PACIFIC SALMON COMMISSION JOINT CHINOOK TECHNICAL COMMITTEE

ANNUAL REPORT OF CATCH AND ESCAPEMENT FOR 2014

REPORT TCCHINOOK (15)-2

August 2015

Membership of the Chinook Technical Committee

Canadian Members	United States Members
Dr. Gayle Brown, Co-Chair, DFO	Dr. Robert Kope, Co-Chair, NMFS
Mr. Richard Bailey, DFO	Mr. John Carlile, Co-Chair, ADF\&G
Ms. Sabrina Crowley, FNC	Dr. Marianna Alexandersdottir, NWIFC
Ms. Diana Dobson, DFO	Mr. Ethan Clemons, ODFW
Ms. Dawn Lewis, DFO	Dr. John H. Clark, ADF\&G
Mr. Chuck Parken, DFO	Mr. Robert Clark, ADF\&G
Dr. Teresa Ryan, FNC	Mr. Timothy Dalton, ODFW
Dr. Antonio Velez-Espino, DFO	Mr. Brian Elliott, ADF\&G
Mr. Ivan Winther, DFO	Ms. Danielle Evenson, ADF\&G
	Mr. Gary Freitag, UAF
	Mr. Andrew Gray, NMFS
	Mr. Edgar Jones, ADF\&G
	Mr. Larrie La Voy, NMFS
	Ms. Marianne McClure, CRITFC
	Mr. Scott McPherson, ADF\&G
	Dr. Gary Morishima, QIN
	Mr. Randy Peterson, ADF\&G
	Dr. Kristen Ryding, WDFW
	Dr. Rishi Sharma, CRITFC
	Mr. William Templin, ADF\&G
	Mr. Eric Volk, ADF\&G
	Mr. Henry Yuen, USFWS

List of Acronyms and Abbreviations

AABM	Aggregate Abundance Based Management	MSY	Maximum Sustainable Yield for a stock, in adult equivalents
ADF\&G	Alaska Department of Fish and Game	NA	Not Available
Agreement	June 30, 1999 PST Annex and the	NC	North Coastal
	Related Agreement	NBC	Northern British Columbia (Dixon
AUC	Area-Under-the-Curve		Entrance to Kitimat including Queen
BC	British Columbia		Charlotte Islands)
CBC	Central British Columbia (Kitimat to	NMFS	National Marine Fisheries Service
	Cape Caution)	NOC	North Oregon Coast
DFO	Canadian Department of Fisheries and	NWIFC	Northwest Indian Fisheries Commission
	Oceans	ODFW	Oregon Department of Fish and Wildlife
CNR	Chinook Nonretention	ORC	Oregon Coast
CR	Chinook Retention	PS	Puget Sound
CPUE	Catch per unit effort	PSC	Pacific Salmon Commission
CRITFC	Columbia River Intertribal Fish	PST	Pacific Salmon Treaty
	Commission	QIN	Quinault Nation
CTC	Chinook Technical Committee	QCI	Haida Gwaii (Queen Charlotte Islands)
CV	Coefficient of Variation	SE	Standard Error
CWT	Coded Wire Tag	SIM	Sublegal Incidental Mortality
CY	Calendar Year	SMSY	Escapement producing MSY
ESA	US Endangered Species Act	SEAK	Southeast Alaska Cape Suckling to Dixon
FN	First Nations		Entrance
FNC	First Nations Caucus	SSP	Sentinel Stocks Program
FR	Fraser River	SUS	Southern US
FSC	Food, Social, and Ceremonial	TBR	Transboundary Rivers (Alsek, Taku,
GH	Grease Harbor		Stikine)
GMR	Genetic Mark-Recapture	TM	Total Mortality
GW	Gitwinksihlkw	UAF	University of Alaska Fairbanks
IM	Incidental Mortality	UGS	Upper Strait of Georgia
ISBM	Individual Stock Based Management	UMT	Upper Management Threshold
JDF	Juan De Fuca	UMSY	Exploitation Rate at MSY
LAT	Low Abundance Threshold	USFWS	US Fish \& Wildlife Service
LC	Landed Catch	US	United States
LGS	Lower Strait of Georgia	WAC	Washington Coast
LIM	Legal Incidental Mortality	WCVI	West Coast Vancouver Island excluding
MOC	Mid-Oregon Coast		Area 20
MR	Mark-Recapture	WDFW	Washington Department of Fish and
MRE	Mature-Run Equivalent		Wild

TABLE OF CONTENTS

Page
List of Tables vi
List of Figures. vii
List of Appendices xii
Executive Summary 1

1. Chinook Salmon Catch 4
1.1. Review of Aggregate Abundance Based Management Fisheries 4
1.1.1. Southeast Alaska Fisheries 5
1.1.1.1. Troll Fisheries Catch6
1.1.1.2. Net Fisheries Catch 7
1.1.1.3. Sport Fishery Catch 8
1.1.2. British Columbia Fisheries 8
1.1.2.1. Northern British Columbia AABM 8
1.1.2.1.1. Northern British Columbia Troll Fishery Catch 9
1.1.2.1.2. Northern British Columbia Sport Fishery Catch 9
1.1.2.2. West Coast Vancouver Island AABM 9
1.1.2.2.1. West Coast Vancouver Island Troll Fishery Catch 9
1.1.2.2.2. West Coast Vancouver Island Sport Fishery Catch 10
1.2. Estimates of Incidental Mortalities in AABM Fisheries 11
1.2.1. Southeast Alaska Fisheries 11
1.2.2. British Columbia Fisheries 12
1.2.2.1. Northern British Columbia Fisheries 12
1.2.2.2. West Coast Vancouver Island Fisheries 12
1.3. Review of Individual Stock Based Management Fisheries 13
1.3.1. Canadian Individual Stock Based Management Fisheries 13
1.3.2. Southern US Individual Stock Based Management Fisheries 14
1.3.2.1. Strait of Juan de Fuca and the San Juan Islands 15
1.3.2.2. Puget Sound 15
1.3.2.3. Washington Coast Terminal 15
1.3.2.4. North of Cape Falcon 15
1.3.2.5. Columbia River 16
1.3.2.6. Oregon Coast Terminal 17
1.3.3. Estimates of Incidental Mortality for Southern US Fisheries 18
1.4. Summary of 2014 Coastwide Landed Catch, Incidental Mortality, and Total Mortality in Pacific Salmon Commission Fisheries 18
2. Chinook Salmon Escapements 20
2.1. Escapement Goal Assessments 20
2.2. Trends for Escapement Indicator Stocks 24
2.2.1. Escapement Trends for Southeast Alaska Stocks 25
2.2.2. Escapement Trends for Transboundary Stocks 25
2.2.3. Escapement Trends for Canadian Stocks 26
2.2.4. Escapement Trends for Washington Stocks 26
2.2.5. Escapement Trends for Columbia River/Oregon Stocks 27
2.3. Profiles for Escapement Indicator Stocks 28
2.3.1. Southeast Alaska Stocks 28
2.3.1.1. Southeast Alaska Stocks 29
2.3.1.1.1. Situk River 29
2.3.1.1.2. Chilkat River 30
2.3.1.1.3. Unuk River 32
2.3.1.1.4. Chickamin River 33

TABLE OF CONTENTS

Page
2.3.2. Transboundary River Stocks 34
2.3.2.1. Alsek River 35
2.3.2.2. Taku River 36
2.3.2.3. Stikine River 38
2.3.3. Canadian Stocks 39
2.3.3.1. Northern British Columbia 40
2.3.3.1.1. Yakoun River 40
2.3.3.1.2. Nass River 40
2.3.3.1.3. Skeena River 41
2.3.3.2. Central British Columbia 44
2.3.3.2.1. Dean River 44
2.3.3.2.2. Rivers Inlet 44
2.3.3.2.3. Atnarko River 46
2.3.3.3. West Coast Vancouver Island and Georgia Strait 48
2.3.3.3.1. West Coast Vancouver Island 48
2.3.3.3.2. Upper Strait of Georgia 50
2.3.3.3.3. Lower Strait of Georgia 51
2.3.3.4. Fraser River Stocks 53
2.3.3.4.1. Fraser River Spring Run: Age 1.3 54
2.3.3.4.2. Fraser River Spring Run: Age 1.2 54
2.3.3.4.3. Fraser River Summer Run: Age 1.3 56
2.3.3.4.4. Fraser River Summer Run: Age 0.3 57
2.3.3.4.5. Fraser River Late Run (Harrison River) 59
2.3.4. Puget Sound, Coastal Washington, Columbia River, and Coastal Oregon Stocks 60
2.3.4.1. Puget Sound 60
2.3.4.1.1. Nooksack River 60
2.3.4.1.2. Skagit River Spring 61
2.3.4.1.3. Skagit River Summer/Fall 63
2.3.4.1.4. Stillaguamish River 64
2.3.4.1.5. Snohomish River 66
2.3.4.1.6. Lake Washington 67
2.3.4.1.7. Green River 68
2.3.4.2. Coastal Washington 70
2.3.4.2.1. Hoko River 70
2.3.4.2.2. Quillayute River Summer 71
2.3.4.2.3. Quillayute River Fall 72
2.3.4.2.4. Hoh River Spring/Summer 73
2.3.4.2.5. Hoh River Fall 74
2.3.4.2.6. Queets River Spring/Summer 76
2.3.4.2.7. Queets River Fall 77
2.3.4.2.8. Grays Harbor Spring 78
2.3.4.2.9. Grays Harbor Fall 80
2.3.4.3. Columbia River 81
2.3.4.3.1. Columbia Upriver Spring 81
2.3.4.3.2. Mid-Columbia Summer 82
2.3.4.3.3. Coweeman River Tules 83
2.3.4.3.4. Lewis River Fall 84
2.3.4.3.5. Deschutes River 85
2.3.4.3.6. Columbia Upriver Brights 87

TABLE OF CONTENTS

Page
2.3.4.4. Coastal Oregon 88
2.3.4.4.1. Oregon Coastal North Migrating 88
2.3.4.4.1.1. Nehalem River 89
2.3.4.4.1.2. Siletz River Fall 91
2.3.4.4.1.3. Siuslaw River Fall 92
2.3.4.4.2. Mid-Oregon Coast 94
2.3.4.4.2.1. South Umpqua River Fall 94
2.3.4.4.2.2. Coquille River Fall 96
3. Stock status 97
3.1. Synoptic Evaluation of Stock Status 97
3.2. Regional Trends and Profiles 101
3.2.1. Southeast Alaska and Transboundary River Stocks 101
3.2.1.1. Southeast Alaska Stock Status: Situk, Chilkat, Unuk, and Chickamin Rivers Chinook Salmon 102
3.2.1.2. Transboundary Rivers Stock Status: Alsek, Taku, and Stikine Rivers Chinook Salmon 107
3.2.2. Canadian Stocks 110
3.2.2.1. Northern British Columbia: Kitsumkalum River 110
3.2.2.2. Central British Columbia: Atnarko River 112
3.2.2.3. Lower Strait of Georgia: Cowichan River 114
3.2.2.4. Fraser River Stocks 116
3.2.2.4.1. Fraser River Spring Run Age 1.2: Nicola River 116
3.2.2.4.2. Fraser River Summer Run Age 0.3: Lower Shuswap. 118
3.2.2.5. Fraser Late: Harrison River 120
3.2.3. Puget Sound, Coastal Washington, Columbia River, and Coastal Oregon Stocks 121
3.2.3.1. Puget Sound 121
3.2.3.2. Coastal Washington 124
3.2.3.3. Columbia River 128
3.2.3.3.1. Columbia River Summers 128
3.2.3.3.2. Columbia River Fall 129
3.2.3.4. Coastal Oregon 133
3.2.3.4.1. Oregon Coastal North Migrating 133
3.2.3.4.2. Mid-Oregon Coast 137
4. Sentinel Stocks Program 138
4.1. Oregon 138
4.1.1. Siuslaw River 138
4.2. Puget Sound 138
4.2.1. Stillaguamish River 138
4.2.2. Snohomish River 139
4.3. West Coast Vancouver Island 139
4.3.1. Conuma River 139
4.4. Fraser River 139
4.4.1. South Thompson River 139
4.4.2. Chilko River 140
4.5. Northern British Columbia 140
4.5.1. Skeena River 140
4.5.2. Nass River 140
REFERENCES CITED 141
APPENDICES 145

List of Tables

Table Page
1.1. Annual catch and hatchery add-on for AABM fisheries expressed in thousands of Chinook salmon 5
1.2. Harvest of Chinook salmon in Southeast Alaska by gear type in 2014. 7
1.3. Harvest of Chinook salmon by gear for Canadian AABM fisheries in 2014 8
1.4. Fishing periods and Chinook salmon caught and released during the 2014 catch year in the West Coast Vancouver Island (WCVI) commercial troll fishery 10
1.5. West Coast Vancouver Island AABM sport fishery catches of Chinook salmon by Pacific Fishery Management Areas (PFMA) in 2014 representing catch from June 1 to September 15 11
1.6. Estimates of treaty and total (includes total treaty, terminal exclusion, and hatchery add-on catch and estimates of incidental mortality) landed catch (LC), incidental mortality (IM; in nominal numbers of fish), and total mortality (TM) in SEAK AABM fishery, 2014 12
1.7. Estimates of treaty and total landed catch (LC), incidental mortality (IM; in nominal numbers of fish), and total mortality (TM) in NBC and WCVI AABM fisheries, 2014 13
1.8. Landed catch and incidental mortalities in Canadian ISBM fisheries for 2014 14
1.9. Estimated incidental mortality in Southern US troll, net, and sport fisheries, 2012-2014 17
1.10. Summary in nominal fish of preliminary estimates for landed catch (LC), incidental mortality (IM), and total mortality (TM) for US and Canada AABM and ISBM fisheries in 2014 19
2.1. Pacific Salmon Commission Chinook salmon escapement indicator stocks 21
2.2. Escapement goals, 2013-2014 escapements, and 2015 forecasts for stocks with CTC-agreed goals 23
3.1. Parameter definitions for all equations used to estimate CY exploitation rates and cumulative mature-run exploitation rates 99
3.2. Summary of information available for synoptic stock evaluations 100

List of Figures

Figure Page
2.1. Number and status of stocks with CTC-accepted escapement goals, 1999-2014 24
2.2. Long-term annual rates of change in escapements for SEAK Chinook salmon stocks. 25
2.3. Long-term annual rates of change in escapements for TBR Chinook salmon stocks 25
2.4. Long-term annual rates of change in escapements for Canadian Chinook salmon stocks. 26
2.5. Long-term annual rates of change in escapements for Washington Chinook salmon stocks. 27
2.6. Long-term annual rates of change in escapements for Columbia River/Oregon Chinook salmon stocks. 28
2.7. Situk River escapements of Chinook salmon, 1976-2014 30
2.8. Chilkat River escapements of Chinook salmon, 1991-2014. 31
2.9. Unuk River escapements of Chinook salmon, 1977-2014. 33
2.10. Chickamin River peak index counts of Chinook salmon, 1975-2014. 34
2.11. Alsek River escapements of Chinook salmon, 1976-2014 36
2.12. Taku River escapements of Chinook salmon, 1975-2014. 38
2.13. Stikine River escapements of Chinook salmon, 1975-2014. 39
2.14. Nass River escapements of Chinook salmon, 1977-2014. 41
2.15. Skeena River escapements of Chinook salmon, 1975-2014. 43
2.16. Kitsumkalum River escapements of Chinook salmon, 1984-2014. 43
2.17. Rivers Inlet escapement index of Chinook salmon, 1975-2014, including Wannock River (upper) and Kilbella and Chuckwalla rivers (lower) 45
2.18. Atnarko River escapements of wild adult (excluding jacks) and total adult (hatchery and wild, excluding jacks) Chinook salmon, 1990-2014 47
2.19. WCVI 14-stream and 6-stream indices of escapement of Chinook salmon, 1975-2014. 49
2.20. Burman River escapements of Chinook salmon in years when both agency AUC swim surveys expanded by AUC methods were used (circles) and when mark-recapture estimates (diamonds are point estimates and the bars are $95 \% \mathrm{Cls}$) were conducted with funding from the PST. 50
2.21. Upper Georgia Strait stock group escapements of Chinook salmon, 1975-2014. 51
2.22. Cowichan River escapements of Chinook salmon, 1981-2014. 52
2.23. Nanaimo River escapements of Chinook salmon, 1981-2014. 52
2.24. Fraser River spring run age-1.3 stock group escapements of Chinook salmon, 1975-2014 54
2.25. Fraser River spring run age-1.2 stock group escapements of Chinook salmon, 1975-2014 55
2.26. Nicola River escapements of Chinook salmon, 1995-2014. 56
2.27. Fraser River summer run age-1.3 stock group escapements of Chinook salmon, 1975-2014 57
2.28. Fraser River summer run age- 0.3 stock group escapements of Chinook salmon, 1975-2014 58

List of Figures (CONtinued)

Figure Page
2.29. Lower Shuswap River escapements of Chinook salmon, 1975-2014. The visual escapement estimates have been calibrated with the mark-recapture estimates. 58
2.30. Harrison River escapements of Chinook salmon, 1984-2014 59
2.31. Nooksack River escapement of total (natural- and hatchery-origin) and natural-origin spring Chinook salmon, 1980-2014 61
2.32. Skagit River escapement of spring Chinook salmon to the spawning grounds, 1975-2014 62
2.33. Skagit River escapement of summer/fall Chinook salmon to the spawning grounds, 1975-2014 63
2.34. Stillaguamish River escapement of Chinook salmon to the spawning grounds, 1975-2014 65
2.35. Stillaguamish River escapements of Chinook salmon to the spawning grounds in years when both agency expanded redd counts were used (circles) and when genetic mark-recapture (GMR) estimates (diamonds are point estimates and the bars are $95 \% \mathrm{Cls}$) were conducted with SSP funding from the PST 65
2.36. Snohomish River escapement of Chinook salmon to the spawning grounds, 1975-2014. 66
2.37. Snohomish River escapements of Chinook salmon to the spawning grounds in years when both agency expanded redd counts were used (circles) and when genetic mark-recapture (GMR) estimates (diamonds are point estimates and the bars are $95 \% \mathrm{Cls}$) were conducted with SSP funding from the PST 67
2.38. Escapement of Chinook salmon to the spawning grounds in the tributaries of Lake Washington (Cedar River and Bear and Cottage creeks), 1975-2014 68
2.39. Green River escapement of Chinook salmon to the spawning grounds, 1975-2014 69
2.40. Green River escapements of Chinook salmon to the spawning grounds in years when both agency expanded redd counts were used (circles) and when conventional (2001-2002) and genetic (2010- 2012) mark-recapture estimates (diamonds are point estimates and the bars are $95 \% \mathrm{Cls}$) were conducted with Letter of Agreement or SSP funding from the PST. 70
2.41. Hoko River escapement of Chinook salmon to the spawning grounds, 1986-2014 71
2.42. Quillayute River escapement of summer Chinook salmon to the spawning grounds, 1976-2014 72
2.43. Quillayute River escapement of fall Chinook salmon to the spawning grounds, 1980-2014. 73
2.44. Hoh River escapement of spring/summer Chinook salmon to the spawning grounds, 1976-2014. 74
2.45. Hoh River escapement of fall Chinook salmon to the spawning grounds, 1976-2014. 76
2.46. Queets River escapement of spring/summer Chinook salmon to the spawning grounds, 1976- 2014. 77
2.47. Queets River escapement of fall Chinook salmon to the spawning grounds, 1976-2014. 78
2.48. Grays Harbor escapement of spring Chinook salmon to the spawning grounds, 1976-2014 79
2.49. Grays Harbor escapement of fall Chinook salmon to the spawning grounds, 1976-2014 81
2.50. Escapement of Columbia upriver spring Chinook salmon, 1980-2014 82
2.51. Adult passage of Mid-Columbia Summer Chinook salmon at Rock Island Dam, 1979-2014 83
2.52. Coweeman River escapements of tule fall Chinook salmon, 1975-2014 84

List of Figures (CONtinued)

Figure Page
2.53. Lewis River escapements of fall Chinook salmon, 1975-2014 85
2.54. Deschutes River escapements of fall Chinook salmon, 1977-2014. 86
2.55. The mark-recapture method for the entire river as compared to above Sherars Falls (ODFW method) expanded for redd ratios above and below the falls (with 90\% Cls) 87
2.56. Escapement of Columbia Upriver Bright Chinook salmon, 1975-2014 88
2.57. Nehalem River escapements of Chinook salmon, 1975-2014. 90
2.58. Nehalem River escapements of Chinook salmon in years when both agency historical expanded surveys were used (circles) and when mark-recapture estimates (diamonds are point estimates and the bars are $95 \% \mathrm{Cls}$) were conducted with Letter of Agreement or SSP funding from the PST 90
2.59. Siletz River fall escapements of Chinook salmon, 1975-2014 91
2.60. Siletz River escapements of Chinook salmon in years when both agency historical expanded surveys were used (circles) and when mark-recapture estimates (diamonds are point estimates and the bars are $95 \% \mathrm{Cls}$) were conducted with Letter of Agreement or SSP funding from the PST 92
2.61. Siuslaw River fall escapements of Chinook salmon, 1975-2014 93
2.62. Siuslaw River escapements of Chinook salmon in years when both agency historical expanded surveys were used (circles) and when mark-recapture estimates (diamonds are point estimates and the bars are $95 \% \mathrm{Cls}$) were conducted with Letter of Agreement funding from the PST. 93
2.63. South Umpqua River escapement of fall Chinook salmon, 1978-2014. 95
2.64. Coquille River escapement of fall Chinook salmon, 1975-2014. 96
3.1. Precautionary plot for synoptic evaluations of PST Chinook salmon stocks 98
3.2. A synoptic summary by region of stock status for stocks with escapement and exploitation rate data in 2013 101
3.3. Average of standardized deviations from average run abundance for 21 stocks of Chinook salmon in Alaska (the Unalakleet, Nushagak, Goodnews and Kuskokwim in western Alaska; the Chena and Salcha on the Yukon River; the Canadian Yukon, the Chignik and Nelson on the Alaska Peninsula; the Karluk and Ayakulik on Kodiak Island; the Deshka, Anchor and late run Kenai in Cook Inlet, the Copper in the northeastern Gulf of Alaska, and the Situk, Alsek, Chilkat, Taku, Stikine, and Unuk in Southeastern Alaska) 102
3.4. Calendar year exploitation rate, spawning escapement, and threshold reference lines for exploitation rate and spawning escapement by CY for the Situk River stock of Chinook salmon, 1976-2014 103
3.5. Calendar Year equivalent harvest rate, spawning escapement, and threshold reference lines for harvest rate and spawning escapement by CY for the Chilkat River stock of Chinook salmon, 2003- 2014. 104
3.6. Freshwater and marine survival indices (standardized to a mean of zero) for the Chilkat River stock of Chinook salmon, 1998-2008 brood years 104

List of Figures (CONtinued)

Figure Page
3.7. Calendar Year harvest rate, spawning escapement, and threshold reference lines for harvest rate and spawning escapement by CY for the Unuk River stock of Chinook salmon, 1988-1991 and 1998-2014 105
3.8. Freshwater and marine survival indices (standardized to a mean of zero) for the Unuk River stock of Chinook salmon, 1992-2008 brood years 106
3.9. Mature-run equivalent harvest rate, spawning escapement, and threshold reference lines for harvest rate and spawning escapement by CY for the Chickamin River stock of Chinook salmon, 1983-2014 106
3.10. Calendar year harvest rate, spawning escapement, and threshold reference lines for harvest rate and spawning escapement by CY for the Alsek River stock of Chinook salmon, 1976-2014 107
3.11. Calendar year harvest rate, spawning escapement, and threshold reference lines for harvest rate and spawning escapement by CY for the Taku River stock of Chinook salmon, 1975-2014 108
3.12. Calendar year harvest rate, spawning escapement, and threshold reference lines for harvest rate and spawning escapement by CY for the Stikine River stock of Chinook salmon, 1981-2014 109
3.13. Freshwater and marine survival indices (standardized to a mean of zero) for the Taku River stock of Chinook salmon, 1992-2008 brood years 109
3.14. Freshwater and marine survival indices (standardized to a mean of zero) for the Stikine River stock of Chinook salmon, 1998-2008 brood years 110
3.15. Marine survival index (standardized to a mean of zero) for the Kitsumkalum River stock of Chinook salmon, 1979-2010 brood years. Brood year 1982 was not represented by CWTs, thus no datum is available 111
3.16. Mature-run equivalent exploitation rate, spawning escapement, and threshold reference lines for exploitation rate and spawning escapement by CY for the Kitsumkalum River stock of Chinook salmon, 1985-2014 111
3.17. Marine survival index (standardized to a mean of zero) for subyearling releases of the Atnarko River stock of Chinook salmon, 1986-2010 brood years. There were no CWT releases for brood years 2003 and 2004 112
3.18. Time series of Atnarko Chinook escapement integrating the calibrated values from best Generalized Linear Model and the best Maximum Likelihood estimates for years with mark- recapture studies (2001-2003 and 2009-2014) 113
3.19. Mature-run equivalent exploitation rate, spawning escapement, and threshold reference lines for exploitation rate and spawning escapement by CY for the Atnarko River stock of Chinook salmon, 1990-2014 114
3.20. The percentage of first generation hatchery origin Chinook salmon in the Cowichan River adult escapement, 1982-2011 115
3.21. Marine survival index (standardized to a mean of zero) for the Cowichan River stock of Chinook salmon, 1985-2011 brood years. Brood years 1986 and 2004 were not represented by CWTs, thus no data are available 115

List of Figures (CONtinued)

Figure
3.22. Mature-run equivalent exploitation rate, spawning escapement, and threshold reference lines for exploitation rate and spawning escapement by CY for the Cowichan River stock of Chinook salmon, 1988-2014 116
3.23. The percentage of first generation hatchery origin Chinook salmon in the Nicola River escapement, 1987-2013 117
3.24. Mature-run equivalent exploitation rate, spawning escapement, and threshold reference lines for exploitation rate and spawning escapement by CY for the Nicola River stock of Chinook salmon, 1995-2014 117
3.25. Marine survival index (standardized to a mean of zero) for the Nicola River stock of Chinook salmon, 1985-2011 brood years. 118
3.26. Marine survival index (standardized to a mean of zero) for the Lower Shuswap River stock of Chinook salmon, 1984-2011 brood years 119
3.27. Mature-run equivalent exploitation rate, spawning escapement, and threshold reference lines for exploitation rate and spawning escapement by CY for the Lower Shuswap River stock of Chinook salmon, 1989-2014 119
3.28. Marine survival index (standardized to a mean of zero) for the Harrison River stock of Chinook salmon, 1981-2011 brood years. No data are available for brood year 2004 120
3.29. Mature-run equivalent exploitation rate, spawning escapement, and threshold reference lines for exploitation rate and spawning escapement by CY for the Harrison River stock of Chinook salmon, 1984-2014 121
3.30. Chinook salmon released from Puget Sound hatcheries, 1975-2012 brood years 122
3.31. Escapement and terminal fishery harvest for the aggregate of Puget Sound summer/fall Chinook salmon PSC escapement indicator stocks. 123
3.32. Escapement and terminal fishery harvest for the aggregate of Washington coastal spring/summer Chinook salmon PSC escapement indicator stocks. 124
3.33. Escapement, aggregate escapement goal and terminal fishery harvest for the aggregate of Washington coastal fall Chinook salmon PSC escapement indicator stocks 125
3.34. Queets River fall Chinook salmon spawning escapement and cumulative mature-run equivalent exploitation rate calculated from Queets River PSC indicator CWTs 126
3.35. Quillayute River fall Chinook salmon spawning escapement and cumulative mature-run equivalent exploitation rate calculated from Queets River PSC indicator CWTs 127
3.36. Hoh River fall Chinook salmon spawning escapement and cumulative mature-run equivalent exploitation rate calculated from Queets River PSC indicator CWTs 127
3.37. Columbia Upriver Summer Chinook salmon spawning escapement past Rock Island Dam and cumulative mature-run equivalent exploitation rate calculated from Wells Hatchery PSC indicator CWTs 128
3.38. Marine survival index (standardized to a mean of zero) for Columbia Upriver Summer Chinook salmon 129
3.39. Upriver Bright fall Chinook salmon spawning escapement and cumulative mature-run equivalent exploitation rate calculated from Priest Rapids Hatchery PSC indicator CWTs 130

List of Figures (CONtinued)

Figure
3.40. Deschutes River fall Chinook salmon spawning escapement and cumulative mature-run equivalent exploitation rate calculated from Priest Rapids Hatchery PSC indicator CWTs 130
3.41. Lewis River Wild fall Chinook salmon spawning escapement and cumulative mature-run equivalent exploitation rate calculated from Lewis River Wild PSC indicator CWTs 131
3.42. Marine survival index (standardized to a mean of zero) for Upriver Bright Chinook salmon, as represented by Hanford Reach Wild Chinook salmon. 131
3.43. Marine survival index (standardized to a mean of zero) for Upriver Bright Chinook salmon, as represented by Priest Rapids Hatchery Chinook salmon 132
3.44. Marine survival index (standardized to a mean of zero) for Lewis River Wild fall Chinook salmon 132
3.45. Marine survival index (standardized to a mean of zero) for the Salmon River hatchery stock of Chinook salmon 133
3.46. Mature-run equivalent exploitation rate, spawning escapement, and threshold reference lines for exploitation rate and spawning escapement by CY for the Nehalem River stock of Chinook salmon, 1979-2013. 135
3.47. Mature-run equivalent exploitation rate, spawning escapement, and threshold reference lines for exploitation rate and spawning escapement by CY for the Siletz River stock of Chinook salmon, 1979-2013 135
3.48. Mature-run equivalent exploitation rate, spawning escapement, and threshold reference lines for exploitation rate and spawning escapement by CY for the Siuslaw River stock of Chinook salmon, 1979-2013 136
3.49. Marine survival index (standardized to a mean of zero) for the Elk River hatchery stock of Chinook salmon 137
List Of Appendices
A. Landed Chinook Salmon Catches by Region and Gear, 1975-2014 Page
B. Escapements and Terminal Runs of Pacific Salmon Commission Chinook Technical Committee Chinook Salmon Escapement Indicator Stocks, 1975-2014 189
C. Sentinel Stocks Program in 2014 209

Executive Summary

The Pacific Salmon Treaty (PST; Public Law 99-5, 16 USC. 3631) requires the Chinook Technical Committee (CTC) to report annual catch and escapement data for Chinook salmon stocks that are managed under the Treaty. The CTC provides an annual report to the Pacific Salmon Commission (PSC) to fulfill this obligation. This report contains four sections: Chinook salmon catches, escapements, stock status providing an indication of stock performance in the context of management objectives, and a summary of the Sentinel Stocks Program (SSP) for 2014.

Section 1 summarizes fishery catches by region and available estimates of incidental mortality (IM) by fishery in 2014, with accompanying commentary on the fisheries, management, and derivation of IM. Annual catch data are compiled by Canada and the US for their respective jurisdictions within the PST area according to fishery regimes, regional locations, and gear type with estimates of $I M$. Landed catch (LC) is fully reported in the appendices for each geographic area covered under the PST; a summary for all PSC Aggregate Abundance Based Management (AABM) and Individual Stock Based Management (ISBM) fisheries, from 1999 to 2014, is provided in the figure below. Time series of available IM estimates are provided in Appendix A for individual fisheries. Appendix A also includes a coastwide summary of the historical time series of LC, IM, and their sum, total mortality (TM), across all AABM and ISBM fisheries.

Estimates of landed catch for US and Canada AABM and ISBM fisheries, 1999-2014.
The preliminary estimate of Treaty LC of Chinook salmon for all PST fisheries in 2014 is $2,058,559$, of which $1,418,770$ were taken in US fisheries and 639,789 were taken in Canadian fisheries. The estimated total IM associated with this harvest is 249,703 nominal Chinook salmon. The TM for all PST fisheries in nominal fish was $2,308,262$ Chinook salmon, of which 1,584,876 were taken in US fisheries and 723,386 were taken in Canadian fisheries. For US fisheries, 70% of the LC and 69% of TM occurred in ISBM fisheries; in Canada, 37% of the LC and

39\% of TM occurred in ISBM fisheries. For some component sport fisheries, 2014 LC and IM estimates are not yet available.

Section 2 includes an assessment of escapement for PST escapement indicator stocks/stock aggregates with CTC-accepted biologically based goals (22 stocks) as well as escapement data for the other indicator stocks/stock aggregates (24 stocks). For eight of these, the escapement goal is defined as a range; for the remaining 14, the escapement goal is the point estimate of $\mathrm{S}_{\mathrm{MSY}}$ (escapement producing maximum sustained yield). Annual escapements that are more than 15% below the lower end of the range or the $S_{\text {MSY }}$ point estimate are noted. The CTC will continue to review escapement goals for stocks as they are provided by respective agencies.

From 1999 to 2014, the percentage of stocks that met or exceeded escapement goals or goal ranges has varied from 50% to 96%. In 2014, 12 of 22 stocks (55%) met or exceeded escapement objectives. Of the 10 stocks below goal, six stocks (Situk, Alsek, Chilkat, Unuk, Quillayute fall, and Grays Harbor fall) were within 15% of the target goal. Four stocks were more than 15% below goal: Harrison, Cowichan, Queets spring/summer, and Hoh spring/summer).

Number and status of stocks with CTC-accepted escapement goals, 1999-2014.The Keta, Blossom, and King Salmon rivers and Andrews Creek stocks were dropped as escapement indicator stocks in 2013 and Grays Harbor fall was added in 2014, bringing the total number of stocks with CTC-accepted escapement goals to 22 in 2014.

Section 3 presents a synoptic evaluation of stock status that summarizes the performance of those stocks relative to established goals over time for many of the escapement indicator stocks. This evaluation draws upon the catch information (Section 1), escapement information (Section 2), and exploitation rates and other information to evaluate the status of stocks. Synoptic plots present both the current status of stocks and the history of the stocks relative to

PST management objectives; this information clearly summarizes the performance of fisheries management relative to stocks achieving established or potential goals. A synoptic summary figure for 20 stocks with 2013 data shows that the majority of stocks were in the safe zone. No stocks were in the high risk zone and four stocks (Unuk, Cowichan, Harrison, and Nicola) were in the low escapement and low exploitation zone. One stock (Columbia Upriver Brights) experienced exploitation near $U_{\text {MSY }}$ and still the escapement exceeded $S_{\text {MSY }}$ by nearly 10 -fold. The Washington and Oregon coastal stocks clustered closer to the 1.0 index lines than the other regional groups. In general, Columbia River stocks showed a higher escapement to $\mathrm{S}_{\text {MSY }}$ index than the other regions where there was no pattern.

Synoptic summary by region of stock status for stocks with escapement and exploitation rate data in 2013 (escapement and exploitation rate data for each stock was standardized to the stock-specific escapement goal and $U_{\text {MSV }}$ reference points).

Section 4 consists of a summary of the 2014 SSP. The goal of the SSP is to improve estimates of escapement for Chinook salmon stocks in the following five coastal areas: Northern British Columbia (NBC), Fraser River, West Coast Vancouver Island (WCVI), Puget Sound, and North Oregon Coast (NOC) to a level that meets or exceeds bilateral assessment accuracy and precision standards. The 2014 season is the sixth year of the program. In 2014, the PSC approved $\$ 1,071,500$ in funding for nine projects. Objectives of the funded projects were (1) to estimate escapements for stocks in the Nass and Skeena rivers (NBC), the Chilko and South Thompson rivers (Fraser), the Conuma River (WCVI), the Snohomish and Stillaguamish rivers (Puget Sound), and the Siuslaw river (NOC); and (2) to estimate the aggregate size of the terminal returns to the NOC and to WCVI. Escapement estimates and methods used to obtain those estimates are described in Section 4 and Appendix C for each of the funded programs.

1. Chinook Salmon Catch

The 1999 Pacific Salmon Treaty Annex and the Related Agreement (Agreement) substantially changed the objectives and structure of the PSC Chinook salmon fisheries by eliminating the previous ceiling and pass-through fisheries and replacing them with Aggregate Abundance Based Management (AABM) and Individual Stock Based Management (ISBM) fisheries. The Agreement defines catch limits based on aggregate abundance for Chinook salmon in AABM fisheries, and requires that ISBM fisheries be managed on a national basis to meet stockspecific agreed-to maximum sustainable yield (MSY) or other biologically based escapement objectives (and/or exploitation rates for 4 of the 49 named stocks) or to limit adult equivalent mortality rates for these stocks to a portion of the 1979 to 1982 base period or the average 1991 to 1996 rate. The 2009 Agreement imposed additional reductions to catch limits in West Coast Vancouver Island (WCVI) and Southeast Alaska (SEAK) fisheries.

This report assesses landed catch (LC), incidental mortality (IM) and total fishing mortality (TM) for all Pacific Salmon Treaty (PST) fisheries in 2014, both those targeting Chinook salmon (Chinook Retention, CR) as well as those directed at other salmon species (Chinook Nonretention, CNR). The LC, IM and TM estimates for the three AABM fisheries are presented by gear sector in Table 1.6 and Table 1.7 and similar estimates for Canada and US ISBM fisheries are summarized in Table 1.8 and Table 1.9. A summary of LC, IM, and TM estimates for Chinook salmon in all PST AABM and ISBM fisheries is presented in Table 1.10.

The CTC began reporting IM in AABM fisheries in 2004 (CTC 2004a) and in most ISBM fisheries in 2005 (CTC 2005). The current reporting of LC and IM estimates provides a comprehensive overview of all PST fisheries that harvest Chinook salmon. Commentary is provided to explain fisheries, management, and derivation of estimates of IM. Historical LC, IM, and TM data are given in Appendix A.

1.1. Review of Aggregate Abundance Based Management Fisheries

AABM fisheries for Chinook salmon are managed to an allowable catch associated with an annual abundance index (2009 PST Agreement, Annex IV, Chapter 3, Table 1). AABM fisheries are mixed stock salmon fisheries that intercept and catch migratory Chinook salmon from many stocks. There are three AABM fisheries (2009 PST Agreement, Annex IV, Chapter 3, paragraph 2):

1) Southeast Alaska (SEAK) All Gear (Troll, Net, Sport)
2) Northern British Columbia (NBC) Troll and Haida Gwaii (QCI) Sport
3) West Coast Vancouver Island (WCVI) Troll and Outside Sport

Catches for these three fisheries are reported in Table 1.1.

Table 1.1.-Annual catch and hatchery add-on for AABM fisheries expressed in thousands of Chinook salmon.

Year	Southeast Alaska (T, N, S)			$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Northern British Columbia } \\ \text { (T), Haida Gwaii (S) } \end{array} \\ \hline \text { Treaty Catch } \\ \hline \end{array}$		West Coast VancouverIsland (T, S)Treaty Catch	
	Treaty Catch		Hatchery Add-on ${ }^{2}$				
	Limit ${ }^{1}$	Observed		Limit ${ }^{1}$	Observed	Limit ${ }^{1}$	Observed
1999	184.2	198.8	47.7	126.1	86.7	107.0	38.5
2000	178.5	186.5	74.3	123.5	31.9	86.2	88.6
2001	250.3	186.9	77.3	158.9	43.5	145.5	120.3
2002	371.9	357.1	68.2	237.8	150.1	196.8	157.9
2003	439.6	380.2	57.2	277.2	191.7	268.9	173.6
2004	418.3	417.0	76.0	267.0	241.5	209.6	215.3
2005	387.4	388.1^{3}	$64.8{ }^{3}$	240.7	243.6	179.7	199.5
2006	354.5	$359.6{ }^{3}$	48.9^{3}	200.0	216.0	145.5	145.5
2007	259.2	327.7^{3}	$68.9{ }^{3}$	143.0	144.2	121.9	140.6
2008	152.9	172.3^{3}	66.6^{3}	120.9	95.6	136.9	145.7
$2009{ }^{4}$	176.0	227.5^{3}	$62.4{ }^{3}$	139.1	109.5	91.3	124.6
2010	215.8	230.3^{3}	53.9^{3}	160.4	136.6	142.3	139.0
2011	283.3	290.2^{3}	66.1^{3}	186.8	122.7	134.8	204.2
2012	205.1	242.0	51.9	149.5	120.3	113.8	134.5
2013	284.9	190.7	66.3	220.3	115.9	178.8	113.6
2014	439.4	432.3	52.3	290.3	216.9	205.4	188.4
2015	TBA			TBA			TBA

Note: T = Troll, $\mathrm{N}=$ Net and $\mathrm{S}=$ Sport fisheries.
${ }^{1}$ Allowable treaty catches corresponds to the first postseason abundance index for years 1999 to 2013 and the preseason abundance index for 2014.
2 Treaty catch does not include hatchery add-on or exclusions (see Table A1).
${ }^{3}$ Values changed because the method used to partition gillnet catch into large and nonlarge fish changed.
${ }^{4} 2009$ was the first year the 2009 Agreement was implemented.

1.1.1. Southeast Alaska Fisheries

The SEAK Chinook salmon fishery is managed to achieve the annual all-gear PST allowable catch associated with the preseason abundance index, which is generated by the PSC Chinook Model each spring. Catch is allocated through regulations established by the Alaska Board of Fisheries among troll, net, and sport fisheries. The current allocation plan reserves 4.3% of the total allgear catch for purse seine, 2.9% for drift gillnet, and 1,000 fish for set gillnet fisheries. After the net quotas are subtracted, 80% of the remainder is allocated to the commercial troll fishery and the other 20% to sport fisheries. The commercial troll and net fisheries are managed inseason according to procedures outlined in gear-specific management plans. Sport fishery bag and possession limits as well as annual limits are established prior to the season based on the preseason abundance index. The regulatory history and maps for each SEAK fishery are presented in CTC 2004b. In addition, the SEAK fisheries are managed for the following:

1) An Alaska hatchery add-on estimated from coded wire tag (CWT) sampling. The add-on is the total estimated Alaska hatchery catch, minus 5,000 base period (pre-1985 contribution level) Alaska hatchery catch, and minus the risk adjustment. The risk adjustment is the product of the standard error (SE) for the total estimated Alaska hatchery catch and a risk factor (1.645).
2) An exclusion of wild Chinook salmon originating from the Situk, Stikine and Taku rivers, when appropriate according to Chapter 1 (Transboundary Rivers) of the 2009 Agreement.
3) Compliance with provisions established by the National Marine Fisheries Service (NMFS) in accordance with the US Endangered Species Act (ESA).
4) Consistency with the provisions of the PST as required by the Salmon Fishery Management Plan of the North Pacific Fishery Management Council that was established by the US Magnuson-Stevens Act.

The SEAK 2014 preseason abundance index of 2.57 provided for an all-gear PST allowable catch of 439,400 Chinook salmon. The preliminary total all-gear catch in 2014 was 485,376, with a PST catch of 432,304, an Alaska hatchery add-on of 52,336, and a terminal exclusion catch of 736 Chinook salmon. The postseason allowable catch for the all-gear SEAK AABM fishery is yet to be determined. SEAK Chinook salmon catch from 1975 to 2014 are reported in Table A1.

1.1.1.1. Troll Fisheries Catch

The troll fishery accounting year began with the start of the winter fishery on October 11, 2013 and ended with the summer fishery in August 2014. The winter troll fishery continues until 45,000 Chinook salmon are caught, or through April 30, whichever is earlier. In 2014, the winter troll fishery was open through April 30. The spring fishery, which is managed to maximize the harvest of Alaska hatchery-produced Chinook salmon, was conducted from May 1 to June 30 in a total of 33 spring areas and five terminal harvest areas. There is no cap on the number of Chinook salmon that can be harvested in the spring troll fishery. The percentage of Alaska hatchery fish in each area is monitored on a weekly basis and only areas that meet predefined thresholds are left open. The 2014 summer troll fishery included two Chinook salmon retention periods, the first summer fishery opening occurred from July 1 to July 7 and the second summer fishery opening occurred from August 14 to August 18. In recent years, a small portion of the troll fleet has targeted chum salmon from mid-June through August, resulting in a decrease in effort directed at Chinook and coho salmon (Skannes et al. 2013); however, in 2013 and 2014, the effort directed at chum salmon declined-presumably due to high prices and catch rates of Chinook salmon in 2013 and to high abundance of Chinook and coho salmon in 2014 (Skannes et al. 2014; Skannes et al. 2015).

In 2014, the troll fishery harvested 355,570 Chinook salmon, which included 18,499 Alaska hatchery fish. There was an Alaska hatchery add-on of 14,984 and a Transboundary River (TBR) exclusion of 736 fish, and subtraction of these from the total harvest results in a total of 339,850 PST fish. The winter fishery harvested 56,507 fish, of which 3,215 were from Alaska hatcheries and 53,935 were PST fish. The spring fishery caught a total of 43,829 fish, of which 10,328 were Alaska hatchery fish and 34,645 were PST fish. The total summer catch was 255,234 , of which 4,955 were from Alaska hatcheries and 251,271 were PST fish (Table 1.2).

Table 1.2.-Harvest of Chinook salmon in Southeast Alaska by gear type in 2014.

Gear	Total Catch	Alaska Hatchery Catch ${ }^{1}$	Alaska Hatchery Add-on ${ }^{1}$	Terminal Exclusion Catch ${ }^{2}$	AABM Catch ${ }^{3}$
Troll					
Winter	56,507	3,215	2,572	0	53,935
Spring	43,829	10,328	8,449	736	34,645
Summer	255,234	4,955	3,963	0	251,271
Troll subtotal	355,570	18,499	14,984	736	339,850
Sport ${ }^{4}$	79,816	10,034	8,506	0	71,310
Net					
Set Net	243			0	243
Drift gillnet	22,369	18,658	17,465	0	4,905
Seine	27,378	11,649	11,381	0	15,997
Net subtotal	49,990	30,307	28,845	0	21,144
Total	485,376	58,840	52,336	736	432,304

${ }^{1}$ The add-on is the total estimated Alaska hatchery catch, minus 5,000 base period Alaska hatchery catch, and minus the risk adjustment (product of standard error for the total estimated Alaska hatchery catch and a risk factor of 1.645).
${ }^{2}$ Terminal exclusion catch is a result of the harvest sharing arrangement on the Taku and Stikine rivers.
${ }^{3}$ Treaty catch is the total catch minus Alaska hatchery add-on minus terminal exclusion catch. Totals may not equal the sum of the individual values due to rounding.
${ }^{4}$ Preliminary values until mail-out survey results are available.

1.1.1.2. Net Fisheries Catch

There are three types of commercial net fisheries conducted in SEAK: purse seine, drift gillnet, and set gillnet. With the exception of directed gillnet harvests of Chinook salmon in SEAK terminal areas as provided in the TBR chapter of the PST, harvests of Chinook salmon in net fisheries are incidental to the harvest of other species. The 2014 total net catch was 49,990 Chinook salmon, including 30,307 Alaska hatchery fish. There was an Alaska hatchery add-on of 28,845 and a TBR exclusion of 0, resulting in a Treaty catch of 21,144 (Table 1.2).

The purse seine fishery is open from mid-June through early fall and is limited to specific areas and time periods established inseason by emergency order (Gray et al. 2014b). In 2014, the purse seine fishery harvested a total of 27,378 Chinook salmon, which included 11,649 Alaska hatchery fish and an Alaska hatchery add-on of 11,381, resulting in a Treaty catch of 15,997 (Table 1.2).

The drift gillnet fishery usually opens in late June, unless directed fishing is implemented in May to target surplus production of Chinook salmon bound for the Taku and Stikine rivers (Gray et al. 2014a) as detailed in Chapter 1 of the 2009 Agreement. In 2014, preseason terminal run forecasts for both the Taku and Stikine rivers did not provide for an allowable catch, therefore no directed fisheries occurred. The SEAK drift gillnet fishery is limited to five traditional areas and time periods are established inseason by emergency order (Gray et al. 2014a). The 2014 drift gillnet fishery caught a total of 22,369 Chinook salmon, including 18,658 Alaska hatchery fish. There was an Alaska hatchery add-on of 17,465 and a TBR exclusion of 0 , resulting in a PST catch of 4,905 .

The set gillnet fishery is managed to catch no more than 1,000 Treaty Chinook salmon, a limit which is based on an historic average. This fishery is open during the late spring and summer in the Yakutat area. The 2014 set gillnet fishery caught 243 Chinook salmon, all of which were PST fish.

1.1.1.3. Sport Fishery Catch

Sport catches are monitored inseason by catch surveys throughout the region and sampling programs are in place to recover CWTs from tagged Chinook salmon. The number of Alaska hatchery fish caught is estimated from the CWTs collected by the sampling program. Preliminary sport catch estimates are computed from the catch surveys while final sport catch estimates are computed from a mail-out survey and are available one year after the fishery occurs. In 2014, with a preseason abundance index of 2.57, the management plan required a daily bag limit of three Chinook salmon 71 cm (28 inches) or greater in length for resident anglers and two fish in May and June and one fish thereafter for nonresident anglers. The nonresident annual limit was six Chinook salmon. In addition, residents were allowed to use two rods from October through March. In some designated harvest areas near hatchery release sites, bag and possession limits and annual limits were liberalized to provide increased catches of returning Alaska hatchery Chinook salmon. The preliminary 2014 total sport Chinook salmon catch was 79,816 with an estimate of 10,034 Alaska hatchery fish. There was an Alaska hatchery add-on of 8,506 fish, resulting in a catch of 71,310 Treaty Chinook salmon (Table 1.2).

1.1.2. British Columbia Fisheries

The NBC AABM fishery includes NBC troll catch in Statistical Areas 1-5 and QCI sport catch in Statistical Areas 1 and 2. The total NBC AABM catch in 2014 was 216,901. The WCVI AABM fishery includes the WCVI commercial and First Nations troll and a portion of the WCVI sport fishery (defined below). The total WCVI AABM catch in 2014 was 188,374 (Table 1.3).

1.1.2.1. Northern British Columbia AABM

The total NBC AABM catch (troll plus sport) between October 1, 2013 and September 30, 2014 was 216,901 Chinook salmon (Table 1.3).

Table 1.3.-Harvest of Chinook salmon by gear for Canadian AABM fisheries in 2014.

AABM Fishery	NBC	WCVI
NBC Troll (Area F)	172,001	
WCVI Troll (Area G)		109,796
Food, social, and ceremonial troll		5,000
Maa-nulth troll		1,531
T'aaq-wiihak troll		17,172
Sport		54,875
Total		44,900

1.1.2.1.1. Northern British Columbia Troll Fishery Catch

The NBC troll fishery landed 172,001 Chinook salmon in 2014. The NBC troll fishery was opened for Chinook salmon fishing from June 21 to August 4 and from September 1 to September 30. The entire 2014 NBC troll fishery was conducted under a system of individual transferable quotas. All landings of Chinook salmon caught in the NBC troll fishery were made at designated landing sites and catches were validated by an independent contractor. Validation of landings has occurred since 2005. A total of 241 licenses were issued, but the total catch was landed by 151 vessels because much of the quota was transferred. Barbless hooks and revival boxes were mandatory in the troll fishery and the minimum size limit was 67 cm fork length (26.4 in). No troll test fisheries were conducted in 2014. A ribbon boundary around Langara Island and from Skonun Point to Cape Knox on Graham Island excluded the commercial troll fishery from areas within one nautical mile of the shore from June 21 to September 10, 2014.

1.1.2.1.2. Northern British Columbia Sport Fishery Catch

Sport caught Chinook salmon from QCI (Pacific Fishery Management Areas 1, 2, 101, 102 and 142) are included in the AABM totals. Catches in the QCI sport fisheries have been estimated since 1995 through lodge logbook programs, creel surveys and independent observations by Canadian Department of Fisheries and Oceans (DFO) staff. The 2014 QCI sport catch was 44,900 Chinook salmon.

1.1.2.2. West Coast Vancouver Island AABM

Under the 2009 PST Agreement, the WCVI AABM fishery includes the WCVI troll and the outside WCVI sport fishery (defined below). The total AABM LC in the commercial troll, outside tidal sport, and First Nations troll in 2014 was 188,374 Chinook salmon (Table 1.3).

1.1.2.2.1. West Coast Vancouver Island Troll Fishery Catch

The AABM troll catch includes the commercial and First Nations troll caught Chinook salmon in Pacific Fishery Management Areas 21, 23-27, and 121-127. In the 2014 season (October 1, 2013 to September 30, 2014), WCVI troll fishing opportunities were consistent with a DFO commitment to evaluate winter fisheries as a means to improve the economic base for the fishery and local communities while increasing flexibility in catch opportunities and reducing the exploitation on stocks encountered in summer fisheries (Table 1.4). Troll fishery openings were shaped by conservation concerns for Fraser River spring run age 1.2, Fraser River spring run age 1.3, Fraser River summer run age 1.3, WCVI, and Lower Strait of Georgia Chinook salmon and interior Fraser River coho salmon.

The annual WCVI commercial troll harvest was allocated by percent to the following periods: October 1 to March 15 (20\%), March 16 to April 18 (Closed, 0\%), April 19 to June 15 (40\%), June 16 to July 23 (Closed, 0\%), July 24 through early August (20\%), and September 7 to 30 (20\% with adjustments for harvest by other fisheries). A full-time closure was maintained from March 16 to April 18 to avoid interception of Fraser River spring run age 1.2. During June and until the third week of July, areas of Southwest Vancouver Island were closed to avoid Lower Strait of Georgia, Fraser River spring run age 1.2, Fraser River spring run age 1.3, and Fraser River summer run age 1.3 Chinook salmon. Full-time closures were also implemented from August 9 to September 6 in Areas 123-127 and from September 7 to 14 in Areas 123 and 124. The mandatory use of six-inch plugs, a fishery limit on coho salmon encounters, as well as time and
area closures were all implemented to minimize mortality of WCVI origin Chinook and wild coho salmon. Statistical Area 121 (Swiftsure Bank) remained closed in 2014. Selective fishing practices were mandatory, including single barbless hooks and revival tanks for resuscitating coho salmon prior to release, which affects the IM rates used for legal and sublegal Chinook salmon. The minimum size limit for commercial troll for all periods was 55 cm (21.6 in) fork length.

Table 1.4.-Fishing periods and Chinook salmon caught and released during the 2014 catch year in the West Coast Vancouver Island (WCVI) commercial troll fishery.

Fishing Period ${ }^{1}$	Pacific Fishery Management Areas Open	Main Area Fished	LC	Legal Releases	Sublegal releases
Oct 7-10	123-127	123	2,358	0	282
Nov 7-30	23-27,123-127	123	28	0	24
Dec 1-31	23-27,123-127	23	25	0	23
Jan 1-31	23-27,123-127	23	49	0	31
Feb 1-28	23-27,123-127	126	586	0	28
Mar 1-15	23-27,123-127	126	1,422	3	87
Apr 19-30	23-27,123-127	126	13,345	13	217
May 1-6	23-27,123-127	126/127	6,423	3	284
May 7-30	23-27,123-127	123	33,913	32	2,546
July 24-31	125-127	126	26,494	54	1,041
Aug 1-8	123-127	126	10,002	0	354
Sept 7-14	125-127	126	2,181	6	202
Sept 15-30	123-127	123	12,970	7	1,669
Total			109,796	118	6,788

${ }^{1}$ West Coast Vancouver Island (WCVI) troll fisheries were generally closed from mid-June to late August to avoid encounters of interior Fraser River and Thompson River coho and the WCVI Chinook salmon stock.

From May 1 to September 30, 2014, the T'aaq-wiihak demonstration fishery, a new fishery implemented in 2012, occurred in portions of Pacific Fishery Management Areas 24 to 25, and 124 to 126. Fishing days were decreased during the June to July periods (as well as areas 124 to 126 for the months of August and September) to minimize encounters with interior Fraser River and Thompson River coho and the WCVI Chinook salmon stocks.

The catch for 2014 commercial troll fisheries was 109,796 Chinook salmon (Table 1.4). The WCVI First Nations caught an estimated 5,000 Chinook salmon in food, social, and ceremonial fisheries, 1,531 in the Maa-nulth Treaty catch, and 17,172 in the T'aaq-wiihak demonstration fisheries. Therefore, the total WCVI AABM troll catch for 2014 was 133,499, with 118 legal and 7,987 sublegal Chinook salmon releases (not including releases from the WCVI food, social, and ceremonial and Maa-nulth troll fisheries, which are currently unknown).

1.1.2.2.2. West Coast Vancouver Island Sport Fishery Catch

The AABM sport fishery includes all catch in northwest WCVI (Areas 25-27, 125-127) from October 16 to June 30, and the catch outside of the surf line (about one nautical mile offshore)
from July 1 to October 15, plus all the catch in southwest WCVI (Areas 21, 23, 24, 121, 123, and 124) from October 16 through July 31, and the catch outside one nautical mile offshore from August 1 to October 15. Catch inside the surf line and outside the AABM periods specified above is included in ISBM fishery catch.

The WCVI AABM sport fishery occurs primarily in the Barkley Sound, outer Clayoquot Sound, and Nootka Sound areas. The majority of fishing effort occurs from mid-July through August in northwest Vancouver Island and August through mid-September in the Southwest Vancouver Island. Creel surveys were conducted from early June to mid-September. The Chinook salmon daily bag limit was two fish greater than 45 cm fork length (17.7 in). Barbless hooks were mandatory.

The 2014 WCVI AABM sport LC estimate during the creel period was 54,875 (Table 1.5). Catch rates were determined from anglers interviewed from June 1 to September 15. No creel surveys occurred between October and May, when effort is relatively low.

Table 1.5.-West Coast Vancouver Island AABM sport fishery catches of Chinook salmon by Pacific Fishery Management Areas (PFMA) in 2014 representing catch from June 1 to September 15.

PFMA	$\mathbf{2 1 / 1 2 1}$	$\mathbf{2 3 / 1 2 3}$	$\mathbf{2 4 / 1 2 4}$	$\mathbf{2 5 / 1 2 5}$	$\mathbf{2 6 / 1 2 6}$	$\mathbf{2 7 / 1 2 7}$	Total
Catch	9,643	17,403	13,785	4,391	4,892	4,762	54,875

1.2. Estimates of Incidental Mortalities in AABM Fisheries

1.2.1. Southeast Alaska Fisheries

Estimates of encounters and IM in SEAK fisheries are shown for 2014 in Table 1.6 and in Appendix A for prior years. Estimates were converted from total IM into Treaty IM by multiplying the total encounters by the ratio of Treaty catch to LC for each respective fishery. The 2014 troll encounters were estimated from regressions of historical encounter estimates and troll effort. The regression predicts encounters from troll effort using encounter estimates obtained from direct fishery observation programs conducted during a series of years. The CR and CNR sublegal regressions use a data series from 1998 to 2006, while the CNR legal regression uses a data series from 1985 to 1988 and 1998 to 2006 (CTC 2011). Sport fishery releases were computed from the number of Chinook salmon caught and released as recorded on the annual Statewide Catch Survey (mail-in survey) forms. Legal and sublegal CNR purse seine encounters were calculated using a modified catch per landing approach that uses the relationship between the yearly catch and the magnitudes of legal and sublegal CNR encounters for years for which direct observational data are available (CTC 2011). For the gillnet fishery, drop-off mortality was estimated as a percentage of the LC using the region-specific drop-off rate for SEAK (CTC 2004c). Encounter estimates are multiplied by the respective IM rate from CTC (1997) to obtain estimates of IM. The estimated TM in 2014 was 493,683 nominal Treaty fish, including 432,304 LC, and 61,379 IM (Table 1.6).

Table 1.6.-Estimates of treaty and total (includes total treaty, terminal exclusion, and hatchery add-on catch and estimates of incidental mortality) landed catch (LC), incidental mortality (IM; in nominal numbers of fish), and total mortality (TM) in SEAK AABM fishery, 2014.

SEAK Fishery	LC	Legal Encounters	Sublegal Encounters	Total LIM $^{\mathbf{1}}$	Total SIM ${ }^{\mathbf{1}}$	Total IM	Total Mortality
Treaty							
Troll CR	339,850	339,850	27,068	2,719	7,119	9,838	349,688
Troll CNR	0	53,514	35,440	11,720	9,321	21,040	21,040
Troll Total	339,850	393,364	62,508	14,438	16,440	30,878	370,728
Sport Total ${ }^{2}$	71,310	52,847	86,798	10,970	13,801	24,771	96,080
Gillnet	5,147	5,147	0	103	0	103	5,250
Seine CR	15,997	15,997	6,559	0	5,628	5,628	21,625
Seine CNR	0	0	0	0	0	0	0
Net Total	21,144	21,144	6,559	103	5,628	5,731	26,875
Treaty Total	432,304	467,356	155,865	25,511	35,868	61,379	493,683
Total SEAK							
Troll CR	355,570	355,570	28,320	2,845	7,448	10,293	365,863
Troll CNR	0	54,358	35,999	11,904	9,468	21,372	21,372
Troll Total	355,570	409,928	64,319	14,749	16,916	31,665	387,235
Sport Total ${ }^{2}$	79,816	138,967	97,152	12,278	15,447	27,726	107,542
Gillnet	22,612	22,612	0	452	0	452	23,064
Seine CR	27,378	27,378	11,226	0	9,632	9,632	37,010
Seine CNR	0	0	0	0	0	0	0
Net Total	49,990	49,990	11,226	452	9,632	10,084	60,074
SEAK Total	485,376	598,885	172,696	27,480	41,995	69,474	554,850

${ }^{1}$ Includes dropoff mortality. LIM = Legal Incident Mortality, SIM = Sublegal Incident Mortality.
${ }^{2}$ Catch data are preliminary estimates from creel survey expansions; IM for the SEAK sport fishery is estimated from the preliminary LC and the previous year IM to LC ratios. Final estimates are available from mail-out surveys in October one year post fishing season and will be reported in Table A2 and Table A3 of the next annual Catch and Escapement Report.

1.2.2. British Columbia Fisheries

1.2.2.1. Northern British Columbia Fisheries

Table 1.7 summarizes estimates of LC, encounters and associated IM by size class during CR and CNR fishing periods for the 2014 NBC AABM fishery. Releases of Chinook salmon from the NBC troll fishery are based on logbook data. Encounters from the QCI sport fishery are based on creel survey and logbook programs. IM estimates were derived using gear- and size-specific rates from the CTC (1997). The estimated TM for 2014 was 234,177 nominal fish, which included 216,901 LC, and 17,276 IM.

1.2.2.2. West Coast Vancouver Island Fisheries

The estimated TM of Chinook salmon for the 2014 WCVI AABM fishery was 205,461 nominal fish, which included 188,374 LC and 17,088 IM (Table 1.7). The estimated IM included 10,971 legal and 6,117 sublegal nominal Chinook salmon. Table 1.7 also summarizes encounters for these fisheries by size class during CR and CNR fisheries.

Table 1.7.-Estimates of treaty and total landed catch (LC), incidental mortality (IM; in nominal numbers of fish), and total mortality (TM) in NBC and WCVI AABM fisheries, 2014.

Fishery	LC	Legal Releases	Sublegal Releases	$\text { LIM }^{1}$ Drop-off	Total LIM 1	Total SIM ${ }^{1}$	Total IM	Total Mortality
NBC								
Troll CR	172,001	845	11,265	2,924	3,095	4,458	7,553	179,554
Troll CNR	0	5,834	2,672	-	1,178	1,058	2,236	2,236
Troll Total	172,001	6,679	13,937	2,924	4,273	5,516	9,789	181,790
Sport Total	44,900	36,920	0	1,616	7,487	0	7,487	52,387
NBC Total	216,901	43,599	13,937	4,540	11,760	5,516	17,276	234,177
WCVI								-
Troll CR	109,796	118	6,788	1,867	1,891	2,687	4,578	114,374
Troll CNR	-	0	0	0	0	0	-	-
First Nations Troll ${ }^{2}$	6,531	-	-	111	111	-	111	6,642
First Nations EO Troll ${ }^{3}$	17,172	0	1199	515	515	259	774	17,946
Troll Total	133,499	118	7,987	2,493	2,517	2,946	5,463	138,962
Sport Total	54,875	24,312	16,516	3,786	8,454	3,171	11,625	66,500
WCVI Total	188,374	24,430	24,503	7,460	10,971	6,117	17,088	205,462

${ }^{1}$ LIM = Legal Incident Mortality, SIM = Sublegal Incident Mortality.
${ }^{2}$ First Nations troll includes food, social, and ceremonial (FSC) and Maa-nulth Treaty catch.
${ }^{3}$ First Nations EO Troll is the T'aaq-wiihak fishery.

1.3. Review of Individual Stock Based Management Fisheries

ISBM fisheries include all British Columbia Chinook salmon fisheries that are not included in the NBC and WCVI AABM fisheries, and all marine and freshwater Chinook salmon fisheries in Washington and Oregon. ISBM fisheries are managed with the intent of meeting management objectives for individual stocks listed in Attachments IV and V in Chapter 3, Annex IV, of the PST.

1.3.1. Canadian Individual Stock Based Management Fisheries

The Canadian ISBM fisheries include all fisheries that catch or release Chinook salmon in British Columbia that are not AABM fisheries. In 2014, a total of 283,748 nominal fish was caught in Canadian ISBM fisheries in British Columbia and Canadian sections of the Transboundary Rivers. Total estimated IM in 2014 was 38,133 legal and 11,101 sublegal Chinook salmon. The distribution of LC and estimated IM are presented in Table 1.8.

Table 1.8.-Landed catch and incidental mortalities in Canadian ISBM fisheries for 2014.

Region/Gear	Landed Catch	Release Legals	Release Sublegals	Total LIM ${ }^{1}$	Total SIM ${ }^{1}$	Total Mortality
Transboundary Rivers	7,263	181	8	384	13	7,660
Net	5,830	15	8	282	13	6,125
Freshwater Sport	181	166	0	44	0	225
First Nations-FSC	1,252	0	0	58	0	1,310
Northern British Columbia	29,325	4,687	3,500	4,406	557	34,288
Net	2,632	3,317	0	3,022	0	5,654
Tidal Sport	11,973	1,192	3,500	620	557	13,150
Freshwater Sport	2,302	178	0	193	0	2,495
First Nations-FSC	11,936	0	0	549	0	12,485
Tyee Test Fishery	482	0	0	22	0	504
Central British Columbia	15,081	498	0	1,025	0	16,106
Net	2,238	498	0	463	0	2,701
Tidal Sport	7,800	0	0	281	0	8,081
Freshwater Sport	2,134	0	0	147	0	2,281
First Nations-FSC	2,909	0	0	134	0	3,043
Troll	0	0	0	0	0	0
West Coast Vancouver Island	52,164	8,590	10,593	4,761	2,034	58,959
Net	19,090	0	0	928	0	20018
Tidal Sport	28,679	8,590	10,593	3,628	2,034	34,341
First Nations-EO	2,466	0	0	116	0	2,582
First Nations-FSC	1,929	0	0	89	0	2,018
Johnstone Strait	11,287	4,807	5,733	3,785	1,101	16,173
Net	311	3,634	0	2,840	0	3,151
Tidal Sport	9,339	1173	5733	869	1,101	11,309
First Nations-FSC	1,637	0	0	75	0	1,712
Georgia Strait	46,279	18,292	28,914	6,729	5,551	58,559
Net	0	44	0	32	0	32
Tidal Sport	46,251	18,247	28,914	6,695	5,551	58,497
First Nations-FSC	28	1	0	2	0	30
Juan de Fuca	20,427	7,329	8,937	3,187	1,716	25,330
Net	137	495	0	475	0	612
Tidal Sport	20,290	6,834	8,937	2,712	1,716	24,718
Fraser River	52,688	21,593	673	13,854	129	66,672
Commercial Net	6,513	7,872	0	7,747	0	14,260
First Nations-EO Net	7,782	975	0	1,280	0	9,062
First Nations-FSC Net	22,434	62	0	1,091	0	23,525
Mainstem Catch Sport	6,127	607	0	539	0	6,666
Test Fishery Net	2,854	353	0	465	0	3,319
Trib Catch Sport	6,978	11,724	673	2,733	129	9,840
Grand Total	234,514	65,977	58,358	38,133	11,101	283,748

${ }^{1}$ LIM $=$ Legal Incident Mortality, SIM = Sublegal Incident Mortality.

1.3.2. Southern US Individual Stock Based Management Fisheries

Southern US fisheries of interest to the PSC, generally those north of Cape Falcon, Oregon, are managed in accordance with legal obligations stemming from treaties between Indian tribes and the US, and where relevant, the conservation constraints set by the ESA. In 1974, US v. Washington set forth sharing obligations to meet treaty fishing rights in western Washington.

Treaty rights of Columbia River tribes were defined by US v. Oregon, and the Columbia River Fisheries Management Plan was implemented in 1977. In reporting, these fisheries are termed treaty Indian if they are fishing under the Native American Treaty fishing rights and non-Indian otherwise. Currently, all southern US fisheries are ISBM fisheries. Historical catches in these fisheries are provided in Table A16 through Table A22.

1.3.2.1. Strait of Juan de Fuca and the San Juan Islands

The preliminary estimate of the 2014 Chinook salmon catch in Strait of Juan de Fuca (Area 4B, $5,6,6 A, 6 B$, and $6 C$) net fisheries was 1,306 fish with the majority of these taken during fisheries targeting Fraser River sockeye salmon. There were 6,666 Chinook salmon harvested in the San Juan Islands net fisheries (Area 7 and 7A). The preliminary estimate of the 2014 Strait of Juan de Fuca treaty Indian troll fishery catch (through December 2014) is 4,200 Chinook salmon. The catch estimate does not include catches from Area 4B during the May to September Pacific Fisheries Management Council management period. Historic catch estimates are provided for the Strait of Juan de Fuca (Table A16) and San Juan areas (Table A17).

1.3.2.2. Puget Sound

The preliminary estimate of the net fishery harvest of Chinook salmon in Puget Sound marine and freshwater areas (excluding Strait of Juan de Fuca and the San Juan Islands) in 2014 is 48,713 (44,533 treaty Indian, 4,180 non-Indian). The harvests in treaty Indian fisheries include a preliminary estimate of 18,859 Chinook salmon in inriver fisheries. Estimates of the sport catch in 2014 are not yet available from the Washington Department of Fish and Wildlife (WDFW) Catch Record Card accounting system; thus, the preliminary estimate of sport catch reported here for 2014 is an average of the previous three years. Historic catch tables for Puget Sound (exclusive of the Strait of Juan de Fuca and San Juan Islands) are provided in Table A18.

1.3.2.3. Washington Coast Terminal

The harvest in Washington coastal net fisheries was 39,514 Chinook salmon. Harvest in treaty Indian fisheries include 958 harvested in north coastal rivers (Quinault, Queets, Hoh, and Quillayute rivers) and 24,274 in Grays Harbor and the Humptulips and Chehalis rivers within the basin. The 2014 non-Indian commercial net harvest was 24 Chinook salmon in Grays Harbor and 14,258 from Willapa Bay.

From Grays Harbor north, sport fisheries were implemented based upon preseason state-tribal agreements and were subject to inseason adjustment. Estimates of sport fishery catches for Washington coastal terminal fishing areas in 2014 are not yet available from the Catch Record Card accounting system, but are approximated here based on the average catch from the previous three years. Historic catch estimates for Washington Coastal inside fisheries are shown in Table A19.

1.3.2.4. North of Cape Falcon

Ocean fisheries off the coasts of Washington, Oregon, and California are managed under regulations recommended by the Pacific Fishery Management Council. The fisheries north of Cape Falcon also fall under the jurisdiction of the PST. For 2014, the estimated catch of Chinook
salmon in commercial troll fisheries from Cape Falcon, Oregon to the US-Canada border was 116,489 for non-Indian and treaty Indian fisheries combined. Estimated catch in the ocean sport fishery north of Cape Falcon in 2014 was 42,327 Chinook salmon. Historic catch estimates for US ocean fisheries north of Cape Falcon are shown in Table A20.

1.3.2.5. Columbia River

Chinook salmon from the Columbia River are divided into eight stock groups for management purposes. These groups are delineated by run timing and area of origin: (1) spring run originating below Bonneville Dam, (2) spring run originating above Bonneville Dam, (3) summer run originating above Bonneville Dam, (4) fall run returning to Spring Creek Hatchery, (5) fall run originating in hatchery complexes below Bonneville Dam, (6) wild fall run originating below Bonneville Dam, (7) Upriver Bright fall run, and (8) Mid-Columbia Bright fall hatchery fish.

When comparing the IM estimates in Table 1.9 and Table A21 with IM from US v. Oregon Technical Advisory Committee, WDFW, Oregon Department of Fish and Wildlife (ODFW), and Columbia River Intertribal Fish Commission (CRITFC) reports, readers should keep the following in mind.

1. The Columbia River fishery management agencies include release mortality in some of their catch estimates whereas the tables in this report show LC in terms of retained fish only.
2. Release mortality rates used by Columbia River fishery management agencies differ from those used by the CTC for this report.
3. The tables in this report include estimates of IM from net dropout and hook and line dropoff, whereas the Columbia River fishery management agencies do not estimate this type of fishery related mortality.

In 2014, the total annual harvest for all fisheries (spring, summer, and fall, both hatchery and wild) in the Columbia River basin was 618,396 Chinook salmon. This included non-Indian commercial net plus Wanapum and Colville tribal harvest of 113,532 ; sport harvest of 187,186 ; and treaty Indian commercial, ceremonial, and subsistence harvest of 317,678 (Table A21). The 2014 total annual Columbia River combined net and sport harvest consisted of 95,545 spring Chinook, 24,426 summer Chinook and 498,425 fall Chinook (Table 1.9) salmon.

Table 1.9.-Estimated incidental mortality in Southern US troll, net, and sport fisheries, 2012-2014.

Fishery	Gear	2014			2013			2012		
		LC	Releases	IM	LC	Releases	IM	LC	Releases	IM
Juan de Fuca	Net	1,306	NA	104	449	NA	36	1,523	NA	122
	Sport	12,986 ${ }^{1}$	32,513	10,596	15,601	39,059	12,730	13,854	28,235	9,576
	Troll	4,200	NA	105	3,295	NA	82	2,339	NA	58
Total		18,492	32,513	10,806	19,345	39,059	12,848	17,716	28,235	9,756
San Juans	Net	6,666	3,922	3,671	3,872	12,065	9,962	441	218	210
	Sport	7,189	6,743	2,849	9,609	9,013	3,809	5,764	5,688	2,360
Total		13,855	10,665	6,520	13,481	21,078	13,771	6,205	5,906	2,570
Puget Sound	Net	48,713	NA	3,897	103,791	NA	8,303	114,763	NA	9,181
	Sport	29,507	90,366	28,497	36,656	112,260	35,401	22,036	115,056	34,030
Total		78,220	90,366	32,394	140,447	112,260	43,704	136,799	115,056	43,211
Wash. Inside Coastal	Net	39,514	NA	790	31,111	NA	622	29,232	NA	585
	Sport	11,058	NA	763	10,188	NA	703	9,646	NA	666
Total		50,572	-	1,553	41,299	0	1,325	38,878	0	1,250
Columbia River--Spring	Net	38,398	10,944	4,216	22,095	4572	1,943	47,463	6780	3,322
	Sport	57,147	8,241	5,582	30,088	3,064	2,686	66,910	4,222	5,457
Summer	Net	22,377	-	671	15,624	0	469	9,562	0	287
	Sport	2,049	3,355	554	1,097	9,613	1,258	2,553	7,281	1,072
Fall	Net	370,435	4,123	12,313	341,464	0	10,244	184,886	0	5,547
	Sport	127,990	25,295	13,688	123,005	20,563	12,435	75,656	6,189	6,409
Total		618,396	51,959	37,025	533,373	37,812	29,035	387,030	24,472	22,093
WA/OR North Falcon	Sport	42,327	60,607	10,234	30,837	32,048	5,640	35,428	42,874	7,388
	Troll	116,489	NA	2,912	91,915	NA	2,298	99,792	NA	2,495
Total		158,816	60,607	13,146	122,752	32,048	7,938	135,220	42,874	9,882
Oregon Inside	Sport	47,268 ${ }^{2}$	NA	3,262 ${ }^{2}$	36,125	NA	2,493	26,272	NA	1,813
	Troll ${ }^{3}$	847	NA	21	1,188	NA	30	636	NA	16
Total		48,115	NA	3,283	37,313	NA	2,523	26,908	NA	1,829
GRAND TOTAL		986,466	246,109	104,727	907,202	242,257	111,087	748,756	216,543	90,591

Note: NA = Not available.
${ }^{1}$ WDFW Catch Record Card estimates of LC were not yet available; LC and releases for 2014 were computed using 2010-2013 mean values.
${ }^{2}$ Values for 2013 and 2014 LC and IM are estimates based on averages, not actual observed values. These will become available after the timeframe required for this report.
${ }^{3}$ The value represented by Troll is the concentrated fishery off of the mouth of the Elk River which is designed to specifically exploit returning Elk River Chinook salmon.

1.3.2.6. Oregon Coast Terminal

Most harvest in ocean fisheries off Oregon's coast is comprised of a mixture of southern Oregon and California Chinook salmon stocks not included in the PSC agreement. These stocks usually do not migrate north into the PSC jurisdiction to any great extent. Chinook salmon originating from Oregon streams north of Cape Blanco migrate north, and a majority of these populations are designated as the NOC aggregate and are included in the CTC Chinook model. On the mid-Oregon coast south of the NOC to north of Cape Blanco is a smaller population group designated as Mid-Oregon Coastal (MOC) aggregate populations. The NOC stocks are harvested only incidentally in Oregon ocean fisheries, while the contribution of MOC stocks to Oregon and Washington ocean fisheries is greater (based on CWT distribution data). Catch
statistics for MOC are readily available for only one terminal ocean area troll fishery on a hatchery supplemented stock at the mouth of the Elk River. Late season (October to December) troll catch in the Elk River terminal troll fishery in 2014 was 847 Chinook salmon.

Sport catch of these two stock groups occurs primarily in estuary and freshwater areas as mature fish return to spawn, and catch is reported through a punch card accounting system. These estimates become available more than two years after the current season. Therefore, inriver and estuary sport catch punch card estimates are provided through 2012 only for the NOC. The 2012 punch card estimate of estuary and freshwater catch for the NOC group is 26,272 Chinook salmon. However, catch projections have been made for 2013 and 2014 using correlations between escapement and punch card catch estimates for past years; these preliminary estimates of terminal sport catch for 2013 and 2014 are presented in Table 1.9. Historical catch estimates for the troll fishery targeting Elk River and the estuary and freshwater sport fisheries targeting on NOC stocks are shown in Table A22.

1.3.3. Estimates of Incidental Mortality for Southern US Fisheries

Table 1.9 shows estimates of IMs for southern US fisheries in marine and river fisheries in Puget Sound, on the Washington and Oregon coast north of Cape Falcon, Oregon coast terminal fisheries, and in the Columbia River fisheries. IM was calculated using the release mortality, drop-out, and drop-off mortality rates assigned for areas and gears in CTC (1997). Number of fish released is from creel interviews, voluntary trip reports, fishery monitoring, or extrapolated from similarly structured fisheries with known release information.

1.4. Summary of 2014 Coastwide Landed Catch, Incidental Mortality, and Total Mortality in Pacific Salmon Commission

FISHERIES

Table 1.10 provides a coastwide summary of Chinook salmon catches and estimates of IM and TM in PST fisheries for 2014. It should be noted, for some component fisheries, that current 2014 LC and IM are not yet available; the preliminary estimates of LC and IM will be updated in future reports as observed data become available.

The preliminary estimate of total LC of Chinook salmon for all PST fisheries in 2014 is 2,058,559; $1,418,770$ were taken in US fisheries and 639,789 were taken in Canadian fisheries (Table 1.10). Total estimated IM associated with this harvest was 249,703 Chinook salmon (11\% of the TM) in nominal fish. The TM for all PST fisheries in nominal fish was 2,308,263 Chinook salmon which is approximately 550,000 more than recorded for 2013 (Table A25). Of the 2,308,262 total PSC TM estimated for 2014, 1,584,876 occurred in US fisheries and 723,386 occurred in Canadian fisheries. For US fisheries, 70% of the LC and 69% of TM occurred in ISBM fisheries; in Canada, 37% of the LC and 39% of TM occurred in ISBM fisheries. Data for calculating summary information contained in Table 1.10 for 2014 and previous years can be found in Table A23, Table A24, and Table A25.

Table 1.10.-Summary in nominal fish of preliminary estimates for landed catch (LC), incidental mortality (IM), and total mortality (TM) for US and Canada AABM and ISBM fisheries in 2014.

Fishery	$\mathbf{2 0 1 4}$		
	LC	IM	TM
SEAK AABM	432,304	61,379	493,683
SEAK hatchery add-on and terminal exclusion	53,072	8,095	61,617
US ISBM	986,466	104,727	$1,091,193$
US TOTAL 1	$1,418,770$	166,106	$1,584,876$
NBC AABM	216,901	17,276	234,177
WCVI AABM $^{\text {CANADA ISBM }}$	188,374	17,088	205,462
CANADA TOTAL	234,514	49,233	283,747
PST FISHERIES TOTAL ${ }^{1}$	639,789	83,597	723,386

[^0]
2. Chinook Salmon Escapements

The Agreement established a Chinook salmon management program that
introduces catch regimes that are based on estimates of Chinook salmon abundance, that are responsive to changes in Chinook salmon production, that take into account all fishery induced mortalities and that are designed to meet MSY or other agreed biologically based escapement objectives...

This chapter compares annual escapement estimates with MSY or other agreed biologically based escapement goals established for Chinook salmon stocks. The CTC has reviewed and accepted escapement goals for 22 stocks included in this report.

This annual report includes a section on the framework used for escapement assessments and narratives for each stock that includes a description of escapement methodology, escapement goal basis, and agency comments.

Escapement goals accepted by the CTC were based on analyses that followed the guidelines developed in the CTC escapement goal report (CTC 1999). In the stock-specific narratives presented with the escapement graphs, only CTC-accepted escapement goals and ranges (in gray shading) are shown on the escapement graphs and used for evaluation. Table 2.1 presents the status of escapement goal reviews by the CTC for stocks identified as escapement indicator stocks.

2.1. Escapement Goal Assessments

The Agreement (Annex IV, Chapter 3, Paragraph 2.b.iii) directs the CTC to
report annually on the escapement of naturally spawning Chinook salmon stocks in relation to the agreed escapement objectives referred to below, evaluate trends in the status of stocks, and report on progress in the rebuilding of naturally spawning Chinook salmon stocks...

Stock-specific graphs of escapements and commentaries are presented in this report to provide a perspective on stock status and escapement trends through 2014.

The escapement goals and 2013-2014 escapements for the 22 stocks with CTC-accepted escapement goals are listed in Table 2.2. For eight of these stocks, the agency escapement goal is defined as a range; for the remaining 14 stocks, the escapement goal is defined as a point estimate. In 2014, escapements were within the goal range for three stocks, above the range or Smsy point estimate for nine stocks, and below the goal for 10 stocks.

The CTC has now assessed the status of stocks with CTC-accepted goals for return years 19992014. Over this time period, the number of stocks with CTC-accepted goals has increased from 15 to 22 (Figure 2.1). From 1999 to 2014, the percentage of stocks that met or exceeded escapement goals or goal ranges has varied from 50% to 96%. In 2014, the percentage of stocks that met or exceeded goal was 55%. Of the 10 stocks below goal, six stocks (Situk, Alsek, Chilkat, Unuk, Quillayute fall, and Grays Harbor fall) were within 15% of the target goal. Four stocks were more than 15% below goal: Harrison, Cowichan, Queets spring/summer, and Hoh spring/summer).

Table 2.1.-Pacific Salmon Commission Chinook salmon escapement indicator stocks.

Presence in Treaty Attachments					Stock Group in Attachment I-V	Escapement Indicator	Region ${ }^{1}$	Run
SEAK	$\begin{gathered} \text { NBC/ } \\ \text { QCI } \end{gathered}$	WCVI	$\begin{gathered} \text { BC } \\ \text { ISBM } \end{gathered}$	$\begin{aligned} & \text { SUS } \\ & \text { ISBM } \end{aligned}$				
						Situk	Yakutat	Spring
						Chilkat	N. Inside	Spring
						Unuk	S. Inside	Spring
						Chickamin	S. Inside	Spring
						Alsek	TBR	Spring
						Taku	TBR	Spring
						Stikine	TBR	Spring
\checkmark	\checkmark		\checkmark		North/Central British Columbia	Yakoun	NBC-Area 1	Summer
\checkmark	\checkmark		\checkmark		North/Central British Columbia	Nass	NBC-Area 3	Spring/Summer
\checkmark	\checkmark		\checkmark		North/Central British Columbia	Skeena	NBC-Area 4	Spring/Summer
			\checkmark		North/Central British Columbia	Dean	CBC-Area 8	Spring
						Rivers Inlet	CBC-Area 9	Spring/Summer
\checkmark	\checkmark		\checkmark		WCVI Falls	Artlish, Burman, Kaouk, Tahsis, Tashish, Marble	WCVI	Fall
\checkmark	\checkmark		\checkmark		UGS	Klinaklini , Kakwiekan, Wakeman, Kingcome, Nimpkish	UGS	Summer/Fall
			\checkmark		LGS	Cowichan/Nanaimo ${ }^{2}$	LGS	Fall
\checkmark	\checkmark		\checkmark		Fraser Early ${ }^{3}$ (Spr/Sum)	Fraser Spring 1.3	FR	Spring
\checkmark	\checkmark		\checkmark		Fraser Early ${ }^{3}$ (Spr/Sum)	Fraser Spring 1.2	FR	Spring
\checkmark	\checkmark		\checkmark		Fraser Early ${ }^{3}$ (Spr/Sum)	Fraser Summer 1.3	FR	Summer
\checkmark	\checkmark		\checkmark		Fraser Early ${ }^{3}$ (Spr/Sum)	Fraser Summer 0.3	FR	Summer
		\checkmark	\checkmark	\checkmark	Fraser Late	Harrison	FR	Fall
			\checkmark	\checkmark	North Puget Sound Natural springs	Nooksack	NC/PS	Spring
			\checkmark	\checkmark	North Puget Sound Natural Springs	Skagit Spring	NC/PS	Spring
		\checkmark	\checkmark	\checkmark	Puget Sound Natural Summer/Falls	Skagit Summer/Fall	NC/PS	Summer/Fall
		\checkmark	\checkmark	\checkmark	Puget Sound Natural Summer/Falls	Stillaguamish	NC/PS	Summer/Fall
		\checkmark	\checkmark	\checkmark	Puget Sound Natural Summer/Falls	Snohomish	NC/PS	Summer/Fall
		\checkmark	\checkmark	\checkmark	Puget Sound Natural Summer/Falls	Lake Washington	NC/PS	Summer/Fall
		\checkmark	\checkmark	\checkmark	Puget Sound Natural Summer/Falls	Green	NC/PS	Summer/Fall
\checkmark	\checkmark			\checkmark	Washington Coastal Fall Natural	Hoko	WAC/JDF	Fall
						Quillayute Summer	WAC/JDF	Summer
\checkmark	\checkmark			\checkmark	Washington Coastal Fall Natural	Quillayute Fall	WAC/JDF	Fall

Table 2.1.-Page 2 of 2.

Presence in Treaty Attachments					Stock Group in Attachment I-V	Escapement Indicator	Region ${ }^{1}$	Run
SEAK	$\begin{gathered} \text { NBC/ } \\ \text { OCI } \end{gathered}$	WCVI	$\begin{gathered} \text { BC } \\ \text { ISBM } \end{gathered}$	$\begin{aligned} & \text { SUS } \\ & \text { ISBM } \end{aligned}$				
						Hoh Spring/Summer	WAC/JDF	Summer
\checkmark	\checkmark			\checkmark	Washington Coastal Fall Natural	Hoh Fall	WAC/JDF	Fall
						Queets Spring/Summer	WAC/JDF	Summer
\checkmark	\checkmark			\checkmark	Washington Coastal Fall Natural	Queets Fall	WAC/JDF	Fall
						Grays Harbor Spring	WAC/JDF	Spring
\checkmark	\checkmark			\checkmark	Washington Coastal Fall Natural	Grays Harbor Fall ${ }^{4}$	WAC/JDF	Fall
						Columbia Upriver Spring	COLR	Spring
\checkmark	\checkmark	\checkmark		\checkmark	Columbia River Upriver Summers	Mid-Columbia Summers	COLR	Summer
\checkmark	\checkmark	\checkmark		\checkmark	Columbia River Falls	Upriver Brights	COLR	Fall
\checkmark	\checkmark	\checkmark		\checkmark	Columbia River Falls	Lewis	COLR	Fall
\checkmark	\checkmark	\checkmark		\checkmark	Columbia River Falls	Deschutes	COLR	Fall
\checkmark	\checkmark			\checkmark	Far North Migrating Oregon Coastal	Nehalem	NOC	Fall
\checkmark	\checkmark			\checkmark	Far North Migrating Oregon Coastal	Siletz	NOC	Fall
\checkmark	\checkmark			\checkmark	Far North Migrating Oregon Coastal	Siuslaw	NOC	Fall
						South Umpqua	MOC	Fall
						Coquille	MOC	Fall

Note: Shading indicates that there is not a CTC-accepted escapement goal.
${ }^{1}$ Refer to List of Acronyms for definitions.
${ }^{2}$ An escapement goal was established for the Cowichan in 2005; a goal for Nanaimo is still pending.
${ }^{3}$ The escapement indicator stocks listed in the Annex tables for this group are Upper Fraser, Middle Fraser, and Thompson. The Fraser River spring/summer group is split into these four escapement indicators to represent the stock group by life history type rather than geographically.
${ }^{4}$ An escapement goal for Grays Harbor fall was provisionally accepted by the CTC in February, 2014.

Table 2.2.-Escapement goals, 2013-2014 escapements, and 2015 forecasts for stocks with CTC-agreed goals.

Stock	Region ${ }^{1}$	Stock Group	Escapement Goal	$\begin{gathered} 2013 \\ \text { Escapement }^{2} \end{gathered}$	$\begin{gathered} 2014 \\ \text { Escapement }^{2} \end{gathered}$	$\begin{gathered} 2015 \\ \text { Forecast }^{2} \end{gathered}$
Situk	SEAK	Yakutat	500-1,000	$\begin{gathered} 912 \\ (182 \%) \\ \hline \end{gathered}$	$\begin{gathered} 475 \\ (95 \%) \\ \hline \end{gathered}$	$\begin{gathered} 619 \\ (124 \%) \\ \hline \end{gathered}$
Chilkat ${ }^{3}$	SEAK	Northern Inside	1,750-3,500	$\begin{aligned} & 1,730 \\ & (99 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & 1,529 \\ & (87 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & 1,700 \\ & (97 \%) \end{aligned}$
Unuk	SEAK	Southern Inside	1,800-3,800	$\begin{aligned} & 1,135 \\ & (63 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & 1,691 \\ & (94 \%) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 1,800 \\ (100 \%) \\ \hline \end{gathered}$
Chickamin (survey index)	SEAK	Southern Inside	450-900	$\begin{gathered} 468 \\ (104 \%) \\ \hline \end{gathered}$	$\begin{gathered} 526 \\ (117 \%) \\ \hline \end{gathered}$	NA
Alsek	$\begin{gathered} \hline \text { SEAK/ } \\ \text { TBR } \\ \hline \end{gathered}$	Transboundary Rivers	3,500-5,300	$\begin{gathered} \hline 5,044 \\ (144 \%) \end{gathered}$	$\begin{aligned} & 3,407 \\ & (97 \%) \\ & \hline \end{aligned}$	NA
Taku ${ }^{3}$	$\begin{gathered} \hline \text { SEAK/ } \\ \text { TBR } \\ \hline \end{gathered}$	Transboundary Rivers	19,000-36,000	$\begin{aligned} & 18,002 \\ & (95 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & 23,532 \\ & (124 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 26,150 \\ & (138 \%) \\ & \hline \end{aligned}$
Stikine ${ }^{3}$	$\begin{gathered} \hline \text { SEAK/ } \\ \text { TBR } \\ \hline \end{gathered}$	Transboundary Rivers	14,000-28,000	$\begin{aligned} & \hline 16,735 \\ & (119 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & 24,360 \\ & (174 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & 30,150 \\ & (215 \%) \\ & \hline \end{aligned}$
Harrison	BC	Fraser River	75,100-98,500	$\begin{aligned} & 42,953 \\ & (57 \%) \end{aligned}$	$\begin{aligned} & 44,686 \\ & (60 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & 33,101 \\ & (44 \%) \\ & \hline \end{aligned}$
Cowichan	BC	Lower Strait of Georgia	6,500	$\begin{aligned} & 4,406 \\ & (68 \%) \end{aligned}$	$\begin{aligned} & 4185 \\ & (64 \%) \end{aligned}$	NA
Mid-Columbia Summers	COLR	Columbia River Summers	12,143	$\begin{aligned} & 68,386 \\ & (563 \%) \end{aligned}$	$\begin{aligned} & 77,982 \\ & (642 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & 73,000^{4} \\ & (601 \%) \\ & \hline \end{aligned}$
Upriver Brights	COLR	Columbia River Falls	40,000	$\begin{gathered} 370,267 \\ (926 \%) \\ \hline \end{gathered}$	$\begin{gathered} 300,088 \\ (750 \%) \\ \hline \end{gathered}$	$\begin{gathered} 230,100^{5} \\ (575 \%) \\ \hline \end{gathered}$
Deschutes Fall	COLR	Columbia River Falls	4,532	$\begin{aligned} & \hline 18,068 \\ & (399 \%) \end{aligned}$	$\begin{aligned} & \hline 17,993 \\ & (397 \%) \end{aligned}$	NA
Lewis	COLR	Columbia River Falls	5,700	$\begin{aligned} & 15,197 \\ & (267 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & 20,808 \\ & (365 \%) \end{aligned}$	$\begin{aligned} & 13,200^{5} \\ & (232 \%) \end{aligned}$
Quillayute Fall	WAC	Washington Coast	3,000	$\begin{gathered} \hline 3,901 \\ (130 \%) \\ \hline \end{gathered}$	$\begin{aligned} & 2,766 \\ & (92 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & 8,500^{4} \\ & (283 \%) \end{aligned}$
Queets Spr/Sum	WAC	Washington Coast	700	$\begin{gathered} 520 \\ (74 \%) \\ \hline \end{gathered}$	$\begin{gathered} 377 \\ (54 \%) \end{gathered}$	$\begin{gathered} 400^{4} \\ (57 \%) \\ \hline \end{gathered}$
Queets Fall	WAC	Washington Coast	2,500	$\begin{aligned} & 2,413 \\ & (97 \%) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 3,670 \\ (147 \%) \\ \hline \end{gathered}$	$\begin{aligned} & 3,200^{4} \\ & (128 \%) \end{aligned}$
Hoh Spr/Sum	WAC	Washington Coast	900	$\begin{gathered} 750 \\ (83 \%) \end{gathered}$	$\begin{gathered} 744 \\ (83 \%) \end{gathered}$	$\begin{gathered} 800^{4} \\ (89 \%) \\ \hline \end{gathered}$
Hoh Fall	WAC	Washington Coast	1,200	$\begin{gathered} \hline 1,269 \\ (106 \%) \\ \hline \end{gathered}$	$\begin{gathered} 1,514 \\ (126 \%) \end{gathered}$	$\begin{aligned} & 2,600^{4} \\ & (217 \%) \\ & \hline \end{aligned}$
Grays Harbor Fall	WAC	Washington Coast	13,326	$\begin{gathered} 12,153 \\ \text { (NA) } \end{gathered}$	$\begin{aligned} & 12,400 \\ & (93 \%) \end{aligned}$	$\begin{aligned} & 26,500^{4} \\ & (199 \%) \end{aligned}$
Nehalem	ORC	Oregon Coast	6,989	$\begin{aligned} & 18,194 \\ & (260 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & 11,452 \\ & (164 \%) \\ & \hline \end{aligned}$	$\begin{gathered} 9,225 \\ (132 \%) \\ \hline \end{gathered}$
Siletz	ORC	Oregon Coast	2,944	$\begin{gathered} \hline 7,364 \\ (250 \%) \\ \hline \end{gathered}$	$\begin{gathered} \hline 8,655 \\ (294 \%) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7,779 \\ (264 \%) \\ \hline \end{gathered}$
Siuslaw	ORC	Oregon Coast	12,925	$\begin{aligned} & \hline 23,411 \\ & (181 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 28,200 \\ & (118 \%) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 22,104 \\ & (171 \%) \\ & \hline \end{aligned}$

${ }^{1}$ Refer to List of Acronyms for definitions
${ }^{2}$ Percentages relative to goals are in parentheses. Escapements below the goal or lower bound of the escapement range are shaded; escapements or forecasts below the 85% threshold applicable to Attachment I-III are bold.
${ }^{3}$ The forecast for Chilkat River Chinook salmon is an inriver run forecast and not a forecast of escapement; the forecasts for Taku and Stikine River Chinook salmon are terminal run forecasts and not forecasts of escapement.
${ }_{5}^{4}$ Forecasts for terminal run rather than escapement.
${ }^{5}$ Projected escapement in 2015 based on estimated escapement in the final preseason inriver harvest model for 2015. Lewis River is calculated as 87% of the estimate of escapement for Lower River Wild management unit.

Figure 2.1.-Number and status of stocks with CTC-accepted escapement goals, 1999-2014.
Note: The Keta, Blossom, and King Salmon rivers and Andrews Creek stocks were dropped as escapement indicator stocks in 2013 and Grays Harbor fall was added in 2014, bringing the total number of stocks with CTC-accepted escapement goals to 22 in 2014.

2.2. Trends for Escapement Indicator Stocks

The evaluation of escapement trends in Chinook salmon was based on the 1999-2014 time series of escapement using a state-space exponential growth model (Dennis et al. 2006) parameterized through restricted maximum likelihood (Humbert et al. 2009), which produces rates of change estimates that are generally superior to those produced through maximum likelihood (Staples et al. 2004). This method, assuming that the true population is generated by stochastic exponential growth, separates both observation error and process noise and produces variances and confidence intervals that fully represent the annual variability associated with environmental stochasticity and sampling or observation error (Humbert et al. 2009). The start year of the selected time period for the characterization of trends was chosen to correspond with the start of the 1999 Agreement; however, coverage of confidence intervals would improve with a longer time series (Humbert et al. 2009). For some stocks, the time period of the escapement time series is started later due to changes in escapement sampling methodology. Thus the analysis of trends is based on escapement estimates produced by the same methodology across the time period or a combination of estimated and calibrated estimates. Stock-specific escapement trends were characterized by the long-term mean rate of change (μ) and corresponding 95% confidence intervals, where $\mu=0.00$ indicates that escapement has been stable on average for the selected time period. If the ratio of process noise and observation error is constant, the confidence intervals represent the interannual variability in escapement rates of change (Humbert et al. 2009). For the purpose of presentation, stocks were grouped into five regions: Southeast Alaska, Transboundary, British Columbia, Washington, and Columbia River-Oregon.

2.2.1. Escapement Trends for Southeast Alaska Stocks

The analysis of escapement trends for the time period 1999-2014 showed that three of the four SEAK stocks of Chinook salmon (Chilkat, Chickamin, Unuk) demonstrated variable escapement trends and were not significantly different from zero (Figure 2.2). Escapements have declined significantly for the Situk stock of Chinook salmon. Poor productivity associated with SEAK Chinook salmon and especially with outside-rearing stocks started with the 2002 brood year and was manifested in the 2008 return year, which has led to some escapements less than goal for the Situk stock of Chinook salmon.

Figure 2.2.-Long-term annual rates of change in escapements for SEAK Chinook salmon stocks.
Note: Squares represent mean rate of change and bars represent 95\% Cls. The color green in the squares indicate these stocks have CTC-accepted escapement goals.

2.2.2. Escapement Trends for Transboundary Stocks

The analysis of escapement trends for the period 1999-2014 showed that all three TBR stocks of Chinook salmon (Alsek, Taku, and Stikine) demonstrated variable escapement trends and were not significantly different from zero (Figure 2.3).

Figure 2.3.-Long-term annual rates of change in escapements for TBR Chinook salmon stocks.
Note: Squares represent mean rate of change and bars represent 95\% Cls. The color green in the squares indicate these stocks have CTC-accepted escapement goals.

2.2.3. Escapement Trends for Canadian Stocks

Long-term rates of change in escapement for Canadian stocks were based on 1999-2014 time series of escapement for 15 of the 17 stocks evaluated. Escapement time series started for Lower Shuswap in 2000 and Nanaimo in 2005, due to changes in escapement estimation methodologies. Few Canadian stocks exhibited positive or negative tendencies in long-term rates of change in escapement generally due to large variability in annual rates of change (as indicated by the $95 \% \mathrm{Cls}$; Figure 2.4). Ten stocks showed negative mean rates of change but only Harrison, which has a CTC-agreed escapement goal, showed a clear negative trend. Stocks that showed a positive long-term rate of change in escapement include Fraser Summer 0.3, Wannock, and the WCVI 6-Stream Index. Chinook salmon from Fraser Summer 0.3, Harrison, Wannock, and WCVI 6-Stream Index exhibited the lowest variability in annual rates of change in escapement, whereas Chinook salmon from Chuckwalla-Killbella, Fraser Spring 1.2, Fraser Spring 1.3, Fraser Summer 1.3, Nanaimo, and Nicola exhibited the largest variability amongst all Canadian stocks. The highest annual long-term mean rate of change in escapement for a Canadian stock was 6.9% for Chinook salmon from the Wannock River, and the lowest mean rate of change in escapement was -10.5% for Chinook salmon from the Chuckwalla-Killbella aggregate.

British Columbia

Figure 2.4.-Long-term annual rates of change in escapements for Canadian Chinook salmon stocks.
Note: Squares represent mean rate of change and bars represent 95\% Cls. The color green in the squares indicate these stocks have CTC-accepted escapement goals, grey colored squares indicate the stocks do not have CTCaccepted escapement goals. Escapement time series for Nanaimo started in 2005 due to changes in escapement estimation methodologies.

2.2.4. Escapement Trends for Washington Stocks

The analysis of escapement trends for the period 1999-2014 revealed several noteworthy patterns for Puget Sound and Washington Coastal escapement indicator stocks (Figure 2.5). Of the seven Puget Sound indicator stocks, rates of change in escapement have declined significantly for three stocks (average annual rate of change -4.1% for the Stillaguamish, -5.4% for Snohomish, -10% for Green). Confidence intervals around the rates of change, as well as
point estimates, for the remaining four Puget Sound indicator stocks indicate that escapements have not trended consistently in either direction. However, due to widely varying escapements, there is considerable uncertainty around rate of change estimates for Skagit River summer/fall Chinook and Nooksack spring Chinook salmon. Although Puget Sound indicator stocks have largely met their agency management objectives (i.e., exploitation rate ceilings) for the time period under consideration, none of them have CTC-approved escapement goals against which trends can be considered. In contrast, none of the nine Washington Coast indicators stocks showed a significant trend in escapement for the 1999-2013 period (i.e., $95 \% \mathrm{Cl}$ inclusive of 0; absolute annual rate of change $<5 \%$ for all). Six of the coastal indicator stocks have CTCapproved goals, which have been consistently met for summer/fall (Queets, Quillayute, Hoh), but not spring/summer (Hoh, Queets) run timing groups. Three of the stocks-Hoko, Hoh, and Grays Harbor—have wide confidence intervals relative to other coastal indicator stocks. In the case of the Hoh and Queets spring/summer Chinook, despite regularly missing goals and returning at levels consistently lower than what was seen historically, the rates of change in escapement of these stocks were not significantly different from zero, which indicates that escapement is stable.

Figure 2.5.-Long-term annual rates of change in escapements for Washington Chinook salmon stocks.
Note: Squares represent mean rate of change and bars represent 95\% Cls. The color green in the squares indicate these stocks have CTC-accepted escapement goals, grey colored squares indicate the stocks do not have CTCaccepted escapement goals. The 2013 Nooksack spring escapement estimate was not available for this analysis.

2.2.5. Escapement Trends for Columbia River/Oregon Stocks

Long-term annual rates of change averaged 12% for the six Columbia River stocks, and ranged from 6% (Deschutes) to a high of 16% (Columbia Upriver Springs). During the same period, longterm annual rates of change for five Oregon Coast stocks averaged 4\%, ranging from 1% for Siuslaw to 9\% for Umpqua (Figure 2.6).

Figure 2.6.- Long-term annual rates of change in escapements for Columbia River/Oregon Chinook salmon stocks.

Note: Squares represent mean rate of change and bars represent 95\% Cls. The color green in the squares indicate these stocks have CTC-accepted escapement goals; grey colored squares indicate the stocks do not have CTCaccepted escapement goals.

2.3. Profiles for Escapement Indicator Stocks

Graphs of time series of escapements for Chinook salmon stocks are included in sections for Alaska, Canada, Puget Sound, Coastal Washington, Columbia River, and Oregon Coast. For each stock, there is a commentary describing the escapement methodology, escapement goal basis, escapement evaluation and agency comments. Escapement is usually reported in adults by calendar year (CY). All escapement goals accepted by the CTC are shown. Historical escapement and terminal run data are provided in the appendices for SEAK stocks (Table B1), TBR Stocks (Table B2), Canadian stocks (Table B3 to Table B6), Puget Sound (Table B7), Washington Coastal stocks (Table B8), Columbia River stocks (Table B9 and Table B10) and Oregon Coastal stocks (Table B11 and Table B12).

2.3.1. Southeast Alaska Stocks

There are four SEAK escapement indicator stocks. The Situk, Chilkat, Unuk and Chickamin rivers include escapement estimates of large fish, defined as Chinook salmon equal to or greater than 660 mm length from mid eye to tail fork, and defined as Chinook salmon age-1.3 and older for the Chilkat stock. Estimates of large fish include mostly ocean age-3, -4, and -5 fish, which include almost 100% of the females in the population, and do not include ocean age-1 males. The length threshold criteria also contain a small proportion of ocean age- 2 fish. Survey methods have been standardized for these systems since 1975 except for the Chilkat River, which was standardized in 1991 concurrent with the initiation of mark-recapture (MR) escapement estimation. Escapement estimates for the Chickamin River are expanded aerial counts of large spawners. Biological escapement goals are in place for each of these stocks which contain an $\mathrm{S}_{\text {MSY }}$ point estimate and an escapement goal range.

The SEAK stocks can be classified into two broad categories, inside rearing and outside rearing, based on ocean migration patterns. Outside-rearing stocks have limited marine rearing time in

SEAK and are harvested primarily during their spawning migrations through marine waters in the spring; this includes the stock returning to the Situk River. Inside-rearing stocks include those vulnerable to SEAK fisheries as immature fish, as well as mature, migrating fish, and include stocks returning to the Chilkat, Unuk, and Chickamin rivers. Recoveries of CWTs germane to the Unuk River have also been reported in NBC fisheries. There is also some overlap within the inside/outside rearing classifications. All SEAK indicator stocks produce primarily yearling smolt except the Situk River, which produces around 90% subyearling smolt.

As a response to low abundance, a 15 -year rebuilding program was established by the ADF\&G in 1981 (ADF\&G 1981). At the same time, ADF\&G established interim point escapement goals for all the SEAK stocks based on the highest observed escapement count prior to 1981. ADF\&G has since performed more rigorous escapement goal analyses that have been reviewed and accepted by the CTC. ADF\&G uses escapement goal ranges for management which conforms to the ADF\&G Salmon Escapement Goal Policy and Sustainable Salmon Fisheries Policy.

2.3.1.1. Southeast Alaska Stocks

2.3.1.1.1. Situk River

The Situk River is a nonglacial system located near Yakutat, Alaska, that supports a moderatesized, outside-rearing stock of Chinook salmon. Few Situk-origin Chinook salmon are caught in PST fisheries other than in directed sport, commercial, and subsistence fisheries located inriver, in the estuary, and in nearby marine waters. The fisheries that target this stock fall under a management plan directed to achieve escapements within the range.

Escapement Methodology: Escapements are based on weir counts minus upstream sport fishery harvests (if any), which are estimated from an onsite creel survey and a postseason mail-out survey. The weir has been operated annually since 1976, and was also operated from 1928 to 1955. Counts of large Chinook salmon are reported as the spawning stock. Jacks (ocean-age-1 and -2 fish) are also counted and, since 1989, jack counts (not included in Figure 2.7) have ranged between 1,200 and 4,000 . ADF\&G assessments of the Situk River escapements of Chinook salmon meet US and Bilateral CTC data standards and have continuously done so since 1976.

Escapement Goal Basis: In 1991, ADF\&G revised the Situk River Chinook salmon escapement goal to 600 large spawners based upon a spawner-recruit analysis, ${ }^{1}$ which was reviewed and adopted by the CTC. In 1997, ADF\&G revised the Situk River escapement goal range to 5001,000 large spawners to conform to the department's escapement goal policy. The CTC reviewed and accepted this change in 1998. ADF\&G changed the goal range to 450-1,050 large spawners in 2003; this proposed change was reviewed by the CTC in 2004 but not accepted.

Escapement Evaluation: Productivity of the Situk River stock has significantly declined over the last decade. Annual escapements less than 85% of the goal have occurred in four of the last

[^1]eight years. The 2014 escapement was 475 fish, a level below the PSC goal range yet above the ADF\&G goal. All terminal fisheries were closed to pass as many fish through to escapement as possible. The 2014 escapement is a reduction over the level observed in 2013 and improved over the levels observed from 2010 through 2012. There were no estimated harvests above the weir and this is an exact count of escapement (Figure 2.7).

Agency Comments: Total annual terminal harvest rates (and all harvests within the PSC area) for all gear groups combined averaged about 53\% from 1990 to 2003. Harvest rates have been substantially lower since 2004 because this stock has experienced poor natural survival for recent brood years. Terminal directed fisheries have been curtailed while incidental catches of this stock in sport and commercial fisheries were minimized through nonretention of Chinook salmon from 2010 to 2014.

Figure 2.7.-Situk River escapements of Chinook salmon, 1976-2014.

2.3.1.1.2. Chilkat River

The Chilkat River is a moderate-sized glacial system located near Haines, Alaska, which supports an inside-rearing stock of Chinook salmon. Smolts from this stock have had CWTs applied at relatively high rates (8-10\%) beginning with the 1999 brood year; additional wild stock tagging occurred for three broods prior to that time. Relatively small terminal US marine sport and subsistence fisheries target this stock. This stock is also caught incidentally in sport and commercial drift gillnet and troll fisheries in northern SEAK.

Escapement Methodology: Escapements are based on estimates of large spawners from a MR program conducted annually since 1991 (Ericksen and McPherson 2004). The escapement data are relatively precise with CVs for annual escapement estimates averaging about 15\% since 1991. Since 1991, escapement assessments for Chilkat River Chinook salmon have continuously met US CTC data standards and in most years have met CTC Bilateral data standards. In 10 of
the last 23 years the CV was 15% or less, with the highest CV being 21% in 1995. From 1975 to 1992, aerial survey counts were conducted on two small tributaries with relatively clear water; results from these estimates were inconsistent. Radio telemetry studies conducted in 1991 and 1992 found that spawners in these two tributaries represented less than 5\% of the total escapement, and did not represent trends in abundance and the aerial surveys were discontinued.

Escapement Goal Basis: The 1981 escapement goal was set at 2,000 large fish, based on an assumed fraction of the total escapement represented by discontinued survey counts. Ericksen and McPherson (2004) recommended a revised escapement goal range of 1,750-3,500 large Chinook salmon spawners, based on the MR estimates of escapement and limited CWT information available for this stock. This goal range was reviewed and adopted by ADF\&G and the Alaska Board of Fish in 2003 and subsequently reviewed and accepted by the CTC in 2004.

Escapement Evaluation: The Chilkat River stock is reasonably healthy with annual escapements of at least 85% of the goal in all years except in 2007. The 2014 escapement estimate was 1,529 (CV = 20\%) Chinook salmon, 87% of the lower bound of the escapement goal range. This stock, like others in Alaska, has recently experienced a decline in productivity (Figure 2.8).

Agency Comments: Available CWT information on this stock suggests that exploitation is about 20\% for recent brood years from the CTC exploitation rate analysis. Escapements since 1991 have been within or above the escapement goal range in all years except 2007, and 2012-2014.

Figure 2.8.-Chilkat River escapements of Chinook salmon, 1991-2014.

2.3.1.1.3. Unuk River

The Unuk River is a moderate-sized glacial system that supports an inside-rearing stock of Chinook salmon. Escapements are estimates of total escapement of large spawners. Harvests of immature and mature fish occur in SEAK and NBC fisheries. From 2005 to 2014, the harvest rate has averaged 37%, and by gear sector has been 31% SEAK troll, 6% SEAK sport, 5% SEAK net and most of the remainder, 1\%, caught in NBC, trawl surveys, PNP and terminal fisheries. Coded wire tagging of this stock was conducted for the 1982 to 1986 (Pahlke 1995) and 1992 to present broods; this stock is also an exploitation rate indicator stock.

Escapement Methodology: Escapements of large spawners are MR estimates of total escapement from 1997 to 2011, and expanded survey counts from 1977 to 1996 and 2012 to 2014. Radio telemetry studies in 1994 and 2007 showed that the surveys are conducted in stream reaches where 80\% of the spawning occurs; the expansion factor for survey counts is 4.83 (Hendrich et al. 2008). Escapement assessments for Unuk River Chinook salmon meet US CTC data standards. Since 1997, CVs of estimates have averaged 11\%; in those 17 years, 14 of the annual estimates had CVs of 15% or less; the four annual estimates with CVs exceeding 15% were 16% in 2010, 16% in 2012 and 2014, and 21% in 2011.

Escapement Goal Basis: In 1994, ADF\&G revised the Unuk escapement goal to 875 large spawners in survey (index) counts, based upon the spawner-recruit analysis reported by McPherson and Carlile (1997), which the CTC reviewed and accepted in 1994. In 1997, ADF\&G revised the goal to a range of 650-1,400 large index spawners as recommended in the McPherson and Carlile (1997) report and in compliance with the ADF\&G Escapement Goal Policy. The CTC reviewed and accepted this change in 1998. Since the expansion factor for surveys was unknown at that time, the goal was expressed as an index peak survey count. In 2008, a more extensive analysis was done with spawners, recruitment, and fishing mortality expressed in total numbers of fish because of the extensive number of MR estimates of escapement and CWT data available (Hendrich et al. 2008). The analysis included the 19822001 brood years. The CTC-accepted a range of 1,800-3,800 large spawners, with a point estimate of 2,764 in 2009.

Escapement Evaluation: The Unuk River stock has demonstrated a healthy status with annual escapements from 1977 to 2011 within or above the escapement goal range in all years. However, productivity of the stock has declined in recent years and since 2012 escapements have been below goal. The 2014 escapement estimate is 1,691 large Chinook salmon (CV = 16%) which is 94% of the lower end of the goal range (Figure 2.9).

Agency Comments: The recent reduction in productivity of Chinook salmon stocks in Alaska has been recognized and ADF\&G as the management agency is being challenged to respond to reduced run strength in many parts of the state. The large reduction in run strength of the Unuk stock in 2012 and 2013 was unexpected, given its past history. There are no directed fisheries that target this stock; sport fishing in freshwater is closed, marine sport fishing in East Behm Canal is closed during the spring and summer, and commercial fishing in nearby marine waters is closed. Additional management measures to reduce exploitation of this stock in the SEAK fishery were implemented in 2014 and will continue in 2015.

Figure 2.9.-Unuk River escapements of Chinook salmon, 1977-2014.

2.3.1.1.4. Chickamin River

The Chickamin River is a moderate-sized glacial system that supports a run of inside-rearing Chinook salmon, based on wild stock CWTs. There is no terminal fishery targeting this stock; harvests of immature and mature fish occur in marine SEAK and NBC fisheries, with the majority of harvests taken in the southern inside quadrant of SEAK by troll and sport gear sectors. There is no subsistence or freshwater fisheries on any of the Behm Canal Chinook salmon stocks. Coded wire tagging on the Chickamin River was conducted for the 1982 to 1986 broods (Pahlke 1995) and resumed for the 2000 to 2006 broods. Total exploitation rates for recent broods were about 28% to 30% in adult equivalents under the current management regime.

Escapement Methodology: Escapements consist of MR estimates of large fish in 1995, 1996, and 2001 to 2005 and expanded survey counts in eight tributaries of the Chickamin River using standardized methodology (Pahlke 2003) from 1975 to 1994, 1997 to 2000, and 2006 to 2014.

Comparison of MR and survey counts found that about 21% of the total escapement is counted during peak surveys on average (Weller et al. 2007). A radio telemetry study in 1996 indicated that the annual surveys are conducted in stream reaches where over 80% of all spawning occurs. The expansion factor is estimated at 4.75 for survey counts using the results from the 1995, 1996, and 2001 to 2005 studies and these assessments meet both US and bilateral CTC data standards.

Escapement Goal Basis: In 1994 ADF\&G revised the goal to 525 large index spawners, which expands to an escapement goal of 2,150 to 4,300 large spawners as recommended in the McPherson and Carlile (1997) report. The index count and escapement goal were reviewed and accepted by the CTC in 1998.

Escapement Evaluation: The Chickamin River stock is reasonably healthy while showing a cyclic pattern of escapement since 1975. Annual escapements less than 85% of the goal have occurred eight times since 1975, all of which occurred before 1998. The 2014 escapement index was 526 large spawning Chinook salmon, within the escapement goal range. This index count is not expanded to an estimate of total escapement and has no associated variance, accordingly (Figure 2.10).

Agency Comments: By size, these are the largest Chinook salmon of the four SEAK escapement indicator stocks. The time series of survey counts follows two cycles: counts from 1975 to 1981 and 1992 to 1998 were below the goal range, and those from 1982 to 1991 and 1999 to 2011 were all within or slightly above the range. The 2013 and 2014 escapements for this stock were slightly higher than the recent low point observed in 2012. Overall, The Chickamin stock has shown different escapement patterns than the majority of SEAK Chinook salmon stocks.

Figure 2.10.-Chickamin River peak index counts of Chinook salmon, 1975-2014.

2.3.2. Transboundary River Stocks

The TBR stocks include the Alsek, Taku, and Stikine river stocks of Chinook salmon. Escapement estimates in the Taku and Stikine rivers are germane to large fish, defined as Chinook salmon equal to or greater than 660 mm length mid eye to tail fork. Escapements are mostly ocean age-3, -4 , and -5 fish, which include almost 100% of the females in the population. Survey methods have been standardized for these systems since 1973 in the Taku River, and since 1975 in the Alsek and Stikine rivers. Biological escapement goals are in place for each of these stocks which consist of point estimates of $\mathrm{S}_{\text {MSY }}$ and escapement goal ranges.

All three TBR stocks can be classified as outside rearing based on ocean rearing distributions. These fish have limited marine rearing time in SEAK and are harvested primarily during their
spawning migrations each spring. These fish are also mostly yearling smolt and return as ocean age-1 through ocean age-5 adults.

In response to low abundance, a 15 -year rebuilding program was established by the ADF\&G in 1981 (ADF\&G 1981). At the same time, ADF\&G established interim escapement goals for all three systems, based on the highest observed escapement count prior to 1981. ADF\&G and DFO have subsequently revised escapement goals for the three TBR stocks which have been reviewed and accepted by the CTC, Canadian Centre for Science Advice Pacific, and the TBR Panel. ADF\&G uses escapement goal ranges for management which conforms to the ADF\&G Salmon Escapement Goal Policy and Sustainable Salmon Fisheries Policy.

2.3.2.1. Alsek River

The Alsek River is large transboundary glacial system that originates in Canada in the SW Yukon Territory and NW British Columbia, and flows into the Gulf of Alaska about 50 miles east of Yakutat, Alaska. This river supports a run of outside-rearing Chinook salmon.

Escapement Methodology: Since 1976, escapements have been monitored by a weir operated in Canada at the Klukshu River, one of 51 tributaries of the Tatshenshini River, the principal salmon-producing branch of the Alsek River. At the Klukshu River weir, escapement estimates, germane to Chinook salmon age-1.2 and older, have been based on counts of returning Chinook salmon from 1976 to 1997. Alsek River-wide escapement estimates were produced from 1998 to 2004 using direct MR. The average expansion factor used to convert Klukshu River weir counts into Alsek River wide estimates of escapement is 4.00 . The MR estimates were cooperative stock assessment efforts among the Champagne Aishihik First Nations, DFO, and ADF\&G. The 1975-1997 and 2005 to present Klukshu River weir counts have been expanded to represent Alsek River drainagewide escapement, based on the expansion factor calculated during the MR years. The Alsek Chinook salmon escapement assessments meet US CTC data standards; however, they fail to meet Bilateral CTC data standards due to the CVs ranging from 24% to 61\%.

Escapement Goal Basis: A revised goal of 3,500 to 5,300 total spawners (fish age 1.2 and older) was accepted by the CTC, ADF\&G, and Canadian Science Advisory Pacific, based on analysis in Bernard and Jones (2010). Prior to this, the goal was based on the escapement counted through the Klukshu River weir (McPherson et al. 1998).

Escapement Evaluation: Annual escapements of less than 85\% of the goal have occurred four times since 1976, and all have occurred in recent years. These poor escapements appear to be the result of reduced productivity that has occurred in most of the last decade. Known harvest rates exerted on the stock are very small. If no harvest had occurred in 2006, 2007, 2008, and 2012, the stock would still have failed to achieve the lower bound of the escapement goal range. The 2014 escapement was estimated at $3,407(C V=0.35)$ large Chinook salmon, which was 97% of the lower bound of the escapement goal range (Figure 2.11).

Agency Comments: Directed Canadian sport and Aboriginal fisheries occur in Canada in various upriver sections of the Alsek River. Some Chinook salmon are caught as bycatch in the US sockeye salmon directed fishery that takes place inriver near the estuary and within the estuary. A few Chinook salmon are also caught in a US subsistence fishery that takes place in
the same area as the US sockeye fishery. Annual harvest rates have averaged only 12% since 1976 (Bernard and Jones 2010).

Figure 2.11.-Alsek River escapements of Chinook salmon, 1976-2014.

2.3.2.2. Taku River

The Taku River is a large Transboundary glacial system that supports a run of outside-rearing Chinook salmon. Few Taku River origin Chinook salmon are caught in PST fisheries other than in terminal areas including District 11 of Southeast Alaska and in the Canadian portion of the lower river itself. Directed gillnet fisheries take place in US and Canadian terminal areas when forecasted abundance or inseason assessments exceeds predetermined levels as described in the Agreement under Chapter One, Transboundary Rivers 3(b)(3). In other years, Taku River origin Chinook salmon are also incidentally harvested in sockeye directed gillnet fisheries in terminal waters (District 11 of Southeast Alaska and inriver in Canada), in sport fisheries near Juneau Alaska, and in inriver First Nation fisheries in Canada.

Escapement Methodology: Escapement estimates of large Chinook salmon have been generated through MR experiments in 1989, 1990, 1995 to 1997, 1999 to 2012, and 2014. The MR estimates are cooperative stock assessment efforts among the Taku River Tlingit First Nations, DFO, and ADF\&G. Taku Chinook salmon escapement assessments are unbiased, have an average CV of 15\%, and meet the US CTC data standards. Annual estimates since 1995 have CVs that range from 9% to 38% with 80% of the annual estimates meeting Bilateral CTC standards. Standardized aerial survey counts by ADF\&G have been conducted annually since 1973. Counts prior to 1989, from 1991 to 1995, 1998, and in 2013 were expanded by a factor of 5.2 , which is the average of the ratio of the MR estimates to aerial survey counts. Escapement estimates based upon expanded aerial survey counts are assumed unbiased and have a CV of about 30%.

Escapement Goal Basis: Prior to 1999, several systemwide or index goals were developed by the US and Canada based upon limited data. A goal based upon maximizing smolt production was in place from 1999 to 2009 (McPherson et al. 2000). In 2009, an escapement goal of 19,000 to 36,000 large Chinook salmon, based upon stock-recruit analysis (McPherson et al. 2010) was accepted by the CTC.

Escapement Evaluation: The Taku River stock is reasonably healthy with annual escapements of less than 85% of the goal occurring only three times since 1975 (1975, 1983, and 2007). Exploitation rates on the stock have never exceeded the MSY exploitation rate level. The 2014 escapement estimate is $23,532(C V=9 \%)$ large Chinook salmon, which exceeds the lower bound of the escapement goal range (Figure 2.12).

Agency Comments: Taku River Chinook salmon are both an escapement and an exploitation rate indicator stock. Since 2005, during years of substantial directed Chinook salmon fishing, total harvest rates on Taku River Chinook salmon have ranged from 30\% to 40\%. Most harvests occur in the US commercial gillnet and sport fisheries in Alaska in District 111 near Juneau and inriver in Canada in commercial gillnet and Aboriginal fisheries. Taku Chinook salmon are also harvested in SEAK spring troll fisheries. Currently DFO and ADF\&G operate joint programs to coded-wire-tag smolts in order to estimate smolt abundance and adult production, as well as to estimate exploitation rates. Wild smolt have been marked with CWTs (1976-1981 and 1993present), and recoveries in fisheries and on the spawning grounds are used to estimate exploitation rates and production. Historically, a significant terminal marine gillnet fishery occurred, but stock assessment was not adequate for management. In 2005, the Parties developed an abundance-based management regime for Taku River-origin Chinook salmon with harvest sharing. The abundance-based management regime includes preseason forecasts, inseason run projections, and postseason assessments which, when coupled with carefully controlled weekly openings of gillnet fisheries on both sides of the border, has allowed sustained harvest while ensuring escapement needs are not jeopardized by fishing. The Taku River stock of Chinook salmon has demonstrated declining productivity over the past few years; the issue appears to be reduced marine survival. Until these conditions improve, it is unlikely that directed fisheries will be prosecuted and it may be that escapements will fall below the goal range, even with reduced but minor levels of indirect fishing.

Figure 2.12.-Taku River escapements of Chinook salmon, 1975-2014.

2.3.2.3. Stikine River

The Stikine River originates in British Columbia and flows into the ocean in central Southeast Alaska near the towns of Petersburg and Wrangell. The Stikine drainage is the largest in SEAK and supports an outside-rearing stock of Chinook salmon. Starting in 2005, during years of surplus production to the Stikine River, directed Chinook salmon fisheries were allowed in District 108 marine waters near Petersburg and Wrangell and inriver in Canada.

Escapement Methodology: From 1975 to 1984, index escapement estimates were generated using survey counts performed by ADF\&G, and since 1985 counts were made through a weir operated by the Tahltan First Nations at the Little Tahltan River. Since 1996, MR experiments were conducted annually to estimate total escapement. The MR estimates are cooperative stock assessment efforts among the Tahltan First Nations, DFO, and ADF\&G. Combined, these efforts indicated weir counts represented 17% to 20% of the total escapement (Pahlke and Etherton 1999). The Stikine Chinook salmon escapement assessments have met US CTC data standards since 1996 with annual CVs averaging 14\%. In those 19 years, 37% had CVs that exceeded the Bilateral CTC data standard ranging from 16% to 28%.

Escapement Goal Basis: An escapement goal of 14,000 to 28,000 large Chinook salmon (age-3 to age-5 fish) was established in 1999 after review and acceptance by the CTC, ADF\&G, TBR Panel, and Canadian Science Advisory Pacific, based on the analysis in Bernard et al. (2000). Previously, several systemwide or index goals were developed by the US and Canada, and were based on limited data.

Escapement Evaluation: The Stikine River stock is reasonably healthy with annual escapements of less than 85% of the goal occurring six times since 1975 and only once in the past 28 years
(2009). The 2014 escapement estimate is $24,360(C V=15 \%)$ large Chinook salmon, which is within the goal range (Figure 2.13).

Agency Comments: Since 2005 during years of substantial directed Chinook salmon fishing, total harvest rates on Stikine River Chinook salmon have ranged from 45\% to 60\%. Most harvests occur in the US commercial gillnet and sport fisheries in District 108 near Petersburg and Wrangell and inriver in Canada in commercial gillnet and Aboriginal fisheries. Stikine Chinook salmon are also harvested in SEAK spring troll fisheries. Currently DFO and ADF\&G operate joint programs to coded-wire-tag smolt in order to estimate smolt abundance and adult production, as well as estimate exploitation rates. Since 1985, escapements to the Stikine River have been within or above the escapement goal range except in 2009. Despite reaching escapement goals and similar to Taku River Chinook salmon and other stocks in SEAK, the Stikine River stock has demonstrated declining productivity over the past several years; the issue appears to be reduced marine survival. Until production improves, it is unlikely that directed fisheries will be prosecuted and despite minor levels of indirect fishing, it is possible that escapements will fall below the lower bound of the goal range.

Figure 2.13.-Stikine River escapements of Chinook salmon, 1975-2014.

2.3.3. Canadian Stocks

Since the beginning of the Chinook salmon rebuilding program of the 1985 PST, escapement goals for Canadian Chinook salmon stocks were generally based on doubling the average escapements recorded from 1979 to 1982. The doubling was based on the premise that Canadian Chinook salmon stocks were overfished and that doubling the escapement would still be less than the optimal escapement estimated for the aggregate of all Canadian Chinook salmon populations (PSC 1991). Doubling was also expected to be a large enough change in escapements to allow detection of the change in numbers of spawners and the subsequent
production. The escapement goals of most Canadian stocks are currently being reviewed; two stocks (Harrison and Cowichan) have CTC-agreed escapement goals.

2.3.3.1. Northern British Columbia

2.3.3.1.1. Yakoun River

The CTC was unable to assess stock performance because Yakoun River Chinook salmon escapements have not been estimated since 2005. See Appendix Table B3 for escapements up to 2005.

2.3.3.1.2. Nass River

The Nass River is the largest river in Area 3, representing a group of approximately 25 streams. It flows southwest from the British Columbia interior into Portland Inlet and the estuary is only 30 km from the Alaska/British Columbia border. The Nass River drains an area of approximately $18,000 \mathrm{~km}^{2}$ and is constrained by a canyon at Gitwinksihlkw (GW). The canyon was formed by the Tseax Volcano in 1775 and is approximately 40 km upstream from the estuary. The mainstem of the Nass River is extremely turbid with visibility near zero for most of the year. Among the major Chinook salmon producing tributaries, the Bell Irving River is glacially turbid while the Meziadin, Cranberry/Kiteen, Kwinageese and Damdochax rivers are relatively clear. Nass River Chinook salmon are primarily stream-type salmon and are thought to be far north migrating.

Escapement Methodology: Prior to 1992, DFO observations of Nass River Chinook salmon escapement were based on visual counts. Programs using MR have been conducted since 1992 by the Nisga'a Fisheries to estimate total spawning escapement in the Nass River. The Nass MR program uses two fish wheels at GW in the Lower Nass canyon and occasionally two wheels at Grease Harbor further upstream to apply tags. The Meziadin River fishway, a weir on the Kwinageese River and a deadpitch program on the Damdochax River are used for tag recovery. Tags were also recovered in upriver fisheries and on the spawning grounds. A modified Petersen model was used to estimate the total population of Chinook salmon past the tagging location. Spawning escapements were calculated as the estimated Chinook salmon population past GW from the MR studies, minus upriver catches in sport and First Nations fisheries. Three tributaries with Chinook salmon populations-the Kincolith, Ishkeenickh and the Iknouk—enter the Nass River below GW. Visual estimates of these systems were augmented by fence counts of the Kincolith River in 2001, 2002, 2005, and 2007 to estimate escapements below the fish wheels.

Escapement Goal Basis: There is no CTC-accepted escapement goal for this stock. The Fisheries Operational Guidelines define two goals for managing Chinook salmon fisheries: an operational escapement target of 20,000 fish, and a minimum escapement target of 10,000 fish. If escapements are projected to be below 10,000 fish, then no fishing on Nass River Chinook salmon would be recommended. The median estimate of $\mathrm{S}_{\text {MSY }}$ for the Nass River upstream of GW using the habitat model was 16,422 (CV = 23\%) Chinook salmon based on a watershed area of $15,244 \mathrm{~km}^{2}$ (Parken et al. 2006; Figure 2.14).

Agency Comments: Chinook salmon escapement estimates produced before 1992 have been calibrated to the MR estimates. The Nisga'a Fisheries Working group, including DFO, has
accepted the historical escapement and terminal run values. An SSP-funded project on the Kwinageese River and Damdochax Creek (Section 4.5.2 and Appendix C.8) is designed to increase recoveries and improve the escapement estimates for the Nass Chinook salmon aggregate.

Figure 2.14.-Nass River escapements of Chinook salmon, 1977-2014.

2.3.3.1.3. Skeena River

The Skeena River is the second largest river in British Columbia and drains an area of approximately $54,400 \mathrm{~km}^{2}$. It supports the second largest aggregate of Chinook salmon stocks in British Columbia with over 75 separate spawning populations. Four large lake stabilized tributaries, the Kitsumkalum, Morice, Babine and Bear rivers, account for 65% of the total Chinook salmon abundance in the Skeena River. The Kitsumkalum River is glacially turbid and visual methods for enumerating salmon are not appropriate. By comparison, other major Chinook salmon producing tributaries like the Morice, Bear, Babine and Kispiox rivers run relatively clear, especially in late summer when most of the Chinook salmon spawning occurs. Skeena River Chinook salmon are primarily stream-type salmon (approximately 97\%), and are far north migrating. Most of the Skeena River Chinook salmon populations are summer run, but spring run fish occur in the Cedar River and the Upper Bulkley River.

Escapement Methodology: Historically, Chinook salmon escapements to the Skeena River have been represented by an index that includes approximately 40 populations surveyed annually using a variety of techniques (Figure 2.15 solid bars). Most of the escapement estimates are based on visual observations from helicopter, fixed wing aircraft and/or from stream walking surveys but fish counting weirs are present on the Babine, Sustut and Kitwanga rivers. The Kitsumkalum River is the exploitation rate indicator stock for Northern British Columbia, and the population has been estimated using a MR program since 1984. The Kitsumkalum represents approximately 30% of the spawners measured by the Skeena escapement index. The

Bear and Morice river populations have contributed 20\% (Bear) and 26\% (Morice) to the escapement index since 1984. The visual estimates for these systems tend to underestimate their actual contribution to the total escapement in the Skeena aggregate.

Chinook salmon returns to the Skeena River have also been estimated using the proportion of Kitsumkalum River fish measured from genetic samples collected at the Tyee test fishery and from Kitsumkalum Chinook salmon escapement estimates from independent MR programs (Figure 2.15, checkered bars). Preliminary estimates are available from 1984 to 2014 as a result of SSP-funded projects (Appendix C). The genetic-based estimates represent an improvement over the historic indices since they include estimates of variance which cannot be produced for the historic indices. Also, comparisons between years are valid since the method is consistent across the time series, whereas methods used for the historic indices varied through time.

The genetic studies found that the Kitsumkalum River conservation unit contributes, on average, 18% to the Skeena River aggregate. The Morice, Bear and Babine populations make up the Skeena Large Lake conservation unit and contribute 31\% (Morice), 7.4\% (Bear) and 6.6\% (Babine) to the aggregate. An average contribution of 45% makes the Skeena Large Lake conservation unit the largest in the watershed.

Escapement Goal Basis: There is no CTC-accepted escapement goal for the Skeena River aggregate. The estimate of $\mathrm{S}_{\text {MSY }}$ for the Kitsumkalum indicator stock is 8,621 Chinook salmon based on stock-recruitment analyses (McNicol 1999; updated in Parken et al. 2006). Habitatbased estimates of $\mathrm{S}_{\text {MSy }}$ and other reference points are available for stocks within the Skeena River, but estimates of total escapement (or calibration of the visual indices) are needed to make them effective (Parken et al. 2006). Future assessments will partition this large aggregate into stocks by run timing, life history, and geographic areas.

Agency Comments: Terminal fisheries in the Skeena River normally include commercial gillnet in the terminal exclusion area (River Gap Slough, Area 4), inriver sport, and aboriginal fisheries. Estimates of inriver sport catch were not available from 1997 to 2002 but creel surveys were conducted on the Lower Skeena in 2003 and in 2010 through 2014. Consequently, the total terminal run estimates in these years include lower-river sport catch but no estimate of upperriver sport catch. Spawning escapements to the Kitsumkalum River have exceeded the point estimate of $\mathrm{S}_{\text {MSY }}$ in every year since 1998 (Figure 2.16).

Figure 2.15.-Skeena River escapements of Chinook salmon, 1975-2014.

Figure 2.16.-Kitsumkalum River escapements of Chinook salmon, 1984-2014.

2.3.3.2. Central British Columbia

2.3.3.2.1. Dean River

The CTC was unable to assess stock performance because Dean River Chinook salmon escapements have not been estimated since 2011 due to insufficient resources. See Appendix Table B3 for escapements up to 2011.

2.3.3.2.2. Rivers Inlet

The Rivers Inlet escapement index consists of an aggregate of Chinook salmon escapements to the Wannock, Kilbella and Chuckwalla rivers (Figure 2.17). The Wannock River drains Owikeno Lake into the head of Rivers Inlet. It is about 6 km long, over 100 m wide, and is glacially turbid. Wannock Chinook salmon are genetically distinct from other Chinook salmon populations in the central coast of British Columbia. This ocean-type stock exhibits fall run timing and is renowned for its large body size, due to ocean age-4 and ocean age-5 year components in the return. The Kilbella and Chuckwalla river systems share an estuary on the north shore of Rivers Inlet. These systems are relatively small and run clear, but the degree of turbidity is dependent upon precipitation. The Chinook salmon populations in the Chuckwalla and Kilbella rivers have summer run timing and are stream-type salmon. The largest contributor to the index is the Wannock River which represents an average of 76% of the production for this index over the past decade, and over 95\% since 2010.

Escapement Methodology: Chinook salmon escapement estimates for the Wannock River are produced from an annual carcass recovery program. Estimates are derived by expanding the number of carcasses pitched based on historical recovery rate assumptions. Expansion factors are somewhat subjective and take into consideration water clarity, river height, and recovery effort. The visual index estimate for Wannock Chinook salmon in 2014 was 3,740 based on expansion of carcass recoveries during the traditional deadpitch program. Programs to calibrate carcass recoveries with population estimates from MR experiments were conducted from 1991 to 1994 and again in 2000. Results suggest the estimates based on the subjective expansions of carcass recoveries underestimate the Wannock Chinook salmon population by approximately half. Inherent bias as well as imprecision in the MR estimates leads to uncertainty in calibration of the carcass estimates.

Chinook salmon escapements for the Chuckwalla and Kilbella rivers are estimated using area-under-the-curve (AUC) methods applied to visual counts from helicopter surveys. Typically four flights are made during the spawning period. The estimates are preliminary and any revisions will be presented in next year's report. The 2014 estimated escapement to the Kilbella River was 300 and to Chuckwalla River was 150.

Escapement Goal Basis: There is no CTC-accepted escapement goal for these stocks. Habitatbased estimates of $\mathrm{S}_{\text {MSY }}$ and other stock-recruitment reference points are available but estimates of total escapement are needed to make them effective. Habitat-based escapement goals were thought to overestimate $S_{\text {MSY }}$ for the Wannock River because the stock may be limited by the relatively small amount of spawning area available (Parken et al. 2006).

Agency Comments: A small hatchery enhancement program occurs on the Wannock River but the contribution to the total population is unknown. Production from enhancement of the

Kilbella and Chuckwalla rivers from 1990 to 1998 is thought to have had significant influence on escapements from 1994 to 2003, but estimates of the enhanced component are not available. Estimated returns to the Chuckwalla and Kilbella averaged 1300 Chinook salmon during the period of enhancement. Recent returns have averaged less than 500 Chinook salmon for both rivers combined and it is unclear if these populations have returned to pre-enhancement levels or are experiencing an unrelated decline.

Figure 2.17.-Rivers Inlet escapement index of Chinook salmon, 1975-2014, including Wannock River (upper) and Kilbella and Chuckwalla rivers (lower).

2.3.3.2.3. Atnarko River

Following the 2009 PST Agreement, the CWT Improvement Program highlighted the lack of a Chinook salmon indicator in the Central British Columbia region. In order to convert the existing Atnarko Chinook Assessment program into an exploitation rate indicator, a series of objectives were identified including the application of 250,000 additional CWTs, sampling of the terminal commercial, sport, and First Nations fisheries, and reintroduction of a MR program to improve escapement estimates (Velez-Espino et al. 2011). Implementation of these changes began in 2009 (Velez-Espino et al. 2010) and subsequent MR programs have yielded escapement estimates with corresponding CVs of less than 15\% for all years (Velez-Espino et al. 2014).

The Northern/Central CTC model stock group is represented by Kitsumkalum River which is a stream-type stock, while the Atnarko River, which feeds the Bella Coola River and is situated in Statistical Area 8 on the Central Coast of British Columbia, is predominantly an ocean-type stock. It constitutes the largest complex of Chinook salmon in Central British Columbia. Hatchery releases of Atnarko Chinook salmon have averaged around 2 million annually with recent CWT releases in excess of 400,000. Atnarko CWT recoveries occur in both US and Canadian AABM fisheries as well as coastal British Columbia ISBM fisheries.
Escapement Methodology: Three methods have been used since 1990 to generate independent estimates of Chinook salmon escapement in the Atnarko River. These methods are based on (1) CPUE during broodstock collection, (2) carcass counts during dead pitching, and (3) the number of spawners observed during drift boat surveys. The simplicity and low cost of these three methods has allowed the continuous monitoring of Atnarko escapement, and the average of these three population estimates (3MA method) has been used as escapement estimate in years without MR studies. A serious flood event in the fall of 2010 impacted the Atnarko by altering flow dynamics and creating a sequence of obstructive log jams. As a result, the use of rafts to obtain drift counts was no longer feasible. Robust maximum likelihood estimates within a model selection framework have been developed for escapement of total and wild Atnarko Chinook salmon based on MR data for years 2001-2003 and 2009-2013. The 1990-2013 time series of Atnarko Chinook salmon escapement was calibrated using Generalized Linear Models based on these high-quality escapement estimates and data routinely collected for the 3MA method (Vélez-Espino et al. 2014). The estimation model used for time series calibration also serves as a tool to generate reliable escapement estimates based on broodstock CPUE and carcass counts. The calibrated escapement estimates have yielded escapement estimates with corresponding CVs of less than 15\% for all years, except 1995 (17.9\%) and 2006 (15.6\%; Velez-Espino et al. 2014).

Escapement Goal Basis: There is no CTC-accepted escapement goal for Atnarko Chinook salmon. A habitat-based escapement goal (Parken et al. 2006) of 5,009 wild fish has been developed for Atnarko Chinook salmon (Vélez-Espino et al. 2014). This habitat-based escapement goal represents a first iteration in the process of refinement required to quantify the spawning escapement at maximum sustainable yield ($\mathrm{S}_{\mathrm{MSY}}$) for this stock (Figure 2.18).

Agency Comments: The Atnarko River has been developed as an exploitation rate indicator stock (Velez-Espino et al. 2011). MR estimates with corresponding CVs less than 15% have been attained in nine program years (2001-2003 and 2009-2014). The estimation model used for the

1990-2013 time series calibration can also generate reliable escapement estimates based on broodstock CPUE and carcass counts. Counting with a calibrated time series of escapement and an estimation method provides the ability to produce escapement estimates in the future even in the absence of MR data. Future calibrations would be required for years without MR data and will include new data derived from subsequent MR studies. This was not necessary for 2014 because MR studies took place for Atnarko Chinook.

Figure 2.18.-Atnarko River escapements of wild adult (excluding jacks) and total adult (hatchery and wild, excluding jacks) Chinook salmon, 1990-2014.

Note: Estimates for 2001-2003 and 2009-2014 are based on mark-recapture data. Estimates for all remaining years are based on time series calibration via Generalized Linear Models parameterized with MR data, carcass counts and broodstock CPUE (Vélez-Espino et al. 2014).

2.3.3.3. West Coast Vancouver Island and Georgia Strait

2.3.3.3.1. West Coast Vancouver Island

Escapement Methodology: The WCVI index represents the sum of escapements for six rivers (Marble, Tahsis, Burman, Artlish, Kaouk, and Tahsish), which were chosen to provide an index of escapement for wild WCVI stocks in general. These stocks were chosen based on historical consistency of data quality, although the escapement methodology changed in 1995 and prior estimates have not been calibrated to the new methodology. DFO also developed a 14-stream expanded index which includes escapements to the 6 -stream index plus the following WCVI streams: Colonial and Cayegle creeks (Area 26), Leiner (Area 25), Megin, Bedwell/Ursus, Moyeha (Area 24) and Sarita, Nahmint (Area 23), and San Juan (Area 21). In 2005, the Colonial/Cayegle escapement estimate was not available, and was therefore not included in the 14-stream index (Figure 2.19). From 2007 through 2013, a MR program was conducted on the Burman River in addition to the regular swim and foot surveys (Figure 2.20). The Burman River escapement estimate used for the 6-stream and 14-stream indices is the swim and foot survey methodology results, instead of MR estimates. The escapement indices in 2014 were 5,776 Chinook salmon for the 6-stream index and 10,914 for the 14-stream index (Appendix B5).

Over the last decade, the PSC Sentinel Stocks and Endowment Fund programs have conducted several studies aimed at producing high quality escapement estimates that are consistent with the CTC data quality standards (CTC 2013). In 2013 and again in 2014, Canadian Science Advisory Process workshops were held with the objective of evaluating the escapement estimation methodology used to assess the abundance of WCVI indicator stocks. The reviews produced several recommendations for further work and potential improvements. It is anticipated that this work may eventually result in revised escapement data, with measures of precision, which are better quality than the estimates presented in Figure 2.19.

Escapement Goal Basis: There is currently no CTC-accepted escapement goal for this stock group.

Agency Comments: Habitat-based estimates of $\mathrm{S}_{\text {MSY }}$ and other stock-recruitment reference points are available for these stocks (Parken et al. 2006), but estimates of total escapement are needed to make them effective. Escapements have remained low at nonenhanced streams since 1999 despite terminal fishing restrictions in effect in Areas 24-26 from July to September each year. Escapement indices to all nonenhanced Clayoquot Sound and Kyuquot Sound Chinook salmon streams remain below 500 fish.

Figure 2.19.-WCVI 14-stream and 6-stream indices of escapement of Chinook salmon, 1975-2014.
Note: The escapement methodology changed for the 6-stream index in 1995 and prior estimates have not been calibrated to the new methodology.

Figure 2.20.-Burman River escapements of Chinook salmon in years when both agency AUC swim surveys expanded by AUC methods were used (circles) and when mark-recapture estimates (diamonds are point estimates and the bars are 95% CIs) were conducted with funding from the PST.

2.3.3.3.2. Upper Strait of Georgia

The Upper Strait of Georgia (UGS) stock index consists of five rivers (Klinaklini, Kakweiken, Wakeman, Kingcome, Nimpkish). Four rivers are in Johnstone Strait mainland inlets and the Nimpkish River is on northeast Vancouver Island.

Escapement Methodology: The accuracy of escapement estimates in the mainland inlet systems is likely poor due to low visibility of glacial systems, remote access, and timing of surveys. Escapement estimates have primarily been based on aerial counts targeting other salmon species, which may not coincide with the main spawning period for Chinook salmon. Swim surveys and stream walks have been conducted in the Nimpkish River. A fish wheel program occurred on the Klinaklini River from 1997 to 2004. The escapement time series for the UGS stock includes estimates based on consistent methods within each river, and escapements to rivers missing escapement data for some years (i.e., no surveys) were estimated using the procedures described by English et al. (2007). The estimated escapement for the UGS in 2014 was 20,725 (Appendix Table B4 and Figure 2.21).

Escapement Goal Basis: There is currently no CTC-accepted escapement goal for this stock group.

Agency Comments: Assessment of stock status is highly uncertain and the escapement time series requires standardization to better represent this stock group in the PSC Chinook Model. Differences in ocean distributions, run timing, and life history indicate that future assessments should separate the stock group into conservation units.

Figure 2.21.-Upper Georgia Strait stock group escapements of Chinook salmon, 1975-2014.
Note: The hatched bars in the histogram represent years when escapements to the Klinaklini River were estimated using Fishwheel mark-recapture methods while the solid bars indicate estimates based on visual surveys.

2.3.3.3.3. Lower Strait of Georgia

The Lower Strait of Georgianatural rivers monitored for naturally spawning fall Chinook salmon escapement are the Cowichan and Nanaimo rivers (Figure 2.22 and Figure 2.23).

Escapement Methodology: Total Chinook salmon returns have been estimated since 1975. Prior to 1988, escapement estimates from the Cowichan River were derived from swim and aerial surveys. This approach was also used for the Nanaimo River prior to 1995. Since 1988, a counting fence has been used in the Cowichan River. Between 1995 and 2004, carcass MR surveys were used in the Nanaimo River, and since 2005, AUC methods have been used. Survey life is based on a tagging study in 2006. The estimated escapement in 2014 was 4,590 Chinook salmon for the Cowichan River and 1,689 for the Nanaimo River.

Escapement Goal Basis: An escapement goal of 6,500 (CV $=33 \%$) for the Cowichan River was accepted by the CTC in 2005 (Tompkins et al. 2005). There is currently no CTC-accepted escapement goal for the Nanaimo River; however, it has a habitat-based estimate for $\mathrm{S}_{\text {MSY }}$ of 3,000 spawners (median; CV = 14\%; Parken et al. 2006).

Agency Comments: The Cowichan River stock showed considerable increase in 1995 and 1996, followed by a rapid decline to conservation concern levels more than 15% below the escapement goal. Significant Canadian fishery management actions are used to reduce exploitation levels on the Lower Strait of Georgia natural stock group.

Figure 2.22.-Cowichan River escapements of Chinook salmon, 1981-2014.

Figure 2.23.-Nanaimo River escapements of Chinook salmon, 1981-2014.

2.3.3.4. Fraser River Stocks

A large and diverse group of Chinook salmon spawning in Canada occurs in the Fraser River watershed, with many local populations (CTC 2002b; Candy et al. 2002).
Much of the knowledge about the status of Fraser Chinook salmon is based on spawner escapement data. Most data are from visual surveys, which are generally biased low, although many estimates are considered to be precise (Parken et al. 2003). Much of the visual survey data are generated from aerial surveys and the escapement estimate is usually obtained by dividing the peak count by 0.65 (Farwell et al. 1999; Bailey et al. 2000). The DFO continues to evaluate the accuracy of the peak count method through calibration studies, such as those funded by the PSC Sentinel Stocks and Endowment Fund programs. Escapement has been estimated at several locations using MR methods and direct counts at fishways or resistivity counters.

Currently, Fraser River Chinook are assessed as five stock groups for PSC management (Fraser spring run 1.2, Fraser spring run 1.3, Fraser summer run 1.3, Fraser summer run 0.3, and Fraser late); however, Fraser River Chinook are only represented by two stocks in the CTC model (Fraser early and Fraser late). As part of the CTC Model Improvements program, the Fraser Early model stock is being separated into four model stocks to better represent fishery distributions and population dynamics.
Within the Fraser River, there are five current CWT-indicator stocks; Nicola River (Fraser spring run 1.2), Lower Shuswap (Fraser summer run 0.3), Middle Shuswap (Fraser summer run 0.3), and Harrison River and Chilliwack River for Fraser Late. The Dome Creek CWT-indicator stock (Fraser spring run 1.3) was discontinued in 2005.

Of these five CWT indicator stocks, only the Harrison River has a CTC-approved escapement goal. For populations other than the Harrison River, habitat-based models have been developed to estimate spawning capacity and spawner abundance producing maximum sustained yield (Parken et al. 2006). In 2014, a Canadian Centre for Science Advice Pacific meeting examined the status and benchmarks for Southern British Columbia Chinook conservation units, including Fraser. Benchmarks and status were accepted for unenhanced conservation units, but further work on enhanced conservation units was necessary to evaluate status.

Escapements to the three stock groups with yearling smolt life history declined steeply from 2003 to 2009, and yearling smolts that entered the ocean in 2005 and 2007 had low survival. Recently, escapements have been low and stable; however, rebuilding progress has been particularly slow. In contrast, escapements to the Fraser Summer run 0.3 increased during the 1990s and remained very abundant until 2012, which was very low compared to levels over the previous decade. Escapements increased again in 2013 and 2014.

For the Fraser late stock group, the Harrison River escapement estimate was 44,686 in 2014, which was the third consecutive year with escapements more than 15% below the lower bound of the escapement goal (Appendix Table B6).

2.3.3.4.1. Fraser River Spring Run: Age 1.3

The Fraser River spring run age-1.3 aggregate includes the Upper Pitt and Birkenhead river stocks in the Lower Fraser, and the spring run stocks of the Mid- and Upper Fraser, North Thompson, and South Thompson, but excluding those of the Lower Thompson tributaries (CTC 2002b).

Escapements are mostly estimated by expanded peak counts of spawners, holders and carcasses, surveyed from helicopters or on foot. Escapements increased in 2014 and exceeded the parental brood escapement levels in 2009. Escapement was estimated at 34,613 in 2014 (Figure 2.24).

Escapement Goal Basis: There is currently no CTC-accepted escapement goal for this aggregate. Habitat-based estimates of $S_{\text {MSY }}$ and other stock-recruitment reference points are available for this stock group, but estimates of total escapement are needed to make them effective. Work is currently underway to estimate total escapements by developing factors that calibrate the visual survey indices to total escapements estimated by MR and electronic resistivity counter methods.

Agency Comments: The stock group has declined substantially over the last decade and is a stock of conservation concern.

Figure 2.24.-Fraser River spring run age-1.3 stock group escapements of Chinook salmon, 1975-2014.

2.3.3.4.2. Fraser River Spring Run: Age 1.2

The Fraser River spring run age-1.2 aggregate includes six populations that spawn in the Lower Thompson River tributaries, Louis Creek of the North Thompson, and the spring-run fish of Bessette Creek in the South Thompson (CTC 2002b). This stock group has an early maturation schedule for a stream-type life history, with an average generation time of 4.1 years (brood years 1985-1986), which results in smaller body size and lower fecundity compared to many other stock groups.

Escapement Methodology: For the CTC time series, escapements are estimated visually using expanded peak counts of spawners and holders, as well as carcasses in the Nicola River, Spius Creek, Coldwater River, Louis Creek, and Bessette Creek. Escapements to the Deadman River are estimated by resistivity counter. Escapement was estimated at 11,813 in 2014, representing an increase from levels observed in 2013, and exceeding those of the 2010 parental brood.

The Nicola River is the exploitation rate indicator stock for the Fraser River spring run age-1.2 stock group. A MR program provides the high precision estimates of escapement by age and sex, and since 1995, Petersen disk tags have been applied by angling and postspawned salmon carcasses examined for the presence of marks. Estimates of escapement have been generated using pooled Petersen methods. The expanded peak count time series for the Nicola River is generally less than the MR estimates (Parken et al. 2003), and calibration of the complete time series of peak count estimates is in progress. The Nicola peak count series is included in the Fraser River spring run age-1.2 aggregate time series (Figure 2.25 and Figure 2.26).

The 2014 MR estimated escapement of 7,122 is more than observed in $2013(3,445)$, and the 2014 escapement exceeded that of the 2010 parental brood $(5,258)$. Since 1995 hatchery origin fish have averaged 27% of the spawning escapement (range: 4-62\%).

Escapement Goal Basis: There is currently no CTC-accepted escapement goal for this aggregate. Habitat-based estimates of $\mathrm{S}_{\text {MSY }}$ and other stock-recruitment reference points are available for this stock group (Parken et al. 2006), but estimates of total escapement are needed to make them effective. Work is currently underway to estimate total escapements by developing factors that calibrate the visual survey indices to total escapements estimated by MR and electronic resistivity counter methods. Since 2004, the Nicola River escapements have been less than the median estimate of $\mathrm{S}_{\text {MSY }}(9,300 ; \mathrm{CV}=21 \%)$.

Agency Comments: The stock group has declined substantially over the last decade and is a stock of conservation concern.

Figure 2.25.-Fraser River spring run age-1.2 stock group escapements of Chinook salmon, 1975-2014.

Figure 2.26.-Nicola River escapements of Chinook salmon, 1995-2014.

2.3.3.4.3. Fraser River Summer Run: Age 1.3

The Fraser River summer run age-1.3 aggregate includes 10 populations spawning in large rivers, mostly below the outlets of large lakes. These include the Nechako, Chilko and Quesnel rivers in the Mid-Fraser and the Clearwater River in the North Thompson watershed (CTC 2002b).

Escapement Methodology: Escapements are estimated by expanded peak counts of spawners, holders and carcasses surveyed from helicopters. Surveys of the Stuart River and North Thompson River were discontinued in 2004 due to unreliable counting conditions and have been removed completely from the time series. Escapements in 2014 improved from those observed in 2013, and just exceeded levels estimated in the parental brood year in 2009. Aggregate escapement was estimated at 22,909 (Figure 2.27).

Escapement Goal Basis: There is currently no CTC-accepted escapement goal for the aggregate. Habitat-based estimates of $\mathrm{S}_{\text {MSY }}$ and other stock-recruitment reference points are available for this stock group, but estimates of total escapement are needed to make them effective. Work is currently underway to estimate total escapements by developing factors that calibrate the visual survey indices to total escapements estimated by MR and AUC methods.

Agency Comments: The stock group has declined over the last decade and is a stock of conservation concern.

Figure 2.27.-Fraser River summer run age-1.3 stock group escapements of Chinook salmon, 1975-2014.

2.3.3.4.4. Fraser River Summer Run: Age 0.3

The Fraser River summer run age-0.3 aggregate includes six populations spawning in the South Thompson watershed and one in the Lower Fraser. These include the Middle Shuswap, Lower Shuswap, Lower Adams, Little River, and the South Thompson River mainstem in interior British Columbia, and Maria Slough in the Lower Fraser River (CTC 2002b).

Escapement Methodology: Escapements are estimated using peak count visual survey methods. Escapements to the Fraser River summer run age 0.3 stock group declined in 2014, although not as steeply as observed in 2012. Escapements were estimated to be 77,721 in 2014, which is less than 50% of the parental brood year escapements in 2010 (157,289 ; Figure 2.28).

The Lower Shuswap River is one of two exploitation rate indicator stocks for the Fraser River summer run age- 0.3 stock group, and a MR program provides precise estimates of escapement by age and sex. Since 2000 (with the exception of 2003), tags have been applied to live fish by seining, and salmon carcasses were examined later for the presence of marks. The 2014 estimated escapement of 43,952 is substantially greater than the 2013 estimate of 28,797 (Appendix Table B6). The 2014 escapement represents only 62% of the 2010 parental brood of 71,354. Since 2000, hatchery origin fish averaged 10% of the spawning escapement (range: 2 13\%; Figure 2.29).

Escapement Goal Basis: There is currently no CTC-accepted escapement goal for the aggregate. Habitat-based estimates of $\mathrm{S}_{\text {MSY }}$ and other stock-recruitment reference points are available for this stock group (Parken et al. 2006), but estimates of total escapement are needed to make them effective. Work is currently underway to estimate total escapements by developing factors that calibrate the visual survey indices to total escapements estimated by MR methods
and novel methods via the SSP. With the exception of 2012, Lower Shuswap River escapements have exceeded the median estimate of $\mathrm{S}_{\mathrm{MSY}}(12,800 ; \mathrm{CV}=37 \%)$.

Agency Comments: Escapements had been increasing for this stock group over the last decade and the stock group has been healthy and abundant.

Figure 2.28.-Fraser River summer run age-0.3 stock group escapements of Chinook salmon, 1975-2014.

Figure 2.29.-Lower Shuswap River escapements of Chinook salmon, 1975-2014. The visual escapement estimates have been calibrated with the mark-recapture estimates.

2.3.3.4.5. Fraser River Late Run (Harrison River)

Escapement Methodology: Since 1984, MR studies have been conducted annually on the Harrison River to obtain reliable estimates of spawning escapements. Spawning escapements to the Harrison River have varied widely from a low of 28,616 adults in 1995 to a high of 247,121 adults in 2003 (Figure 2.30). The 2014 escapement estimates were 44,686 adult Chinook salmon, and 4,837 jacks. Escapements have been more than 15% below the lower bound of the escapement goal for three consecutive years.

Escapement Goal Basis: Due to their natural abundance and importance in numerous British Columbia and Washington State fisheries, Harrison River Chinook salmon were designated as an escapement indicator stock (i.e., key stream indicator) to aid in fulfilling commitments under the 1985 PST. In 1986, an interim escapement goal for Harrison River Chinook salmon was established at 241,700 fish, based on doubling of the escapement estimate obtained from a MR program in 1984. In 2001, an escapement goal range was developed for Harrison Chinook salmon using a Ricker stock-recruit approach and is described in CTC (2002b).

The escapement goal range that was proposed was $75,100-98,500(C V=15 \%)$ with the upper bound equal to the upper 75% confidence limit derived from a bootstrap procedure. This range was reviewed and accepted by the CTC. Estimated spawning escapements in the Harrison have exceeded this escapement goal range in nine years from 1984 to the present. Escapements have fluctuated substantially with no apparent trend in the time series. Average contribution of enhanced fish is 2%.

Agency Comments: The stock has become a conservation concern due its low escapement over the last three years relative to the escapement goal.

Figure 2.30.-Harrison River escapements of Chinook salmon, 1984-2014.

2.3.4. Puget Sound, Coastal Washington, Columbia River, and Coastal Oregon Stocks

The PSC escapement indicator stocks in Washington and Oregon are currently separated into four regional groups: Puget Sound, Washington Coastal, Columbia River, and North Oregon Coastal. Far north migrating Chinook salmon from the mid-Oregon Coast are currently being incorporated in the PSC Chinook model in this year's base period recalibration. There are currently no CTC-agreed escapement indicator stocks for the MOC, although there have been two proposed (the South Umpqua and Coquille). The indicator stocks include a variety of run timings and ocean distributions. Some of these indictor stocks are components in the different stock groups listed in Attachment I-V tables in the 2009 Agreement.

Biologically based escapement goals have been reviewed and accepted by the CTC for three fall stocks (Queets, Quillayute, and Hoh) in coastal Washington, two spring/summer stocks (Queets and Hoh), four Columbia River stocks (Lewis, Upriver Brights, Deschutes, and Mid-Columbia Summers), and three far north migrating Oregon coastal stocks (Nehalem, Siletz and Siuslaw).

2.3.4.1. Puget Sound

Puget Sound escapement indicator stocks include spring, summer/fall and fall Chinook salmon stocks from the Nooksack, Skagit, Stillaguamish, Snohomish, Lake Washington, and Green river systems. They tend to have a more local distribution than most coastal and Columbia River stocks and are caught primarily in WCVI AABM fisheries, and Canadian and US ISBM fisheries. Escapement for these stocks is assessed as the total number of natural- and hatchery-origin fish spawning naturally on the spawning grounds.

2.3.4.1.1. Nooksack River

The Nooksack River drains into Puget Sound just north of Bellingham. The Nooksack spring Chinook salmon stock includes early timed populations returning to the north and south forks of the Nooksack River.

Escapement Methodology: Estimates of the escapement in the south fork have traditionally been based on the number of redds observed prior to the first of October expanded by 2.5 redds per spawner. Since 1999, this estimate has been further refined by separating hatcheryorigin strays (north/middle fork and summer/fall Chinook salmon) based on CWTs, otolith marks or adipose fin clips, and also by assigning the natural-origin spawners to the south fork, north/middle fork and summer/fall hatchery stocks. The latter step is based on the expansion of the microsatellite DNA stock assignment of carcasses collected through the first week of October applied to the total estimated natural-origin spawners. The majority of the run and the escapement to the spawning grounds is composed of hatchery-origin returns from the supplementation program. Owing to the influence of glacial runoff, estimates of escapement in the north and middle forks are based on a combination of field methods, including carcass and redd counts (i.e., in clear tributaries and during clear/low-flow mainstem conditions). Due to spawn timing differences, north fork/middle fork escapement estimates are assumed to be spring Chinook salmon only, and natural- and hatchery-origin fish are identified based on carcass marks (CWT, otolith thermal marks, adipose clips). Escapement estimates are not yet available for either population for 2014. In 2013, the estimate for natural-origin spawners was 100 in the north/middle fork and 10 in the south fork. The south fork natural-origin escapement
was the lowest since DNA-based estimates began in 1999. Fisheries comanagers consider the 2013 estimate a minimum estimate. This is primarily due to the unusually large abundance of pink salmon in 2013 which interfered with the ability to enumerate Chinook salmon redds (Figure 2.31).

Escapement Goal Basis: There is currently no CTC-accepted escapement goal for this stock.
Agency Comments: The state-tribal escapement goal established for this Chinook salmon management unit is an upper management threshold (UMT) of 4,000 spawners and a low abundance threshold (LAT) of 2,000 natural-origin fish (CCMP 2010). The UMT as established by the state-tribal managers is generally considered as the adult (age 3+) escapement level associated with maximum sustained harvest. The LAT is the escapement level below which dramatic declines in long-term productivity could occur. Since listing in 1999 as threatened under the ESA, annual fishery management for this stock has been for a ceiling exploitation rate rather than for a UMT or LAT escapement.

Figure 2.31.-Nooksack River escapement of total (natural- and hatchery-origin) and natural-origin spring Chinook salmon, 1980-2014.

2.3.4.1.2. Skagit River Spring

The Skagit River drains into northern Puget Sound near Mount Vernon, and is the largest drainage basin in Puget Sound. The Skagit River spring Chinook salmon stock includes earlytimed populations returning to the Upper Sauk, Cascade, and Suiattle rivers.

Escapement Methodology: Due to changes in spawning index areas, beginning in 1992 for the Cascade stock and 1994 for the Sauk and Suiattle stocks, escapements are not directly comparable to previous numbers. In the Upper Sauk, redds are counted from river mile 21.2 to
39.7 (Darrington to the confluence of the North and South Fork Sauk), in the North Fork Sauk from the mouth to the falls, and in the South Fork Sauk (river mile 0 to 2.5). This method replaced the peak live and dead count approach in 1994. A redd life value of 30.2 days is used and is based on the average of a foot survey-based estimate of 22.9 days, and an AUC backcalculated estimate of 37.5 days. In the Cascade River, redds are counted in the mainstem upstream of river mile 7.8 and in the lower north fork and south fork, and Found, Kindy, and Sonny Boy creeks. Two helicopter flights and five foot surveys occurred over river mile 7.8 to 18.6. In the Suiattle basin, redds are counted in mainstem Suiattle, and in Big, Tenas, Straight, Circle, Buck, Lime, Downey, Sulphur, and Milk creeks. Prior to 1994, peak live and dead fish counts in Big, Tenas, Buck, and Sulphur creeks were used. Escapement may include very small numbers of hatchery strays in these natural production areas. Past PSC-funded studies on straying of Marblemount Hatchery spring Chinook salmon focused on the area immediately adjacent to the hatchery which is outside the survey reach for natural production. The 2014 escapement estimate was 1,608 natural spawners (Figure 2.32).

Escapement Goal Basis: There is currently no CTC-accepted escapement goal for this stock.
Agency Comments: The current UMT used by the state and tribal comanagers for the Skagit River spring Chinook salmon management unit is 2,000 with a LAT of 576 (CCMP 2010). Since listing in 1999 as threatened under the ESA, annual fishery management for this stock has been for a total exploitation rate ceiling rather than for a UMT or LAT escapement.

Figure 2.32.-Skagit River escapement of spring Chinook salmon to the spawning grounds, 1975-2014.

2.3.4.1.3. Skagit River Summer/Fall

The Skagit River summer/fall Chinook salmon stock includes the Upper Skagit River summer, Sauk summer, and Lower Skagit River fall run populations.

Escapement Methodology: Escapement of Skagit River summer/fall Chinook salmon was estimated using expansion of redd counts from helicopter surveys of mainstem areas and foot surveys of smaller tributaries. The counts are expanded by the AUC method (Smith and Castle 1994). This method assumes a 21-day redd life and 2.5 adult spawners for each estimated redd. The estimate is then reduced by 5% to account for false redds counted during aerial surveys. Natural escapement is predominantly offspring from natural-origin parent spawners; the remainder is hatchery-origin fish from the wild stock tagging program that started in 1994. Natural escapement does not include the brood stock collected for this program. The 2014 escapement estimate was 10,480 (Figure 2.33).

Escapement Goal Basis: There is currently no CTC-accepted escapement goal for this stock group.

Agency Comments: The UMT used by the state-tribal comanagers for the Skagit River summer/fall Chinook salmon management unit is 14,500 , based on a recent assessment of freshwater productivity and accounting for variability and biases in management error (CCMP 2010). The LAT is 4,800 spawners. Since its listing in 1999 as threatened under the ESA, annual fishery management for this stock has been for a total exploitation rate rather than for a UMT or LAT escapement. In years when the UMT is expected to be exceeded, terminal fisheries can be expanded subject to the overall ceiling exploitation rate.

Figure 2.33.-Skagit River escapement of summer/fall Chinook salmon to the spawning grounds, 19752014.

2.3.4.1.4. Stillaguamish River

The Stillaguamish River drains into northern Puget Sound between Everett and Mount Vernon. The Stillaguamish River has two populations of Chinook salmon distinguished by genetic characteristics-a summer-timed run and a fall-timed run. These two populations overlap in spawn timing and distribution with both populations spawning in both forks of the river. The summer-timed run is a composite of natural and hatchery-origin supplemental production, with the majority of spawning occurring in the North Fork and its major tributaries, including Boulder River, Deer, Grant, French, and Squire creeks. A much smaller, natural-origin fall stock spawns primarily in the mainstem and South Fork Stillaguamish; in Pilchuck, Jim, and Canyon creeks; and in the North Fork Stillaguamish. Escapement is currently estimated for South Fork and North Fork Stillaguamish rather than summer and fall populations of Chinook salmon.

Escapement Methodology: Escapement estimates for Stillaguamish Chinook salmon were based on redd count expansions, assuming a 21-day redd life. The north fork of the Stillaguamish River is surveyed more extensively, with one to three aerial surveys and AUC redd estimates. The escapement estimates for the south fork of the Stillaguamish River uses a peak redd count and assumes 2.5 fish per redd. Boulder and Squire creeks on the north fork of the Stillaguamish River and Jim Creek on the south fork of the Stillaguamish River are also surveyed. Spawning escapement estimates of fall Chinook salmon may be biased low due to incomplete redd counts using visual sampling methods (Figure 2.34). Evidence of this is supported by MR studies in 2007 through 2012 funded through the SSP where escapement estimates were 1.1 times to 3.1 times higher than those from redd counts (Figure 2.35). Natural escapement excludes brood stock taken for the wild stock indicator program after 1987 but does include spawning hatchery fish from this production. Total natural spawning escapement in 2014 was estimated at 432. An additional 57 natural-origin and 87 hatchery-origin fish were collected for broodstock from the spawning grounds.

Escapement Goal Basis: There is currently no CTC-accepted escapement goal for this stock group.

Agency Comments: State-tribal comanagers have established a UMT for this management unit of 900 natural-origin spawners (600 from the North Fork of the Stillaguamish River and 300 from the South Fork of the Stillaguamish River and mainstem) with a LAT of 700 (CCMP 2010). The summer Chinook salmon supplementation program, which collects brood stock from the North Fork of the Stillaguamish River return, was initiated in 1986 as a PST indicator stock program, and its current objective is to release 200,000 tagged fingerling smolts per year. Since 2000, an average of approximately 140 adults have been collected annually from the spawning population for this program. Most releases into the North Fork are from acclimation sites. Relatively small numbers of smolts have been released into the South Fork of the Stillaguamish River. Since listing in 1999 as threatened under the ESA, annual fishery management for this stock has been for a ceiling exploitation rate rather than for a UMT or LAT escapement.

Figure 2.34.-Stillaguamish River escapement of Chinook salmon to the spawning grounds, 1975-2014.

Figure 2.35.-Stillaguamish River escapements of Chinook salmon to the spawning grounds in years when both agency expanded redd counts were used (circles) and when genetic mark-recapture (GMR) estimates (diamonds are point estimates and the bars are 95% CIs) were conducted with SSP funding from the PST.

2.3.4.1.5. Snohomish River

The Snohomish River is located in northern Puget Sound near Everett. The Snohomish Chinook salmon stock includes the Skykomish and Snoqualmie summer/fall run populations. Skykomish Chinook salmon spawn in the mainstem of the Skykomish River and its tributaries-including the Wallace and Sultan rivers, Bridal Veil Creek, the south fork of the Skykomish River between river mile 49.6 and river mile 51.1, above Sunset Falls (fish have been transported around the falls since 1958), and the north fork of the Skykomish River up to Bear Creek Falls (river mile 13.1). Snoqualmie Chinook salmon spawn in the Snoqualmie River and its tributaries, including the Tolt River, Raging River, and Tokul Creek.

Escapement Methodology: Escapement was estimated using expansion of redd counts conducted by a combination of helicopter, float, and foot surveys, and from fish counts at the Sunset Falls fishway. The natural escapement estimate includes a significant contribution of hatchery strays from the Wallace and Bernie Kai-Kai Gobin (Tulalip Tribe) facilities. A MR study funded under the SSP yielded an estimated spawning escapement of 10,399 (2011), 7,763 (2012), and 11,235 (2013), compared to the redd-based estimates of 1,880 (2011), 5,124 (2012), and 3,244 (2013). See Figure 2.36 and Figure 2.37. The 2014 escapement was estimated at 3,901 natural spawners using redd counts.

Escapement Goal Basis: There is currently no CTC-accepted escapement goal for this stock.
Agency Comments: The state-tribal comanagers have a UMT for this stock of 4,600 naturalorigin spawners (CCMP 2010). The LAT for Snohomish River summer/fall Chinook salmon is 2,800. Since listing in 1999 as threatened under the ESA, annual fishery management for this stock has been for a ceiling exploitation rate rather than for a UMT or LAT escapement. In 2014, WDFW and the Tulalip Tribe reviewed, reconciled, and updated the historic escapement time series for the Snohomish Basin; this resulted in minor changes to the data series.

Figure 2.36.-Snohomish River escapement of Chinook salmon to the spawning grounds, 1975-2014.

Figure 2.37.-Snohomish River escapements of Chinook salmon to the spawning grounds in years when both agency expanded redd counts were used (circles) and when genetic mark-recapture (GMR) estimates (diamonds are point estimates and the bars are $95 \% \mathrm{Cls}$) were conducted with SSP funding from the PST.

2.3.4.1.6. Lake Washington

The Lake Washington Chinook salmon stock includes the fall run populations in the Cedar River and in the North Lake Washington tributaries of Bear, Cottage, and Issaquah creeks. A hatchery is located on Issaquah Creek and Chinook salmon spawning in Issaquah Creek are not included in the natural escapement for Lake Washington.

Escapement Methodology: Natural spawners in Issaquah Creek that spawn below the Issaquah Hatchery are not included in the graph. It should be noted that although there are no hatchery fish released into the Cedar River, an average of 23% of the spawners from 2003 to 2008 were adipose clipped from mass-marked hatchery production, presumably from Issaquah Hatchery (CCMP 2010). Escapement in the Cedar River is estimated using expansion of total redd counts. In recent years, estimates of spawner abundance have also been made using redd counts performed over the entirety of the spawning area downstream of Landsburg Dam (CCMP 2010). These data were used to convert previous estimates of escapement within the index reach to estimates of spawner abundance (as would be derived through redd counts) for the entirety of the river (below the dam) using simple linear regression. Escapement to the North Lake Tributaries is estimated using live counts and AUC methods. The 2014 escapement for Lake Washington was 613 spawners, including 33 natural-origin fish in Sammamish basin that includes Bear and Cottage creeks (Figure 2.38).

Escapement Goal Basis: There is currently no CTC-accepted escapement goal for this stock.
Agency Comments: A state-tribal interim UMT escapement goal of 1,200 Chinook salmon for an index reach in the Cedar River was established in 1993 based on average escapements from

1965 to 1969. This goal for the index reach was converted to 1,680 Chinook salmon for the entirety of the river downstream of the dam and reflects a redd-based escapement value consistent with the interim escapement goal derived using AUC methodology. Since listing in 1999 as threatened under the ESA, annual fishery management for this stock has been for a ceiling exploitation rate rather than for a UMT or LAT escapement in the Cedar River; however, when the UMT is expected to be exceeded, some additional fishing in Lake Washington is considered.

Figure 2.38.-Escapement of Chinook salmon to the spawning grounds in the tributaries of Lake Washington (Cedar River and Bear and Cottage creeks), 1975-2014.

2.3.4.1.7. Green River

The Green River fall Chinook salmon stock consists of a single population spawning in the mainstem Green River and two of its major tributaries, Newaukum and Soos creeks.

Escapement Methodology: Escapement is estimated from a redd count expansion method that has varied over the time series by the extent of spawning survey coverage. The method used until about 1996 involved an index area redd count multiplied by 2.6 to estimate total redds, then multiplied by 2.5 fish per redd to produce estimated escapement. The 2.6 index to total redd expansion factor was based on a 1976 to 1977 US Fish and Wildlife Service MR study. Since 1996, the survey areas have broadened and the associated expansion factor of 2.6 has been reduced to the point that the redd counts in 2009 have complete spawning reach coverage. The method used in recent years provides natural escapement estimates for the mainstem Green River and Newaukum Creek. Newaukum Creek redds are counted during foot surveys. The mainstem Green River is surveyed by boat and by air. Some parts of the river (i.e., the Gorge) are only surveyed by air. Boat surveys are generally done once a week, or twice a week in years with a large numbers of pink salmon. One aerial survey is made during the peak of spawning, more if budgets permit. Certain index reaches of the river are surveyed every week by boat to develop a cumulative redd count total for those reaches. These index reaches
are distributed throughout the river. Visible redds are counted for the entire floatable part of the river by boat each week and for the entire river by helicopter during the peak. The ratio of visible redds seen by boat to those seen by air (boat surveys assumed to be best) is used to estimate how many redds would be seen by boat in the unfloated reaches. This provides an estimate of how many visible redds exist during the peak of spawning. To get from peak redds to cumulative total redds, the visible redds in the index reaches during the peak are compared to the season total for those index reaches. Different areas of the river have different ratios of peak visible redds to season totals. Expansion of nonindex visible redds to season total redds uses the ratio from nearby index reaches of the same general character. The CTC considers these estimates from redd counts as index values rather than estimates of total escapement. Estimates of total escapement from MR studies in 2000, 2001, and 2002 funded through the US Letter of Agreement were about 2.5 times higher than the escapement estimate from redd count expansion. In 2010, 2011 and 2012, the MR-based escapements from studies funded under the SSP were once again more than twice as high as the redd count expansion estimates (Figure 2.39 and Figure 2.40). There is a large hatchery program in this basin and these fish comprise a large portion of the return. Hatchery fish contribution to the natural escapement ranged from 53% to 65% for the years 2004 to 2007. The escapement in 2014 from redd count expansion was 2,730 Chinook salmon of mixed hatchery- and natural-origin.

Escapement Goal Basis: There is currently no CTC-accepted escapement goal for this stock.
Agency Comments: The state-tribal UMT escapement goal of 5,800 naturally spawning adults is the average of the 1965 to 1976 escapements (Ames and Phinney 1977). The LAT is 1,800 fish. Since its listing in 1999 as threatened under the ESA, annual fishery management for this stock has been on a ceiling exploitation rate in the southern US preterminal fisheries and for the UMT in the terminal fisheries.

Figure 2.39.-Green River escapement of Chinook salmon to the spawning grounds, 1975-2014.

Figure 2.40.-Green River escapements of Chinook salmon to the spawning grounds in years when both agency expanded redd counts were used (circles) and when conventional (2001-2002) and genetic (2010-2012) mark-recapture estimates (diamonds are point estimates and the bars are 95\% CIs) were conducted with Letter of Agreement or SSP funding from the PST.

2.3.4.2. Coastal Washington

Coastal Washington stocks include spring, summer, and fall Chinook salmon from the Hoko, Quillayute, Hoh, and Queets rivers, and from Grays Harbor. Coastal Washington stocks have a northerly distribution and are vulnerable to southern US fisheries primarily as mature fish during their spawning migrations. They are caught primarily in SEAK and NBC AABM fisheries and in terminal net fisheries.

2.3.4.2.1. Hoko River

The Hoko River is located at the extreme western end of the Strait of Juan de Fuca and is not a population listed under the ESA as part of the Puget Sound Chinook Salmon Endangered Species Unit. Hoko River Chinook salmon spawn primarily in the mainstem of the Hoko River, with limited spawning in larger tributaries.

Escapement Methodology: The Makah Tribe and WDFW conduct ground surveys using cumulative redd counts for the mainstem (Hoko) and tributaries found between river mile 1.5 and 21.7, which represents the entire range of spawning habitat utilized by Chinook salmon. Redd counts are multiplied by 2.5 adults per redd. There are 10 mainstem reaches plus 13 tributary reaches, including Little Hoko, Browne's, Herman, North Fork Herman, Ellis, Bear, and Cub rivers, which are all upper mainstem tributaries. The tribe also surveys the mainstem Sekiu and Carpenter, South Fork Carpenter, Sunnybrook, and unnamed creeks 19.0215, 19.0216, and 19.0218. Escapement excludes brood stock collected from the spawning grounds for the supplementation program which started in 1988 and has collected an average of 149 fish annually through 2011. In 2014, 212 adult fish were retained for the supplementation program
leaving a total natural spawning escapement estimate of 1,397 mixed natural origin and returns from the supplementation program (Figure 2.41).

Escapement Goal Basis: There is currently no CTC-accepted escapement goal for this stock.
Agency Comments: The UMT escapement goal established by state and tribal comanagers is 850 naturally spawning adults. This goal was developed as a proxy for the spawning escapement for MSY. The escapement goal was calculated using a habitat-based approach (rather than a stock-recruitment analysis) by estimating the amount of available spawning habitat, then expanded utilizing assumed optimal redds per mile and fish per redd values (Ames and Phinney 1977).

Figure 2.41.-Hoko River escapement of Chinook salmon to the spawning grounds, 1986-2014.

2.3.4.2.2. Quillayute River Summer

The Quillayute River drains from the northwest side of the Olympic Mountains into the Pacific Ocean, south of Cape Alava on the north Washington coast.

Escapement Methodology: Escapement estimates are based on redd counts in index areas and from supplemental surveys on the Bogachiel, mainstem Calawah, North Fork Calawah and Sitkum rivers. This has been used consistently in the Quillayute River System since the 1970s. Surveys are conducted by foot, raft, drift boat and helicopter. Surveys in index areas are examined either weekly or biweekly as conditions allow. Supplemental surveys are done once a season during the peak spawning period. Redd counts from these supplemental surveys are then expanded by the index surveys to estimate redd construction within the supplemental survey areas for the entire season. Using an appropriate redds per mile assignment, the information from index and supplemental surveys is then applied to other streams and segments that have historically had fish presence, but were not surveyed. These areas comprise the Quillayute River system stream mileage base that is consistently calculated to estimate
escapement numbers. The number of redds is multiplied by 2.5 to estimate fish escapement. The 2014 escapement estimate for summer Chinook salmon was 547 (Figure 2.42).

Escapement Goal Basis: There is currently no CTC-accepted escapement goal for this stock.
Agency Comments: The state-tribal management goal for this stock is 1,200 adults and jacks combined (PFMC 2003).

Figure 2.42.-Quillayute River escapement of summer Chinook salmon to the spawning grounds, 19762014.

2.3.4.2.3. Quillayute River Fall

The Quillayute River drains from the northwest side of the Olympic Mountains into the Pacific Ocean, south of Cape Alava on the north Washington coast. It is one of three Washington coast river systems that contain fall Chinook salmon with CTC-approved escapement goals.

Escapement Methodology: Escapement estimates are based on redd counts in index areas and from supplemental surveys on the Bogachiel, Sol Duc, Dickey, Calawah rivers and several other smaller tributaries in the basin. This has been used consistently in the Quillayute River System since the 1970s. Surveys are conducted by foot, raft, drift boat and helicopter. Surveys in index areas are examined either weekly or biweekly as conditions allow. Supplemental surveys are done once a season during the peak spawning period. Redd counts from these supplemental surveys are then expanded by the index surveys to estimate redd construction within the supplemental survey areas for the entire season. Using an appropriate redds per mile assignment, the information from index and supplemental surveys is then applied to other streams and segments that have historically had fish presence, but were not surveyed. These areas comprise the Quillayute River system stream mileage base that is consistently calculated to estimate escapement numbers. The number of redds is multiplied by 2.5 to estimate fish escapement. The 2014 escapement estimate was 2,766 (Figure 2.43).

Escapement Goal Basis: In 2004, the CTC-approved an escapement goal for Quillayute fall Chinook salmon of 3,000 natural spawners based on a spawner-recruit analysis developed by Cooney (1984) and QDNR (1982).

Agency Comments: Terminal fisheries are managed for a harvest rate of 40%, with an escapement floor of 3,000 fish (PFMC 2003). This objective is designed to actively probe at and above estimates of escapements that produce maximum sustained harvest, while minimizing potential detrimental effects of existing fisheries. Stock production analyses of spawning escapements from 1968 to 1982 were used to determine the initial escapement floor.

Figure 2.43.-Quillayute River escapement of fall Chinook salmon to the spawning grounds, 1980-2014.

2.3.4.2.4. Hoh River Spring/Summer

The Hoh River drains from the western side of the Olympic Mountains on the north Washington coast between the Quillayute River to the north and the Queets River to the south.

Escapement Methodology: Escapement is estimated from redd counts in index areas and supplemental surveys in the mainstem and south fork of the Hoh River and in tributaries with spawning habitat. Surveys are conducted by foot, boat, and helicopter. Intensively monitored index reaches are surveyed weekly to record new and visible redds. Cumulative redd counts for each index reach represents the total spawner abundance for that particular spawning area. Weekly visible redd counts in index reaches are used to estimate spawning timing curves by calculating the proportion of season cumulative redds that are visible on each weekly survey date. Surveys are also conducted in reaches too large or remote to intensively monitor throughout the season. These surveys are timed as close as possible to peak spawning activity, and spawner abundance estimates are derived using index timing curves. For areas with suitable habitat but not regularly surveyed, redd densities (cumulative redds per river mile) from surveyed reaches with similar habitat type are used to estimate escapement into these
reaches of known stream length. The total natural spawning escapement is calculated assuming 2.5 fish per redd. There is no hatchery program in this system. The 2014 natural escapement estimate was 744 fish (Figure 2.44).

Escapement Goal Basis: Escapement floor policy of 900 for the Hoh spring/summer Chinook salmon was developed by Cooney (1984) and QDNR (1982), based on spawner-recruit analyses, and was accepted by the CTC in 2004.
Agency Comments: Similar to many of the other Washington coastal stocks, Hoh River spring/summer escapements have been relatively stable except for much larger returns in 1988, 1989, and 1990. The terminal return for this stock declined from 1997 to 2000, had rebounded in 2001 before declining again since 2005. Terminal fisheries are managed to catch 31% of the river run, with an escapement floor of 900 fish (PFMC 2003). This objective is designed to allow a wide range of spawner escapements from which to eventually develop an MSY objective or proxy while protecting the long-term productivity of the stock. Stock production analysis of spawning escapement for brood years 1969 to 1976 was utilized to determine the initial escapement floor.

Figure 2.44.-Hoh River escapement of spring/summer Chinook salmon to the spawning grounds, 19762014.

2.3.4.2.5. Hoh River Fall

The Hoh River drains from the western side of the Olympic Mountains on the north Washington coast between the Quillayute River to the north and the Queets River to the south. It is one of three Washington coast river systems that contain fall Chinook salmon with CTC-approved escapement goals.

Escapement Methodology: Escapement is estimated from redd counts in index areas and supplemental surveys in the mainstem and south fork Hoh River and in tributaries with
spawning habitat. Surveys are conducted by foot, boat, and helicopter. Intensively monitored index reaches are surveyed weekly to record total new and visible redds observed each week. Cumulative redd counts for each index reach represents the total spawner abundance for that particular spawning area. Weekly visible redd counts in index reaches are used to estimate spawning timing curves by calculating the proportion of season cumulative redds that are visible on each weekly survey date. Extensive surveys are also conducted infrequently in additional monitored stream areas utilized by spawning Chinook salmon. These extensive reaches encompass areas too large or remote to intensively monitor throughout the season. Extensive surveys are timed as close as possible to peak spawning activity. Extensive reach spawner abundance estimates are derived using index timing curves. For areas with suitable habitat but not regularly surveyed, redd densities (cumulative redds per river mile) from surveyed reaches with similar habitat type are used to estimate escapement into these reaches of known stream length. The total natural spawning escapement is calculated assuming 2.5 fish per redd. The natural escapement estimates for Hoh River fall Chinook salmon include a small number of fish taken for an experimental hatchery program from 1983 to 1986, but otherwise should be considered natural-origin fish. The 2014 escapement estimate was 1,514 fish (Figure 2.45).

Escapement Goal Basis: The escapement floor of 1,200 for the Hoh fall Chinook salmon was developed by Cooney (1984) and QDNR (1982), based on spawner-recruit analyses, and was accepted by the CTC in 2004 as the escapement goal.

Agency Comments: The state-tribal management plan for this stock includes a harvest rate of 40% of the terminal run, with an escapement floor of 1,200 spawners (PFMC 2003). This objective is designed to actively probe at and above estimates of the escapements that produce maximum sustained harvest, while minimizing potential detrimental effects of existing fisheries. Stock production analyses of spawning escapements from 1968 to 1982 were utilized to determine the initial escapement floor.

$\begin{array}{ll}\square & \text { Pre-CTC Goal Esc } \longleftarrow \text { Esc }>\text { Goal } \quad \square \\ <0.85 \text { of Esc Goal }---0.85 \text { to Esc Goal } \\ \square \text { Goal }\end{array}$
Figure 2.45.-Hoh River escapement of fall Chinook salmon to the spawning grounds, 1976-2014.

2.3.4.2.6. Queets River Spring/Summer

The Queets River drains from the western side of the Olympic Mountains on the north Washington coast and is south of the Hoh River.

Escapement Methodology: Escapement is estimated from redd counts from August 15 to October 15 for spring/summer Chinook salmon. Surveys are conducted by foot, boat, and helicopter. Intensively monitored index reaches are surveyed weekly to record total new and visible redds observed each week. Cumulative redd counts for each index reach represents the total spawner abundance for that particular spawning area. Weekly visible redd counts in index reaches are used to estimate spawning timing curves by calculating the proportion of season cumulative redds that are visible on each weekly survey date. Extensive surveys are also conducted infrequently in additional monitored stream areas utilized by spawning Chinook salmon. These extensive reaches encompass areas too large or remote to intensively monitor throughout the season. Extensive surveys are timed as close as possible to peak spawning activity. Extensive reach spawner abundance estimates are derived using index timing curves. For areas with suitable habitat but not regularly surveyed, redd densities (cumulative redds per river mile) from surveyed reaches with similar habitat type are used to estimate escapement into these reaches of known stream length. The total natural spawning escapement is calculated under the assumption of 2.5 fish per redd. The 2014 estimate of natural escapement was 377 fish (Figure 2.46).

Escapement Goal Basis: Escapement floor policy of 700 for Queets spring/summer Chinook salmon was developed by Cooney (1984) and QDNR (1982), based on spawner-recruit analyses, and was accepted by the CTC in 2004 as the escapement goal. Stock production analysis of
spawning escapements for brood years 1969 to 1976 were used to determine the initial escapement floor.

Agency Comments: Terminal fisheries are managed by the state and tribes to catch 30% of the river run size, with an escapement floor of 700 fish (PFMC 2003). This objective is designed to actively probe at and above the estimates of escapement that produce MSY. Since 1990, terminal fisheries have had minimal impact on this stock, as returns to the river have rarely exceeded the escapement floor. Since 2000, sport anglers have been required to release all Chinook salmon during the summer, and tribal fisheries have been limited to one tribal netting day for ceremonial and subsistence purposes.

Figure 2.46.-Queets River escapement of spring/summer Chinook salmon to the spawning grounds, 1976-2014.

2.3.4.2.7. Queets River Fall

The Queets River drains from the western side of the Olympic Mountains on the north Washington coast and is south of the Hoh River. It is one of three Washington coast river systems that contain fall Chinook salmon with CTC-approved escapement goals.

Escapement Methodology: Escapement is estimated from redd counts from October 15 to December 1 for fall Chinook salmon. Surveys are conducted by foot, boat, and helicopter. Intensively monitored index reaches are surveyed weekly to record total new and visible redds observed. Cumulative redd counts for each index reach represents the total spawner abundance for that particular spawning area. Weekly visible redd counts in index reaches are used to estimate spawning timing curves by calculating the proportion of season cumulative redds that are visible on each weekly survey date. Extensive surveys are also conducted infrequently in additional monitored stream areas utilized by spawning Chinook salmon. These extensive reaches encompass areas too large or remote to intensively monitor throughout the
season. Extensive surveys are timed as close as possible to peak spawning activity. Extensive reach spawner abundance estimates are derived using index timing curves. For areas with suitable habitat but not regularly surveyed, redd densities (cumulative redds per river mile) from surveyed reaches with similar habitat type are used to estimate escapement into these reaches of known stream length. The total natural spawning escapement is calculated under the assumption of 2.5 fish per redd. The natural escapement of Queets River fall Chinook salmon was 3,670 in 2014 (Figure 2.47).

Escapement Goal Basis: The escapement floor policy of 2,500 for the Queets fall Chinook salmon was developed by Cooney (1984) and QDNR (1982), and was based on spawner-recruit analyses, and was accepted by the CTC in 2004 as the escapement goal.

Agency Comments: Terminal fisheries are managed by the state and tribes to catch 40% of the river return, with an escapement floor of 2,500 spawners (PFMC 2003). This objective is designed to actively probe at and above estimates of the escapements that produce maximum sustained harvest. Stock production analyses of spawning escapements from 1967 to 1982 were used to determine the initial escapement floor.

Figure 2.47.-Queets River escapement of fall Chinook salmon to the spawning grounds, 1976-2014.

2.3.4.2.8. Grays Harbor Spring

Grays Harbor spring Chinook salmon spawn primarily in the upper reaches of mainstem Chehalis River and its tributaries.

Escapement Methodology: Escapement is estimated by redd counts from August 15 to October 15 for spring/summer Chinook salmon. Surveys are conducted by foot, boat, and helicopter. Intensively monitored index reaches are surveyed weekly to record total new and visible redds observed. Cumulative redd counts for each index reach represents the total spawner
abundance for that particular spawning area. Weekly visible redd counts in index reaches are used to estimate spawning timing curves by calculating the proportion of season cumulative redds that are visible on each weekly survey date. Extensive surveys are also conducted infrequently in additional monitored stream areas utilized by spawning Chinook salmon. These extensive reaches encompass areas too large or remote to intensively monitor throughout the season. Extensive surveys are timed as close as possible to peak spawning activity. Extensive reach spawner abundance estimates are derived using index timing curves. For areas with suitable habitat but not regularly surveyed, redd densities (cumulative redds per river mile) from surveyed reaches with similar habitat type are used to estimate escapement into these reaches of known stream length. The total natural spawning escapement is calculated under the assumption of 2.5 fish per redd. The 2014 escapement was 1,583 Chinook salmon (Figure 2.48).

Escapement Goal Basis: There is currently no CTC-accepted escapement goal for this stock group.
Agency Comments: The natural spawning escapement goal established by the state-tribal comanagers for Grays Harbor spring Chinook salmon is 1,400 adult fish (PFMC 2003). This single targeted goal was developed as a MSY proxy. This objective was derived from actual spawning data from the mid- to late 1970s, and expanded to include additional habitat not covered by spawner surveys.

Figure 2.48.-Grays Harbor escapement of spring Chinook salmon to the spawning grounds, 1976-2014.

2.3.4.2.9. Grays Harbor Fall

Grays Harbor fall Chinook salmon spawn primarily in the mainstem Chehalis River, in the Humptulips and Satsop rivers where fall Chinook salmon hatchery facilities are located, and in smaller tributaries such as the Wishkah and Hoquiam rivers that flow directly into the harbor.

Escapement Methodology: Escapement is estimated from redd counts from October 15 to December 1 for fall Chinook salmon. Surveys are conducted by foot, boat, and helicopter. Intensively monitored index reaches are surveyed weekly to record total new and visible redds observed. Cumulative redd counts for each index reach represents the total spawner abundance for that particular spawning area. Weekly visible redd counts in index reaches are used to estimate spawning timing curves by calculating the proportion of season cumulative redds that are visible on each weekly survey date. Extensive surveys are also conducted infrequently in additional monitored stream areas utilized by spawning Chinook salmon. These extensive reaches encompass areas too large or remote to intensively monitor throughout the season. Extensive surveys are timed as close as possible to peak spawning activity. Extensive reach spawner abundance estimates are derived using index timing curves. For areas with suitable habitat but not regularly surveyed, redd densities (cumulative redds per river mile) from surveyed reaches with similar habitat type are used to estimate escapement into these reaches of known stream length. The total natural spawning escapement is calculated under the assumption of 2.5 fish per redd. The 2014 escapement was 12,400 spawners (Figure 2.49).

Escapement Goal Basis: In February, 2014 the CTC reviewed a spawner-recruit analysis by Quinault Department of Natural Resources and WDFW that identified a biologically based spawning escapement goal. The CTC provisionally accepted the presented goal $(13,500)$ and provided comments necessitating minor re-analysis and report revision. The final adopted goal is 13,326 (QDNR and WDFW 2014).

Agency Comments: Consistent with the stock group in Attachments I, II and V of the 2009 Agreement, the Grays Harbor fall Chinook salmon escapement goal will be applied in CTC stockperformance evaluations on a stock aggregate basis. This goal, however, is the sum of tributaryspecific goals that were derived separately for the Chehalis and Humptulips rivers.

Figure 2.49.-Grays Harbor escapement of fall Chinook salmon to the spawning grounds, 1976-2014.
Note: The displayed agency goal line $(14,600)$ relates to the agency goal in effect through 2013; the recently CTC-agreed escapement goal $(13,326)$ will be used in assessments from 2014 onward.

2.3.4.3. Columbia River

Columbia River stocks include spring, summer, and fall Chinook salmon from the Columbia River and its tributaries. Runs may have markedly different marine distributions with different vulnerabilities to ocean fisheries. Upriver spring stocks generally migrate offshore and are rarely retained in ocean salmon fisheries. As a result, they are not identified in Attachments I-V of the PST. Most summer and fall stocks have a northern distribution. Lower Columbia River tule fall Chinook salmon have a more local distribution and are caught mainly in the WCVI AABM fishery and US ISBM fisheries.

2.3.4.3.1. Columbia Upriver Spring

Escapement Methodology: To provide consistency with the US v. Oregon Technical Advisory Committee's annual Joint Staffs Reports, escapement graphs include the sum of wild adult upper Columbia spring Chinook salmon passing Rock Island Dam (Joint Columbia River Management Staff 2013, Table 8) and wild adult Snake River spring/summer Chinook salmon passing Lower Granite Dam (plus Tucannon escapements below; Joint Columbia River Management Staff, Table 9). However, for purposes of fishery management and allocation under US v. Oregon, Columbia Upriver spring stock includes all hatchery and wild fish destined to return past Bonneville from January 1 through June 15. There are additional tributary spawning escapements (e.g., Deschutes and John Day rivers) that comprise the Columbia Upriver spring management unit that are not included in the graph. Although it is not a completely comprehensive estimate of the naturally spawning Columbia Upriver spring
escapement past Bonneville, this times series provides a consistent and annually documented index of the abundance trend of naturally spawning fish (Figure 2.50).

Escapement Goal Basis: Under the 2008-2017 US v. Oregon Management Agreement, this stock is not managed for an escapement goal. Fishery impacts are managed using harvest rate schedules based on total river mouth abundance of upriver spring Chinook salmon or the Snake River natural spring/summer run size if it is less than 10% of the total run size (2008-2017 US v. Oregon Management Agreement, Appendix A, Table A1). The harvest rate schedule ranges from less than 5.5% at run sizes less than 27,000 up to 17% at run sizes exceeding 488,000 .

Agency Comments: The 2008-2017 US v. Oregon Management Agreement provides for a minimum annual mainstem treaty Indian ceremonial and subsistence entitlement of 10,000 spring and summer Chinook salmon. Beginning in 2010, modifications to Table A1 (2008-2017 US v. Oregon Management Agreement) were implemented requiring Southern US nontreaty fisheries to meet catch balancing provisions for upriver spring Chinook salmon. Under these provisions, Southern US nontreaty fisheries are managed to remain within ESA impacts, and to not exceed the total allowable catch available for treaty Indian fisheries. Escapements were estimated to be 31,208 in 2014.

Figure 2.50.-Escapement of Columbia upriver spring Chinook salmon, 1980-2014.

2.3.4.3.2. Mid-Columbia Summer

Escapement Methodology: The Rock Island Dam count of adult Chinook salmon ascending between June 18 and August 17 are graphed in Figure 2.51; these counts include some hatchery fish, but are consistent with the combined hatchery and wild model data used to develop the interim escapement goal.

Escapement Goal Basis: The CTC (1999) developed an interim escapement goal of 12,143 adult summer Chinook salmon past Rock Island Dam, using PSC Chinook model predictions of
escapement and recruitment. A 2008 analysis of actual escapement data resulted in a similar goal, but modifications to the analysis requested by the CTC were not completed.

Agency Comments: The summer management period is from June 16 to July 31. Catches of Chinook salmon during this period are in accord with a harvest rate schedule that varies based on expected river mouth abundance (2008-2017 US v. Oregon Management Agreement, Table A2). Harvest rates vary from about 5% to 7% for run sizes up to $16,000,15 \%$ to 17% for run sizes up to 36,250 , and are based on catch sharing formulas for harvestable surpluses beyond that run size. In addition, Mid-Columbia Summer Chinook salmon are managed for a goal of 29,000 hatchery- and natural-origin adults at the Columbia River mouth, to provide 20,000 adults above Priest Rapids Dam, including 13,500 Wenatchee/Entiat/Chelan natural fish, 3,500 Methow/Okanogan natural fish and 3,000 hatchery fish. Escapements were estimated to be 77,982 in 2014.

Figure 2.51.-Adult passage of Mid-Columbia Summer Chinook salmon at Rock Island Dam, 1979-2014.

2.3.4.3.3. Coweeman River Tules

The Coweeman River is a third-order tributary to the Cowlitz River located in Cowlitz County, Washington and drains approximately $329 \mathrm{~km}^{2}$. This watershed supports a small population of mostly natural origin age-3 and -4 tule fall Chinook salmon. The Coweeman escapement indicator stock represents ESA listed natural tule fall Chinook salmon production from the Lower Columbia River.

Escapement Methodology: The Coweeman Chinook salmon stock has been monitored on a long-term basis using a peak live plus dead count from a single survey of a portion of the spawning habitat. The traditional survey estimates provide an index of escapement, not a
basin-total estimate, and these survey estimates are graphed above. From 2002 to 2011, Chinook salmon escapement ($>59 \mathrm{~cm}$) for the entire basin was also estimated through intensive PSC studies based on a variety of methods. The preferred method for estimating escapement in the Coweeman River is MR; physical MR was done from 2002 to 2004, and in 2011. In 2005 and 2006, live-count AUC estimates were produced using a trapezoidal AUC estimator and weekly counts of spawners in the index section; index AUC escapement was expanded to the entire spawning area based on the proportion of total spawners observed in the index reach during a basinwide survey near peak spawning time. In 2007 and 2008, redd-based escapement estimates were generated using a redd census, estimates of mean females per redd, and sex ratio. Genetic mark-recapture (GMR) was done in 2009 and 2010.

Escapement Goal Basis: The Coweeman stock has no CTC-agreed or agency escapement goal(s). It is managed according to an abundance-based exploitation rate ceiling schedule for Lower Columbia River Tule Chinook salmon under ESA fishery consultation standards.

Agency Comments: GMR studies were also conducted in 2012 and 2013; however, estimates are not yet available. In 2013 surveyors observed a peak count (index) of 2,118 fish. Future efforts will focus on calibrating the long-term index time series to basin-total escapement. Peak counts in 2014 were 999 Chinook salmon.

Figure 2.52.-Coweeman River escapements of tule fall Chinook salmon, 1975-2014.

2.3.4.3.4. Lewis River Fall

Escapement Methodology: Most natural bright fall Chinook salmon production below Bonneville Dam occurs in the North Fork Lewis River. The Lewis River Wild stock is the main component of the Lower River Wild management unit for fall Chinook salmon, which also includes small amounts of wild production from the Cowlitz and Sandy river basins. In this report, the escapements and goal are for the Lewis River component. Annual escapement
estimates are obtained by expanding peak counts from weekly counts of live and dead fish in the 6.4 km area below Merwin Dam (river km 31.4) by a factor of 5.29 (total spawners per peak count). This factor was derived from a carcass tagging and recapture study performed in 1976 (Mclsaac 1990). From 1999 to 2001, the expansion factor was verified. A CWT program for wild fish has been in place since 1977. Methods of CWT recovery, escapement counting, and expansion of the index area fish counts have been consistent since 1964. All naturally spawning adult fish, both hatchery and natural production, are included in the escapement (Figure 2.53).

Escapement Goal Basis: The escapement goal of 5,700 fall Chinook salmon in the Lewis River was developed by Mclsaac (1990), based on spawner-recruit analysis of the 1964 to 1982 broods and CWT recoveries from the 1977 to 1979 broods. This analysis was updated by the CTC (1999) using brood years 1964 to 1991 and the goal of 5,700 was accepted as a biologically based goal.

Agency Comments: Lewis River escapements have been above their escapement goal since 1979, with the exception of 1999, and 2007-2009.

Figure 2.53.-Lewis River escapements of fall Chinook salmon, 1975-2014.

2.3.4.3.5. Deschutes River

Escapement Methodology: Escapement data are based on a MR estimate for the area above Sherars Falls and expanded for redd counts below Sherars Falls. From 2000 to 2007, Confederated Tribes of the Warm Springs Reservation of Oregon performed an entire river MR experiment to validate the Deschutes River fall Chinook salmon escapement estimates. Results of these MR studies confirm the validity of the historical estimation methodology. For historic
years when the entire river was not surveyed for redd counts, the time series was adjusted based on a comprehensive analysis done by Warm Springs, ODFW, and Columbia River Intertribal Fish Commission (CRITFC) staff. ${ }^{2}$ See Figure 2.54 for Deschutes River escapements of fall Chinook salmon, 1977 to 2014, and Figure 2.55 for a comparison of the MR and traditional estimates.

Escapement Goal Basis: A CTC-agreed escapement goal of 4,532 adult fish was derived from the adjusted historical time series. ${ }^{3}$

Agency Comments: Deschutes River fall Chinook salmon escapements have been maintained above the goal since 1992.

Figure 2.54.-Deschutes River escapements of fall Chinook salmon, 1977-2014.

[^2]

Figure 2.55.-The mark-recapture method for the entire river as compared to above Sherars Falls (ODFW method) expanded for redd ratios above and below the falls (with 90\% CIs).

2.3.4.3.6. Columbia Upriver Brights

Escapement Methodology: Escapement estimates are calculated as the McNary Dam count minus Hanford Reach adult sport, Wanapum tribal catches, and brood stocks taken by Priest Rapids, Ringold and Snake River hatcheries.
Escapement Goal Basis: The CTC-agreed escapement goal for Columbia Upriver Bright Chinook salmon is 40,000 naturally spawning fish past McNary Dam based on stock-recruitment analyses (Figure 2.56).
Agency Comments: Under the 2008-2017 US v. Oregon Management Agreement, the minimum combined Columbia River and Snake River Upriver Bright management goal at McNary Dam is 60,000 adult fall Chinook salmon, which includes both hatchery and natural production for all areas above McNary Dam. The Parties also agreed to 43,500 as the minimum Upriver Bright escapement to meet the combined Hanford Reach, Lower Yakima River, and mainstem Columbia River above Priest Rapids Dam natural spawning goal, as well as the current Priest Rapids Hatchery production (this historically included a minimal run to the Snake River). Fall Chinook salmon fisheries are managed according to a harvest rate schedule ranging from 21.5% to 45%, depending on either (1) the expected river mouth run size of the aggregate fall Chinook salmon run, or (2) the Snake River natural origin Chinook salmon run-if that run size is associated with a lower harvest rate. The terminal run forecast for Upriver Brights in 2014 was 973,300 , the largest forecast in the time series since 1980 , and 218% of the previously largest forecast. The actual 2014 terminal run of 684,200 was the second largest return in the time series since 1980. The 2015 terminal run forecast is 500,300 . Fall Chinook salmon fisheries were managed for the maximum harvest rate of 45%, but only achieved a harvest rate of 34.8%. The primary management constraint preventing higher harvest rates on Columbia Upriver Bright production is the 15% harvest rate limit on commingled ESA listed summer
steelhead (>78 cm) for forecast runs of less than 20,000. In some years, other constraints include ESA listed Snake River wild fall Chinook salmon impacts, and providing the escapement goal of 7,000 adults to Spring Creek Hatchery for tule fall Chinook salmon production.

Figure 2.56.-Escapement of Columbia Upriver Bright Chinook salmon, 1975-2014.

2.3.4.4. Coastal Oregon

2.3.4.4.1. Oregon Coastal North Migrating

North migrating Chinook salmon originate from rivers on the NOC and the MOC. Chinook salmon production in the NOC occurs mostly from naturally spawned, fall-returning, ocean-type life histories of fish. Adult spawning escapement is dominated by 4- and 5-year-old fish with smaller proportions of 3-and 6-year-old fish. These Chinook salmon from the NOC aggregate stock are caught primarily in SEAK, NBC and in terminal fisheries.

Currently, only NOC fall Chinook salmon are accounted for in PSC management, while work is underway to include MOC stocks in the PST. Stocks in the NOC aggregate are those salmon spawning from the Necanicum River in the north through the Siuslaw Basin in the south. Three escapement indicator stocks represent the production of NOC Chinook salmon: the Nehalem, Siletz, and Siuslaw stocks. Other stocks in the NOC aggregate include the Nestucca, Yaquina, Alsea, and Tillamook stocks. The Tillamook stock includes substocks in the Kilchis, Miami, Trask, Tillamook and Wilson rivers.

Forecasts for the NOC aggregate are based on sibling regression relationships developed for each discrete stock, both indicator and nonindicator stocks. The aggregated forecast for the NOC is the sum of the forecasts for the individual basins within the geographic range. Forecasting methods were developed in 2008 and are continually refined with each year's
additional information. Prior to 2008, the aggregate forecast (and each of the indicator stock's forecasts) was based on a running three-year average.

2.3.4.4.1.1. Nehalem River

Escapement Methodology: Both directed MR studies and historically conducted surveys were used to estimate escapement in the Nehalem during 2014. Standard estimates were generated from peak abundance observed during surveys of historically walked, standard index areas of known spawning habitat within the basin. These observations were then adjusted by estimates of the total available habitat, estimated observer bias, the total run encountered during the peak count, and the bias observed between these predefined surveys and other survey areas that were randomly selected. Figure 2.57 represents escapement estimates generated using normative agency methodologies, which are directly comparable to the established escapement goal. Comparison between those standard estimates and MR estimates of adult spawning escapement funded by the PSC indicates that in most years (6 out of 9) standard agency escapement estimates fall within the Cls around the comparable MR point estimates for the Nehalem stock (Figure 2.58).

Escapement Goal Basis: The current point goal of 6,989 spawners was derived by Zhou and Williams (1999) and was based on assessments of escapement made through standard survey methodology.

Agency Comments: Methods of escapement estimation comparable to those used to generate the agreed-to escapement goal for the Nehalem indicate a 2014 escapement of 11,452 adult spawners. This is 164% of the current escapement goal. This is the fourth return year since 2005 that the escapement goal has been met for the Nehalem stock. The terminal fishery was closed in 2009. While a terminal sport fishery was conducted from 2010 to 2012 return years, significant area closures, and daily and seasonal bag restrictions were deployed to assist in the rebuilding of this stock. While limited area closures were again in place for the 2014 terminal sport fishing season, the fishery was structured similarly to those prior to 2009. Based on sibling regression forecasting methods, the Nehalem stock is forecasted to meet the escapement goal in 2014. ODFW is engaged in analysis to best use results from recent MR experiments to reconstruct historic estimates from peak counts observed in standard surveys.

Figure 2.57.-Nehalem River escapements of Chinook salmon, 1975-2014.

Figure 2.58.-Nehalem River escapements of Chinook salmon in years when both agency historical expanded surveys were used (circles) and when mark-recapture estimates (diamonds are point estimates and the bars are $95 \% \mathrm{Cls}$) were conducted with Letter of Agreement or SSP funding from the PST.

2.3.4.4.1.2. Siletz River Fall

Escapement Methodology: Standard estimates were generated from peak abundance observed in historically walked, predefined areas of known spawning habitat within the basin. These observations were then adjusted by estimates of the total available habitat, estimated observer bias, the total run encountered during the peak, and the bias seen between these predefined surveys and other survey areas that are randomly selected. Escapement estimates generated using standard agency methodologies were used to develop the current escapement goal, and are presented for comparison with that goal (Figure 2.59).

Escapement Goal Basis: The current point goal of 2,944 spawners is from Zhou and Williams (2000) and was based on assessments of escapement made through standard survey methodology.

Comparison between standard estimates and estimates from MR studies funded by the PSC reveals that for those MR-based estimates with CVs less than 30\%, two standard estimates are within the Cl around the MR-based estimate; in 2008 the different estimates were nearly identical (Figure 2.60), and again in 2009, both estimates were quite similar.

Agency Comments: This stock has been studied since 2009 with funds from the SSP to improve escapement estimation using MR methods. However, traditional methods of escapement estimation remain in place until MR experiment-based estimation and a goal based on MR calibrated surveys is complete. The estimate derived from standard methods was 8,655 fall Chinook salmon (294\% of goal) in 2014. Significant restrictions of the terminal area sport fishery including substantial area closures, restrictive daily and seasonal bag limits are believed to have assisted in the achievement of the escapement goal in recent years. Those restrictions which had been in effect between 2009 and 2012 were relaxed to a great extent for 2014. This stock is forecasted to exceed its escapement goal in 2015.

Figure 2.59.-Siletz River fall escapements of Chinook salmon, 1975-2014.

Figure 2.60.-Siletz River escapements of Chinook salmon in years when both agency historical expanded surveys were used (circles) and when mark-recapture estimates (diamonds are point estimates and the bars are 95\% CIs) were conducted with Letter of Agreement or SSP funding from the PST.

2.3.4.4.1.3. Siuslaw River Fall

Escapement Methodology: Both MR-based methods and historically conducted standard surveys were used to measure escapement in the Siuslaw basin during 2014. Standard estimates were generated from observation of peak abundance in historically walked, predefined areas of known spawning habitat within the basin. These observations were then adjusted by estimates of the total available habitat, estimated observer bias, the total run encountered during the peak, and the bias observed between these predefined surveys and those that are randomly selected. These standard estimates were used to derive the current escapement goal, and are used for comparison with that goal (Figure 2.61). Comparison of the standard agency escapement estimates with PSC-funded MR estimates reveals a clear pattern with the standard estimates being consistently higher that the MR estimates (Figure 2.62). This bias in the agency based estimate that will need to be addressed in upcoming revisions of the escapement goal for the Siuslaw River.

Escapement Goal Basis: The current point goal of 12,925 spawners was derived in 2000 by Zhou and Williams (2000) and was based on assessments of escapement made through standard survey methodology.

Agency Comments: Escapement in 2014 for the Siuslaw stock, estimated based on standard habitat expansion methods, was 28,200 adult spawners. A Sentinel Stock supported MR study in the Siuslaw basin produced an estimate of 16,395 adult spawners. The current escapement goal estimate was based on the standard escapement estimates, as used in other basins on the Oregon coast. Ultimately, a new goal should be developed from a calibrated historical data series. This stock is forecast to exceed the current escapement goal in 2015.

Figure 2.61.-Siuslaw River fall escapements of Chinook salmon, 1975-2014.

Figure 2.62.-Siuslaw River escapements of Chinook salmon in years when both agency historical expanded surveys were used (circles) and when mark-recapture estimates (diamonds are point estimates and the bars are 95% CIs) were conducted with Letter of Agreement funding from the PST.

2.3.4.4.2. Mid-Oregon Coast

Populations of the MOC have been proposed for inclusion in PSC management, and there are two proposed escapement indicator stocks, the South Umpqua and the Coquille stocks. This area is bounded by the Umpqua River on the north and the Elk River Basin on the south, and includes two additional major basins, the Coos and Coquille, and two small basins, Floras Creek and the Sixes River.

There is a mixture of natural and hatchery-produced salmon originating from the MOC, both of which return in the fall and follow an ocean-type life history. The largest age classes which normally contribute to spawning escapement are 4- and 5-year-old fish; however, there are smaller proportions of spawning escapement that are observed each return year that are 3and 6 -year-old fish. These Chinook salmon are caught primarily in SEAK, NBC, PFMC fisheries and in terminal fisheries.

Forecasts for MOC stocks, except for the Elk River stock, are based on sibling regression relationships developed for each discrete population in 2008 and updated with each year's additional information. Forecasts for the Elk River stock are based on projected survival rates of hatchery releases and recent proportions of wild adults in the aggregate return.

2.3.4.4.2.1. South Umpqua River Fall

Escapement Methodology: Aerial spawning surveys for fall Chinook salmon have been conducted by the ODFW on both the South Umpqua River and Cow Creek since 1978. Aerial spawning fish surveys were started as part of Douglas County's mitigation plan for the construction and operation of Galesville Dam on upper Cow Creek. Although Douglas County's mitigation obligation has been met, funding for this annual survey has been maintained through various sources.

Citing safety concerns over the 2013 crash that injured two ODFW employees and the pilot; ODFW management mandated in 2014 that monitoring of Chinook salmon in the Umpqua river basin no longer include state employees in helicopters. Due to this mandate, techniques to estimate spawner escapement into the South Umpqua River differed slightly in 2014 from that of previous years.

Aerial redd counts were conducted with the pilot following established protocol. A trained contractor and videographer were on board in lieu of ODFW personnel. Budget constraints limited the monitoring program to only one flight instead two. Training of the contract counter and videographer was conducted by experienced ODFW personnel in a class room setting. The contract counter was instructed to record the number of redds observed in the designated reaches of the basin. The videographer was instructed to record the flight with no interruption keeping the camera trained on the river. The counts and video were then turned over to ODFW for analysis.

Three techniques for a census of redds were considered: (1) count of the contractor from the helicopter, (2) video count from an experienced ODFW employee with the ability to count from still images using rewind and pause functions during playback, and (3) review of the video from two experienced ODFW employees using the average count from a single continuous playback. Results from the third technique was selected as providing the most reliable estimates, as it best mimics the protocols established during the calibration period. Some adjustments were
made to the counts to account areas not flown due to hazards, canopy, and time constraints. Approximately 91% of the basin was flown. The redd counts were expanded by the conversion factor derived from the calibration study.

A visual index of abundance has since been developed as an alternative to aerial redd counts in the event the use of helicopters are banned. A sum of dead index has been identified from two spawning ground surveys within the South Umpqua drainage as an alternative method to estimate abundance. Results from a calibration assessment of dead Chinook salmon to MR estimates indicated a strong correlation from two reaches in the basin. Although this adaption from aerial redd counts to a spawning ground index will provide reliable estimates of abundance, it would be unfortunate that the long term ability to relate back to the historical data set would be lost.

Figure 2.63 shows South Umpqua River escapement of fall Chinook salmon, 1978-2014.
Escapement Goal Basis: ODFW is currently engaged in analysis which will produce an escapement goal for this stock.

Agency Comments: Recoveries of coded wire tagged fall run Chinook salmon from the Umpqua River indicate that they are caught in PST fisheries. Four years of US CTC-funded research has allowed the calibration of redd counts to derive a fish per redd expansion factor to estimate annual escapements. The average expansion factor from these studies is 3.64 fish per redd. The CV of the expansion factor was found to be 29%, which indicates that the average expansion factor is a reasonably reliable statistic to use for annual estimates of escapement. The escapement estimate for 2014 was 7,153 adults based on redd count expansions.

Figure 2.63.-South Umpqua River escapement of fall Chinook salmon, 1978-2014.

2.3.4.4.2.2. Coquille River Fall

Escapement Methodology: Both MR study based calibration factors (Figure 2.64) and historically conducted surveys were used to measure escapement during the past return year. Standard survey methods are identical to those described in the Siuslaw, Siletz and Nehalem basins. Values presented in Figure 2.64 are based on standard habitat survey estimations along with values calibrated to MR estimates. Both standard and MR calibrated estimates may be found in the appendix tables.

Escapement Goal Basis: ODFW is currently engaged in analysis which will produce an escapement goal for this stock.

Agency Comments: Methods based on MR-calibrated analysis yield a preliminary adult Chinook salmon escapement estimate for the Coquille Basin spawners in 2014. The traditional habitat expansion-based estimate is 10,418 fish. Analysis funded by the CTC is underway that will provide information to designate Coquille fall Chinook salmon as an escapement indicator stock for the MOC. An index of peak counts from standard surveys calibrated to MR abundance estimates has been selected as an efficient and cost-effective means to measure spawner escapement of Chinook salmon for use in PST fisheries management.

Improvements in applying those calibrated values towards the estimation of this and other Oregon Coastal stocks are currently being reviewed and discussed within the agency. It is anticipated that historical time series for each of the basins which have MR calibration studies (Nehalem, Siletz, Siuslaw, South Umpqua and Coquille rivers) will be updated in a subsequent reporting cycle.

Figure 2.64.-Coquille River escapement of fall Chinook salmon, 1975-2014.

3. Stock status

3.1. Synoptic Evaluation of Stock Status

The following sections include graphics to display stock status information with spawning escapement on one axis and exploitation rate on the other. These synoptic plots display summary information for individual escapement indicator stocks. The figures present both the current status of stocks and the history of the stocks relative to PST management objectives. Information used in these figures includes (1) escapement data; (2) CTC-accepted MSY management objectives (or, in some cases, habitat model or agency stock-recruitment-based escapement objectives that have yet to be submitted to the CTC or agreed upon by the CTC); and (3) exploitation rates from related CWT indicator stocks to clearly summarize the performance of the stocks and fisheries management relative to established or potential goals.

The plots resemble those presented for groundfish in Garcia and De Leiva Moreno (2005). A general depiction of the plots with three reference lines is provided in Figure 3.1. The plots show the annual observations of a stock with regard to fishing rate (x-axis) and escapement abundance (y-axis) from one year to the next. There are three reference lines, one for fishing mortality ($\mathrm{U}_{\text {MSY }}$) and two for escapement abundance ($\mathrm{S}_{\text {MSY }}, 0.85 * \mathrm{~S}_{\text {MSY }}$) that define five zones on the plots. The definition of reference points for PST Chinook salmon stocks is based on the management objectives (escapement and exploitation rate) identified in the 2009 Agreement. The lower reference line for escapement on the synoptic plots is set at $0.85{ }^{*} \mathrm{~S}_{\text {MSY }}$ due to language in Paragraph 13 of the 2009 Agreement. For stocks with escapement objectives defined as ranges (SEAK, TBR, and the Harrison River), the lower reference line has been defined as 85% of the lower bound of the escapement range and the upper reference line has been set as the lower bound of the escapement range. The exploitation rate reference line ($U_{\text {SMSY }}$) is the exploitation rate at $\mathrm{S}_{\text {MSY }}$ for stocks with escapement objectives.

The three reference lines produce five zones in the synoptic plots. The green area (Safe Zone) in Figure 3.1 represents a healthy stock status where fishing is below $U_{\text {MSY }}$ and the concurrent stock spawning abundance is above the specified escapement goal. The area of high risk (High Risk) is shaded red, and represents an area where a higher-than-prescribed fishing mortality is occurring concurrent with low escapement abundance. The two yellow zones (High Escapement High Exploitation, Low Escapement Low Exploitation) represent situations in which the stock could be in danger of falling into an area of conservation concern; in the upper right (High Escapement High Exploitation), escapement is at a healthy level, but fishing mortality is above the $U_{\text {MSY }}$ limit, and in the lower left (Low Escapement Low Exploitation), fishing is occurring below the $U_{\text {MSY }}$ limit but the population failed to attain a desired minimum escapement. The cross-hatched region is the PSC buffer zone, indicating problems may arise in the future.

Figure 3.1.-Precautionary plot for synoptic evaluations of PST Chinook salmon stocks.
Exploitation rates used in the synoptic plots are one of the following: CY exploitation rates, preterminal cumulative mature-run equivalent (MRE) exploitation rates, or total (preterminal and terminal) cumulative MRE exploitation rates. Total cumulative MRE exploitation rates cannot be used when there is a terminal fishery that is directed on the hatchery indicator stock because the terminal exploitation will differ from that on the wild stock being represented. The ages used in the escapement and exploitation rate calculations are not the same for each stock presented in the synoptic charts below, and typically exclude age 2 for ocean-type stocks and age 3 for stream-type stocks. See Table 3.1 for more detail.

Calendar year exploitation rates are computed as

$$
\text { CYER }_{C Y}=\frac{\text { OceanMorts }}{C Y} \text { + TermMorts }{ }_{C Y}
$$

Cumulative MRE exploitation rates are computed as

$$
C M R E E R_{C Y}=1-\left(\frac{O E S C_{C Y}}{P E S C_{C Y}}\right)
$$

where

$$
\begin{aligned}
& O E S C_{C Y}=\sum_{a=\text { startage }}^{\text {maxage }} O E S C_{C Y, a} \\
& P E S C_{C Y}=\sum_{a=s t a r t a g e}^{\text {maxage }} P E S C_{C Y, a}
\end{aligned}
$$

and

$$
\text { PESC }_{C Y, a}=\frac{\text { OESC }_{C Y, a}}{\text { CumSurvRte }_{C Y-a, a}} .
$$

When computing total (preterminal and terminal) MRE exploitation rates, the cumulative survival rate is computed for each age in a brood year as

$$
\text { CumSurvRte }_{B Y, a}=\text { TermSurvRte }_{B Y, a} * \prod_{i=\text { startage }^{a} \text { PreTermSurvRte }}^{B Y, i} \text {. }
$$

When computing preterminal MRE exploitation rates the cumulative survival rate is computed for each age in a brood year as

$$
\text { CumSurvRte }_{B Y, a}=\prod_{i=s t a r t a g e}^{a} \text { PreTermSurvRte } e_{B Y, i} .
$$

The preterminal harvest rates for each age in a brood year are computed as

$$
\text { PreTermH }_{B Y, a}=\frac{\text { OceanMorts }_{B Y, a}}{\text { CohortSizeANM }_{B Y, a}} .
$$

The preterminal survival rates for each age in a brood year are computed as

$$
\text { PreTermSurvRte }_{B Y, a}=1-\text { PreTermHR }_{B Y, a} .
$$

Table 3.1.-Parameter definitions for all equations used to estimate CY exploitation rates and cumulative mature-run exploitation rates.

Parameter	Description
$a=$	age
$B Y=$	Brood year
$C Y=$	Calendar year
CMREER $R_{C Y}=$	Cumulative MRE exploitation rate for calendar year $C Y$
CohortSizeANM $M_{B Y, a}=$	Cohort size after natural mortality for brood year $B Y$ and age a
CumSurvRte ${ }_{B Y, a}=$	Cumulative survival rate for brood year $B Y$ and age a
$C Y E R_{C Y}=$	Calendar year exploitation rate for calendar year $C Y$
OceanMorts $_{B Y, a}=$	Ocean mortalities for brood year $B Y$ and age a
OESC $_{C Y}=$	Observed escapement for calendar year $C Y$
OESC $_{C Y, a}=$	Observed escapement for calendar year $C Y$ and age a
PESC $_{C Y}=$	Potential escapement for calendar year $C Y$
PESC $_{C Y, a}=$	Potential escapement for calendar year $C Y$ and age a
PreTermHR $_{B Y, a}=$	Pre-terminal harvest rate for brood year $B Y$ and age a
PreTermSurvRte $_{B Y, a}=$	Pre-terminal survival rate for brood year $B Y$ and age a
TermMorts $_{C Y}=$	Terminal mortalities for calendar year $C Y$
TermSurvRte $_{B Y, a}=$	Terminal survival rate for brood year $B Y$ and age a

Data necessary to plot the stock trajectories are available for most escapement indicator stocks (Table 3.2). Most escapement indicator stocks have companion exploitation rate indicator stocks that are assumed capable of reflecting the exploitation rates in preterminal areas. With suitable assumptions about terminal area fisheries, the total exploitation rates on stocks can be
estimated. Most areas along the coast have escapement indicator stocks. Notable exceptions are the UGS area, the WCVI area and the Fraser River early stocks (spring and summer). For UGS, the CTC in the past has reported escapement for an aggregate. In future catch and escapement reports, the CTC will provide the individual metrics in addition to the aggregate numbers. The Fraser early stock consists of additional complexities for escapement indicator stocks, which are delineated on the basis of life history, and the stocks listed in Attachments I, II, and IV, which are based on geography. Region-specific synoptic evaluations of Chinook salmon stocks are presented in Section 3.2.

Table 3.2.-Summary of information available for synoptic stock evaluations.

Region ${ }^{1}$	Escapement Indicator	$\mathrm{S}_{\text {MSY }}$	$\begin{gathered} 85 \% \text { of } \\ \mathrm{S}_{\mathrm{MSY}}{ }^{2} \end{gathered}$	Exploitation Rate Indicator	$\mathrm{U}_{\text {MSY }}$	Type of Exp. Rate ${ }^{3}$
SEAK	Situk	600	425	Situk wild	0.81	CY
SEAK	Chilkat	2,200	1,488	Chilkat wild	0.40	CY
SEAK	Unuk	2,764	1,530	Unuk wild	0.60	CY
SEAK	Chickamin (survey index)	525	383	Alaska Hatchery (Neets, Whitman, Deer) and Unuk wild	0.72	CMRE
SEAK/TBR	Alsek	4,677	2,975	Alsek wild	0.58	CY
SEAK/TBR	Taku	25,500	16,150	Taku wild	0.59	CY
SEAK/TBR	Stikine	17,400	11,900	Stikine wild	0.42	CY
BC	Harrison	75,072	63,811	Chilliwack	0.57	CMRE
BC	Cowichan	6,514	5,537	Cowichan	0.69	CMRE
BC	Kitsumkalum	8,621	7,328	Kitsumkalum	0.61	CMRE
BC	Atnarko	5,009	4,258	Atnarko	0.77	CMRE
BC	Nicola	8,337	7,086	Nicola	0.59	CMRE
BC	Lower Shuswap	12,339	10,488	Lower Shuswap	0.73	CMRE
COLR	Columbia Upriver Summer	12,143	10,322	Columbia Summers	0.75	CMRE
COLR	Columbia Upriver Brights	40,000	34,000	Upriver Brights	0.56	CMRE
COLR	Deschutes River Fall	4,532	3,852	Lewis River Wild	0.79	CMRE
COLR	Lewis River Fall	5,791	4,922	Lewis River Wild	0.79	CMRE
WAC	Quillayute Fall	3,000	2,550	NA		NA
WAC	Queets Spring/Summer	700	595	NA		NA
WAC	Queets Fall	3,000	2,550	Queets Fall Fingerlings	0.74	CMRE
WAC	Hoh Spring/Summer	900	765	NA		NA
WAC	Hoh Fall	1,200	1,020	NA		NA
ORC	Nehalem	6,989	5,941	Salmon River	0.69	CMRE
ORC	Siletz	2,944	2,502	Salmon River	0.81	CMRE
ORC	Siuslaw	12,925	10,986	Salmon River	0.61	CMRE

${ }^{1}$ See List of Acronyms for definitions.
${ }^{2}$ Stocks with an escapement goal range use 85% of the lower bound.
${ }^{3}$ Two types of exploitation rates were used: cumulative mature-run equivalents (CMRE) and calendar year (CY) which are based off of actual stock assessment data gathered annually for each stock.

A synoptic summary figure for 20 stocks with 2013 data shows that the majority of stocks were in the safe zone (Figure 3.2). No stocks were in the high risk zone and four stocks (Unuk, Cowichan, Harrison, and Nicola) were in the low escapement and low exploitation zone. One stock (Columbia Upriver Brights) experienced exploitation near $\mathrm{U}_{\mathrm{MSY}}$ and still the escapement exceeded $\mathrm{S}_{\text {MSY }}$ by nearly 10 -fold. The Washington and Oregon coastal stocks clustered closer to
the 1.0 index lines than the other regional groups. In general, Columbia River stocks showed a higher escapement to $S_{\text {MSy }}$ index than the other regions where there was no pattern.

Figure 3.2.-A synoptic summary by region of stock status for stocks with escapement and exploitation rate data in 2013.

Note: Escapement and exploitation rate data were standardized to the stock-specific escapement goal and $U_{M S Y}$ reference points.

3.2. Regional Trends and Profiles

3.2.1. Southeast Alaska and Transboundary River Stocks

Recent declines in Chinook salmon productivity and abundance are widespread and persistent throughout Alaska, particularly in western and northern Alaska. Available run abundance data for Chinook salmon in Alaska indicate significant declines were first fully detected in 2007-as expected-from a persistent decline in productivity that began with returns from brood year 2001. This effect has been observed statewide. Run abundance data available from 21 stocks in Alaska show substantial variability and moderate to no coherence among stocks prior to 2004 (Figure 3.3). This is consistent with downward trends in productivity and similar declines of SEAK Chinook salmon stocks.

The SEAK and TBR stocks have two main rearing behaviors that are consistent and predictable. Outside rearing behavior includes rearing in the Gulf of Alaska and Bering Sea after leaving the freshwater environment. Inside rearing behavior involves rearing in the nearshore environment of SEAK. Outside rearing stocks include the Situk, Alsek, Taku, and Stikine Chinook salmon and the majority of these fish strictly adhere to this behavior. Inside rearing stocks include the Chilkat, Unuk, and Chickamin stocks, and although the vast majority rear in the nearshore environment, CWT information suggests at least a small proportion of these fish exhibit
outside-rearing behavior. Productivity has decreased for both outside- and inside-rearing stocks; the decline is far reaching, extends beyond SEAK, and has affected most Alaska Chinook stocks.

Trends in Chinook Salmon Run Abundance

(Average of 21 Stocks)

Figure 3.3.- Average of standardized deviations from average run abundance for 21 stocks of Chinook salmon in Alaska (the Unalakleet, Nushagak, Goodnews and Kuskokwim in western Alaska; the Chena and Salcha on the Yukon River; the Canadian Yukon, the Chignik and Nelson on the Alaska Peninsula; the Karluk and Ayakulik on Kodiak Island; the Deshka, Anchor and late run Kenai in Cook Inlet, the Copper in the northeastern Gulf of Alaska, and the Situk, Alsek, Chilkat, Taku, Stikine, and Unuk in Southeastern Alaska).

3.2.1.1. Southeast Alaska Stock Status: Situk, Chilkat, Unuk, and Chickamin Rivers Chinook Salmon

The Situk River stock has failed to meet the escapement goal in five of the last seven years. Over the past decade, this stock demonstrated the poorest performance among the four SEAK stocks. This failure cannot be explained by harvest rates, which are among the lowest in the region. Because harvests are mostly inriver or in the estuary, detailed catch accounting programs enumerate the vast majority of the harvest, which produces CY harvest estimates. Because this stock is outside rearing, it is not exposed to SEAK harvest before maturation. Harvest rates for the Situk stock have been below-and have never exceeded-the threshold reference value rates. During the recent seven years of poor escapements for Situk River Chinook salmon, harvest rates have averaged 26\%, including a low rate of 3% in 2011 when estimated escapement was 48% of the goal. Overall, rates exerted on the Situk River stock have never approached the Umsy rate (81\%) and were 7% in 2014 (Figure 3.4). The poor runs and escapement primarily result from decreased productivity and mirror the very low productivity of other Alaska stocks that rear in the Gulf of Alaska/Bering Sea. Management
measures have been in place for the Situk stock to reduce harvests and increase escapement. Even with very restrictive management actions, however, the escapement goal for the Situk River stock will be difficult to attain until productivity improves.

Figure 3.4.-Calendar year exploitation rate, spawning escapement, and threshold reference lines for exploitation rate and spawning escapement by CY for the Situk River stock of Chinook salmon, 19762014.

Chilkat River Chinook salmon return to northern SEAK and are mostly inside rearing. The Chilkat River stock failed to achieve the escapement goal in four of the past eight years. The Chilkat River is located at the northern end of Lynn Canal; gillnet and sport fisheries in the region can be managed to conserve the Chilkat River stock of Chinook salmon.

A successful CWT program is in place to estimate harvest of the Chilkat River Chinook salmon. Harvest rates from 2003 to 2014 for the Chilkat River stock of Chinook salmon have not exceeded the threshold reference value and have averaged 23%, approximately half of the threshold reference value (Figure 3.5). CWT recovery data indicates some age-4 Chilkat River Chinook salmon are harvested while rearing in SEAK, primarily in net fisheries. However, the majority of harvest is of mature fish from sport, commercial troll, and drift gillnet fisheries in SEAK. In general, harvest rates on the Chilkat River stock of Chinook salmon are some of the lowest observed for Chinook salmon stocks, with a recent 10-year average harvest rate of 25%.

Chinook salmon smolt abundance and survival have been estimated for the Chilkat River stock since the 1998 brood year. Freshwater survival has, for the most part, been about average with the exception of the 2006 and 2007 brood years. Marine survival was above average for brood years 1998 to 2001 and below average for the more recent broods (Figure 3.6). Below average productivity has negatively affected Chinook salmon abundance in the Chilkat River and continued low harvest rates will be needed until productivity improves to achieve the escapement goal.

Δ 2003-08 \diamond 2009-14 \ldots S (0.85 Smsy Lower Bound) \rightleftharpoons Umsy Lower Bound
Figure 3.5.-Calendar Year equivalent harvest rate, spawning escapement, and threshold reference lines for harvest rate and spawning escapement by CY for the Chilkat River stock of Chinook salmon, 20032014.

Figure 3.6.-Freshwater and marine survival indices (standardized to a mean of zero) for the Chilkat River stock of Chinook salmon, 1998-2008 brood years.

The Unuk and Chickamin rivers flow into Behm Canal in southern SEAK and Chinook salmon produce inside-rearing stocks. Escapement trends for these stocks have been decreasing in recent years. The Unuk River stock was below the escapement goal from 2012 to 2014 and the Chickamin River stock was below the escapement goal in 2012. Fishing for Chinook salmon is prohibited in these rivers as well as in most of the nearby marine waters of Behm Canal. Generally, southern SEAK stocks are harvested at relatively low rates while rearing and maturing, and they are not harvested in terminal areas due to management closures. The bulk of the Southern SEAK stocks are harvested outside of the terminal areas and as returning mature fish. Although Chinook salmon that return to the Unuk River are similar in size at age to
other northern SEAK stocks, size at age for Chickamin River Chinook salmon is considerably larger.

A very successful CWT program is in place to estimate harvest for the Unuk River stock. In sharp contrast to other SEAK Chinook salmon stocks, the Unik River harvest rates have been high in recent years. Some Unuk River Chinook salmon are caught while rearing in SEAK but CWT recovery data indicates most harvest is of mature fish. Harvest rates on this stock have averaged about one-half the threshold reference value, but the escapement goal was not met for the first time in 2012 and that continued in 2013 and 2014. Coupled with poor production, harvest rates were the highest on record during these years, including an overthreshold harvest rate of 74% in 2012 (Figure 3.7). Additional domestic management measures are needed to attain the escapement goal during this period of poor production.

Figure 3.7.-Calendar Year harvest rate, spawning escapement, and threshold reference lines for harvest rate and spawning escapement by CY for the Unuk River stock of Chinook salmon, 1988-1991 and 19982014.

Chinook salmon smolt abundance and survival has been estimated for the Unuk River stock since the 1992 brood year. Freshwater survival has, for the most part, shown no apparent pattern. The 2003 and 2005 brood years were some of the lowest freshwater survivals on record; however, like the Chilkat stock, the 2006 brood year showed the best freshwater survival observed since the project began. Marine survival was near average and cycled annually over the 1991 to 2005 brood years. However, the 2006 to 2008 brood years have exhibited some of the lowest marine survivals over the range of data (Figure 3.8).
There are no CWT programs in place to estimate harvest for the Chickamin River stock of Chinook salmon. As a result, MRE harvest rates from the nearby Neets Bay and Whitman Lake hatcheries are used as surrogate values after discounting any terminal hatchery harvests. These hatcheries use the Chickamin River as a brood source and are available to harvest as rearing
and mature fish in SEAK. Due to the larger size of Chickamin River Chinook salmon, the majority of ocean age-2 Chickamin River Chinook salmon exceed the 28 -inch legal length for harvest and they recruit to sport and troll fisheries. Despite this early recruitment, the Chickamin stock has displayed relatively low harvest rates, has never exceeded the threshold reference line, and has averaged less than one-half the threshold reference value (Figure 3.9).

Figure 3.8.-Freshwater and marine survival indices (standardized to a mean of zero) for the Unuk River stock of Chinook salmon, 1992-2008 brood years.

Figure 3.9.-Mature-run equivalent harvest rate, spawning escapement, and threshold reference lines for harvest rate and spawning escapement by CY for the Chickamin River stock of Chinook salmon, 19832014.

3.2.1.2. Transboundary Rivers Stock Status: Alsek, Taku, and Stikine Rivers Chinook Salmon

The Alsek River stock has failed to achieve the goal five times in the past decade. In recent years this stock has demonstrated one of the poorest performances in failing to meet escapement goals among the three TBR stocks. This failure cannot be explained by harvest rates which are among the lowest of CTC escapement indicators. Harvests are mostly inriver or in the Dry Bay estuary and detailed catch accounting programs enumerate the vast majority of the harvest, which produces CY harvest estimates for Alsek Chinook salmon. Similar to Situk Chinook salmon, this stock is outside rearing, and is not exposed to SEAK fisheries while rearing. Harvest rates for the Alsek stock have been below the threshold reference value and have never exceeded the threshold harvest rate. During the past decade the Alsek River stock has averaged a low 18% harvest rate (Figure 3.10). Poor runs and escapement are primarily the result of decreased productivity and mirror other Alaskan stocks that rear in the Gulf of Alaska and Bering Sea. Management measures have been in place to reduce harvests and increase escapement. Even with very restrictive management actions, however, the escapement goal for the Alsek River stock will be difficult to attain until productivity improves.

Figure 3.10.-Calendar year harvest rate, spawning escapement, and threshold reference lines for harvest rate and spawning escapement by CY for the Alsek River stock of Chinook salmon, 1976-2014.

The Taku and Stikine river stocks have also demonstrated reduced productivity; however, the changes are more recent and the productivity decline is of a lesser magnitude than that of the Alsek River stock. Preseason forecasts are developed for both the Taku and Stikine river stocks; implementation of directed fisheries is based on preseason forecasts but also includes inseason assessments. Preseason forecasts for the last few years have been higher than estimated abundance. To balance this forecast error, inseason assessments have been used in both the US
and Canada to manage fisheries. Since 2007 escapement goals have been achieved for both stocks in all but three years, despite reduced productivity.

Beginning in 2005, new directed fisheries were implemented in years identified with surplus production for the Taku and Stikine stocks. Consequently in years of surplus production, harvest rates have been higher and at times have exceeded the threshold reference value. These stocks are outside rearing, leaving SEAK to rear in the Gulf of Alaska and Bering Sea after smolt emigration. Taku and Stikine Chinook salmon are therefore not exposed to SEAK fisheries as rearing fish.

Between 1976 and 2004 commercial fishing for these two stocks in the terminal area was closed or severely restricted. Current terminal fisheries that harvest Taku and Stikine Chinook salmon stocks are local sport, incidental catch in the traditional sockeye drift gillnet fisheries, outside commercial troll, and inriver fisheries, primarily in Canada. The onset of the new directed fisheries in 2005 emphasized the need to have more accurate measures of harvest, which prompted implementation of a genetic stock identification program. This program, when coupled with the assessment methods described in McPherson et al. (2010) for CYs 1977 to 2007 for the Taku stock and in Bernard et al. (2000) for CYs 1981 to 1997 for the Stikine stock, have been used to provide CY harvest estimates since 2005. Harvest rates since 1999 for the Taku stock have been low, averaging 23%, less than one-half of the threshold reference value. From 1975 to 2014, harvest rates have remained well below the threshold reference value and have averaged 16\% (Figure 3.11). In the Stikine from 2005 to 2008, harvest rates averaged 59\%, exceeding the threshold reference point; however, significant directed fishing took place and the escapement goal was achieved in each of these years. From 1975 to 2014 the harvest rate on Stikine River Chinook salmon stock averaged 25\%, well below the threshold (Figure 3.12).

Figure 3.11.-Calendar year harvest rate, spawning escapement, and threshold reference lines for harvest rate and spawning escapement by CY for the Taku River stock of Chinook salmon, 1975-2014.

Figure 3.12.-Calendar year harvest rate, spawning escapement, and threshold reference lines for harvest rate and spawning escapement by CY for the Stikine River stock of Chinook salmon, 1981-2014.

Until the low productivity regime associated with stocks that rear in the Gulf of Alaska and Bering Sea improves, harvest rates on Alsek, Taku, and Stikine river stocks will need to remain well below the estimated sustainable rate. Even if harvest rates remain low, escapement goals may not always be achieved due to poor marine survival.

Chinook salmon smolt abundance and survival has been estimated for the Taku River since the 1992 brood year. The data suggest that freshwater survival has been variable with no apparent trend; however, marine survival has undergone cycles throughout this period and for recent brood years some of the lowest levels of marine survival have occurred since smolt abundance estimation began (Figure 3.13).

Figure 3.13.-Freshwater and marine survival indices (standardized to a mean of zero) for the Taku River stock of Chinook salmon, 1992-2008 brood years.

Smolt abundance and survival have been estimated for the Stikine River stock of Chinook salmon since the 1998 brood year. The data suggest that freshwater survival was favorable for brood years 1998 to 2001. Beginning with the 2001 brood year, marine survival has been low in most years (Figure 3.14).

Figure 3.14.-Freshwater and marine survival indices (standardized to a mean of zero) for the Stikine River stock of Chinook salmon, 1998-2008 brood years.

3.2.2. Canadian Stocks

3.2.2.1. Northern British Columbia: Kitsumkalum River

The North/Central BC model stock group includes the Yakoun, Nass, and Skeena escapement indicators in Northern BC. Currently, none of these indicator stocks have CTC-agreed escapement goals. The exploitation rate indicator stock for the North/Central model stock group is the Kitsumkalum in the Lower Skeena River; high quality MR escapement estimates have been produced for this stock annually since 1984. This stock has had a very low level of enhancement relative to the CWT indicator stock targets (mean enhanced contribution $=3.4 \%$, range $=0.4-9.4 \%$, run years 1985-2012). McNicol (1999) reviewed these data and estimated the stock-recruit relationship, which was updated by Parken et al. (2006). Marine survival has fluctuated up to brood year 2006 and since brood year 2007 has been below average (Figure 3.15). The mature-run equivalent exploitation rates have been below the threshold reference line in all years (Figure 3.16). Spawning escapements have exceeded $\mathrm{S}_{\text {MSY }}$ reference line in all years but three. In the earliest period (1989-1998), there were two years in which the stock with the spawning escapement was in the buffer zone and one of the years the stock was in the low escapement and low exploitation zone. Recently (1999-2014), the stock has been in the safe zone.

Figure 3.15.-Marine survival index (standardized to a mean of zero) for the Kitsumkalum River stock of Chinook salmon, 1979-2010 brood years. Brood year 1982 was not represented by CWTs, thus no datum is available.

Figure 3.16.-Mature-run equivalent exploitation rate, spawning escapement, and threshold reference lines for exploitation rate and spawning escapement by CY for the Kitsumkalum River stock of Chinook salmon, 1985-2014.

3.2.2.2. Central British Columbia: Atnarko River

The North/Central BC model stock group includes the Dean and Atnarko escapement indicators in Central BC. Currently, none of these indicator stocks have CTC-agreed escapement goals. The Atnarko River was added as an exploitation rate indicator stock in Area 8 in 2012 (Vélez-Espino et al. 2011) with MR escapement estimates produced annually (Vélez-Espino et al. 2010). These estimates were used to calibrate the time series of existing carcass count based escapement estimates and broodstock CPUE back to 1990 (Vélez-Espino et al. 2014). This stock has had a moderate level of enhancement relative to the CWT indicator stock targets (mean enhanced contribution $=35 \%$, range $=13-67 \%$, run years 1990-2014). The largest hatchery contributions occurred in the mid-1990s, reaching 67% in 1996. The recent increase in hatchery contribution is partly due to the implementation of yearling releases in addition to the subyearling releases. Adjustments have been made to escapement estimates to remove hatchery fish in order to make inferences for unenhanced stocks in Central BC (Vélez-Espino et al. 2014). A stockrecruitment relationship has not yet been generated; however, a habitat-based estimate of $\mathrm{S}_{\mathrm{MSY}}$ (Parken et al. 2006) of 5,009 large adults has been developed for Atnarko Chinook salmon (Vélez-Espino et al. 2014).

The average marine survival (i.e., age-2 cohort survival) of Atnarko Chinook salmon is 2.4% (for brood years 1986-2011), with an increasing tendency from brood year 1986 to brood year 1991, and remaining generally below average from brood year 1992 up to brood year 2009. For brood year 2010, marine survival increased to a level comparable to that achieved for brood year 1990 and reached the highest recorded level (5.5\%) for brood year 2011 (Figure 3.17).

Figure 3.17.-Marine survival index (standardized to a mean of zero) for subyearling releases of the Atnarko River stock of Chinook salmon, 1986-2010 brood years. There were no CWT releases for brood years 2003 and 2004.

Escapement estimates of large adults (total wild and hatchery excluding jacks) have exceeded $\mathrm{S}_{\text {MSY }}$ in all years except in 2012 when the escapement estimate was just below $\mathrm{S}_{\text {MSY }}(4,992$, Figure 3.18). The 2012 escapement of large adults was, however, greater than the $0.85 \mathrm{~S}_{\mathrm{MSY}}$ lower threshold of 4,258 . This stock has been in the safe zone for all years except in 2012, where the spawning escapement was in the buffer zone (Figure 3.19). Mature-run equivalent exploitation rates have been below the threshold reference line in all years.

Figure 3.18.-Time series of Atnarko Chinook escapement integrating the calibrated values from best Generalized Linear Model and the best Maximum Likelihood estimates for years with mark-recapture studies (2001-2003 and 2009-2014).

Note: Time series are shown for total escapement including hatchery and wild females (F), males (M), and jacks (J), large adult escapement including hatchery and wild F and M, and large wild escapement including only wild F and M. The dashed line shows the habitat-based escapement goal.

Figure 3.19.-Mature-run equivalent exploitation rate, spawning escapement, and threshold reference lines for exploitation rate and spawning escapement by CY for the Atnarko River stock of Chinook salmon, 1990-2014.

Note: Spawning escapement excludes jacks to be consistent with the units represented by the $S_{\text {MSr-based }}$ escapement goal.

3.2.2.3. Lower Strait of Georgia: Cowichan River

The Lower Strait of Georgia natural stock group includes the Cowichan River and Nanaimo River escapement indicators. Currently, only the Cowichan has a CTC-agreed escapement goal. A habitat-based estimate of $\mathrm{S}_{\mathrm{MSY}}$ is available for the Nanaimo River; however, the exploitation rate indicator program was discontinued after brood year 2004. The Cowichan River is an exploitation rate indicator stock that has escapement estimates produced by fence (weir) and MR methods. This stock has had a high level of enhancement (mean enhanced contribution = 24\%) for run years 1982-2011 (Figure 3.20), which influences the representativeness of this stock for others in Lower Strait of Georgia. The largest contribution occurred in 2002 reaching 59%. Tompkins et al. (2005) reviewed the Cowichan data and estimated the stock-recruit relationship. Marine survival was generally above average for brood years 1985 to 1992, below average from 1993 to 2009, and slightly above average in 2010 and about average in 2011 (Figure 3.21). The cumulative exploitation rates have been above the threshold reference line in about 80% of the years and escapements have been below $\mathrm{S}_{\mathrm{MSy}}$ since 1997 (Figure 3.22). The stock has rarely been in the safe zone of the synoptic plot, only once during the last 26 years, with most of the recent years in the high risk zone. The stock experiences the highest exploitation of the stocks examined in Section 3.

Figure 3.20.-The percentage of first generation hatchery origin Chinook salmon in the Cowichan River adult escapement, 1982-2011.

Figure 3.21.-Marine survival index (standardized to a mean of zero) for the Cowichan River stock of Chinook salmon, 1985-2011 brood years. Brood years 1986 and 2004 were not represented by CWTs, thus no data are available.

Figure 3.22.-Mature-run equivalent exploitation rate, spawning escapement, and threshold reference lines for exploitation rate and spawning escapement by CY for the Cowichan River stock of Chinook salmon, 1988-2014.

3.2.2.4. Fraser River Stocks

Within the Fraser River, three of five escapement indicator stocks are represented currently by exploitation rate indicator stocks. Fraser River spring run age 1.2 are represented by the Nicola River, Fraser River summer run age 0.3 are represented by the Lower Shuswap River, and Fraser River late run are represented by the Harrison River. Fraser River spring run age 1.3 and Fraser River summer run age 1.3 are not currently represented by CWT-based indicator stocks.

3.2.2.4.1. Fraser River Spring Run Age 1.2: Nicola River

The Fraser River spring run age-1.2 stocks are small-bodied, early-maturing stocks that spawn in tributaries to the Lower Thompson River, Louis Creek in the North Thompson River, and Bessette Creek in the South Thompson River. The Nicola River is an exploitation rate indicator stock that has escapement estimates produced by MR methods. Currently, there are no CTCagreed escapement goals for this group. Harvest occurs almost exclusively during the return migration, while passing through approach fisheries and within the gauntlet of Fraser River fisheries. Escapement estimates declined steeply between 2003 and 2009, and currently this is a stock group of concern for Canadian fishery planning. This stock has had a high level of enhancement (mean enhanced contribution $=26 \%$, run years 1986-2014), which influences its representativeness for unenhanced stocks in the stock group (Figure 3.23). Hatchery contribution averaged 19% over the last 12 years.

The reference lines in Figure 3.24 were estimated from habitat-based methods (Parken et al. 2006). The Nicola River stock has been in either the low escapement and low exploitation or safe zone of the synoptic plot in all years. Since 2009, the stock has been in the low escapement
and low exploitation zone, which indicates that smolt survival, freshwater survival, or their interaction have contributed to low production.

Figure 3.23.-The percentage of first generation hatchery origin Chinook salmon in the Nicola River escapement, 1987-2013.

Figure 3.24.-Mature-run equivalent exploitation rate, spawning escapement, and threshold reference lines for exploitation rate and spawning escapement by CY for the Nicola River stock of Chinook salmon, 1995-2014.

There was a shift to a below average marine survival regime beginning in brood year 2000, which appears similar to the pattern described previously for the outside-rearing stocks in Alaska (Figure 3.25). Cohorts that entered the ocean in 2005 and 2007 (return years 2007 and 2009) survived particularly poorly. A pattern of alternating years of very poor escapements has persisted due to the weak returns from those smolts despite increased conservation measures. Survivals decreased steeply with the 2000 brood (2002 ocean entry) and remained below
average subsequently, with the modest exception of 2006 brood (2008 ocean entry; Figure 3.25). The very low survival for the 1992 brood year was caused by a Myxobacteria infection at Spius hatchery, and the survival for the 1994 brood year was affected by high prespawn mortality in 1998 (not measured). Rebuilding will require a sustained return to more favorable survival conditions.

Figure 3.25.-Marine survival index (standardized to a mean of zero) for the Nicola River stock of Chinook salmon, 1985-2011 brood years.

3.2.2.4.2. Fraser River Summer Run Age 0.3: Lower Shuswap

The Fraser River summer run age-0.3 stocks are far north migrating, ocean-type stocks that spawn in Maria Slough (Lower Fraser River), the Lower Thompson River, and South Thompson River and tributaries. These fish remain on the continental shelf for their entire marine residence and are vulnerable to harvest throughout that period and during return migration, in both marine and Fraser River fisheries. Escapements to this stock group increased from about 25,000 through the 1980s to more than 100,000 between 2006 and 2011, peaking in 2010 at an estimated 156,600 fish, and declining steeply in 2012 to about 48,000 fish. The Lower Shuswap River is an exploitation rate indicator stock that has escapement estimates produced by MR methods since 2000. Currently, there are no CTC-agreed escapement goals for this group and the reference lines were estimated from habitat-based methods (Parken et al. 2006). This stock has had a low to moderate level of enhancement (mean enhanced contribution $=7 \%$, run years 1987-2014), which influences its representativeness for unenhanced stocks in the stock group (Figure 3.26). Hatchery contribution averaged 10\% over the last 12 years.

Marine survival has been fluctuating since 1984; however, all brood years since 2000 (except for 2006 and 2010) have been below average (Figure 3.26). Survival increased considerably for the 2010 brood year, leading to a high abundance of age-3 fish in the 2013 and age- 4 fish in 2014 escapements. Survival decreased considerably in 2011 (incomplete brood). The
cumulative exploitation rates have been below the threshold reference line in all but two years and escapements have exceeded $\mathrm{S}_{\text {MSy }}$ in all but two years (1993 and 2012, Figure 3.27). The Lower Shuswap CWT stock has been in the safe zone of the synoptic plot in all but four years. Since implementation of the 2009 Agreement, five years were in the safe zone and one year (2012) was in the low escapement and low exploitation zone.

Figure 3.26.-Marine survival index (standardized to a mean of zero) for the Lower Shuswap River stock of Chinook salmon, 1984-2011 brood years.

Figure 3.27.-Mature-run equivalent exploitation rate, spawning escapement, and threshold reference lines for exploitation rate and spawning escapement by CY for the Lower Shuswap River stock of Chinook salmon, 1989-2014.

3.2.2.5. Fraser Late: Harrison River

The Fraser late stocks are white-fleshed fall-run Chinook salmon, originating from the Harrison River downstream of Harrison Lake in the Lower Fraser River. Juveniles migrate to the Fraser estuary immediately after emergence and remain in the estuary area for up to six weeks before moving into the Strait of Georgia. Their ocean distribution is principally in the Salish Sea, WCVI and Coastal Washington, where they are vulnerable to fisheries throughout their ocean residence. The stock group was represented originally by the Chilliwack River exploitation rate indicator stock, but recently data have been reported for the Harrison River indicator stock that has escapement estimates produced by MR methods since 1984. This stock has had a mean enhancement level of 6% from 1984 to 2013 (range $=0.3-24 \%$), and averaged 3% over the last 12 years. With a few exceptions, marine survivals have been below average since 1990 (Figure 3.28). Spawning escapements have been below the goal range for three of the past seven seasons and one was in the buffer zone (Figure 3.29). The synoptic plot shows the stock with exploitation rates higher than the reference line in the majority of years from 1985 to 1998, with two years in the high risk zone but only one year in the safe zone. Cumulative exploitation rates were reduced under the 1999 Agreement, with the majority of years having exploitation rates less than $U_{\text {MSY. }}$. Exploitation rates were further reduced under the 2009 Agreement and exploitation rates have been below the reference line; however, only two years have been in the safe zone since 2009. The recent low escapements and low exploitation rates indicate that smolt survival, freshwater survival or their interaction have contributed to low production.

Figure 3.28.-Marine survival index (standardized to a mean of zero) for the Harrison River stock of Chinook salmon, 1981-2011 brood years. No data are available for brood year 2004.

Figure 3.29.-Mature-run equivalent exploitation rate, spawning escapement, and threshold reference lines for exploitation rate and spawning escapement by CY for the Harrison River stock of Chinook salmon, 1984-2014.

3.2.3. Puget Sound, Coastal Washington, Columbia River, and Coastal Oregon Stocks

3.2.3.1. Puget Sound

Puget Sound stocks are a mixture of natural- and hatchery-origin production of spring run and summer/fall run fish. This mix of hatchery- and natural-origin production influences both the fisheries within Puget Sound, where terminal fisheries target abundant hatchery stocks, as well as the escapement to the spawning grounds, which contains many hatchery strays in some cases. Consequently, historic patterns of wild Puget Sound Chinook salmon abundance may be obscured because of the interaction of hatchery- and natural-origin production in the fishery and escapement accounting. Hatchery programs in Puget Sound have annually released between about 23 million (1976) to over 56 million (1989) Chinook salmon (Figure 3.30). Since Puget Sound Chinook salmon were listed as threatened under the ESA in 1999, hatchery production has averaged about 33 million releases annually. Although Puget Sound hatchery programs historically emphasized production for fisheries alone, many of today's programs are also associated with endangered species recovery or wild broodstock CWT indicator programs.

Spring run stocks in Puget Sound exhibit both ocean-type (age-0 fingerling outmigrants) and stream-type (age-1 yearling outmigrants) life histories. Key spring stocks are the PSC escapement indicators in the Nooksack and Skagit rivers, as well as the White River (PSC CWT indicator), with associated hatchery programs in each. Natural escapement in the Nooksack River is predominately hatchery-origin fish, whereas on the Skagit River, hatchery-origin fish are rarely seen in the spawning areas. Summer/fall run stocks are predominately ocean-type fish and this run timing group comprises the majority of Chinook salmon production from Puget

Sound. Skagit River summer/fall Chinook salmon is the largest stock in Puget Sound, and consists almost exclusively of natural-origin fish. The Skagit and Stillaguamish rivers have PSC CWT exploitation rate indicator stocks (Skagit and Stillaguamish rivers) and supplementation programs (Stillaguamish only) that use broodstock collected from the spawning grounds. Basins with large hatchery programs include the Snohomish and Green PSC escapement indicators as well as the Samish, Puyallup, Nisqually and Skokomish rivers. In addition, net-pen programs in Bellingham and Tulalip bays release large number of juvenile Chinook salmon.

Figure 3.30.-Chinook salmon released from Puget Sound hatcheries, 1975-2012 brood years.

Estimates of total production for the Puget Sound PSC escapement indicator stocks have not been made in part because of the lack of long-term representative tag groups for the natural stocks (except Green River). The trend in the escapement of Puget Sound summer/fall PSC escapement indicator stocks is driven primarily by the status of Skagit River summer/fall Chinook salmon. Consequently, the status and trend of Puget Sound summer/fall Chinook salmon will track with the abundance of Skagit River fish since in most years the abundance of Skagit River fish is higher than the sum of the escapement of the other PSC indicator stocks. This is especially true when the escapement of Skagit River Chinook salmon averaged 17,900 from 2000 to 2006, and exceeded 20,000 from 2004 to 2006. For the period of 1975 to 2014, the aggregate escapement of Puget Sound summer/fall indicator stocks has ranged from a low of about 12,000 in 2009 and 2011, to a high of 45,000 in 2004 (Figure 3.31). The aggregate escapement was 18,156 in 2014 and lower than the escapements in 2012 and 2013. Terminal harvest data for 2014 has not been reviewed by comanagers, although indications are that catches were down substantially from previous seasons; consequently, the terminal run sizes may be even lower than those from recent years. None of the Puget Sound Chinook salmon stocks have CTC-approved escapement goals.

Figure 3.31.-Escapement and terminal fishery harvest for the aggregate of Puget Sound summer/fall Chinook salmon PSC escapement indicator stocks.

The harvest rate in terminal fisheries for these stocks has generally declined from between 40\% and 50% in the early 1980s to about 10% at the time of listing under the ESA in 1999. In most years, the majority of the terminal fishery harvest has depended on the status of Green River Chinook salmon and to a lesser extent on Skagit River fish. Directed terminal fisheries do not occur on Snohomish River, Stillaguamish River, and Lake Washington Chinook salmon.

The long-term escapement trends for Puget Sound Chinook salmon stocks cannot be identified with certainty because of the inability to assess total production of natural stocks in Puget Sound, coupled with the changes in fishery patterns and hatchery production over the 1975 to 2013 time period. Data limitations notwithstanding, it is still possible to make some generalizations about the current status of Puget Sound escapement indicators based on the recent past at both the aggregate and individual population levels. Spring Chinook salmon in the Nooksack and Skagit rivers, for instance, exhibit annual variability with no apparent escapement trend. Overall, summer/fall escapements have declined notably from near-peak levels in the recent decade and in a manner commensurate with the escapement declines of the 1990s that led to ESA listing. Examined at the individual stock level, however, some variation on this general theme emerges (Section 2.3.4). With the exception of Lake Washington, the average summer/fall escapements in 2010-2014 were lower than the long term average during 1999-2014. Although it is important to acknowledge the influence of the time period choice on conclusions about recent abundance trends (i.e., near-record escapements were seen for many Puget Sound populations in the early 2000s), the observation of low escapements in recent years for multiple populations suggests this group of stocks remains depressed overall. Future assessments of escapement trends should attempt to separate hatchery strays from natural-origin spawners, where data permit.

3.2.3.2. Coastal Washington

Coastal Washington is the only region in the state accessible to anadromous salmonids where Chinook salmon are not listed under the US ESA. Consequently, salmon fishery management of the coastal Chinook salmon stocks in this region has one less regulatory framework to consider each year, but still has to balance conservation needs with state and tribal comanagement, federal fishery management plans, and international agreement under the PST. Additionally, compared to Puget Sound, the confounding influence of hatchery production on trend assessments is considerably less.

The aggregate escapement of spring and summer Chinook salmon PSC escapement indicator stocks in the Queets, Quillayute, and Hoh rivers and Grays Harbor ranged from a high of 11,740 in 1989 to a low of 2,016 in 2007 (Figure 3.32). Queets River spring/summer and Quillayute River summer Chinook salmon populations have not met escapement goals in the majority of years since 1999, and both the Hoh and Quillayute stocks exhibit escapement trends indicating considerable decline since the late 1980s but consistency since the 1999 PST went into effect (Section 2.3.4). Terminal harvest rates on these stocks have averaged less than 15% since the mid-1990s, and were 7% in 2013-the last year available. There are no representative PSC indicator tag groups for these stocks. However, CWT groups were released from Sol Duc Salmon Hatchery in the Quillayute Basin in the early 1990s and were discontinued for about 10 years before starting new tagging programs with the 2004 brood. Based on limited information from these tag groups that generally showed poor survival, the Quillayute stock has a northerly ocean catch distribution. Exploitation rates cannot be determined because recoveries are low and escapement area sampling appears inadequate in some years.

Figure 3.32.-Escapement and terminal fishery harvest for the aggregate of Washington coastal spring/summer Chinook salmon PSC escapement indicator stocks.

Coastal Washington fall Chinook salmon escapement indicators include Queets, Quillayute, Grays Harbor (accepted in 2014), Hoh stocks that have CTC-approved escapement goals, and the Hoko stock that only has an agency management goal. Aggregate coastal fall Chinook
salmon escapement has ranged from a low of 14,512 in 1983 to a high of 56,692 in 1988 (Figure 3.33). Similar to spring/summer stocks, coastal fall stocks are characterized by escapement declines since the highs of the late 1980s, and generally stable escapements in the more recent past (Section 2.2.4). Over the entire 1975 to 2013 time period (2014 not available at this time), terminal harvest rates have varied substantially without a definitive trend, and have averaged about 27% since 1999 . With the exception of the Hoko stock, harvest in terminal fisheries is a mixture of directed catch on Chinook salmon and incidental catch while targeting other species (Figure 3.33).

Figure 3.33.-Escapement, aggregate escapement goal and terminal fishery harvest for the aggregate of Washington coastal fall Chinook salmon PSC escapement indicator stocks.

Unlike in Puget Sound where hatchery production is significant and widespread and can complicate natural stock accounting, fall Chinook salmon hatchery production is more limited on the Washington Coast and not extensive in the PSC indicator stock basins. Hatchery programs that currently release fall Chinook salmon in the PSC indicator stock basins include the Hoko Falls Hatchery that releases smolts for natural stock supplementation/CWT indicator stock purposes, Salmon River Fish Culture Hatchery in the Queets Basin, and Humptulips Salmon Hatchery in the Grays Harbor watershed. Other significant programs outside of the PSC escapement indicator stock programs include releases from Makah National Fish Hatchery on Tsoo-Yess River (formerly Sooes River), Quinault National Fish Hatchery on Cook Creek in the Quinault Basin, and Forks Creek Hatchery in Willapa Bay. All of these hatchery programs influence the management of terminal fisheries and the extent of directed harvest on fall run Chinook salmon.

Despite the lack of clear trends in escapement for coastal Chinook salmon stocks (Section 2.2.4), conclusions on stock status and population trend are speculative without a full run reconstruction (CWT-based) that can account for total production. Ocean fishery impacts for these stocks can be estimated using the Queets CWT indicator tag group. From a simple fishery distribution basis, the portion of the Queets stock impacted in ocean fisheries shows no
apparent trend and has averaged about 44\% of the total accounting in all fisheries and escapement since 1985 (CTC 2014). Since ocean fishery impacts show no trend and terminal returns have declined since the late 1980s, it appears that total adult production has also declined. Further investigation and analysis is needed to confirm this generalization.

Queets CWT indicator tag groups were used to produce plots for a synoptic evaluation of the three coastal Washington fall Chinook salmon stocks with CTC-approved escapement goals in 2013-Queets, Quillayute, and Hoh rivers. Queets CWT groups were assumed to be representative of the exploitation and ocean distribution of Quillayute and Hoh stocks. All three stocks have active terminal fisheries with similar terminal fishery harvest rates; therefore, Queets CWTs are considered a suitable surrogate to estimate exploitation in the Quillayute and Hoh rivers.

A simultaneous evaluation of spawning escapement and cumulative MRE exploitation rates shows management of Queets River fall Chinook salmon (Figure 3.34) in the safe zone with spawning escapement exceeding the goal and exploitation rates below $S_{\text {MSY }}$ in all years except 1999 and 2007. Management for escapement and mature-run exploitation rate was in the safe zone in all years for Quillayute (Figure 3.35) and Hoh (Figure 3.36) rivers. Productivity of these stocks is high, evidenced by their high $U_{\text {MSY }}$ (0.87 for Queets and Quillayute; 0.90 for Hoh), which provides for less stringent management than some stocks with lower $\mathrm{U}_{\mathrm{MSY}}$. From this synoptic evaluation perspective, these coastal Washington stocks exhibit a track record of sustainable management. Further, this view of the fishery impact and escapement data suggests that much of the variation in escapements for these stocks has been driven by nonfishing factors (e.g., anomalously high or low marine survival).

Figure 3.34.-Queets River fall Chinook salmon spawning escapement and cumulative mature-run equivalent exploitation rate calculated from Queets River PSC indicator CWTs.

Figure 3.35.-Quillayute River fall Chinook salmon spawning escapement and cumulative mature-run equivalent exploitation rate calculated from Queets River PSC indicator CWTs.

Figure 3.36.-Hoh River fall Chinook salmon spawning escapement and cumulative mature-run equivalent exploitation rate calculated from Queets River PSC indicator CWTs.

3.2.3.3. Columbia River

3.2.3.3.1. Columbia River Summers

Columbia Upriver Summer Chinook are the only escapement indicator stock in this stock group. Since 2008, Columbia Upriver Summer Chinook have been managed inriver by comanagers for a spawning escapement of 17,000, including 13,500 Wenatchee/Entiat/Chelan tributary spawners, 3,500 Methow/Okanagan tributary spawners, and an additional 3,000 fish for hatchery brood stock. Inriver fisheries are managed using a sliding scale of harvest rates based on the expected terminal run size.

For consistency with the CTC escapement goal, the synoptic evaluation shows combined hatchery and wild fish past Rock Island Dam (Figure 3.37). Although survival rates have been slightly below average, the counts of Chinook salmon past Rock Island Dam have exceeded 40,000 since 2009 while the stock experienced MRE exploitation rates of 51% to 71%. The CTC goal of 12,143 summer Chinook salmon past Rock Island Dam was developed prior to sport and nontreaty tribal fisheries that now take place above Rock Island Dam, so the recent dam counts overestimate escapement. The simultaneous evaluation of spawning escapement and cumulative MRE exploitation rates shows management of Columbia River Upriver Summers (Figure 3.37) in the safe zone of spawning escapement-exceeding the goal and exploitation rates below $U_{\text {MSY }}$ in all years since 2008. Columbia Upriver Summers have demonstrated normal variation in survivals (within about 2 standard deviations). Although survivals have been predominantly positive since 1998, the age-2 survival index for brood year 2010 fails to show the large positive deviation demonstrated by Columbia River fall stocks (Figure 3.38)

Figure 3.37.- Columbia Upriver Summer Chinook salmon spawning escapement past Rock Island Dam and cumulative mature-run equivalent exploitation rate calculated from Wells Hatchery PSC indicator CWTs.

Figure 3.38.-Marine survival index (standardized to a mean of zero) for Columbia Upriver Summer Chinook salmon.

3.2.3.3.2. Columbia River Fall

The Columbia River Falls stock group in the annex tables has three escapement indicator stocks: Upriver Brights, Deschutes, and Lewis. The Upriver Bright management unit is comprised of all bright fall Chinook salmon returning above Bonneville Dam, including Deschutes, upper Columbia and Snake river populations. The CTC-agreed escapement goal for the Upriver Bright Chinook of 40,000 adult spawners past McNary Dam has been met since 1983, and the CTC goal of 4,532 Deschutes River fall Chinook salmon has been met since 1993, while MRE exploitation rates have varied widely between 44% and 76% (Figure 3.39, Figure 3.40). The simultaneous evaluation of spawning escapement and cumulative MRE exploitation rates shows management of Upriver Brights and Deschutes River fall Chinook (Figure 3.39, Figure 3.40) in the safe zone or the high escapement/high exploitation zone in all years since 1998.

The CTC escapement goal of 5,700 Lewis River fall Chinook salmon has been met since 2000, except for 2007 to 2009, when tributary returns were insufficient to meet escapement needs even in the absence of tributary fishing. Exploitation rates since 1980 have never exceeded the estimated U USY (Figure 3.41).

Standardized survival indices for Columbia River falls were fairly stable until brood year 2010, which has exhibited exceptionally high marine survival. Brood year 2010 was nearly four standard deviations above average, based on wild Hanford Reach CWT data, and over three standard deviations above average based on Priest Rapids Hatchery CWT data (Figure 3.42 and Figure 3.43). This recent increase to above average survival is also reflected in the data available for Lewis River wild fall fish where brood year 2010 survivals appear over two standard deviations above average (Figure 3.44).

Figure 3.39.- Upriver Bright fall Chinook salmon spawning escapement and cumulative mature-run equivalent exploitation rate calculated from Priest Rapids Hatchery PSC indicator CWTs.

Figure 3.40.-Deschutes River fall Chinook salmon spawning escapement and cumulative mature-run equivalent exploitation rate calculated from Priest Rapids Hatchery PSC indicator CWTs.

Figure 3.41.-Lewis River Wild fall Chinook salmon spawning escapement and cumulative mature-run equivalent exploitation rate calculated from Lewis River Wild PSC indicator CWTs.

Figure 3.42.-Marine survival index (standardized to a mean of zero) for Upriver Bright Chinook salmon, as represented by Hanford Reach Wild Chinook salmon.

Figure 3.43.-Marine survival index (standardized to a mean of zero) for Upriver Bright Chinook salmon, as represented by Priest Rapids Hatchery Chinook salmon.

Figure 3.44.-Marine survival index (standardized to a mean of zero) for Lewis River Wild fall Chinook salmon.

3.2.3.4. Coastal Oregon

3.2.3.4.1. Oregon Coastal North Migrating

Total estimated spawning escapement for the NOC aggregate stock has ranged from approximately 39,000 Chinook salmon in 2008 to 190,000 in 1988. The 10-year (2005-2014) average for aggregate escapement is approximately 72,265 . Estimated escapement in 2014 was 96,271 . Abundance forecast expressed in terms of spawning escapement is 94,715 for 2015.

After low escapements from 2007 to 2009, the NOC stock aggregate has returned to above average escapement in 2013. All three NOC escapement indicator stocks—the Nehalem, Siuslaw, and Siletz stocks-failed to achieve their escapement objectives in 2007 and 2008. The Nehalem stock did not attain its goal in 2009 and 2010, but all three escapement indicator stocks exceeded their escapement objectives in 2014 and are forecasted to reach or exceed their objectives in 2015. It is likely that the NOC has recently experienced a period of higher than normal marine survival, as indicated in Figure 3.2. Those later years of survival indicated in the survival index are generated from incomplete broods, and although preliminary indications are that very good survival has contributed towards both fisheries recruitment and robust escapement, the interpretation of these initial signals should be tempered with the fact that they are based on incomplete brood information.

Management actions in terminal fisheries, along with reductions in AABM fisheries, and better-than-average survival rates (Figure 3.45) contributed to the increased escapements. Restriction of fishing effort in terminal fisheries, which included closure in the Nehalem River during 2009, have been adopted and maintained through 2012. Many of these restrictions were dropped in the 2013 return year and have not been adopted since then.

Figure 3.45.-Marine survival index (standardized to a mean of zero) for the Salmon River hatchery stock of Chinook salmon.

Note: Brood years 1976-2010 are shown, with the exception of 1981, for which there is no information.

The MRE exploitation rates in the synoptic plots (Figure 3.46-Figure 3.48) are based on the exploitation of the Salmon River Hatchery stock, the exploitation indicator stock for the NOC aggregate. Because there is a directed, high-intensity terminal fishery for hatchery-origin fish returning to the Salmon River Hatchery, exploitation on the Salmon River Hatchery stock is more intense than in terminal fisheries for NOC escapement indicator stocks. For that reason, the synoptic plots representing the Nehalem, Siletz and Siuslaw stocks are depictions of worstcase scenarios in regards to exploitation rates. Analysis is ongoing to estimate MRE exploitation rates specific to the NOC escapement indicator stocks as used for other stocks in this report. A scan of the synoptic plots shows that the three NOC escapement indicator stocks have spent most years in the upper left sector. Exploitation rates have been lower and escapements have been higher than required for MSY for the majority of years in each stock. Of the three stocks, the Nehalem stock has spent more years below the escapement objective than the others, and the Siuslaw stock the most years with high exploitation rates. While casual inspection of Figure 3.48 indicates that higher than optimal exploitation rates for the Siuslaw stock occurred about half the time, that judgment should be tempered with the knowledge that those exploitation rates represent a worst-case scenario and are currently being represented by the terminal impacts incurred by the Salmon River CWT indicator stock and not the terminal harvest impacts experienced within the Siuslaw basin.

The Nehalem River stock of Chinook salmon has experienced a wide array of both exploitation and escapement from 1979 to 2012 (Figure 3.46). From 2006 to 2010 this stock failed to meet 85% of its escapement goal (Figure 3.47). Since 2011, escapements have shown an upward trend. Since 2009, the Nehalem River stock of Chinook salmon has been in either the safe or low escapement and low exploitation zones of the synoptic plot in all years. Additional analysis is needed to account for different terminal exploitation experienced between this stock and its model stock counterpart, the Salmon River Hatchery stock.

The Siletz River stock of Chinook salmon exhibit high productivity as demonstrated by one of the higher $U_{\text {MSY }}$ presented in this chapter. Most of the observed points of escapement and exploitation are within the safe zone, in spite of the likelihood that the exploitation rates may overestimate impacts on this stock. Recent year's escapements (2010-2014) have increased over lower escapements observed in return years 2007 to 2009.

The Siuslaw stock of Chinook salmon, similar to the Nehalem stock, has experienced a wide array of both escapement and exploitation since 1979 (Figure 3.48). Most of the observations of escapement below $\mathrm{S}_{\mathrm{MSY}}$ occurred during the pre-Treaty period of 1979 to 1984. Since 2009, this stock has met or exceeded its escapement goal.

Figure 3.46.-Mature-run equivalent exploitation rate, spawning escapement, and threshold reference lines for exploitation rate and spawning escapement by CY for the Nehalem River stock of Chinook salmon, 1979-2013.

Figure 3.47.-Mature-run equivalent exploitation rate, spawning escapement, and threshold reference lines for exploitation rate and spawning escapement by CY for the Siletz River stock of Chinook salmon, 1979-2013.

Figure 3.48.-Mature-run equivalent exploitation rate, spawning escapement, and threshold reference lines for exploitation rate and spawning escapement by CY for the Siuslaw River stock of Chinook salmon, 1979-2013.

3.2.3.4.2. Mid-Oregon Coast

After a period of declines in escapement from 2005 to 2008, the MOC stock aggregate rebounded to historical averages during the 2010-2014 return years. Total aggregated estimated escapement for the MOC has ranged from a low of 6,981 in 1976 to a high of 56,021 in 2010. The 10-year average (2005-2014) escapement for the MOC is about 31,904. Estimated escapement in the MOC for 2014 was 31,073. Forecasted escapement for the 2015 return year is about 27,047. The marine survival rate (Figure 3.49) has decreased below average for the most recent brood year available for analysis.

Figure 3.49.-Marine survival index (standardized to a mean of zero) for the Elk River hatchery stock of Chinook salmon.

4. Sentinel Stocks Program

During recent negotiations within the PSC to amend the current Chinook salmon regime under Chapter 3, Annex IV of the PST, it became apparent that the accuracy and precision of spawning escapement estimates for many important natural stocks of Chinook salmon may not be adequate to support the Treaty management process. Reliable estimates of spawning escapements for a large number of natural Chinook salmon stocks over time are critical to assessing and monitoring the status of the resource throughout the Treaty area, as well as determining whether adjustments to particular fisheries are necessary and effective for achieving the long-term conservation and production goals of the Treaty.

Recognizing the importance of better estimates of Chinook salmon spawning escapements, the Commission conceived the five-year SSP and included it as a specific requirement in the revised Chinook salmon regime (see Paragraph 3(a) of Chapter 3, Annex IV). The SSP is intended to focus on improving spawning escapement estimates for a select subset of important natural Chinook salmon stocks, for which existing estimates are critical to fishery management decisions required by the Chinook salmon regime. Improving these estimates will bolster the scientific basis of the Chinook salmon regime, increase confidence in management decisions required under the new regime, and better inform the development of future regimes.

The goal of the SSP is to improve estimates of the spawning escapements for each of the included stocks to a level that meets or exceeds bilateral assessment accuracy and precision standards (CTC 2013, Technical Note 13-01). Nine projects were funded by the SSP in 2014, the sixth year of the SSP. Synopses for eight of these nine projects are included in this section. The excluded project was funded in 2014, but by design has yet to produce results. Summaries of all nine projects are reported in Appendix C.

4.1. Oregon

4.1.1. Siuslaw River

The spawning escapement in 2014 was estimated at 16,395 (CV = 20\%) using MR methods. Returning adults were captured using nets and then marked with opercular punches. Subsequent carcass surveys were undertaken to recover marked and unmarked fish from the spawning grounds.

4.2. Puget Sound

Two escapement studies were funded in Puget Sound, all employing Lincoln-Petersen genetic mark-recapture (GMR) abundance estimators. These programs all generated estimates of escapements for 2013.

4.2.1. Stillaguamish River

The abundance of Chinook salmon spawning in the Stillaguamish River in 2013 was estimated using GMR methods. Spawning adults were marked by obtaining a DNA microsatellite profile from tissue sampled from adult carcasses. Marks were later recaptured by sampling outmigrating smolts (captures) and genetically identifying some fraction of marks as parents of
some outmigrating offspring. The preliminary GMR results include corrections for unmarked hatchery juveniles; no yearling smolts were observed. The preliminary estimate of Chinook salmon spawner abundance is $1,469(C V=5 \%)$.

4.2.2. Snohomish River

The abundance of Chinook salmon spawning in the Skykomish and Snoqualmie rivers in 2013 were estimated using GMR techniques. As with other Puget Sound rivers, spawning adults from both the Skykomish and Snoqualmie rivers were marked by obtaining DNA microsatellite profiles from tissue sampled from adult carcasses (first sampling event). Marks were later recaptured by sampling outmigrating subyearling smolt the following spring (second sampling event) and genetically identifying some fraction of marks as parents of some outmigrating offspring. Preliminary unadjusted estimates of Chinook salmon spawner abundance for areas upstream of each smolt trap were 6,292 Chinook salmon spawning in the Skykomish River (CV = 19%) and 4,943 Chinook salmon spawning in the Snoqualmie River (CV $=26 \%$). Performance standards were not met for the preliminary Snohomish escapement in 2013 with an overall estimate of 11,235 Chinook salmon (CV > 15\% for both estimates).

4.3. West Coast Vancouver Island

4.3.1. Conuma River

The Conuma River project estimated escapement (12,125 Chinook salmon; CV = 18\%) and spawning abundance (9,274 Chinook salmon; CV $=15 \%$) using open population MR methods for live fish. The difference between the estimates results from fish removed from the river for hatchery purposes and natural mortality. The study applied 1,512 tags to adult males, females, and jacks. Returning fish were captured with beach seines in the lower river and then tagged and released. Carcasses were recovered upstream at the spawning grounds and examined for tags, however the two-event Petersen closed population estimates were not developed due to biases detected in the sampling design evident among the sex categories, which showed differential removal rates from anthropogenic and/or natural sources. Furthermore, 72 fish were radio tagged at the capture site and monitored using telemetry receivers, located at the upper and lower boundaries of the spawner survey area, and mobile surveys within the Conuma and the nearby Canton Creek and Sucwoa River. Overall, 68 of the 72 radio tagged fish were detected in the Conuma River spawning area, one fish ascended above the upper telemetry site, one radio tagged fish was returned by hatchery staff and two were never seen again. Two radio tagged fish were detected in Canton Creek.

4.4. Fraser River

4.4.1. South Thompson River

Spawning escapement to the South Thompson age-0.3 aggregate was estimated using a combination of genetic, scale age, and CWT information collected from the Fraser River (Albion and Qualark) gillnet test fisheries, along with CWT information collected at the Lower and Middle Shuswap rivers. A Bayesian estimation model was used to estimate escapement while
considering uncertainty in these information sources. For 2013, the estimate of Chinook salmon total spawner abundance for age-3 and older was 129,000 (CV = 22\%). For 2014, genetic samples are being processed, and analyses to estimate the aggregate escapement are expected to commence in May 2015. The 2014 escapement will be reported in next year's CTC Catch and Escapement report.

4.4.2. Chilko River

The 2014 escapement of Chinook salmon to the Chilko River ($8,217, \mathrm{CV}=5 \%$) was estimated using a two-event MR study. Petersen tags and sex-specific secondary marks were applied to returning salmon and recovery sampling was undertaken on carcasses. Work is ongoing to generate an appropriately stratified estimate of the female escapement using the Maximum Likelihood Darroch estimator, and the escapement will likely increase slightly once the estimate has been generated.

4.5. Northern British Columbia

4.5.1. Skeena River

The escapement of summer timed Chinook salmon to the Skeena River in 2014 was estimated at 44,200 fish (CV $=14 \%$). Genetic analysis of representative samples collected at the Tyee test fishery and the spawning abundance in the Kitsumkalum River were used to generate the estimate. The SSP funded the genetic analysis of the test fishery samples to identify fish originating from the Kitsumkalum River. The Kitsumkalum Chinook salmon escapement was estimated from an independent MR project. The Kitsumkalum escapement estimate was expanded to an estimate for the aggregate of Skeena River summer timed Chinook salmon using the proportion of Chinook salmon identified as Kitsumkalum stock in the Tyee Test fishery catch. This methodology was used to create a new time series of Skeena River escapement estimates, with measures of precision, from 1984 to 2014, using genetic analysis of archived scales from the test fishery and past MR studies on the Kitsumkalum River.

4.5.2. Nass River

This SSP project was part of a larger basinwide escapement program where Chinook salmon were captured and tagged at fishwheels in the lower Nass River and then recovered and examined for marks at upstream tributaries to generate a MR estimate. The SSP partly funded fishwheel operations and funded the operation of a counting fence on the Kwinageese River and carcass surveys on Damdochax Creek. The total run above the Gitwinkslhlkw fishwheels was estimated to be 11,914 (CV = 13\%); 287 Chinook salmon were harvested above Grease Harbor and the spawning escapement above the Gitwinkslhlkw fishwheels was estimated to be 11,627, the sixth lowest return recorded since the fishwheel program began in 1992.

REFERENCES CITED

ADF\&G (Alaska Department of Fish and Game). 2013. Chinook salmon stock assessment and research plan, 2013. Alaska Department of Fish and Game, Special Publication No. 13-01, Anchorage.
ADF\&G (Alaska Department of Fish and Game). 1981. Proposed management plan for Southeast Alaska Chinook salmon runs in 1981. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 1J81-03, Douglas. AK.
Arnason, A. N., C. W. Kirby, C. J. Schwarz, and J. R. Irvine. 1996. Computer analysis of marking data from stratified populations for estimation of salmonid escapements and the size of other populations. Canadian Technical Report of Fisheries and Aquatic Sciences No. 2106.

Arnason, A. N. and Schwarz, C. J. 1999. Using POPAN-5 to analyse banding data. Bird Study 46:S157-S168.
Ames, J., and D. E. Phinney. 1977. 1977 Puget Sound summer-fall Chinook methodology: escapement estimates and goals, run size forecasts, and inseason run size updates. Washington Department of Fisheries Technical Report 29, Olympia, WA.
Argue, A.W., J. Coursley, and G. D. Harris. 1977. Preliminary revision of Georgia Strait and Juan de Fuca Strait tidal salmon sport catch statistics, 1972-1976, based on Georgia Strait head recovery program data. Technical Report Series PAC/T-77-16.

Bailey, R. E., C. K. Parken, J. R. Irvine, B. Rosenberger, and M. K. Farwell. 2000. Evaluation of utility of aerial overflight based estimates versus mark-recapture estimates of chinook salmon escapement to the Nicola River, B.C. Canadian Stock Assessment Secretariat, Fisheries and Oceans Science, Research document 2000/152. http://www.dfo-mpo.gc.ca/csas-sccs/publications/resdocs-docrech/2000/2000 152-eng.htm (Accessed July 2015).
Bernard, D. R. and E. L. Jones III. 2010. Optimum escapement goals for Chinook salmon in the Transboundary Alsek River. Alaska Department of Fish and Game, Fishery Manuscript No. 10-02. Anchorage, AK.
Bernard, D. R., S. A. McPherson, K. A. Pahlke, and P. Etherton. 2000. Optimal production of Chinook salmon from the Stikine River. Alaska Department of Fish and Game, Fishery Manuscript No. 00-01, Anchorage, AK.

Burnham, K. P., D. R. Anderson, G. C. White, C. Brownie, and K. H. Pollock. 1987. Design and analysis methods for fish survival experiments based on release-recapture. American Fisheries Society Monograph 5.

Candy, J. R., J. R. Irvine, C. K. Parken, S. L. Lemke, R. E. Bailey, M. Wetklo, and K. Johnson. 2002. A discussion paper on possible new stock groupings (conservation units) for Fraser River chinook salmon. Canadian Science Advisory Secretariat, Department of Fisheries and Oceans Canada, Research document 2002/085. http://www.dfo-mpo.gc.ca/csas/Csas/DocREC/2002/RES2002 085e.pdf (Accessed July 2015).
CCMP (Comprehensive Chinook Management Plan). 2010. Comprehensive Chinook management plan for Puget Sound Chinook: harvest management component. Northwest Indian Fisheries Commission and Washington Department of Fish and Wildlife, Olympia, WA.
Choquet, R., Reboulet, A. M., Lebreton, J. D., Gimenez, O., and Pradel, R. 2005. U-CARE 2.2 User's Manual. CEFE, Montpellier, France.

Choquet, R., Lebreton, J.-D., Gimenez, O., Reboulet, A.-M. and Pradel, R. 2009. U-CARE: Utilities for performing goodness of fit tests and manipulating CApture-REcapture data. Ecography 32:1071-1074.
Cooney, T. D. 1984. A probing approach for determining spawning escapement goals for fall Chinook salmon on the Washington north coast. Pages 205-213 [In] J. M. Walton and D. B. Houston, editors. Proceedings of the Olympic Wild Fish Conference, Peninsula College, Port Angeles, WA.
CTC (Chinook Technical Committee). 1997. Incidental fishery mortality of Chinook salmon: Mortality rates applicable to Pacific Salmon Commission Fisheries Report TCCHINOOK (97)-1, Vancouver, BC.

CTC (Chinook Technical Committee). 1999. Maximum sustained yield or biologically based escapement goals for selected Chinook salmon stocks used by the Pacific Salmon Commission's Chinook Technical Committee for escapement assessment. Pacific Salmon Commission, Report TCCHINOOK (99)-3, Vancouver, BC.
CTC (Chinook Technical Committee). 2002b. Catch and escapement of Chinook salmon under Pacific Salmon Commission jurisdiction 2001. Pacific Salmon Commission, Report TCCHINOOK (02)-1. Vancouver, BC.

REFERENCES CITED (Continued)

CTC (Chinook Technical Committee). 2004a. Catch and escapement of Chinook salmon under Pacific Salmon Commission jurisdiction 2003. Pacific Salmon Commission, Report TCCHINOOK (04)-2. Vancouver, BC.

CTC (Chinook Technical Committee) 2004b. Standardized fishery regimes for Southeast Alaska Chinook fisheries. Pacific Salmon Commission, Report TCCHINOOK (04)-3. Vancouver, BC.
CTC (Chinook Technical Committee). 2004c. Estimation and application of incidental fishing mortality in Chinook salmon management under the 1999 Agreement of the Pacific Salmon Treaty. Pacific Salmon Commission, Report TTCHINOOK (04)-1, Vancouver, BC.
CTC (Chinook Technical Committee). 2005. Catch and escapement of Chinook salmon under Pacific Salmon Commission jurisdiction, 2003. Pacific Salmon Commission, Report TCCHINOOK (05)-2, Vancouver, BC.
CTC (Chinook Technical Committee). 2011. Development of the Technical Basis for a Chinook Salmon Total Mortality Management Regime for the PSC AABM Fisheries. Pacific Salmon Commission, Report TCCHINOOK (11)-2. Vancouver, BC.
CTC (Chinook Technical Committee). 2013. Annual Report of Catch and Escapement for 2012. Pacific Salmon Commission, Report TCCHINOOK (13)-1. Vancouver, BC.
CTC (Chinook Technical Committee). 2014. 2013 Exploitation rate analysis and model calibration, Volume Two: Appendix supplement. Pacific Salmon Commission, Report TCCHINOOK (14)-1, V.2. Vancouver, BC.
DFO (Department of Fisheries and Oceans Canada). 2009. Revisions to official DFO commercial Pacific Salmon catch estimates for 1996-2004. Canadian Science Advisory Secretariat, Science Advisory Report 2009/031.
Gray, D., R. Bachman, T. Kowalske, S. Forbes, B. Meredith, and E. Coonradt. 2014a. 2014 Southeast Alaska drift gillnet fishery management plan. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 1J14-03, Douglas, AK.
Gray, D., T. Thynes, D. Gordon, A. Piston, D. Harris, and S. Walker. 2014b. 2014 Southeast Alaska purse seine fishery management plan. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 1J14-05, Douglas, AK.
Dennis, B., J. M. Ponciano, S. R. Lele, M. L. Taper, and D. F. Staples. 2006. Estimating density dependence, process noise, and observation error. Ecological Monographs 76:323-341.
English, K. K., R. C. Bocking and J. R. Irvine. 1992. A robust procedure for estimating salmon escapement based on the area-under-the-curve method. Canadian Journal of Fisheries and Aquatic Sciences 49:1982-1989.
English, K. K., R. E. Bailey, and D. Robichaud. 2007. Assessment of Chinook salmon returns to the Fraser River using run reconstruction techniques, 1984-02. Canadian Science Advisory Secretariat, Research Document 2007/020.
Ericksen, R. P., and S. A. McPherson. 2003. Biological escapement goal for Chilkat River Chinook salmon. Alaska Department of Fish and Game, Fishery Manuscript No. 03-01, Juneau, AK.
Farwell, M. K., R. E. Bailey, and B. Rosenberger. 1999. Enumeration of the 1995 Nicola River Chinook salmon escapement. Canadian Manuscript Report Fisheries and Aquatic Science. Department of Fisheries and Oceans Canada.
Fraser, F. J., P. J. Starr, and A. Y. Fedorenko. 1982. A review of the Chinook and coho salmon of the Fraser River. Canadian Technical Report of Fisheries and Aquatic Sciences No. 1126.

Garcia, S. M., and J. I. De Leiva Moreno. 2005. Evolution of the state of fish stocks in the Northeast Atlantic within a precautionary framework, 1970-2003: a synoptic evaluation. ICES Journal of Marine Science 62:16031608.

Hendrich, C. F., J. L. Weller, S. A. McPherson, D. R. Bernard. 2008. Optimal production of Chinook salmon from the Unuk River. Alaska Department of Fish and Game, Fishery Manuscript No. 08-03, Anchorage, AK.
Humbert, J-Y, L. S. Mills, J. S. Horne, and B. Dennis. 2009. A better way to estimate population trends. Oikos 118:1940-1946.

REFERENCES CITED (Continued)

Joint Columbia River Management Staff. 2013. 2012 Joint staff report: Stock status and fisheries for spring Chinook, summer Chinook, sockeye, steelhead, and other species and miscellaneous regulations. Oregon Department of Fish and Wildlife and Washington Department of Fish and Wildlife.
Manske, M. and C. J. Schwarz. 2000. Estimates of stream residence time and escapement based on capturerecapture data. Canadian Journal of Fisheries and Aquatic Sciences 57:241-246.
Mclsaac, D. O. 1990. Factors affecting the abundance of 1977-79 brood wild fall Chinook salmon (Oncorhynchus tshawytscha) in the Lewis River, Washington. University of Washington, Seattle, WA.
McNicol, R. E. 1999. An assessment of Kitsumkalum River Chinook salmon, a North Coast indicator stock. Canadian Science Advisory Secretariat Research Document 99/164.

McPherson, S. A., D. R. Bernard, and J. H. Clark. 2000. Optimal production of Chinook salmon from the Taku River. Alaska Department of Fish and Game, Fishery Manuscript No. 00-02. Anchorage, AK.
McPherson, S. A., E. L. Jones III, I. A. Boyce, and S. J. Fleischman. 2010. Optimal production of Chinook salmon from the Taku River through the 2001 year class. Alaska Department of Fish and Game, Fishery Manuscript No. 10-03, Anchorage, AK.
McPherson, S. A., P. Etherton, and J. H. Clark. 1998. Biological escapement goal for Klukshu River Chinook salmon. Alaska Department of Fish and Game, Fishery Manuscript No. 98-2, Anchorage, AK.

McPherson, S. A., and J. Carlile. 1997. Spawner-recruit analysis of Behm Canal Chinook salmon stocks. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 1J97-06, Douglas, AK.
Manske, M. and C.J. Schwarz. 2000. Estimates of stream residence time and escapement based on capturerecapture data. Canadian Journal of Fisheries and Aquatic Sciences 57:241-246.

PSC (Pacific Salmon Commission). 1991. A report to the Pacific Salmon Commission on a workshop held at Vancouver, BC, January 10 and 11, 1991, to explore alternative Chinook management approaches. Pacific Salmon Commission, PSC file 72006, Vancouver, BC.
Pahlke, K. A. 1995. Coded wire tagging studies of Chinook salmon of the Unuk and Chickamin Rivers, Alaska, 19831993. Alaska Fishery Research Bulletin 2(2):93-113.

Pahlke, K. A. 2003. Escapements of Chinook salmon in Southeast Alaska and Transboundary Rivers in 2001. Alaska Department of Fish and Game, Fishery Data Series No. 03-11, Anchorage, AK.
Pahlke, K. A. 2008. Escapements of Chinook salmon in Southeast Alaska and Transboundary Rivers in 2006. Alaska Department of Fish and Game, Fishery Manuscript No. 08-20, Anchorage, AK.
Pahlke, K. A., and P. Etherton. 1999. Chinook salmon research on the Stikine River, 1997. Alaska Department of Fish and Game, Fishery Data Series No. 99-06, Anchorage, AK.

Parken, C. K., R. E. Bailey, and J. R. Irvine. 2003. Incorporating uncertainty into area-under-the-curve and peak count salmon escapement estimation. North American Journal of Fisheries Management 23:78-90.
Parken, C. K., R. E. McNicol, and J. R. Irvine. 2006. Habitat-based methods to estimate escapement goals for data limited Chinook salmon stocks in British Columbia, 2004. Department of Fisheries and Oceans Canada, Canadian Science Advisory Secretariat Research Document 2006/083.
PFMC (Pacific Fishery Management Council). 2003. Review of 2002 ocean salmon fisheries. Pacific Fishery Management Council, Portland, OR.

QDNR (Quinault Department of Natural Resources). 1982. Assessment of stock and recruitment relationships for north coastal Chinook stocks. Quinault Department of Natural Resources, Technical Services Section, Taholah, WA.
QDNR (Quinault Department of Natural Resources) and WDFW (Washington Department of Fish and Wildlife). 2014. Development of escapement goals for Grays Harbor fall Chinook using spawner-recruit models. Washington Department of Fish and Wildlife, Olympia, WA. http://wdfw.wa.gov/publications/01599/wdfw01599.pdf (Accessed June 18, 2014).

REFERENCES CITED (Continued)

Schwarz, C. J., R. E. Bailey, J. R. Irvine, and F. C. Dalziel. 1993. Estimating salmon spawning escapement using capture-recapture methods. Canadian Journal of Fisheries and Ocean Sciences 50:1181-1197.
Skannes, P., G. Hagerman, and L. Shaul. 2013. Annual management report for the 2012 Southeast Alaska/Yakutat salmon troll fisheries. Alaska Department of Fish and Game, Fishery Management Report No. 13-06, Anchorage, AK.
Skannes, P., G. Hagerman, and L. Shaul. 2014. Annual management report for the 2013 Southeast Alaska/Yakutat salmon troll fisheries. Alaska Department of Fish and Game, Fishery Management Report No. 14-06, Anchorage, AK.
Skannes, P., G. Hagerman, and L. Shaul. 2015. Annual management report for the 2014 Southeast Alaska/Yakutat salmon troll fisheries. Alaska Department of Fish and Game, Fishery Management Report No. 15-06, Anchorage, Ak.
Smith, C. J., and P. Castle. 1994. Puget Sound Chinook salmon (Oncorhynchus tshawytscha) escapement estimates and methods-1991. Washington Department of Fish and Wildlife, Project Report Series No. 1, Olympia, WA.
Stanley, T. R., and K. P. Burnham. 1999. A closure test for time-specific capture-recapture data. Environmental and Ecological Statistics 6:197-209.

Stanley, T. R., and J. D. Richards. 2005. Software review: a program for testing capture-recapture data for closure. Wildlife Society Bulletin 33(2):782-785.

Stanley, T. R., and J. D. Richards. 2011. CloseTest. USGS Fort Collins Science Center.
Staples, D. F., M. L. Taper, and B. Dennis. 2004. Estimating population trend and process variation for PVA in the presence of sampling error. Ecology 85:923-929.
Tompkins, A., B. Riddell, D. A. Nagtegaal, and D. Chen. 2005. A biologically-based escapement goal for Cowichan River fall Chinook salmon (Oncorhynchus tshawytscha). Department of Fisheries and Oceans Canada, Canadian Science Advisory Secretariat.
Vélez-Espino, L. A., G. Mullins, J. Willis, A. Krimmer, and W. Levesque. 2010. Mark-recapture experiment for the 2009 Chinook salmon spawning escapement in the Atnarko River. Canadian Manuscript Report of Fisheries and Aquatic Sciences 2930.
Vélez-Espino, L. A., J. Willis, C. K. Parken, and G. Brown. 2011. Cohort analyses and new developments for coded wire tag data of Atnarko River Chinook salmon. Canadian Manuscript Report of Fisheries and Aquatic Sciences 2958.

Vélez-Espino, L. A., I. Winther, B. Koroluk, and G. Mullins. 2014. Time series calibration (1990-2013) and escapement goal for Atnarko River Chinook salmon. Canadian Manuscript Report of Fisheries and Aquatic Sciences 3085.
Weller, J. L., D. J. Reed, and G. M. Freeman. 2007. Spawning abundance of Chinook salmon in the Chickamin River in 2005. Alaska Department of Fish and Game, Fishery Data Series No. 07-63, Anchorage, AK.

White, G. C., and K. P. Burnham. 1999. Program MARK: Survival estimation from populations of marked animals. Bird Study 46 Supplement:120-138.

Zhou, S., and R. Williams. 1999. Stock and recruitment analysis and escapement goals for Nehalem River fall Chinook. Oregon Department of Fish and Wildlife Information Reports 99-4, Fish Division, Portland, AO.
Zhou, S., and R. Williams. 2000. Escapement goals for Siletz River and Siuslaw River fall Chinook based on stock and recruitment analysis. Oregon Department of Fish and Wildlife Information Reports 2000-04, Fish Division, Portland, OR.

APPENDICES

Appendix A. Landed Chinook Salmon Catches by Region and Gear, 19752014

Appendix Page
A1. Southeast Alaska AABM Chinook salmon catches. 149
A2. Estimates of incidental mortality associated with Southeast Alaska AABM Chinook salmon treaty catches. 150
A3. Estimates of incidental mortality associated with Southeast Alaska Chinook salmon total catches. 151
A4. Canadian Transboundary Rivers (Taku, Stikine, Alsek) ISBM Chinook salmon landed catch (LC), releases (Rel.), and incidental mortality (IM). 152
A5. Northern British Columbia (NBC) AABM Chinook salmon catches 153
A6. Estimates of incidental mortality associated with Northern British Columbia (NBC) AABM Chinook salmon catches 154
A7. Northern British Columbia (NBC) ISBM Chinook salmon landed catch (LC), releases (Rel.), and incidental mortality (IM) 155
A8. Central British Columbia ISBM Chinook salmon landed catch (LC), releases (Rel.), and incidental mortality (IM). 157
A9. West Coast Vancouver Island (WCVI) AABM Chinook salmon catches 159
A10. Estimates of incidental mortality (IM) associated with West Coast Vancouver Island (WCVI) AABM Chinook salmon catches 160
A11. West Coast Vancouver Island (WCVI) ISBM Chinook salmon landed catch (LC), releases (Rel.), and incidental mortality (IM) 161
A12. Johnstone Strait ISBM Chinook salmon landed catch (LC), releases (Rel.), and incidental mortality (IM) 163
A13. Georgia Strait ISBM Chinook salmon landed catch (LC), releases (Rel.), and incidental mortality (IM) 165
A14. Fraser River ISBM Chinook salmon landed catch (LC), releases (Rel.), and incidental mortality (IM) 167
A15. Canada: Strait of Juan de Fuca ISBM Chinook salmon landed catch (LC), releases (Rel.), and incidental mortality (IM) 169
A16. Washington: Strait of Juan de Fuca ISBM Chinook salmon landed catch (LC), releases (Rel.), and incidental mortality (IM) 171
A17. Washington: San Juan ISBM Chinook salmon landed catch (LC), releases (Rel.), and incidental mortality (IM) 173
A18. Washington: Other Puget Sound ISBM Chinook salmon landed catch (LC), releases (Rel.), and incidental mortality (IM) 175
A19. Washington: Inside Coastal ISBM Chinook salmon landed catch (LC), releases (Rel.), and incidental mortality (IM) 177
A20. Washington/Oregon North of Cape Falcon ISBM Chinook salmon landed catch (LC), releases (Rel.), and incidental mortality (IM) 179
A21. Columbia River ISBM Chinook salmon landed catch (LC), releases (Rel.), and incidental mortality (IM) 181
Appendix Page
A22. Oregon ISBM Chinook salmon landed catch (LC), releases (Rel.), and incidental mortality (IM). 183
A23. Summary of landed catches (LC) of PSC AABM and ISBM fisheries. 185
A24. Estimated incidental mortality (LIM and SIM in nominal fish) associated with Chinook salmon catches in US and Canadian AABM and ISBM fisheries. 187
A25. Estimated total mortality (LC and IM) associated with Chinook salmon catches in US and Canadian AABM and ISBM fisheries. 188

Table A1.-Southeast Alaska AABM Chinook salmon catches.

Year	Southeast Alaska						
	Troll	Net	Sport	Total	Add-on	Terminal Exclusion	Treaty Catch
1975	287,342	13,365	17,000	317,707	NA	NA	NA
1976	231,239	10,523	17,000	258,762	NA	NA	NA
1977	271,735	13,443	17,000	302,178	NA	NA	NA
1978	375,919	25,492	17,000	418,411	NA	NA	NA
1979	337,672	28,388	16,581	382,641	NA	NA	NA
1980	303,643	20,114	20,213	343,970	NA	NA	NA
1981	248,782	18,952	21,300	289,034	NA	NA	NA
1982	241,938	46,992	25,756	314,686	NA	NA	NA
1983	269,821	19,516	22,321	311,658	NA	NA	NA
1984	235,622	32,405	22,050	290,077	NA	NA	NA
1985	215,811	33,870	24,858	274,539	6,246	NA	268,293
1986	237,703	22,099	22,551	282,353	11,091	NA	271,262
1987	242,562	15,532	24,324	282,418	17,095	NA	265,323
1988	231,364	21,788	26,160	279,312	22,525	NA	256,787
1989	235,716	24,245	31,071	291,032	21,510	NA	269,522
1990	287,939	27,712	51,218	366,869	45,873	NA	320,996
1991	264,106	34,864	60,492	359,462	61,476	NA	297,986
1992	183,759	32,140	42,892	258,791	36,811	NA	221,980
1993	226,866	27,991	49,246	304,103	32,910	NA	271,193
1994	186,331	35,654	42,365	264,350	29,185	NA	235,165
1995	138,117	47,955	49,667	235,739	58,800	NA	176,939
1996	141,452	37,298	57,509	236,259	72,599	8,663	154,997
1997	246,409	25,069	71,524	343,002	46,463	9,843	286,696
1998	192,066	23,514	55,013	270,593	25,021	2,420	243,152
1999	146,219	32,720	72,081	251,020	47,725	4,453	198,842
2000	158,717	41,400	63,173	263,290	74,316	2,481	186,493
2001	153,280	40,163	72,291	265,734	77,287	1,528	186,919
2002	325,308	31,689	69,537	426,534	68,164	1,237	357,133
2003	330,692	39,374	69,370	439,436	57,228	2,056	380,152
2004	354,658	64,038	80,572	499,268	75,955	6,295	417,019
2005^{1}	338,451	68,091	86,575	493,117	64,826	40,154	388,137
$2006{ }^{1}$	282,315	67,396	85,794	435,505	48,893	27,047	359,566
$2007{ }^{1}$	268,146	53,644	82,849	404,639	68,891	8,051	327,697
$2008{ }^{1}$	151,936	43,029	49,265	244,230	66,616	5,273	172,341
$2009{ }^{1}$	175,644	48,465	69,565	293,674	62,407	3,733	227,533
2010^{1}	195,614	30,582	58,503	284,699	53,949	500	230,250
$2011{ }^{1}$	242,193	48,220	66,576	356,989	65,954	739	290,169
$2012{ }^{1}$	209,036	39,491	46,495	295,022	51,867	1,106	242,049
$2013{ }^{1}$	149,528	51,319	56,392	257,239	66,285	266	190,688
$2014{ }^{2}$	355,570	49,990	79,816	485,376	52,336	736	432,304

Note: Troll, net, sport and total catches include catch of SEAK hatchery-origin fish and terminal exclusion catch; catches that count towards the all-gear ceiling (with hatchery add-on and terminal exclusion subtracted) are shown in the treaty catch column.
Note: NA = Not Available.
${ }^{1}$ Values changed because the method used to partition gillnet catch into large and nonlarge has changed. This change affects the computation of the terminal exclusion, add-on, and treaty catch.
${ }^{2}$ Preliminary value until sport mail-out survey results are available.

Table A2.-Estimates of incidental mortality associated with Southeast Alaska AABM Chinook salmon treaty catches.

Year	Troll		Sport		Net		Total Treaty IM
	LIM	SIM	LIM	SIM	LIM	SIM	
1985	15,319	79,828	2,397	3,413	6,545	41,606	149,107
1986	21,169	63,137	1,982	2,823	6,880	25,268	121,259
1987	35,097	66,688	2,112	3,007	1,142	10,730	118,776
1988	11,997	34,995	2,315	3,297	6,563	15,046	74,213
1989	24,573	47,841	2,788	3,970	7,305	32,912	119,390
1990	20,490	49,423	4,494	15,554	3,401	16,562	109,925
1991	22,633	41,165	2,831	5,292	3,605	18,803	94,330
1992	24,737	43,468	4,832	7,129	24,728	103,344	208,238
1993	20,148	44,953	4,277	5,979	2,580	12,194	90,131
1994	24,611	45,623	2,747	6,051	8,937	39,091	127,060
1995	13,745	29,666	3,020	5,291	3,440	12,441	67,602
1996	14,576	27,280	3,404	4,242	221	427	50,149
1997	11,452	25,423	6,768	6,219	729	3,049	53,640
1998	5,791	11,728	4,479	5,246	1,173	6,860	35,278
1999	16,517	15,618	5,924	8,835	514	2,357	49,764
2000	9,746	19,040	4,525	5,593	222	536	39,661
2001	11,020	24,406	5,633	5,993	426	1,621	49,100
2002	8,440	33,248	5,690	6,089	249	1,429	55,145
2003	10,678	20,196	5,147	6,804	415	9,232	52,471
2004	14,061	15,482	7,060	7,233	4,901	4,177	52,913
2005	11,909	13,951	5,778	9,298	142	4,768	45,846
2006	10,251	17,280	6,094	8,688	221	5,373	47,907
2007	10,623	21,656	5,234	8,816	4,107	20,919	71,355
2008	11,711	16,571	4,591	4,669	241	287	38,070
2009	11,617	18,349	4,799	6,410	136	3,579	44,890
2010	12,756	16,929	3,743	4,545	143	260	38,376
2011	10,390	14,801	6,131	7,215	374	2,623	41,533
2012	7,311	22,773	3,693	4,935	1,397	5,664	45,773
2013	14,553	14,910	6,636	8,349	2,972	11,809	59,230
$2014{ }^{1}$	14,438	16,440	10,970	13,801	103	5,628	61,379

Note: LIM = Legal Incident Mortality, SIM = Sublegal Incident Mortality.
${ }^{1}$ Preliminary estimates for Sport IM and Total IM. Legal dropoffs in sport retention fishery estimated from creel estimate while all other IM for the Southeast Alaska sport fishery is estimated from the preliminary LC and the previous year IM to LC ratios. Final estimates are available from mail-out surveys in October one year postfishing season and will be reported in this appendix in the next annual catch and escapement report.

Table A3.-Estimates of incidental mortality associated with Southeast Alaska Chinook salmon total catches.

Year	Troll		Sport		Net		Total $I^{1}{ }^{1}$
	LIM	SIM	LIM	SIM	LIM	SIM	
1985	15,584	81,237	2,587	3,684	6,575	41,746	151,412
1986	21,690	64,744	2,346	3,342	7,224	26,491	125,837
1987	36,565	69,648	2,531	3,604	1,200	11,058	124,607
1988	12,502	36,744	2,722	3,876	6,813	15,442	78,100
1989	25,226	49,392	3,233	4,604	8,785	39,395	130,636
1990	21,761	53,067	5,565	19,262	4,499	21,260	125,414
1991	23,659	43,731	3,794	7,092	4,548	22,738	105,561
1992	25,574	45,574	5,863	8,651	26,524	110,309	222,497
1993	20,758	46,882	4,935	6,899	3,353	15,090	97,917
1994	25,489	47,395	3,281	7,228	10,987	47,326	141,706
1995	15,106	33,534	4,225	7,403	7,970	29,946	98,184
1996	15,502	30,411	5,022	6,259	1,349	4,968	63,512
1997	11,829	26,906	9,082	8,345	1,737	7,536	65,434
1998	5,939	12,211	5,322	6,233	2,013	11,680	43,398
1999	17,101	16,419	8,033	11,980	1,419	7,068	62,021
2000	10,483	21,726	6,898	8,526	828	2,675	51,136
2001	11,668	27,697	9,105	9,686	1,383	6,027	65,566
2002	8,787	35,345	8,695	9,305	573	4,116	66,822
2003	11,085	21,501	7,252	9,585	711	12,642	62,776
2004	14,742	16,618	10,266	10,516	6,959	5,776	64,878
2005	12,572	15,151	7,919	12,742	964	7,148	56,498
2006	10,619	18,178	7,552	10,766	849	8,636	56,600
2007	11,136	23,598	6,975	11,749	6,828	33,435	93,720
2008	12,336	18,551	6,963	7,081	734	1,102	46,768
2009	12,141	19,722	6,964	9,302	389	7,498	56,016
2010	13,236	17,991	4,956	6,018	501	1,243	43,946
2011	10,783	15,769	7,580	8,921	1,104	7,325	51,482
2012	7,631	24,603	4,565	6,099	4,432	18,192	65,522
2013	15,073	15,702	8,675	10,914	10,506	41,354	102,223
$2014{ }^{2}$	14,749	16,916	12,278	15,447	452	9,632	69,474

Note: LIM = Legal Incident Mortality, SIM = Sublegal Incident Mortality.
${ }^{1}$ Includes total treaty, terminal exclusion, and hatchery add-on estimates of incidental mortality.
${ }^{2}$ Preliminary estimates for Sport IM and Total IM. Legal dropoffs in sport retention fishery estimated from creel estimate while all other IM for the Southeast Alaska sport fishery is estimated from the preliminary LC and the previous year IM to LC ratios. Final estimates are available from mail out surveys in October one year postfishing season and will be reported in this appendix in the next annual catch and escapement report.

Table A4.-Canadian Transboundary Rivers (Taku, Stikine, Alsek) ISBM Chinook salmon landed catch (LC), releases (Rel.), and incidental mortality (IM).

Year	Transboundary Rivers											
	First Nations			Net			Sport			Total		
	LC	Rel.	IM									
1975	1,024		47	178		8	0			1,202		
1976	1,074		49	236			200			1,510		
1977	450		21	62			300			812		
1978	750		35	100			300			1,150		
1979	2,150		99	872			734			3,756		
1980	822		38	1,869			354			3,045		
1981	736		34	977			556			2,269		
1982	1,018		47	1,823			429			3,270		
1983	1,375		63	1,553			355			3,283		
1984	802		37	515			569			1,886		
1985	1,066		49	759			654			2,479		
1986	1,707		79	1,668			570			3,945		
1987	1,491		69	1,512			823			3,826		
1988	1,445		66	2,170			780			4,395		
1989	1,433		66	2,799			722			4,954		
1990	1,094		50	3,703			1,001			5,798		
1991	1,572		72	2,717			834			5,123		
1992	1,311		60	2,629			608			4,548		
1993	1,248		57	2,830			909			4,987		
1994	1,297		60	3,551			744			5,592		
1995	1,464		67	3,567			1,465			6,496		
1996	1,389		64	5,489			1,134			8,012		
1997	1,584		73	6,336			811			8,731		
1998	864		40	3,288			662			4,814		
1999	1,516		70	4,117			662			6,295		
2000	1,616		74	3,882			633			6,131		
2001	954		44	2,461			659			4,074		
2002	1,450		67	2,499			963			4,912		
2003	1,659		76	3,839			651			6,149		
2004	2,454		113	6,969			455			9,878		
2005	952	0	44	20,334	-	935	323	0	22	21,609		1001
2006	962	0	44	17,076	-	785	243	0	17	18,281	-	847
2007	781	0	36	14,715	-	539	145	0	10	15,641	-	585
2008	920	0	42	10,831	-	498	327	0	23	12,078	-	563
2009	940	0	43	10,031	510	944	140	0	10	11,111	510	997
2010	1,090	0	50	9,410	124	550	247	0	17	10,747	124	617
2011	999	0	46	7,769	158	570	299	275	73	9,067	433	690
2012	764	0	35	9,119	63	513	254	367	88	10,137	430	636
2013	1,454	0	67	4,858	38	283	160	197	49	6,472	235	399
2014	1,252	0	58	5,830	15	295	181	166	44	7,263	181	397

Table A5.-Northern British Columbia (NBC) AABM Chinook salmon catches.

Year	Northern British Columbia		
	Area 1-5 Troll ${ }^{1,2}$	Areas 1,2E, 2W Sport	Total
1975	228,121	0	228,121
1976	190,267	0	190,267
1977	130,899	106	131,005
1978	146,054	125	146,179
1979	147,576	0	147,576
1980	157,198	200	157,398
1981	153,065	184	153,249
1982	173,472	215	173,687
1983	162,837	90	162,927
1984	185,134	171	185,305
1985	165,845	600	166,445
1986	175,715	1,153	176,868
1987	177,457	2,644	180,101
1988	152,369	7,059	159,428
1989	207,679	20,652	228,331
1990	154,109	16,827	170,936
1991	194,018	15,047	209,065
1992	142,340	21,358	163,698
1993	161,686	25,297	186,983
1994	164,581	28,973	193,554
1995	56,857	22,531	79,388
1996	8	670	678
1997	83,261	27,738	110,999
1998	109,072	34,130	143,202
1999	54,097	30,227	84,324
2000	9,948	22,100	32,048
2001	12,934	30,400	43,334
2002	102,731	47,100	149,831
2003	140,497	54,300	194,797
2004	167,508	74,000	241,508
2005	174,806	68,800	243,606
2006	151,485	64,500	215,985
2007	83,235	61,000	144,235
2008	52,147	43,500	95,647
2009	75,470	34,000	109,470
2010	90,213	46,400	136,613
2011	74,660	48,000	122,660
2012	80,257	40,050	120,307
2013	69,264	46,650	115,914
2014	172,001	44,900	216,901

Note: troll (Areas 1-5) and tidal sport (Areas 1, 2E, 2W) are the components of the Northern British Columbia aggregate abundance-based management fishery.
${ }^{1}$ Since 1998, the catch accounting year for troll fisheries was set from October 1 to September 30. To make comparisons to previous years more meaningful, the same catch accounting period was applied for years prior to 1998.
${ }^{2}$ Troll catches from 1996 to 2004 have been updated with data from DFO (2009).

Table A6.-Estimates of incidental mortality associated with Northern British Columbia (NBC) AABM Chinook salmon catches.

Year	Area 1-5 Troll ${ }^{1}$		Areas 1, 2E, 2W Sport		Total IM
	LIM	SIM	LIM	SIM	
1985	2,819	12,405	97	0	15,321
1986	2,987	19,637	204	0	22,828
1987	4,307	40,626	535	0	45,468
1988	4,829	40,749	1,505	0	47,083
1989	3,740	35,135	4,068	0	42,943
1990	5,195	46,172	3,248	0	54,615
1991	4,385	43,848	2,734	0	50,967
1992	4,985	49,332	3,634	0	57,951
1993	4,444	36,696	4,353	0	45,493
1994	3,709	27,882	4,524	0	36,115
1995	3,721	26,123	2,935	0	32,779
$1996{ }^{2}$	0	0	2,562	0	2,562
$1997{ }^{2}$	1,415	0	6,021	0	7,436
$1998{ }^{2}$	1,854	0	6,102	0	7,956
1999	920	674	3,605	0	5,199
2000	169	147	4,707	0	5,023
2001	376	276	5,955	0	6,607
2002	2,778	1,083	8,417	0	12,278
2003	4,772	740	9,519	0	15,031
2004	9,336	1,225	21,237	0	31,798
2005	7,896	446	12,221	0	20,563
2006	3,300	3,958	7,503	0	14,761
2007	2,282	3,771	7,870	0	13,923
2008	1,321	1,748	3,266	0	6,335
2009	2,069	3,625	4,011	0	9,705
2010	2,798	3,164	6,777	0	12,739
2011	7,732	1,773	9,114	0	18,619
2012	2,152	4,427	4,977	0	11,556
2013	7,236	3,390	9,300	0	19,926
2014	4,273	5,516	7,487	0	17,276

Note: Troll (Areas 1-5) and tidal sport (Areas 1, 2E, 2W) are the components of the Northern British Columbia aggregate abundance-based management fishery.
Note: LIM = Legal Incident Mortality, SIM = Sublegal Incident Mortality.
${ }^{1}$ Since 1998, the catch accounting year for troll fisheries was set from October 1 to September 30. To make comparisons to previous years more meaningful, the same catch accounting period was applied for years prior to 1998.
${ }^{2}$ Release data are not yet available for 1996 to 1998.

Table A7.-Northern British Columbia (NBC) ISBM Chinook salmon landed catch (LC), releases (Rel.), and incidental mortality (IM).

	Area 1-5 First Nations			Area 1-5 Net			Tyee Test Fishery			Area 3-5 Sport			Area 1-5 Freshwater Sport			Total		
Year	LC	Rel.	IM															
1975	4,055		187	24,786		1,140	309		14	0		0	0		0	29,150		1,341
1976	2,791		128	15,849		729	256		12	0		0	0		0	18,896		869
1977	6,998		322	43,926		2,021	270		12	1,670		60	2,158		149	55,022		2,564
1978	5,363		247	27,731		1,276	193		9	1,668		60	6,610		456	41,565		2,048
1979	5,266		242	40,208		1,850	432		20	2,523		91	1,960		135	50,389		2,338
1980	10,121		466	26,612		1,224	283		13	3,867		139	4,515		312	45,398		2,154
1981	11,115		511	41,379		1,903	345		16	2,760		99	2,613		180	58,212		2,709
1982	13,255		610	44,844		2,063	243		11	3,760		135	2,726		188	64,828		3,007
1983	15,532		714	16,752		771	362		17	4,092		147	5,374		371	42,112		2,020
1984	11,408		525	31,072		1,429	587		27	2,300		83	3,426		236	48,793		2,300
1985	15,794		727	39,543		1,819	545		25	3,600		130	3,186		220	62,668		2,921
1986	24,448		1,125	23,902		1,099	752		35	3,950		142	4,410		304	57,462		2,705
1987	16,329		751	17,494		805	725		33	4,150		149	3,625		250	42,323		1,988
1988	21,727		999	30,620		1,409	740		34	4,300		155	3,745		258	61,132		2,855
1989	21,023		967	38,403		1,767	653		30	4,150		149	5,247		362	69,476		3,275
1990	27,105		1,247	28,220		1,298	651		30	4,300		155	4,090		282	64,366		3,012
1991	23,441		1,078	40,782		1,876	591		27	4,256		153	4,764		329	73,834		3,463
1992	27,012		1,243	35,057		1,613	554		25	6,250		225	6,182		427	75,055		3,533
1993	21,353		982	33,351		1,534	776		36	3,279		118	7,813		539	66,572		3,209
1994	15,949		734	21,691		998	521		24	3,171		114	3,093		213	44,425		2,083
1995	13,635		627	17,629		811	464		21	2,475		89	3,503		242	37,706		1,790

-continued-

Table A7.-Page 2 of 2.

	Area 1-5 First Nations			Area 1-5 Net			Tyee Test Fishery			Area 3-5 Sport			Area 1-5 Freshwater Sport			Total		
Year	LC	Rel.	IM															
1996	13,345		614	26,935		1,239	2,178		100	3,382		122	1,250		86	47,090	0	2,161
1997	14,610		672	18,749		862	1,578		73	0		0	0			34,937	0	1,607
1998	20,622		949	5,790		266	1,338		62	4,750		171	0			32,500	0	1,448
1999	27,399		1,260	8,123		374	2,135		98	11,700		421	0			49,357	0	2,153
2000	23,476		1,080	19,464		895	3,004		138	8,600		310	0			54,544	0	2,423
2001	23,508		1,081	22,580			2,953		136	11,000		396	0			60,041	0	1,613
2002	14,125		650	13,554		623	1,413		65	8,000		288	0			37,092	0	1,626
2003	20,950		964	13,094		602	1,636		75	8,000		288	5,711		394	49,391	0	1,929
2004	20,548		945	15,198		699	995		46	8,000		288	0			44,741	0	1,978
2005	17,553	NA	807	5,416	5,502	4,368	1,136	NA	52	8,000	0	288	0			32,105	5,502	5,515
2006	17,262	NA	794	10,571	9,904	7,968	1,178	NA	54	8,000	0	288	0			37,011	9,904	9,104
2007	14,087	NA	648	9,520	10,273	8,011	1,302	NA	60	8,000	0	288	0			32,909	10,273	9,007
2008	14,963	NA	688	4,619	3,359	2,829	1,293	NA	59	11,970	1,643	460	0			32,845	5,002	4,036
2009	13,083	NA	602	4,348	2,003	1,642	1,189	NA	55	9,177	1,703	601	0			27,797	3,706	2,900
2010	13,693	NA	630	2,191	0	101	959	NA	44	7,570	563	362	2,689	NA	186	27,102	563	1,323
2011	10,863	NA	500	3,586	0	165	976	NA	45	14,677	2,246	885	2,540	NA	175	32,642	2,246	1,770
2012	8,189	NA	377	788	3,067	2,661	575	NA	26	7,017	0	253	421	NA	29	16,990	3,067	3,346
2013	8,557	NA	394	2,126	3,163	2,739	547		25	10,259	560	458	2,024	958	324	23,513	4,681	3,548
2014	11,936	NA	549	2,632	3,317	3,023	482	NA	22	11,973	4,692	1,117	2,302	178	193	29,325	8,187	4,964

Note: NA = Not available.

Table A8.-Central British Columbia ISBM Chinook salmon landed catch (LC), releases (Rel.), and incidental mortality (IM).

Year	Central British Columbia																	
	First Nations			Net ${ }^{1}$			$\text { Troll }^{1,2}$			Tidal Sport ${ }^{3}$			Freshwater Sport			Total		
	LC	Rel.	IM															
1975	NA			40,985			135,470			NA			NA			176,455		
1976	NA			32,669			145,204			NA			NA			177,873		
1977	6,972			32,409			122,689			4,773			1,544			168,387		
1978	7,944			35,708			91,025			5,694			1,770			142,141		
1979	7,585			50,445			107,884			5,225			1,940			173,079		
1980	6,240			27,715			95,377			4,802			988			135,122		
1981	5,701			18,912			69,247			3,490			1,261			98,611		
1982	9,112			32,419			69,748			5,419			1,293			117,991		
1983	6,442			12,556			97,447			4,271			821			121,537		
1984	9,736			4,630			78,120			4,354			1,332			98,172		
1985	6,019			12,391			27,090			3,943			823			50,266		
1986	6,353			23,032			54,407			4,566			1,245			89,603		
1987	6,296			10,893			65,776			3,933			1,563			88,461		
1988	6,000			12,886			36,125			3,596			1,496			60,103		
1989	8,992			6,599			21,694			3,438			4,526			45,249		
1990	9,811			18,630			29,882			4,053			5,626			68,002		
1991	8,801			15,926			29,843			4,409			3,335			62,314		
1992	8,533			18,337			47,868			4,891			3,204			82,833		
1993	9,095			10,579			23,376			6,114			2,880			52,044		
1994	5,383			14,424			18,976			4,303			973			44,059		
1995	3,501			11,007			5,819			2,172			1,180			23,679		

Table A8.-Page 2 of 2.

Year	Central British Columbia																	
	First Nations			Net ${ }^{1}$			$\text { Troll }{ }^{1,2}$			Tidal Sport ${ }^{3}$			Freshwater Sport			Total		
	LC	Rel.	IM															
1996	6,922			7,201			0			2,936			3,986			21,045		
1997	9,764			3,650			9,274			8,524			1,139			32,351		
1998	6,671			5,467			2,188			5,514			779			20,619		
1999	5,440			4,342			2,073			10,300			NA			22,155		
2000	4,576			3,197			0			7,400			NA			15,173		
2001	5,435			6,465			482			7,650			1,024			21,056		
2002	3,292			4,676			0			7,330			723			16,021		
2003	3,173			2,815			0			8,385	146	325	491			14,864	146	325
2004	4,003			5,404			0			10,677	77	397	524			20,608	77	397
2005	4,180		192	6,323	15,281	11,298	0		0	9,017	302	373	809		56	20,329	15,583	11,919
2006	4,013		185	5,231	1,391	1,247	0	786	160	9,400	428	406	NA		60	18,644	2,605	2,058
2007	2,102		97	5,542	5,349	4,106	0	1,804	371	6,130	118	239	522	20	40	14,296	7,291	4,853
2008	3,018		139	1,133	181	183	9	757	155	2,909	607	201	276		19	7,345	1,545	697
2009	4,011		185	3,132	0	144	0	0	0	3,239	0	117	0		38	10,382	0	483
2010	3,710		171	1,549	0	71	0	0	0	4,043	0	146	NA		45	9,302	0	432
2011	2,323		107	4,794	0	221	0	0	0	7,701	498	356	646		45	15,464	498	728
2012	1,745		80	3,624	500	533	0	0	0	5,861	0	211	524		36	11,754	500	860
2013	3,945		181	5,301	2,044	1,728	0	430	93	4,457	0	160	1,506	0	104	15,209	2,474	2,267
2014	2,909		134	2,238	498	463	0	0	0	7,800	0	281	2,134		147	15,081	498	1,025

Note: NA = Not available.
${ }^{1}$ Troll and net catches from 1996 to 2004 have been updated with data from DFO (2009), catch excludes jacks and small red-fleshed Chinook salmon.
Since 1998, the catch accounting year for troll fisheries was set from October 1 to September 30. To make comparisons to previous years more meaningful, the same catch
accounting period was applied for years prior to 1998.
${ }^{3}$ Freshwater catch included with tidal catch.

Table A9.-West Coast Vancouver Island (WCVI) AABM Chinook salmon catches.

Year	West Coast Vancouver Island AABM		
	Troll ${ }^{1,2}$	AABM Sport ${ }^{3}$	Total
1975	546,214	-	546,214
1976	665,010	-	665,010
1977	545,742	-	545,742
1978	568,705	-	568,705
1979	477,222	-	477,222
1980	486,303	-	486,303
1981	423,266	-	423,266
1982	538,510	-	538,510
1983	395,636	-	395,636
1984	471,294	-	471,294
1985	345,937	-	345,937
1986	350,227	-	350,227
1987	378,931	-	378,931
1988	408,668	-	408,668
1989	203,751	-	203,751
1990	297,858	-	297,858
1991	203,035	-	203,035
1992	340,146	18,518	358,664
1993	277,033	23,312	300,345
1994	150,039	10,313	160,352
1995	81,454	13,956	95,410
1996	4	10,229	10,233
1997	52,688	6,400	59,088
1998	5,140	4,177	9,317
1999	7,434	31,106	38,540
2000	64,547	24,070	88,617
2001	79,668	40,636	120,304
2002	126,383	31,503	157,886
2003	146,736	26,825	173,561
2004	176,166	39,086	215,252
2005	148,798	50,681	199,479
2006	108,978	36,507	145,485
2007	94,291	46,323	140,614
2008	95,170	50,556	145,726
2009	58,191	66,426	124,617
2010	84,123	54,924	139,047
2011	129,023	75,209	204,232
2012	69,054	65,414	134,468
2013	49,526	64,072	113,598
$2014{ }^{4}$	133,499	54,875	188,374

Note: Troll = Areas 21, 23-27, and 121-127; Net = Areas 21, and 23-27; Sport = Areas 23a, 23b, 24-27.
${ }^{1}$ Since 1998, the catch accounting year for troll fisheries was set from October 1 to September 30 . The same catch accounting period was applied for years prior to 1998.
${ }^{2}$ Troll catches from 1996 to 2004 have been updated with data from DFO Catch Finalization Project (2009).
${ }^{3}$ AABM sport catch 1975 to 1991 is under review. No estimate available; it is currently included in ISBM catch in Appendix A11.
${ }^{4}$ Including 5,000 First Nations food, social, and ceremonial troll catch; 1,531 Maa-nulth Treaty catch; and 17,172 T'aaq-wiihak troll catch.

Table A10.-Estimates of incidental mortality (IM) associated with West Coast Vancouver Island (WCVI) AABM Chinook salmon catches.

Year	Troll ${ }^{1,2}$		Outside Sport ${ }^{3}$		Total IM
	LIM	SIM	LIM	SIM	
1985	7,261	102,749			110,010
1986	5,954	66,075			72,029
1987	11,169	148,659			159,828
1988	16,283	169,260			185,543
1989	3,464	63,325			66,789
1990	5,064	91,521			96,585
1991	3,452	84,116			87,568
1992	5,782	95,732			101,514
1993	4,710	84,325	3,078	1,074	93,187
1994	2,551	76,372	1,217	475	80,615
1995	6,622	45,231	1,531	643	54,027
$1996{ }^{4,5}$					
1997 ${ }^{4,5}$					
$1998{ }^{4,5}$					
$1999{ }^{4}$	126	432	4,272	17,081	21,911
$2000{ }^{4}$	1,097	2,455	2,626	3,629	9,807
$2001{ }^{4}$	2,321	3,601	4,397	3,271	13,590
$2002{ }^{4}$	3,754	5,329	4,540	1,441	15,064
$2003{ }^{4}$	2,509	6,126	6,297	1,216	16,148
$2004{ }^{4}$	2,995	4,127	5,781	1,053	13,956
2005	2,641	4,088	7,207	878	14,814
2006	2,565	3,031	4,800	1,161	11,557
2007	1,653	3,414	4,343	2,993	12,403
2008	1,631	2,863	6,269	1,549	12,312
2009	1,059	1,653	7,755	5,350	15,817
2010	1,506	1,936	10,679	1,896	16,017
2011	2,281	2,313	9,660	2,751	17,005
2012	1,214	629	10,976	3,571	16,390
2013	852	1,734	10,714	3,306	16,606
$2014{ }^{6}$	2,517	2,946	8,454	3,171	17,088

Note: Troll = Areas 21, 23-27, and 121-127; Net = Areas 21, and 23-27; Sport = Areas 23a, 23b, 24-27.
Note: LIM = Legal Incident Mortality, SIM = Sublegal Incident Mortality.
1 Since 1998, the catch accounting year for troll fisheries was set from October 1 to September 30. The same catch accounting period was applied for years prior to 1998.
2 Troll and net catches from 1996 to 2004 have been updated with data from DFO, 2009.
${ }^{3}$ Prior to 1992, catch was not reported as inside or outside. Therefore inside catch for those years represents total tidal sport catch.
4 First Nations catch is mainly commercial catch 1996-2004 has been updated.
5 Release data are not yet available for 1996-1998.
6 Including 5,000 First Nations food, social, and ceremonial troll catch; 1,531 Maa-nulth Treaty catch; and 17,172 T'aaq-wiihak troll catch.

Table A11.-West Coast Vancouver Island (WCVI) ISBM Chinook salmon landed catch (LC), releases (Rel.), and incidental mortality (IM).

Year	West Coast Vancouver Island ISBM														
	First Nations ${ }^{1}$			Net^{2}			Tidal Sport ${ }^{3}$			Freshwater Sport			Total		
	LC	Rel.	IM												
1975	NA			19,233			NA			NA			19,233	0	0
1976	NA			17,492			NA			NA			17,492	0	0
1977	NA			13,745			NA			NA			13,745	0	0
1978	NA			25,143			NA			NA			25,143	0	0
1979	NA			35,623			7,964			NA			43,587	0	0
1980	NA			34,732			8,539			NA			43,271	0	0
1981	NA			36,411			11,230			NA			47,641	0	0
1982	NA			41,172			17,100			NA			58,272	0	0
1983	NA			37,535			28,000			NA			65,535	0	0
1984	NA			43,792			44,162			NA			87,954	0	0
1985	NA			11,089			21,587			NA			32,676	0	0
1986	NA			3,276			13,158			NA			16,434	0	0
1987	NA			478			38,283			NA			38,761	0	0
1988	NA			15,438			35,820			NA			51,258	0	0
1989	NA			40,321			55,239			NA			95,560	0	0
1990	1,199		55	29,578			69,723			NA			188,102	0	55
1991	41,322		1,901	60,797			85,983			NA			64,769	0	1,901
1992	8,315		382	9,486			46,968	28,322	8,679	NA			99,376	28,322	9,061
1993	5,078		234	28,694			65,604	37,263	11,681	NA			56,410	37,263	11,915
1994	1,515		70	2,369			52,526	26,000	8,616	NA			28,001	26,000	8,686
1995	5,868		270	458			21,675	9,797	3,377	NA			2,324	9,797	3,647

-continued-

Table A11.-Page 2 of 2.

Year	West Coast Vancouver Island ISBM														
	First Nations ${ }^{1}$			Net ${ }^{\text {2 }}$			Tidal Sport ${ }^{3}$			Freshwater Sport			Total		
	LC	Rel.	IM												
1996	-			58			2,266	1,096	367	NA			2,324	1,096	367
1997	5,726		263	208			47,355	24,667	8,004	NA			53,289	24,667	8,267
1998	7,172		330	345			55,697	28,552	9,325	NA			63,214	28,552	9,655
1999	3,591		165	112			47,163	11,319	5,428	NA			50,866	11,319	5,593
2000	-			126			5,443	13,954	3,055	NA			5,569	13,954	3,055
2001	-			11			6,354	10,684	2,490	6,198			12,563	10,684	2,490
2002	10,893		501	260			36,073	14,629	5,298	77			47,303	14,629	5,799
2003	10,000		460	9,251			51,186	25,341	8,397	NA			70,437	25,341	8,857
2004	16,696		726	12,348			61,218	29,852	9,956	26			89,381	29,852	10,682
2005	35,000		1,610	23,599	354	4,687	43,577	9,534	4,837	6,225		430	108,401	9,888	11,564
2006	28,628		1,239	20,308	228	2,584	44,025	9,638	4,888	NA		0	92,961	9,866	8,711
2007	20,098		925	26,881	88	4,031	39,368	12,060	5,032	NA		0	86,347	12,148	9,987
2008	12,159		559	8,257	2	2,677	24,855	8,914	3,426	NA		0	45,271	8,916	6,663
2009	9,026		415	9,765	0	2,201	31,921	16,641	5,398	NA		0	50,712	16,641	8,014
2010	7,485		344	1,747	372	372	24,687	12,721	4,146	NA		0	33,919	13,093	4,862
2011	22,794		1,049	21,843	355	1,337	52,131	15,539	6,581	NA		0	96,768	15,894	8,967
2012	9,700		446	10,214	521	917	25,890	13,047	4,291	NA		0	45,804	13,568	5,654
2013	1,101		51	8,854	259	597	22,272	18,275	5,046	NA		0	32,227	18,534	5,694
2014	4,395		205	19,090	53	928	28,679	19,183	5,662	NA			52,164	19,236	6,795

Note: NA = Not available.
${ }^{1}$ First Nations catch is mainly commercial catch, 1996 to 2004 has been updated
${ }^{2}$ Net catches from 1996 to 2004 have been updated with data from DFO Catch Finalization Project (2009).
${ }^{3}$ Prior to 1992, catch was not reported as inside or outside. Therefore inside catch for those years represents total tidal sport catch.

Table A12.-Johnstone Strait ISBM Chinook salmon landed catch (LC), releases (Rel.), and incidental mortality (IM).

Year	Johnstone Strait														
	First Nations			Net ${ }^{1}$			Troll ${ }^{1,2}$			Tidal Sport ${ }^{3}$			Total		
	LC	Rel.	IM												
1975	NA			30,295			18,065			NA			48,360	0	0
1976	NA			31,855			30,838			NA			62,693	0	0
1977	NA			49,511			26,868			NA			76,379	0	0
1978	NA			55,148			13,052			NA			68,200	0	0
1979	NA			31,291			13,052			NA			44,343	0	0
1980	NA			30,325			11,743			NA			42,068	0	0
1981	NA			28,620			13,035			NA			41,655	0	0
1982	NA			29,454			11,234			NA			40,688	0	0
1983	NA			28,364			14,653			NA			43,017	0	0
1984	NA			18,361			9,260			NA			27,621	0	0
1985	NA			38,073			3,567			NA			41,640	0	0
1986	NA			17,866			3,951			NA			21,817	0	0
1987	NA			13,863			1,780			NA			15,643	0	0
1988	NA			6,292			1,566			NA			7,858	0	0
1989	NA			29,486			1,825			NA			31,311	0	0
1990	NA			18,433			2,298			NA			20,731	0	0
1991	1,287			15,071			1,228			9,311			26,897	0	0
1992	29			9,571			2,721			15,470			27,791	0	0
1993	20			15,530			4,172			12,679			32,401	0	0
1994	0			8,991			2,231			5,433			16,655	0	0
1995	71			970			4			4,296			5,341	0	0
1996	107			472			0			3,057			3,636	0	0

[^3]Table A12.-Page 2 of 2.

Year	Johnstone Strait														
	First Nations			Net ${ }^{1}$			Troil ${ }^{1,2}$			Tidal Sport ${ }^{3}$			Total		
	LC	Rel.	IM												
1997	179			1,018			1,246			4,047			6,490	0	0
1998	138			328			2,129			2,710			5,305	0	0
1999	469			472			273			8,985			10,199	0	0
2000	212			280			85			5,960			6,537	0	0
2001	370			332			453			4,150			5,305	0	0
2002	400			569			129			3,696			4,794	0	0
2003	130			306			719			9,851			11,006	0	0
2004	28			525			316			16,131			17,000	0	0
2005	NA	NA	0	291	1,925	1,596	2	0	0	16,076	9,522	2,937	16,369	11,447	4,533
2006	200	NA	9	244	5,304	4,073	0	612	135	10,532	4,526	1,596	10,976	10,442	5,813
2007	200	NA	9	2	331	304	0	293	68	9,882	5,814	1,798	10,084	6,438	2,179
2008	324	NA	15	48	447	325	0	0	0	4,436	3,985	1,071	4,808	4,432	1,411
2009	344	NA	16	597	14	426	0	0	0	11,501	15,984	3,862	12,442	15,998	4,304
2010	250	NA	12	98	2,908	2,278	2	428	101	10,016	9,092	2,437	10,366	12,428	4,827
2011	268	NA	12	46	2,312	1,710	0	36	7	11,934	5,169	1,816	12,248	7,517	3,546
2012	321	NA	15	37	468	346	0	44	9	7,874	7,899	2,060	8,232	8,411	2,429
2013	258	NA	12	35	241	181	0	0	0	8,260	6,710	1,858	8,553	6,951	2,051
2014	1,637	NA	75	311	3,634	2,840	0	0	0	9,339	6,906	1,970	11,287	10,540	4,885

Note: Troll = Area 12; Net = Areas 11-13.
Note: Sport based on July and August creel census in Area 12 and northern half of Area 13.
${ }^{1}$ Troll and net catches from 1996 to 2004 have been updated with data from DFO (2009).
${ }^{2}$ Since 1998, the catch accounting year for troll fisheries was set from October 1 to September 30. The same catch accounting period was applied for years prior to 1998.
Tidal sport creel catches include additional catch estimated using Argue et al. (1977).

Table A13.-Georgia Strait ISBM Chinook salmon landed catch (LC), releases (Rel.), and incidental mortality (IM).

Year	Georgia Strait														
	First Nations			Net ${ }^{1}$			Troll ${ }^{1,2}$			Tidal Sport			Total		
	LC	Rel.	IM												
1975							174,001			398,000			572,001	0	0
1976							200,229			490,000			690,229	0	0
1977							248,082			372,000			620,082	0	0
1978							217,955			500,000			717,955	0	0
1979							255,057			350,000			605,057	0	0
1980							273,077			204,100			477,177	0	0
1981							239,266			197,239			436,505	0	0
1982							179,040			124,390			303,430	0	0
1983							105,133			198,433			303,566	0	0
1984							90,280			369,445			459,725	0	0
1985							55,888			234,838			290,726	0	0
1986							44,043			181,896			225,939	0	0
1987							38,084			121,081			159,165	0	0
1988							20,224			119,117			139,341	0	0
1989							28,444			132,846			161,290	0	0
1990							34,304			111,914			146,218	0	0
1991							32,412			115,523			147,935	0	0
1992							37,250			116,581			153,831	0	0
1993							33,293			127,576			160,869	0	0
1994							12,916			70,839			83,755	0	0
1995							138			62,173			62,311	0	0
1996				8			14			89,589			89,611	0	0

Table A13.-Page 2 of 2.

Year	Georgia Strait														
	First Nations			Net ${ }^{1}$			Troll ${ }^{1,2}$			Tidal Sport			Total		
	LC	Rel.	IM												
1997				1			806			56,332			57,139	0	0
1998				11			303			20,923			21,237	0	0
1999				0			219			43,588			43,807	0	0
2000				0			609			32,750			33,359	0	0
2001				3	708	512	311	169	39	31,259			31,573	877	551
2002				16	601	446	459	205	49	52,979			53,454	806	496
2003				18	1,368	999	279	189	43	19,981			20,278	1,557	1,042
2004				0	881	645	389	235	54	13,475			13,864	1,116	699
2005				20	703	485	0	206	42	11,972	10,102	2,766	11,992	11,011	3,293
2006				0	3	3	0	3	1	12,181	4,730	1,749	12,181	4,736	1,752
2007				0	200	144	0	0	0	14,561	25,595	5,919	14,561	25,795	6,063
2008	4,848		223	0	156	112	0	0	0	8,836	8,772	2,294	13,684	8,928	2,629
2009	0	0	0	239	0	171	0	135	0	17,884	21,644	5,390	18,123	21,779	5,561
2010	40		2	54	1,128	863	5	359	85	14,942	13,704	3,662	15,041	15,191	4,613
2011	2,379	17	126	3	113	86	0	177	36	21,651	20,327	5,397	24,033	20,634	5,644
2012	3,096		142	0	0	0	0	0	0	22,457	45,785	10,340	25,553	45,785	10,483
2013	843	0	39	4	188	138	0	0	0	25,036	74,417	16,016	25,883	74,605	16,193
2014	28	1	20	0	44	32	0	0	0	46,251	47,161	12,246	46,279	47,206	12,280

Note: Troll = Areas 13-18; Net = Areas 14-19; Sport = Areas 13-18, 19a.
${ }^{1}$ Troll and net catches, 1996-2004, have been updated with data from DFO (2009).
${ }^{2}$ Since 1998, the catch accounting year for troll fisheries was set from October 1 to September 30 . The same catch accounting period was applied for years prior to 1998.

Table A14.-Fraser River ISBM Chinook salmon landed catch (LC), releases (Rel.), and incidental mortality (IM).

Year	Fraser River Watershed											
	First Nations ${ }^{1}$			Net ${ }^{2}$			Freshwater Sport ${ }^{\text {3,4 }}$			Total		
	LC	Rel.	IM									
1975	20,170			66,119			7,740			94,029	0	0
1976	19,189			73,018			6,354			98,561	0	0
1977	23,310			85,222			3,071			111,603	0	0
1978	19,541			50,247			3,627			73,415	0	0
1979	10,217			51,488			4,450			66,155	0	0
1980	10,528			40,061			7			50,596	0	0
1981	8,389			22,447			0			30,836	0	0
1982	29,043			23,792			96			52,931	0	0
1983	11,875			25,580			0			37,455	0	0
1984	17,111			27,929			80			45,120	0	0
1985	8,387			28,894			596			37,877	0	0
1986	12,274			31,401			1,421			45,096	0	0
1987	12,050			12,021			3,561			27,632	0	0
1988	12,063			8,446			3,702			24,211	0	0
1989	4,784			23,443			2,500			30,727	0	0
1990	14,180			15,689			2,982			32,851	0	0
1991	13,950			14,757			3,116			31,823	0	0
1992	10,067			7,363			4,677			22,107	0	0
1993	15,395			13,885			3,430			32,710	0	0
1994	17,892			13,693			3,195			34,780	0	0
1995	17,791			6,451			8,258			32,500	0	0
1996	12,665			12,910			7,635			33,210	0	0

Table A14.-Page 2 of 2.

	Fraser River Watershed											
	First Nations ${ }^{1}$			Net ${ }^{2}$			Freshwater Sport ${ }^{\text {3,4 }}$			Total		
Year	LC	Rel.	IM									
1997	13,453			40,877			5,051			59,381	0	0
1998	14,702			8,292			18,073			41,067	0	0
1999	17,999			4,043			8,509			30,551	0	0
2000	20,839			8,244			12,836			41,919	0	0
2001	18,429			10,398	28	26	25,023			53,850	28	26
2002	21,796			9,732	329	281	24,355			55,883	329	281
2003	28,137			11,204	287	272	19,520			58,861	287	272
2004	31,165			19,224	197	186	18,581			68,970	197	186
2005	19,832	0	879	9,088	97	335	22,688	13,322	2,720	51,608	13,419	3,934
2006	14,793	333	950	7,686	61	213	26,662	550	1,062	49,141	944	2,225
2007	13,714	759	1,333	6,795	44	166	12,945	8,694	1,586	33,454	9,497	3,085
2008	22,417	96	973	4,575	89	276	18,597	13,810	3,366	45,589	13,995	4,615
2009	27,288	105	1,203	7,848	146	330	17,485	15,845	3,611	52,621	16,096	5,143
2010	15,432	298	992	13,953	67	499	14,324	13,512	3,583	43,709	13,877	5,074
2011	33,118	96	1,614	17,989	104	351	20,349	9,022	3,136	71,456	9,222	5,101
2012	36,521	104	1,778	2,899	0	576	11,396	7,333	2,194	50,816	7,437	4,549
2013	17,092	113	893	3,124	6,307	6,110	11,506	10,211	2,754	31,722	16,631	9,757
2014	22,434	62	1,091	17,149	9,200	9,492	13,105	13,004	3,401	52,688	22,266	13,984

First Nations Chinook salmon catch includes food, social, and ceremonial from the mainstem and tributaries. Economic opportunity included in commercial net.
${ }^{2}$ Fraser River net includes commercial Area E Gillnet, test fisheries, First Nations economic opportunities, and scientific licenses.
Freshwater sport catch includes Fraser mainstem and tributary Chinook salmon catch (adults only).
${ }^{4}$ Updated 1975 to 1980 sport catch from Fraser et al. 1982.

Table A15.-Canada: Strait of Juan de Fuca ISBM Chinook salmon landed catch (LC), releases (Rel.), and incidental mortality (IM).

	Canada: Strait of Juan de Fuca											
	First Nations			Net ${ }^{1}$			Tidal Sport			Total		
Year	LC	Rel.	IM									
1975	NA			9,799			NA			9,799	0	0
1976	NA			13,004			NA			13,004	0	0
1977	NA			25,344			NA			25,344	0	0
1978	NA			9,725			NA			9,725	0	0
1979	NA			8,665			NA			8,665	0	0
1980	NA			3,438			37,900			41,338	0	0
1981	NA			9,982			29,832			39,814	0	0
1982	NA			7,072			30,646			37,718	0	0
1983	NA			328			30,228			30,556	0	0
1984	NA			6,237			24,353			30,590	0	0
1985	NA			17,164			27,843			45,007	0	0
1986	NA			17,727			34,387			52,114	0	0
1987	NA			6,782			24,878			31,660	0	0
1988	NA			4,473			31,233			35,706	0	0
1989	NA			21,238			32,539			53,777	0	0
1990	42			7,405			30,127			37,574	0	0
1991	250			8,893			19,017			28,160	0	0
1992	302			10,023			21,090			31,415	0	0
1993	317			2,287			13,967			16,571	0	0
1994	600			8,931			14,372			23,903	0	0
1995	751			631			14,405			15,787	0	0
1996	20			655			19,012			19,687	0	0
1997	42			657			17,080			17,779	0	0
1998	1,500			495			9,709			11,704	0	0
1999	52			771			14,808			15,631	0	0

-continued-

Table A15.-Page 2 of 2.

Year	Canada: Strait of Juan de Fuca											
	First Nations			Net ${ }^{1}$			Tidal Sport			Total		
	LC	Rel.	IM									
2000	272			199			10,973			11,444	0	0
2001	135			439			23,463			24,037	0	0
2002	NA			345			24,084			24,429	0	0
2003	NA			292			26,630			26,922	0	0
2004	NA			187			40,877			41,064	0	0
2005	NA			153	0	110	30,480	11,857	4,380	30,633	11,857	4,490
2006	NA			155	801	606	26,437	5,079	2,799	26,592	5,880	3,405
2007	NA			138	690	534	26,549	11,832	4,104	26,687	12,522	4,638
2008	NA			172	573	442	22,263	6,540	2,792	22,435	7,113	3,234
2009	NA			385	0	277	25,587	44,169	10,246	25,972	44,169	10,523
2010	NA			206	1,239	920	15,612	4,868	2,012	15,818	6,107	2,932
2011	NA			278	1,522	1,166	21,075	12,878	3,927	21,353	14,400	5,093
2012	NA			284	1,124	853	22,154	10,603	3,564	22,438	11,727	4,417
2013	NA			273	1,411	1,099	32,363	24,550	6,947	32,636	25,961	8,046
2014	NA			137	495	475	20,290	15,771	4,428	20,427	16,266	4,903

Note: NA = Not available.
Note: Net = Area 20; Sport = Areas 19b and 20.
${ }^{1}$ Net catches from 1996 to 2004 have been updated with data from DFO (2009).

Table A16.-Washington: Strait of Juan de Fuca ISBM Chinook salmon landed catch (LC), releases (Rel.), and incidental mortality (IM).

Year	Washington: Strait of Juan de Fuca											
	Troll			Net			Sport			Total		
	LC	Rel.	IM									
1975	5,752	NA	144	8,048	NA	644	81,681	NA	11,844	95,481	NA	12,631
1976	10,488	NA	262	6,072	NA	486	75,308	NA	10,920	91,868	NA	11,668
1977	8,915	NA	223	14,930	NA	1,194	53,238	NA	7,720	77,083	NA	9,137
1978	10,006	NA	250	11,224	NA	898	62,299	NA	9,033	83,529	NA	10,181
1979	7,804	NA	195	10,939	NA	875	67,094	NA	9,729	85,837	NA	10,799
1980	10,682	NA	267	11,320	NA	906	56,415	NA	8,180	78,417	NA	9,353
1981	15,638	NA	391	18,541	NA	1,483	51,352	NA	7,446	85,531	NA	9,320
1982	19,024	NA	476	22,547	NA	1,804	29,842	NA	4,327	71,413	NA	6,606
1983	18,489	NA	462	16,141	NA	1,291	58,060	NA	8,419	92,690	NA	10,172
1984	15,650	NA	391	12,120	NA	970	48,003	NA	6,960	75,773	NA	8,321
1985	11,808	NA	295	12,784	NA	1,023	44,267	NA	6,419	68,859	NA	7,737
1986	30,000	NA	750	17,000	NA	1,360	69,000	NA	10,005	116,000	NA	12,115
1987	45,000	NA	1,125	11,000	NA	880	53,000	NA	7,685	109,000	NA	9,690
1988	49,000	NA	1,225	10,000	NA	800	39,000	NA	5,655	98,000	NA	7,680
1989	65,000	NA	1,625	10,000	NA	800	52,000	NA	7,540	127,000	NA	9,965
1990	47,162	NA	1,179	5,294	NA	424	50,903	NA	7,381	103,359	NA	8,984
1991	37,127	NA	928	3,390	NA	271	39,667	NA	5,752	80,184	NA	6,951
1992	31,452	NA	786	927	NA	74	38,438	NA	5,574	70,817	NA	6,434
1993	9,794	NA	245	1,482	NA	119	32,434	NA	4,703	43,710	NA	5,066
1994	3,346	NA	84	5,864	NA	469	1,661	NA	241	10,871	NA	794
1995	6,397	NA	160	4,769	NA	382	6,349	NA	921	17,515	NA	1,462
1996	9,757	NA	244	604	NA	48	4,825	NA	700	15,186	NA	992

-continued-

Table A16.-Page 2 of 2.

Year	Washington: Strait of Juan de Fuca											
	Troll			Net			Sport			Total		
	LC	Rel.	IM									
1997	829	NA	21	492	NA	39	12,238	NA	1,775	13,559	NA	1,835
1998	338	NA	8	265	NA	21	2,159	NA	313	2,762	NA	343
1999	544	NA	14	589	NA	47	1,990	NA	289	3,123	NA	349
2000	332	NA	8	640	NA	51	1,670	NA	242	2,642	NA	302
2001	1,974	NA	49	931	NA	74	4,819	NA	699	7,724	NA	823
2002	1,783	NA	45	1,076	NA	86	2,028	NA	294	4,887	NA	425
2003	436	NA	11	908	NA	73	5,290	28201	8325	6,634	28,201	8,408
2004	20,627	NA	516	592	NA	47	4,519	22275	6625	25,738	22,275	7,188
2005	5,344	NA	134	175	NA	14	2,700	10189	3122	8,219	10,189	3,270
2006	1,115	NA	28	957	NA	77	5,695	14823	4798	7,767	14,823	4,903
2007	4,329	NA	108	107	NA	9	6,967	23133	7210	11,403	23,133	7,327
2008	1,816	NA	45	4,579	NA	366	4,844	13359	4283	11,239	13,359	4,694
2009	3,280	NA	82	99	NA	8	11,167	46047	13960	14,546	46,047	14,050
2010	2,011	NA	50	1,339	NA	107	11,508	38036	11862	14,858	38,036	12,020
2011	4,090	NA	102	352	NA	28	9,504	20601	6899	13,946	20,601	7,029
2012	2,339	NA	58	1,523	NA	122	13,854	28,235	9,576	17,716	28,235	9,756
2013	3,295	NA	82	449	NA	36	15,601	39,059	12,730	19,345	39,059	12,848
2014	4,200	NA	105	1,306	NA	104	12,986 ${ }^{1}$	32,513 ${ }^{1}$	10,596 ${ }^{1}$	18,492	32,513	10,806

Note: Troll = Areas 5 and 6C, Area 4B from January 1 to April 30 and October 1 to December 31; Net = Areas 4B, 5, and 6C; Sport = Areas 5 and 6, 4B Neah Bay "add-on" fishery.
Note: NA = Not available; for fisheries without estimate of releases, IM is dropoff/dropout only.
${ }^{1}$ Current year not available; values are average of previous three years.

Table A17.-Washington: San Juan ISBM Chinook salmon landed catch (LC), releases (Rel.), and incidental mortality (IM).
$\varepsilon \angle I \partial \sigma_{d}$

Year	Washington: San Juan											
	Troll			Net			Sport			Total		
	LC	Rel.	IM									
1975	3	NA	0	90,100	NA	7,208	31,988	NA	4,638	122,091	NA	11,846
1976	0	NA	0	66,832	NA	5,347	34,505	NA	5,003	101,337	NA	10,350
1977	62	NA	2	84,316	NA	6,745	14,049	NA	2,037	98,427	NA	8,784
1978	3	NA	0	87,565	NA	7,005	15,083	NA	2,187	102,651	NA	9,192
1979	5	NA	0	53,750	NA	4,300	17,367	NA	2,518	71,122	NA	6,818
1980	0	NA	0	64,338	NA	5,147	12,231	NA	1,773	76,569	NA	6,921
1981	4	NA	0	50,695	NA	4,056	9,727	NA	1,410	60,426	NA	5,466
1982	0	NA	0	38,763	NA	3,101	6,953	NA	1,008	45,716	NA	4,109
1983	2	NA	0	28,497	NA	2,280	15,166	NA	2,199	43,665	NA	4,479
1984	83	NA	2	33,432	NA	2,675	25,759	NA	3,735	59,274	NA	6,412
1985	872	NA	22	33,579	NA	2,686	12,610	NA	1,828	47,061	NA	4,537
1986	0	NA	0	21,000	NA	1,680	15,000	NA	2,175	36,000	NA	3,855
1987	0	NA	0	29,000	NA	2,320	14,000	NA	2,030	43,000	NA	4,350
1988	0	NA	0	32,000	NA	2,560	9,000	NA	1,305	41,000	NA	3,865
1989	1,000	NA	25	16,000	NA	1,280	9,000	NA	1,305	26,000	NA	2,610
1990	666	NA	17	8,608	NA	689	7,370	NA	1,069	16,644	NA	1,774
1991	135	NA	3	11,753	NA	940	5,115	NA	742	17,003	NA	1,685
1992	172	NA	4	14,011	NA	1,121	6,788	NA	984	20,971	NA	2,109
1993	243	NA	6	14,002	NA	1,120	6,916	NA	1,003	21,161	NA	2,129
1994	73	NA	2	13,908	NA	1,113	5,795	NA	840	19,776	NA	1,955
1995	9	NA	0	5,333	NA	427	7,863	NA	1,140	13,205	NA	1,567
1996	153	NA	4	3,934	NA	315	12,674	NA	1,838	16,761	NA	2,156
1997	29	NA	1	29,593	NA	2,367	9,155	NA	1,327	38,777	NA	3,696

Table A17.-Page 2 of 2.

Note: Troll = Areas 6, 6A, 7, and 7A; Net = Areas 6, 6A, 7 and 7A.
Note: NA = Not available; for fisheries without estimate of releases, IM is dropoff/dropout only.
${ }^{1}$ Current year not available; values are average of previous three years.

Table A18.-Washington: Other Puget Sound ISBM Chinook salmon landed catch (LC), releases (Rel.), and incidental mortality (IM).

Year	Washington: Other Puget Sound								
	Net			Sport			Total		
	LC	Rel.	IM	LC	Rel.	IM	LC	Rel.	IM
1975	131,982	NA	10,559	173,086	NA	25,097	305,068	NA	35,656
1976	141,281	NA	11,302	151,246	NA	21,931	292,527	NA	33,233
1977	145,470	NA	11,638	97,761	NA	14,175	243,231	NA	25,813
1978	150,298	NA	12,024	116,979	NA	16,962	267,277	NA	28,986
1979	128,073	NA	10,246	156,402	NA	22,678	284,475	NA	32,924
1980	171,516	NA	13,721	142,799	NA	20,706	314,315	NA	34,427
1981	145,152	NA	11,612	106,048	NA	15,377	251,200	NA	26,989
1982	149,274	NA	11,942	85,703	NA	12,427	234,977	NA	24,369
1983	134,492	NA	10,759	123,752	NA	17,944	258,244	NA	28,703
1984	180,248	NA	14,420	102,740	NA	14,897	282,988	NA	29,317
1985	184,907	NA	14,793	92,603	NA	13,427	277,510	NA	28,220
1986	153,000	NA	12,240	88,000	NA	12,760	241,000	NA	25,000
1987	127,000	NA	10,160	59,000	NA	8,555	186,000	NA	18,715
1988	133,000	NA	10,640	63,000	NA	9,135	196,000	NA	19,775
1989	156,000	NA	12,480	75,000	NA	10,875	231,000	NA	23,355
1990	179,593	NA	14,367	71,000	NA	10,295	250,593	NA	24,662
1991	89,495	NA	7,160	48,859	NA	7,085	138,354	NA	14,244
1992	63,460	NA	5,077	51,656	NA	7,490	115,116	NA	12,567
1993	54,968	NA	4,397	41,034	NA	5,950	96,002	NA	10,347
1994	63,577	NA	5,086	44,181	NA	6,406	107,758	NA	11,492
1995	63,593	NA	5,087	61,509	NA	8,919	125,102	NA	14,006
1996	61,658	NA	4,933	58,538	NA	8,488	120,196	NA	13,421

Table A18.-Page 2 of 2.

Year	Washington: Other Puget Sound								
	Net			Sport			Total		
	LC	Rel.	IM	LC	Rel.	IM	LC	Rel.	IM
1997	47,522	NA	3,802	43,961	NA	6,374	91,483	NA	10,176
1998	50,915	NA	4,073	30,016	NA	4,352	80,931	NA	8,426
1999	91,947	NA	7,356	34,116	NA	4,947	126,063	NA	12,303
2000	79,494	NA	6,360	29,328	NA	4,253	108,822	NA	10,612
2001	123,266	NA	9,861	40,170	NA	5,825	163,436	NA	15,686
2002	108,566	NA	8,685	35,031	NA	5,079	143,597	NA	13,765
2003	86,206	NA	6,896	32,210	93,129	29,629	118,416	93,129	36,526
2004	69,211	NA	5,537	22,650	64,586	20,593	91,861	64,586	26,130
2005	82,629	557	7,156	30,760	50,748	18,061	108,638	51,306	25,217
2006	109,557	NA	8,765	40,082	152,129	46,582	149,639	152,129	55,347
2007	118,628	NA	9,490	57,468	149,778	48,473	176,096	149,778	57,964
2008	101,322	NA	8,106	36,969	86,174	28,455	138,291	86,174	36,561
2009	68,764	NA	5,501	33,332	75,820	25,153	102,096	75,820	30,654
2010	80,599	NA	6,448	32,817	43,512	16,420	113,416	43,512	22,868
2011	100,353	NA	8,028	29,829	78,760	25,433	130,182	78,760	33,461
2012	114,763	NA	9,181	22,036	115,056	34,030	136,799	115,056	43,211
2013	103,791	NA	8,303	36,656	112,260	35,401	140,447	112,260	43,704
2014	48,713	NA	3,897	29,507 ${ }^{1}$	90,366 ${ }^{1}$	28,497 ${ }^{1}$	78,220	90,366	32,394

Note: Net = Areas 6B, 6D, 7B, 7C, and 7E, Areas 8-13 (including all subareas), and Areas 74C-83F; Sport = Areas 8-13 and all Puget Sound rivers.
Note: NA = Not available; for fisheries without estimate of releases, IM is dropoff/dropout only.
${ }^{1}$ Current year not available; values are average of previous three years.

Table A19.-Washington: Inside Coastal ISBM Chinook salmon landed catch (LC), releases (Rel.), and incidental mortality (IM).

Year	Washington: Inside Coastal								
	Net			Sport			Total		
	LC	Rel.	IM	LC	Rel.	IM	LC	Rel.	IM
1975	34,859	NA	697	1,716	NA	118	36,575	NA	816
1976	51,995	NA	1,040	2,219	NA	153	54,214	NA	1,193
1977	72,467	NA	1,449	2,043	NA	141	74,510	NA	1,590
1978	32,662	NA	653	3,399	NA	235	36,061	NA	888
1979	36,501	NA	730	2,199	NA	152	38,700	NA	882
1980	47,681	NA	954	1,476	NA	102	49,157	NA	1,055
1981	36,880	NA	738	786	NA	54	37,666	NA	792
1982	33,271	NA	665	1,114	NA	77	34,385	NA	742
1983	16,210	NA	324	1,452	NA	100	17,662	NA	424
1984	16,239	NA	325	1,319	NA	91	17,558	NA	416
1985	25,162	NA	503	1,955	NA	135	27,117	NA	638
1986	29,000	NA	580	3,000	NA	207	32,000	NA	787
1987	51,000	NA	1,020	3,000	NA	207	54,000	NA	1,227
1988	74,000	NA	1,480	7,000	NA	483	81,000	NA	1,963
1989	85,000	NA	1,700	6,000	NA	414	91,000	NA	2,114
1990	57,770	NA	1,155	5,000	NA	345	62,770	NA	1,500
1991	54,397	NA	1,088	6,070	NA	419	60,467	NA	1,507
1992	64,223	NA	1,284	6,577	NA	454	70,800	NA	1,738
1993	59,285	NA	1,186	9,180	NA	633	68,465	NA	1,819
1994	46,059	NA	921	7,454	NA	514	53,513	NA	1,436
1995	46,490	NA	930	9,881	NA	682	56,371	NA	1,612
1996	55,408	NA	1,108	12,059	NA	832	67,467	NA	1,940
1997	28,269	NA	565	6,619	NA	457	34,888	NA	1,022
1998	20,266	NA	405	6,569	NA	453	26,835	NA	859
1999	11,400	NA	228	3,165	NA	218	14,565	NA	446
2000	15,660	NA	313	3,179	NA	219	18,839	NA	533
2001	19,480	NA	390	8,645	NA	597	28,125	NA	986
2002	23,372	NA	467	6,038	NA	417	29,410	NA	884
2003	18,443	NA	369	6,075	NA	419	24,518	NA	788
2004	21,965	NA	439	12,088	NA	834	34,053	NA	1,273
2005	20,668	NA	413	7,051	NA	487	27,719	NA	900
2006	27,414	NA	548	8,030	NA	554	35,444	NA	1,102
2007	12,353	NA	247	5,066	NA	350	17,419	NA	597

-continued-

Table A19.-Page 2 of 2.

Year	Washington: Inside Coastal								
	Net			Sport			Total		
	LC	Rel.	IM	LC	Rel.	IM	LC	Rel.	IM
2008	15,028	NA	301	3,808	NA	263	18,836	NA	563
2009	18,728	NA	375	6,629	NA	457	25,357	NA	832
2010	12,794	NA	256	6,831	NA	471	19,625	NA	727
2011	39,034	NA	781	13,340	NA	920	52,374	NA	1,701
2012	29,232	NA	585	9,646	NA	666	38,878	NA	1,250
2013	31,111	NA	622	10,188	NA	703	41,299	NA	1,325
2014	39,514	NA	790	11,058 ${ }^{1}$	NA	763^{1}	50,572	NA	1,553

Note: Net = Areas $2 \mathrm{~A}-2 \mathrm{M}$ and Areas $72 \mathrm{~B}-73 \mathrm{H}$; Sport = All coastal rivers, Area 2.1, and Area 2.2 (when Area 2 is closed)
Note: NA = Not available; for fisheries without estimate of releases, IM is dropoff/dropout only.
${ }^{1}$ Current year not available; values are average of previous three years.

Table A20.-Washington/Oregon North of Cape Falcon ISBM Chinook salmon landed catch (LC), releases (Rel.), and incidental mortality (IM).

Year	Washington/Oregon North of Cape Falcon											
	Troll			Net			Sport			Total		
	LC	Rel.	IM									
1975	268,971	NA	6,724	1,212	NA	24	265,785	NA	7,176	535,968	NA	13,925
1976	371,239	NA	9,281	203	NA	4	215,319	NA	5,814	586,761	NA	15,099
1977	244,491	NA	6,112	4	NA	0	197,563	NA	5,334	442,058	NA	11,447
1978	150,673	NA	3,767	4	NA	0	104,306	NA	2,816	254,983	NA	6,583
1979	133,035	NA	3,326	3	NA	0	84,977	NA	2,294	218,015	NA	5,620
1980	125,709	NA	3,143	1,215	NA	24	59,099	NA	1,596	186,023	NA	4,763
1981	109,519	NA	2,738	209	NA	4	96,151	NA	2,596	205,879	NA	5,338
1982	154,720	NA	3,868	267	NA	5	114,952	NA	3,104	269,939	NA	6,977
1983	63,584	NA	1,590	62	NA	1	51,789	NA	1,398	115,435	NA	2,989
1984	15,392	NA	385	0	NA	0	6,980	NA	188	22,372	NA	573
1985	55,408	NA	1,385	493	NA	10	30,189	NA	815	86,090	NA	2,210
1986	52,000	NA	1,300	0	NA	0	23,000	NA	621	75,000	NA	1,921
1987	81,000	NA	2,025	4,000	NA	80	44,000	NA	1,188	129,000	NA	3,293
1988	108,000	NA	2,700	3,000	NA	60	19,000	NA	513	130,000	NA	3,273
1989	74,600	NA	1,865	1,000	NA	20	20,900	NA	564	96,500	NA	2,449
1990	65,800	NA	1,645	0	0	0	32,900	NA	888	98,700	NA	2,533
1991	51,600	NA	1,290	0	0	0	13,300	NA	359	64,900	NA	1,649
1992	69,000	NA	1,725	0	0	0	18,900	NA	510	87,900	NA	2,235
1993	55,900	NA	1,398	0	0	0	13,600	NA	367	69,500	NA	1,765
1994	4,500	NA	113	0	0	0	0	NA	-	4,500	NA	113
1995	9,500	NA	238	0	0	0	600	NA	16	10,100	NA	254
1996	12,300	NA	308	0	0	0	200	NA	5	12,500	NA	313

[^4]Table A20.-Page 2 of 2.

Year	Washington/Oregon North of Cape Falcon											
	Troll			Net			Sport			Total		
	LC	Rel.	IM									
1997	20,500	NA	513	0	0	0	4,100	NA	111	24,600	NA	623
1998	20,615	12,496	3,577	0	0	0	2,292	2,729	471	22,907	15,225	4,048
1999	44,923	27,231	7,795	0	0	0	10,821	6,782	1,309	55,744	34,013	9,104
2000	20,152	12,215	3,497	0	0	0	9,242	8,433	1,515	29,394	20,649	5,011
2001	54,163	35,824	10,131	0	0	0	25,592	34,500	5,866	79,755	70,324	15,997
2002	106,462	60,250	17,423	0	0	0	60,575	74,008	12,737	167,037	134,257	30,159
2003	101,758	54,313	15,851	0	0	0	36,513	50,214	8,518	138,271	104,526	24,368
2004	88,225	83,219	22,594	0	0	0	27,090	74,410	11,893	115,315	157,629	34,487
2005	87,126	36,282	11,067	0	0	0	40,004	22,798	4,500	127,130	59,080	15,567
2006	57,313	52,482	14,291	0	0	0	11,176	10,309	1,848	68,489	62,791	16,139
2007	38,742	36,050	9,801	0	0	0	9,535	22,629	3,652	48,277	58,678	13,452
2008	35,100	NA	878	0	0	0	15,452	7,400	1,527	50,552	7,400	2,405
2009	25,410	NA	635	0	0	0	13,331	38,717	6,168	38,741	38,717	6,803
2010	88,565	NA	2,214	0	0	0	38,686	36,403	6,505	127,251	36,403	8,719
2011	61,433	NA	1,536	0	0	0	30,826	55,050	9,090	92,259	55,050	10,626
2012	99,792	NA	2,495	0	0	0	35,428	42,874	7,388	135,220	42,874	9,882
2013	91,915	NA	2,298	0	0	0	30,837	32,048	5,640	122,752	32,048	7,938
2014	116,489	NA	2,912	0	0	0	42,327	60,607	10,234	158,816	60,607	13,146

Note: Troll = Oregon Area 2; Washington Areas 1, 2, 3 and 4: Area 4B from May 1 through September 30 (during Pacific Fishery Management Council management); Net =
Washington Areas 1, 2, 3, 4, 4A; Sport = Oregon Area 2; Washington Areas 1, 1.1, 1.2, 2, 3, 4 and 2.2 (when Area 2 is open).
Note: For fisheries without estimate of releases, IM is dropoff/dropout only.
Note: NA = Not available.
${ }^{1}$ Current year not available; values are average of previous three years.

Table A21.-Columbia River ISBM Chinook salmon landed catch (LC), releases (Rel.), and incidental mortality (IM).

Year	Washington and Oregon Columbia River ${ }^{1}$											
	Nontreaty Net			Treaty Indian Net			Sport			Total		
	LC	Rel.	IM									
$1975{ }^{1}$	323,000	0	9,690				34,870	NA	2,406	357,870	NA	12,096
$1976{ }^{1}$	288,400	0	8,652				42,527	NA	2,934	330,927	NA	11,586
$1977{ }^{1}$	255,600	0	7,668				58,838	NA	4,060	314,438	NA	11,728
$1978{ }^{1}$	189,100	0	5,673				56,582	NA	3,904	245,682	NA	9,577
$1979{ }^{1}$	169,691	0	5,091	7,865	0	236	38,700	NA	2,670	216,256	NA	7,997
1980	113,569	0	3,407	35,604	0	1,068	15,011	NA	1,036	164,184	NA	5,511
1981	35,881	0	1,076	54,190	0	1,626	21,151	NA	1,459	111,222	NA	4,162
1982	94,289	0	2,829	67,224	0	2,017	31,236	NA	2,155	192,749	NA	7,001
1983	32,877	0	986	34,036	0	1,021	23,206	NA	1,601	90,119	NA	3,609
1984	73,481	0	2,204	61,828	0	1,855	43,760	NA	3,019	179,069	NA	7,079
1985	74,982	0	2,249	80,436	0	2,413	45,444	NA	3,136	200,862	NA	7,798
1986	168,038	0	5,041	118,578	0	3,557	57,993	NA	4,002	344,609	NA	12,600
1987	340,931	0	10,228	154,169	0	4,625	105,835	NA	7,303	600,935	NA	22,156
1988	341,114	0	10,233	165,677	0	4,970	97,638	NA	6,737	604,429	NA	21,941
1989	146,739	0	4,402	145,859	0	4,376	88,088	NA	6,078	380,686	NA	14,856
1990	63,602	0	1,908	95,317	0	2,860	79,467	NA	5,483	238,386	NA	10,251
1991	53,935	0	1,618	60,931	0	1,828	79,260	NA	5,469	194,126	NA	8,915
1992	24,063	0	722	39,616	0	1,188	56,417	NA	3,893	120,096	NA	5,803
1993	19,929	0	598	51,516	0	1,545	64,995	NA	4,485	136,440	NA	6,628
1994	2,773	0	83	36,633	0	1,099	29,634	NA	2,045	69,040	NA	3,227
1995	777	0	23	43,010	0	1,290	36,394	NA	2,511	80,181	NA	3,825
1996	17,774	0	533	70,956	0	2,129	31,672	NA	2,185	120,402	NA	4,847

Table A21.-Page 2 of 2.

Year	Washington and Oregon Columbia River ${ }^{1}$											
	Nontreaty Net			Treaty Indian Net			Sport			Total		
	LC	Rel.	IM									
1997	11,268	0	338	76,473	0	2,294	45,984	NA	3,173	133,725	NA	5,805
1998	6,409	0	192	48,410	0	1,452	34,342	NA	2,370	89,161	NA	4,014
1999	10,090	NA	303	81,164	0	2,435	45,094	NA	3,111	136,348	NA	5,849
2000	11,268	0	338	76,473	0	2,294	45,984	NA	3,173	133,725	NA	5,805
2001	37,668	16,406	5,724	184,393	-	5,532	135,040	16,454	12,519	357,101	32,860	23,775
2002	67,266	17,485	6,914	181,413	-	5,442	143,135	21,625	14,063	391,814	39,110	26,420
2003	73,550	12,612	5,738	156,746	-	4,702	141,111	15,966	12,721	371,407	28,578	23,162
2004	75,619	10,232	5,250	160,863	-	4,826	140,598	15,153	12,560	377,079	25,385	22,635
2005	44,989	4,388	2,578	133,547	-	4,006	87,072	32,106	12,139	265,608	36,494	18,724
2006	44,655	2,822	2,130	109,385	-	3,282	66,755	4,252	5,441	220,795	7,074	10,852
2007	26,317	2,179	1,400	60,581	-	1,817	50,813	5,273	4,517	137,710	7,452	7,734
2008	51,080	4,810	2,879	144,477	-	4,334	82,858	11,490	7,800	278,416	16,300	15,013
2009	53,945	4,490	2,876	112,025	-	3,361	85,956	10,696	7,821	251,926	15,186	14,058
2010	87,389	7,788	4,802	207,152	-	6,215	159,287	11,319	13,040	453,828	19,107	24,056
2011	90,698	6,994	4,679	175,856	-	5,276	144,925	13,682	12,333	411,478	20,676	22,288
2012	71,664	6,780	4,048	170,247	-	5,107	145,119	17,692	12,937	387,030	24,472	22,093
2013	119,558	4,572	4,867	259,625	-	7,789	154,190	33,240	16,379	533,373	37,812	29,035
2014	113,532	15,067	7,670	317,678	-	9,530	187,186	36,891	19,824	618,396	51,959	37,025

Note: NA = Not available.
${ }^{1}$ The historical time series of catches in this year's report has changed from previous year's report. Catches after 1980 have been broken out into nontreaty net and treaty Indian due to the inability to separate Treaty Indian commercial versus noncommercial. Nontreaty net includes catches by Wanapum and Colville tribes. Sport and total catches from 1975 to 1980 are consistent with previous year's reports.

Table A22.-Oregon ISBM Chinook salmon landed catch (LC), releases (Rel.), and incidental mortality (IM).

Year	Oregon Coastal Inside								
	Troll			Sport			Total		
	LC	Rel.	IM	LC	Rel.	IM	LC	Rel.	IM
1975	300	NA	5	19,000	NA	1,311	19,300	NA	1,316
1976	1,000	NA	17	21,000	NA	1,449	22,000	NA	1,466
1977	3,000	NA	51	34,000	NA	2,346	37,000	NA	2,397
1978	1,000	NA	17	37,000	NA	2,553	38,000	NA	2,570
1979	800	NA	14	31,000	NA	2,139	31,800	NA	2,153
1980	300	NA	5	22,000	NA	1,518	22,300	NA	1,523
1981	300	NA	5	28,000	NA	1,932	28,300	NA	1,937
1982	500	NA	9	23,000	NA	1,587	23,500	NA	1,596
1983	700	NA	12	19,000	NA	1,311	19,700	NA	1,323
1984	1,088	NA	17	27,000	NA	1,863	28,088	NA	1,880
1985	1,700	NA	27	25,000	NA	1,725	26,700	NA	1,752
1986	1,900	NA	30	33,000	NA	2,277	34,900	NA	2,307
1987	3,600	NA	58	46,000	NA	3,174	49,600	NA	3,232
1988	4,800	NA	77	49,000	NA	3,381	53,800	NA	3,458
1989	4,500	NA	72	45,000	NA	3,105	49,500	NA	3,177
1990	0	NA	0	38,000	NA	2,622	38,000	NA	2,622
1991	0	NA	0	44,500	NA	3,071	44,500	NA	3,071
1992	384	NA	6	39,000	NA	2,691	39,384	NA	2,697
1993	649	NA	10	52,000	NA	3,588	52,649	NA	3,598
1994	371	NA	6	33,590	NA	2,318	33,961	NA	2,324
1995	206	NA	3	48,366	NA	3,337	48,572	NA	3,341
1996	989	NA	16	56,202	NA	3,878	57,191	NA	3,894
1997	513	NA	8	37,659	NA	2,598	38,172	NA	2,607
1998	858	NA	14	37,990	NA	2,621	38,848	NA	2,635
1999	1,233	NA	20	30,735	NA	2,121	31,968	NA	2,140
2000	1,860	NA	30	33,262	NA	2,295	35,122	NA	2,325
2001	1,184	NA	19	54,988	NA	3,794	56,172	NA	3,813
2002	1,633	NA	26	61,085	NA	4,215	62,718	NA	4,241
2003	1,459	NA	23	67,939	NA	4,688	69,398	NA	4,711
2004	2,258	NA	36	71,726	NA	4,949	73,984	NA	4,985
2005	1,956	NA	31	27,866	NA	1,923	29,822	NA	1,954

-continued-

Table A22.-Page 2 of 2.

Year	Oregon Coastal Inside								
	Troll			Sport			Total		
	LC	Rel.	IM	LC	Rel.	IM	LC	Rel.	IM
2006	1,884	NA	30	39,357	NA	2,716	41,241	NA	2,746
2007	1,018	NA	16	25,684	NA	1,772	26,702	NA	1,788
2008	208	NA	3	10,780	NA	744	10,988	NA	747
2009	293	NA	5	6,537	NA	451	6,830	NA	456
2010	1,315	NA	21	23,366	NA	1,612	24,681	NA	1,633
2011	1,954	NA	31	33,089	NA	2,283	35,043	NA	2,314
2012	636	NA	16	26,272	NA	1,813	26,908	NA	1,829
2013	1,188	NA	30	$36,125^{1}$	NA	2,493 ${ }^{1}$	37,313	NA	2,523
2014	847	NA	21	47,268 ${ }^{1}$	NA	3,262 ${ }^{1}$	48,115	NA	3,283

Note: Troll = late season off Elk River mouth, Sport = estuary and inland.
Note: NA = Not available.
${ }^{1}$ Preliminary value based on average harvest rates.

Table A23.-Summary of landed catches (LC) of PSC AABM and ISBM fisheries.

$\begin{aligned} & \overline{0} \\ & 0 \\ & 0 \\ & \frac{0}{i} \\ & 0 \end{aligned}$	Year ${ }^{1}$	Southeast Alaska AABM ${ }^{2,3}$	Southeast Alaska NonTreaty	US ISBM ${ }^{4}$	US Total	$\begin{gathered} \text { NBC } \\ \text { AABM }^{2} \end{gathered}$	$\begin{aligned} & \text { WCVI } \\ & \text { AABM }^{2} \end{aligned}$	Canada $\text { ISBM }^{4,5}$	Canada Total	PSC Total
	1975	317,707		1,114,483	1,432,190	228,121	546,214	949,027	1,723,362	3,155,552
	1976	258,762		1,148,707	1,407,469	190,267	665,010	1,078,748	1,934,025	3,341,494
	1977	302,178		972,309	1,274,487	131,005	545,742	1,070,562	1,747,309	3,021,796
	1978	418,411		782,501	1,200,912	146,179	568,705	1,078,144	1,793,028	2,993,940
	1979	382,641		729,949	1,112,590	147,576	477,222	991,275	1,616,073	2,728,663
	1980	343,970		890,965	1,234,935	157,398	486,303	834,970	1,478,671	2,713,606
	1981	289,034		780,224	1,069,258	153,249	423,266	753,274	1,329,789	2,399,047
	1982	314,686		872,679	1,187,365	173,687	538,510	675,858	1,388,055	2,575,420
	1983	311,658		637,515	949,173	162,927	395,636	643,778	1,202,341	2,151,514
	1984	290,077		665,122	955,199	185,305	471,294	797,975	1,454,574	2,409,773
	1985	268,293	6,246	734,199	1,002,492	166,445	345,937	560,860	1,073,242	2,075,734
	1986	271,262	11,091	879,509	1,150,771	176,868	350,227	508,465	1,035,560	2,186,331
	1987	265,323	17,095	1,171,535	1,436,858	180,101	378,931	403,645	962,677	2,399,535
	1988	256,787	22,525	1,204,229	1,461,016	159,428	408,668	379,609	947,705	2,408,721
	1989	269,522	21,510	1,001,686	1,271,208	228,331	203,751	487,390	919,472	2,190,680
	1990	320,996	45,873	808,452	1,129,448	170,936	297,858	470,242	939,036	2,068,484
	1991	297,986	61,476	599,534	897,520	209,065	203,035	559,065	971,165	1,868,685
	1992	221,980	36,811	525,084	747,064	163,698	358,664	457,801	980,163	1,727,227
	1993	271,193	32,910	487,927	759,120	186,983	300,345	460,543	947,871	1,706,991
	1994	235,165	29,185	299,419	534,584	193,554	160,352	303,987	657,893	1,192,477
	1995	176,939	58,800	351,046	527,985	79,388	95,410	205,325	380,123	908,108
$\stackrel{\rightharpoonup}{\mathrm{D}}$	1996	154,997	81,262	409,703	564,700	678	10,233	216,603	227,514	792,214
$$	-continued-									

Table A23.-Page 2 of 2.

Year ${ }^{1}$	Southeast Alaska AABM ${ }^{2,3}$	Southeast Alaska NonTreaty	US ISBM ${ }^{4}$	US Total ${ }^{6}$	$\begin{gathered} \text { NBC } \\ \text { AABM }^{2} \end{gathered}$	$\begin{aligned} & \text { WCVI } \\ & \text { AABM }^{2} \end{aligned}$	Canada ISBM 4,5	Canada Total	PSC Total ${ }^{6}$
1997	286,696	56,306	375,204	661,900	110,999	59,088	261,366	431,453	1,093,353
1998	243,152	27,441	268,693	511,845	143,202	9,317	195,646	348,165	860,010
1999	198,842	52,178	371,349	570,191	84,324	38,540	222,566	345,430	915,621
2000	186,493	76,797	342,176	528,669	32,048	88,617	168,545	289,210	817,879
2001	186,919	78,815	699,805	886,724	43,334	120,304	208,425	372,063	1,258,787
2002	357,133	69,401	806,521	1,163,654	149,831	157,886	238,976	546,693	1,710,347
2003	380,152	59,284	736,479	1,116,631	194,797	173,561	251,759	620,117	1,736,749
2004	417,019	82,249	725,308	1,142,327	241,508	215,252	295,628	752,388	1,894,714
2005	388,137	104,980	574,197	962,334	243,606	199,479	293,046	736,131	1,698,465
2006	359,566	75,939	532,821	892,386	215,985	145,485	265,787	627,257	1,519,643
2007	327,697	76,942	425,183	752,880	144,235	140,614	233,979	518,828	1,271,708
2008	172,341	71,889	514,199	686,540	95,647	145,726	184,055	425,428	1,111,967
2009	227,533	66,140	444,587	672,120	109,470	124,617	209,160	443,247	1,115,367
2010	230,250	54,449	762,766	993,016	136,613	139,047	166,004	441,664	1,434,680
2011	290,169	66,819	747,285	1,037,455	122,660	204,232	283,031	609,923	1,647,378
2012	242,049	52,973	748,756	990,805	120,307	134,468	191,724	446,499	1,437,304
2013	190,688	66,552	908,010	1,098,698	115,914	113,598	176,215	405,727	1,504,425
2014	432,304	53,072	986,466	1,418,770	216,901	188,374	234,514	639,789	2,058,559

${ }^{1}$ All LC from 1975 to 1984 were taken prior to implementation of the PST.
${ }^{2}$ LC in AABM fisheries from 1985 to 1994 were taken under fixed ceiling management per the 1985 PST Agreement. Catches from 1995 to 1998 were between agreements. LC from 1999 to 2012 was taken commensurate with abundance-based management per the 1999 PST Agreement (1999-2008) and the 2009 PST Agreement (2009-present).
${ }^{3}$ Southeast Alaska nontreaty catches are primarily Alaska hatchery add-ons, but include terminal exclusions in some years from terminal catches from the Situk, Taku and Stikine rivers.
${ }^{4}$ US and Canadian ISBM fisheries had a pass-through obligation from 1985 to 1994 under the 1985 PST Agreement and have operated with the ISBM index obligations since 1999, under the 1999 and 2009 Agreements
${ }^{5}$ Catches in the Canada ISBM column include catches in the Strait of Georgia (troll and sport), Central British Columbia troll, and Northern British Columbia net and mainland sport fisheries from 1985 to 1994 when these were AABM fisheries operating under fixed ceiling management provisions of the 1985 PST Agreement.
${ }^{6}$ Does not include SEAK AABM fishery nontreaty catch from hatchery add-on and terminal exclusion

Table A24.-Estimated incidental mortality (LIM and SIM in nominal fish) associated with Chinook salmon catches in US and Canadian AABM and
ISBM fisheries. ${ }^{1}$

Year	Southeast Alaska AABM ${ }^{2}$	Southeast Alaska NonTreaty	US ISBM	US Total ${ }^{5}$	NBC AABM ${ }^{2}$	$\begin{aligned} & \text { WCVI } \\ & \text { AABM }^{2} \end{aligned}$	Can ISBM ${ }^{3}$	Can Total	PSC Total ${ }^{4,5}$
2005	45,846	10,652	67,179	113,026	20,563	14,814	46,248	81,625	194,650
2006	47,907	8,693	92,809	140,716	14,761	11,557	33,914	60,232	200,948
2007	71,355	22,365	91,225	162,580	13,923	12,403	40,397	66,723	229,303
2008	38,070	8,698	61,610	99,680	6,335	12,312	23,848	42,495	142,175
2009	44,890	11,125	70,574	115,465	9,705	15,817	37,925	63,447	178,911
2010	38,376	5,570	75,579	113,954	12,739	16,017	24,680	53,436	167,390
2011	41,533	9,949	90,066	131,599	18,619	17,005	31,538	67,162	198,761
2012	45,773	19,749	90,591	136,364	11,556	16,390	32,375	60,321	196,685
2013	59,230	42,993	111,143	170,373	19,926	16,449	48,347	84,722	255,095
2014	61,379	8,095	104,727	166,106	17,276	17,088	49,233	83,597	249,703

Note: LIM = Legal Incident Mortality, SIM = Sublegal Incident Mortality.
${ }^{1}$ The IM estimates presented in this table are not equivalent to LC on a one-to-one fish basis because of the inclusion of SIMs, which are smaller, less mature fish.
${ }^{2}$ IM estimates (LIM + SIM) are available for AABM fisheries from 1985 to present (CTC 2011).
${ }^{3}$ IM estimates for the ISBM fisheries prior to 2005 were not available for many subcomponents of these fisheries at this printing, but will be included in next year's CTC catch and escapement report.
${ }^{4}$ The PST total needs to be viewed with caution per footnote 1.
${ }^{5}$ Does not include SEAK AABM fishery nontreaty catch from hatchery add-on and terminal exclusion.

Table A25.-Estimated total mortality (LC and IM) associated with Chinook salmon catches in US and Canadian AABM and ISBM fisheries.

$\begin{aligned} & \frac{D}{0} \\ & 0 \\ & 0 \\ & 0 \\ & \frac{0}{n} \end{aligned}$	Year	Southeast Alaska AABM	Southeast Alaska NonTreaty	US ISBM	US Total ${ }^{2}$	NBC AABM	WCVI AABM	Can ISBM	Can Total	PSC Total ${ }^{1,2}$
\sim	2005	433,983	115,631	641,377	1,075,360	264,169	214,293	339,294	817,756	1,893,116
	2006	407,472	84,632	625,630	1,033,102	230,746	157,042	299,701	687,489	1,720,592
	2007	399,052	99,307	516,408	915,460	158,158	153,017	274,376	585,551	1,501,011
	2008	210,411	80,587	575,808	786,219	101,982	158,038	207,903	467,923	1,254,142
	2009	272,423	77,266	515,161	787,585	119,175	140,434	247,085	506,694	1,294,279
	2010	268,626	60,019	838,344	1,106,970	149,352	155,064	190,684	495,100	1,602,070
	2011	331,702	76,768	837,351	1,169,054	141,279	221,237	314,569	677,085	1,846,139
	2012	287,822	72,722	839,347	1,127,169	131,863	150,858	224,099	506,820	1,633,989
	2013	249,917	109,545	1,019,153	1,268,207	135,840	130,047	224,562	490,449	1,759,520
	2014	493,683	61,167	1,091,193	1,584,877	234,177	205,462	283,747	723,386	2,308,263

${ }^{1}$ Total mortality estimates prior to 2005 will be included in next year's CTC catch and escapement report when estimates from the ISBM fisheries are available.
${ }^{2}$ Does not include SEAK AABM fishery nontreaty catch from hatchery add-on and terminal exclusion.

Appendix B. Escapements and Terminal Runs of Pacific Salmon Commission Chinook Technical Committee Chinook Salmon Escapement Indicator Stocks, 1975-2014

Appendix Page
B1. Southeast Alaska estimates of escapement and CVs of Pacific Salmon Commission Chinook Technical Committee wild Chinook salmon escapement indicator stocks 190
B2. Transboundary River estimates of escapement and CVs of Pacific Salmon Commission Chinook Technical Committee wild Chinook salmon escapement indicator stocks 192
B3. Northern British Columbia escapements and terminal runs (t. run) of Pacific Salmon Commission Chinook Technical Committee wild Chinook salmon escapement indicator stocks. 194
B4. Southern British Columbia escapements of Pacific Salmon Commission Chinook Technical Committee wild Chinook salmon escapement indicator stocks 196
B5. West Coast Vancouver Island 6-stream index escapements of Pacific Salmon Commission Chinook Technical Committee wild Chinook salmon escapement indicator stocks 197
B6. Fraser River escapements and terminal runs (t. run) of Pacific Salmon Commission Chinook Technical Committee wild Chinook salmon escapement indicator stocks 198
B7. Puget Sound escapements and terminal runs (t. run) of Pacific Salmon Commission Chinook Technical Committee wild Chinook salmon escapement indicator stocks 199
B8. Washington Coast escapements and terminal runs (t. run) of Pacific Salmon Commission Chinook Technical Committee wild Chinook salmon escapement indicator stocks 201
B9. Columbia upriver spring and upriver summer escapements and terminal runs (t. run) of Pacific Salmon Commission Chinook Technical Committee Chinook salmon escapement indicator stocks 203
B10. Columbia River fall Chinook escapements and terminal runs (t. run) of Pacific Salmon Commission Chinook Technical Committee Chinook salmon escapement indicator stocks. 204
B11. Oregon Coastal escapements as estimated via traditional habitat expansion methods and terminal runs (t. run) of Pacific Salmon Commission Chinook Technical Committee wild Chinook salmon escapement indicator stocks 206
B12. Oregon Coastal escapements and terminal runs (t. run) as estimated by MR calibrated indexes of Pacific Salmon Commission Chinook Technical Committee wild Chinook salmon escapement indicator stocks. Estimates presented in boldface represent estimates generated from direct MR studies. 207

Table B1.-Southeast Alaska estimates of escapement and CVs of Pacific Salmon Commission Chinook Technical Committee wild Chinook salmon escapement indicator stocks.

Year	Southeast Alaska Stocks						
	Situk River		Chilkat R.		Unuk River		Chickamin R. index$\text { Esc. }{ }^{2}$
	Esc	CV ${ }^{1}$	Esc	CV	Esc	CV	
1975							370
1976	1,421						157
1977	1,732				4,706	0.12	363
1978	808				5,344	0.12	308
1979	1,284				2,783	0.12	239
1980	905				4,909	0.12	445
1981	702				3,532	0.12	384
1982	434				6,528	0.12	571
1983	592				5,436	0.12	599
1984	1,726				8,876	0.12	1,102
1985	1,521				5,721	0.12	956
1986	2,067				10,273	0.12	1,745
1987	1,379				9,533	0.12	975
1988	868	0.02			8,437	0.12	786
1989	637				5,552	0.12	934
1990	628				2,856	0.12	564
1991	889	0.01	5,897	0.17	3,165	0.12	487
1992	1,595	0.01	5,284	0.18	4,223	0.12	346
1993	952	0.03	4,472	0.19	5,160	0.12	389
1994	1,271	0.03	6,795	0.16	3,435	0.12	388
1995	4,330	0.04	3,790	0.21	3,730	0.12	356
1996	1,800	0.10	4,920	0.15	5,639	0.12	422
1997	1,878	0.11	8,100	0.15	2,970	0.09	272
1998	924	0.14	3,675	0.15	4,132	0.10	391
1999	1,461	0.10	2,271	0.18	3,914	0.13	492
2000	1,785	0.08	2,035	0.16	5,872	0.11	801
2001	656	0.03	4,517	0.16	10,541	0.11	1,010
2002	1,000	0.01	4,051	0.11	6,988	0.12	1,013
2003	2,117	0.03	5,657	0.12	5,546	0.08	964
2004	698	0.03	3,422	0.13	3,963	0.08	798
2005	595	0.01	3,366	0.17	4,742	0.08	924
2006	295		3,039	0.15	5,645	0.08	1,330
2007	677		1,442	0.16	5,668	0.08	893
2008	413		2,905	0.19	3,104	0.12	1,111
2009	902		4,429	0.17	3,157	0.11	611
2010	167		1,815	0.13	3,835	0.16	1,156
2011	240		2,688	0.12	3,195	0.21	852
2012	322		1,627	0.17	956	0.16	444

-continued-

Table B1.-Page 2 of 2.

Year	Southeast Alaska Stocks						
	Situk River		Chilkat R.		Unuk River		Chickamin R. index
	Esc	CV 1	Esc	CV	Esc	CV	Esc. 2
2013	912		1,730	0.20	1,135	0.122	468
2014^{3}	475		1,529	0.31	1,691	0.16	526
Lower	500		1,750		1,800		450
Upper	1,000		3,500		3,800		900

${ }^{1}$ Escapement is enumerated using a weir on the Situk River and CVs are only applicable for years having estimates of sport.
${ }^{2}$ Escapement is enumerated using index counts in the Chickamin River and these counts are not expanded to an estimate of total escapement; therefore, CVs are not applicable.
${ }^{3}$ Preliminary data.

Table B2.- Transboundary River estimates of escapement and CVs of Pacific Salmon Commission Chinook Technical Committee wild Chinook salmon escapement indicator stocks.

Year	Transboundary River Stocks					
	Alsek R.		Taku R.		Stikine R.	
	Esc	CV	Esc	CV	Esc	CV
1975			12,920	0.38	7,571	0.21
1976	5,282	0.35	24,582	0.38	5,723	0.16
1977	12,706	0.35	29,496	0.38	11,445	0.16
1978	12,034	0.35	17,124	0.38	6,835	0.21
1979	17,354	0.35	21,617	0.38	12,610	0.21
1980	10,862	0.35	39,239	0.38	30,573	0.16
1981	8,502	0.35	49,559	0.38	36,057	0.21
1982	9,475	0.35	23,847	0.38	40,488	0.16
1983	10,344	0.35	9,795	0.38	6,424	0.21
1984	7,238	0.35	20,778	0.38	13,995	0.21
1985	6,127	0.35	35,916	0.38	16,037	0.15
1986	11,069	0.35	38,110	0.38	14,889	0.15
1987	11,141	0.35	28,935	0.38	24,632	0.15
1988	8,717	0.35	44,524	0.38	37,554	0.15
1989	10,119	0.35	40,329	0.14	24,282	0.15
1990	8,609	0.35	52,143	0.18	22,619	0.15
1991	11,625	0.35	51,645	0.38	23,206	0.15
1992	5,773	0.35	55,889	0.38	34,129	0.15
1993	13,855	0.35	66,125	0.38	58,962	0.15
1994	15,863	0.35	48,368	0.38	33,094	0.15
1995	24,772	0.35	33,805	0.15	16,784	0.15
1996	15,922	0.35	79,019	0.12	28,949	0.10
1997	12,494	0.35	114,938	0.16	26,996	0.11
1998	6,833	0.33	31,039	0.38	25,968	0.15
1999	14,597	0.24	16,786	0.19	19,947	0.16
2000	7,905	0.25	34,997	0.15	27,531	0.12
2001	6,705	0.41	46,554	0.15	63,523	0.09
2002	5,569	0.61	55,044	0.2	50,875	0.12
2003	5,904	0.44	36,435	0.18	46,824	0.13
2004	7,083	0.52	75,032	0.14	48,900	0.08
2005	4,478	0.35	38,725	0.12	40,501	0.07
2006	2,323	0.35	42,296	0.13	24,405	0.28
2007	2,827	0.35	14,854	0.22	14,560	0.15
2008	1,885	0.35	27,383	0.09	18,352	0.16
2009	6,239	0.35	22,801	0.12	11,086	0.23
2010	9,518	0.35	29,302	0.09	15,180	0.13
2011	6,668	0.35	27,523	0.15	14,569	0.11
2012	2,660	0.35	19,429	0.12	22,671	0.17

-continued-

Table B2.-Page 2 of 2.

	Transboundary River Stocks					
	Alsek R.		Taku R.		Stikine R.	
	Esc	CV	Esc	CV	Esc	CV
2013	5,044	0.35	18,002	0.38	16,735	0.22
2014	3,407	0.35	23,532	0.09	24,360	0.15
Lower	3,500		19,000		14,000	
Upper	5,300		36,000		28,000	

Table B3.-Northern British Columbia escapements and terminal runs (t. run) of Pacific Salmon Commission Chinook Technical Committee wild Chinook salmon escapement indicator stocks.

Year	Area 1 Yakoun R. Esc	Northern British Columbia											
		Area 3^{1} Nass R.			Area 4 Skeena R.			Area 8 Dean R. index	Area 8^{2} Atnarko R.		$\text { Wild }^{4}$	Area 9 Rivers Inlet	Area 10 Smith Inlet
		Above GW ${ }^{1}$	Esc	t. run	Total Esc	GSI ${ }^{3}$ esc	GSI ${ }^{3}$ SD		Total Esc	CV			
1975	1,500		14,895	17,874	20,319				3,600			3,280	960
1976	700		13,819	16,583	13,078				11,700			1,640	1,000
1977	800	13,688	14,288	18,410	29,018				10,800			2,225	1,050
1978	600	15,485	16,885	21,807	22,661			3,500	13,500			2,800	2,100
1979	400	11,253	12,783	16,229	18,488			4,000	4,050			2,150	500
1980	600	13,476	14,855	18,744	23,429			2,000	6,480			2,325	1,200
1981	750	12,625	13,925	17,606	24,523			3,500	4,050			3,175	1,020
1982	1,400	7,959	10,359	13,287	17,092				7,200			2,250	1,500
1983	600	13,252	16,301	20,516	23,562			500	7,740			3,320	1,050
1984	300	20,967	24,967	31,408	37,598	51,348	14,818	4,500	13,788			1,400	770
1985	1,500	17,782	19,694	24,768	53,599	30,875	5,648	4,000	24,804			3,371	230
1986	500	36,523	38,123	47,967	59,968	28,398	6,204	3,300	19,170			7,623	532
1987	2,000	19,540	20,986	26,568	59,120	150,874	27,774	1,144	12,983			5,239	1,050
1988	2,000	15,345	16,715	21,094	68,705	91,496	13,217	1,300	13,500			4,429	1,050
1989	2,800	28,133	29,175	36,594	57,202	72,422	10,457	2,300	19,800			3,265	225
1990	2,000	24,051	26,551	33,384	55,976	64,188	10,638	2,000	16,710	0.143	11,630	4,039	510
1991	1,900	6,907	8,259	13,136	52,753	41,940	7,364	2,400	13,906	0.132	8,952	6,635	500
1992	2,000	16,808	17,408	25,405	63,392	103,365	25,532	3,000	32,862	0.128	22,015	7,500	500
1993	1,000	24,814	26,508	36,678	66,977	119,780	22,066	700	35,430	0.126	20,961	10,000	500
1994	2,000	21,169	25,689	32,864	48,712	78,228	14,149	1,300	28,178	0.112	12,257	3,500	700
1995	1,500	7,844	8,776	16,187	34,390	62,272	16,627	1,100	23,420	0.179	8,150	3,196	400
1996	3,000	21,842	22,712	30,889	73,684	155,637	32,769	2,000	20,767	0.106	5,962	3,000	250
1997	2,500	18,702	20,584	27,658	42,539	57,368	12,437	1,400	11,251	0.088	4,013	4,980	100
1998	3,000	23,213	25,361	34,922	46,744	80,677	16,199	3,000	13,470	0.078	6,094	5,367	1,100
1999	3,200	11,544	13,118	22,310	43,775	53,418	8,204	1,800	16,549	0.141	7,199	2,739	500
2000	3,600	18,912	20,565	31,159	51,804	95,563	13,496	1,200	17,352	0.064	9,964	6,700	500

Table B3.-Page 2 of 2.

Year	Area 1 Yakoun R. Esc	Northern British Columbia											
		Area 3^{1} Nass R.			Area 4 Skeena R.			Area 8 Dean R. index	Area 8^{2} Atnarko R.		Wild ${ }^{4}$	Area 9 Rivers Inlet	Area 10 Smith Inlet ${ }^{5}$
		Above GW ${ }^{1}$	Esc	t. run	Total Esc	GSI ${ }^{3}$ esc	GSI ${ }^{3}$ SD		Total Esc	CV			
2001	3,500	29,687	31,915	44,595	81,504	145,120	18,738	3,795	21,635	0.034	16,743	5,062	300
2002	3,000	13,773	15,382	21,528	44,771	89,235	11,984	3,731	11,511	0.084	8,550	5,031	
2003	4,000	26,940	28,330	36,503	56,758	114,346	16,234	3,700	12,619	0.055	10,136	1,900	
2004	4,500	15,912	18,185	25,137	44,243	142,141	19,631	3,500	11,825	0.089	8,230	3,950	
2005	5,000	14,363	16,595	24,067	29,067	77,531	9,783	2,200	11,677	0.110	7,619	5,585	
2006	NA	24,725	27,743	37,098	33,094	84,199	15,599	3,700	19,288	0.156	9,565	3,930	
2007	NA	21,459	25,524	34,221	33,352	85,179	17,559	2,300	8,229	0.061	5,799	5,000	
2008	NA	17,862	20,198	26,202	32,963	71,446	13,043	1,100	7,288	0.073	5,517	5,792	
2009	NA	28,710	30,334	36,865	38,297	80,900	16,297	1,400	10,926	0.047	6,331	4,580	
2010	NA	19,341	20,821	26,052	43,331	101,486	19,344	1,600	10,497	0.059	5,683	4,225	
2011	NA	9,639	10,415	15,092	37,073	53,682	12,239	750	8,645	0.071	6,061	4,400	
2012	NA	8,309	9,815	15,086	34,024	33,473	5,746	NA	7,425	0.060	2,542	4,142	
2013	NA	8,011	9,306	13,525	26,699	39,179	4,903	NA	22,690	0.047	9,860	4,672	
2014	NA	11,623	13,108	19,789	28,496	44,200	6,876	NA	11,980	0.046	11,935	4,190	

Note: NA = Not available.
${ }^{1}$ GW refers to Gitwinksihlkw, the location of the lower fish wheels on the Nass River used to capture Chinook salmon for the MR estimate.
${ }^{2}$ Estimates prior to 1990 are visual counts, 1990-2000 and 2004-2008 are based on time series calibration, 2001-2003 and 2009-2014 are maximum likelihood estimates based on MR estimates.
${ }^{3}$ Genetic Stock Identification.
${ }^{4}$ Large wild Atnarko Chinook salmon.
${ }^{5}$ The Docee River was dropped as an escapement indicator beginning in 2002 due to an inability to obtain reliable escapement estimates.

Table B4.-Southern British Columbia escapements of Pacific Salmon Commission Chinook Technical Committee wild Chinook salmon escapement indicator stocks.

	Lower Strait of Georgia			Upper Strait of Georgia ${ }^{\mathbf{1}}$					
Year	Nanaimo	Cowichan	Nimpkish	Klinaklini	Kakweiken	Kingcome	Wakeman	Esc. index	
1975	5,475		1,100	16,560	200	1,500	1,500	20,860	
1976	4,340		3,500	14,569	650	1,500	2,000	22,219	
1977	6,530		750	21,078	130	750	750	23,458	
1978	6,495		1,300	13,848	350	1,000	1,000	17,498	
1979	2,741	7,945	500	7,955	60	50	233	8,798	
1980	2,982	5,837	300	4,883	500	32	35	5,750	
1981	225	5,782	700	8,619	200	20	25	9,564	
1982	1,152	5,034	700	12,887	196	450	750	14,983	
1983	1,840	4,742	1,500	10,536	160	359	309	12,864	
1984	3,178	5,278	3,000	5,776	88	197	169	9,230	
1985	914	3,675	3,000	9,327	500	150	300	13,277	
1986	958	2,147	700	22,697	344	774	100	24,616	
1987	757	2,519	3,000	27,069	411	1,500	1,000	32,980	
1988	1,079	6,878	1,500	6,800	103	200	500	9,103	
1989	1,552	5,535	3,850	40,002	607	500	800	45,759	
1990	1,397	5,626	1,200	11,650	177	300	300	13,626	
1991	935	7,408	1,400	22,784	140	526	300	25,150	
1992	1,127	10,250	3,400	13,643	50	316	152	17,561	
1993	1,405	7,030	300	3,406	53	193	223	4,175	
1994	1,072	6,407	300	3,427	30	108	79	3,944	
1995	2,300	16,449	300	4,755	157	426	54	5,692	
1996	1,870	14,595	399	3,857	50	124	108	4,538	
1997	1,772	9,973	350	3,800	39	450	125	4,764	
1998	1,800	5,858	450	9,980	6	450	250	11,136	
1999	2,371	6,110	640	11,068	146	70	281	12,205	
2000	1,446	6,638	350	17,202	30	228	31	17,841	
2001	2,448	5,015	365	9,355	129	527	116	10,492	
2002	1,747	4,115	570	12,529	33	301	73	13,506	
2003	1,672	3,356	385	13,365	164	122	21	14,057	
2004	550	2,721	969	6,310	96	744	32	8,150	
2005	1,036	2,467	576	3,980	60	95	28	4,739	
2006	2,135	1,775	500	14,228	216	316	145	15,405	
2007	2,267	2,175	514	5,791	88	75	90	6,558	
2008	2,671	2,015	532	4,915	75	35	35	5,592	
2009	1,470	785	929	10,134	154	64	19	11,300	
2010	2,201	2,879	543	7,119	108	55	26	7,851	
2011	3,937	3,492	720	4,829	5	6	20	5,580	
2012	1,063	3,508	2,630	18,174	276	4	20	21,103	
2013	593	4,591	2,589	18,041	274	26	24	20,954	
2014	1,689	4,590	2,520	17,899	272	18	17	20,725	
G0al		6,500							
1									

${ }^{1}$ Upper Strait of Georgia Strait escapement updated with time series for 5 -stream index.

Table B5.-West Coast Vancouver Island 6-stream index escapements of Pacific Salmon Commission Chinook Technical Committee wild Chinook salmon escapement indicator stocks.

Year	WCVI ${ }^{1}$						
	Marble	Burman	Tahsis	Artlish	Kaouk	Tahsish	Esc. index
1975	400	200	75	25	75	25	800
1976	400	400	200	25	25	25	1,075
1977	950	500	150	60	75	100	1,835
1978	1,500	1,000	100	50	50	50	2,750
1979	750	650	348	40	60	200	2,048
1980	5,000	345	373	100	100	200	6,118
1981	3,000	300	150	500	100	1,000	5,050
1982	5,000	70	125	100	100	1,000	6,395
1983	1,000	475	50	400	300	500	2,725
1984	600	700	12	650	400	1,500	3,862
1985	1,250	500	50	400	300	1,200	3,700
1986	1,100	400	60	100	100	1,000	2,760
1987	1,750	100	20	100	100	500	2,570
1988	3,275	500	125			400	4,300
1989	4,181	780	500	40	30	450	5,981
1990	1,973	1,100	300	50	10	200	3,633
1991	710	2,767	1,515	20	20	120	5,152
1992	800	2,198	1,463	10	80	600	5,151
1993	2,000	1,750	578	10	20	250	4,608
1994	650	2,330	380	100	150	250	3,860
1995	1,626	594	525	99	266	600	3,710
1996	3,971	724	771	53	219	288	6,026
1997	2,638	2,354	722	402	558	523	7,197
1998	5,297	3,205	587	300	824	1,430	11,643
1999	4,185	2,399	1,731	539	453	879	10,186
2000	2,572	212	1,220	75	105	391	4,575
2001	1,450	107	389	139	409	237	2,731
2002	2,485	440	758	41	251	308	4,283
2003	1,749	768	762	379	358	440	4,456
2004	3,658	2,636	905	454	301	495	8,449
2005	2,354	642	182	199	488	121	3,986
2006	3,071	516	141	228	536	76	4,568
2007	2,764	353	133	162	193	234	3,839
2008	2,683	515	281	200	264	380	4,323
2009	3,440	1,800	780	214	550	80	6,864
2010	3,560	3,028	380	110	185	355	7,618
2011	3,910	2,020	220	100	300	260	6,810
2012	2,364	1,003	163	141	223	138	4,032
2013	2,081	8,285	545	399	240	350	11,900
2014	1,185	3,002	653	91	192	653	5,776

[^5]Table B6.-Fraser River escapements and terminal runs (t. run) of Pacific Salmon Commission Chinook Technical Committee wild Chinook salmon escapement indicator stocks.

Year	Fraser River									
	Fraser Spring Age 1.2		Fraser Summer Age 3	Fraser Summer Age 1.3	Fraser Spring/ Summer	Harrison			Lower Shuswap ${ }^{1}$	
	Esc	Esc	Esc	Esc	t. run	Esc	CV	t. run	Esc	CV
1975	7,179	8,184	26,875	16,875	119,081				27,582	0.342
1976	4,600	10,307	4,925	13,630	98,691				3,604	0.418
1977	3,675	13,261	19,600	17,240	132,553				14,356	0.345
1978	4,305	15,725	16,700	19,200	109,119				15,802	0.343
1979	2,770	14,985	18,275	10,205	101,252				15,158	0.344
1980	6,255	16,521	8,350	13,625	71,504				5,822	0.383
1981	2,975	12,274	13,120	12,202	62,668				8,093	0.365
1982	5,510	15,010	6,850	15,088	85,140				3,168	0.430
1983	2,641	24,225	9,500	16,604	72,526				5,396	0.146
1984	6,380	30,370	15,522	13,595	95,681	120,837		131,740	7,581	0.080
1985	9,477	43,168	20,375	19,099	121,941	174,778		181,367	10,539	0.075
1986	10,275	48,446	22,460	32,505	144,617	162,596		177,662	18,400	0.341
1987	5,049	48,271	22,404	27,646	128,699	79,038		81,799	15,158	0.344
1988	4,003	41,783	29,567	32,066	129,587	35,116		38,285	21,697	0.340
1989	6,126	31,994	24,200	16,200	106,843	74,685		76,294	16,772	0.342
1990	3,225	41,560	25,425	33,747	135,124	177,375		180,837	20,042	0.340
1991	3,495	27,296	26,250	28,097	116,555	90,638		93,363	15,158	0.344
1992	5,937	33,038	32,200	38,011	130,249	130,411		132,042	20,537	0.340
1993	7,870	32,796	13,300	21,385	110,237	118,998		120,600	8,860	0.361
1994	10,696	51,655	25,350	23,657	145,303	98,334		100,839	25,296	0.341
1995	9,670	45,237	20,550	26,371	134,478	28,616		29,840	15,158	0.344
1996	20,726	38,398	50,900	43,142	185,559	56,809			30,146	0.343
1997	9,878	44,373	49,250	40,882	202,795	72,277	. 091		20,207	0.340
1998	3,003	37,862	68,033	36,750	169,333	188,420		189,103	26,232	0.341
1999	8,751	20,740	53,204	25,138	140,939	106,995	. 102		40,090	0.349
2000	11,731	26,773	45,161	25,869	155,209	125,854			27,676	0.040
2001	10,607	31,512	74,132	33,980	177,008	113,777			35,788	0.026
2002	16,820	41,054	84,286	37,763	222,006	89,968	. 082	91,122	54,219	0.017
2003	18,963	46,984	70,070	43,288	231,031	247,121	. 083	251,453	32,921	0.344
2004	12,180	32,019	61,550	31,550	203,225	128,944		131,894	16,963	0.045
2005	3,898	21,131	88,313	18,915	172,267	88,580	. 063	94,880	17,892	0.031
2006	7,010	21,652	149,883	20,791	243,380	60,422	. 135	62,419	59,085	0.024
2007	1,407	11,640	85,732	10,636	137,303	76,483	. 068	80,718	15,926	0.027
2008	6,121	16,379	106,539	16,202	187,560	41,603	. 073	43,798	14,921	0.037
2009	844	26,284	86,377	20,839	174.719	70,141	. 064	75,550	25,113	0.018
2010	6,432	18,057	157,289	18,456	232,095	103,515	. 056	106,777	71,379	0.021
2011	2,233	12,104	127,958	18,528	216,154	123,647	. 052	132,140	18,874	0.029
2012	7,314	11,617	47,949	10,180	111,427	44,467	. 086	46,404	4,091	0.030
2013	3,157	17,582	130,617	12,573	185,922	42,953	. 070	44,675	28,797	0.043
2014	11,813	34,613	77,721	22,909	187,803	44,686	. 087	48,087	43,952	0.094
Goal						75,100				
Goal						98,500				

${ }^{1}$ Escapement was estimated by MR methods from 1983 to 1985, 2000 to 2002, and 2004 to 2012. All other years are calibrated values that have been estimated using a relationship between MR and peak methods.

Table B7.-Puget Sound escapements and terminal runs (t. run) of Pacific Salmon Commission Chinook Technical Committee wild Chinook salmon

Year	Puget Sound (includes hatchery strays in natural escapement unless noted otherwise)																		
	Skagit River Spring		Skagit River Summer/Fall		Stillaguamish River			Snohomish River			Green River			Nooksack Spring Esc				Lake Washington Fall	
	Esc	t. run	Esc	t. run ${ }^{1}$	MR esc ${ }^{2}$	Esc	t. run ${ }^{1}$	MR esc ${ }^{2}$	Esc	t. run	MR esc ${ }^{\text {2 }}$	Esc	t. run	$\begin{array}{\|c\|} \hline \text { N. Fork } \\ \text { Esc } \end{array}$	N. Fork $N^{\prime} R^{3}$	S. Fork Esc ${ }^{4}$	S. Fork NOR ${ }^{5}$	Esc	t. run
1975	627	627	11,320	30,299		1,198	1,801		3,953	5,993		3,394	6,838					656	1004
1976	633	633	14,120	28,589		2,140	4,241		4,659	9,740		3,140	8,246					719	937
1977	520	520	9,218	21,502		1,475	2,847		5,542	10,760		3,804	5,936					675	889
1978	932	932	13,075	24,285		1,232	2,159		7,905	13,747		3,304	4,766					890	1353
1979	818	818	13,306	24,350		1,042	2,531		5,726	14,010		9,704	11,689					1,289	1578
1980	1,408	1,408	20,058	31,250		821	2,818		6,526	18,683		7,743	11,248					1,360	1683
1981	1,045	1,045	8,283	21,817		630	3,014		3,330	10,466		3,606	5,532					721	924
1982	753	753	9,910	24,259		773	3,229		4,498	9,820		1,840	4,271					885	1384
1983	554	554	8,723	15,758		387	1,089		4,537	11,853		3,679	14,376					1,332	2515
1984	696	696	12,628	15,616		374	920		3,484	9,554		3,353	5,890	45		188		1,252	4211
1985	2,634	2,634	16,002	26,230		1,409	2,717		4,730	9,455		2,908	7,914	258		445		949	2627
1986	1,922	1,922	17,908	22,906		1,277	2,499		4,534	7,322		4,792	6,114	226		170		1,470	2863
1987	1,745	1,745	9,409	13,387		1,321	1,982		4,689	6,951		10,338	12,283	181		248		2,038	4835
1988	1,743	1,743	11,468	15,262		717	1,245		4,513	7,529		7,994	9,667	456		233		792	2829
1989	1,400	1,809	6,684	13,270		784	1,664		3,173	5,823		11,512	15,244	303		606		1,011	1544
1990	1,511	1,546	16,521	18,950		842	1,867		4,722	6,913		7,035	15,483	10		142		787	1098
1991	1,236	1,273	5,824	8,604		1,536	2,969		2,800	3,980		10,548	15,451	108		365		661	1115
1992	986	1,010	7,348	9,021		639	1,279		2,708	3,269		5,267	10,165	498		103		790	1212
1993	782	812	5,801	7,097		719	1,259		4,019	4,524		2,476	5,507	449		235		245	324
1994	470	496	5,549	5,912		773	1,323		3,406	3,715		4,078	8,368	45		118		888	926
1995	855	887	6,877	9,239		775	1,495		3,356	3,871		7,939	9,935	230		290		930	966
1996	1,051	1,078	10,613	10,828		1,244	2,276		4,851	5,352		6,026	8,664	535		203		336	362
1997	1,041	1,064	4,872	6,092		1,156	17,298		4,078	4,259		7,101	7,778	617		180		294	302
1998	1,086	1,091	14,609	14,965		1,544	2,434		6,306	6,658		5,963	7,777	370	37	157		697	711
1999	471	476	4,924	5,229		1,098	2,264		4,791	4,964		7,135	8,376	823	85	288	32	778	791
2000	1,021	1,025	16,930	17,265		1,645	3,065		6,095	6,613	10,526	4,473	6,880	1,242	160	373	153	347	393
2001	1,856	1,866	13,793	14,046		1,349	2,051		8,166	8,709	21,402	6,473	9,721	2,209	264	420	209	1,269	1555
2002	1,076	1,092	19,591	19,911		1,588	2,219		7,223	7,444	14,857	7,564	11,539	3,741	224	625	191	637	663
2003	909	987	9,777	10,106		988	1,320		5,447	5,810		5,864	7,871	2,857	210	591	69	771	826
2004	1,622	1,622	23,553	24,107		1,506	1,974		10,602	11,051		7,947	13,498	1,719	314	172	59	730	794
2005	1,305	1,305	20,803	23,405		1,036	1,493		4,480	4,974		2,523	2,987	2,047	210	232	74	726	788
2006	1,896	1,919	20,768	22,539		1,254	1,543		8,188	8,681		5,790	8,604	1,184	275	532	167	1,219	1433
2007	613	613	11,281	13,027	1,881	607	866		3,982	4,208		4,301	7,205	1,438	334	348	73	1,968	3342
2008	1,472	1,472	11,664	14,995	1,836	1,671	1,861		8,373	8,506		5,971	10,290	1,266	307	448	190	941	2917
2009	983	983	6,955	12,460	1,110	1,001	1,218		2,309	2,370		688	1,067	1,903	269	457	103	793	951

Table B7.-Page 2 of 2.

Year	Puget Sound (includes hatchery strays in natural escapement unless noted otherwise)																		
	Skagit Spring		Skagit Sum/fall		Stillaguamish			MR esc ${ }^{2}$	Snohomish		Green River			Nooksack Spring Esc				Lake Washington Fall	
	Esc	t. run	Esc	t. run ${ }^{1}$	MR esc ${ }^{2}$	Esc	t. run ${ }^{1}$		Esc	t. run	MR esc ${ }^{2}$	Esc	t. run	N. Fork Esc ${ }^{3}$	N. Fork NOR ${ }^{4}$	S. Fork Esc ${ }^{3}$	S. Fork NOR ${ }^{5}$	Esc	t. run
2010	1,361	1,537	8,037	9,060	1,381	783	1,014		4,299	4,435	4,541	2,092	2,112	2,044	204	552	73	729	734
2011	825	1,015	5,536	9,181	1,296	1,017	1,264	10,399	1,880	1,972	3,382	993	1,464	865	99	483	165	906	1,034
2012	2,774	3,278	13,817	15,864	1,750	1,534	1,733	7,763	5,124	5,216	4,528	3,091	3,804	758	281	508^{6}		1,674	1,875
2013	2,010	2,398	10,882	14,082	1,469	854	1,003	11,235	3,244	3,320		2,041	2,332	1,590	100	243	10	2,098	3,024
2014	1,608	NA	10,480	11,387		432	NA		3,901	NA		2,730	NA	NA	NA	NA	NA	613	NA

Note: NA = Not available.
${ }^{1}$ Escapement excludes brood stock collected for supplementation program. Total run includes redd count based escapement of all natural spawners, terminal catch, and adult brood stock collected for supplementation and PSC indicator program
${ }^{2}$ Escapement estimated from MR studies funded under Sentinel Stocks Program and/or US Letter of Agreement.
${ }^{3}$ Estimate of total natural spawners (hatchery + natural) during the spring Chinook salmon escapement accounting period (prior to Oct. 1); includes some early-timed summer/fall Chinook salmon in the south Fork but is assumedly spring Chinook salmon only in the north fork/middle fork Chinook salmon (due to spawn timing differences)
Natural-origin spring Chinook salmon separated from total spring Chinook salmon escapement based on carcass mark-sampling details (otolith thermal marks, fin clips, CWTs)
${ }^{5}$ Natural-origin spring Chinook salmon isolated from total natural spawners based on carcass mark-sampling details (otolith thermal marks, fin clips, CWTs) and genetic stock identification; displayed
estimate includes stray north fork/middle fork natural-origin spring Chinook salmon and south fork natural-origin spring Chinook salmon.
${ }^{6}$ Preliminary; natural-origin breakout not yet available.

Table B8.-Washington Coast escapements and terminal runs (t. run) of Pacific Salmon Commission Chinook Technical Committee wild Chinook salmon escapement indicator stocks.

Washington Coast																		
Year	Quillayute Summer		Quillayute Fall		Hoh Spr/Sum		Hoh Fall		Hoko Fall		Queets Spr/Sum		Queets Fall		Grays Harbor Spring		Grays Harbor Fall	
	Esc	t. run	Esc ${ }^{1}$	t. run	Esc	t. run												
1976	1,300	1,700			600	1,300	2,500	3,100			505	737	1,200	2,500	600	1,000	1,836	10,313
1977	3,800	5,300			1,000	2,000	2,100	3,800			732	1,155	3,600	5,500	800	1,700	5,195	14,400
1978	2,300	2,700			1,400	2,472	1,900	2,900			1,110	1,406	2,200	3,100	1,000	1,600	4,555	8,372
1979	2,100	3,900			1,400	2,326	1,700	2,200			870	1,369	3,900	4,700	400	1,100	9,381	10,101
1980	964	1,500	6,700	7,600	800	1,079	2,200	2,800			1,038	1,213	3,200	5,800	200	600	11,656	21,639
1981	815	1,700	5,963	7,102	1,498	2,005	3,100	4,000			988	1,329	4,250	8,200	600	900	7,577	11,915
1982	1,126	2,700	7,107	9,651	1,553	2,125	4,500	5,800			781	1,244	4,150	6,600	610	669	5,606	13,296
1983	548	1,800	3,069	5,530	1,696	2,233	2,500	3,300			1,044	1,173	2,750	4,400	800	850	5,482	8,997
1984	618	1,000	9,128	10,447	1,430	2,005	1,900	2,600			958	1,189	4,350	6,300	1,128	1,130	21,058	22,616
1985	550	700	6,145	8,367	978	1,353	1,725	2,720			677	886	4,150	5,910	1,157	1,159	9,537	15,153
1986	853	1,000	10,006	13,380	1,248	1,912	4,981	6,000	801	801	925	1,193	7,894	9,180	1,795	1,826	13,808	23,535
1987	666	1,600	12,352	20,349	1,710	2,480	4,006	6,147	581	581	598	1,543	6,557	10,638	841	1,071	19,013	34,460
1988	2,599	3,943	15,168	22,115	2,605	3,708	4,128	6,873	686	776	1,765	2,267	9,494	12,505	3,106	3,208	28,158	39,895
1989	2,407	3,472	9,951	17,260	4,697	6,820	5,148	8,682	775	842	2,568	3,954	9,324	12,213	2,068	2,393	25,677	56,028
1990	1,483	1,840	13,711	16,914	3,886	5,294	4,236	6,327	378	493	1,780	2,480	10,569	13,155	1,567	1,630	16,995	39,735
1991	1,188	1,500	6,292	7,631	1,078	1,693	1,420	2,628	894	1,006	630	761	4,795	6,593	1,289	1,489	14,392	33,271
1992	1,009	1,271	6,342	7,750	1,018	1,443	4,003	5,139	642	740	375	505	4,911	6,880	1,813	1,851	16,592	33,276
1993	1,292	1,531	5,254	5,735	1,411	2,065	2,280	3,951	775	894	713	788	3,463	5,667	1,254	1,399	13,349	28,941
1994	974	1,187	4,932	5,692	1,699	2,372	3,967	4,322	332	428	705	727	4,233	6,854	1,403	1,479	14,320	30,718
1995	1,333	1,731	5,532	6,716	1,132	1,686	2,202	2,912	750	905	625	662	3,127	5,101	2,070	2,167	12,727	31,729
1996	1,170	1,388	7,316	9,293	1,371	2,083	3,022	4,061	1,227	1,265	776	891	4,218	5,927	4,462	4,655	20,227	34,040
1997	890	1,177	5,405	6,047	1,826	2,582	1,773	3,034	768	894	540	693	2,872	4,945	4,460	4,812	18,168	30,842
1998	1,599	1,829	6,752	7,940	1,287	1,880	4,257	5,388	1,618	1,722	492	537	3,859	5,173	2,388	2,679	12,529	20,319
1999	713	818	3,334	4,758	928	1,081	1,924	2,941	1,497	1,688	373	426	1,918	3,105	1,285	1,555	10,363	12,846
2000	989	1,149	3,730	4,794	492	529	1,749	2,632	612	731	248	250	3,755	4,147	3,135	3,424	9,385	15,943
2001	1,255	1,429	5,136	7,545	1,159	1,231	2,560	4,116	768	946	548	565	3,066	4,775	2,860	3,326	9,492	19,397

[^6]Table B8.-Page 2 of 2.

Washington Coast																		
Year	Quillayute Summer		Quillayute Fall		Hoh Spr/Sum		Hoh Fall		Hoko Fall		Queets Spr/Sum		Queets Fall		Grays Harbor Spring		Grays Harbor Fall	
	Esc	t. run	Esc ${ }^{1}$	t. run	Esc	t. run												
2002	1,002	1,100	6,067	9,492	2,464	3,375	4,415	5,716	443	680	738	755	2,598	5,571	2,598	3,217	11,841	16,610
2003	1,219	1,262	7,398	9,469	1,228	1,646	1,649	2,345	863	1,098	189	195	4,971	6,611	1,904	2,101	19,871	22,866
2004	1,093	1,189	3,831	6,133	1,786	2,239	3,237	4,410	866	1,086	604	619	5,173	6,874	5,034	5,330	31,773	42,515
2005	876	965	6,406	8,319	1,193	1,389	4,180	5,323	203	284	298	306	4,578	6,755	2,130	2,683	19,695	23,565
2006	553	604	5,642	7,646	904	1,061	1,535	2,336	845	895	330	336	3,059	4,266	2,481	2,863	17,428	24,928
2007	502	568	3,066	4,137	810	1,023	1,556	2,427	462	568	352	358	872	1,595	652	915	13,117	18,420
2008	949	1,134	3,612	5,250	671	717	2,849	3,911	431	483	305	305	3,105	4,208	996	997	15,391	18,661
2009	464	682	3,130	5,874	880	913	2,081	2,747	103	385	495	495	3,135	4,918	1,133	1,150	9,290	14,498
2010	659	828	4,635	6,431	828	861	2,599	3,204	319	793	382	382	4,031	6,001	3,497	3,495	18,228	25,795
2011	600	995	3,993	7,207	827	948	1,293	2,163	1,275	1,504	373	373	3,857	6,649	2,563	2,573	22,870	35,829
2012	731	845	3,181	6,416	915	1,055	1,937	2,633	401	620	764	764	3,707	6,757	959	1,151	14,034	24,788
2013	968	1,140	3,901	5,969	750	873	1,269	3,298	656	751	520	520	2,413	4,967	2,459	2,638	12,153	15,849
2014	547	802	2,766	7,698	744	819	1,514	2,948	1,397	1,609	377	452	3,670	5,145	1,583	NA	12,400	NA
Goal			3,000		900		1,200				700		2,500				13,326	

Note: NA = Not available
${ }^{1}$ Escapement excludes brood stock for supplementation program. Total run includes redd-count-based escapement, terminal catch, and adult brood stock collected for supplementation and PSC indicator program.

Table B9.-Columbia upriver spring and upriver summer escapements and terminal runs (t. run) of Pacific Salmon Commission Chinook Technical Committee Chinook salmon escapement indicator stocks.

Year	Columbia Upriver Springs ${ }^{1}$						Columbia Upriver Summers ${ }^{2}$	
	Upper Columbia R.		Snake R. Spr/Sum		Total			
	Esc	t.run	Esc	t.run	Esc	trun.	Esc	t.run
1975								
1976								
1977								
1978								
1979							18,797	22,142
1980	2,772	7,128	6,134	20,968	8,906	28,096	13,854	22,498
1981	3,253	6,044	11,318	24,753	14,571	30,797	8,639	18,746
1982	3,015	6,314	11,307	27,601	14,322	33,915	6,587	14,369
1983	4,286	7,292	9,845	20,936	14,131	28,228	6,334	13,145
1984	4,608	6,706	7,929	14,119	12,537	20,825	13,984	18,765
1985	8,941	10,290	10,682	14,865	19,623	25,155	14,505	18,522
1986	5,519	7,903	11,359	20,085	16,878	27,988	14,850	18,752
1987	6,352	8,777	10,140	15,870	16,492	24,647	13,415	22,715
1988	5,658	7,503	11,182	17,368	16,840	24,871	13,634	22,720
1989	4,130	7,455	6,499	14,707	10,629	22,162	17,484	22,201
1990	2,808	4,437	9,357	17,582	12,165	22,019	13,432	18,794
1991	1,533	2,437	5,756	13,106	7,289	15,543	10,191	14,323
1992	3,163	4,261	12,677	20,657	15,840	24,918	7,706	9,428
1993	3,102	4,050	12,531	17,911	15,633	21,961	12,927	14,021
1994	611	1,044	1,856	3,721	2,467	4,765	12,292	14,691
1995	108	224	1,167	3,395	1,275	3,619	10,623	12,455
1996	317	575	3,643	9,062	3,960	9,637	9,417	12,080
1997	746	1,222	5,055	9,620	5,801	10,842	10,063	17,709
1998	367	547	7,281	13,725	7,648	14,272	11,225	15,536
1999	284	401	2,853	5,525	3,137	5,926	18,588	21,867
2000	904	1,367	8,187	13,921	9,091	15,288	20,218	22,595
2001	4,807	6,252	44,572	63,154	49,379	69,406	48,844	52,960
2002	1,957	2,992	29,872	52,209	31,829	55,201	86,825	89,524
2003	1,554	2,160	32,080	50,641	33,634	52,801	81,543	83,058
2004	1,638	2,303	20,967	33,103	22,605	35,406	62,311	65,623
2005	2,057	2,776	9,832	15,155	11,889	17,931	54,033	60,272
2006	912	1,430	9,340	16,814	10,252	18,244	61,821	77,573
2007	448	505	6,903	10,373	7,351	10,878	28,222	37,035
2008	664	815	17,171	23,946	17,835	24,761	38,171	55,532
2009	1,089	1,149	14,313	20,240	15,402	21,389	44,295	53,881
2010	2,499	3,127	25,211	34,764	27,710	37,891	47,220	72,346
2011	2,075	2,531	23,844	30,567	25,919	33,098	44,432	80,574
2012	4,352	5,533	24,828	33,856	29,180	39,389	52,184	58,300
2013	2,289	3,090	13,916	21,929	16,205	25,019	68,386	67,603
2014	3,986	5,683	31,208	46,050	35,194	51,733	77,982	78,304
Goal							12,143	

${ }^{1}$ For the purposes of US v. Oregon management and tribal treaty/nontreaty allocation, the Columbia Upriver spring stock includes all fish destined to pass Bonneville Dam during the spring management period, including those destined for major tributaries such as the Deschutes and John Day rivers. These estimates of river mouth return and escapement are for only the adult upper Columbia wild spring Chinook salmon and the adult Snake River wild spring/summer Chinook salmon components. Escapements are past Rock Island Dam and past Lower Granite Dam (plus Tucannon River escapement), respectively. These are reported annually by the US v. Oregon Technical Advisory Committee (Joint Columbia River Management Staff 2013, Tables 8 and 9).
${ }^{2}$ Based on a stock-recruitment analysis of model data which included both hatchery and wild fish, an interim goal of 12,143 adult Mid-Columbia summers at Rock Island Dam was developed. For consistency with the goal, the escapement time series reported here was changed to the total adult Rock Island Dam count. The terminal run is that reported for Upriver summer Chinook salmon in the Joint Staffs Reports as the Bonneville Dam Count plus catch in lower river fisheries. These were also changed to include both hatchery and wild returns, where previously only naturally spawning returns were reported.

Table B10.-Columbia River fall Chinook escapements and terminal runs (t. run) of Pacific Salmon Commission Chinook Technical Committee Chinook salmon escapement indicator stocks.

Year	Coweeman			Lewis River ${ }^{1}$		Columbia Upriver Fall Chinook				
	Index Esc	Total Esc	$\begin{gathered} \text { CV } \\ \text { (Total) } \end{gathered}$			Deschutes River ${ }^{2}$			Upriver Brights ${ }^{3}$	
				Esc	t.run	MR Esc	Esc	t.run	Esc	t.run
1975	94			13,859	13,859				29,600	163,833
1976	74			3,371	3,371				27,700	109,076
1977	86			6,930	6,930		7,903	9,764	36,060	85,336
1978	62			5,363	5,363		5,393	7,364	25,798	77,936
1979	88			8,023	8,023		5,126	6,718	28,926	82,482
1980	56			16,394	16,856		4,106	6,057	27,708	70,743
1981	38			19,297	20,298		6,070	7,907	19,520	58,693
1982	73			8,370	10,126		5,513	7,529	28,313	71,471
1983	40			13,540	14,489		5,491	6,987	45,567	79,113
1984	164			7,132	8,128		2,779	3,749	52,266	127,651
1985	168			7,491	8,241		7,902	8,709	74,206	187,691
1986	124			11,983	13,504		7,467	8,620	93,051	272,949
1987	86			12,935	14,173		9,187	11,244	126,153	409,412
1988	1,108			12,059	13,636		9,548	11,939	98,220	327,976
1989	794			21,199	22,813		6,339	8,069	83,281	253,233
1990	268			17,506	18,784		2,864	3,834	49,020	149,759
1991	174			9,066	10,354		5,374	5,528	40,132	97,758
1992	434			6,307	7,129		3,668	3,705	41,434	77,311
1993	350			7,025	8,106		8,809	8,820	42,515	94,088
1994	556			9,939	10,541		9,556	9,625	66,645	123,214
1995	794			9,718	12,155		9,304	9,340	50,595	97,119
1996	2,152			13,971	13,971		10,233	10,311	53,049	132,882
1997	1,328			8,670	8,670		20,208	20,341	50,215	141,386
1998	146			5,929	5,929		15,908	16,415	42,113	125,886
1999	96			3,184	3,184		7,389	7,762	43,313	158,044
2000	128			9,820	9,820		4,985	5,392	60,988	150,352
2001	646			13,886	14,186	9,527	12,817	9,861	84,652	222,630
2002	900	915^{4}	0.05	16,380	18,230	11,133	11,907	12,125	116,858	265,144
2003	1,090	1,106 ${ }^{4}$	0.03	18,505	20,505	14,265	13,413	15,343	161,005	357,848
2004	1,590	1,801 ${ }^{4}$	0.12	15,342	17,133	10,197	10,197	11,421	148,212	356,437
2005	753	$1,610^{5}$	0.20	11,348	13,348	9,355	14,937	10,190	111,148	258,554
2006	566	638^{5}	0.10	10,522	11,999	14,196	14,223	14,981	76,252	215,407
2007	251	495^{6}	0.19	3,468	3,606	13,181	12,721	13,968	44,962	98,657
2008	424	$699{ }^{6}$	0.11	5,200	5,200		6,908	7,614	72,713	189,681
2009	783	$913{ }^{7}$	0.07	5,410	5,760		6,429	7,116	84,327	204,932
2010	421	$592{ }^{7}$	0.12	8,701	8,701		9,275	10,066	165,726	314,842
2011	835	$565{ }^{4}$	0.08	8,009	11,025		17,117	18,168	129,496	305,940
2012	469	--7		8,143	8,450		17,624	18,785	130,414	276,483
2013	2,118	--7		15,197	20,267		18,068	20,305	370,267	764,029
2014	999	--4		20,808	22,915		17,993	18,776	300,088	665,463
Goal				5,700			4,532		40,000	

-continued-

Table B10.-Page 2 of 2.

${ }^{1}$ This is the number of naturally spawning adult fish in the Lewis River. The terminal run given is the escapement plus the Lewis River sport catch of wild adults.
${ }^{2}$ The first column gives the estimate based on a MR project for the entire river, which was used to verify the Sherars Falls estimates. The second column is the estimate based on using the ratio of redds above and below Sherars Falls. The time series of data through 2009 were updated based on a comprehensive analysis by Warm Springs, ODFW and Columbia River Intertribal Fish Commission (CRITFC) staff (Sharma, R, J. Seals, J. Graham, E. Clemons, H. Yuen, M. McClure, K. Kostow, and S. Ellis. Unpublished. Deschutes River Chinook spawner escapement goal using US v. Oregon Technical Advisory Committee data).
${ }^{3}$ The Columbia River Fisheries Management Plan (1988) stated an interim escapement goal of 40,000 natural spawning Upriver Brights at McNary Dam, including 38,700 for Hanford Reach and 1,100 Snake River. In 1990, the escapement goal was increased to 45,000 for increased hatchery programs. In 1994, a management goal of 46,000 was established, and in 1995, the management goal was retained while the escapement goal was reduced to 43,500 . In 2002, the Columbia River Fisheries Management Plan (1988) escapement goal of 40,000 was agreed to by the Chinook Technical Committee. Escapement numbers given are McNary adult dam count minus adult sport and broodstock above the dam. The terminal run is the Columbia River mouth terminal run of Upriver Brights minus the Deschutes River fall Chinook salmon terminal run.
${ }^{4}$ Physical MR.
${ }^{5}$ AUC (live counts).
${ }^{6}$ Redd estimates.
${ }^{7}$ Transgenerational GMR; studies were also conducted in 2012 and 2013, estimates are forthcoming.

Table B11.-Oregon Coastal escapements as estimated via traditional habitat expansion methods and terminal runs (t. run) of Pacific Salmon Commission Chinook Technical Committee wild Chinook salmon escapement indicator stocks.

Year	Oregon Coastal							
	Nehalem R.		Siletz R.		Siuslaw R.		Coquille R.	
	Esc	t. run						
1975	5,197	5,303	2,062	2,689	4,427	4,548	4,927	NA
1976	9,807	9,908	1,326	2,036	7,999	8,153	2,188	NA
1977	11,478	12,093	3,314	3,919	9,492	10,362	4,379	NA
1978	12,059	12,244	2,062	3,700	5,872	6,879	3,951	5,290
1979	12,205	12,469	7,217	8,907	8,040	8,799	4,030	4,715
1980	5,555	5,832	3,680	4,820	10,630	11,183	4,014	4,622
1981	10,752	10,939	4,435	6,751	8,724	9,342	4,313	4,996
1982	5,085	5,282	3,415	4,514	10,870	11,774	6,249	6,865
1983	4,431	4,525	2,136	3,152	4,186	4,885	3,193	3,807
1984	20,341	21,623	3,461	4,552	11,168	12,437	4,502	5,164
1985	18,670	19,473	6,628	7,685	14,822	15,805	3,157	3,853
1986	10,389	11,920	6,748	7,799	14,844	15,965	4,470	5,125
1987	13,560	15,725	4,577	6,023	17,603	19,411	5,640	6,997
1988	14,889	17,185	7,805	9,257	41,746	44,380	7,451	8,635
1989	10,389	12,000	4,401	5,980	28,279	31,690	6,462	7,820
1990	5,104	6,789	4,313	5,373	26,799	29,593	6,064	7,567
1991	5,557	7,685	5,633	6,926	26,100	29,825	9,074	11,470
1992	9,060	11,863	6,044	7,460	26,090	28,350	13,293	15,911
1993	5,345	9,317	4,342	6,506	10,446	14,012	6,993	10,419
1994	6,486	9,412	10,475	12,188	23,570	25,890	6,698	8,696
1995	5,194	8,845	5,164	8,045	26,715	31,194	7,885	10,374
1996	9,211	13,285	7,394	10,274	33,051	39,705	6,346	8,790
1997	10,026	13,069	3,726	6,165	22,305	27,516	6,743	8,338
1998	8,245	10,869	5,516	7,175	24,708	28,882	9,930	12,680
1999	8,063	10,632	4,166	6,232	23,963	27,271	8,513	10,950
2000	6,855	9,119	6,787	9,462	15,730	19,588	6,684	8,974
2001	11,662	15,998	10,563	14,704	38,717	43,836	8,233	12,007
2002	18,089	22,657	14,054	19,019	41,058	47,905	11,848	15,578
2003	10,906	15,095	11,149	15,693	58,998	66,246	16,482	21,572
2004	9,975	14,792	3,902	10,419	40,033	46,062	11,346	14,041
2005	8,114	9,535	6,631	8,931	17,618	19,301	5,029	5,767
2006	4,711	5,902	4,108	6,194	28,082	29,926	3,009	3,790
2007	4,304	5,759	528	1,536	6,764	9,665	2,098	3,557
2008	3,810	4,865	1,202	1,682	11,119	12,405	4,562	5,813
2009	4,070	4,070	2,905	3,343	14,094	15,881	12,308	13,530
2010	5,384	7,254	4,225	5,118	22,197	25,846	32,318	36,940
2011	7,665	9,780	3,638	5,861	30,713	36,546	16,745	21,151
2012	7,515	10,068	4,871	6,657	20,018	24,112	9,300	12,541
2013	18,194	NA	7,364	NA	23,411	NA	5,836	NA
2014	11,452	NA	8,655	NA	28,200	NA	10,418	NA
Goal	6,989		2,944		12,925		pending	

Table B12.-Oregon Coastal escapements and terminal runs (t. run) as estimated by MR calibrated indexes of Pacific Salmon Commission Chinook Technical Committee wild Chinook salmon escapement indicator stocks. Estimates presented in boldface represent estimates generated from direct MR studies.

Year	Oregon Coastal						
	Nehalem R.		Siuslaw R.		Umpqua R. S. ForkEsc 1	Coquille R.	
	Esc	t. run	Esc	t. run		Esc	t. run
1975	4,954	5,060	2,567	2,567	NA	6,668	NA
1976	9,345	9,446	4,565	4,565	NA	2,766	NA
1977	10,937	11,552	4,531	4,531	NA	5,676	NA
1978	11,491	11,676	2,867	3,874	400	5,618	6,957
1979	11,794	12,058	3,554	4,313	NA	5,203	5,888
1980	5,368	5,645	5,483	6,036	697	5,952	6,560
1981	10,390	10,577	3,767	4,385	890	6,405	7,088
1982	4,914	5,111	5,094	5,998	1,011	8,885	9,501
1983	4,282	4,376	923	1,622	1,628	4,686	5,300
1984	19,657	20,939	3,384	4,653	2,594	6,229	6,891
1985	18,042	18,845	6,845	7,828	2,246	4,498	5,194
1986	10,039	11,570	6,513	7,634	1,573	5,642	6,297
1987	13,103	15,268	5,568	7,376	2,795	6,429	7,786
1988	14,388	16,684	14,935	17,569	3,778	8,389	9,573
1989	10,039	11,650	12,856	16,267	6,162	6,948	8,306
1990	4,932	6,617	13,662	16,456	3,761	7,738	9,241
1991	5,370	7,498	15,709	19,434	6,717	10,508	12,904
1992	8,755	11,558	13,221	15,481	8,149	16,636	19,254
1993	5,165	9,137	2,960	6,526	3,364	7,446	10,872
1994	6,268	9,194	9,477	11,797	7,128	6,866	8,864
1995	5,020	8,671	10,246	14,725	11,388	12,060	14,549
1996	8,901	12,975	15,788	22,442	10,019	7,618	10,062
1997	9,689	12,732	8,313	13,524	7,286	8,580	10,175
1998	7,967	10,591	5,456	9,630	1,104	11,877	14,627
1999	7,792	10,361	11,785	15,093	1,804	10,653	13,090
2000	10,678	13,943	4,648	8,506	3,140	7,880	10,170
2001	12,431	16,767	9,723	14,482	6,510	12,512	16,286
2002	19,956	24,524	22,506	29,353	3,831	13,675	17,405
2003	21,283	25,472	28,801	36,050	8,918	18,876	23,966
2004	9,639	14,456	29,119	35,148	7,487	11,668	14,363
2005	6,801	8,222	13,771	17,700	3,084	5,438	6,176
2006	11,938	13,129	13,380	17,449	2,396	7,438	8,219
2007	5,193	6,648	3,920	6,821	2,457	2,098	4,037
2008	4,596	5,651	4,544	5,830	2,333	5,803	7,661
2009	5,786	5,786	5,237	7,024	3,014	15,653	16,875
2010	7,097	8,967	11,165	14,813	6,184	41,104	45,726
2011	11,084	13,199	11,909	17,742	7,550	21,291	25,697
2012	12,952	15,505	16,314	20,408	5,635	11,828	15,069
2013	15,989	NA	17,452	NA	10,704	7,423	NA
2014	13,817	NA	16,395	NA	7,153	13,250	NA
Goal	pending		pending		pending	pending	

Note: NA = Not available.
${ }^{1}$ Preliminary analysis has shown that terminal catch of South Fork Umpqua River fall Chinook salmon is negligible.

Appendix C. Sentinel Stocks Program in 2014

Section Page
C1 Abundance Estimate for Siuslaw River Chinook Salmon 212
C2 Abundance Estimate for Snohomish River Chinook Salmon in 2013 215
C3 Abundance Estimate for Stillaguamish River Chinook Salmon in 2013 216
C4 Abundance Estimate for Terminal Runs of WCVI and North Oregon Coast Aggregates in 2014 217
C5 Abundance Estimate for Conuma River Chinook Salmon in 2014 217
C6 Abundance Estimates for South Thompson River Chinook Salmon 224
C7 Abundance Estimate for Chilko River Chinook Salmon in 2014 225
C8 Abundance Estimate for Nass River Chinook Salmon in 2014 225
C9 Abundance of Skeena River Chinook Salmon 1984-2014 228
List of Tables
Table Page
C1. Projects and funding levels for the SSP in 2014 211
C2. Comparisons of Chinook spawner escapement estimates between traditional habitat expansion methods and mark and recapture techniques, Siuslaw River, 2001-2006 212
C3. Calibration of index values from Chinook salmon over 600 mm counted during standard spawning ground surveys to mark-recapture estimates in the Siuslaw River basin. The index value is an annual average count from six survey areas that total 5 miles of the Siuslaw River 213
C4. Comparison of sum of peaks, mark-recapture estimates, original calibration estimates, new calibration estimates, and the percent difference between the two calibrations 214
C5. Number of Chinook salmon sampled in selected Southeast Alaska fisheries between May and September 2014. Samples include those sampled for both genetics and otolith extraction. 217
C6. Ocean escapement, spawning abundance, and pre-spawn loss estimates for Chinook salmon in the Conuma River 2014 219
C7. Skeena River Chinook historic escapement index, Kitsumkalum mark-recapture results and preliminary escapement estimates for the aggregate of Skeena River Chinook salmon populations 1984 to 2014 229

List of Figures

Figure Page
C1. Linear regression demonstrating the relationship between the sum of peaks on standard index surveys and mark-recapture estimates, 2002-2006 and 2014 214
C2. The Conuma River watershed; Location of the stopover site, upper (river km 6.5) and lower (km 0.25) telemetry receiver stations and study area boundaries (km 0.0 and 6.5) of the $124.4 \mathrm{~km}^{2}$ Conuma River watershed in Tlupana Inlet near Nootka Sound, British Columbia. The Conuma River Hatchery produces 23% (2.7 M) of the WCVI Chinook salmon production from major hatchery facilities. 218
C3. Relative error of Petersen estimates (diamonds) of Burman River Chinook salmon escapement compared with live Jolly-Seber POPAN stopover site net population estimates, 2009-2014 (line) and Conuma River escapement (triangle) in 2014 220
C4. Relative error among females (left) and males (right) for Petersen and Jolly-Seber estimates of Chinook salmon escapements at stopover sites at the Burman River 2009-2014, and at the Conuma River (triangles) in 2014. Less error is evident in the estimates of males 221
C5. Mean daily discharge $\left(\mathrm{Q}-\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$ at the Gold River below Ucona River, Water Survey of Canada gauge (08HC01), August 15 to November 15, 2009-2014. Note the two delayed freshet years (heavy dashed lines) in 2012 and 2014 222
C6. Relationship between observed fish-days and spawning abundance estimates (predicted net) from mark-recapture experiments for Chinook salmon at the Burman River 2009-2014 223
C7. Length frequency distributions of female (red bars) and male (blue bars) Chinook salmon encountered in event 1 sampling at the Conuma River in 2014 223
C8. Comparison of the Skeena River Chinook salmon escapement index with escapement estimates developed using the genetic approach 230

The Sentinel Stocks Committee of the Sentinel Stocks Program (SSP) met in Seattle during December, 2013 to review progress for projects funded in 2013 and to develop a request for proposals for projects in 2014. In response, the committee received 10 proposals for work in 2014. The committee met in Vancouver January 28-29, 2014, to review these proposals. Nine proposals were recommended for SSP funding in 2014. The proposals were chosen as per the approach outlined in the directive from the Commission to the committee entitled Implementation Approach for the Chinook Sentinel Stocks Program, October, 2008 and the Sentinel Stocks Program Second Stage Proposal Evaluation, February, 2009. Recommended proposals represented stocks in all five regions specified in the directive (North Oregon Coast, Puget Sound, Fraser River, WCVI, and NBC. The stocks recommended for study in the SSP are of significant importance to the management of fisheries for Chinook salmon under the PST. In February 2014, the PSC approved funding for all nine proposals. Final funded projects and budget amounts for the 2014 SSP are summarized in Table C1. Summaries of results from these projects as provided by the proponents are included in the narratives below.

Table C1.-Projects and funding levels for the SSP in 2014.

Stock Group	Stock	Title	2014 Funding						
NOC	Siuslaw River	2014 Abundance Estimate for Siuslaw River Chinook Salmon	US \$194,000	$	$	PS	Snohomish River	2013 Abundance Estimates for Snohomish River Chinook Salmon	US \$235,300
:---	:---	:---	:---						
PS	Stillaguamish River	2013 Abundance Estimates for Stillaguamish River Chinook Salmon	US \$67,700						
 NOC	Stock Aggregates	Abundance Estimates for Terminal Runs of WCVI and North Oregon Coast Aggregates	US \$34,200						
WCVI	Conuma River	Abundance of Conuma River Chinook Salmon in 2014	CA \$139,700						
FR	South Thompson River	Abundance Estimates for South Thompson River Chinook Salmon	CA \$136,500						
FR	Chilko River	2014 Abundance Estimate for Chilko River Chinook Salmon	CA \$173,400						
NBC	Nass River	2014 Abundance of Chinook Salmon returning to the Nass River	CA \$115,000						
NBC	Skeena River	Chinook Salmon Escapement Estimation to the Skeena River Using Genetic Techniques: $1984-2014$	CA \$35,800						

Note: Refer to List of Acronyms for definitions.

C. 1 Abundance Estimate for Siuslaw River Chinook Salmon

The Siuslaw River population of fall Chinook salmon is one of three escapement indicator stocks in the NOC aggregate and is located at the southern boundary of the aggregate. The NOC aggregate has historically been a productive and resilient stock complex. The prior 10-year average (2004-2013) of adult spawning escapement in the Siuslaw River is 21,405 Chinook salmon. With funding from the SSP in 2014, ODFW staff estimated spawning escapement of Chinook salmon in the Siuslaw River using standard MR methods. Adult fish were captured using tangle nets in the Siuslaw River (above the confluence with the North Fork Siuslaw). Captured fish were marked using operculum punches. The operculum punch location was varied to represent different time frames of freshwater entry. The second capture event (recovery) occurred on the spawning grounds. Carcasses were examined for the presence of marks and when possible, biological data were also collected (e.g., mid-eye to posterior scale length, sex, scales, and other marks). The likelihood that any MR assumptions were violated was evaluated to identify potential biases in age, size, and sex between capture events. No evidence of significant bias was identified. Therefore, the abundance in 2014 was estimated using the Chapman version of the Lincoln-Petersen equation. Another funding source was used to conduct a creel survey to adjust the abundance estimate by accounting for harvest above the marking site. These results are also included as needed to adjust the MR estimate into an estimate of spawning escapement.

The ODFW estimates Chinook salmon spawner escapement in Oregon coastal basins using a variety of methods including habitat expansions, calibrated surveys, and MR estimations. Standardized spawning ground surveys are conducted to record live and dead counts of Chinook salmon. In the traditional ODFW method, the largest daily sum of live and dead counts (peak count) for each index survey is identified, and an index calculated (peak count per mile). This index is expanded by the total estimated available spawning habitat in each basin (in miles). Additional functions are applied to adjust for likely observation error and nonrandom bias. Agency personnel calculated such estimates using these traditional methods while concurrently conducting MR experiments in the Siuslaw basin from 2001 to 2006 (Table C2).

Table C2.- Comparisons of Chinook salmon spawner escapement estimates between traditional habitat expansion methods and mark-recapture techniques, Siuslaw River, 2001-2006.

Run Year	Traditional Estimate	Mark-Recapture Estimate	CV of Mark-Recapture Estimate
2001	38,717	9,723	17.8%
2002	41,058	22,506	7.1%
2003	58,998	28,801	8.1%
2004	40,033	29,119	8.9%
2005	17,618	13,771	9.4%
2006	28,082	13,380	9.3%

Between 2007 and the present, ODFW estimated spawner escapement in the Siuslaw River using the traditional habitat escapement methodology and the survey calibration method. The calibration is an expansion of index survey counts to estimate abundance and is based on a relationship between the five paired counts and estimated abundance from MR results in the
years 2002-2006. In 2014, an additional MR estimate of Chinook salmon was conducted in an effort to test the continued relevance of the calibration, test its accuracy, and to add another point to the calibration estimator. Alternate indices of abundance have also been investigated and it has been found that the sum of peaks across all surveys is a more consistent index than the normalized index (peak per mile) when compared to the MR estimates. The calibration has been revised accordingly.

A total of 132 wild adult Chinook salmon in the Siuslaw River basin were marked during the 2014 return year. A total of 3,188 wild adult carcasses were recovered on the spawning grounds, 24 of which were marked (approximately 18% recovery rate). Abundance was estimated to be 16,964 Chinook salmon (SD 3,289) using the Chapman modification of the Lincoln-Petersen estimator. The 2014 terminal inriver regulations allowed for angling Chinook salmon above the marking site. The harvest of Chinook salmon above the marking site was estimated to be 559 adult fish ($S D=113.6$). The estimate of escapement, once adjusted for removals above the marking site, is 16,395 adult fish ($S D=3,291$, CV 20\%).

Given future and current constraints with regard to personnel and funding resources, this research has focused on continuing to improve the calibration of index survey approach for estimation of abundance of spawning Chinook salmon in the Siuslaw River. Values presented as calibration value represent the MR estimate divided by the index (sum of peaks). The ideal conversion factor would have an interannual CV of 0 if it tracks perfectly with changes in spawner abundance (Table C3). Variability in the interannual CV is likely underestimated as this descriptive statistic does not incorporate the precision of the population estimate used, nor does it incorporate the variability within the survey index.

Table C3.- Calibration of index values from Chinook salmon over 600 mm counted during standard spawning ground surveys to mark-recapture estimates in the Siuslaw River basin. The index value is an annual average count from six survey areas that total 5 miles of the Siuslaw River.

Run Year	Mark-Recapture Estimate	CV of Estimate	Index (Sum of Peak)	Calibration Value
2002	22,506	7%	1,180	19.1
2003	28,801	8%	1,764	16.3
2004	29,119	9%	1,510	19.3
2005	13,771	9%	614	22.4
2006	13,380	9%	594	22.5
2014	16,395	20%	836	19.6
Calibrated Index CV				

Results from standard survey calibration efforts using sum of peaks as an index compared to six years of MR in the Siuslaw River basin continue to demonstrate a relatively strong relationship (Figure C 1) and is very similar to the regression from the original calibration. For estimation purposes, this relationship is also expressed in the form of a calibration factor to use to estimate escapement outside of MR years following Pahlke (2008). The original 2002-2006 data set was compared to the updated dataset (original plus 2014) using Pahlke's methods (Table C4). The two datasets were very similar (</= 2% difference) suggesting the relationship continues to be valid.

Figure C1.- Linear regression demonstrating the relationship between the sum of peaks on standard index surveys and mark-recapture estimates, 2002-2006 and 2014.

Table C4.- Comparison of sum of peaks, mark-recapture estimates, original calibration estimates, new calibration estimates, and the percent difference between the two calibrations.

Year	Sum of Peak Index	Mark-Recapture Estimate	Calibrated Estimate (original)	Calibrated Estimate (original + 2014)	\% Difference
2002	1,180	22,506	22,203	22,079	-1%
2003	1,764	28,801	30,634	30,613	$<1 \%$
2004	1,501	29,119	26,967	26,901	$<1 \%$
2005	614	13,771	14,032	13,808	-2%
2006	594	13,380	13,743	13,516	-2%
2014	836	16,395	17,237	17,052	-1%

ODFW plans to continue conducting annual spawning ground surveys to count Chinook salmon in the Siuslaw River. These data will be used to generate annual escapement estimates for the basin using either a calibration factor ($=19.9$, CV 12\%) or the regression relationship demonstrated in Figure C1. Either of these methods will allow ODFW to generate relatively robust abundance estimates with precision bounds. Currently, ODFW intends to use the regression relationship with a calculated intercept in all cases except where the sum of peak index extends above or below the range used in the regression analysis. In 2014, the Sentinel Stock Program provided US \$194,000 for this project.

C. 2 Abundance Estimate for Snohomish River Chinook Salmon in 2013

The Snohomish River basin is comprised of two Chinook salmon populations: the Skykomish River summer Chinook population (which includes Skykomish, mainstem Snohomish, and Pilchuck River) and the Snoqualmie River fall Chinook population. The combined Skykomish and Snoqualmie populations comprise the Snohomish River Chinook (Summer/Fall) management unit or stock, which is one of five in Puget Sound used by the CTC as escapement indicators for Puget Sound Natural Summer/Fall Fingerlings.

Staff of WDFW estimated the abundance of Chinook salmon spawning in the Skykomish and Snoqualmie rivers using genetic-based pooled Lincoln-Petersen MR abundance estimators (transgenerational genetic mark-recapture). Spawning adults were marked by obtaining a DNA microsatellite profile from tissue sampled from adult carcasses in the natural escapement (first sampling event). Marks were later recaptured by sampling outmigrating natural-origin subyearling smolt offspring (second sampling event) and genetically identifying some fraction of marks as parents of some outmigrating offspring. Scales, otoliths, and coded wire tags were collected to identify age and origin, along with measuring fork and postorbital to hypural plate length and noting sex. This data was taken from 179 Chinook adult carcasses (marks) found in the Skykomish River (and tributaries), 31 live adult Chinook passed over Sunset Falls into the south fork Skykomish River, and 190 Chinook adult carcasses found in the Snoqualmie River (and tributaries) in the fall of 2013. In the spring of 2014, tissues were taken from 1,538 natural-origin outmigrating subyearling offspring (1,350 from the Skykomish River trap and 188 from the Snoqualmie River trap). Tissues collected from all hatchery- and natural-origin adults were genotyped at 14 microsatellite DNA loci. Using the likelihood algorithms found in the software COLONY, ${ }^{1}$ the genetic data were used to match parents to offspring inferring recaptures. The counts of marks, captures (genotyped juveniles $\times 2$), and recaptures were then used in a pooled Petersen MR estimate of spawner abundance based on binomial sampling. The algorithms employed by COLONY also inferred unsampled parents, allowing enumeration of unique captures and unique recaptures. These were used in a pooled Petersen MR estimate of spawner abundance based on hypergeometric sampling, and in a rarefaction curve to estimate of the number of successful breeders.

For preliminary Skykomish River estimates, there were genotypes for 200 adults, 377 juveniles, and, through parentage analysis, 23 recaptures. For preliminary Snoqualmie River estimates, there were genotypes for 180 adults, 178 juveniles, and, through parentage analysis, 12 recaptures. Using these counts, staff of WDFW obtained preliminary unadjusted estimates of the binomial model GMR estimate of Chinook spawner abundance for areas upstream of each smolt trap. The Skykomish River spawner abundance estimate for upstream of the smolt trap was 6,292 Chinook salmon ($95 \% \mathrm{Cl}=3,864-8,718$). The Snoqualmie River spawner abundance estimate for upstream of the smolt trap was 4,943 Chinook salmon ($95 \% \mathrm{Cl}=2,401-7,484$).

[^7]Performance standards were not met with GMR for the preliminary 2013 abundance estimates (CV > 15\% for both estimates).

Preliminary binomial GMR abundance estimates were from about 2 to 5 times the 2013 estimates made using redd counts (2,355 for the Skykomish River, 889 for the Snoqualmie River). These preliminary estimates cover only the spawning areas found upstream of the smolt traps in each basin. The reported CV may not be an accurate estimate of uncertainty, since all sources of uncertainty have not yet been accounted for in these preliminary estimates. In addition to accounting for all sources of uncertainty, in the final report, WDFW staff will provide an updated final binomial based abundance estimate including genotypes from an additional 1,040 (Skykomish) and 115 (Snoqualmie) juveniles. WDFW staff will generate a hypergeometric model-based GMR abundance estimate and a rarefaction curve-based estimate of successful breeders. The SSP provided US $\$ 235,300$ for the Snohomish River Chinook salmon GMR project in FY 2014.

C. 3 Abundance Estimate for Stillaguamish River Chinook Salmon in 2013

The Stillaguamish River Chinook salmon is one of seven escapement indicator stocks in Puget Sound designated by the CTC. The SSP funded a study design to estimate the Chinook salmon spawning escapement using a genetic mark-recapture (GMR) technique in 2011 and this study design was continued in subsequent years. In the first sampling event, carcasses were collected from weekly spawning ground surveys and genotyped. In the second sampling event, juveniles were collected from a downstream migrant trap located below the spawning area and genotyped. In 2013 a total of 211 genotyped carcasses constituted the marks, and a total of 327 juveniles assigned back to spawners using parentage analysis constituted the recaptures (out of a total of 1,141 captured juveniles). Using the Lincoln-Petersen estimate, based on Bailey's binomial model, WDFW staff estimated the 2013 spawner abundance as 1,469 Chinook salmon (CV $=5 \%$), which was higher than the redd-based estimate of 854 .

Unmarked hatchery juveniles and yearling hatchery juveniles presented challenges to the GMR study design. If unmarked hatchery juveniles (juveniles leaving the hatchery upstream of the smolt trap with adipose fins intact) and yearling juveniles (juveniles leaving the system after a year, rather than after emergence) in the smolt samples are unaccounted for they would inflate abundance estimates since they increase capture numbers yet have no possible parents in the mark pool. WDFW staff identified unmarked hatchery juveniles by assigning smolts to the hatchery broodstock and removed them prior to analyses. Data were examined for putative yearlings by regressing smolt lengths on capture date and observing outlier smolts. Smolts substantially much longer than average smolt lengths for each time strata were identified and removed as outliers. Because there were few unmarked hatchery fish and few yearlings, adjusting for hatchery juveniles resulted in a small change in the GMR estimate. The GMR result was then corrected for unmarked hatchery juveniles and yearlings. The SSP provided US $\$ 67,700$ for the Stillaguamish River Chinook salmon GMR project in 2014 to estimate the 2013 escapement.

C. 4 Abundance Estimate for Terminal Runs of WCVI and North Oregon Coast Aggregates in 2014

The goal of this project is to estimate the terminal run sizes of aggregate stocks of natural and hatchery-origin Chinook salmon from two stock groups (WCVI and NOC), and aggregate natural escapement to North Oregon Coast. The method incorporates data from exploitation rate indicator stocks, frequency of marked fish sampled from a mixed stock fishery, and genetic stock composition for that same mixed stock fishery-all of which provides innovative estimates of terminal returns and escapement for these stock groups. This project also relies on catch, genetics stock analysis, otolith analysis, scale ageing, and coded wire tag data from the harvests and the terminal areas and/or spawning grounds.

Sampling of harvests of Chinook salmon in Southeast Alaska troll and sport fisheries began in October 2013 and continued until September 30, 2014 (funding provided under Alaska Sustainable Salmon Fund and US Letter of Agreement). Samples from fisheries were delivered to the laboratory from May to November 2014 (Table C5). Laboratory analysis was completed in February 2015. Results were used to identify individuals for otolith and age analysis. Otolith and age analysis is currently underway and results are expected in August 2015. Final estimates of terminal run sizes and escapement are expected by January 2016, and a final report completed by March 2016.

Recognizing that there is a one-and-a-half to 2-year delay to obtain the data required to conduct this work, and that this project uses a contractor to put the analysis into a Bayesian framework, the contract start date was delayed by one full year. Work commenced in February of 2015.

Table C5.-Number of Chinook salmon sampled in selected Southeast Alaska fisheries between May and September 2014. Samples include those sampled for both genetics and otolith extraction.

Fishery	Goal	Sampled
Spring Troll (April - June)	1,150	1,148
Summer (July - September)	2,010	2,289
Sport	4,075	5,392
Total	8,310	9,874

C. 5 Abundance Estimate for Conuma River Chinook Salmon in 2014

The Conuma River watershed ($124.4 \mathrm{~km}^{2}$) drains into Tlupana Inlet near Nootka Sound on the WCVI, British Columbia. Although the watershed is small, it has a substantial abundance of Chinook salmon, due in large part to the Conuma River Hatchery, which produces 23\% (2.7 million) of the WCVI Chinook salmon produced from major hatchery facilities. Escapement and spawning abundance of Chinook salmon in the Conuma River were estimated by using both independent closed population and open population MR methods in 2014.

Between September 4 and October 10, 2014, 245 female and 793 age- 3 and older male Chinook salmon (and 221 jacks <500 mm postorbital hypural length) were captured by beach seine in a lower river stopover pool and marked with individually numbered tags. Radio tags
(Lotek model MCFT2-3A with motion sensors) were fitted externally to 72 of those fish (21 female, 50 male adults, and 1 jack). Radio tags were used to estimate mean visual detection probability during later snorkel surveys, and to apportion freshwater residence time into migration stopover time and spawning area survey life.

Two fixed telemetry receivers bounding the normative spawning survey area were operated from September 4 to November 20, 2014 (Figure C2). Several dozen Chinook salmon that spawned below the tagging pool and several hundred more that spawned between the stopover site and the boundary of the lower counting section (<2\%) are included in MR estimates; however, these components of the population are not routinely included in the normative snorkel surveys. The timing of entry into the spawning area and estimated times of death from the fixed receivers were augmented with data from 21 mobile surveys (September 26 to November 7, 2014). Overall, 68 of the 72 radio tagged fish were detected in the Conuma River spawning area, one fish ascended above the upper telemetry site, one radio tagged fish was returned by hatchery staff, and two were never seen again. Three mobile surveys of the adjacent Canton Creek and the Sucwoa River detected two radio tags in the former stream 0.5 km west of the Conuma River estuary, one male having presumably spawned in the Conuma River where it was previously detected.

Figure C2.- The Conuma River watershed showing location of the stopover site, upper (river km 6.5) and lower (km 0.25) telemetry receiver stations, and study area boundaries (km 0.0 and 6.5) of the $124.4 \mathrm{~km}^{2}$ Conuma River watershed in Tlupana Inlet near Nootka Sound, British Columbia. The Conuma River Hatchery produces 23% (2.7 million) of the WCVI Chinook salmon production from major hatchery facilities.

The Chinook salmon escapement estimate (12,125 ; CV = 18\%; Table C6) and the spawning abundance estimate (9,274 ; CV = 15\%; Table C6) are based on the encounter histories of salmon caught in the stopover pool (Manske and Schwarz 2000) and analyzed with Jolly-Seber open population methods associated with POPAN ${ }^{2}$ (Arnason and Schwarz 1999; Arnason et al. 1996; English et al. 1992; Schwarz et al. 1993) in Program MARK (White and Burnham 1999).

Table C6.- Ocean escapement, spawning abundance, and pre-spawn loss estimates for Chinook salmon in the Conuma River 2014.

Estimation For	Category	Estimate	SE	Lower 95\% CI	Upper 95\% CI	CV
Ocean Escapement	Females	2,637	799	1,072	4,202	30%
Ocean Escapement	Males > age-2	9,488	2,156	5,262	13,714	23%
Ocean Escapement	Total > age 2	12,125	2,299	6,333	17,917	18%
Spawning Abundance	Females	2,167	698	1,210	4,079	32%
Spawning Abundance	Males > age 2	7,107	1,228	4,983	10,317	17%
Spawning Abundance	Total > age 2	9,274	1,382	6,193	14,397	15%
Prespawn Loss	Females	470		-	-	-
Prespawn Loss	Males > age-2	2,381		-	-	-
Prespawn Loss	Total > age-2	2,851		-	-	-

A 2-event Petersen closed population estimate was attempted using carcass recovery data collected over the 6.5 km normative visual survey reach. CloseTest (Stanley and Burnham 1999; Stanley and Richards 2005) identified violation of closure due to both significant losses and additions. CloseTest specifically identified the Jolly-Seber open-population model as the correct starting model over no recruitment and no mortality model alternatives. Petersen estimates are reported for posterity but suffered from failure of the closure assumption. The male Petersen estimate was near the open-model estimate although closure had been violated. Contrast with the open population estimate showed the female estimate was highly biased and therefore the closed population estimates are not reported. Redundancy incorporated in the program sampling design provided the independent robust open population estimates and enabled detection of the biased closed population estimate.

Ten carcass surveys recovered 1,512 adults (757 female, 755 male and 84 jacks) between September 25 and October 10, 2014, after which access was precluded by high flows. The carcasses of 25 females and 62 adult males (plus nine jacks) had been marked. The battery of goodness of fit tests to assess the validity of assumptions suggested the Petersen estimates were sufficient, with the exception of sex bias easily addressed by stratification and equal proportions among females (SPAS 2^{3} Arnason et al. 1996). Tag loss in the stopover habitat prior to mating was low among live re-encounters: females 0\%, males 2% (a single fish given a replacement tag) and 0\% among marked jacks. Tag loss was lower among female (10.7\% or 3 of

[^8]25) than male (14.5% or 9 of 62) carcasses. Adjustments to the number of effective tags deployed for reported hatchery removals and handling losses (38 adults, 11 females, 27 males) did not adequately explain the disparity between the true mark rate (effective tags/estimated escapement population $=0.088$) and the low rate returned in the female carcasses (0.0330 ; z score $=14.25, P=<0.00001$). The two rates were not different among males. Physical tag loss was not an issue due to the presence of secondary mutilation marks. All fish were inspected for marks by two observers to insure no marks were overlooked. Thirty five percent of the estimated female spawners were sampled in the carcass survey. Prespawning losses due to emigration were not large enough to cause the bias. The mark rate increased in male carcasses suggests avoidance of marked males and the relatively rare females (tagged) were selected for the hatchery program.

Carcasses were recovered from the spawning grounds for the 2-event Petersen estimate and subjected to the usual battery of bias tests and bootstrapped to examine statistical error. The application of stratified Petersen estimates to address the sex bias appeared sufficient.

However, when contrasted with the maximum-likelihood Jolly-Seber POPAN estimates, the relative bias was $+177 \%$ at Conuma River in 2014 (Figure C3)—near the average bias of 161% (SE =58\%) at the Burman River from 2009 to 2014. Comparison of stratified estimates indicated relative bias of 270% in the Conuma female Petersen estimate (Figure C4). Consequently the POPAN spawning abundance estimates, the salmon that apparently survived the stopover period, are recommended as the best estimate of the actual abundance of the spawning population. Prespawning losses that include emigration were in excess of 20% and represent a significant source of tag loss. However, much of the error in the Petersen estimates is explained $\left(r^{2}=0.97\right)$ by the change in tag ratio between applications and recoveries after spawning.

Figure C3.- Relative error of Petersen estimates (diamonds) of Burman River Chinook salmon escapement compared with live Jolly-Seber POPAN stopover site net population estimates, 2009-2014 (line) and Conuma River escapement (triangle) in 2014.

Figure C4.- Relative error among females (left) and males (right) for Petersen and Jolly-Seber estimates of Chinook salmon escapements at stopover sites at the Burman River 2009-2014, and at the Conuma River (triangles) in 2014. Less error is evident in the estimates of males.

Model selection and assumption testing of the stopover site data included application of CloseTest (Stanley and Richards 2005, 2011) that recommended the Jolly-Seber model as a specific alternative due to significant additions and losses. RELEASE (Burnham et al. 1987) implemented in Program MARK was used to test the assumptions of equality of capture probabilities and apparent survivals between cohorts and groups. Capture probabilities differed among several male cohorts (Test 2 Cohorts $X^{2}=14.14, d f=5, P=0.015$) but not between the groups. U-CARE (Choquet et al. 2005, 2009) was used to test for handling and tagging induced behavioural effects and the global test for transience and behavioural effects were not significant. No result was returned by Test 2CL for females where the H_{0} : no difference in expected time to next reencounter between individuals encountered and not encountered on occasion i conditional on presence at both occasion i and $i+1$, and the male result was not significant. Test 3 SR where the H_{0} : no difference in the probability of later being reencountered between new and old individuals encountered at occasion i, was significant among females (log odds ratio for transience 4.084, Standardized log odds ratio for transience 2.546, 2-sided $P=$ 0.011) reflecting rapid removal of marked females by the hatchery program.

Radio telemetry studies at Conuma River in 2014 and at the Burman River in 2012 estimated stopover times, spawning area survey life, and total freshwater life. Average estimates (Manske and Schwarz 2000) reported here are the average residence times that Chinook salmon spent acclimating to maintain homeostasis in freshwater and maturing sexually while waiting for suitable river conditions to ascend and spawn. The average stopover area residence time was 10.3 days for females and 5.1 days for males in 2014-similar to the Burman River 2009-2014 means of 8.1 days ($S E=4.9, n=6$) for females and 5.4 days ($S E=3.5$) for males. Radiotag-based average stopover times were lower and averaged 6.8 days (SE = 5.47, $\mathrm{n}=68$) at Conuma River in 2014, less than the 11.2-day ($\mathrm{SE}=9.3$) average observed in $2012(\mathrm{n}=108)$ at the Burman River. The average radiotag-based spawning area survey life estimate was 5.33 days ($\mathrm{SE}=4.92$) in 2014 at Conuma River, similar to the 5.04 days ($\mathrm{SE}=3.8$) at Burman River in 2012. The combined freshwater life estimated with radio tags was 13.2 days ($S E=6.06$) in 2014 at Conuma River, less than the 16.3-day ($\mathrm{SE}=9.6$) freshwater life observed in 2012 at the

Burman River. Both SSP radio telemetry studies occurred during the two most extreme years of delayed freshet that affected migration between 2009 and 2014 (Figure C5). Consequently, both radiotag-based estimates of spawning area survey life reflect the shorter end of the spawning area life range. The \hat{S} of Parken et al. (2003) was 8.6 days at Conuma River, 2.5 days at the Burman River in 2012, and 2.6 days in 2014. Detection probability (observer efficiency) of known live external radiotagged Chinook salmon averaged 0.307 ($\mathrm{SE}=0.41$, range $0-1.0, \mathrm{n}=10$) at Conuma River in 2014, which was less than observed at Burman River in 2012 (0.58 , SE $=$ 0.51) likely due to shadowing effects of dense fish schools. Mean spawning area survey life estimated by the tag depletion method for prespawn and tag losses to the hatchery was 4.06 days ($\mathrm{SE}=1.37, \mathrm{n}=3$) or 0.47 of \hat{s} measured at Conuma River in 2014. This detection rate of 0.47 was near the 2009-2014 average detection probability at the Burman River of 0.49 ($\mathrm{SE}=$ 0.32 , range $0.23-0.978, n=6$).

Figure C5.- Mean daily discharge $\left(Q-m^{3} s^{-1}\right)$ at the Gold River below Ucona River, Water Survey of Canada gauge (08HCO1), August 15 to November 15, 2009-2014. Note the two delayed freshet years (heavy dashed lines) in 2012 and 2014.

The unadjusted AUC estimate at the stopover site was 97,405 fish days, and 79,787 fish days were observed in the spawning area. Calculation of freshwater residence time using the observed fish day curves and spawning abundance estimates from the MR experiment produced an estimate for the Conuma River of 16.4 days-very similar to that at the Burman River of 16.3 days in 2012. The relationship between the fish days observed in the spawning area and the spawner abundance MR population estimate (\hat{S}) fits beyond the bounds of the regression, but within the projected 80% credible interval of the calibration relationship developed at the Burman River from 2009 to 2014 (Figure C6). This, or a similar calibration relationship, may apply beyond the Burman River to other Nootka Sound Chinook salmon populations, or perhaps in clear streams over a wider geographic area on the WCVI.

Figure C6.- Relationship between observed fish days and spawning abundance estimates (predicted net) from mark-recapture experiments for Chinook salmon at the Burman River, 2009-2014.

Note: The dark line represents the predicted spawner abundance; dashed lines represent 80% credible intervals. Lines projected beyond the Burman River data range to illustrate that the Conuma River 2014 data (diamond) lands within the 80\% CRI.

Males outnumbered the females 4:1. The overall the distribution of ages in the hatchery brood sample was 13.1% age-3, 78.3% age- $4,8.8 \%$ age-5, and no age- 6 fish. Differences between the sexes in age structure were negligible-contrary to the length-frequency distributions (Figure C7) suggesting adjustments for the potential bias or ageing of additional samples are required.

Figure C7.- Length frequency distributions of female (red bars) and male (blue bars) Chinook salmon encountered in event 1 sampling at the Conuma River in 2014.

Note: Adjustment was made to account for capture probability differences by size such that distributions reflect relative abundance. Age-3 males <650 mm outnumber females. Age-2 males are the second largest group suggesting an abundant age-3 cohort in 2015. The skewed distribution and prevalaence of age-2 and age-3 males is not evident in the hatchery broodstock age samples.

Natural-origin Chinook salmon comprised 0.7% (2 of 298 samples) of the return. Stray hatchery-origin fish from other Tlupana Inlet streams made up 1.7\% (5 of 298), and the remaining 97.6% (291 of 298) were Conuma River Hatchery early- and late-release thermally marked Chinook salmon.

The SSP provided CA \$139,700 for the Conuma River Chinook salmon project in 2014.

C. 6 Abundance Estimates for South Thompson River Chinook Salmon

The Fraser Summer run age-0.3 stock group spawns in several locations ranging from the lower Fraser River area to the upper reaches of the South Thompson watershed, and the stock group consists of two genetic reporting groups; Maria Slough in the Lower Fraser and the South Thompson group. The South Thompson genetic group represents fish originating from the Lower Thompson, South Thompson, Little, Lower Adams, Lower Shuswap and Middle Shuswap rivers. The South Thompson aggregate has a mean annual escapement of 95,000 (2001-2012) based on the peak count method, which involves counting spawners, holders, and carcasses or redds from low elevation helicopter surveys. Three of these rivers are extremely large and can have poor conditions for visual counts, yet the visual surveys identified that large numbers of spawners use these systems. The indicator stock expansion methods developed in the mid1980s were modified to estimate the escapement of the ocean-type component of the South Thompson genetic group. Furthermore, escapement estimates for individual populations can be generated from the stream-specific MR programs on the Middle and Lower Shuswap rivers, and the aggregate escapement to the remaining systems (with poor visual survey conditions) is estimated by subtracting the MR estimates from the total aggregate estimated by the indicator stock expansion method.

The modified indicator stock expansion method uses a Bayesian model that relies on genetic stock identification, scale age, and CWT data sampled from fisheries at the mouth of the Fraser River, as well as CWT data sampled from the spawning grounds for the Lower Shuswap and Middle Shuswap exploitation rate indicator stocks. Recent model development identified further refinements to improve the estimation of the proportion of the stock that is represented by CWTs, which is the most sensitive parameter in the estimation of the escapement. The SSP funded the estimation of South Thompson escapements for 2009-2014 and the Northern Endowment Fund supported the approach for 2004-2008.

For 2014, some of the genetic samples have not yet been analysed, so the results will be reported next year. The 2014 MR estimates for the Lower Shuswap was 43,952 Chinook salmon (CV = 3\%) and for the Middle Shuswap was 2,170 Chinook salmon (CV = 2\%).

The indicator stock expansion method was used as an alternate escapement estimation method for 2004-2013. The expected escapements based on the 2013 data from the Fraser River gillnet test fisheries (Albion and Qualark) was 193,000 (CV = 22\%). The sum of escapement estimates from the peak count method was 129,574 in 2013, but no estimate was made for the Lower Thompson River (i.e. no surveys conducted). The development of escapement method calibration relationships has been ongoing for individual and aggregated populations within this
stock group, and results will be reported in the Sentinel Stock Program completion report. Funding in the amount of CA \$136,500 was provided for this research in 2014.

C. 7 Abundance Estimate for Chilko River Chinook Salmon in 2014

The Chilko River has one of the largest returns of the summer-run (age-1.3 stock group) Chinook salmon in the Fraser River watershed with a mean annual escapement of 8,217 (20012014) using the Peak Count method. The 2014 escapement of Chinook salmon to the Chilko River was estimated using a 2-event MR study and the Peak Count method based on concurrent aerial visual surveys. Petersen tags and sex-specific secondary marks were applied to 1,617 adult and 3 jack Chinook salmon captured using a combination of seining and angling. Recovery sampling was undertaken on carcasses, and 650 marked adults were recovered from a total recovery sample of 5,060 adult carcasses. The age composition of the recovery sample was 1% age $3,43 \%$ age $4,55 \%$ age 5 , and 1% age 6 . All samples showed a yearling smolt freshwater growth pattern (age 1.x). Of the two tags applied to jacks, none were recovered. There were only three jacks sampled during carcass recovery; therefore, a valid estimate of the jack escapement could not be calculated.

The results of the bias testing indicated that measurable sources of stress including holding time, marking, number of times recaptured, and release condition did not have a significant impact on the subsequent behaviour of the marked fish. The MR assumption of closure was likely met based on the MR field observations, aerial survey data, and the 2010 radio telemetry study. There was no evidence of temporal or spatial bias in the application and recovery samples for males; therefore, the Petersen estimation method was used. There was evidence of spatial bias at application for females; therefore, the Maximum Likelihood (ML) Darroch estimation method was used. The Petersen estimate of the male escapement was 7,130 (CV = 5%) and the ML Darroch estimate of the female escapement was 6,116 (CV = 5%). The total escapement estimate to the Chilko River was 13,246 adult Chinook salmon. The aerial peak count estimate was generated based on the peak count of 160 holders, 7,145 spawners and 29 carcasses on September 16, all summed and divided by 0.65 . The aerial estimate was 11,283 adult Chinook salmon. No aerial estimate was generated for jacks because they cannot be counted from a helicopter. This estimate is less than the MR estimate of total escapement. Funding in the amount of CA $\$ 173,400$ was provided for this research in 2014.

C. 8 Abundance Estimate for Nass River Chinook Salmon in 2014

The Upper Nass River Chinook salmon aggregate stock is one of the wild indicator stocks of the CTC. It is a large stock group, comprising a single Conservation Unit and consists of at least 10 separate populations spawning in the Nass River watershed, upstream of and including Tseax River. This stock has averaged 17,500 spawners (range: 8,000-28,000) since 2000. Upper Nass Chinook salmon are an important contributor to the Pacific Coast Chinook salmon resource and represent a very stable proportion of stocks caught in the northern BC and SEAK ocean fisheries. The Upper Nass Chinook stocks are a completely natural population with no history of enhancement and likely very little, if any, straying from other enhanced systems.

Since 1994, escapement estimates for Upper Nass Chinook salmon have been derived using MR methodology. Adult Chinook salmon ($\geq 50 \mathrm{~cm}$ nose to fork length) are marked at fishwheels
operated on the Lower Nass River by applying numbered aluminum chick-wing tags to the left operculum. Live fish are subsequently examined for marks at the Meziadin Fishway and both live fish and carcasses are examined for marks in other Upper Nass River tributaries. Markrecovery locations have varied over the years, but they normally include Damdochax Creek and Kwinageese River. Combined with Meziadin River, these three systems represent approximately 40\% of the Upper Nass Chinook salmon aggregate stock based on radio telemetry (1992-1993) and recent genetic (2007 and 2010-2014) data. From 1994 to 2008, Upper Nass Chinook salmon MR estimates achieved CVs less than or equal to 15% in only 8 of 15 (53\%) years. The main factor influencing the CV over this period was the number of marked fish examined and recovered at terminal spawning areas in the Upper Nass River watershed.

From 2009 to 2013 (Years 1-5), the SSP funded additional marking and tag-recovery efforts with the goal of achieving more accurate and precise MR estimates that meet or exceed the CTC CV data escapement standard ($\mathrm{CV} \leq 15 \%$). The data standard was achieved in four of the five funded years ($2009=13 \% ; 2010=25 \% ; 2011=9 \% ; 2012=6 \%$; and $2013=8 \%$). In 2010, the data standard was not achieved due to insufficient marks applied $(\mathrm{n}=363)$ at the Gitwinksihlkw (GW) fishwheels and recovered $(\mathrm{n}=15)$ at tag-recovery sites. The fishwheels operated under extreme low water levels in 2010 that affected overall catchability and number of marks released. This resulted in lower recoveries of marked fish at the tag-recovery sites. Two key recommendations emerged from the 2009-2013 projects that emphasize the need to both apply and recover adequate marks to achieve the escapement data standard: (1) mark Chinook salmon at both the GW and Grease Harbour (GH) fishwheels to ensure that at least 1,250 marks are applied from four to six fishwheels that are operated each year, and (2) continue markrecovery operations at Meziadin Fishway, Kwinageese River, and Damdochax Creek to ensure that sufficient marks are recovered (>50).

In 2014, the SSP funded Year 6 of the Upper Nass Chinook salmon MR study. A total of 1,480 marked fish were released from six fishwheels (GW $=404$ and $G H=1,076$) operated from June 1 to September 13. After accounting for removals by inriver fisheries near the release sites and estimated handling-induced mortality ($n=400$ censored; 27% of the total marks released), an estimated 1,080 marked fish were available for recovery in upstream tributaries. A total of 706 fish were examined for marks at mark-recovery sites, 56 of which were marked from the fishwheels (overall mark rate = 7.9\%). Of the total Chinook salmon marked in 2014, 612 (41\%) were medium ($50.0-75.4 \mathrm{~cm}$ nose to fork length) and 868 (59%) were large ($\geq 75.5 \mathrm{~cm}$ nose to fork length) fish. A total of 1,105 marked fish were successfully aged with four-year-olds (44.1\%) and five-year-olds (51.6\%) being most abundant, followed by three-year-olds (2.6\%), six-year-olds (1.5%), and seven-year-olds ($<0.1 \%$). Medium fish were predominantly four-yearolds (88.0\%), followed by five-year-olds (6.5\%) and three-year-olds (5.5\%). The sex ratio of marked fish was 38% females and 62% males, assuming all medium fish were males based on genetic analyses ($\mathrm{n}_{\text {medium }}=207$; 98\% were males). Crew guesses of sex for large fish were 74\% correct (89% for females and 41% for males) based on genetic analyses ($\mathrm{n}_{\text {large }}=188$). A logistic regression model was evaluated for predicting sex of large marked fish at the fishwheels based on morphological measurements and known sex from genetic samples collected from 2011 to 2014 ($n=1,110$). The model accurately predicted sex in 84.2% of cases with fair discrimination (ROC = 0.739), on average a 10% improvement over crew guesses. For the 2014 genetic samples, the model correctly sexed $85.6 \%(n=201 ; R O C=0.799)$ of the large fish.

Tests for size, sex, age, temporal, and spatial bias in capture and recovery samples were conducted in 2014. For size selectivity bias tests, recaptured marked fish with known lengths $(n=36)$ were not significantly smaller than examined fish $(n=235)$ as a whole (KolmogorovSmirnov test; $D_{\max }=0.35, P=0.04$), and the mark rate for medium fish ($11.8 \% ; \mathrm{n}=11$) was not significantly higher than for large fish ($7.6 \% ; \mathrm{n}=45$) at recovery locations $\left(\chi^{2}=2.0, \mathrm{df}=1\right.$, $P=0.16)$. No significant sex bias was detected, with the mark rate for large males (7.4\%; $n=19$) not being significantly higher than for large females ($9.6 \% ; \mathrm{n}=31$) at recovery locations $\left(\chi^{2}=0.90, \mathrm{df}=1, \mathrm{P}=0.35\right.$). Mark rates by ocean age were also not significantly different among recovery locations ($n=13 ; \chi^{2}=3.0, d f=1, P=0.083$). The mark rates for recoveries in midAugust (15.0\%; $\mathrm{n}=18$) and mid-September ($16.2 \% ; \mathrm{n}=17$) were found to be significantly higher than for other recovery time periods (mean $=7.6 \% ; \mathrm{n}=59 ; \chi^{2}=30.1, \mathrm{df}=4, \mathrm{P}<0.001$) and may be a result of migration delay of marked fish after tagging. No significant spatial bias was detected in 2014. Mark rates were not significantly different between Meziadin Fishway (9.8\%), Kwinageese weir (7.3\%), and Damdochax Creek (10.5\%) recovery locations ($n=56 ; \chi^{2}=1.44$, $\mathrm{df}=2, \mathrm{P}=0.49$).

Despite the lack of evidence for significant size bias, a size-stratified adjusted Petersen population estimate for Upper Nass Chinook salmon was calculated and presented alongside an estimate generated by pooling the size classes to facilitate comparison with other years. Summing estimates of 2,897 ($\mathrm{SE}=693$; $\mathrm{CV}=26.9 \%$) medium and 9,017 ($\mathrm{SE}=1293$; CV $=15.1 \%$) large Chinook salmon spawning between GW and GH, or passing upstream of GH, produced an overall size stratified escapement estimate of 11,914 ($\mathrm{SE}=1,467$; 95\% CI: 8,980-14,848; $\mathrm{CV}=12.6 \%)$. The stratified estimate was similar to the estimate generated by pooling size classes $(13,407 ;$ SE $=643 ; 95 \% \mathrm{Cl}: 10,367-17,322 ; \mathrm{CV}=13.3 \%)$. Adding the harvest $(2,440)$ of Chinook salmon from all fisheries between GW and GH to the stratified run size estimate at GH yielded a total return estimate of 14,354 adult Chinook salmon to GW in 2014. Subtracting the inriver harvests above GH (287) from the stratified overall escapement estimate at GH yielded a net escapement estimate of 11,627 adult Chinook salmon above GW. The 2014 return to GW was the sixth lowest return since the start of the fishwheel program in 1992, and well below the 23 -year average return $(21,000)$.

The provision of $\$ 115,000$ from the PSC in 2014 was sufficient to support and augment markrecovery efforts at Kwinageese River and Damdochax Creek, and provide additional marking efforts at the GH fishwheels to meet the CTC CV data standard. Without this funding to support one or all of these activities, only nine recoveries from GW marked fish would have resulted, generating less precise and accurate MR estimates (CV $=50 \%$ with only Meziadin recoveries [n $=3]$; CV $=32 \%$ with all GW recoveries [$n=9]$). We recommend that in future years marking of Chinook salmon continue to occur at both the GW and GH fishwheels. However, if 400 tags are applied at the GW fishwheels by June 23 , we recommend that marking at GH be limited to two fishwheels to reduce handling of fish. In addition, we recommend that mark-recovery efforts continue at the Meziadin River Fishway, Kwinageese River, and Damdochax Creek. These systems represented approximately 30% of the return to GW fishwheels in 2014 from genetic analyses ($n=419$).

C. 9 Abundance of Skeena River Chinook Salmon 1984-2014

The numbers of Chinook salmon returning to the Skeena River were estimated using the proportion of Kitsumkalum River fish measured from genetic samples collected at Tyee and the estimates of the Kitsumkalum Chinook escapement from an independent MR program. This summary includes results for eight SSP projects, the 2009 to 2014 annual projects and two retrospective projects that examined 30 years of data (1979-2008). The data presented are preliminary.

The Skeena River has the second largest aggregate of Chinook salmon spawning populations in British Columbia and is one of the escapement indicator stocks defined for North/Central BC. Skeena Chinook salmon are encountered in the AABM fisheries in SEAK, NBC Troll, and QCI Sport. They also contribute to the ISBM fisheries in NBC including gillnet, tidal sport, nontidal sport, tidal First Nations' and nontidal First Nations' fisheries. Skeena Chinook are north migrating so they do not contribute to the WCVI fisheries nor do they contribute appreciably to ISBM fisheries south of the Skeena River.

Chinook salmon escapements to the Skeena River are represented by an index that includes approximately 20 populations surveyed annually using a variety of techniques. The Kitsumkalum River is the exploitation rate indicator stock for the Skeena Chinook complex and spawning escapements have been estimated using a MR program since 1984. Other escapement estimates that contribute to the Skeena index are based on fish weir counts and visual observations from helicopter, fixed wing aircraft, boats, and foot surveys. The index of Chinook salmon escapement to the Skeena aggregate has averaged 50,000 fish since 1984 (Table C7). On average, the Kitsumkalum indicator stock represented approximately 30% of the index, and the Bear and Morice River populations contributed 20\% (Bear) and 26\% (Morice) to the index since 1984.

Genetic analyses of 21,550 Chinook salmon were completed from fish sampled at the Tyee Test Fishery over 36 years. The retrospective projects estimated Chinook salmon returns to the Skeena River using genetic stock identification techniques of archived scale samples. The proportions of Kitsumkalum River Chinook salmon identified in the samples were expanded to Skeena-wide population estimates using estimates of Kitsumkalum Chinook escapement from independent MR programs. The preliminary estimates of large Chinook salmon escapement to the Skeena River ranged from 28,398 in 1986 to 155,637 in 1996. Over the time series the CV around the escapement estimates were less than the data standard of 15% in 14 years, and were greater than 15% in 17 years (Table C7, Figure C8). The projects were close to the data standard ($15 \%<$ CV $<17 \%$) in four years.

The genetic-based estimates represent an improvement over existing indices since comparisons may be made between years (Table C7). The estimates include estimates of variance, which cannot be produced for the escapement indices of Skeena Chinook because of the combinations of different escapement estimation techniques involved. The data also make important contributions to our understanding of stock composition, timing, relative abundance, and age structure. The studies have provided new information regarding the components within the Skeena Chinook aggregate. It was determined that the Kitsumkalum River contributes 18% to the aggregate on average. Other large contributors were the Morice River at 31%, the Bear River at 7.4% and the Babine River at 6.6%. These three populations make up
the Skeena Large Lake conservation unit. Skeena tributaries that make up the conservation units of the Upper Skeena and the Middle Skeena were found to contribute 9\% (Upper) and 17% (Middle) of the total Skeena escapement. The upper and middle Skeena units were poorly represented in the historic escapement index.

Table C7.- Skeena River Chinook historic escapement index, Kitsumkalum mark-recapture results and preliminary escapement estimates for the aggregate of Skeena River Chinook salmon populations 1984 to 2014.

Year	Skeena Historic CTC escapement Index	Kitsumkalum MR Estimate	CV of Kitsumkalum MR estimate	Weighted Proportion of Kitsumkalum at Tyee from DNA	CV of Kitsumkalum proportion at Tyee	Skeena Escapement Estimate	CV of Skeena Escapement Estimate
1984	37,598	12,408	19.9\%	20.9\%	15.1\%	51,348	25.0\%
1985	53,599	8,304	5.9\%	20.2\%	12.4\%	30,875	13.7\%
1986	59,968	9,109	5.9\%	23.3\%	14.7\%	28,398	15.9\%
1987	59,120	23,657	10.1\%	14.9\%	14.3\%	150,874	17.5\%
1988	68,705	22,267	6.9\%	21.2\%	10.5\%	91,496	12.6\%
1989	57,202	17,925	7.2\%	21.9\%	10.5\%	72,422	12.8\%
1990	55,976	17,406	6.4\%	21.2\%	11.3\%	64,188	13.0\%
1991	52,753	9,288	7.2\%	17.3\%	11.7\%	41,940	13.7\%
1992	63,392	12,437	8.1\%	10.8\%	20.7\%	103,365	22.3\%
1993	66,977	14,059	5.5\%	10.9\%	16.1\%	119,780	17.1\%
1994	48,712	12,629	9.5\%	14.6\%	13.4\%	78,228	16.4\%
1995	34,390	7,221	10.1\%	10.6\%	22.3\%	62,272	24.5\%
1996	73,684	12,776	16.7\%	8.0\%	11.8\%	155,637	20.4\%
1997	42,539	5,342	11.3\%	8.4\%	15.9\%	57,368	19.5\%
1998	46,744	11,065	6.8\%	12.2\%	16.6\%	80,677	17.9\%
1999	43,775	9,763	8.9\%	14.2\%	7.9\%	53,418	11.9\%
2000	51,804	14,722	8.2\%	13.6\%	9.5\%	95,563	12.5\%
2001	81,504	23,839	9.5\%	15.3\%	7.4\%	145,120	12.1\%
2002	44,771	23,849	11.4\%	25.0\%	5.3\%	89,235	12.6\%
2003	56,758	23,608	11.0\%	18.9\%	6.9\%	114,346	13.0\%
2004	44,243	25,767	10.2\%	16.8\%	7.8\%	142,141	12.8\%
2005	29,067	15,046	9.2\%	17.8\%	7.0\%	77,531	11.6\%
2006	33,094	12,368	14.5\%	13.7\%	9.3\%	84,199	17.2\%
2007	33,352	15,736	18.0\%	17.5\%	7.5\%	85,179	19.5\%
2008	32,963	10,374	14.2\%	13.1\%	8.2\%	71,446	16.4\%
2009	38,297	10,703	13.3\%	12.4\%	13.3\%	80,900	18.8\%
2010	43,331	13,712	14.8\%	12.7\%	10.2\%	101,486	18.0\%
2011	37,073	12,059	20.2\%	21.0\%	6.8\%	53,682	21.3\%
2012	34,024	9,363	13.9\%	26.0\%	7.8\%	33,473	16.0\%
2013	26,699	10,934	9.4\%	26.5\%	7.2\%	39,179	11.9\%
2014	28,496	10,308	11.6\%	21.6\%	8.5\%	44,200	14.4\%

Note: CV = coefficient of variation.

In addition to the data presented for 1984 to 2014, genetic stock identifications have been completed for 1,056 samples from the Tyee Test Fishery from 1979 to 1983. Although Kitsumkalum MR estimates are not available prior to 1984, estimates from surveys of other systems (like Morice, Bear and Babine rivers) may be used to generate total system estimates. While the variance around these estimates will be broad (well beyond the data standard) they
are important to understand as they include the base period used to compare Chinook salmon abundances prior to the PST.

The Sentinel Stocks program provided CA $\$ 455,622$ (cumulatively) for the Skeena River Chinook Sentinel Stock Program. The project has produced 31 years of escapement information with additional information for five years yet to be completed (1979-1983). The technique represents a cost-effective way to estimate the Chinook salmon return to the Skeena River aggregate. Funding in the amount of CA \$35,800 was provided for this research in 2014.

Figure C8.-Comparison of the Skeena River Chinook salmon escapement index with escapement estimates developed using the genetic approach.

Note: The bars represent the Skeena Chinook escapement index. The crosses represent the estimates generated using the genetic approach. The vertical lines represent the genetic estimates plus and minus one standard deviation.

[^0]: ${ }^{1}$ Does not include SEAK AABM fishery nontreaty catch from hatchery add-on and terminal exclusion.

[^1]: ${ }^{1}$ Scott A. McPherson, ADF\&G, to Keith Weiland, ADF\&G. 1991 memorandum. Available from author, Douglas Island Center Building, $8023^{\text {rd }}$ Street, P. O. Box 240020, Douglas, AK 99824-0020.

[^2]: ${ }^{2}$ Sharma, R, J. Seals, J. Graham, E. Clemons, H. Yuen, M. McClure, K. Kostow, and S. Ellis. Unpublished. Deschutes River Chinook spawner escapement goal using US v. Oregon Technical Advisory Committee data.
 ${ }^{3}$ Ibid.

[^3]: -continued-

[^4]: -continued-

[^5]: ${ }^{1}$ The escapement methodology changed for the WCVI streams in 1995, and the earlier estimates have not been calibrated to the new methodology.

[^6]: -continued-

[^7]: ${ }^{1}$ Developed by Jinliang Wang, and available for download here: http://cbsuapps.tc.cornell.edu/Colony.aspx (Accessed July 2015).

[^8]: ${ }^{2}$ Population Analysis Software Group. Stratified Population Analysis System. University of Manitoba. Available for download here: http://www.cs.umanitoba.ca/~popan/ (Accessed July 2015).
 ${ }^{3}$ Ibid.

