.1\%
(80-87)	0.2\%	2.5\%	38.7\%	2.0\%	3.6\%	1.4\%	18.8\%	19.7\%	13.1\%
(85-93)	0.0\%	1.2\%	31.9\%	1.7\%	5.8\%	2.9\%	16.3\%	25.9\%	14.2\%

Distribution of Total Mortalities

Catch Year	Fisheries with ceilings-_All All AllAlaska Nth/Cent Troll Geo St				Canada Net	Canada Sport	fisher U.S. Troll	U.S. Net	$\begin{aligned} & \text { U.S. } \\ & \text { Sport } \end{aligned}$
80	0.9\%	1.9\%	31.2\%	0.7\%	2.4\%	0.9\%	31.9\%	8.3\%	21.8\%
81	0.0\%	1.1\%	35.9\%	4.8\%	3.8\%	0.0\%	40.2\%	3.4\%	10.8\%
82	0.0\%	1.6\%	47.1\%	0.0\%	0.7\%	0.9\%	13.3\%	28.2\%	8.1\%
83	0.0\%	4.6\%	54.5\%	4.1\%	0.7\%	0.5\%	15.4\%	9.2\%	11.0\%
84	0.0\%	7.4\%	51.4\%	0.0\%	3.1\%	0.0\%	8.5\%	23.0\%	6.6\%
85	0.0\%	1.0\%	53.6\%	0.0\%	2.3\%	1.8\%	25.9\%	9.0\%	6.5\%
86	0.0\%	0.0\%	4.4\%	3.9\%	6.9\%	3.9\%	2.0\%	21.3\%	57.6\%
87	0.0\%	2.8\%	35.9\%	0.6\%	0.3\%	1.0\%	21.1\%	26.8\%	11.6\%
(80-87)	0.1\%	2.6\%	39.2\%	1.8\%	2.5\%	1.1\%	19.8\%	16.1\%	16.7\%
(85-93)	0.0\%	1.3\%	31.3\%	1.5\%	3.1\%	2.2\%	16.4\%	19.0\%	25.2\%

Stock: Stayton Pond Tule

Distribution of Reported Catch

Catch Year	$\begin{array}{r} \text { Fish } \\ \text { All } \\ \text { Alaska } \end{array}$	heries with All Nth/Cent	ceilings WCVI Troll	$\begin{gathered} \text { Geo St } \end{gathered}$	Canada Net	- Other Canada Sport	fisher U.S. Troll	U.S. Net	U.S. Sport
82	0.0\%	3.0\%	33.3\%	1.3\%	0.4\%	0.6\%	27.9\%	20.4\%	13.1\%
83	0.0\%	4.0\%	50.3\%	2.1\%	0.8\%	0.7\%	18.1\%	10.4\%	13.5\%
84	0.0\%	2.8\%	71.0\%	2.5\%	1.5\%	0.5\%	7.1\%	10.3\%	4.3\%
85	0.0\%	2.7\%	45.6\%	2.7\%	1.8\%	0.9\%	29.4\%	5.5\%	11.5\%
86	0.2\%	2.6\%	23.2\%	5.6\%	13.0\%	4.4\%	20.2\%	12.7\%	18.1\%
87	0.0\%	1.9\%	35.6\%	0.8\%	0.3\%	2.1\%	21.2\%	24.7\%	13.5\%
88	0.6\%	0.5\%	42.8\%	0.0\%	0.0\%	1.4\%	19.2\%	31.5\%	4.0\%
89	0.0\%	0.0\%	27.5\%	0.0\%	3.9\%	0.0\%	47.4\%	10.8\%	10.4\%
90	0.0\%	0.5\%	40.3\%	0.0\%	3.3\%	0.0\%	32.8\%	0.7\%	22.4\%
91	0.0\%	0.5\%	24.5\%	1.7\%	5.6\%	3.6\%	22.2\%	5.6\%	36.3\%
92	0.0\%	0.8\%	27.5\%	0.0\%	1.6\%	2.2\%	47.9\%	1.3\%	18.7\%
93	0.0\%	0.0\%	34.5\%	0.0\%	0.0\%	3.0\%	37.1\%	4.0\%	21.3\%
(82-93)	0.1\%	1.6\%	38.0\%	1.4\%	2.7\%	1.6\%	27.5\%	11.5\%	15.6\%
(85-93)	0.1\%	1.0\%	33.5\%	1.2\%	3.3\%	2.0\%	30.8\%	10.8\%	17.4\%

Distribution of Total Mortalities

Catch Year	-Fisheries with All All Alaska Nth/Cent		ceiling WCVI Troll	$\begin{array}{r} \mathrm{All} \\ \text { Geo St } \end{array}$	Canada Net	- Other Canada Sport	fisher U.S. Troll	U.S. Net	U.S. Sport
82	0.0\%	3.0\%	33.7\%	1.5\%	0.3\%	0.5\%	28.5\%	19.7\%	12.7\%
83	0.0\%	3.9\%	49.7\%	2.2\%	0.7\%	0.7\%	18.7\%	9.7\%	14.3\%
84	0.0\%	2.8\%	70.9\%	2.4\%	1.4\%	0.4\%	7.4\%	9.7\%	4.9\%
85	0.0\%	2.4\%	45.5\%	2.5\%	1.6\%	0.8\%	31.1\%	5.4\%	10.8\%
86	0.3\%	2.5\%	17.7\%	6.4\%	8.7\%	4.0\%	15.6\%	9.2\%	35.8\%
87	0.0\%	2.2\%	41.2\%	0.6\%	0.2\%	1.6\%	20.9\%	20.2\%	13.1\%
88	0.7\%	0.5\%	46.0\%	0.0\%	0.0\%	1.3\%	18.9\%	28.9\%	3.7\%
89	0.0\%	0.0\%	28.8\%	0.0\%	3.5\%	0.0\%	48.4\%	9.2\%	10.2\%
90	0.0\%	0.4\%	42.0\%	0.0\%	2.9\%	0.0\%	33.0\%	0.6\%	21.1\%
91	0.0\%	0.5\%	23.6\%	6.3\%	4.5\%	3.5\%	21.3\%	4.6\%	35.7\%
92	0.0\%	0.9\%	29.7\%	0.0\%	1.3\%	1.8\%	47.6\%	1.1\%	17.6\%
93	0.0\%	0.0\%	35.3\%	0.0\%	0.0\%	2.8\%	36.6\%	3.8\%	21.4\%
(82-93)	0.1\%	1.6\%	38.7\%	1.8\%	2.1\%	1.5\%	27.3\%	10.2\%	16.8\%
(85-93)	0.1\%	1.1\%	34.4\%	1.8\%	2.5\%	1.8\%	30.4\%	9.2\%	18.8\%

Stock: Columbia River Upriver Bright

Distribution of Reported Catch

Catch Year	\qquad Fisheries with All All Alaska Nth/Cent		ceilings WCVI Troll	$\begin{array}{r} \mathrm{All} \\ \mathrm{Geo} \end{array}$	Canada	$\begin{aligned} & \text { Other } \\ & \text { Canada } \\ & \text { Sport } \end{aligned}$	fisher U.S. Troll	U.S.	U.S. Sport
79	27.3\%	20.5\%	15.8\%	0.6\%	0.9\%	0.0\%	1.6\%	30.7\%	2.5\%
80	44.2\%	20.0\%	14.7\%	2.0\%	0.4\%	0.0\%	2.2\%	12.9\%	3.6\%
81	47.6\%	23.3\%	11.1\%	1.0\%	1.4\%	0.5\%	1.5\%	10.7\%	2.9\%
82	34.2\%	23.8\%	22.1\%	0.0\%	2.1\%	0.0\%	2.8\%	12.0\%	3.0\%
83	36.7\%	35.9\%	7.9\%	0.6\%	0.2\%	0.0\%	0.9\%	17.9\%	0.0\%
84	31.5\%	22.2\%	13.1\%	0.3\%	1.4\%	0.4\%	0.3\%	27.9\%	3.0\%
85	16.4\%	15.8\%	11.4\%	0.1\%	1.7\%	0.1\%	0.8\%	47.3\%	6.5\%
86	19.3\%	15.3\%	9.4\%	0.2\%	0.2\%	0.1\%	1.1\%	51.3\%	3.2\%
87	19.9\%	18.8\%	9.9\%	0.0\%	0.2\%	0.3\%	1.7\%	44.6\%	4.7\%
88	14.2\%	10.3\%	13.4\%	0.0\%	0.1\%	0.0\%	2.5\%	56.6\%	2.8\%
89	15.0\%	19.6\%	9.4\%	0.0\%	0.9\%	0.0\%	1.5\%	51.3\%	2.3\%
90	20.1\%	15.8\%	11.6\%	0.0\%	0.0\%	0.0\%	1.8\%	47.5\%	3.3\%
91	15.7\%	12.2\%	19.2\%	0.0\%	0.0\%	0.0\%	1.9\%	41.6\%	9.4\%
92	10.2\%	11.4\%	24.7\%	0.0\%	1.2\%	1.6\%	0.0\%	36.4\%	14.4\%
93	19.7\%	13.8\%	30.2\%	0.0\%	0.0\%	0.0\%	2.9\%	27.2\%	6.1\%
(79-93)	24.8\%	18.6\%	14.9\%	0.3\%	0.7\%	0.2\%	1.6\%	34.4\%	4.5\%
(85-93)	16.7\%	14.8\%	15.5\%	0.0\%	0.5\%	0.2\%	1.6\%	44.9\%	5.9\%

Distribution of Total Mortalities

Catch Year	Fisheries withAll AllAlaska Nth/Cent		ceilings WCVI Troll	$\begin{array}{r} \text { All } \\ \text { Geo St } \end{array}$	Canada Net	\qquad	fisher U.S. Troll	U.S. Net	U.S. Sport
79	28.1\%	20.4\%	15.9\%	0.6\%	0.9\%	0.0\%	1.7\%	29.7\%	2.5\%
80	45.2\%	19.8\%	14.6\%	1.9\%	0.4\%	0.0\%	2.2\%	12.3\%	3.5\%
81	49.1\%	22.7\%	10.9\%	0.9\%	1.4\%	0.5\%	1.5\%	10.1\%	2.8\%
82	42.2\%	21.7\%	19.6\%	0.0\%	1.7\%	0.0\%	2.8\%	9.4\%	2.5\%
83	45.1\%	32.6\%	7.2\%	0.5\%	0.1\%	0.0\%	0.9\%	13.7\%	0.0\%
84	38.8\%	21.2\%	12.6\%	0.3\%	1.1\%	0.4\%	0.3\%	22.0\%	3.1\%
85	22.4\%	15.1\%	11.0\%	0.1\%	1.5\%	0.1\%	0.8\%	42.3\%	6.7\%
86	22.8\%	15.0\%	9.6\%	0.2\%	0.2\%	0.1\%	1.2\%	47.5\%	3.3\%
87	26.2\%	19.1\%	10.4\%	0.0\%	0.1\%	0.2\%	1.7\%	38.1\%	4.2\%
88	17.7\%	10.9\%	14.5\%	0.0\%	0.1\%	0.0\%	2.5\%	51.7\%	2.6\%
89	19.1\%	19.6\%	9.5\%	0.0\%	0.8\%	0.0\%	1.5\%	47.4\%	2.2\%
90	23.5\%	16.2\%	11.7\%	0.0\%	0.0\%	0.0\%	1.8\%	43.6\%	3.1\%
91	22.1\%	12.7\%	19.6\%	0.0\%	0.0\%	0.0\%	1.9\%	35.3\%	8.5\%
92	14.8\%	11.7\%	25.5\%	0.0\%	1.1\%	1.6\%	0.0\%	31.4\%	13.9\%
93	24.1\%	14.1\%	30.7\%	0.0\%	0.0\%	0.0\%	2.8\%	23.0\%	5.4\%
(79-93)	29.4\%	18.2\%	14.9\%	0.3\%	0.6\%	0.2\%	1.6\%	30.5\%	4.3\%
(85-93)	21.4\%	14.9\%	15.8\%	0.0\%	0.4\%	0.2\%	1.6\%	40.0\%	5.5\%

Stock: Hanford Wild Brights

Distribution of Reported Catch

Catch Year	-Fisheries with All All Alaska Nth/Cent		ceiling WCVI Troll	$\begin{gathered} \text { All } \\ \text { Geo St } \end{gathered}$	Canada Net	Canada Sport	fisher U.S. Troll	$\begin{aligned} & \text { U.S. } \\ & \text { Net } \end{aligned}$	U.S. Sport
90	16.4\%	9.1\%	15.0\%	0.0\%	0.5\%	1.5\%	0.8\%	44.3\%	12.4\%
91	18.8\%	18.7\%	8.6\%	1.5\%	0.0\%	0.0\%	1.9\%	42.5\%	8.1\%
92	30.8\%	9.3\%	24.8\%	0.0\%	0.0\%	0.0\%	1.6\%	28.6\%	4.9\%
93	30.2\%	7.5\%	9.8\%	0.0\%	3.3\%	1.8\%	5.8\%	29.2\%	12.5\%
(90-93)	24.0\%	11.2\%	14.6\%	0.4\%	0.9\%	0.8\%	2.5\%	36.1\%	9.4\%
(90-93)	24.0\%	11.2\%	14.6\%	0.4\%	0.9\%	0.8\%	2.5\%	36.1\%	9.4\%

Distribution of Total Mortalities

Catch Year		heries with All Nth/Cent	ceilings WCVI Troll	$\begin{array}{r} \mathrm{All} \\ \text { Geo } \mathrm{St} \end{array}$	Canada Net	$\begin{aligned} & \text { Other } \\ & \text { Canada } \\ & \text { Sport } \end{aligned}$	fisher U.S. Troll	$\begin{gathered} \text { U.S. } \\ \text { Net } \end{gathered}$	U.s. Sport
90	21.7\%	10.0\%	14.7\%	0.0\%	0.4\%	1.3\%	1.2\%	39.2\%	11.4\%
91	23.8\%	18.7\%	8.6\%	1.7\%	0.0\%	0.0\%	1.9\%	38.0\%	7.3\%
92	39.3\%	9.5\%	22.8\%	0.0\%	0.0\%	0.0\%	1.4\%	22.8\%	4.2\%
93	36.3\%	7.3\%	10.4\%	0.0\%	2.8\%	1.5\%	5.4\%	25.2\%	11.0\%
(90-93)	30.3\%	11.4\%	14.1\%	0.4\%	0.8\%	0.7\%	2.5\%	31.3\%	8.5\%
(90-93)	30.3\%	11.4\%	14.1\%	0.4\%	0.8\%	0.7\%	2.5\%	31.3\%	8.5\%

Stock: Lewis River Wild

Distribution of Reported Catch

Catch Year	\qquad Fish All Alaska	eries with All Nth/Cent	ceilings WCVI Troll	$\begin{array}{r} \mathrm{All} \\ \text { Geo St } \end{array}$	Canada Net	Other Canada Sport	fisher U.S. Troll	U.S. Net	U.S. Sport
81	16.1\%	15.5\%	14.3\%	0.0\%	1.7\%	0.0\%	4.8\%	9.9\%	37.5\%
82	13.8\%	9.0\%	18.1\%	0.7\%	1.3\%	0.0\%	8.1\%	10.4\%	38.7\%
86	9.7\%	8.0\%	11.0\%	0.0\%	0.0\%	4.2\%	4.8\%	42.6\%	19.7\%
87	6.8\%	10.5\%	14.5\%	0.0\%	0.0\%	0.7\%	4.7\%	44.6\%	18.1\%
88	7.0\%	5.6\%	14.6\%	0.0\%	0.2\%	0.0\%	7.4\%	37.9\%	27.4\%
89	6.4\%	15.9\%	14.3\%	0.0\%	2.3\%	0.9\%	12.9\%	26.5\%	20.8\%
90	14.9\%	9.5\%	36.4\%	0.0\%	0.0\%	1.7\%	11.5\%	9.7\%	16.2\%
91	14.6\%	11.9\%	13.6\%	0.0\%	1.6\%	0.0\%	5.3\%	36.4\%	16.6\%
92	4.7\%	13.6\%	13.5\%	0.0\%	0.0\%	0.0\%	6.3\%	9.9\%	52.0\%
93	12.3\%	13.8\%	20.1\%	0.0\%	2.7\%	0.0\%	2.0\%	16.5\%	32.6\%
(81-93)	10.6\%	11.3\%	17.1\%	0.1\%	1.0\%	0.8\%	6.8\%	24.4\%	28.0\%
(85-93)	9.5\%	11.1\%	17.3\%	0.0\%	0.9\%	0.9\%	6.9\%	28.0\%	25.4\%

Distribution of Total Mortalities

Catch Year	Fisheries with All All Alaska Nth/Cent		$\begin{aligned} & \text { WCVI } \\ & \text { Troll } \end{aligned}$	$\begin{gathered} \text { All } \\ \text { Geo } 5 \text { (} \end{gathered}$	Canada	\qquad Other Canada Sport	fisher U.S. Troll	$\begin{aligned} & \text { U.S. } \\ & \text { Net } \end{aligned}$	U.S. Sport
81	18.0\%	15.0\%	15.3\%	0.0\%	1.6\%	0.0\%	5.4\%	9.2\%	35.6\%
82	16.8\%	9.0\%	17.7\%	0.7\%	1.2\%	0.0\%	8.0\%	9.7\%	37.0\%
86	12.0\%	8.6\%	12.7\%	0.0\%	0.0\%	3.8\%	5.3\%	38.9\%	18.8\%
87	9.2\%	11.1\%	15.6\%	0.0\%	0.0\%	0.7\%	4.7\%	40.9\%	17.8\%
88	8.1\%	6.3\%	16.8\%	0.0\%	0.2\%	0.0\%	7.8\%	34.2\%	26.7\%
89	8.9\%	16.6\%	15.1\%	0.0\%	2.1\%	0.8\%	13.0\%	23.9\%	19.6\%
90	17.5\%	9.6\%	36.7\%	0.0\%	0.0\%	1.6\%	11.3\%	8.6\%	14.8\%
91	19.3\%	11.7\%	13.6\%	0.0\%	1.4\%	0.0\%	5.1\%	32.9\%	16.0\%
92	6.4\%	14.3\%	13.9\%	0.0\%	0.0\%	0.0\%	6.4\%	9.3\%	49.7\%
93	14.4\%	14.2\%	20.3\%	0.0\%	2.5\%	0.0\%	3.7\%	14.9\%	29.9\%
(81-93)	13.1\%	11.6\%	17.8\%	0.1\%	0.9\%	0.7\%	7.1\%	22.2\%	26.6\%
(85-93)	12.0\%	11.5\%	18.1\%	0.0\%	0.8\%	0.9\%	7.2\%	25.5\%	24.2\%

Stock: Lyons Ferry

Distribution of Reported Catch

Catch Year	-Fisheries wit $\underset{\text { Alaska Nth/Cent }}{\text { All }}$ Alaska Nth/Cent		$\begin{aligned} & \text { ceitin } \\ & \text { WCVI } \\ & \text { Troll } \end{aligned}$	$\begin{gathered} \text { All } \\ \text { Geo } \mathrm{St} \end{gathered}$	Canada	$\begin{aligned} & \text { Other } \\ & \text { Canada } \\ & \text { Sport } \end{aligned}$	fisher U.S. Troll	U.S. Net	U.S. Sport
88	4.3\%	6.5\%	26.4\%	0.0\%	0.3\%	0.0\%	15.4\%	42.5\%	4.7\%
89	4.8\%	9.0\%	21.5\%	0.0\%	1.6\%	0.8\%	16.6\%	36.7\%	9.0\%
90	8.0\%	5.6\%	23.2\%	0.0\%	0.0\%	0.0\%	13.5\%	41.4\%	8.3\%
91	11.3\%	13.8\%	22.6\%	0.0\%	2.1\%	0.0\%	10.2\%	32.7\%	7.3\%
92	5.8\%	13.5\%	29.1\%	0.0\%	3.0\%	5.4\%	16.1\%	22.3\%	4.8\%
93	7.7\%	14.6\%	23.6\%	0.0\%	2.6\%	0.0\%	17.4\%	30.4\%	3.7\%
(88-93)	7.0\%	10.5\%	24.4\%	0.0\%	1.6\%	1.0\%	14.8\%	34.4\%	6.3\%
(88-93)	7.0\%	10.5\%	24.4\%	0.0\%	1.6\%	1.0\%	14.8\%	34.4\%	6.3\%

Distribution of Total Mortalities

Catch Year		heries with All Nth/Cent	ceilings WCVI Troll	$\begin{array}{r} \mathrm{All} \\ \text { Geo } \mathrm{St} \end{array}$	Canada Net	Other Canada Sport		U.S. Net	U.S. Sport
88	5.4\%	7.3\%	29.0\%	0.0\%	0.3\%	0.1\%	15.8\%	37.4\%	4.7\%
89	6.5\%	9.8\%	23.3\%	0.0\%	1.4\%	0.7\%	16.9\%	33.0\%	8.3\%
90	9.5\%	5.8\%	23.8\%	0.0\%	0.0\%	0.0\%	13.5\%	39.4\%	8.0\%
91	15.1\%	14.1\%	22.9\%	0.0\%	2.0\%	0.0\%	10.1\%	28.9\%	6.9\%
92	9.7\%	14.0\%	29.7\%	0.0\%	2.6\%	5.0\%	15.6\%	18.4\%	5.0\%
93	9.3\%	14.2\%	24.0\%	0.0\%	2.4\%	0.0\%	17.4\%	28.9\%	3.7\%
(88-93)	9.2\%	10.9\%	25.5\%	0.0\%	1.5\%	1.0\%	14.9\%	31.0\%	6.1\%
(88-93)	9.2\%	10.9\%	25.5\%	0.0\%	1.5\%	1.0\%	14.9\%	31.0\%	6.1\%

Stock: Willamette Spring

Distribution of Reported Catch

Catch Year	Fisheries with Alaska Nth/Cent		ciling WCVI Troll	$\begin{array}{r} \text { All } \\ \text { Geo St } \end{array}$	Canada Net	\qquad Other Canada Sport	fisher U.S. Troll	U.S.	U.S. Sport
80	26.8\%	29.5\%	11.9\%	0.8\%	0.0\%	0.0\%	3.0\%	0.2\%	27.8\%
81	12.5\%	20.4\%	4.0\%	0.4\%	0.0\%	0.0\%	1.7\%	21.4\%	39.7\%
82	12.4\%	16.0\%	11.3\%	0.0\%	0.1\%	0.0\%	2.6\%	10.2\%	47.4\%
83	20.9\%	17.6\%	6.1\%	1.3\%	0.0\%	0.0\%	4.0\%	11.3\%	38.9\%
84	12.0\%	8.2\%	5.4\%	0.2\%	0.3\%	0.0\%	2.6\%	17.7\%	53.6\%
85	16.7\%	2.9\%	1.8\%	0.4\%	0.0\%	0.0\%	0.8\%	36.2\%	41.2\%
86	5.3\%	18.1\%	6.0\%	0.0\%	0.0\%	1.3\%	0.5\%	32.2\%	36.7\%
87	21.7\%	15.0\%	3.5\%	0.0\%	0.0\%	0.4\%	4.3\%	9.0\%	45.9\%
88	15.4\%	9.5\%	4.5\%	0.0\%	0.0\%	0.0\%	3.1\%	16.2\%	51.5\%
89	10.5\%	3.9\%	3.5\%	1.0\%	0.2\%	0.2\%	3.4\%	30.4\%	46.8\%
90	12.9\%	3.7\%	3.2\%	0.0\%	0.1\%	0.3\%	1.9\%	31.9\%	45.9\%
91	8.8\%	3.2\%	0.4\%	0.3\%	0.2\%	0.2\%	1.2\%	12.3\%	73.5\%
92	12.5\%	2.5\%	5.9\%	0.0\%	0.1\%	0.2\%	5.4\%	14.3\%	59.4\%
93	18.2\%	2.3\%	3.2\%	0.3\%	0.0\%	0.2\%	4.1\%	2.0\%	69.8\%
(80-93)	14.8\%	10.9\%	5.1\%	0.3\%	0.1\%	0.2\%	2.8\%	17.5\%	48.4\%
(85-93)	13.6\%	6.8\%	3.6\%	0.2\%	0.1\%	0.3\%	2.7\%	20.5\%	52.3\%

Distribution of Total Mortalities

Catch Year	Fisheries withAll AllAlaska Nth/Cent		eiling WCVI Troll	$\begin{array}{r} \text { All } \\ \text { Geo } \mathrm{St} \end{array}$	Canada Net	Canada Sport	fisher U.S. Troll	U.S. Net	U.s. Sport
80	26.6\%	27.9\%	11.1\%	0.6\%	0.0\%	0.0\%	2.9\%	0.6\%	30.2\%
81	15.4\%	20.9\%	4.2\%	0.3\%	0.0\%	0.0\%	1.8\%	18.4\%	39.0\%
82	15.5\%	15.8\%	11.5\%	0.0\%	0.1\%	0.0\%	2.8\%	8.8\%	45.6\%
83	24.7\%	17.1\%	5.8\%	1.1\%	0.0\%	0.0\%	4.0\%	9.5\%	37.6\%
84	13.8\%	8.4\%	5.4\%	0.2\%	0.3\%	0.0\%	2.5\%	15.3\%	54.2\%
85	23.1\%	2.7\%	1.7\%	0.3\%	0.0\%	0.0\%	0.8\%	31.2\%	40.1\%
86	7.1\%	20.5\%	6.9\%	0.0\%	0.0\%	1.6\%	0.7\%	29.2\%	33.9\%
87	31.4\%	14.4\%	3.7\%	0.0\%	0.0\%	0.4\%	4.1\%	6.0\%	40.1\%
88	19.4\%	10.5\%	4.7\%	0.0\%	0.0\%	0.0\%	2.9\%	13.5\%	49.0\%
89	13.7\%	4.4\%	3.8\%	1.4\%	0.2\%	0.2\%	3.4\%	27.0\%	45.9\%
90	19.2\%	4.5\%	3.9\%	0.0\%	0.1\%	0.3\%	2.1\%	27.1\%	42.7\%
91	13.1\%	3.4\%	0.5\%	0.4\%	0.1\%	0.1\%	1.3\%	10.8\%	70.3\%
92	20.8\%	2.7\%	6.2\%	0.0\%	0.1\%	0.2\%	5.4\%	11.4\%	53.4\%
93	23.3\%	2.7\%	3.2\%	0.6\%	0.0\%	0.2\%	4.2\%	1.6\%	64.1\%
(80-93)	19.1\%	11.1\%	5.2\%	0.4\%	0.1\%	0.2\%	2.8\%	15.0\%	46.2\%
(85-93)	19.0\%	7.3\%	3.8\%	0.3\%	0.1\%	0.3\%	2.8\%	17.5\%	48.8\%

Stock: Salmon River

Distribution of Reported Catch

Catch Year	$\begin{gathered} \text { Fish } \\ \text { All } \\ \text { Alaska } \end{gathered}$	eries with All Nth/Cent	ceilings WCVI Troll	$\begin{gathered} \text { All } \\ \text { Geo St } \end{gathered}$	Canada Net	Other Canada Sport		$\begin{aligned} & \text { U.S. } \\ & \text { Net } \end{aligned}$	U.S. Sport
81	22.5\%	44.3\%	5.5\%	0.0\%	0.0\%	1.3\%	2.0\%	0.0\%	24.8\%
82	22.5\%	27.2\%	11.8\%	0.0\%	0.0\%	0.0\%	2.7\%	0.0\%	35.8\%
83	31.4\%	31.1\%	13.5\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	23.6\%
84	19.0\%	39.8\%	5.8\%	0.0\%	1.4\%	0.0\%	0.2\%	0.7\%	33.1\%
85	34.2\%	31.1\%	2.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	32.2\%
86	38.2\%	29.3\%	4.7\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	28.3\%
87	19.4\%	27.5\%	3.7\%	0.0\%	0.0\%	0.0\%	3.7\%	0.0\%	45.8\%
88	24.2\%	21.0\%	9.7\%	0.0\%	0.0\%	0.0\%	2.0\%	0.0\%	42.8\%
89	15.7\%	20.8\%	6.7\%	0.0\%	1.4\%	0.0\%	5.3\%	0.0\%	50.4\%
90	20.0\%	19.8\%	11.6\%	0.0\%	0.4\%	0.0\%	4.7\%	0.0\%	43.7\%
91	26.8\%	25.2\%	9.7\%	0.0\%	0.0\%	0.0\%	0.4\%	0.0\%	37.9\%
92	6.8\%	19.7\%	32.6\%	0.0\%	0.0\%	0.0\%	4.2\%	0.0\%	36.6\%
93	11.9\%	23.2\%	24.2\%	0.0\%	0.6\%	0.0\%	4.0\%	0.0\%	36.1\%
(81-93)	22.5\%	27.7\%	10.9\%	0.0\%	0.3\%	0.1\%	2.2\%	0.1\%	36.2\%
(85-93)	21.9\%	24.2\%	11.7\%	0.0\%	0.3\%	0.0\%	2.7\%	0.0\%	39.3\%

Distribution of Total Mortalities

Catch Year		heries with All Nth/Cent	ceilings WCVI Troll	$\begin{array}{r} \text { All } \\ \text { Geo St } \end{array}$	Canada Net	Other Canada Sport	$\begin{aligned} & \text { fisher } \\ & \text { U.S. } \\ & \text { Troll } \end{aligned}$	$\begin{aligned} & \text { U.S. } \\ & \text { Net } \end{aligned}$	U.S. Sport
81	24.1\%	43.0\%	5.9\%	0.0\%	0.0\%	1.1\%	2.0\%	0.0\%	24.3\%
82	26.1\%	26.6\%	11.7\%	0.0\%	0.0\%	0.0\%	2.7\%	0.0\%	32.9\%
83	35.7\%	29.5\%	12.6\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	22.2\%
84	22.1\%	38.3\%	5.7\%	0.0\%	1.3\%	0.0\%	0.2\%	0.6\%	31.8\%
85	42.3\%	26.8\%	2.1\%	0.0\%	0.0\%	0.0\%	0.2\%	0.0\%	29.0\%
86	40.4\%	27.6\%	5.5\%	0.0\%	0.0\%	0.0\%	0.7\%	0.0\%	25.7\%
87	26.8\%	27.8\%	3.8\%	0.0\%	0.0\%	0.0\%	3.2\%	0.0\%	38.6\%
88	29.9\%	23.3\%	10.4\%	0.0\%	0.0\%	0.0\%	2.0\%	0.0\%	34.5\%
89	24.9\%	23.6\%	6.7\%	0.0\%	1.1\%	0.0\%	4.5\%	0.0\%	39.3\%
90	25.5\%	21.5\%	11.2\%	0.0\%	0.3\%	0.0\%	4. 2%	0.0\%	37.5\%
91	33.7\%	23.8\%	9.3\%	0.0\%	0.0\%	0.0\%	0.4\%	0.0\%	32.7\%
92	10.0\%	20.7\%	31.9\%	0.0\%	0.0\%	0.0\%	4.0\%	0.0\%	33.4\%
93	14.7%	24.1\%	24.1\%	0.0\%	0.4\%	0.0\%	3.7\%	0.0\%	33.0\%
(81-93)	27.4\%	27.4\%	10.8\%	0.0\%	0.2\%	0.1\%	2.1\%	0.0\%	31.9\%
(85-93)	27.6\%	24.4\%	11.7\%	0.0\%	0.2\%	0.0\%	2.6\%	0.0\%	33.7\%

APPENDIX G

Brood Year Exploitation Rates

PageOcean Exploitation Rates G-1
Total Exploitation Rates G-3

Ocean Exploitation Rates

Stock P	Base Period	1982	1983	1984	Brood 1985	Year 1986	1987	1988	1989	Change from BaseAvg Percentage$82-89$ Points		
$\overline{\text { Alaska Spring (SEAK Spring) }}$												
Reported Catch	41\%	37\%	31\%	30\%	26\%	45\%	28\%	26\%*	N/A	31\%	-10	-24\%
Incidental Mortalities	13\%	23\%	19\%	24\%	21\%	23\%	28\%	33\%*	N/A	23\%	10	77\%
Total Mortalities	54\%	60\%	50\%	54\%	47\%	69\%	56\%	58\%*	N/A	54\%	0	1\%
Robertson Creek (WCVI Fall)												
Reported Catch	52\%	36\%	25\%	34\%	39\%	40\%	44\%	46\%	41\%*	40\%	-12	-23\%
Incidental Mortalities	14\%	29\%	54\%	10\%	10\%	13\%	17\%	18\%	30\%*	18\%	5	35\%
Total Mortalities	66\%	65\%	78\%	44\%	49\%	53\%	61\%	64\%	71\%*	58\%	-7	-11\%
Quinsam (Upper GS Summer/Fall)												
Reported Catch	60\%	44\%	38\%	34\%	32\%	37\%	40\%	39\%*	N/A	38\%	-22	-37\%
Incidental Mortalities	11\%	14\%	31\%	22\%	23\%	24\%	28\%	26\%*	N/A	24\%	13	114\%
Total Mortalities	71\%	57\%	69\%	56\%	55\%	61\%	68\%	65\%*	N/A	62\%	-10	-13\%
Big Qualicum (Lower GS Fall)												
Reported Catch	66\%	53\%	59\%	41\%	46\%	44\%	40\%	45\%	50\%*	47\%	-19	-29\%
Incidental Mortalities	8\%	15\%	15\%	22\%	17\%	21\%	30\%	25\%	27\%*	22\%	14	166\%
Total Mortalities	74\%	67\%	74\%	63\%	63\%	65\%	70\%	70\%	77\%*	69\%	-5	-7\%
Puntledge (Lower GS Fall)												
Reported Catch	69\%	56\%	59\%	42\%	73\%	38\%	15\%	43\%	42\%*	46\%	-23	-33\%
Incidental Mortalities	7\%	13\%	16\%	20\%	14\%	17\%	25\%	24\%	24\%*	19\%	12	185\%
Total Mortalities	76\%	70\%	76\%	62\%	87\%	55\%	40\%	67\%	66\%*	65\%	-11	-14\%
So. Puget Sound Fall Yearling												
Reported Catch	72\%	N/A	N/A	N/A	N/A	50\%	52\%	49\%	45\%*	49\%	-23	-32\%
Incidental Mortalities	12\%	N/A	N/A	N/A	N/A	13\%	12\%	13\%	19\%*	14\%	2	21\%
Total Mortalities	84\%	N/A	N/A	N/A	N/A	63\%	65\%	62\%	64\%*	63\%	-21	-25\%
Squaxin Pens Fall Yearling												
Reported Catch	N/A	N/A	N/A	N/A	N/A	49\%	49\%	54\%	56\%*	52\%	N/A	N/A
Incidental Mortalities	N/A	N/A	N/A	N/A	N/A	12\%	16\%	13\%	14\%*	14\%	N/A	N/A
Total Mortalities	N/A	N/A	N/A	N/A	N/A	60\%	65\%	67\%	70\%*	66\%	N/A	N/A
Samish Fall Fingerling (North PS Summer/Fall)												
Reported Catch	53\%	N/A	N/A	N/A	37\%	42\%	44\%	52\%	44\%*	44\%	-9	-16\%
Incidental Mortalities	6\%	N/A	N/A	N/A	8\%	12\%	11\%	15\%	15\%*	12\%	7	118\%
Total Mortalities	58\%	N/A	N/A	N/A	46\%	54\%	55\%	67\%	59\%*	56\%	-2	-3\%
George Adams Fall Fingerling												
Reported Catch	48\%	N/A	N/A	N/A	43\%	53\%	46\%	53\%	62\%*	51\%	4	8\%
Incidental Mortalities	8\%	N/A	N/A	N/A	10\%	12\%	13\%	16\%	18\%*	14\%	5	66\%
Total Mortalities	56\%	N/A	N/A	N/A	53\%	65\%	59\%	69\%	80\%*	65\%	9	16\%
So. Puget Sound Fall Fingerling (South PS Summer/Fall)												
Reported Catch	59\%	51\%	40\%	47\%	34\%	42\%	43\%	45\%	47\%*	44\%	-15	-25\%
Incidental Mortalities	8\%	11\%	10\%	14\%	10\%	11\%	12\%	13\%	10\%*	11\%	4	48\%
Total Mortalities	66\%	62\%	50\%	61\%	44\%	53\%	56\%	58\%	57\%*	55\%	-11	-17\%
Skagit Spring Yearling (North PS Spring)												
Reported Catch	N/A	68\%	58\%	39\%	39\%	46\%	44\%	N/A	N/A	49\%	N/A	N/A
Incidental Mortalities	N/A	10\%	10\%	11\%	6\%	10\%	13\%	N/A	N/A	10\%	N/A	N/A
Total Mortalities	N/A	78\%	67\%	50\%	45\%	56\%	57\%	N/A	N/A	59\%	N/A	N/A
Nooksack Spring Yearling (North PS Spring)												
Reported Catch	N/A	69\%	N/A	47\%	N/A	46\%	36\%	42\%	39\%*	46\%	N/A	N/A
Incidental Mortalities	N/A	8\%	N/A	9\%	N/A	12\%	14\%	15\%	20\%*	13\%	N/A	N/A
Total Mortalities	N/A	76\%	N/A	55\%	N/A	57\%	50\%	58\%	59\%*	59\%	N/A	N/A
Hoko Fall Finger ling												
Reported Catch	N/A	N/A	N/A	N/A	51\%	49\%	34\%	N/A	25\%*	40\%	N/A	N/A
Incidental Mortalities	N/A	N/A	N/A	N/A	12\%	13\%	11\%	N/A	13\%*	13\%	N/A	N/A
Total Mortalities	N/A	N/A	N/A	N/A	63\%	63\%	45\%	N/A	38\%*	52\%	N/A	N/A

Ocean Exploitation Rates (continued)

Stock Pe	Base Period	1982	1983	1984	Brood 1985	$\begin{gathered} \text { Year } \\ 1986 \end{gathered}$	1987	1988	1989	Change Avg 82-89		\%
White River Spring Yearling												
Reported Catch	43\%	46\%	54\%	48\%	45\%	43\%	35\%	40\%	36\%*	43\%	0	1\%
Incidental Mortalities	6\%	10\%	9\%	14\%	11\%	13\%	13\%	10\%	9\%*	11\%	5	90\%
Total Mortalities	49\%	55\%	64\%	62\%	56\%	55\%	48\%	50\%	45\%*	54\%	5	11\%
Sooes fall fingerling (WACO)												
Reported Catch	N/A	N/A	N/A	N/A	39\%	25\%	35\%	N/A	N/A	33\%	N/A	N/A
Incidental Mortalities	N/A	N/A	N/A	N/A	10\%	11\%	12\%	N/A	N/A	11\%	N/A	N/A
Total Mortalities	N/A	N/A	N/A	N/A	49\%	36\%	48\%	N/A	N/A	44\%	N/A	N/A
Cowlitz Fall Tule (CR Tule)												
Reported Catch	53\%	39\%	32\%	31\%	36\%	30\%	27\%	37\%	60\%*	37\%	-17	-32\%
Incidental Mortalities	9\%	7\%	5\%	9\%	12\%	13\%	12\%	10\%	6\%*	9\%	-0	-3\%
Total Mortalities	63\%	46\%	37\%	40\%	48\%	43\%	39\%	47\%	66\%*	46\%	-17	-27\%
Spring Creek Tule (CR Tule)												
Reported Catch	53\%	31\%	28\%	40\%	47\%	38\%	41\%	33\%	44\%*	38\%	-16	-30\%
Incidental Mortalities	12\%	11\%	10\%	11\%	9\%	10\%	11\%	10\%	13\%*	11\%	-2	-13\%
Total Mortalities	66\%	42\%	38\%	50\%	56\%	48\%	52\%	43\%	57\%*	48\%	-17	-27\%
Stayton Pond Tule (CR Tule)												
Reported Catch	62\%	51\%	52\%	43\%	43\%	43\%	41\%	35\%	44\%*	44\%	-18	-29\%
Incidental Mortalities	14\%	13\%	11\%	16\%	23\%	16\%	10\%	9\%	11\%*	14\%	0	0\%
Total Mortalities	75\%	64\%	63\%	59\%	66\%	59\%	52\%	43\%	55\%*	58\%	-18	-23\%
Columbia River Upriver Bright (WACO)												
Reported Catch	32\%	29\%	34\%	28\%	22\%	25\%	17\%	31\%	30\%*	27\%	-5	-15\%
Incidental Mortalities	7\%	7\%	9\%	11\%	17\%	16\%	15\%	10\%	6\%*	11\%	4	60\%
Total Mortalities	39\%	36\%	42\%	40\%	39\%	42\%	32\%	41\%	37\%*	39\%	-0	-1\%
Lyons Ferry (WACO)												
Reported Catch	N/A	N/A	N/A	29\%	29\%	37\%	12\%	16\%	24\%*	25\%	N/A	N/A
Incidental Mortalities	N/A	N/A	N/A	8\%	7\%	9\%	13\%	11\%	7\%*	9\%	N/A	N/A
Total Mortalities	N/A	N/A	N/A	38\%	37\%	46\%	25\%	27\%	30\%*	34\%	N/A	N/A
Hanford Wild Brights (WACO)												
Reported Catch	N/A	N/A	N/A	N/A	N/A	25\%	37\%	23\%	29\%*	29\%	N/A	N/A
Incidental Mortalities	N/A	N/A	N/A	N/A	N/A	7\%	12\%	8\%	16\%*	11\%	N/A	N/A
Total Mortalities	N/A	N/A	N/A	N/A	N/A	32\%	49\%	31\%	45\%*	39\%	N/A	N/A
Lewis River Wild (WACO)												
Incidental Mortalities	6\%	4\%	6\%	5\%	5\%	5\%	6\%	7\%	5\%*	5\%	-0	-6\%
Total Mortalities	35\%	27\%	33\%	23\%	25\%	25\%	24\%	26\%	12\%*	24\%	-10	-29\%
Willamette Spring												
Reported Catch	28\%	14\%	26\%	15\%	10\%	14\%	12\%	14\%*	N/A	16\%	-12	-44\%
Incidental Mortalities	8\%	10\%	10\%	9\%	6\%	6\%	7\%	6\%*	N/A	8\%	-0	-1\%
Total Mortalities	37\%	24\%	36\%	25\%	16\%	21\%	19\%	21\%*	N/A	24\%	-12	-34\%
Salmon River (WACO)												
Reported Catch	36\%	35\%	19\%	25\%	33\%	37\%	27\%	34\%	33\%*	30\%	-5	-15\%
Incidental Mortalities	7\%	12\%	5\%	8\%	10\%	11\%	10\%	12\%	13\%*	10\%	3	40\%
Total Mortalities	43\%	47\%	24\%	33\%	43\%	48\%	37\%	46\%	46\%*	40\%	-2	-5\%

Total Exploitation Rates

Stock P	Base Period	1982	1983	1984	Brood 1985	Year 1986	1987	1988	1989	$\begin{aligned} & \text { Change from Base } \\ & \text { Avg Percentage } \\ & 82-89 \text { Points } \end{aligned}$		
Alaska Spring (SEAK Spring)												
Reported Catch	42\%	40\%	34\%	36\%	32\%	51\%	34\%	30\%*	N/A	36\%	-6	-13\%
Incidental Mortalities	13\%	23\%	20\%	24\%	21\%	24\%	29\%	34\%*	N/A	24\%	11	84\%
Total Mortalities	55\%	63\%	54\%	61\%	53\%	75\%	63\%	64\%*	N/A	60\%	5	10\%
Robertson Creek (WCVI Fall)												
Reported Catch	72\%	58\%	35\%	63\%	78\%	75\%	67\%	66\%	57\%*	66\%	-6	-8\%
Incidental Mortalities	14\%	32\%	54\%	17\%	12\%	15\%	20\%	22\%	32\%*	21\%	7	48\%
Total Mortalities	87\%	90\%	90\%	79\%	90\%	90\%	87\%	87\%	90\%*	88\%	1	1\%
Quinsam (Upper GS Summer/Fall)												
Reported Catch	74\%	59\%	44\%	44\%	43\%	46\%	48\%	45\%*	N/A	47\%	-27	-37\%
Incidental Mortalities	11\%	17\%	32\%	24\%	25\%	26\%	29\%	27\%*	N/A	26\%	14	128\%
Total Mortalities	86\%	76\%	76\%	69\%	68\%	72\%	78\%	72\%*	N/A	73\%	-13	-15\%
Big Qualicum (Lower GS Fall)												
Reported Catch	72\%	59\%	65\%	47\%	54\%	51\%	44\%	50\%	52\%*	53\%	-20	-27\%
Incidental Mortalities	8\%	15\%	16\%	23\%	19\%	23\%	31\%	27\%	28\%*	23\%	14	170\%
Total Mortalities	81\%	74\%	81\%	70\%	72\%	74\%	75\%	77\%	80\%*	75\%	-5	-7\%
Puntledge (Lower GS Fall)												
Reported Catch	70\%	56\%	63\%	43\%	73\%	42\%	24\%	43\%	42\%*	48\%	-22	-31\%
Incidental Mortalities	7\%	13\%	18\%	21\%	14\%	18\%	28\%	24\%	24\%*	20\%	13	196\%
Total Mortalities	77\%	70\%	81\%	63\%	87\%	61\%	52\%	67\%	66\%*	68\%	-8	-11\%
So. Puget Sound Fall Yearling												
Incidental Mortalities	13\%	N/A	N/A	N/A	N/A	17\%	14\%	15\%	21\%*	17\%	-6	30\%
Total Mortalities	93\%	N/A	N/A	N/A	N/A	92\%	87\%	98\%	86\%*	91\%	-2	-2\%
Squaxin Pens Fall Yearling												
Reported Catch	N/A	N/A	N/A	N/A	N/A	80\%	75\%	78\%	75\%*	77\%	N/A	N/A
Incidental Mortalities	N/A	N/A	N/A	N/A	N/A	17\%	22\%	20\%	20\%*	20\%	N/A	N/A
Total Mortalities	N/A	N/A	N/A	N/A	N/A	97\%	97\%	98\%	95\%*	97\%	N/A	N/A
Samish Fall Fingerling (North PS Summer/Fall)												
Reported Catch	81\%	N/A	N/A	N/A	80\%	70\%	66\%	67\%	62\%*	69\%	-12	-15\%
Incidental Mortalities	7\%	N/A	N/A	N/A	10\%	14\%	12\%	16\%	16\%*	13\%	6	87\%
Total Mortalities	89\%	N/A	N/A	N/A	90\%	84\%	78\%	83\%	78\%*	83\%	-6	-7\%
George Adams Fall Fingerling												
Reported Catch	77\%	N/A	N/A	N/A	79\%	80\%	71\%	74\%	67\%*	74\%	-3	-4\%
Incidental Mortalities	11\%	N/A	N/A	N/A	12\%	13\%	16\%	18\%	20\%*	16\%	5	43\%
Total Mortalities	88\%	N/A	N/A	N/A	91\%	93\%	87\%	92\%	87\%*	90\%	2	2\%
So. Puget Sound Fall Fingerling (South PS Summer/Fall)												
Reported Catch	80\%	59\%	53\%	59\%	51\%	66\%	62\%	66\%	63\%*	60\%	-20	-25\%
Incidental Mortalities	9\%	12\%	12\%	14\%	11\%	12\%	14\%	14\%	12\%*	13\%	4	43\%
Total Mortalities	89\%	71\%	65\%	73\%	62\%	78\%	76\%	80\%	74\%*	72\%	-17	-19\%
Skagit Spring Yearling (North PS Spring)												
Reported Catch	N/A	74\%	82\%	66\%	63\%	63\%	57\%	N/A	N/A	68\%	N/A	N/A
Incidental Mortalities	N/A	10\%	10\%	12\%	7\%	10\%	14\%	N/A	N/A	10\%	N/A	N/A
Total Mortalities	N/A	84\%	92\%	78\%	70\%	74\%	71\%	N/A	N/A	78\%	N/A	N/A
Nooksack Spring Yearling (North PS Spring)												
Reported Catch	N/A	69\%	N/A	57\%	N/A	73\%	41\%	45\%	39\%*	54\%	N/A	N/A
Incidental Mortalities	N/A	8\%	N/A	10\%	N/A	13\%	15\%	16\%	20\%*	14\%	N/A	N/A
Total Mortalities	N/A	76\%	N/A	67\%	N/A	86\%	56\%	61\%	60\%*	68\%	N/A	N/A
Hoko Fall Fingerling												
Incidental Mortalities	N/A	N/A	N/A	N/A	12\%	14\%	11\%	N/A	13\%*	13\%	N/A	N/A
Total Mortalities	N/A	N/A	N/A	N/A	69\%	66\%	47\%	N/A	43\%*	56\%	N/A	N/A

Total Exploitation Rates (continued)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Stock Per \& Base Period \& 1982 \& 1983 \& 1984 \& Brood
1985 \& Year 1986 \& 1987 \& 1988 \& 1989 \& $$
\begin{gathered}
\text { Change } \\
\text { Avg } \\
82-89
\end{gathered}
$$ \& from Ba Percent Points \& \%

\hline \multicolumn{13}{|l|}{White River Spring Yearling}

\hline Reported Catch \& 82\% \& 64\% \& 68\% \& 55\% \& 56\% \& 60\% \& 46\% \& 49\% \& 44\%* \& 55\% \& -27 \& -33\%

\hline Incidental Mortalities \& 8\% \& 11\% \& 11\% \& 15\% \& 12\% \& 14\% \& 14\% \& 10\% \& 11\%* \& 12\% \& 4 \& 51\%

\hline Total Mortalities \& 90\% \& 75\% \& 78\% \& 70\% \& 67\% \& 74\% \& 60\% \& 59\% \& 55\%* \& 67\% \& -23 \& -25\%

\hline \multicolumn{13}{|l|}{Sooes Fall fingerling (WACO)}

\hline Reported Catch \& N/A \& N/A \& N/A \& N/A \& 43\% \& 30\% \& 38\% \& N/A \& N/A \& 37\% \& N/A \& N/A

\hline Incidental Mortalities \& N/A \& N/A \& N/A \& N/A \& 10\% \& 11\% \& 12\% \& N/A \& N/A \& 11\% \& N/A \& N/A

\hline Total Mortalities \& N/A \& N/A \& N/A \& N/A \& 53\% \& 41\% \& 50\% \& N/A \& N/A \& 48\% \& N/A \& N/A

\hline \multicolumn{13}{|l|}{Cowlitz Fall Tule (CR Tule) 64% 64\% 67\% 60\% 62\% 38% 35\% 40\% 66\%* 54\% -10 -15\%}

\hline Reported Catch \& 64\% \& 64\% \& 67\% \& 60\% \& 62\% \& 38\% \& 35\% \& 40\% \& 66\%* \& 54\% \& -10 \& -15\%

\hline Incidental Mortalities \& 10\% \& 8\% \& 8\% \& 11\% \& 14\% \& 14\% \& 13\% \& 10\% \& 6\%* \& 11\% \& 1 \& 8\%

\hline Total Mortalities \& 74\% \& 71\% \& 75\% \& 71\% \& 76\% \& 52\% \& 48\% \& 50\% \& 72\%* \& 65\% \& -9 \& -12\%

\hline \multicolumn{13}{|l|}{Spring Creek Tule (CR Tule)}

\hline Reported Catch \& 74\% \& 54\% \& 72\% \& 69\% \& 82\% \& 70\% \& 65\% \& 60\% \& 60\%* \& 67\% \& -7 \& -10\%

\hline Incidental Mortalities \& 14\% \& 13\% \& 13\% \& 14\% \& 11\% \& 14\% \& 13\% \& 13\% \& 15\%* \& 13\% \& -0 \& -3\%

\hline Total Mortalities \& 87\% \& 66\% \& 86\% \& 83\% \& 93\% \& 84\% \& 78\% \& 73\% \& 75\%* \& 80\% \& -8 \& -9\%

\hline \multicolumn{13}{|l|}{}

\hline Reported Catch \& 69\% \& 54\% \& 62\% \& 61\% \& 50\% \& 45\% \& 42\% \& 43\% \& 48\%* \& 51\% \& -18 \& -26\%

\hline Incidental Mortalities \& 14\% \& 14\% \& 12\% \& 19\% \& 24\% \& 17\% \& 11\% \& 12\% \& 12\%* \& 15\% \& 1 \& 7\%

\hline Total Mortalities \& 83\% \& 68\% \& 74\% \& 80\% \& 74\% \& 62\% \& 53\% \& 55\% \& 61\%* \& 66\% \& -17 \& -21\%

\hline \multicolumn{13}{|l|}{Columbia River Upriver Bright (WACO)}

\hline Reported Catch \& 38\% \& 64\% \& 63\% \& 70\% \& 61\% \& 54\% \& 33\% \& 49\% \& 49\%* \& 55\% \& 17 \& 45\%

\hline Incidental Mortalities \& 7\% \& 9\% \& 10\% \& 13\% \& 18\% \& 18\% \& 16\% \& 11\% \& 7\%* \& 13\% \& 5 \& 75\%

\hline Total Mortalities \& 46\% \& 72\% \& 74\% \& 83\% \& 78\% \& 72\% \& 49\% \& 60\% \& 57\%* \& 68\% \& 23 \& 49\%

\hline \multicolumn{13}{|l|}{Lyons Ferry (WACO)}

\hline Incidental Mortalities \& N/A \& N/A \& N/A \& 10\% \& 54\%

9% \& 10\% \& 15\% \& 13\% \& 32\%** \& 11\% \& N/A
N/A \& N/A

\hline Total Mortalities \& N/A \& N/A \& N/A \& 62\% \& 63\% \& 67\% \& 50\% \& 36\% \& 40\%* \& 53\% \& N/A \& N/A

\hline \multicolumn{13}{|l|}{Hanford Wild Brights (WACO)}

\hline Reported Catch \& N / A \& N/A \& N/A \& N/A \& N/A \& 55\% \& 56\% \& 45\% \& 53\%* \& 52\% \& N/A \& N/A

\hline Incidental Mortalities \& N/A \& N/A \& N/A \& N/A \& N/A \& 7\% \& 12\% \& 9\% \& 17\%* \& 12\% \& N/A \& N/A

\hline Total Mortalities \& N/A \& N/A \& N/A \& N/A \& N/A \& 62\% \& 69\% \& 54\% \& 70\%* \& 64\% \& N/A \& N/A

\hline \multicolumn{13}{|l|}{Lewis River Wild (WACO)}

\hline Reported Catch \& 46\% \& 53\% \& 61\% \& 41\% \& 40\% \& 35\% \& 32\% \& 42\% \& 46\%* \& 44\% \& -2 \& -4\%

\hline Incidental Mortalities \& 7\% \& 5\% \& 7\% \& 6\% \& 7\% \& 7\% \& 7\% \& 8\% \& 7\%* \& 7\% \& -0 \& -2\%

\hline Total Mortalities \& 52\% \& 58\% \& 68\% \& 47\% \& 47\% \& 42\% \& 39\% \& 50\% \& 53\%* \& 50\% \& -2 \& -4\%

\hline \multicolumn{13}{|l|}{Willamette Spring}

\hline Reported Catch \& 58\% \& 57\% \& 70\% \& 56\% \& 56\% \& 60\% \& 62\% \& 49\%* \& N/A \& 58\% \& -0 \& -0\%

\hline Incidental Mortalities \& 15\% \& 13\% \& 18\% \& 16\% \& 10\% \& 11\% \& 15\% \& 12\%* \& N/A \& 14\% \& -1 \& -7\%

\hline Total Mortalities \& 73\% \& 70\% \& 88\% \& 73\% \& 66\% \& 71\% \& 77\% \& 61\%* \& N/A \& 72\% \& -1 \& -2\%

\hline \multicolumn{13}{|l|}{Salmon River (WACO)}

\hline Reported Catch \& 52\% \& 50\% \& 38\% \& 42\% \& 50\% \& 56\% \& 47\% \& 55\% \& 52\%* \& 49\% \& -3 \& -6\%

\hline Incidental Mortalities \& 10\% \& 13\% \& 7\% \& 10\% \& 11\% \& 12\% \& 11\% \& 13\% \& 16\%* \& 12\% \& 2 \& 18\%

\hline Total Mortalities \& 62\% \& 63\% \& 45\% \& 52\% \& 61\% \& 68\% \& 58\% \& 68\% \& 68\%* \& 60\% \& -1 \& -2\%

\hline
\end{tabular}

APPENDIX H

Brood Year Ocean Exploitation Rate Figures

Page
Alaska Spring H-1
Robertson Creek H-2
Quinsam H-2
Big Qualicum H-3
Puntledge H-3
South Puget Sound Fall Yearling H-4
Squaxin Pens Fall Yearling H-4
Samish Fall Fingerling H-5
George Adams Fall Fingerling H-5
South Puget Sound Fall Fingerling H-6
Hoko Fall Fingerling H-6
Sooes Fall Fingerling H-7
Skagit Spring Yearling H-7
Nooksack Spring Yearling H-8
White River Spring Yearling H-8
Cowlitz Tule H-9
Spring Creek Tule H-9
Stayton Pond Tule H-10
Columbia River Upriver Bright H-10
Hanford Wild Brights H-11
Lewis River Wild H-11
Lyons Ferry H-12
Willamette Spring H-12
Salmon River H-13

ALASKA SPRING
BROOD YEAR OCEAN EXPLOITATION RATE

*1988 Brood Year is incomplete

ROBERTSON CREEK BROOD YEAR OCEAN EXPLOITATION RATE

*1989 Brood Year is incomplete
QUINSAM
BROOD YEAR OCEAN EXPLOITATION RATE

[^4]*1988 Brood Year is incomplete

BIG QUALICAM BROOD YEAR OCEAN EXPLOITATION RATE

*1989 Brood Year is incomplete
PUNTLEDGE BROOD YEAR OCEAN EXPLOITATION RATE

Reported Catch 蜀 Incidental Mortality
*1989 Brood Year is incomplete

SOUTH PUGET SOUND FALL YEARLING BROOD YEAR OCEAN EXPLOITATION RATE

Reported Catch 纁Incidental Mortality
*1989 Brood Year is incomplete

SQUAXIN PENS FALL YEARLING

BROOD YEAR OCEAN EXPLOITATION RATE

Reported Catch Incidental Mortality
*1989 Brood Year is incomplete

SAMISH FALL FINGERLING BROOD YEAR OCEAN EXPLOITATION RATE

Reported Catch Incidental Mortality
*1989 BROOD YEAR IS INCOMPLETE

GEORGE ADAMS FALL FINGERLING BROOD YEAR OCEAN EXPLOITATION RATE

*1989 Brood Year is incomplete

SOUTH PUGET SOUND FALL FINGERLING BROOD YEAR OCEAN EXPLOITATION RATE

Reported Catch 徳 Incidental Mortality
*1989 Brood Year is incomplete
HOKO FALL FINGERLING BROOD YEAR OCEAN EXPLOITATION RATE

Reported Catch Incidental Mortality
*1989 Brood Year is incomplete

H-6

SOOES FALL FINGERLING BROOD YEAR OCEAN EXPLOITATION RATE

Reported Catch 圖 Incidental Mortality
SKAGIT SPRING YEARLING BROOD YEAR OCEAN EXPLOITATION RATE

Reported Catch 䍚 Incidental Mortality

*1989 BROOD YEAR IS INCOMPLETE

WHITE RIVER SPRING YEARLING BROOD YEAR OCEAN EXPLOITATION RATE

Reported Catch 鰗 Incidental Mortality
*1989 BROOD YEAR IS INCOMPLETE

H-8

COWLITZ FALL TULE

 BROOD YEAR OCEAN EXPLOITATION RATE
Reported Catch 圖Incidental Mortality
${ }^{* 1989}$ Brood Year
SPRING CREEK TULE
BROOD YEAR OCEAN EXPLOITATION RATE

Reported Catch 獋Incidental Mortality
*1989 Brood Year is incomplete

*1989 Brood Year is incomplete
COLUMBIA RIVER UPRIVER BRIGHT BROOD YEAR OCEAN EXPLOITATION RATE

Reported Catch 围Incidental Mortality
*1989 Brood Year is incomplete

HANFORD WILD BRIGHTS BROOD YEAR OCEAN EXPLOITATION RATE

*1989 Brood Year is incomplete
LEWIS RIVER WILD BROOD YEAR OCEAN EXPLOITATION RATE

Reported Catch 䡒 Incidental Mortality
*1989 Brood Year is incomplete

$$
\mathrm{H}-11
$$

LYONS FERRY
 BROOD YEAR OCEAN EXPLOITATION RATE

Reported Catch 圏 Incidental Mortality
*1989 Brood Year is incomplete
WILLAMETTE SPRING BROOD YEAR OCEAN EXPLOITATION RATE

Reported Catch 䡒Incidental Mortality
*1988 Brood Year is incomplete

SALMON RIVER
BROOD YEAR OCEAN EXPLOITATION RATE

Reported Catch 國Incidental Mortality
*1989 Brood Year is incomplete

APPENDIX I

Survival Rate Figures

Page
Alaska Spring I-1
Robertson Creek I-1
Quinsam I-2
Puntledge I-2
Big Qualicum I-3
South Puget Sound Fall Yearling I-3
Squaxin Pens I-4
Samish Fall Fingerling I-4
George Adams Fall Fingerling I-5
South Puget Sound Fall Fingerling I-5
Hoko Fall Fingerling I-6
Sooes Fall Fingerling I-6
Skagit Spring Yearling I-7
Nooksack Spring Yearling I-7
White River Spring Yearling I-8
Cowlitz Tule I-8
Spring Creek Tule I-9
Stayton Pond Tule I-9
Columbia River Upriver Bright I-10
Hanford Wild Brights I-10
Lewis River Wild I-11
Lyons Ferry I-11
Willamette Spring I-12
Salmon River I-12

ALASKA SPRING
 INDEX OF SURVIVAL
 $R=0.80$

Age 3 \& 4 Index Avg. Cohort Survival
ROBERTSON CREEK INDEX OF SURVIVAL

$$
R=0.94
$$

\rightarrow Age 2 \& 3 Index Avg. Cohort Survival

$$
R=0.88
$$

- Age 2 \& 3 Index Avg. Cohort Survival

PUNTLEDGE
INDEX OF SURVIVAL

$$
R=1.00
$$

- Age 2 \& 3 Index Avg. Cohort Survival

BIG QUALICUM INDEX OF SURVIVAL
 $$
R=1.00
$$

- Age 2 \& 3 Index Avg. - Cohort Survival

> SOUTH PUGET SOUND FALL YEARLING INDEX OF SURVIVAL
> R=1.00

\rightarrow Age 2 \& 3 Index Avg. Cohort Survival

$$
R=1.00
$$

INDICES BASED ON 86 BROOD
SAMISH FALL FINGERLING INDEX OF SURVIVAL

$$
R=0.99
$$

GEORGE ADAMS FALL FINGERLING INDEX OF SURVIVAL
 $$
\mathrm{R}=0.96
$$

Age 2 \& 3 Index Avg. - Cohort Survival

SOUTH PUGET SOUND FALL FINGERLING INDEX OF SURVIVAL
 $$
R=0.98
$$

- Age 2 \& 3 Index Avg. Cohort Survival

HOKO FALL FINGERLING INDEX OF SURVIVAL

$$
R=0.77
$$

Age 2 \& 3 Index Avg. - Cohort Survival
INDICES BASED ON 85 BROOD

SOOES FALL FINGERLING INDEX OF SURVIVAL
 $R=1.00$

- Age 2 \& 3 Index Avg. Cohort Survival

INDICES BASED ON 85 BROOD

SKAGIT SPRING YEARLING INDEX OF SURVIVAL
 $R=0.98$

\rightarrow Age 2 \& 3 Index Avg. Cohort Survival
INDICES BASED ON 81 BROOD
NOOKSACK SPRING YEARLING INDEX OF SURVIVAL
$R=0.99$

Age 2 \& 3 Index Avg. Cohort Survival
INDICES BASED ON 81 BROOD

Age 2 \& 3 Index Avg. - Cohort Survival

COWLITZ FALL TULE

INDEX OF SURVIVAL

$$
R=0.91
$$

Age 2 \& 3 Index Avg. Cohort Survival

SPRING CREEK TULE
 INDEX OF SURVIVAL
 $R=0.98$

Age 2 \& 3 Index Avg. Cohort Survival
STAYTON POND TULE
INDEX OF SURVIVAL
$R=1.00$

- Age 2 \& 3 Index Avg. Cohort Survival

COLUMBIA RIVER UPRIVER BRIGHT INDEX OF SURVIVAL
 $$
R=0.92
$$

Age 2 \& 3 Index Avg. Cohort Survival HANFORD WILD BRIGHTS INDEX OF SURVIVAL
$R=0.82$

- Age 2 \& 3 Index Avg. Cohort Survival

INDICES BASED ON 86 BROOD
LEWIS RIVER WILD INDEX OF SURVIVAL $R=0.96$

Age 2 \& 3 Index Avg. - Cohort Survival
LYONS FERRY
INDEX OF SURVIVAL

$$
R=0.97
$$

- Age 3 \& 4 Index Avg. Cohort Survival

$$
\begin{gathered}
\text { SALMON RIVER } \\
\text { INDEX OF SURVIVAL } \\
R=0.73
\end{gathered}
$$

Age 2 \& 3 Index Avg. Cohort Survival

APPENDIX J

Chinook Model Estimates of Stock Composition of Total Fishing Mortality in Ceiling Fisheries, Percent of Total Stock Mortality Occurring in Fishery, and Status of Associated Escapement Indicator Stock

Stock composition and mortality distribution are average for the years 1985-1993.Page
SE Alaska All Gear J-1
North/Central B.C. All Gear J-2
West Coast Vancouver Island Troll J-3
GS Sport and Troll J-4

Model Stock $\quad \mathrm{Yr}$ Re	Yr Rebuilt or z in 1998	Percent Fishery	Percent Stock	Escapement Indicator Name	Stock Status
WCVI Hatchery		31.85\%	38.77\%	NA	
Columbia Upriver Bright	1996	17.61\%	24.46\%	Columbia Upriver Bright	Above Goal
North/Central BC	1992	12.98\%	47.11\%	Yakoun Nass Skeena Area 6 Index Area 8 Index Rivers Inlet Smith Inlet	Above Goal Not Rebuilding Above Goal Not Rebuilding Not Rebuilding Rebuilding Not Rebuilding
Oregon Coastal North Migrating	1994	10.06\%	30.10\%	Oregon Coastal	Not Classified
Fraser Early	1994	6.32\%	32.02\%	Upper Fraser Middle Fraser Thompson	Above Goal Above Goal Not Rebuilding
WCVI Wild	69\%	5.66\%	35.07\%	WCVI	Not Rebuilding
Washington Coastal Wild	1994	3.14\%	16.28\%	Grays Harbor Fall Quillayute Fall Hoh Fall Queets Fall	Rebuilding Not Classified Not Classified Not Classified
Mid-Columbia Brights	1997	2.45\%	16.22\%	Not Represented	
WA Coastal Hatchery		2.28\%	15.99\%	NA	
Upper Georgia Strait	59\%	2.27\%	27.38\%	Upper Georgia Strait	Indeterminate
Willamette River Hatchery		1.75\%	8.16\%	NA	
Columbia Upriver Summer	48\%	0.91\%	25.28\%	Columbia Upriver Summer	Not Rebuilding
Alaska South SE	1997	0.84\%	95.13\%	King Salmon Andrew Creek Blossom Keta Unuk Chickamin	Not Rebuilding Above Goal Indeterminate Rebuilding Rebuilding Rebuilding
Lewis River Wild	1996	0.69\%	10.47\%	Lewis River	Above Goal
Lower GS Hatchery		0.24\%	1.65\%	NA	
Fall Cowlitz Hatchery		0.23\%	6.02\%	NA	
Fraser Late	1998	0.17\%	0.18\%	Harrison	Not Rebuilding
Lower Georgia Strait	1998	0.16\%	1.47\%	Lower Georgia Strait	Not Rebuilding
Spring Cowlitz Hatchery		0.10\%	1.63\%	NA	
PS Hatchery Fingerling		0.07\%	0.28\%	NA	
Skagit Summer/Fall	58\%	0.06\%	2.43\%	Skagit Summer/Fall	Not Rebuilding
Nooksack Fall	76\%	0.04\%	0.12\%	NA	
Puget Sound Natural	1996	0.04\%	0.28\%	Green	Rebuilding
Snohomish Summer/Fall	62\%	0.03\%	1.65\%	Snohomish	Not Rebuilding
Snake River Fall	50\%	0.02\%	5.39\%	Not Represented	
Stillaguamish Summer/Fall	56\%	0.02\%	5.95\%	Stillaguamish	Not Rebuilding
PS Yearling	40\%	0.02\%	0.24\%	NA	
Lower Bonneville Hatchery		0.00\%	0.00\%	NA	
Spring Creek Hatchery		0.00\%	0.00\%	NA	
Nooksack Spring	58\%	0.00\%	0.00\%	Not Represented	

Model Stock \quad Yr Re	Rebuilt or \% in 1998	Percent Fishery	Percent Stock	Escapement Indicator S Name	Stock Status
WCVI Hatchery		21.44\%	25.23\%	NA	
North/Central BC	1992	14.04\%	48.01\%	Yakoun Nass Skeena Area 6 Index Area 8 Index Rivers Inlet Smith Inlet	Above Goal Not Rebuilding Above Goal Not Rebuilding Not Rebuilding Rebuilding Not Rebuilding
Columbia Upriver Bright	1996	12.89\%	17.94\%	Columbia Upriver Bright	Above Goal
Oregon Coastal North Migrating	g 1994	11.71\%	34.78\%	Oregon Coastal	Not Classified
Fraser Early	1994	6.14\%	30.46\%	Upper Fraser Middle Fraser Thompson	Above Goal Above Goal Not Rebuilding
Fraser Late	1998	5.12\%	5.60\%	Harrison	Not Rebuilding
Upper Georgia Strait	59\%	4.29\%	49.55\%	Upper Georgia Strait	Indeterminate
WCVI Wild	69\%	4.17\%	24.97\%	WCVI	Not Rebuilding
Washington Coastal Wild	1994	3.91\%	19.22\%	Grays Harbor Fall Quillayute Fall Hoh Fall Queets Fall	Rebuilding Not Classified Not Classified Not Classified
Willamette River Hatchery		3.45\%	15.57\%	NA	
WA Coastal Hatchery		2.95\%	19.01\%	NA	
Mid-Columbia Brights	1997	2.14\%	14.44\%	Not Represented	
Lower GS Hatchery		1.45\%	9.62\%	NA	
Columbia Upriver Summer	48\%	1.09\%	30.10\%	Columbia Upriver Summer	Not Rebuilding
Lower Georgia Strait	1998	1.06\%	9.52\%	Lower Georgia Strait	Not Rebuilding
Nooksack Fall	76\%	0.76\%	2.27\%	NA	
Lower Bonneville Hatchery		0.76\%	1.85\%	NA	
Skagit Surmer/Fall	58\%	0.51\%	18.61\%	Skagit Summer/Fall	Not Rebuilding
Lewis River Wild	1996	0.43\%	6.45\%	Lewis River	Above Goal
PS Hatchery Fingerling		0.35\%	1.38\%	NA	
PS Yearling	40\%	0.26\%	3.61\%	NA	
Snohomish Summer/Fall	62\%	0.26\%	13.30\%	Snohomish	Not Rebuilding
Spring Cowlitz Hatchery		0.23\%	3.78\%	NA	
Puget Sound Natural	1996	0.21\%	1.34\%	Green	Rebuilding
Fall Cowlitz Hatchery		0.19\%	4.84\%	NA	
Stillaguamish Summer/Fall	56\%	0.05\%	12.89\%	Stillaguamish	Not Rebuilding
Alaska South SE	1997	0.05\%	4.87\%	King Salmon Andrew Creek Blossom Keta Unuk Chickamin	Not Rebuilding Above Goal Indeterminate Rebuilding Rebuilding Rebuilding
Snake River Fall	50\%	0.04\%	9.98\%	Not Represented	
Spring Creek Hatchery		0.04\%	0.44\%	NA	
Nooksack Spring	58\%	0.01\%	2.99\%	Not Represented	

Model Stock \quad Yr Re	Rebuilt or \% in 1998	Percent Fishery	Percent Stock	Escapement Indicator Name	Stock Status
WCVI Hatchery		20.43\%	20.12\%	NA	
Fraser Late	1998	19.32\%	21.70\%	Harrison	Not Rebuilding
Lower Bonneville Hatchery		14.24\%	37.83\%	NA	
Columbia Upriver Bright	1996	10.45\%	15.03\%	Columbia Upriver Bright	Above Goal
Nooksack Fall	76\%	4.98\%	14.96\%	NA	
PS Hatchery Fingerling		4.62\%	19.55\%	NA	
WCVI Wild	69\%	4.33\%	19.98\%	WCVI	Not Rebuil.ding
Oregon Coastal North Migrating	g 1994	3.66\%	11.78\%	Oregon Coastal	Not Classified
Puget Sound Natural	1996	2.91\%	19.77\%	Green	Rebuilding
Spring Creek Hatchery		1.98\%	22.35\%	NA	
Mid-Columbia Brights	1997	1.71\%	11.67\%	Not Represented	
Washington Coastal Wild	1994	1.57\%	8.42\%	Grays Harbor Fall Quillayute Fall Hoh Fall Queets Fall	Rebuilding Not Classified Not Classified Not Classified
Willamette River Hatchery		1.54\%	7.35\%	NA	
WA Coastal Hatchery		1.20\%	8.68\%	NA	
Fraser Early	1994	1.19\%	6.62\%	Upper Fraser Middle Fraser Thompson	Above Goal Above Goal Not Rebuilding
Fall Cowlitz Hatchery		1.19\%	32.25\%	NA	
Columbia Upriver Summer	48\%	1.03\%	30.10\%	Columbia Upriver Summer	Not Rebuilding
PS Yearling	40\%	0.79\%	12.14\%	NA	
Lewis River Wild	1996	0.68\%	11.44\%	Lewis River	Above Goal
Skagit Summer/Fall	58\%	0.58\%	22.80\%	Skagit Summer/Fall	Not Rebuilding
Spring Cowlitz Hatchery		0.52\%	9.67\%	NA	
Snohomish Summer/Fall	62\%	0.28\%	15.75\%	Snohomish	Not Rebuilding
Lower GS Hatchery		0.24\%	1.66\%	NA	
Lower Georgia Strait	1998	0.16\%	1.59\%	Lower Georgia Strait	Not Rebuilding
North/Central BC	1992	0.14\%	0.55\%	Yakoun Nass Skeena Area 6 Index Area 8 Index Rivers Inlet Smith Inlet	Above Goal Not Rebuilding Above Goal Not Rebuilding Not Rebuilding Rebuilding Not Rebuilding
Snake River Fall	50\%	0.13\%	30.68\%	Not Represented	
Upper Georgia Strait	59\%	0.06\%	0.82\%	Upper Georgia Strait	Indeterminate
Stillaguamish Summer/Fall	56\%	0.05\%	15.63\%	Still aguamish	Not Rebuilding
Nooksack Spring	58\%	0.03\%	10.04\%	Not Represented	
Alaska South SE	1997	0.00\%	0.00\%	King Salmon Andrew Creek Blossom Keta Unuk Chickamin	Not Rebuilding Above Goal Indeterminate Rebuilding Rebuilding Rebuilding

Model Stock $\quad \begin{gathered}\text { Yr Reb } \\ \%\end{gathered}$	Rebuilt or \% in 1998	Percent Fishery	Percent Stock	Escapement Indicator S Name	Stock Status
Fraser Late	1998	58.82\%	49.13\%	Harrison	Not Rebuilding
Nooksack Fall	76\%	10.18\%	23.25\%	NA	
Lower GS Hatchery		6.54\%	33.74\%	NA	
Lower Georgia Strait	1998	4.79\%	33.90\%	Lower Georgia Strait	Not Rebuilding
PS Hatchery Fingerling		3.29\%	9.33\%	NA	
PS Yearling	40\%	2.09\%	21.47\%	NA	
Puget Sound Natural	1996	1.89\%	8.64\%	Green	Rebuilding
WCVI Hatchery		1.76\%	1.42\%	NA	
Lower Bonneville Hatchery		1.65\%	3.40\%	NA	
Columbia Upriver Bright	1996	1.55\%	1.42\%	Columbia Upriver Bright	Above Goal
Upper Georgia Strait	59\%	1.51\%	13.82\%	Upper Georgia Strait	Indeterminate
Fraser Early	1994	1.46\%	5.82\%	Upper Fraser Middle Fraser Thompson	Above Goal Above Goal Not Rebuilding
Washington Coastal Wild	1994	1.10\%	3.79\%	Grays Harbor Fall Quillayute Fall Hoh Fall Queets Fall	Rebuilding Not Classified Not Classified Not Classified
WA Coastal Hatchery		0.93\%	4.17%	NA	
Skagit Summer/Fall	58\%	0.71\%	18.31\%	Skagit Summer/Fall	Not Rebuilding
Snohomish Summer/Fall	62\%	0.35\%	13.41\%	Snohomish	Not Rebuilding .-
WCVI Wild	69\%	0.26\%	1.17\%	WCVI	Not Rebuilding
Mid-Columbia Brights	1997	0.25\%	1.10\%	Not Represented	
Nooksack Spring	58\%	0.23\%	52.78\%	Not Represented	
Spring Creek Hatchery		0.17\%	1.56\%	NA	
Columbia Upriver Summer	48\%	0.16\%	3.15\%	Columbia Upriver Summer	Not Rebuilding
North/Central BC	1992	0.11\%	0.30\%	Yakoun Nass Skeena Area 6 Index Area 8 Index Rivers Inlet Smith Inlet	Above Goal Not Rebuilding Above Goal Not Rebuilding Not Rebuilding Rebuilding Not Rebuilding
Stillaguamish Summer/Fall	56\%	0.09\%	18.88\%	Stillaguamish	Not Rebuilding
Willamette River Hatchery		0.06\%	0.19\%	NA	
Lewis River Wild	1996	0.03\%	0.32\%	Lewis River	Above Goal
Spring Cowlitz Hatchery		0.02\%	0.21\%	NA	
Fall Cowlitz Hatchery		0.01\%	0.08\%	NA	
Snake River Fall	50\%	0.00\%	0.14\%	Not Represented	
Oregon Coastal North Migrating	1994	0.00\%	0.00\%	Oregon Coastal	Not Classified
Alaska South SE	1997	0.00\%	0.00\%	King Salmon Andrew Creek Blossom Keta Unuk Chickamin	Not Rebuilding Above Goal Indeterminate Rebuilding Rebuilding Rebuilding

APPENDIX K

Model AEQ Mortality Estimates and Indices

Page
Southeast Alaska Troll K-1
Southeast Alaska Net K-2
Southeast Alaska Sport K-3
North/Central B.C. Troll K-4
North/Central B.C. Net K-5
North/Central B.C. Sport K-6
West Coast Vancouver Island Troll K-7
West Coast Vancouver Island Terminal Sport K-8
Strait of Georgia Troll K-9
Strait of Georgia Sport K-10
Other B.C. Net K-11
Other U.S. Troll K-12
Other U.S. Net K-13
Other U.S. Sport K-14

Southeast Alaska Troll

Adult Equivalent Mortality Estimates					
Year	Retention		CNR		Total
	Landed	Shaker	Legal	Sublegal	
1979	183745	44030	0	0	227775
1980	181776	41958	0	0	223734
1981	170264	42244	3742	2696	218946
1982	210548	60503	23227	17591	311869
1983	330625	87858	27545	21257	467285
1984	300825	71582	33354	25331	431093
1985	180584	43868	29644	24300	278395
1986	195473	48887	19439	18796	282595
1987	194508	44583	46152	32000	317243
1988	185371	31304	14643	15554	246872
1989	188277	44140	36090	28727	297233
1990	221934	49639	27244	19536	318354
1991	196734	44186	40047	29649	310616
1992	137419	31466	30428	34065	233378
1993	180920	29588	17426	22619	250554

Adult Equivalent Mortality Indices					
Year	Retention		CNR		Total
	Landed	Shaker	Legal	Sublegal	
1979	0.985	0.933	0.000	0.000	0.927
1980	0.974	0.889	0.000	0.000	0.911
1981	0.913	0.895	0.555	0.532	0.892
1982	1.128	1.282	3.445	3.468	1.270
1983	1.772	1.862	4.085	4.191	1.903
1984	1.612	1.517	4.947	4.995	1.755
1985	0.968	0.930	4.397	4.791	1.134
1986	1.048	1.036	2.883	3.706	1.151
1987	1.042	0.945	6.845	6.310	1.292
1988	0.994	0.663	2.172	3.067	1.005
1989	1.009	0.935	5.353	5.664	1.210
1990	1.189	1.052	4.041	3.852	1.296
1991	1.054	0.936	5.940	5.846	1.265
1992	0.737	0.667	4.513	6.717	0.950
1993	0.970	0.627	2.585	4.460	1.020

Southeast Alaska Net

Adult Equivalent Mortality Estimates					
Year	Retention		CNR		Total
	Landed	Shaker	Legal	Sublegal	
1979	14121	889	0	0	15011
1980	14004	851	0	0	14856
1981	12289	899	0	0	13188
1982	17062	1317	0	0	18379
1983	24210	1855	0	0	26065
1984	17247	1068	0	0	18315
1985	21015	1196	10105	45776	78092
1986	11659	2904	11843	24180	50586
1987	7654	3198	6868	22535	40255
1988	10421	2258	7210	24713	44602
1989	10502	2584	7266	24509	44861
1990	10420	2272	7209	24389	44290
1991	12317	2391	8521	28763	51993
1992	14261	3895	9867	33544	61568
1993	9839	2162	6807	23367	42176

Adult Equivalent Mortality Indices					
Year	Retention		CNR		Total
	Landed	Shaker	Legal	Sublegal	
1979	0.983	0.899	- NA -	- NA -	0.977
1980	0.975	0.860	- NA -	- NA -	0.967
1981	0.855	0.909	- NA -	- NA -	0.859
1982	1.187	1.331	- NA -	- NA -	1.197
1983	1.685	1.875	- NA -	- NA -	1.697
1984	1.200	1.080	- NA -	- NA -	1.193
1985	1.463	1.209	- NA -	- NA -	5.085
1986	0.811	2.936	- NA -	- NA -	3.294
1987	0.533	3.233	- NA -	- NA -	2.621
1988	0.725	2.283	- NA -	- NA -	2.904
1989	0.731	2.612	- NA -	- NA -	2.921
1990	0.725	2.296	- NA -	- NA -	2.884
1991	0.857	2.417	- NA -	- NA -	3.385
1992	0.993	3.937	- NA -	- NA -	4.009
1993	0.685	2.185	- NA -	- NA -	2.746

Southeast Alaska Sport

Adult Equivalent Mortality Estimates

Year	Retention		CNR		Total
	Landed	Shaker	Legal	Sublegal	
1979	9537	5165	0	0	14702
1980	9390	4920	0	0	14310
1981	8818	5615	0	0	14433
1982	10332	7884	0	0	18215
1983	13015	8972	0	0	21987
1984	14921	7819	0	0	22740
1985	11288	6474	0	0	17762
1986	9240	5811	0	0	15051
1987	9727	3879	0	0	13606
1988	10022	3733	0	0	13755
1989	13513	6506	0	0	20019
1990	19406	10152	0	0	29558
1991	22692	12562	0	0	35253
1992	18657	7613	0	0	26270
1993	22722	6008	0	0	28730

Adult Equivalent Mortality Indices					
Year	Retention		CNR		Total
	Landed	Shaker	Legal	Sublegal	
1979	1.002	0.876	- NA -	- NA -	0.954
1980	0.986	0.835	- NA -	- NA -	0.928
1981	0.926	0.952	- NA -	- NA -	0.936
1982	1.085	1.337	- NA -	- NA -	1.182
1983	1.367	1.522	- NA -	- NA -	1.426
1984	1.567	1.326	- NA -	- NA -	1.475
1985	1.186	1.098	- NA -	- NA -	1.152
1986	0.971	0.986	- NA -	- NA -	0.976
1987	1.022	0.658	- NA -	- NA -	0.883
1988	1.053	0.633	- NA -	- NA -	0.892
1989	1.420	1.104	- NA -	- NA -	1.299
- 1990	2.039	1.722	- NA -	- NA -	1.917
1991	2.384	2.131	- NA -	- NA -	2.287
1992	1.960	1.291	- NA -	- NA -	1.704
1993	2.387	1.019	- NA -	- NA -	1.864

North/Central B.C. Troll

Adult Equivalent Mortality Estimates					
Year	Retention		CNR		Total
	Landed	Shaker	Legal	Sublegal	
1979	250242	44093	0	0	294334
1980	235443	40812	0	0	276255
1981	227069	42840	0	0	269909
1982	271826	49833	0	0	321659
1983	233484	44061	0	0	277545
1984	336357	57560	0	0	393917
1985	206558	34789	0	0	241348
1986	206088	34771	0	0	240859
1987	243631	58919	2193	8838	313580
1988	184145	34730	4368	13730	236973
1989	216009	53913	1767	7352	279041
1990	177158	40668	3449	13212	234486
1991	217131	49868	1517	5814	274330
1992	184593	43467	3485	13707	245253
1993	183025	35521	2689	8812	230046

Adult Equivalent Mortality Indices					
Year	Retention		CNR		Total
	Landed	Shaker	Legal	Sublegal	
1979	1.017	0.993	- NA -	- NA -	1.013
1980	0.957	0.919	- NA -	- NA -	0.951
1981	0.923	0.965	- NA -	- NA -	0.929
1982	1.104	1.123	- NA -	- NA -	1.107
1983	0.949	0.992	- NA -	- NA -	0.955
1984	1.367	1.297	- NA -	- NA -	1.356
1985	0.839	0.784	- NA -	- NA -	0.831
1986	0.837	0.783	- NA -	- NA -	0.829
1987	0.990	1.327	- NA -	- NA -	1.079
1988	0.748	0.782	- NA -	- NA -	0.816
1989	0.878	1.214	- NA -	- NA -	0.960
1990	0.720	0.916	- NA -	- NA -	0.807
1991	0.882	1.123	- NA -	- NA -	0.944
1992	0.750	0.979	- NA -	- NA -	0.844
1993	0.744	0.800	- NA -	- NA -	0.792

North/Central B.C. Net

Adult Equivalent Mortality Estimates

Year	Retention		CNR		Total
	Landed	Shaker	Legal	Sublegal	
1979	68211	6334	0	0	74545
1980	65528	6117	0	0	71645
1981	63401	6401	0	0	69802
1982	63905	5949	0	0	69854
1983	28610	3009	0	0	31619
1984	52583	4696	0	0	57279
1985	52088	3890	0	0	55978
1986	67546	5639	0	0	73185
1987	36672	2222	0	0	38894
1988	35413	2761	0	0	38174
1989	26988	1483	0	0	28471
1990	45017	3540	0	0	48557
1991	40536	2527	0	0	43064
1992	37758	2354	0	0	40112
1993	29276	1741	0	0	31017

Adult Equivalent Mortality Indices					
Year	Retention		CNR		Total
	Landed	Shaker	Legal	Sublegal	
1979	1.045	1.022	- NA -	- NA -	1.043
1980	1.004	0.987	- NA -	- NA -	1.003
1981	0.971	1.032	- NA -	- NA -	0.977
1982	0.979	0.959	- NA -	- NA -	0.978
1983	0.438	0.485	- NA -	- NA -	0.442
1984	0.806	0.757	- NA -	- NA -	0.802
1985	0.798	0.627	- NA -	- NA -	0.783
1986	1.035	0.909	- NA -	- NA -	1.024
1987	0.562	0.358	- NA -	- NA -	0.544
1988	0.543	0.445	- NA -	- NA -	0.534
1989	0.414	0.239	- NA -	- NA -	0.398
1990	0.690	0.571	- NA -	- NA -	0.679
1991	0.621	0.408	- NA -	- NA -	0.603
1992	0.579	0.380	- NA -	- NA -	0.561
1993	0.449	0.281	- NA -	- NA -	0.434

North/Central B.C. Sport

Adult Equivalent Mortality Estimates					
Year	Retention		CNR		Total
	Landed	Shaker	Legal	Sublegal	
1979	11779	2638	0	0	14418
1980	11345	2597	0	0	13941
1981	10825	2273	0	0	13098
1982	11805	3563	0	0	15368
1983	13135	4208	0	0	17343
1984	16934	4869	0	0	21803
1985	8696	1606	0	0	10302
1986	11368	2289	0	0	13657
1987	12313	2291	0	0	14604
1988	17077	3638	0	0	20715
1989	33089	4330	0	0	37420
1990	27639	7823	0	0	35463
1991	28410	5999	0	0	34409
1992	33038	6735	0	0	39773
1993	33338	7270	0	0	40609

Adult Equivalent Mortality Indices					
Year	Retention		CNR		Total
	Landed	Shaker	Legal	Sublegal	
1979	1.030	0.953	- NA -	- NA -	1.015
1980	0.992	0.938	- NA -	- NA -	0.981
1981	0.946	0.821	- NA -	- NA -	0.922
1982	1.032	1.287	- NA -	- NA -	1.082
1983	1.148	1.520	- NA -	- NA -	1.221
1984	1.481	1.759	- NA -	- NA -	1.535
1985	0.760	0.580	- NA -	- NA -	0.725
1986	0.994	0.827	- NA -	- NA -	0.961
1987	1.076	0.828	- NA -	- NA -	1.028
1988	1.493	1.314	- NA -	- NA -	1.458
1989	2.893	1.564	- NA -	- NA -	2.634
1990	2.416	2.827	- NA -	- NA -	2.496
1991	2.484	2.167	- NA -	- NA -	2.422
1992	2.888	2.433	- NA -	- NA -	2.800
1993	2.915	2.627	- NA -	- NA -	2.859

West Coast Vancouver Island Troll

Adult Equivalent Mortality Estimates					
Year	Retention		CNR		Total
	Landed	Shaker	Legal	Sublegal	
1979	416879	75565	0	0	492444
1980	404912	73712	0	0	478625
1981	384288	73378	0	0	457666
1982	422555	75110	0	0	497664
1983	331236	61852	0	0	393089
1984	378969	69599	0	0	448568
1985	310513	50817	1508	2420	365259
1986	303361	54841	0	0	358201
1987	365038	109221	5545	16267	496071
1988	385127	86283	10714	23532	505655
1989	220161	63183	0	0	283344
1990	319652	71543	0	0	391195
1991	222222	56751	0	0	278974
1992	324168	81038	0	0	405206
1993	294906	61981	0	0	356887

Adult Equivalent Mortality Indices					
Year	Retention		CNR		Total
	Landed	Shaker	Legal	Sublegal	
1979	1.024	1.015	- NA -	- NA -	1.023
1980	0.994	0.990	- NA -	- NA -	0.994
1981	0.944	0.986	- NA -	- NA -	0.950
1982	1.038	1.009	- NA -	- NA -	1.033
1983	0.814	0.831	- NA -	- NA -	0.816
1984	0.931	0.935	- NA -	- NA -	0.931
1985	0.763	0.683	- NA -	- NA -	0.758
1986	0.745	0.737	- NA -	- NA -	0.744
1987	0.897	1.467	- NA -	- NA -	1.030
1988	0.946	1.159	- NA -	- NA -	1.050
1989	0.541	0.849	- NA -	- NA -	0.588
1990	0.785	0.961	- NA -	- NA -	0.812
1991	0.546	0.762	- NA -	- NA -	0.579
1992	0.796	1.089	- NA -	- NA -	0.841
1993	0.724	0.833	- NA -	- NA -	0.741

West Coast Vancouver Island Terminal Sport ${ }^{1}$

Adult Equivalent Mortality Estimates					
Year	Retention		CNR		Total
	Landed	Shaker	Legal	Sublegal	
1979	22143	2356	0	0	24499
1980	20841	1275	0	0	22116
1981	14568	1433	0	0	16002
1982	20681	1358	0	0	22039
1983	17905	1284	0	0	19188
1984	30375	856	0	0	31230
1985	8003	191	0	0	8194
1986	6445	564	0	0	7009
1987	11846	375	0	0	12221
1988	21948	1137	0	0	23085
1989	18128	610	0	0	18738
1990	34982	1443	0	0	36425
1991	48319	1412	0	0	49731
1992	26458	606	0	0	27064
1993	30731	431	0	0	31162

Adult Equivalent Mortality Indices					
Year	Retention		CNR		Total
	Landed	Shaker	Legal	Sublegal	
1979	1.132	1.467	- NA -	- NA -	1.158
1980	1.066	0.794	- NA -	- NA -	1.045
1981	0.745	0.893	- NA -	- NA -	0.756
1982	1.057	0.846	- NA -	- NA -	1.041
1983	0.915	0.800	- NA -	- NA -	0.907
1984	1.553	0.533	- NA -	- NA -	1.476
1985	0.409	0.119	- NA -	- NA -	0.387
1986	0.330	0.351	- NA -	- NA -	0.331
1987	0.606	0.233	- NA -	- NA -	0.577
1988	1.122	0.708	- NA -	- NA -	1.091
1989	0.927	0.380	- NA -	- NA -	0.885
1990	1.789	0.899	- NA -	- NA -	1.721
1991	2.471	0.879	- NA -	- NA -	2.350
1992	1.353	0.378	- NA -	- NA -	1.279
1993	1.571	0.269	- NA -	- NA -	1.472

1 Based upon recoveries in WCVI sport fishery in model base period.

Strait of Georgia Troll

Adult Equivalent Mortality Estimates

Year	Retention		CNR		Total
	Landed	Shaker	Legal	Sublegal	
1979	197613	13669	0	0	211282
1980	172104	12395	0	0	184499
1981	157390	11706	0	0	169096
1982	142012	9276	0	0	151289
1983	105363	9027	0	0	114390
1984	91539	13939	0	0	105478
1985	43211	3794	3094	2334	52433
1986	36610	5431	1286	3353	46681
1987	31279	5914	0	0	37193
1988	15125	3855	0	0	18980
1989	21560	7015	0	0	28574
1990	28668	5015	0	0	33684
1991	24791	6628	1029	2697	35144
1992	29761	7074	1957	4561	43353
1993	25730	6987	1876	4993	39587

Adult Equivalent Mortality Indices					
Year	Retention		CNR		Total
	Landed	Shaker	Legal	Sublegal	
1979	1.181	1.162	- NA -	- NA -	1.180
1980	1.029	1.054	- NA -	- NA -	1.030
1981	0.941	0.995	- NA -	- NA -	0.944
1982	0.849	0.789	- NA -	- NA -	0.845
1983	0.630	0.768	- NA -	- NA -	0.639
1984	0.547	1.185	- NA -	- NA -	0.589
1985	0.258	0.323	- NA -	- NA -	0.293
1986	0.219	0.462	- NA -	- NA -	0.261
1987	0.187	0.503	- NA -	- NA -	0.208
1988	0.090	0.328	- NA -	- NA -	0.106
1989	0.129	0.596	- NA -	- NA -	0.160
1990	0.171	0.426	- NA -	- NA -	0.188
1991	0.148	0.564	- NA -	- NA -	0.196
1992	0.178	0.601	- NA -	- NA -	0.242
1993	0.154	0.594	- NA -	- NA -	0.221

Strait of Georgia Sport

Adult Equivalent Mortality Estimates					
Year	Retention		CNR		Total
	Landed	Shaker	Legal	Sublegal	
1979	371964	120	0	0	372083
1980	329365	109	0	0	329474
1981	304912	102	0	0	305013
1982	221777	34472	0	0	256250
1983	164778	35725	0	0	200503
1984	362960	73598	0	0	436558
1985	256136	19983	0	0	276119
1986	206304	20577	0	0	226881
1987	133807	13072	0	0	146879
1988	127832	41341	0	0	169173
1989	146195	76992	0	0	223187
1990	135039	56797	0	0	191836
1991	131751	77911	0	0	209662
1992	135032	91081	0	0	226113
1993	135986	113919	0	0	249906

Adult Equivalent Mortality Indices					
Year	Retention		CNR		Total
	Landed	Shaker	Legal	Sublegal	
1979	1.212	0.014	- NA -	- NA -	1.179
1980	1.073	0.013	- NA -	- NA -	1.044
1981	0.993	0.012	- NA -	- NA -	0.966
1982	0.722	3.962	- NA -	- NA -	0.812
1983	0.537	4.106	- NA -	- NA -	0.635
1984	1.182	8.459	- NA -	- NA -	1.383
1985	0.834	2.297	- NA -	- NA -	0.875
1986	0.672	2.365	- NA -	- NA -	0.719
1987	0.436	1.502	- NA -	- NA -	0.465
1988	0.416	4.751	- NA -	- NA -	0.536
1989	0.476	8.849	- NA -	- NA -	0.707
1990	0.440	6.528	- NA -	- NA -	0.608
1991	0.429	8.955	- NA -	- NA -	0.664
1992	0.440	10.468	- NA -	- NA -	0.716
1993	0.443	13.093	- NA -	- NA -	0.792

Other B.C. Net

Adult Equivalent Mortality Estimates					
Year	Retention		CNR		Total
	Landed	Shaker	Legal	Sublegal	
1979	137005	9457	0	0	146462
1980	129526	8620	0	0	138146
1981	118644	8595	0	0	127239
1982	112443	7105	0	0	119548
1983	154312	10773	0	0	165085
1984	137367	8271	0	0	145637
1985	86678	4095	0	0	90772
1986	90104	4427	0	0	94531
1987	61696	2410	0	0	64106
1988	89625	8063	0	0	97688
1989	100438	3656	0	0	104095
1990	67628	2904	0	0	70532
1991	126006	4001	0	0	130007
1992	56155	2098	0	0	58253
1993	94013	3982	0	0	97995

Adult Equivalent Mortality Indices					
Year	Retention		CNR		Total
	Landed	Shaker	Legal	Sublegal	
1979	1.101	1.120	- NA -	- NA -	1.102
1980	1.041	1.021	- NA -	- NA -	1.040
1981	0.954	1.018	- NA -	- NA -	0.958
1982	0.904	0.841	- NA -	- NA -	0.900
1983	1.240	1.276	- NA -	- NA -	1.243
1984	1.104	0.979	- NA -	- NA -	1.096
1985	0.697	0.485	- NA -	- NA -	0.683
1986	0.724	0.524	- NA -	- NA -	0.712
1987	0.496	0.285	- NA -	- NA -	0.483
1988	0.720	0.955	- NA -	- NA -	0.735
1989	0.807	0.433	- NA -	- NA -	0.784
1990	0.544	0.344	- NA -	- NA -	0.531
1991	1.013	0.474	- NA -	- NA -	0.979
1992	0.451	0.248	- NA -	- NA -	0.438
1993	0.756	0.472	- NA -	- NA -	0.738

Other U.S. Troll

Adult Equivalent Mortality Estimates					
Year	Retention		CNR		Total
	Landed	Shaker	Legal	Sublegal	
1979	155745	38384	0	0	194128
1980	156862	38335	0	0	195198
1981	150582	38360	0	0	188942
1982	169020	40766	0	0	209785
1983	41600	9658	0	0	51258
1984	27814	6710	0	0	34523
1985	52730	12043	0	0	64772
1986	48593	12142	0	0	60735
1987	75925	20030	0	0	95954
1988	99399	19731	0	0	119130
1989	66238	15939	0	0	82177
1990	60421	11266	0	0	71688
1991	46067	10747	0	0	56814
1992	62486	13997	0	0	76483
1993	48833	11693	0	0	60526

Adult Equivalent Mortality Indices					
Year	Retention		CNR		Total
	Landed	Shaker	Legal	Sublegal	
1979	0.985	0.985	- NA -	- NA -	0.985
1980	0.992	0.984	- NA -	- NA -	0.991
1981	0.953	0.985	- NA -	- NA -	0.959
1982	1.069	1.046	- NA -	- NA -	1.065
1983	0.263	0.248	- NA -	- NA -	0.260
1984	0.176	0.172	- NA -	- NA -	0.175
1985	0.334	0.309	- NA -	- NA -	0.329
1986	0.307	0.312	- NA -	- NA -	0.308
1987	0.480	0.514	- NA -	- NA -	0.487
1988	0.629	0.506	- NA -	- NA -	0.605
1989	0.419	0.409	- NA -	- NA -	0.417
1990	0.382	0.289	- NA -	- NA -	0.364
1991	0.291	0.276	- NA -	- NA -	0.288
1992	0.395	0.359	- NA -	- NA -	0.388
1993	0.309	0.300	- NA -	- NA -	0.307

Other U.S. Net

Adult Equivalent Mortality Estimates					
Year	Retention		CNR		Total
	Landed	Shaker	Legal	Sublegal	
1979	313563	29799	0	0	343361
1980	323657	30794	0	0	354451
1981	312285	29640	0	0	341925
1982	331644	28797	0	0	360441
1983	212805	26746	0	0	239552
1984	302298	25912	0	0	328211
1985	368000	27994	0	0	395994
1986	511317	38881	0	0	550198
1987	627680	42854	0	0	670534
1988	577241	40814	0	0	618055
1989	412141	23705	0	0	435846
1990	350730	22498	0	0	373228
1991	247616	24402	0	0	272018
1992	179489	20179	0	0	199668
1993	200913	24951	0	0	225863

Adult Equivalent Mortality Indices					
Year	Retention		CNR		Total
	Landed	Shaker	Legal	Sublegal	
1979	0.979	1.001	- NA -	- NA -	0.981
1980	1.011	1.035	- NA -	- NA -	1.013
1981	0.975	0.996	- NA -	- NA -	0.977
1982	1.035	0.968	- NA -	- NA -	1.030
1983	0.664	0.899	- NA -	- NA -	0.684
1984	0.944	0.871	- NA -	- NA -	0.938
1985	1.149	0.941	- NA -	- NA -	1.131
1986	1.596	1.307	- NA -	- NA -	1.572
1987	1.960	1.440	- NA -	- NA -	1.916
1988	1.802	1.372	- NA -	- NA -	1.766
1989	1.287	0.797	- NA -	- NA -	1.245
1990	1.095	0.756	- NA -	- NA -	1.066
1991	0.773	0.820	- NA -	- NA -	0.777
1992	0.560	0.678	- NA -	- NA -	0.570
1993	0.627	0.838	- NA -	- NA -	0.645

Other U.S. Sport

Adult Equivalent Mortality Estimates					
Year	Retention		CNR		Total
	Landed	Shaker	Legal	Sublegal	
1979	314944	71426	0	0	386370
1980	290640	64209	0	0	354849
1981	281566	61849	0	0	343415
1982	258538	56558	0	0	315096
1983	293725	82468	0	0	376193
1984	263822	67478	0	0	331299
1985	268419	48520	0	0	316938
1986	253042	52665	0	0	305707
1987	291570	46411	0	0	337981
1988	275531	44067	0	0	319598
1989	250340	31595	0	0	281935
1990	224117	30531	0	0	254649
1991	221337	37854	0	0	259191
1992	189544	35887	0	0	225431
1993	179860	38330	0	0	218190

Adult Equivalent Mortality Indices					
Year	Retention		CNR		Total
	Landed	Shaker	Legal	Sublegal	
1979	1.100	1.125	- NA -	- NA -	1.104
1980	1.015	1.011	- NA -	- NA -	1.014
1981	0.983	0.974	- NA -	- NA -	0.981
1982	0.903	0.891	- NA -	- NA -	0.900
1983	1.025	1.298	- NA -	- NA -	1.075
1984	0.921	1.062	- NA -	- NA -	0.947
1985	0.937	0.764	- NA -	- NA -	0.906
1986	0.883	0.829	- NA -	- NA -	0.874
1987	1.018	0.731	- NA -	- NA -	0.966
1988	0.962	0.694	- NA -	- NA -	0.913
1989	0.874	0.497	- NA -	- NA -	0.806
1990	0.782	0.481	- NA -	- NA -	0.728
1991	0.773	0.596	- NA -	- NA -	0.741
1992	0.662	0.565	- NA -	- NA -	0.644
1993	0.628	0.604	- NA -	- NA -	0.624

K-14

APPENDIX L

Model Estimates of Fishery Abundance Indices

Catch Year	SEAK Troll	NCBC Troll	$\begin{aligned} & \text { WCYI } \\ & \text { WMoll } \end{aligned}$	GS Spport and Tholl
1979	0.98	1.02	1.03	1.17
1980	0.96	0.96	1.00	1.03
1981	0.91	0.93	0.95	0.94
1982	1.15	1.09	1.02	0.86
1983	1.38	1.16	0.83	0.79
1984	1.70	1.37	0.94	0.96
1985	1.60	1.30	0.94	0.97
1986	1.66	1.24	0.95	0.85
1987	1.84	1.42	1.15	0.49
1988	2.30	1.54	0.95	0.44
1989	2.05	1.57	0.91	0.65
1990	2.19	1.60	0.92	0.84
1991	2.26	1.53	0.73	0.52
1992	2.08	1.49	0.72	0.63
1993	1.99	1.36	0.69	0.64
1994	1.44	1.04	0.67	0.85
1995	1.00	0.94	0.66	0.97

APPENDIX M

Catch By Fishery, Troll CNR, and Add-on, 1975-1993
See Table 1-1 footnotes for explanation of catch areas.Page
Southeast Alaska M-1
North/Central B.C. M-2
West Coast Vancouver Island M-3
Strait of Georgia/Fraser M-4
Johnstone Strait M-5
Canada - Strait of Juan de Fuca M-6
Washington - Strait of Juan de Fuca M-7
Washington - San Juans M-8
Washington - Other Puget Sound M-9
Washington - Inside Coastal M-10
Columbia River M-11
Washington/Oregon North of Cape Falcon M-12
Oregon M-13

Year	S. E. Alaska						
	Tiroll CNP Days	Iroll	Net	Sport	Total	Addun	Ceiling Catch
1975	0	287,342	13,365	17,000	317,707		
1976	0	231,239	10,523	17,000	258,762		
1977	0	271,735	13,443	17,000	302,178		
1978	0	375,919	25,492	17,000	418,411		
1979	0	339,151	28,455	17,000	384,606		
1980	0	303,885	20,114	20,000	343,999		
1981	9	248,791	18,951	21,000	288,742		
1982	44	242,315	48,999	26,000	317,314		
1983	37	269,790	19,655	22,321	311,766		
1984	43	235,629	32,398	22,049	290,076		
1985	48.4	216,086	35,469	24,858	276,413	8,200	268,213
1986	42	237,557	22,302	22,551	282,410	11,200	271,210
1987	60	242,025	15,539	24,323	281,887	16,700	265,187
1988	47	231,281	21,450	26,160	278,891	23,700	255,191
1989	59	235,731	24,276	31,071	291,078	26,700	264,378
1990	48	287,931	27,696	51,200	366,827	53,700	313,127
1991	63.5	263,756	32,807	60,400	356,963	61,400	295,563
1992	67.5	183,893	32,104	43,984	259,981	38,300	221,681
1993	49	226,832	28,004	49,246	304,082	35,879	268,203

Troll, net, sport, and total catches include catch of SEAK hatchery-origin fish; catches that count towards the all-gear ceiling (with hatchery add-on subtracted) are shown in the "ceiling catch" column.

M-1

North/Central B.C.

rear							
	Tholl CNB Days			Sport	Total	Terminal Exclusion	Ceilimg Catcli\%
1975	0	327,883	66,080	NA	NA	0	
1976	0	315,596	48,774	NA	NA	0	
1977	0	241,307	76,605	8,795	326,707	0	
1978	0	233,034	63,632	11,457	308,123	0	
1979	0	244,706	91,085	15,302	351,093	0	
1980	0	249,675	54,610	19,669	323,954	0	
1981	0	218,699	60,636	11,425	290,760	0	
1982	0	237,536	77,316	17,274	332,126	0	
1983	0	253,688	29,659	12,353	295,700	0	
1984	0	254,157	35,935	10,525	300,617	0	
1985	0	211,979	52,156	9,867	274,002	0	274,002
1986	0	201,604	46,998	12,619	261,221	0	261,221
1987	87	239,693	29,260	13,827	282,780	0	282,780
1988	17	181,907	44,382	20,807	247,096	0	247,096
1989	9	224,947	45,379	35,650	305,976	4,819	301,157
1990	43	179,130	47,459	31,967	258,556	5,549	253,007
1991	27	220,625	57,209	32,496	310,330	6,057	304,273
1992	32	181,851	54,405	37,881	274,137	6,070	268,067
1993	22	182,162	44,361	37,330	263,853	7,673	256,180

${ }^{1}$ Net catches in 1989-1992 include terminal gillnet catches that are excluded from the catch ceiling; catches that count towards the all-gear ceiling (with terminal exclusions subtracted) are shown in the "ceiling catch" column.

Troll: Areas 1-11, and 30 (North, 1-5; Central, 6-11 and 30)
Net and Sport: Areas 1-10 (North, 1-5; Central, 6-10)

West Coast Vancouver Island

Year	Westeoast Vancouver IIAnd				
	Iroll CAP Days	Troll	Net	Sporl	Total
1975	0	547,402	19,233	NA	NA
1976	0	656,161	17,492	NA	NA
1977	0	566,571	13,745	11,023	591,339
1978	0	555,259	25,143	8,974	589,376
1979	0	480,373	35,623	7,964	523,960
1980	0	488,155	34,716	8,539	531,410
1981	0	397,518	36,408	11,230	445,156
1982	0	543,783	41,408	17,100	602,291
1983	0	385,367	37,535	28,000	450,902
1984	0	460,057	43,792	44,162	548,011
1985	5	354,068	11,089	21,587	386,744
1986	0	342,063	3,276	13,410	358,749
1987	7	378,931	478	31,790	411,199
1988	15	408,724	15,438	32,810	456,972
1989	0	203,695	40,321	48,222	292,238
1990	0	297,974	29,578	61,268	388,820
1991	0	202,919	60,797	79,991	343,707
1992	0	346,814	9,507	49,602	405,923
1993	0	273,749	28,505	66,010	368,264

Troll: Areas 21, 23-27, and 121-127
Net: Areas 21, and 23-27
Sport: Areas 23a, 23b, and 24

Strait of Georgia/Fraser

${ }^{1}$ In 1985, major inside areas were closed during all CNR periods to reduce chinook shakers.
${ }^{2}$ Based on creel census surveys through September.
Troll: Areas 13-18, and 29
Net: Areas 14-19, 28, and 29
Sport: Areas 13-19, 19b, 28, and 29

Johnstone Strait

Year	Iothistome Strail Net	Johistone Stratil Sport
1975	30,295	NA
1976	31,855	NA
1977	49,511	NA
1978	55,148	NA
1979	31,291	NA
1980	31,325	NA
1981	28,620	NA
1982	29,454	NA
1983	28,364	NA
1984	18,361	NA
1985	38,073	NA
1986	17,866	NA
1987	13,863	NA
1988	6,292	NA
1989	29,486	NA
1990	18,433	NA
1991	15,071	10,000
1992	9,574	14,719
1993	14,878	12,363

Net: Areas 11-13
Sport: Based on April - August creel census in Area 12 and northern half of Area 13

Year	Strat of Juan de Fuca Net
1975	9,799
1976	13,004
1977	25,344
1978	9,725
1979	8,665
1980	3,438
1981	9,982
1982	7,072
1983	328
1984	6,237
1985	17,164
1986	17,727
1987	6,782
1988	4,473
1989	21,238
1990	7,405
1991	8,893
1992	10,024
1993	2,136

Net: Area 20

Washington - Strait of Juan de Fuca

Year	Washington Strale ol Juan de Fuca				
	MMR, Days	\nole\&	Nel.	Sporlam\&	Iotal $\%$
1975	0	5,752	8,048	81,681	95,481
1976	0	10,488	6,072	75,308	91,868
1977	0	8,915	14,930	53,238	77,083
1978	0	10,006	11,224	62,299	83,529
1979	0	7,804	10,939	67,094	85,837
1980	0	10,682	11,320	56,415	78,417
1981	0	15,638	18,541	51,352	85,531
1982	0	19,024	22,547	29,842	71,413
1983	0	18,489	16,141	58,060	92,690
1984	0	15,650	12,120	48,003	75,773
1985	0	11,808	12,784	44,267	68,859
1986	0	30,000	17,000	69,000	116,000
1987	0	45,000	11,000	53,000	109,000
1988	0	49,000	10,000	39,000	98,000
1989	0	65,000	10,000	52,000	127,000
1990	0	47,162	5,294	50,903	103,359
1991	0	37,127	3,390	39,667	80,184
1992	0	31,452	927	38,438	70,817
1993	0	9,794	1,482	32,434	43,710

Troll: Areas 5 and 6C; Area 4B from Jan. 1 - April 30 and Oct. 1 - Dec. 31
Net: Areas 4B, 5, and 6C
Sport: Areas 5 and 6; 4B Neah Bay "add-on" fishery

Washington - San Juans

Vear	Washington San Juans				
	CNR Days	Troll	Net	Sport	Tont
1975	0	3	90,100	31,988	122,091
1976	0	0	66,832	34,505	101,337
1977	0	62	84,316	14,049	98,427
1978	0	3	87,565	15,083	102,651
1979	0	5	53,750	17,367	71,122
1980	0	0	64,338	12,231	76,569
1981	0	4	50,695	9,727	60,426
1982	0	0	38,763	6,953	45,716
1983	0	2	28,497	15,166	43,665
1984	0	83	33,432	25,759	59,274
1985	0	872	33,579	12,610	47,061
1986	0	0	21,000	15,000	36,000
1987	0	0	29,000	14,000	43,000
1988	0	0	32,000	9,000	41,000
1989	0	1,000	16,000	9,000	26,000
1990	0	666	8,608	7,370	16,644
1991	0	135	11,753	5,115	17,003
1992	0	172	14,011	6,788	20,971
1993	0	243	14,002	6,916	21,161

Troll: Areas 6, 6A, 7, and 7A
Net: Areas 6, 6A, 7, and 7A
Sport: Area 7

Washington - Other Puget Sound

Year	Washington, Other, Fuge Sound			
	/a.	Ne§\&\&	Sporl\%\&	Iotal $\%$ \%
1975	0	131,982	173,086	305,068
1976	0	141,281	151,246	292,527
1977	0	145,470	97,761	243,231
1978	0	150,298	116,979	267,277
1979	0	128,073	156,402	284,475
1980	0	171,516	142,799	314,315
1981	0	145,152	106,048	251,200
1982	0	149,274	85,703	234,977
1983	0	134,492	123,752	258,244
1984	0	180,248	102,740	282,988
1985	0	184,907	92,603	277,510
1986	0	153,000	88,000	241,000
1987	0	127,000	59,000	186,000
1988	0	133,000	63,000	196,000
1989	0	156,000	75,000	231,000
1990	0	179,593	71,000	250,593
1991	0	89,495	48,859	138,354
1992	0	63,460	51,656	115,116
1993	0	54,968	41,034 ${ }^{1}$	96,002

Not including sport catch in rivers.
Net: Areas 6B, 6D, 7B, 7C, and 7E; Areas 8-13 (including all sub-areas); Areas 74C-83F Sport: Areas 8-13 and all Puget Sound Rivers

Year	Washingion liside Constal			
	Jnoll	Nek\&	Spirl	lotal
1975	0	34,859	1,716	36,575
1976	0	51,995	2,219	54,214
1977	0	72,467	2,043	74,510
1978	0	32,662	3,399	36,061
1979	0	36,501	2,199	38,700
1980	0	47,681	1,476	49,157
1981	0	36,880	786	37,666
1982	0	33,271	1,114	34,385
1983	0	16,210	1,452	17,662
1984	0	16,239	1,319	17,558
1985	0	25,162	1,955	27,117
1986	0	29,000	3,000	32,000
1987	0	51,000	3,000	54,000
1988	0	74,000	7,000	81,000
1989	0	85,000	6,000	91,000
1990	0	57,770	5,000	62,770
1991	0	54,397	6,070	60,467
1992	0	64,223	6,577	70,800
1993	0	59,285	NA	NA

Net: Areas 2A-2M; Areas 72B - 73H
Sport: All coastal rivers, Area 2.1, and Area 2.2 (when Area 2 is closed)

Columbia River

Year	Colimbian River		
	Nel $\% / 4$.	Sporl	Iotal
1975	323,000	34,870	357,870
1976	288,400	42,527	330,927
1977	255,600	58,838	314,438
1978	189,100	56,582	245,682
1979	171,000	36,505	207,505
1980	150,300	32,774	183,074
1981	95,100	36,269	131,369
1982	155,300	51,560	206,860
1983	57,700	45,609	103,309
1984	127,900	64,364	192,264
1985	151,400	45,515	196,915
1986	283,100	71,865	354,965
1987	483,500	116,545	600,045
1988	489,100	110,398	599,498
1989	275,000	96,878	371,878
1990	148,000	94,820	242,820
1991	106,900	77,986	184,886
1992	53,200	68,300	121,500
1993	50,792	82,500	133,292

Washington/Oregon Ocean North of Cape Falcon

Year	Washington/Oregon North of Falcon				
	CNA. Days	Irolle\&\&\&	Net\%月\&/2l	Sport\&\&\&	
1975	0	268,971	1,212	265,785	535,968
1976	0	371,239	203	215,319	586,761
1977	0	244,491	4	197,563	442,058
1978	0	150,673	4	104,306	254,983
1979	0	133,035	3	84,977	218,015
1980	0	125,709	1,215	59,099	186,023
1981	0	109,519	209	96,151	205,879
1982	0	154,720	267	114,952	269,939
1983	0	63,584	62	51,789	115,435
1984	0^{1}	15,392	0	6,980	22,372
1985	0^{1}	55,408	493	30,189	86,090
1986	0	52,000	0	23,000	75,000
1987	0^{1}	81,000	4,000	44,000	129,000
1988	0	108,000	3,000	19,000	130,000
1989	0	75,000	1,000	21,000	97,000
1990	0	65,221	0	30,000	95,221
1991	0	51,296	0	16,732	68,028
1992	0	68,866	0	18,927	87,793
1993	0	55,140	0	13,711	68,851

${ }^{1}$ Chinook non-retention regulations were in effect for short time periods in small sub-areas of the recreational fishery. Because of the small size of these fisheries, the CNR days have not been included. See Appendix C of the PFMC Review of 1992 Ocean Salmon Fisheries for more detail.

Troll: OR Area 2; WA Areas 1, 2, 3, and 4; Area 4B from May 1 through Sept. 30 (during PFMC management)
Net: WA Areas 1, 2, 3, 4, 4A
Sport: OR Area 2; WA Areas 1, 1.1, 1.2, 2, 3, 4 and 2.2 (when Area 2 is open)

Oregon

Troll: Late season troll off Elk River mouth
Sport: Estuary and inland

[^0]: ${ }^{1}$ Washington Coastal stocks are managed for escapement floors.
 ${ }^{2}$ Assessment of Oregon Coast indicator stocks is based upon an index of spawner density in units of fish per mile.

[^1]: 1/ Stock groupings are used for nonceiling fishery indices, regional survival indices, regional brood exploitation indices, and in Chapter 5. Acronyms are:

 SEAK-TBR/I: SEAK and Transboundary rivers, inside migrating
 NCBC: NCBC spring/summer
 WCVI: WCVI fall
 UGS: UGS summer/fall
 LGS: LGS fall
 LFR: Lower Fraser fall
 NPS-S/F: North Puget Sound summer/fall
 SPS-S/F: \quad South Puget Sound summer/fall
 NPS-Sp: North Puget Sound spring
 CRT: Colmbia River Tule hatchery stock
 WACO: Washington Coastal Spring/Summer/Fall, non-Tule Columbia River Fall, North Oregon
 2/ Only hatchery rack recoveries are included in escapement.
 3/ Harrison stock only.
 4/ Hatchery stock not used to represent wild stock.

[^2]: * An asterisk indicates a stock that rebuilds when a 50% exploitation rate decrease is assumed.
 ${ }^{1}$ Current model escapement goals for these stocks are not appropriate for use in the rebuilding evaluation.

[^3]: BQR = BIG QUALICUM
 BGR $=$ BIG QUALICUM PPS $=$ PUNTLEDGE
 SAM = SAMISH FALL FING

[^4]: Reported Catch Incidental Mortality

