District 104 Pink Salmon Fishery Harvest Pattern Analysis

Andrew W. Piston

May 2021

Pacific Salmon Commission Technical Report No. 44

The Pacific Salmon Commission is charged with the implementation of the Pacific Salmon Treaty, which was signed by Canada and the United States in 1985. The focus of the agreement are salmon stocks that originate in one country and are subject to interception by the other country. The objectives of the Treaty are to 1) conserve the five species of Pacific salmon to achieve optimum production, and 2) to divide the harvests so each country reaps the benefits of its investment in salmon management.

Technical Reports of the Pacific Salmon Commission present results of completed or ongoing investigations carried out by the Pacific Salmon Commission that are deemed of sufficient interest to be made available to the scientific community and the public.

The contents of these reports may be reprinted, and reference to the source will be appreciated.

Pacific Salmon Commission
600-1155 Robson Street
Vancouver, B.C.V6E 1B5
(604) 684-8081
www.psc.org

Pacific Salmon Commission
 Technical Report No. 44

District 104 Pink Salmon Fishery Harvest Pattern Analysis

A. W. Piston

For

Pacific Salmon Commission
Joint Northern Panel

May 2021

Correct citation for this publication:

Piston, A. W. 2021. District 104 purse seine fishery harvest pattern analysis. Pacific Salmon Comm. Tech. Rep. No. 44: 127 p.

TABLE OF CONTENTS

Page
LIST OF TABLES V
LIST OF FIGURES V
LIST OF APPENDICES VII
ABSTRACT 9
INTRODUCTION 9
Objectives 11
ABUNDANCE TRENDS IN SOUTHERN SOUTHEAST ALASKA PINK SALMON STOCKS 12
Pink Salmon stock group definitions 12
Escapement Monitoring and Goals 15
Stock Group Escapement Trends 16
Southern Southeast Subregion 16
Portland Canal 17
East Behm Canal 18
West Behm Canal 19
Kasaan 20
Moira 21
East Dall 22
Hetta 23
Klawock 24
Sea Otter Sound 25
Affleck 26
Shipley Bay 27
Burnett 28
Ratz Harbor 29
Totem Bay 30
Whale Pass 31
Anan 32
Union Bay 33
Stikine 34
Southern Southeast Alaska Pink Salmon Harvest 35
Harvest Tabulation 35
Southern Southeast Alaska Harvest Trends 35
HARVEST OF PINK SALMON IN DISTRICT 104 37
Timing of Harvest by Stock 37
Fishing Effort 38
Overall Purse Seine Effort in District 104 38
Purse Seine Effort by Subdistrict 44
Harvest Trends 45
Overall District 104 Purse Seine Harvest 45
Purse Seine Harvest by Subdistrict 50
Pink Salmon Harvest Anomalies 52
1986 52
1987. 52
1988. 53
1990. 53
1991 53
1995 53
1996 54
1997 54
1999. 54
2000. 54
2002. 54
2006. 55
2007. 55
2008. 56
2009. 56
2010. 56
2014. 56
2016. 56
2017 57
2018. 57
ASSESSING PINK SALMON RUN TIMING THROUGH DISTRICT 104 57
IMPACT OF THE DISTRICT 104 PINK SALMON FISHERY ON NASS AND SKEENA RIVER SOCKEYE SALMON 60
Methods for Estimating the Alaska Harvest of Sockeye Salmon originating from the Nass and Skeena rivers 60
Nass River 61
Skeena River 63
Conservation Actions in the District 104 Purse Seine fishery 68
DISCUSSION 73
ACKNOWLEDGEMENTS 79
REFERENCES CITED 80
ADF\&G PINK SALMON STOCK GROUP MAPS IN SOUTHERN SOUTHEAST ALASKA 86
PINK SALMON ESCAPEMENT AND HARVEST IN SOUTHERN SOUTHEAST ALASKA 89
DISTRICT 104 PURSE SEINE FISHERY EFFORT 110
DISTRICT 104 PURSE SEINE FISHERY SOCKEYE SALMON HARVEST 115
LIST OF TABLES
Table Page
Table 1.-Weekly average harvests of pink salmon by decade in the District 104 purse seine fishery 46
Table 2.-Weekly harvest rates on Nass River sockeye salmon in the District 104 purse seine fishery. 64
Table 3.-Weekly harvest rates on Skeena River sockeye salmon in the District 104 purse seine fishery 67
LIST OF FIGURES
Figure Page
Figure 1.-Southern Southeast Alaska fishing districts, District 104 subdistricts, and the Nass and Skeen rivers in northern British Columbia. 11

Figure 2.-Southern Southeast Subregion pink salmon escapement stock groups $(\mathrm{N}=18)$ and index streams
$(\mathrm{N}=366$; black circles)—dotted areas indicate areas with no index streams or escapement targets............. 14
Figure 3.-Pink escapement index for the 366 streams in the Southern Southeast Subregion, 1960-2018. The gray shaded area shows the biological escapement goal range of 3 to 8 million fish.17
Figure 4.-Pink escapement index for the 16 streams in the Portland Canal stock group, 1960-2018. 18
Figure 5.-Pink escapement index for the 41 streams in the East Behm Canal stock group, 1960-2018 19
Figure 6.-Pink escapement index for the 34 streams in the West Behm Canal stock group, 1960-2018. 20
Figure 7.-Pink escapement index for the 28 streams in the Kasaan stock group, 1960-2018. 21
Figure 8.-Pink escapement index for the 12 streams in the Moira stock group, 1960-2018. 22
Figure 9.-Pink escapement index for the 32 streams in the East Dall stock group, 1960-2018. 23
Figure 10.-Pink escapement index for the 15 streams in the Hetta stock group, 1960-2018. 24
Figure 11.-Pink escapement index for the 47 streams in the Klawock stock group, 1960-2018 25
Figure 12.-Pink escapement index for the 18 streams in the Sea Otter Sound stock group, 1960-2018. 26
Figure 13.-Pink escapement index for the 33 streams in the Affleck Canal stock group, 1960-2018 27
Figure 14.-Pink escapement index for the 12 streams in the Shipley Bay stock group, 1960-2018 28
Figure 15.-Pink escapement index for the 10 streams in the Burnett Inlet stock group, 1960-2018. 29
Figure 16.-Pink escapement index for the 4 streams in the Ratz Harbor stock group, 1960-2018 30
Figure 17.-Pink escapement index for the 13 streams in the Totem Bay stock group, 1960-2018. 31
Figure 18.-Pink escapement index for the 10 streams in the Whale Pass stock group, 1960-2018. 32
Figure 19.-Pink escapement index for the 27 streams in the Anan stock group, 1960-2018. 33
Figure 20.-Pink escapement index for the 8 streams in the Union Bay stock group, 1960-2018. 34
Figure 21.-Pink escapement index for the 6 streams in the Stikine stock group, 1960-2018 35
Figure 22.-Pink salmon harvest in the Southern Southeast Subregion of Southeast Alaska, 1960-2018 36
Figure 23.-Pink salmon harvest by statistical week in the Southern Southeast Subregion of Southeast Alaska, 1960-2018. 37
Figure 24.-Hours open in the District 104 purse seine fishery, 1960-2018. 39
Figure 25.-Hours open in the District 104 purse seine fishery pre-week 31, 1960-2018. 40
Figure 26.-Hours open in the District 104 purse seine fishery post week 30, 1960-2018 40
Figure 27.-Number of boats fishing (cumulative number of boats over all weeks) in the District 104 purse seine fishery, 1969-2018. 41
Figure 28.-Number of boats fishing (cumulative boats over all weeks) in the District 104 purse seine fishery pre-week 31, 1969-2018. 41
Figure 29.-Number of boats fishing (cumulative number of boats over all weeks) in the District 104 purse seine fishery post week 30, 1969-2018. 42
Figure 30.-Purse seine boat days in the District 104 purse seine fishery, 1969-2018. 42
Figure 31.-Purse seine boat days in the District 104 purse seine fishery pre-week 31, 1969-2018. 43
Figure 32.-Purse seine boat days in the District 104 purse seine fishery post week 30, 1969-2018. 43
Figure 33.-Number of boats fishing (cumulative number of boats over all weeks) by subdistrict in the District 104 purse seine fishery post week $30,1969-2018$. Some boats may fish multiple subdistricts in the same week or opening. 44
Figure 34.-Number of boats fishing (cumulative number of boats over all weeks) pre-week 31 by subdistrict in the District 104 purse seine fishery post-week 30, 1969-2018. Some boats may fish multiple subdistricts in the same week or opening. 45
Figure 35.-Pink salmon harvest in the District 104 purse seine fishery, 1960-2018. 47
Figure 36.-Pink salmon harvest in the District 104 purse seine fishery pre-week 31, 1960-2018 47
Figure 37.-Pink salmon harvest in the District 104 purse seine fishery post week 30, 1960-2018. 48
Figure 38.-Average weekly pink salmon CPUE (pink salmon harvest per boat day) by decade in the District 104 purse seine fishery, 1970-2018. Years where the fishery did not open in weeks 27-29 or closed prior to week 34 were excluded (1971, 1975, 1976). 48
Figure 39.-Average cumulative proportion of weekly pink salmon CPUE (pink salmon harvest per boat day) by decade in the District 104 purse seine fishery, 1970-2018. Years where the fishery did not open in weeks 27-29 or closed prior to week 34 were excluded (1971, 1975, 1976). 49
Figure 40.-Proportion of pink salmon harvest in the District 104 purse seine fishery occurring prior to week 31, 1960-2018 49
Figure 41.-The week 30 District 104 pink salmon harvest as a proportion of the week 31 pink salmon harvest, 1960-2018. 50

Figure 43.-Pink salmon harvest in the District 104 purse seine fishery by subdistrict, 1960-2018. Southern subdistricts are represented by solid shaded bars and northern subdistricts are represented by patterned fill.51
Figure 44.-Run timing of pink salmon through the Hugh Smith Lake weir, 1980-2018. No data on pink salmon were available from 1990 59
Figure 45.-Run timing of pink salmon at the Tyee Test fishery on the lower Skeena River, 1956-2018. 59
Figure 46.-Harvest rate on Nass River sockeye salmon in the District 104 purse seine fishery, 1985-2018. 62
Figure 47.-Total run of Nass River sockeye salmon and overall harvest rate by year, 1985-2018. 62
Figure 48.-Harvest rate on Skeena River sockeye salmon in the District 104 purse seine fishery, 1985-2018 65
Figure 49.-Total run of Skeena River sockeye salmon and overall harvest rate by year, 1985-2018. 65
Figure 50.-Harvest of Skeena River sockeye salmon in the District 104 purse seine fishery in years of very low abundance. The dashed line represents the Skeena River sockeye salmon escapement goal of 900,000 fish. 66
Figure 51.-Annual pink salmon harvest for the Northern Southeast Inside Subregion of Southeast Alaska, 1960-2018 76
Figure 52.-Pink salmon CPUE in the District 104 purse seine fishery from 2014 to 2018 compared to 1985- 2013 average by statistical week 77
Figure 53.-Cumulative pink salmon CPUE proportions in the District 104 purse seine fishery from 2014 to 2018 compared to 1985-2013 average by statistical week 78
LIST OF APPENDICES
Appendix PageAppendix A1.-The ADF\&G Ketchikan salmon management area and associated pink salmon escapement stockgroups. Horizontally hatched stock groups indicate areas with no index streams or escapement targets.87
Appendix A2. - The ADF\&G Petersburg salmon management area and associated pink salmon escapement stock groups 88
Appendix B1.-Southern Southeast Alaska pink salmon escapement index in millions of index fish, 1960-2018. 90
Appendix B2.-Southern Southeast Alaska pink salmon escapement index series and management target ranges by district (in millions of index fish), 1960-2018 91
Appendix B3.-Escapement index series and management targets for pink salmon stock groups in the Ketchikan management area, 1960-2018. 92
Appendix B4.-Escapement index series and management targets for pink salmon stock groups in the Petersburg management area, 1960-2018. 94
Appendix B5.-Harvest of pink salmon by statistical week in the Southern Southeast Alaska Subregion for all fisheries combined, 1960-2018. 96
Appendix B6.-Harvest of pink salmon by statistical week in the Subdistrict 104-10 purse seine fishery, 1960- 2018 (- indicates no effort or harvest). 98
Appendix B7.-Harvest of pink salmon by statistical week in the Subdistrict 104-20 purse seine fishery, 1960- 2018 (- indicates no effort or harvest) 100
Appendix B8.-Harvest of pink salmon by statistical week in the Subdistrict 104-30 purse seine fishery, 1960- 2018 (- indicates no effort or harvest). 102
Appendix B9.-Harvest of pink salmon by statistical week in the Subdistrict 104-35 purse seine fishery, 1960- 2018 (- indicates no effort or harvest) 104
Appendix B10.-Harvest of pink salmon by statistical week in the Subdistrict 104-40 purse seine fishery, 1960- 2018 (- indicates no effort or harvest). 106
Appendix B11.-Harvest of pink salmon by statistical week in the Subdistrict 104-50 purse seine fishery, 1960 2018 (- indicates no effort or harvest). 108
Appendix C1.-Number of hours open in the District 104 purse seine fishery, 1960-2018 (- indicates no opening) 111
Appendix C2.-Number of boats fishing by statistical week in the District 104 purse seine fishery, 1969-2018 (- indicates no opening). 113
Appendix D1.- Harvest of sockeye salmon by statistical week in the Subdistrict 104-10 purse seine fishery, 1960-2018 (- indicates no effort or harvest). 116
Appendix D2.- Harvest of sockeye salmon by statistical week in the Subdistrict 104-20 purse seine fishery, 1960-2018 (- indicates no effort or harvest). 118
Appendix D3.- Harvest of sockeye salmon by statistical week in the Subdistrict 104-30 purse seine fishery, 1960-2018 (- indicates no effort or harvest) 120
Appendix D4.- Harvest of sockeye salmon by statistical week in the Subdistrict 104-35 purse seine fishery, 1960-2018 (- indicates no effort or harvest). 122
Appendix D5.- Harvest of sockeye salmon by statistical week in the Subdistrict 104-40 purse seine fishery, 1960-2018 (- indicates no effort or harvest). 124
Appendix D6.- Harvest of sockeye salmon by statistical week in the Subdistrict 104-50 purse seine fishery, 1960-2018 (- indicates no effort or harvest). 126

Abstract

The District 104 purse seine fishery is the largest harvester of pink salmon in Southeast Alaska, with an average annual harvest of 5.5 million pink salmon since 1960. The pink salmon harvest in District 104 has accounted for an average 18% of the total Southeast Alaska purse seine pink salmon harvest annually since 1960 . The pink salmon harvested in the District 104 purse seine fishery are primarily Alaska stocks and U.S.-Canada tagging studies in the early 1980s showed that over 90% of the pink salmon harvested in District 104 are destined for Southeast Alaska streams. However, salmon harvests in District 104 are from highly mixed stocks and a high proportion of the sockeye salmon harvested in the fishery are bound for the Skeena and Nass rivers in northern British Columbia. With the signing of the Pacific Salmon Treaty in 1985, early season management of the fishery became tied to the abundance of Skeena and Nass river sockeye salmon, as well as domestic pink salmon returns. Although highly variable, the average harvest rates on Nass and Skeena river sockeye salmon in the District 104 purse seine fishery have declined since 1985, and Alaska has consistently met Treaty obligations in its fisheries. Alaska has had an underage in 14 of 20 years (1999-2018) and currently has a cumulative underage of approximately 117,000 sockeye salmon in the District 104 fishery.

Key words: escapement index, Nass River, Pacific Salmon Treaty, purse seine, Oncorhynchus gorbuscha, Oncorhynchus nerka, pink salmon, purse seine, Skeena River, sockeye salmon, Southeast Alaska.

INTRODUCTION

Wild pink salmon (Oncorhynchus gorbuscha) spawn in approximately 2,500 short, coastal streams in Southeast Alaska (Zadina et al. 2004) and support a large and valuable commercial fishing industry (Clark et al. 2006). Pink salmon accounted for an average 72% of all salmon harvested, by numbers of fish, in Southeast Alaska from 1960 to 2018. The exvessel value of the commercial pink salmon harvest averaged $\$ 48$ million a year and ranged between $\$ 18$ and $\$ 125$ million from 2007 to 2016, making pink salmon the most valuable species after chum salmon (O. keta) in Southeast Alaska fisheries (Piston and Heinl 2018). The District 104 purse seine fishery (Figure 1) is the largest harvester of pink salmon in Southeast Alaska, with an average annual harvest of 5.5 million pink salmon since 1960 (maximum $=28.38$ million); approximately 1.5 million more fish annually than the next largest district. Over the same time, the District 104 pink salmon harvest has accounted for an average 18% of the total Southeast Alaska purse seine pink salmon harvest (maximum $=53 \%$). Pink salmon have accounted for an average 84% of the District 104 purse seine harvest in numbers of fish since 1960, with sockeye salmon (O. nerka; 9%), chum salmon (5\%), and coho salmon (O. kisutch; 3\%) accounting for the remainder of the harvest.

The pink salmon harvested in the District 104 purse seine fishery are primarily Alaska stocks, and U.S.-Canada tagging studies in the early 1980s showed that over 90% of the pink salmon harvested in District 104 are destined for Southeast Alaska streams (Hoffman et al. 1983, 1985; Pella et al. 1993). However, salmon harvests in District 104 are from highly mixed stocks and a high proportion of the sockeye salmon harvested in the fishery are bound for the Skeena and Nass rivers in northern British Columbia (Figure 1; English et al. 2004). From 1985 to 2017, the stock composition of District 104 sockeye salmon harvests has averaged approximately 46% Skeena River sockeye salmon and 15\% Nass River sockeye salmon (PSC Northern Boundary Technical Committee, unpublished data). For pink salmon, tagging studies also showed that a high proportion of pink salmon harvested in Canadian net fisheries near the U.S.-Canada border were from Alaska stocks (Hoffman et al. 1983, 1985; Pella et al. 1993). In 1985, the Pacific Salmon Treaty (Treaty) established principles for the United States and Canada to manage fisheries harvesting salmon stocks bound for the other nation.

The initial agreement reached in Chapter 2 of the 1985 Treaty reflects a balance between conservation of Canada's Nass and Skeena river sockeye salmon and maintaining Alaska's traditional coastal pink salmon purse seine fishery in District 104. The original agreement allowed Alaska to harvest 480,000 sockeye salmon over a four-year period (120,000 per year) prior to statistical week 31^{1}, regardless of Nass and Skeena river run size. The 1999 revision of the Treaty Agreement called for the implementation of abundance-based management in the District 104 purse seine fishery. The 1999 and following annexes allow the District 104 purse seine fishery to harvest 2.45% of the Annual Allowable Harvest (AAH) of Nass and Skeena sockeye salmon prior to statistical week 31 .

The AAH is calculated as the total run of Nass and Skeena sockeye salmon minus either the combined escapement requirement of 1.1 million fish or the actual spawning escapements, whichever is less. The 2.45% AAH value was based on the weighted-average percent of the Nass and Skeena sockeye salmon AAH that would have been harvested in this fishery, during the 1985-1996 period, if the annual pre-week 31 harvest had been exactly 120,000 sockeye salmon. The Alaska Department of Fish and Game's (ADF\&G) management intent is to harvest Nass and Skeena sockeye salmon at the allowable AAH percentage. The Treaty recognizes that overages and underages will occur and provides an overage/underage provision intended to hold the Parties accountable for their catch shares but permit a reasonable degree of management flexibility. In order to stay within the AAH of Nass and Skeena sockeye salmon in District 104, fishing time for the purse seine fishery is reduced prior to statistical week 31 in years of lower Skeena and Nass sockeye salmon abundance even when pink salmon abundance is high.

In recent years there has been increased concerns by Canada regarding the impacts of the District 104 purse seine fishery on Skeena and Nass river sockeye salmon, which have been declining in abundance since reaching high abundance levels in the 1980s and 1990s. Some of the concerns have been related to later run timing of Nass and Skeena river sockeye salmon from 2014 to 2017, which may have contributed to higher-than-average harvest rates in the District 104 fishery from 2014 to 2016. There have also been concerns by Alaska regarding the loss of access to harvest early-timed pink salmon stocks. Among the potential reasons for this loss of access is potential earlier run timing for some Alaska pink salmon stocks, which would result in a larger component of the pink salmon run passing District 104 during the pre-week 31 Treaty Period. There have also been concerns with unnecessarily restricting pink salmon harvests in District 104 in certain years, particularly when the harvest rate of Nass and Skeena River sockeye salmon is near historical low levels and/or Canadian preseason forecasts are lower than actual runs. As a result, a new treaty stipulation exists that the U.S. will complete a review of the District 104 pink salmon fishery that evaluates long-term changes in abundance of the various stocks in the Boundary Area.

[^0]

Figure 1.-Southern Southeast Alaska fishing districts, District 104 subdistricts, and the Nass and Skeen rivers in northern British Columbia.

Objectives

The specific objectives of this review are to evaluate:

1. The long-term changes in abundance of the various pink salmon stocks in the Boundary Area, which will include:
a. a description and evaluation of stock assessment methods and escapement trends by stock group for Alaska Districts 101-108; and,
b. information on the catch of pink salmon in all Alaska Districts 101-108 fisheries combined, by week, including a summary of pre-week and post week 30 harvests.
2. The changes in the timing and location of the harvest in District 104, which will include an evaluation of harvest by week and subdistrict and identify potential reasons for anomalies.
3. The efficacy of assessing pink salmon run timing through District 104 (Appendix A1) using available data.
4. The impact of pink salmon harvest in District 104 on Skeena and Nass River sockeye salmon, which will include,
a. The weekly and annual harvest of Nass and Skeena River sockeye salmon in the District 104 purse seine fishery;
b. Weekly and annual harvest rates based on the bilaterally agreed weekly and annual harvests divided by bilaterally agreed total Nass/Skeena runs (not weekly modelled abundance in District 104); and
c. Identification of management actions taken to support the conservation of Nass and Skeena River sockeye salmon.

ABUNDANCE TRENDS IN SOUTHERN SOUTHEAST ALASKA PINK SALMON STOCKS

Pink salmon harvested in the District 104 purse seine fishery are destined to spawn in all areas of southern Southeast Alaska (primarily Districts 1-8; Appendices A1 and A2), as well as northern British Columbia (Figure 1; Hoffman et al. 1983, 1984, 1985). Annual stock-specific information for pink salmon harvested in Southeast Alaska fisheries is not available. Estimates of total abundance (catch plus escapement) are not available for specific stock groups, districts, or subregions of Southeast Alaska. Escapement indices for Southeast Alaska, as described below, are intended to track changes in abundance over time and are not estimates of total escapement. Pink salmon stocks in Southeast Alaska cannot be separated using genetic tools at this time and there are no large-scale tagging programs in place that would allow for stock specific harvest estimates of pink salmon. The overall pattern of harvest in the Southern Southeast Subregion, separate from the more specific analysis of District 104 harvests, is presented below to contrast with escapement trends for individual stock groups in southern Southeast Alaska.

PINK SALMON STOCK GROUP DEFINITIONS

Marine tagging studies have repeatedly demonstrated that Southeast Alaska pink salmon stocks are strongly segregated into southern and northern areas or subregions (e.g., Rich 1927; Rich and Suomela 1929; Rich and Morton 1930; Nakatani et al. 1975; Hoffman 1983), and the commercial fisheries in each subregion generally target pink salmon stocks that ultimately spawn in that subregion. The Southern Southeast Subregion comprises pink salmon stocks from Sumner Strait and south (districts 101-108), while the Northern Southeast Subregion comprises pink salmon stocks north of Sumner Strait (districts 109-115). In 1998, the northern area was further divided into Northern Southeast Inside and Northern Southeast Outside subregions, as marine tagging studies also showed that pink salmon spawning on the outer coast of Chichagof and Baranof islands generally do not enter inside waters (Nakatani et al. 1975; Alexandersdottir 1987). The Northern Southeast Outside Subregion includes all waters of District 113 (excluding Peril Straits and Hoonah Sound subdistricts 113-51 through 113-59, which are considered part of the Northern Southeast Inside Subregion). Currently there are 366 index streams in the Southern Southeast Subregion, 307 index streams in the Northern Southeast Inside Subregion, and 41 index streams in the Northern Southeast Outside Subregion.

Because Southeast Alaska pink salmon are largely harvested in mixed stock fisheries, often some distance from spawning areas, it is not possible to allocate harvests of pink salmon to stock group of origin at any finer scale than subregion. Therefore, escapement goals for Southeast

Alaska pink salmon have been established at the subregion level (Zadina et al. 2004; Piston and Heinl 2018). Southeast Alaska has also been divided into 53 smaller "stock groups" contained within the district boundaries (Zadina et al. 2004; Appendix A). Each stock group represents a collection of streams that support pink salmon runs with similar migration routes and run timing, are managed as a unit, and are assumed to share similar productivity and exploitation rates (Van Alen 2000). Seven of the pink salmon stock groups have not been consistently monitored for spawning escapements: the Annette Island stock group is managed exclusively by the Metlakatla Indian Community (where the state has no jurisdiction), while six other stock groups are located in areas that do not have directed fisheries or are in remote areas where it would be costprohibitive to conduct surveys on a regular basis-Suemez-Dall (Ketchikan area; Appendix A), SW Baranof, W Kruzof, and W Yakobi (Sitka area), and Dundas Bay and Glacier Bay (Juneau area). The remaining 46 stock groups, representing 12 fishing districts, are actively managed and monitored for escapements. There are 18 stock groups in the Southern Southeast Subregion and a total of 366 index streams (Figure 2).

Figure 2.-Southern Southeast Subregion pink salmon escapement stock groups ($\mathrm{N}=18$) and index streams ($\mathrm{N}=366$; black circles)-dotted areas indicate areas with no index streams or escapement targets.

Escapement Monitoring and Goals

ADF\&G has maintained an annual index of the pink salmon escapement in Southeast Alaska based on peak aerial survey counts collected since 1960. Pink salmon escapement indices do not exhibit persistent trends of odd- or even-year dominance over most of the historical data set, and for simplicity, escapement indices of both brood lines were combined (Van Alen 2000; Zadina et al. 2004). The methods used to calculate the index have changed at different times, as knowledge of the region's pink salmon grew out of research programs designed to improve pink salmon management (e.g., Durley and Seibel 1972; Jones and Dangel 1983; Hofmeister et al. 1993; Hofmeister 1998; Zadina et al. 2004; Heinl and Geiger 2005). In instances when major changes were implemented, the index was recalculated for all years to ensure the index was consistent over the entire series. Escapement indices are calculated after the fishing season has ended, but fishery managers make decisions inseason based in part on how escapements are building in relation to past years, and later in the season on how their peak survey counts are lining up with management targets for pink salmon stock groups in their respective areas. Preseason Southeast Alaska pink salmon harvest forecasts do not incorporate escapement as a variable (Murphy et al. 2019), but managers may take parent-year escapement into consideration for early season District 104 management if they were extremely poor in southern Southeast Alaska.

The current method of generating an annual pink salmon escapement index, and major changes to the index, were described in detail by Heinl and Piston (2009). The principal change was the complete removal of "bias adjustments" that were previously made to adjust for differences in observer counting rates (Hofmeister 1998; Van Alen 2000). Although the method used seemed like a practical way to address the well-known problem of observer counting bias (Dangel and Jones 1988; Jones et al. 1998), a close examination indicated that the calibrations often induced significant error (Heinl and Piston 2009). The current pink salmon escapement index was modified to use only raw survey data. In addition, annual calculation of the escapement index is now automated through the Southeast Alaska Integrated Fisheries Database. General trends in escapements indices to southern Southeast Alaska in the revised index remained similar to the patterns in the prior index, but there was a slight increase in escapement estimates in the 1960s and 1970s and a slight decrease in the 1980s and 1990s due to the elimination of observer calibrations and the addition of more index observers from the 1960s (Heinl and Piston 2009).

The pink salmon escapement index consists of the sum of peak annual aerial survey observations for 702 index streams across the region (Piston and Heinl 2018). Although the index comprises pink salmon runs of varying magnitudes, the set of index streams does not necessarily match the distribution of streams (by run size) across the entire region, as the majority of the 2,500 pink salmon spawning streams are likely very small producers. Survey data were qualified (based on visibility, timing, and area surveyed) by the management biologists that conducted the surveys using the following codes: code 01, an incomplete survey-not useful for indexing abundance; code 02 , a complete survey-potentially useful for indexing abundance; and code 03 , the peak survey-useful for indexing abundance. Code 03 surveys identified the one and only peak survey for a stream each year. These codes were entered into the regional database to facilitate identification of the peak survey observations for each index stream.
For several reasons, it was not possible to designate a peak survey count for every index stream in every year and missing values had to be imputed in order to maintain a complete set of comparable index counts. In some cases, a stream was not surveyed during the peak of the run,
survey conditions were not conducive to obtaining a good count due to weather, or the stream was simply not surveyed. An iterative expectation-maximization algorithm (McLachlan and Krishnan 1997) was used to impute missing values as described by Heinl and Piston (2009). Missing values were imputed from the static table of historical data at the stock group level each year.

It is important to note that the Southeast Alaska pink salmon index does not provide an estimate of the total escapement, and its relationship with the total pink salmon escapement in Southeast Alaska is far from certain. An escapement estimate is a statistically reliable measure of escapement magnitude, i.e., the total number of fish in the escapement. An escapement estimate is approximately in the same units as the estimates of harvest, and harvest estimates and escapement estimates can logically be added together to produce an estimate of total run size. Alternatively, an escapement index is a relative measure of escapement that is useful for year-toyear comparisons. In the past, ADF\&G biologists commonly multiplied the escapement indices by a factor of 2.5 to convert the index to an estimate of total escapement (e.g., Hofmeister and Blick 1991). The 2.5 multiplier was originally intended to convert peak escapement counts to an estimate of what was present at the time of the survey (Dangel and Jones 1988; Hofmeister 1990; Jones et al. 1998). Thus, multiplying the index by 2.5 does not account for fish that were not present at the time of the peak survey count and does not account for the more than 1,800 streams that were not surveyed (Heinl and Geiger 2005). There is no simple way to convert the current index series to an estimate of total escapement in Southeast Alaska. Moreover, escapement indices are clearly much less than total escapements (Hofmeister 1990; Van Alen 2000; Zadina et al. 2004).

Stock Group Escapement Trends

Southern Southeast Subregion

The Southern Southeast Subregion contains 366 index streams located from the Canadian border to Sumner Straight and the Stikine River (Figures 1 and 2; Appendix A). The escapement index for this Subregion exhibited a general increasing trend from 1960 to the mid-1980s and has been highly variable at larger escapement sizes since then. The average index since 1985 is 228% of the pre-Treaty average (Figure 3). Although highly variable, escapements of both odd- and evenyear pink salmon escapements have increased and there has not been consistent dominance of one brood line in this subregion. From 1960 to 2018, the average index value was approximately 5.35 million for even years and 6.03 million for odd years.

Figure 3.-Pink escapement index for the 366 streams in the Southern Southeast Subregion, 19602018. The gray shaded area shows the biological escapement goal range of 3 to 8 million fish.

Portland Canal

The Portland Canal stock group contains 16 index streams located in Portland Canal and along the adjacent mainland north to the south side of Boca de Quadra (Figure 2; Appendix A). The escapement index for this stock group has exhibited a general increasing trend since 1960 and the average index since 1985 is 245% of the pre-Treaty average (Figure 4). Although highly variable, escapements of both odd- and even-year pink salmon escapements have increased, and there has not been consistent dominance of one brood line for this stock group. From 1960 to 2018, the average index value was approximately 220,000 for even years and 270,000 for odd years. The two largest pink salmon producing index streams in the stock group are the Tombstone River (mean peak aerial survey count $=81,000$) and Hidden Inlet (mean peak aerial survey count $=49,000$).
Portland Canal pink salmon are primarily early-timed fish and start arriving near spawning streams in early to mid-July, with peak aerial survey stream counts typically occurring during August. A weir was operated at Fish Creek at the head of Portland Canal from 1991 to 1995, and pink salmon started entering the stream by mid-July with peak passage through much of August (ADF\&G unpublished data). The primary migration route for Portland Canal pink salmon is through Dixon Entrance (Hoffman et al. 1983, 1985), and they are likely primarily harvested in the Alaska District 104 purse seine fishery and Canadian Area 3 net fisheries, with smaller harvests in the District 102 purse seine, and 101 purse seine and drift gillnet fisheries. Coded-wire-tagging studies of Fish Creek (located at the head of Portland Canal) chum salmon showed that tagged fish were primarily harvested in District 104 and in Dixon Entrance, near the mouth of Portland Canal, in the Alaska District 101 drift gillnet fishery, and the Canadian Area 3 gillnet and seine and Area 4 gillnet fisheries; very few tag recoveries occurred any distance from the entrance to Portland Canal (Heinl et al. 2000). Over the 5-year study, the proportion of the Fish

Creek chum salmon catch that were harvested in Canadian fisheries averaged 46.2% with a range of 22.1% to 61.9% (Heinl et al. 2000).

The southern portion of District 101 (subdistrict 11), near the mouth of Portland Canal is only open for drift gillnet gear, which is less effective than purse seine gear for harvesting pink salmon, especially when fisherman use larger mesh size to target chum salmon. Assuming Portland Canal pink salmon follow a similar migration route into inside waters as Fish Creek chum salmon, most of the Alaska harvest of Portland Canal pink salmon may occur in District 104. Due to the early timing of Portland Canal pink salmon, these fish are likely available for harvest in District 104 primarily during the pre-week 31 Treaty period.

Figure 4.-Pink escapement index for the 16 streams in the Portland Canal stock group, 1960-2018.

East Behm Canal

The East Behm Canal stock group contains 41 index streams located in Boca De Quadra, East Behm Canal up to a line just north of the Chickamin River, Thorne Arm, and George and Carroll inlets (Figure 2; Appendix A). The escapement index for this stock group exhibited an increasing trend until the mid-1980s and has generally remained at higher levels since that time with a large amount of annual variation (Figure 5). The average index since 1985 is 265% of the pre-Treaty average. Although highly variable, escapements of both odd- and even-year pink salmon escapements have increased, and there has not been consistent dominance of one brood line for this stock group. From 1960 to 2018, the average index value was approximately 1.27 million for even years and 1.22 million for odd years. There are 6 index streams with mean peak aerial survey counts greater than 100,000 fish in this stock group: Keta River (mean peak aerial survey count $=143,000$), Marten River (mean peak aerial survey count $=119,000$), Humpback Creek (mean peak aerial survey count $=134,000$), Carroll River (mean peak aerial survey count $=$ 112,000), Wilson River (mean peak aerial survey count $=202,000$), and Blossom River (mean peak aerial survey count $=107,000$).

East Behm Canal pink salmon are primarily early-timed fish and start arriving near spawning streams in early to mid-July, with peak aerial survey stream counts typically occurring from late

July to mid-August. Some of the smaller lake-fed systems in the area have later timing than the larger mainland rivers and may not reach peak spawning abundance until early September. Many of the largest index streams in this stock group have 10s or 100s of thousands of pink salmon in them during late July. The primary migration route for East Behm Canal pink salmon is through Dixon Entrance (Hoffman et al. 1983, 1985), and they are likely primarily harvested in the Alaska District 101 and 104 purse seine fisheries, and Canadian Area 3 net fisheries, with smaller harvests in the District 102 purse seine and 101 drift gillnet fisheries and Canadian Area 4 and 5 net fisheries (Hoffman et al. 1983, 1985). Due to the early run timing of most of the largest pink salmon runs in this stock group, a large proportion of these fish likely pass through District 104 during the pre-week 31 Treaty period.

Figure 5.-Pink escapement index for the 41 streams in the East Behm Canal stock group, 1960-2018.

West Behm Canal

The West Behm Canal stock group contains 34 index streams located in West Behm Canal and East Behm Canal north of the Chickamin River, and on Gravina Island (Figure 2; Appendix A). The escapement index for this stock group exhibited an increasing trend until the early 1980s and has generally remained at higher levels since that time with a large amount of annual variation (Figure 6). The average index since 1985 is 207% of the pre-Treaty average. Although highly variable, escapements of both odd- and even-year pink salmon escapements increased from the 1960s and 1970s and there has not been consistent dominance of one brood line for this stock group. From 1960 to 2018, the average index value was approximately 460,000 for even years and 450,000 for odd years. The two largest pink salmon producing index streams in the stock group are Traitors Creek (mean peak aerial survey count $=89,000$) and the Naha River (mean peak aerial survey count $=50,000$).

West Behm Canal pink salmon are primarily mid-timed fish and start arriving near spawning streams in mid-July, with peak aerial survey stream counts typically occurring from early-to-late August. A weir was operated at the Naha River in 1987, and peak passage of pink salmon occurred from mid-August to mid-September (ADF\&G unpublished data). The primary migration route for West Behm Canal pink salmon is through Dixon Entrance (Hoffman et al.

1983, 1985), and they are likely primarily harvested in the Alaska District 101 and 104 purse seine fisheries, and Canadian Area 3 net fisheries, with smaller harvests in the District 102 purse seine and 101 drift gillnet fisheries and Canadian Area 4 and 5 net fisheries (Hoffman et al. 1983, 1985). Small numbers may also arrive via a northern route through Sumner and upper Clarence Straits in some years (Hoffman et al. 1983, 1985) where they could potentially be harvested in the districts 105 and 106 net fisheries.

Figure 6.-Pink escapement index for the 34 streams in the West Behm Canal stock group, 1960-2018.

Kasaan

The Kasaan stock group contains 28 index streams located on east-central Prince of Wales Island from Narrow Point to just north of Moira Sound (Figure 2; Appendix A). The escapement index for this stock group exhibited an increasing trend until the late 1990s and has generally remained at high levels since that time, with the notable exception of 2018 (Figure 7). The average index since 1985 is 292% of the pre-Treaty average. Although highly variable, escapements of both odd- and even-year pink salmon escapements increased from the 1960s to 1990s, and there has not been consistent dominance of one brood line for this stock group. From 1960 to 2018, the average index value was approximately 500,000 for even years and 590,000 for odd years. The largest pink salmon producing index streams in the stock group are the Harris River (mean peak aerial survey count $=157,000$), Lagoon Creek (mean peak aerial survey count $=48,000$), and Sunny Creek (mean peak aerial survey count $=47,000$).

Kasaan pink salmon are primarily mid-to-late timed fish and start arriving at spawning streams in late July and early August for earlier-timed systems and mid-to-late August for later-timed streams. Peak aerial survey stream counts typically occur in mid-to-late August for earlier-timed pink salmon runs in this area (e.g., Harris River) and mid-September for later-timed systems (e.g., Lagoon Creek). Spawning occurs through October in most streams. The primary migration route for Kasaan pink salmon is through Dixon Entrance and lower Clarence Strait, with a small proportion arriving via a secondary northern migration route through Sumner and upper Clarence Straits in some years (Hoffman et al. 1983, 1985). Pink salmon from this stock group are likely primarily harvested in the Alaska District 102 and 104 purse seine fisheries, with smaller
harvests in the District 101 purse seine and drift gillnet fisheries, District 103 purse seine fisheries, and Canadian Area 3 net fisheries. Smaller numbers arriving via Sumner and upper Clarence Straits (Hoffman et al. 1983, 1985) could potentially be harvested in Districts 105 and 106 net fisheries.

Figure 7.-Pink escapement index for the 28 streams in the Kasaan stock group, 1960-2018.

Moira

The Moira stock group contains 12 index streams located on southeast Prince of Wales Island from Moira Sound south (Figure 2; Appendix A). The escapement index for this stock group exhibited a slight increasing trend until the mid-1980s and has generally remained at higher levels since that time (Figure 8). The average index since 1985 is 216% of the pre-Treaty average. Although highly variable, escapements of both odd- and even-year pink salmon escapements increased from the low levels of the 1960s and 1970s, and there has not been consistent dominance of one brood line for this stock group. From 1960 to 2018, the average index value was approximately 90,000 for even years and 110,000 for odd years. All the index streams in this stock group are small- to medium-sized producers with average peak aerial survey counts of less than 20,000 fish.
The run timing of Moira pink salmon is primarily mid-to-late run timing, and they start arriving at spawning streams primarily in August. Peak aerial survey stream counts typically occur in early to mid-September; most August counts include fish off the mouth or in intertidal areas of streams. Spawning occurs well into October in many streams. The primary migration route for Moira pink salmon is through Dixon Entrance and lower Clarence Strait (Hoffman et al. 1983, 1985). Pink salmon from this stock group are likely primarily harvested in the Alaska District 104 and 102 purse seine fisheries, with smaller harvests in the District 101 purse seine and drift gillnet fisheries, District 103 purse seine fisheries, and Canadian Area 3 net fisheries.

Figure 8.-Pink escapement index for the 12 streams in the Moira stock group, 1960-2018.

East Dall

The East Dall stock group contains 32 index streams located on eastern Dall Island and portions of adjacent southwest Prince of Wales Island (Figure 2; Appendix A). The escapement index for this stock group exhibited an increasing trend into the early 1980s and has generally remained at higher levels since that time with a large amount of annual variation (Figure 9). The average index since 1985 is 202% of the pre-Treaty average. Although highly variable, escapements of both odd- and even-year pink salmon escapements increased through the 1960s and 1970s, and there has not been consistent dominance of one brood line for this stock group. From 1960 to 2018, the average index value was approximately 270,000 for even years and 230,000 for odd years. All the index streams in this stock group are small- to medium-sized producers with average peak aerial survey counts of less than 35,000 fish.

East Dall pink salmon are primarily mid-to-late timed fish and they start arriving at spawning streams primarily in August. Peak aerial survey stream counts typically occur in early to midSeptember; most August peak total counts include a high proportion of fish off the mouth or in intertidal areas of streams. Spawning occurs well into October in many streams (e.g., 10,100 live pink salmon counted at Soda Creek on a 12 October 1988 foot survey), but few surveys are conducted after late August. The primary migration route for East Dall pink salmon is through ocean entrances just to the north of Dall Island and into Cordova Bay from Dixon Entrance to the south (Hoffman et al. 1983, 1985). Tagging studies also showed that a small proportion of pink salmon destined for District 103 will move further into Dixon Entrance and lower District 101 before reversing course back to their home streams. Pink salmon from this stock group are likely primarily harvested in the Alaska District 104 and 103 purse seine fisheries, with smaller harvests possible in the District 101 purse seine and drift gillnet fisheries, District 102 purse seine fisheries, and Canadian Area 3 net fisheries. It is possible that very small numbers of pink salmon from this stock group arrive via Sumner and upper Clarence Straits to the north in some years (Hoffman et al. 1983).

Figure 9.-Pink escapement index for the 32 streams in the East Dall stock group, 1960-2018.

Hetta

The Hetta stock group contains 15 index streams located on southwest Prince of Wales Island from the southwest tip through Hetta Inlet (Figure 2; Appendix A). The escapement index for this stock group exhibited an increasing trend until the mid-1980s and has generally remained at high levels since that time, with the notable exception of 2018, which was the lowest index since the late 1970s (Figure 10). The average index since 1985 is 288% of the pre-Treaty average. Although highly variable, escapements of both odd- and even-year pink salmon escapements increased through the 1960s and 1970s, and there has not been consistent dominance of one brood line for this stock group. From 1960 to 2018, the average index value was approximately 500,000 for even years and 530,000 for odd years. The largest pink salmon producing index streams in the stock group are Nutkwa Creek (mean peak aerial survey count $=152,000$) and Hetta Portage Creek (mean peak aerial survey count $=111,000$).
Hetta pink salmon are mid-to-late timed fish and they start arriving at spawning streams primarily in August. Peak aerial survey stream counts typically occur from late August to midSeptember; most August peak total aerial survey counts include a high proportion of fish off the mouth or in intertidal areas of streams. A weir was operated at Hetta Creek from 1967 to 1971 and from 2005 to 2018; pink salmon started entering the stream by late July or early August with peak passage occurring in late August through mid-September in most years (ADF\&G unpublished data). A weir was also operated at Klakas Lake in 1983 and pink salmon began entering the creek in early August, peaking from mid-to-late September, and continuing passage through the weir until late October (ADF\&G unpublished data). Spawning occurs well into October in many streams (e.g., nearly 50,000 live pink salmon in intertidal and lower reaches of Hetta Portage Creek on a 2 October 2017 foot survey).
The primary migration route for Hetta pink salmon is through ocean entrances just to the north of Dall Island and into Cordova Bay from Dixon Entrance to the south (Hoffman et al. 1983, 1985). Tagging studies also showed that a small proportion of pink salmon destined for District 103 will move further into Dixon Entrance and lower District 101 before reversing course back to their home streams. Pink salmon from this stock group are likely primarily harvested in the Alaska

District 104 and 103 purse seine fisheries, with small harvests possible in the District 101 purse seine and drift gillnet fisheries, and Canadian Area 3 net fisheries. It is possible that very small numbers of pink salmon from this stock group arrive via Sumner and upper Clarence Straits to the north in some years (Hoffman et al. 1983).

Figure 10.-Pink escapement index for the 15 streams in the Hetta stock group, 1960-2018.

Klawock

The Klawock stock group contains 47 index streams located on eastern Prince of Wales Island from Trocadero Bay to Aneskett Point (Figure 2; Appendix A). The escapement index for this stock group exhibited an increasing trend until the mid-1980s and has generally remained at high levels since that time with a large amount of annual variation (Figure 11). The average index since 1985 is 231% of the pre-Treaty average. Although highly variable, escapements of both odd- and even-year pink salmon escapements increased through the 1960s and 1970s, and there has not been consistent dominance of one brood line for this stock group. From 1960 to 2018, the average index value was approximately 720,000 for even years and 970,000 for odd years. The largest pink salmon producing index streams in the stock group are Staney Creek (mean peak aerial survey count $=93,000$), Shaheen Creek (mean peak aerial survey count $=66,000$), Shinaku Creek (mean peak aerial survey count $=53,000$), and Trocadero Bay Right Head stream (mean peak aerial survey count $=50,000$).
The run timing of Klawock pink salmon is primarily mid-to-late run timing and they start arriving at spawning streams primarily in August. Peak aerial survey stream counts typically occur from late August to mid-September; most August peak total counts include a high proportion of fish off the mouth or in intertidal areas of streams. Peak timing at the Klawock River weir since 1969 (weir not operated from 1989-1998) was typically mid-August through mid-September (ADF\&G unpublished data). Spawning occurs well into October and possibly November in some streams (e.g., 19,500 live pink salmon in a partial foot survey of Port St. Nicholas Head on 26 October 1999). The primary migration route for Klawock pink salmon is through numerous island passages along the coast (Hoffman et al. 1983, 1985). Tagging studies also showed that a small proportion of pink salmon destined for District 103 (Appendix A1) will move further into Dixon Entrance and lower District 101 before reversing course back to their
home streams, but few of these fish appear to move as far north as the Klawock stock group in District 103 (Hoffman et al. 1983, 1985). Pink salmon from this stock group are likely primarily harvested in the Alaska District 104 and 103 purse seine fisheries, with small harvests possible in other nearby fisheries.

Figure 11.-Pink escapement index for the 47 streams in the Klawock stock group, 1960-2018.

Sea Otter Sound

The Sea Otter Sound stock group contains 18 index streams located off the eastern side of Prince of Wales Island primarily on Heceta and Kosciusko islands (Figure 2; Appendix A). The escapement index for this stock group exhibited an increasing trend until the mid-1980s and has generally remained at high levels since that time with a large amount of annual variation (Figure 12). The average index since 1985 is 179% of the pre-Treaty average. Although highly variable, escapements of both odd- and even-year pink salmon escapements increased through the 1960s and 1970s, and there has not been consistent dominance of one brood line for this stock group. From 1960 to 2018, the average index value was approximately 180,000 for both even and odd years. All the index streams in this stock group are small- to medium-sized producers with average peak aerial survey counts of less than 35,000 fish.

Sea Otter Sound pink salmon are primarily mid-to-late timed fish and they start arriving at spawning streams primarily in late July and August. Peak aerial survey stream counts typically occur from late August to mid-September; most August peak total counts include a high proportion of fish off the mouth or in intertidal areas of streams. Pink salmon passage through the Warm Chuck Lake weir on Heceta Island typically occurred from late August through midSeptember, continuing into mid-October in most years (McCurdy 2012, 2010). The primary migration route for Sea Otter Sound pink salmon is through numerous island passages along the coast (Hoffman et al. 1983, 1985). Tagging studies also showed that a small proportion of pink salmon destined for District 103 move further into Dixon Entrance and lower District 101 before reversing course back to their home streams, but few of these fish appear to move as far north as the Sea Otter Sound stock group in District 103 (Hoffman et al. 1983, 1985). Pink salmon from this stock group are likely primarily harvested in the Alaska District 104 and 103 purse seine fisheries, with small harvests possible in other nearby fisheries.

Figure 12.-Pink escapement index for the 18 streams in the Sea Otter Sound stock group, 1960-2018.

Affleck

The Affleck stock group contains 33 index streams located on the eastern shore of Kuiu Island and the southwest shore of Kupreanof Island (Figure 2; Appendix A). The escapement index for this stock group exhibited an increasing trend until the mid-2000s and has declined since that time (Figure 13). The average index since 1985 is 197% of the pre-Treaty average. Although highly variable, escapements of both odd- and even-year pink salmon escapements have followed similar patterns, and there has not been consistent dominance of one brood line for this stock group. From 1960 to 2018, the average index value was approximately 220,000 for even years and 260,000 for odd years. The largest pink salmon producing index streams in the stock group are Bear Harbor Creek (mean peak aerial survey count $=43,000$) and Tunehean Creek (mean peak aerial survey count $=37,000$).
Affleck Canal pink salmon are primarily mid-to-late timed fish and they start arriving at spawning streams primarily in late July and August. Peak aerial survey stream counts typically occur from late August to mid-September; most August peak total counts include a high proportion of fish off the mouth or in intertidal areas of streams. The primary migration route for Affleck Canal pink salmon is through lower Sumner Strait (Hoffman et al. 1983, 1985). Tagging studies also showed that some pink salmon destined for District 105 may move further south into Dixon Entrance and lower District 101 before reversing course back to their home streams, but overall tag recoveries were very low in this District's streams during the 1982 and 1984 tagging studies (Hoffman et al. 1983, 1985). Pink salmon from this stock group are likely primarily harvested in the District 105, 104, and 103 purse seine fisheries, with small harvests possible elsewhere.

Figure 13.-Pink escapement index for the 33 streams in the Affleck Canal stock group, 1960-2018.

Shipley Bay

The Shipley Bay stock group contains 12 index streams located on the northwestern shore of Kosciusko Island and the northwest corner of Prince of Wales Island (Figure 2; Appendix A). The escapement index for this stock group exhibited an increasing trend until the mid-2000s and has declined since that time (Figure 14). The average index since 1985 is 187% of the pre-Treaty average. Escapements for this stock group have shown consistent dominance of the odd-year brood line; from 1960 to 2018, the average index value was approximately 110,000 for even years and 260,000 for odd years. The largest pink salmon producing index streams in the stock group are Trout Creek (mean peak aerial survey count $=39,000$) and Calder Creek (mean peak aerial survey count $=37,000$).

Shipley Bay pink salmon are primarily middle-timed fish, and they start arriving at spawning streams primarily in late July and August. Peak aerial survey stream counts typically occur from mid-August to early September. The primary migration route for Shipley Bay pink salmon is through lower Sumner Strait (Hoffman et al. 1983, 1985). Tagging studies also showed that some pink salmon destined for District 105 may move further south into Dixon Entrance and lower District 101 before reversing course back to their home streams, but overall tag recoveries were very low in this District's streams during the 1982 and 1984 tagging studies (Hoffman et al. 1983, 1985). Pink salmon from this stock group are likely primarily harvested in the District 105, 104, and 103 purse seine fisheries, with very small harvests possible elsewhere.

Figure 14.-Pink escapement index for the 12 streams in the Shipley Bay stock group, 1960-2018.

Burnett

The Burnett Inlet stock group contains 10 index streams located on the southwestern shore of Etolin Island (Figure 2; Appendix A). The escapement index for this stock group exhibited an increasing trend until the early 2000s and has declined since that time (Figure 15). The average index since 1985 is 177% of the pre-Treaty average. Although highly variable, escapements of both odd- and even-year pink salmon escapements have followed similar patterns, and there has not been consistent dominance of one brood line for this stock group. From 1960 to 2018, the average index value was approximately 100,000 for both even and odd years. All the index streams in this stock group are small- to medium-sized producers with average peak aerial survey counts of less than 30,000 fish.

Burnett Inlet pink salmon are primarily middle-timed fish, and they start arriving at spawning streams primarily from mid-July to early August. Peak aerial survey stream counts typically occur from mid-August to early September. The primary migration route for Burnett Inlet pink salmon may vary from year-to-year; in the 1982 tagging study pink salmon destined for District 106 had a primary migration route through lower Sumner Strait (76% of recovered tags) while in the 1984 study the primary migration route was through Dixon Entrance and lower Clarence Strait (72%; Hoffman et al. 1983, 1985). Due to the variability in migration routes for Burnett pink salmon they are likely available to harvest in most District 101-106 net fisheries, as well as in Canadian Area 3 net fisheries.

Figure 15.-Pink escapement index for the 10 streams in the Burnett Inlet stock group, 1960-2018.

Ratz Harbor

The Ratz Harbor stock group contains 4 index streams located on the west-central shore of Prince of Wales Island between Luck and Narrow points (Figure 2; Appendix A). The escapement index for this stock group exhibited an increasing trend until the mid-2000s and has declined since that time (Figure 16). The average index since 1985 is 262% of the pre-Treaty average. Although highly variable, escapements of both odd- and even-year pink salmon escapements have followed similar patterns, and there has not been consistent dominance of one brood line for this stock group. From 1960 to 2018, the average index value was approximately 80,000 for even years and 100,000 for odd years. The largest pink salmon producing index stream in the stock group is Eagle Creek (mean peak aerial survey count $=60,000$).

Ratz Harbor pink salmon are primarily mid-to-late timed fish and they start arriving at spawning streams in late July and early August. A weir was operated at Eagle Creek from 1928 to 1931, and peak passage typically occurred between mid-August and mid-September (ADF\&G unpublished data). Peak aerial survey stream counts typically occur from late August to midSeptember, and spawning occurs well into October in many streams. The primary migration route for Ratz Harbor pink salmon may vary from year-to-year; in the 1982 tagging study pink salmon destined for District 106 had a primary migration route through lower Sumner Strait (76% of recovered tags) while in the 1984 study the primary migration route was through Dixon Entrance and lower Clarence Strait (72\%; Hoffman et al. 1983, 1985). Due to the variability in migration routes for Ratz Harbor pink salmon, they are likely available to harvest in most District 101-106 net fisheries, and potentially in the Canadian Area 3 net fishery.

Figure 16.-Pink escapement index for the 4 streams in the Ratz Harbor stock group, 1960-2018.

Totem Bay

The Totem Bay stock group contains 13 index streams located on south-central Kupreanof Island, including Totem Bay, Duncan Canal, and Wrangell Narrows (Figure 2; Appendix A). The escapement index for this stock group exhibited an increasing trend until the mid-2000s and has declined since that time (Figure 17). The average index since 1985 is 203% of the pre-Treaty average. Although highly variable, escapements of both odd- and even-year pink salmon escapements have followed similar patterns, and there has not been consistent dominance of one brood line for this stock group. From 1960 to 2018, the average index value was approximately 70,000 for even years and 110,000 for odd years. All the index streams in this stock group are small- to medium-sized producers with average peak aerial survey counts of less than 25,000 fish.

Totem Bay pink salmon are primarily mid-to-late timed fish and they start arriving at spawning streams primarily in late July and early August. Peak aerial survey stream counts typically occur from late August to mid-September. Only two tagged pink salmon were recovered in Totem Bay stock group streams during the 1982 and 1984 tagging studies, but it seems likely that the primary migration route for these fish spawning in Sumner Strait streams is through lower Sumner Strait. Totem Bay pink salmon are likely available to harvest primarily in District 104 and 105 purse seine fisheries and District 106 drift gillnet fishery. Very small numbers of these fish may be available for harvest in northern Southeast Alaska waters (Nakatani et al. 1975).

Figure 17.-Pink escapement index for the 13 streams in the Totem Bay stock group, 1960-2018.

Whale Pass

The Whale Pass stock group contains 10 index streams located on the northeastern shore of Prince of Wales Island from Luck Point to Point Colpoys (Figure 2; Appendix A). The escapement index for this stock group exhibited an increasing trend until the early 2000s and has declined since that time (Figure 18). The average index since 1985 is 154% of the pre-Treaty average. Although highly variable, escapements of both odd- and even-year pink salmon escapements have followed similar patterns, and there has not been consistent dominance of one brood line for this stock group, except for odd-year dominance from 1999 to 2008. From 1960 to 2018, the average index value was approximately 110,000 for even years and 140,000 for odd years. The largest pink salmon producing index stream in the stock group is 108 Creek (mean peak aerial survey count $=80,000$).

Whale Pass pink salmon primarily exhibit mid-to-late run timing and they generally start arriving at spawning streams in early August. Peak aerial survey stream counts typically occur in early to mid-September; most August counts include fish off the mouth or in intertidal areas of streams. Spawning occurs well into October in many streams. The primary migration route for Whale Pass pink salmon may vary from year-to-year; in the 1982 tagging study pink salmon destined for District 106 had a primary migration route through lower Sumner Strait (76% of recovered tags) while in the 1984 study the primary migration route was through Dixon Entrance and lower Clarence Strait (72\%; Hoffman et al. 1983, 1985). Due to the variability in migration routes for Whale Pass pink salmon, they are likely available to harvest in most District 101-106 net fisheries, and potentially in the Canadian Area 3 net fishery.

Figure 18.-Pink escapement index for the 10 streams in the Whale Pass stock group, 1960-2018.

Anan

The Anan Creek stock group contains 27 index streams located in upper Ernest Sound, Bradfield Canal, Zimovia Straight, and Blake Passage (Figure 2; Appendix A). The escapement index for this stock group exhibited an increasing trend until the mid-2000s and has declined slightly since that time (Figure 19). The average index since 1985 is 151% of the pre-Treaty average. Although highly variable, escapements of both odd- and even-year pink salmon escapements have followed similar patterns, and there has not been consistent dominance of one brood line for this stock group. From 1960 to 2018, the average index value was approximately 320,000 for even years and 370,000 for odd years. The largest pink salmon producing index streams in the stock group are Anan Creek (mean peak aerial survey count $=136,000$) and Eagle River (mean peak aerial survey count $=58,000$).

Anan pink salmon are primarily early-timed fish and they start arriving at spawning streams primarily in mid-to-late July. Anan Creek often has pink salmon starting to enter the stream as early as mid-June and counts in excess of 10,000 fish are not uncommon in the first half of July. A weir was operated at Anan Creek from 1925 to 1932, and peak passage typically occurred between early July and mid-August (ADF\&G unpublished data). Peak aerial survey counts for most streams typically occur during August. The primary migration route for Anan pink salmon may vary from year-to-year; in the 1982 tagging study pink salmon destined for District 107 had a primary migration route through Sumner Strait, south through upper and middle Clarence Strait, and into Ernest Sound and Bradfield Canal (66\% of recovered tags) while in 1984 they had a primary migration route through Dixon Entrance and lower Clarence Strait (87%; Hoffman et al. 1983, 1985). Due to the variability in migration routes for Anan pink salmon, they are available to harvest in most District 101-107 net fisheries, as well as in Canadian Area 3 net fisheries. Due to the early timing of these fish, they are likely most abundant in District 104 during the pre-week 31 Treaty period.

Figure 19.-Pink escapement index for the 27 streams in the Anan stock group, 1960-2018.

Union Bay

The Union Bay stock group contains 8 index streams located in the southern half of Ernest Sound (Figure 2; Appendix A). The escapement index for this stock group exhibited an increasing trend until the mid-2000s and has declined slightly since that time (Figure 20). The average index since 1985 is 226% of the pre-Treaty average. Although highly variable, escapements of both odd- and even-year pink salmon escapements have followed similar patterns, and there has not been consistent dominance of one brood line for this stock group. From 1960 to 2018, the average index value was approximately 90,000 for both even and odd years. The largest pink salmon producing index stream in the stock group is Black Bear Creek (mean peak aerial survey count $=57,000$).

Union Bay pink salmon are primarily middle-timed fish and they start arriving at spawning streams primarily in late July. A weir was operated at Black Bear Creek in 1986 and 1987, and peak passage occurred between early or mid-August and early September (ADF\&G unpublished data). Peak aerial survey stream counts for most streams typically occur from late August to midSeptember with spawning continuing into October. The primary migration route for Union pink salmon may vary from year-to-year; in the 1982 tagging study, pink salmon destined for District 107 had a primary migration route through Sumner Strait, south through upper and middle Clarence Strait, and into Ernest Sound (66% of recovered tags) while in 1984 they had a primary migration route through Dixon Entrance and lower Clarence Strait (87\%; Hoffman et al. 1983, 1985). Due to the variability in migration routes for Anan pink salmon they are available to harvest in most District 101-107 net fisheries, as well as in Canadian Area 3 net fisheries. Due to the early timing of these fish, they are likely most abundant in District 104 during the pre-week 31 Treaty period.

Figure 20.-Pink escapement index for the 8 streams in the Union Bay stock group, 1960-2018.

Stikine

The Stikine stock group contains 6 index streams located along the mainland from Thomas Bay to just south of the Stikine River and adjacent islands (Figure 2; Appendix A). The escapement index for this stock group exhibited an increasing trend until the mid-2000s and has declined slightly since that time (Figure 21). The average index since 1985 is 189% of the pre-Treaty average. Although highly variable, escapements of both odd- and even-year pink salmon escapements have followed similar patterns, and there has not been consistent dominance of one brood line for this stock group. From 1960 to 2018, the average index value was approximately 30,000 for even years and 50,000 for odd years. All the index streams in this stock group are small- to medium-sized producers with average peak aerial survey counts of less than 20,000 fish.

Stikine pink salmon are primarily middle-timed fish, and they start arriving at spawning streams primarily in late July. Peak aerial survey stream counts for most streams typically occur from mid-to-late August. Tagging studies show that Stikine pink salmon may arrive from migration routes through southern Southeast Alaska via Sumner and to a lesser degree Clarence Straits, as well as from the north via Icy and Chatham straits (Hoffman et al. 1982, 1983, 1985). Due to the variability in migration routes for Stikine pink salmon, they are available to harvest in numerous Southeast Alaska net fisheries along these corridors, as well as in Canadian net fisheries near the U.S.-Canada border to a minor extent.

Figure 21.-Pink escapement index for the 6 streams in the Stikine stock group, 1960-2018.

Southern Southeast Alaska Pink Salmon Harvest

Harvest Tabulation

Salmon landings from individual commercial fishermen are recorded on fish tickets. Information recorded on the tickets includes the vessel name, Commercial Fisheries Entry Commission permit number, total weight of the harvest by species, and date and area of harvest. Catch in units of total weight are converted into units of fish numbers by the processors, based on their individual methods of determining the average weight of fish. Fish tickets are legal documents and serve as the basis of payment on the part of the processors to fishermen. State regulations require fish tickets to be delivered to ADF\&G within seven days of a landing. Information from these tickets is entered into the ADF\&G Fish Ticket Database System, and the total weight and the estimated total number of commercially harvested salmon are available in electronic format to biologists in various time and spatial summaries for all years since 1960. Estimates of the annual harvest of pink salmon prior to statehood were taken from Byerly et al. (1999).

Southern Southeast Alaska Harvest Trends

The harvest of pink salmon in the Southern Southeast Subregion (Figure 2) has generally followed the trend in escapements in the subregion, with low harvests averaging less than 10 million annually in the 1960s and 1970s, steadily increasing through the 1980s, and reaching peak levels in the mid-to-late 1990s. Harvests have generally trended downward since the late 1990s, with the notable exception of 2013. The harvest of 53 million fish in 2013 was just under the record of 54 million set in 1996. The escapement index for the Southern Southeast Subregion has shown less of a decline in recent years than harvest due to more conservative management in low return years to ensure the escapement goal is met (Figure 3). Pink salmon harvests in the Southern Southeast Subregion averaged 31 million fish annually in the 1990s, but have since dropped to 20 million fish per year over the past decade, 2009-2018 (Figure 22), which is near the 1960 to 2017 average of 19 million fish. Like escapements, harvests of both odd- and evenyear pink salmon increased into the mid-1990s, but there was an overall odd-year dominate harvest pattern from 1999 through 2013. From 1960 through 1999, harvests averaged 17.0
million in even years and 17.7 million in odd years. Since 2000, harvests have averaged 16.1 million in even years and 28.3 million in odd years, and there were consistently higher harvests in odd years from 1999 through 2013.

Figure 22.-Pink salmon harvest in the Southern Southeast Subregion of Southeast Alaska, 1960-2018.
Harvests of pink salmon increase steadily once the purse seine fishery opens in early July. The 1960-2018 average harvest passed one million fish in statistical week 30 and peaked in week 33 with an average harvest of 4.33 million fish for the week. The average harvest remained above one million fish through week 35 . Pink salmon harvests averaged 9.44 million in southern Southeast Alaska prior to the 1985 Pacific Salmon Treaty and increased to an average 25.68 million from 1985 to 2018. Harvest prior to week 31 increased from an average of 1.14 million, from 1960 to 1984, to 2.80 million from 1985 to 2018. The average pink salmon harvest in southern Southeast Alaska in week 30, the final week of the Treaty period in District 104, increased from an average of 530,000 to 1.53 million fish since 1985 (Figure 23; Appendix B).

Figure 23.-Pink salmon harvest by statistical week in the Southern Southeast Subregion of Southeast Alaska, 1960-2018.

HARVEST OF PINK SALMON IN DISTRICT 104

Timing of Harvest by Stock

Although annual estimates of the stock composition of pink salmon harvests in District 104 are not available, some generalizations can be drawn based on prior marine tagging studies and from the timing of pink salmon arrival at their spawning streams. Hoffman et al. $(1983,1985)$ defined early, middle, and late stocks by their timing through marine areas where tags were applied in 1982 and 1984. They defined early runs as populations that passed through tagging areas (e.g., District 104) in June, middle runs as those with peak passage in July, and late runs as those with peak passage in August. By this definition, early-run pink salmon would pass through District 104 in June, prior to the first purse seine openings, which do not occur until early July. In 1984, no pink salmon were tagged in District 104 during June due to low abundance (Hoffman et al. 1985). Pella et al. (1993) summarized pink salmon tagging studies conducted in 1982, 1984, and 1985, and estimated the stock composition of catches for those years. It was noted during these studies that a high degree of stock intermingling occurred in District 104, particularly in late July and August, which is when the majority of pink salmon harvest occurs on the outer coast.

The small numbers of early-timed fish that were tagged in District 104 during June in the 1982 tagging study were recovered (fishery and escapement recoveries) primarily in northern Southeast Alaska (from releases at Noyes Island), District 101, and District 106 (recovery area included both Sumner and upper Clarence gillnet fisheries; Hoffman et al. 1983), as well as a handful of tags recovered in other Alaska districts and in northern British Columbia (see Figures

1 and 2 for area maps). This matches the timing observed in escapements throughout southern Southeast Alaska, where many of the earliest-timed pink salmon escapements are found along the mainland in District 101 (e.g., East Behm Canal, Portland Canal) or migrate in part through District 106 to reach their spawning grounds (e.g., Anan, in District 107). The capture of pink salmon in District 104 in June indicates that a portion of early-timed pink salmon pass the outer coast prior to the first purse seine opening, which does not occur until early July.

Pink salmon tagged in District 104 in July were recovered throughout southern Southeast Alaska and northern British Columbia, with the largest number of recoveries in District 101 in all years, followed by districts 102-104, 106-107, and Area 1, 3 and 4 in British Columbia (variable by year and between Noyes and Dall tagging sites). Relatively small numbers were recovered in districts 103, 108, 109 and 110, and other northern British Columbia areas (Hoffman et al. 1983 and 1985; Pella 1993). In 1984, the $4^{\text {th }}$ largest number of tags from pink salmon tagged in District 104 in July were recovered in District 107 (Hoffman et al. 1985). It is likely that many of these fish were destined for Anan stock group streams, which are primarily early-run systems, and Union Bay streams which are mid-timed. Pella et al. (1993) estimated Alaska-origin fish accounted for >95\% of the pink salmon harvested in District 104 through mid-July in 1984 and 1985. From mid-to-late July, estimates ranged from 82% to 97% Alaska origin fish for southern and northern sections of District 104 over all three years (Pella et al. 1993).

The largest numbers of pink salmon were tagged in District 104 in August during these tagging studies and these fish were recovered throughout southern Southeast Alaska and northern British Columbia (Hoffman et al. 1983 and 1985; Pella 1993). The stock composition of the harvest in all three years shifted towards late-timed stocks in August. The majority of pink salmon tagged in District 104 and recovered in District 102 (Kasaan, Moira), District 103 (Hetta, East Dall, Klawock, Sea Otter Sound), District 104, and District 105 (Affleck Canal, Shipley Bay) were tagged in August, which reflects the primarily mid-to-late timed pink salmon runs in these areas. Large numbers of pink salmon tagged in District 104 in August were also recovered in District 101, which reflects the tremendous productivity of the area, diversity of spawn timing of pink salmon in District 101 streams, and diversity of run timing of fish passing through lower Clarence Strait and Revillagigedo Channel; portions of the pink salmon recaptured in District 101 fisheries would have ultimately spawned in other districts, some of which have late run timing. Pella et al. (1993) estimated Alaska-origin pink salmon accounted for 73% to 99% of the fish harvested in southern and northern sections of District 104 in early to mid-August in 1982, 1984, and 1985. The pink salmon tagged in District 104 from mid-August to early September over the same years were estimated to be 90% to 98% Alaska-origin fish.

Fishing Effort

Overall Purse Seine Effort in District 104

In the 1960s, the District 104 purse seine fishery was typically open for 6 days a week through much of the season. Although the number of boats fishing weekly is not available prior to 1969, unpublished ADF\&G reports show that effort was high from 1960 to 1968 with an average of 2,225 boat days, which is comparable to the high levels of effort observed from the early 1980s to the mid-1990s (Figure 26). The maximum number of boats fishing in a week exceeded 100 vessels in 5 of the 9 years, 1960-1968. The amount of time the fishery was opened was reduced in 1969 and most subsequent years (Figure 24; Appendix C), and the number of boats fishing dropped and remained low until the late 1970s (Figure 27; Appendix C).

As pink salmon abundance increased in the late 1970s and early 1980s, the number of boats fishing in District 104 increased rapidly and remained at high levels through the mid-1990s, but with fewer hours open. The number of hours the fishery was open prior to week 31 dropped significantly in the early 1980s and has averaged 62 hours since 1985 , which is only 22% of the 1960-1984 average of 282 hours (Figure 25). The annual number of boat days in the fishery has declined significantly both pre-week 31 and post week 30 after reaching high levels in the 1980s and early 1990s (Figures 30-32). From 1980 to 1995, there was an average of 477 boat days of effort prior to week 31, dropping to an average of 80 boat days from 1996 to 2018 (Figure 31). The number of boat days post week 30 decreased from an average of 1,729 from 1980 to 1995 to 681 from 1996 to 2018 (Figure 32).

Figure 24.-Hours open in the District 104 purse seine fishery, 1960-2018.

Figure 25.-Hours open in the District 104 purse seine fishery pre-week 31, 1960-2018.

Figure 26.-Hours open in the District 104 purse seine fishery post week 30, 1960-2018.

Figure 27.-Number of boats fishing (cumulative number of boats over all weeks) in the District 104 purse seine fishery, 1969-2018.

Figure 28.-Number of boats fishing (cumulative boats over all weeks) in the District 104 purse seine fishery pre-week 31, 1969-2018.

Figure 29.-Number of boats fishing (cumulative number of boats over all weeks) in the District 104 purse seine fishery post week 30, 1969-2018.

Figure 30.-Purse seine boat days in the District 104 purse seine fishery, 1969-2018.

Figure 31.-Purse seine boat days in the District 104 purse seine fishery pre-week 31, 1969-2018.

Figure 32.-Purse seine boat days in the District 104 purse seine fishery post week 30, 1969-2018.

Purse Seine Effort by Subdistrict

The District 104 purse seine fishery is typically opened in its entirety, except for a small number of area closures outlined in the Conservation Actions section later in this report. From 1969 to 2018, the greatest effort in the fishery has occurred in subdistrict 104-40 near Noyes Island in the northern half of the district and along the west coast of Dall Island (104-10 and 104-20) in the southern half of the district (Figures 33 and 34). The distribution of effort matches the distribution of harvest by subdistrict (Figures 38 and 39). Since 1969, the average cumulative number of boats fishing over all weeks has been 327 in subdistrict 104-40, 136 in subdistrict 104-20, 99 in subdistrict 104-10, and 95 in subdistrict 104-35 (Figure 33). Smaller numbers of boats (average cumulative number over all weeks) have fished in subdistricts 104-30 (44 boats) and 104-50 (12 boats).

From 1969 to 1979, approximately 61% of the total cumulative number of boats over all weeks fished in subdistrict 104-40 on average and 86% fished near Noyes and Baker islands (104-35 and 104-40) in the north end of the district. As pink salmon abundance and effort increased, more of the effort switched to the southern half of the district off Dall Island (104-10 and 10420), and the distribution of boats was more evenly balanced throughout the district. From 1980 to 1999, approximately 40% of the total cumulative number of boats over all weeks fished in subdistricts 104-10 and 104-20 and approximately 52% in subdistricts 104-35 and 104-40. From 2000 to 2018, effort was much lower and the average proportion of boats fishing subdistricts 104-35 and 104-40 in the northern half of the district increased to approximately 65% (Figures 33 and 34).

Figure 33.-Number of boats fishing (cumulative number of boats over all weeks) by subdistrict in the District 104 purse seine fishery post week 30, 1969-2018. Some boats may fish multiple subdistricts in the same week or opening.

Figure 34.-Number of boats fishing (cumulative number of boats over all weeks) pre-week 31 by subdistrict in the District 104 purse seine fishery post-week 30, 1969-2018. Some boats may fish multiple subdistricts in the same week or opening.

Harvest Trends

Overall District 104 Purse Seine Harvest

In the 1960s and 1970s, District 104 purse seine harvests of pink salmon were generally low: a reflection of total abundance in southern Southeast Alaska. Pink salmon harvests in District 104 averaged 1.2 million from 1960 to 1969 and 857,000 from 1970 to 1979. Harvests increased dramatically to an average of 7.9 million in the 1980s and 13.2 million in the 1990s (Figure 35). Harvests have generally declined since that time and averaged 5.2 million in the 2000s and 4.6 million from 2010 through 2018. Harvests of pink salmon prior to week 31 show a similar pattern through the early 1990s, but average harvests have remained relatively stable at close to 500,000 fish since that time with a large amount of annual variation (Figure 36). The pattern of post week 30 pink salmon harvests is similar to that of the district as a whole (Figure 37).

By statistical week, the harvest of pink salmon in District 104 follows a pattern like that of the Southern Southeast Subregion (Figure 23). The harvest is low at the beginning of the fishery in weeks 27 or 28, and averaged less than 100,000 fish in both weeks for all decades since 1960 (Table 1). Harvests increase in week 29, but remain relatively low in most years. A record 1.2 million pink salmon were harvested in week 29 in 2016, but the average harvest since 1960 was much lower at approximately 125,000 fish. The average harvest since 1960 in week 30 increased to approximately 217,000 fish (Table 1). Average pink salmon harvests rose dramatically in week 31 in all decades as the main waves of fish arrived on the coast. The average harvest since 1960 was just over a million fish in week 31 and the peak weekly harvest for the year occurred that week in nine years. In most years, the peak harvests occurred in weeks 32 and 33 and the average harvests since 1960 were 1.57 and 1.43 million fish, respectively (Table 1). Harvests
typically started declining in weeks 34 and 35 , but in large return years the harvest still exceeded a million fish. Since 1960, the average harvest was 822,000 in week 34 and 502,000 in week 35 . When open, the harvest of pink salmon in week 36 generally drops considerably and has averaged 195,000 fish since 1960. Peak CPUE in the fishery (Figure 38 and 39) occurred in weeks 32 and 33 in 29 of 47 years since 1969 (excluding 1971, 1975, and 1976), followed by week 34 (6 years) and weeks 30 and 31 (5 years each). In 2016, the peak CPUE occurred in week 29, closely followed by week 30, and in 1982 the peak CPUE occurred in week 35.

Table 1.-Weekly average harvests of pink salmon by decade in the District 104 purse seine fishery.

	Statistical Week									
Decade	27	28	29	30	31	32	33	34	35	36
1960s	1,575	8,602	17,237	72,144	160,339	206,706	388,709	278,134	116,287	8,381
1970s	36,225	40,870	96,492	91,559	164,932	185,295	235,389	177,124	102,790	29,525
1980s	15,422	80,058	135,903	374,201	$1,154,132$	$2,499,693$	$2,014,870$	899,318	645,098	468,755
1990s	27,395	91,733	175,861	189,059	$2,157,198$	$3,306,958$	$3,372,777$	$2,261,642$	$1,451,688$	466,305
2000s	24,805	41,451	109,612	318,857	$1,399,368$	$1,364,378$	$1,176,504$	617,086	162,378	9,155
2010s	418	91,910	218,806	232,036	780,321	$1,438,428$	$1,097,973$	478,324	321,328	92,634
Avg. 60-18	13,640	58,564	124,549	216,902	$1,015,853$	$1,571,791$	$1,426,201$	821,528	502,684	194,771

Although the average harvest of pink salmon during the pre-week 31 period has remained relatively stable since the Treaty was enacted in 1985, the proportion of the total harvest caught prior to week 31 has declined from 18% prior to 1985 (not including 1971 or 1975, where no harvest occurred during one of the periods) to 9% from 1985 to 2018 (Figure 40). Since 1985, week 31 pink salmon harvests have also become proportionally larger on average than week 30 harvests, with a great deal of annual variation. From 1960 to 1984, the week 30 pink salmon harvest averaged 84% of the week 31 harvest; since 1985, the week 30 harvest has averaged 41% of the week 31 harvest (Figure 41). These declines in pre-week 31 pink salmon harvests are attributable to the declines in fishing effort (Figures 24-32) that have occurred in the early weeks of the District 104 fishery due to Treaty obligations related to Nass and Skeena river sockeye salmon.

Figure 35.-Pink salmon harvest in the District 104 purse seine fishery, 1960-2018.

Figure 36.-Pink salmon harvest in the District 104 purse seine fishery pre-week 31, 1960-2018.

Figure 37.-Pink salmon harvest in the District 104 purse seine fishery post week 30, 1960-2018.

Figure 38.-Average weekly pink salmon CPUE (pink salmon harvest per boat day) by decade in the District 104 purse seine fishery, 1970-2018. Years where the fishery did not open in weeks 27-29 or closed prior to week 34 were excluded (1971, 1975, 1976).

Figure 39.-Average cumulative proportion of weekly pink salmon CPUE (pink salmon harvest per boat day) by decade in the District 104 purse seine fishery, 1970-2018. Years where the fishery did not open in weeks 27-29 or closed prior to week 34 were excluded (1971, 1975, 1976).

Figure 40.-Proportion of pink salmon harvest in the District 104 purse seine fishery occurring prior to week 31, 1960-2018.

Figure 41.-The week 30 District 104 pink salmon harvest as a proportion of the week 31 pink salmon harvest, 1960-2018.

Purse Seine Harvest by Subdistrict

The largest harvests in District 104 have generally occurred in waters near Noyes Island (104-40) in the northern half of the district and along the west coast of Dall Island (104-10 and 104-20) in the southern half of the district (Appendices B and D). Since 1960, the average annual pink salmon harvest has been 2.38 million in subdistrict 104-40, 1.47 million in subdistrict 104-20, and 853,000 in subdistrict 104-10 (Figures 42 and 43). Smaller average annual harvests have occurred in subdistricts 104-35 (574,000), 104-30 (230,000), and 104-50 $(27,000)$. For subdistricts 104-10, 104-20, 104-30, and 104-40, the overall harvest pattern is similar to the district as a whole, with low harvests in the 1960s and 1970s and a rapid increase in harvests in the 1980s and early 1990s, followed by declines since that time (Appendix B). From 1960 to 1979, approximately 70% of the District 104 harvest occurred in subdistrict 104-40 near Noyes Island (Figures 42 and 43; Appendix B). From 1980 through 2018, the average proportion of the District 104 pink salmon harvest caught in subdistrict 104-40 declined to 45%.

Figure 42.-Pink salmon harvest in the District 104 purse seine fishery by subdistrict, 1960-2018. Southern subdistricts are represented by solid shaded bars and northern subdistricts are represented by patterned fill.

Figure 43.-Pink salmon harvest in the District 104 purse seine fishery by subdistrict, 1960-2018. Southern subdistricts are represented by solid shaded bars and northern subdistricts are represented by patterned fill.

Pink Salmon Harvest Anomalies

To identify potential reasons for pink salmon harvest anomalies, we first identified anomalies as the top and bottom 10% of total harvests in District 104 since 1985. We also considered weekly harvests that were in the top and bottom 10% of harvests as a proportion of the total harvest for that year; we considered additional weeks when several years had similar low or high values. For statistical weeks 27-29 and 35, we only considered harvests on the high end because it is not unusual to have weekly harvests that represent 1% or less of the total harvest in those weeks. We also did not consider years prior to 1985 due to the much lower abundance of pink salmon and the fact that the fishery was not under Treaty management restrictions. In the following paragraphs, only years with anomalies as defined above are included.

In many cases harvest anomalies were the result of management actions related to the Treaty or the strength of domestic pink salmon returns, which occasionally result in unusually high or low harvests in particular weeks. Anomalously high and low yearly harvests were generally linked to broad-scale trends in Southeast Alaska pink salmon survival; the largest harvests in the 19852018 time period generally occurred from the mid-1980s through late 1990s, when pink salmon runs were at their highest levels historically, and the lowest harvests have occurred since 2000, a period of generally declining pink salmon harvests (Figure 22). These long-term patterns in salmon production and connections to long-term climate indices have been widely noted (Beamish et al. 1993, Mantua et al. 1997, Downton and Miller 1998), but the reasons for these patterns are not well understood. In a few instances, there were significant environmental events that likely played roles in observed harvest anomalies, but even in these cases the exact mechanisms leading to exceptionally high or low abundance or shifts in harvest timing are generally unknown. Specific references to climate indices such as the Pacific Decadal Oscillation (PDO; Mantua et al. 1997) and El Niño/Southern Oscillation (Wolter and Timlin 2011) are included as a general guide to broad scale ocean conditions during specific harvest anomalies listed below.

1986

The total harvest of 18.9 million pink salmon in District 104 was a new record harvest at the time (now third largest) and was nearly eight times higher than the 1960-1985 average harvest of 2.4 million (Appendix B). The total southern Southeast Alaska harvest of 45.0 million fish was also a record at the time and remains the third largest harvest in the subregion since 1960. The peak harvests in District 104 occurred in weeks 32 and 33, which are typically the peak weeks of harvest in this district. Effort in the fishery was above average prior to week 31 and the large increase in pink salmon harvest in week 31 reflects an increase in abundance of pink salmon in the district post week 30 , rather than just an increase in effort. The harvest increased from 755,000 in week 30 to 2.3 million in week 31 with similar effort levels. The harvest peaked in week 32 at approximately 8.0 million pink salmon, which represented 42% of the total harvest for the year in District 104, the second highest proportion for that week, 1986-2018. The high harvest reflected the overall pattern of higher abundance for Southeast Alaska pink salmon stocks starting in the early-to-mid 1980s. Pink salmon that returned in 1986 went to sea during a weak La Niña event.

1987

Pink salmon returns to Southeast Alaska were very poor in 1987, and only 1.7 million were harvested in District 104 and just 4.6 million in southern Southeast Alaska, which is the second
lowest harvest for the subregion from 1985-2018. Approximately 61% of the District 104 harvest occurred in week 32, which is the highest proportion for that week, 1985-2018. The timing of the peak harvest was normal, but due to low abundance the opening time in the fishery was reduced to only 15 hours in week 34 and the fishery was closed in week 35 . Pink salmon returning in 1987 were at sea during a strong El Niño event and the PDO was also strongly positive in 1986 and positive in 1987.

1988

In 1988, the pink salmon harvest in District 104 was approximately 3.5 million and only 14% of the harvest occurred in weeks 28-32 (Appendix B). The peak harvest of 1.3 million fish was very late and occurred in week 35 . Effort levels were nearly identical in weeks 33 (865,000 harvest) and 35 , so the late increase in harvest appears to reflect late-season abundance and not lower effort in earlier weeks of the fishery. Due to general low abundance in Southeast Alaska, the fishery was only open for 15 hours in weeks 30,31 , and 34 , which resulted in lower harvest in those weeks. Pink salmon returning in 1988 were at sea during a strong El Niño event that persisted in 1987 and 1988. The PDO was also strongly positive in 1987 and positive in 1988.

1990

The total harvest of 14.6 million pink salmon in District 104 was the $4^{\text {th }}$ highest from 1985-2018 (Appendix B). Timing of the harvest was normal with approximately 61% of the total harvest occurring in weeks 32 and 33 .

1991

The total harvest of 28.4 million pink salmon in District 104 was the highest harvest since 1960 and was 9.4 million higher than the next highest harvest (Appendix B). Timing of the harvest was approximately normal with 76% of the total harvest occurring in weeks 31-33. The peak catch of 8.6 million fish in week 31 is the largest weekly harvest ever in District 104, and was a massive increase from the 171,000 fish caught in week 30 . The massive increase in catch was primarily due to reduced opportunity during the Treaty period. District 104 was only open for 15 hours in week 28, 20 hours in week 29, and 6 hours in week 30 to ensure sockeye salmon Treaty obligations were met. The Treaty agreement in place at the time limited the District 104 purse seine fishery to a total of 480,000 sockeye salmon prior to week 31 for the four-year period 1990-1993, even though total runs to the Skeena River averaged 3.9 million sockeye salmon during that time. The number of boats fishing dropped to 35 in week 30 and then rebounded to 223 in week 31 when the Treaty period ended, and the fishery opened for 78 hours.

1995

In 1995, harvest timing was slightly later than average and peaked in weeks 33 and 34. Thirty percent of the total harvest occurred in week 34 , which was the second highest proportion of the total catch for that week, 1985-2018. Only 1% of the harvest occurred during the Treaty period, in part due to limited hours and participation in the fishery, but also due to apparent low abundance early in the season. The fishery opened for 23 hours in week 30 and the number of boats fishing increased to 106 boats, but the pink salmon catch remained low at 150,600 fish. The final catch of 13.3 million pink salmon was well above the 1985-2018 average of 8.0 million fish. Pink salmon returning in 1995 were at sea during a moderate El Niño event that persisted in 1994 and 1995. The PDO was slightly negative in 1994 and moderately positive in 1995.

The total harvest of 19.0 million pink salmon in District 104 was the second highest since 1960 (Appendix B). Timing of the harvest was normal with approximately 74% of the total harvest occurring in weeks 31,32 , and 33 . Pink salmon returning in 1996 were at sea during a moderate La Niña event that persisted in 1995 and 1996. The PDO was strongly positive in 1996.

1997

In 1997, 30% of the District 104 pink salmon harvest occurred in weeks 28-30, which is a high proportion for the Treaty period weeks. Peak harvest timing was also slightly early and occurred in week 31 when 1.6 million pink salmon were harvested. The fishery was open 30 hours in week 28,14 hours in week 29 , and 12 hours in week 30 , and then opened for 30 to 78 hours weekly through week 34 . The number of boats fishing ranged from 92 to 143 prior to week 31 and 87 to 179 from week 31 to 34 . A very strong El Niño event began in 1997 and the PDO index was strongly positive.

1999

In 1999 , only 1% of the total harvest occurred in weeks $28-30$. This was likely primarily due to very low opportunity during the Treaty period when the fishery was only open 10 hours per week from week 28 to 30 due to a poor run of sockeye salmon to the Skeena River. Effort remained low in week 31 and it appears overall timing of the harvest was nearly normal. Otherwise, the pink salmon harvest peaked in weeks $32-34$, and the total harvest of 12.0 million fish was well above the 1985-2018 average of 8.0 million fish. Pink salmon returning in 1999 were at sea during a strong La Niña event that persisted in 1998 and 1999. The PDO index was strongly negative in 1999.

2000

The pink salmon harvest in District 104 was only 1.8 million fish in 2000. Peak harvests occurred in weeks 32 and 33 , and 42% of the harvest occurred in week 33 . The high proportion of the catch in week 33 is primarily a reflection of increased opening time from 30 hours in prior weeks to 78 hours in week 33 during the peak of the run. Pink salmon returning in 2000 went to sea during a strong La Niña event that persisted in 1998 and 1999 and returned during weak La Niña conditions in 2000. The PDO index was strongly negative in 1999 and moderately negative in 2000.

2002

The harvest of 838,000 pink salmon in District 104 in 2002 was the second lowest harvest from 1985 to 2018. Peak harvest occurred in weeks 32 and 33 and timing appeared to be normal. The overall southern Southeast Alaska harvest was 23.3 million and 19.6 million fish were caught in nearby southernmost districts 1, 2, and 3 (Appendix A1); pink salmon harvests were above the 1985-2018 average in each of these districts. Effort was very low in District 104 all season long despite opening hours ranging from 78 to 131 hours weekly in weeks 31 to 35 . The low harvest in District 104 appears to be related to a combination of reduced opportunity during Treaty period weeks due to a low Skeena River sockeye salmon run and low effort later in the season due to better opportunity elsewhere. Pink salmon returning in 2002 went to sea during a weak La Niña event that persisted in 2000 and 2001 and returned during moderate El Niño conditions in 2002.

2006

The harvest of 872,500 pink salmon in District 104 in 2006 was the third lowest harvest from 1985 to 2018. Peak harvest occurred in weeks 30 and 31 and fishing time was reduced to 23 hours in week 32 and 15 hours in weeks 33 and 34 before being closed in week 35 . The southern Southeast Alaska harvest of only 3.3 million was the lowest harvest in the 1985-2018 time period.

The poor return in 2006 was likely related to anomalously warm conditions in the Gulf of Alaska in 2004 and the summer of 2005 (Crawford 2006), which adversely affected spawning success of adults in 2004 and survival rates of juveniles that went to sea in 2005. The summer of 2004 was exceptionally warm and dry throughout Southeast Alaska and low water levels and warm stream temperatures persisted throughout much of the pink salmon spawning season. Surface water temperatures in 2004 at the Hugh Smith Lake weir, in southernmost Southeast Alaska, exceeded $20^{\circ} \mathrm{C}$ from mid-July through early September (ADF\&G unpublished data). Taylor and Lum (2004) estimated that approximately 50% of the female pink salmon at Auke Creek, in northern Southeast Alaska, died prior to spawning in 2004. Although pink salmon escapement goals were met or exceeded in 2004, the number of fish that effectively spawned may have been much lower than general abundance indicated.
Water temperatures in Southeast Alaska inside waters and in the Gulf of Alaska continued to be well above normal through the summer of 2005 (Orsi et al. 2006; Crawford 2006). A host of unusual species were documented in inside and coastal waters of Southeast Alaska in 2004 and 2005, including several types of zooplankton and numerous species of fish, such as Pacific sardines (Sardinops sagax), which occurred in larger numbers and farther north than ever before (Wing 2006). Trawl surveys conducted by NOAA in Icy Strait in 2005 indicated relatively low abundance of juvenile pink salmon leaving Southeast Alaska inside waters, yet harvest forecasts based on this information still greatly overestimated the catch in 2006, likely due to unaccounted mortality in offshore marine waters (Wertheimer et al. 2011). Like pink salmon, sockeye and summer-run chum salmon that entered the marine environment in 2005 also experienced widespread low survivals, which resulted in very poor runs in 2008 when the typically dominant age classes for these two species returned (Heinl et al. 2011; Piston and Heinl 2011b). Unusual migratory predators and competitors documented in nearshore Gulf of Alaska waters in 2005 (Orsi et al. 2006) and higher energetic demands related to warmer ocean temperature potentially contributed to poor marine survival rates of Southeast Alaska salmon that migrated to sea in that year (Wertheimer et al. 2011).

2007

In 2007, 38% of the District 104 pink salmon harvest occurred in week 31, which was the highest proportion for the week, 1985-2018. In order to reduce harvests of Canadian sockeye salmon, Alaska made reductions to fishing time in weeks 27 to 30 . In week 30, despite very high pink salmon harvests of nearly 19,000 fish per boat day, the initial opening was reduced from 15 to 12 hours, and the midweek opening was reduced from 15 to 6 hours. The peak harvest occurred in week 31 when 4.3 million pink salmon were harvested. Approximately 85% of the harvest occurred in weeks $31-33$. Opening time in the fishery increased from 18 to 54 hours in week 31, and the number of boats fishing peaked for the season at 95 in week 31. Pink salmon returning in 2007 went to sea and returned during weak El Niño conditions.

2008

In 2008, 42% of the District 104 pink salmon harvest occurred in week 33, which is the highest proportion for the week, 1985-2018. The peak harvest also occurred in week 33 when 1.2 million pink salmon were harvested. Approximately 89% of the harvest occurred in weeks $32-$ 34. Effort in the fishery increased from 30 to 78 hours in week 33 , and the number of boats fishing peaked from week 31 to 34 , with $51,65,40$, and 45 boats fishing, respectively.

2009

In 2009 , only 13% of the total harvest occurred in week 32 , which was one of the lowest proportions for the week from 1985 to 2018. Overall, harvest timing appeared to be normal and the reduced harvest in week 32 was likely a result of the number of boats dropping from 58 in week 32 to 33 in week 32, and then increasing to 61 in week 33 .

2010

The harvest of 987,000 pink salmon in District 104 in 2010 was the fourth lowest harvest from 1985 to 2018. Peak harvests occurred in weeks 31, 32, and 33, and timing appeared to be approximately normal. The overall southern Southeast Alaska harvest of 13.6 million was approximately half of the 1985-2018 average. Effort was very low in District 104 all season long with a maximum of 24 boats in week 33 .

2014

In 2014, only 4% of the total harvest occurred in week 34 , which was one of the lowest proportions for the week from 1985 to 2018. Overall, harvest timing appeared to be normal and peaked in weeks 31-33. The number of boats dropped from 91 in week 33 to 56 in week 34, but the number of hours the fishery was opened increased from 39 to 78 at the same time.

2016

In 2016, the District 104 harvest of 1.2 million pink salmon in week 29 was the largest harvest since 1960 and nearly double the second highest harvest for the week. Approximately 40% of the pink salmon harvest occurred during the Treaty period weeks 28 and 29, and then the fishery was reduced to only 6 hours in week 30 to stay within Treaty harvest limits for Skeena and Nass River sockeye salmon. The pink salmon catch dropped off to only 285,000 fish in week 33 , which is typically a peak week for District 104 , and 158,000 in week 34 before closing in week 35. The overall District 104 harvest of 3.7 million pink salmon was well below the 1985-2018 average harvest of 8.0 million and the harvest timing was clearly early. Pink salmon that returned in 2016 entered the Gulf of Alaska during a period of very warm sea surface temperatures, referred to as the blob (Bond et al. 2015), that persisted from the parent year 2014 through their return as adults in 2016 (McKinnell 2017).

Escapements were very strong at early-timed systems in District 101 (Appendix B) and the harvest of 4.8 million was 86% of the 1985-2018 average, with a peak harvest in week 31 . Harvests typically peak from week 31-33 in the district with maximum harvests occurring in week 32 on average and similar sized average harvests in weeks 31 and 33. For District 102 escapements were above management targets for the Kasaan stock group and near the lower end of the management target range for the Moira stock group (Appendix B). The peak harvest in District 102 occurred in week 32 (1.5 million), which is a week earlier than the long-term average and harvests dropped quickly in weeks $33(478,000)$ and $34(72,000)$. Escapements were
within management targets for all four stock groups in District 103 (Appendix B), and the peak harvest occurred in week 32, which is two weeks earlier than the typical peak in weeks 33 and 34. Harvests dropped to 116,000 fish by week 34 and the fishery closed in week 35 . The early harvest peaks in all three of the southernmost districts of Southeast Alaska, each with different general run timing, suggests that the early harvest timing in District 104 was likely in part due to earlier run timing for individual pink salmon stocks, rather than just differences in run strength between stocks.

2017

In 2017, the District 104 pink salmon harvest of 2.1 million fish was only 26% of the 1985-2018 average. Approximately 53% of the District 104 pink salmon harvest occurred in weeks 34 and 35 , and a record 21% of the harvest occurred in week 35 . This harvest pattern is largely a result of the fishery only opening for 20 hours during the entire Treaty period due to a poor Skeena River sockeye salmon run and continued low effort and opportunity through week 33 when only 16 boats fished District 104. In weeks 34 and 35, the fishing time increased from 39 hours in week 33 to 78 hours, and the number of boats fishing were at their highest levels for the year at 41 in week 34 and 31 in week 35.

Pink salmon returns were also very poor in districts 101 and 102, and effort was very low in most weeks of the fisheries. Peak catches occurred in week 34 in District 101 and week 36 in District 102, but these late peaks were also related to limited opportunity and effort in earlier weeks of the fisheries. The District 102 pink salmon harvest typically peaks in week 33, but in 2017 there was no effort that week. For late-timed stocks in District 103, the harvest was 86% of the 1985-2018 average and the peak harvest occurred in week 34 , which is the typical peak week for that district. Although harvests were low, in part due to conservative management aimed at achieving escapement goals, escapements to Districts 101-103 were within or above management targets for all stock groups except Sea Otter Sound.

2018
The harvest of 790,000 pink salmon in District 104 in 2018 was the lowest harvest from 1985 to 2018. Peak harvest occurred in weeks $30(201,000), 31(135,000)$, and $32(247,000)$ and timing appeared to be normal. The fishery never opened for more than 30 hours and was closed in week 35. The number of boats fishing weekly was below average all season and only 14 boats fished in week 33, which is typically a peak week of the fishery. The overall southern Southeast Alaska harvest of 5.4 million fish was the third lowest from 1985 to 2018. Pink salmon returning in 2018 went to sea and returned during weak La Niña conditions that persisted in 2017 and 2018. The PDO index was moderately positive in 2017.

ASSESSING PINK SALMON RUN TIMING THROUGH DISTRICT 104

It is possible that changes in run timing of southern Southeast Alaska pink salmon impacts the abundance of pink salmon in District 104 in specific weeks. For a variety of reasons, effectively evaluating pink salmon run timing through the District 104 fishery is not possible. There is no stock-specific harvest data collected for marine harvests of pink salmon in Southeast Alaska and genetic stock separation is not currently possible. The timing of the harvest of pink salmon is largely driven by factors unrelated to run timing of individual stocks passing through the district and is instead driven by the overall size of pink salmon runs in Southeast Alaska, the abundance
of pink salmon in the northern half of the region versus the south (which influences fleet behavior), the relative run strength of early- versus later-timed pink salmon stocks in southern Southeast Alaska, the size of Nass and Skeena sockeye salmon runs (which influences fishing opportunity prior to week 31), weather on the outer coast, and likely numerous other factors unrelated to run timing.

Although there have been numerous short-term weir projects in southern Southeast Alaska, the Hugh Smith Lake (Figure 1) weir project is the only one that has run continuously since before the Treaty was implemented, has the weir in place through the entire pink salmon run, has the majority of the pink salmon run spawning well above the weir, and has fish counts backed up by annual mark-recapture estimates (for both sockeye and coho salmon) to ensure the weir is fish tight throughout the year (Brunette and Piston 2016). Run timing of pink salmon through the Hugh Smith weir has been relatively stable over the past 39 years (Figure 44). The average midpoint of the run was reached on August $31^{\text {st }}$ from 1980 to 1999 and August $27^{\text {th }}$ from 2000 to 2018, with a similar 3-4-day earlier shift for the $25^{\text {th }}$ and $75^{\text {th }}$ percentiles of the run. Any slight perceived shift towards earlier run timing is confounded by changes with weir operations that began in the early 2000s and continue to be refined, aimed at allowing as many fish as possible to swim freely through the weir and reducing the length of time fish movement is held up by the weir structure (Piston 2008).

Long-term trends in pink salmon run timing are also available from the Tyee Test fishery on the Skeena River in northern British Columbia. The Tyee Test fishery has been conducted in the tidal portion of the Skeena River since 1955 using variable mesh gillnets with either multifilament material prior to 2002 or monofilament from 2002 forward (Beacham et al. 2014). Conversion factors were implemented to standardize the data over the entire time series (CoxRogers and Spilsted 2002). The test fishery typically runs from the second week of June to mid-to-late September and covers the entire pink salmon run; the vast majority of which occurs from mid-July to late August. Timing of Skeena River pink salmon has been highly variable and cyclical from 1956 to 2018 (Figure 45). The average mid-point of the run has remained essentially unchanged from the 1956-1984 period (8 August) to the 1985-2018 Treaty period (7 August). The average $25^{\text {th }}$ percentile of the run date shifted from 2 August to 31 July, and the average $75^{\text {th }}$ percentile of the run remained unchanged at 14 August over the same time periods. During the recent ten-year period (2009-2018), the average $25^{\text {th }}, 50^{\text {th }}$, and $75^{\text {th }}$ percentiles of the run have been reached 2, 4, and 4 days earlier, respectively, than the long-term average (Figure 45). The influence of marine harvests on the timing of Skeena River pink salmon, as measured at the Tyee Test fishery, is unknown and these small changes in perceived run timing at the test fishery may not be meaningful.

Figure 44.-Run timing of pink salmon through the Hugh Smith Lake weir, 1980-2018. No data on pink salmon were available from 1990.

Figure 45.-Run timing of pink salmon at the Tyee Test fishery on the lower Skeena River, 1956-2018.

IMPACT OF THE DISTRICT 104 PINK SALMON FISHERY ON NASS AND SKEENA RIVER SOCKEYE SALMON

Methods for Estimating the Alaska Harvest of Sockeye Salmon originating from the Nass and Skeena rivers

Abstract

The harvest of Nass and Skeena sockeye salmon in Alaska fisheries was determined through extensive sampling of commercial harvests at the major fish processing ports in Southeast Alaska. Genetic samples, scale samples, and other biological data were collected through the ADF\&G Port Sampling program from commercial sockeye salmon harvests in the commercial purse seine (primarily districts 101-104) and drift gillnet fisheries (districts 101, 106, 108) relevant to Treaty agreements (Buettner et al. 2020). Sample sizes in treaty fisheries (520$600 /$ week) were originally chosen based in the number of scales that could be practically collected and the number of samples necessary to ensure sufficient samples were available from each of the four major age classes to provide stock separation using scale pattern analysis. These sample sizes were reduced with the adoption of genetic stock identification (GSI) because fewer samples were necessary for reliable estimates of Treaty stocks. In recent years, to ensure that samples were representative of the fishery, no more than 40 samples were collected from individual vessels or up to 200 samples from a tender, and weekly or seasonal sample size objectives were set for each fishery (Buettner et al. 2020). Final estimates of the harvest of Nass and Skeena river sockeye salmon for fisheries in Alaska and Canada, as well as harvest rates and total run sizes for both stocks, were derived through run reconstruction methods outlined in Gazey and English (2000).

From 1982 to 2009, sockeye salmon stock composition of Alaska commercial harvests used in run reconstructions was estimated through scale pattern analysis (Pella and Masuda 2004; Bloomquist et al. 2002; Marshall et al. 1984). Genetic stock identification (GSI) methods to estimate stock composition were first tested in 2002. Blind tests to directly compare estimates generated by these two methods were conducted from 2002 through 2009 (NBTC 2005; NBTC unpublished data). Results of these tests showed that both methods provided accurate results; however, GSI methods provide more precise estimates, allow for identification of many more individual stocks than scale pattern analysis, use a stable baseline that does not change annually (scale pattern analysis required annual collection of known-origin scale samples from spawning populations throughout the boundary area), and are standardized and highly automated. Stock identification estimates of Alaska fisheries used in annual run reconstructions transitioned to GSI methods in 2010 and 2011 and have been based solely on GSI methods since 2012 (Rogers Olive et al. 2018; Guthrie et al. 2014). Although two methods have been used to estimate the harvest of Nass and Skeena sockeye salmon since the inception of the Treaty, the performance of both methods in blind tests suggests that assessments of the harvest of these stocks since 1985 would not be greatly impacted by the transition that occurred from the use of scales to GSI. Supporting evidence for this conclusion comes from comparisons between GSI and scale pattern analysis in calculating Alaska's compliance with Treaty harvest sharing agreements in the District 101 drift gillnet and District 104 purse seine fisheries, which showed a cumulative difference of only 0.2% and 1.6%, respectively, over the six-year period 2004-2009 (NBTC unpublished data).
GSI stock composition estimates for the district 101-103 purse seine fisheries and district 106 and 108 drift gillnet fisheries were computed by the ADF\&G Gene Conservation Laboratory and estimates for the District 104 purse seine and District 101 drift gillnet fisheries were computed
by the NOAA Auke Bay Laboratory. The ADF\&G and NOAA labs have collaborated to ensure that the same baseline populations (developed and maintained by ADF\&G) are used for analyses of Treaty fisheries in each year, and that appropriate methodologies are employed. The number of populations in the baseline have evolved over time from 151 populations in 2010 to 238 populations genotyped for 96 single-nucleotide polymorphism (SNP) markers in the current ADF\&G baseline (Rogers Olive 2018); the NOAA lab uses a baseline with a subset of 48 SNPs. Both labs used a Bayesian mixed stock analysis (MSA) approach; NOAA used the program BAYES (Pella and Masuda 2001, Rogers Olive et al. 2018) and ADF\&G used the R package rubias (Moran and Anderson 2019) to generate estimates. Direct tests of the BAYES and rubias programs have produced very similar results (ADF\&G unpublished data). In addition, stock and age composition estimates for the district 106 and 108 drift gillnet fisheries were computed by ADF\&G using a method that incorporates ages from matched scales and hatchery thermal marks on matched otoliths to help inform the genetic estimates. This method ("mark- and age-enhanced genetic mixed-stock analysis") is an extension of the Pella-Masuda model (Pella and Masuda 2001) and requires two sets of parameters: 1) a vector of stock compositions, summing to one, with a proportion for each of the wild and hatchery stocks weighted by harvest per stratum; and 2) a matrix of age composition, with a row for each of the wild and hatchery stocks (summing to one) and a column for each age class. This method utilizes all available information to assign individuals to stock of origin based on age, genotype, and otolith information.

NASS RIVER

Nass River sockeye salmon use two main migration routes as they enter inside waters on their approach to the river. The majority of these fish move inshore through Dixon Entrance and enter lower Revillagigedo Channel and upper Hecate Strait before moving into Portland Canal and arriving at the Nass River ($92-97 \%$; Hoffman et al. 1983, 1984). A smaller proportion (3-8\%) move around the north end of Prince of Wales Island and move south down Clarence Strait towards the Nass River (Hoffman et al. 1983, 1984). A portion of the fish entering Dixon Entrance or moving around the north end of Prince of Wales Island enter District 104 waters, and Nass River sockeye salmon have accounted for an annual average of 15% of the total District 104 sockeye salmon harvest from 1985 to 2018 (NBTC unpublished data).

Overall harvest rates on Nass River sockeye salmon in the District 104 purse seine fishery averaged 8.3% from 1985-2018 (Table 2; NBTC unpublished data). Harvest rates have generally declined along with effort in the fishery, and the recent 10-year average (2009-2018) harvest rate of 3.1% is well below the 1985-2000 average of 11.2%. Harvest rates on Nass River sockeye salmon in the District 104 purse seine fishery have ranged from a low of 0.2% in 2010 to a high of 28.8% in 2007 (Figure 46). Harvest rates during the pre-week 31 Treaty period averaged 2.5% (range $=0.1-16.2 \%$) from 1985 to 2018 and only 1.0% from 2009 to 2018. Harvest rates post week 30 averaged 5.9% (range $=0.1-24.8 \%$) from 1985 to 2018 and 2.1% from 2009 to 2018 (NBTC unpublished data). The overall harvest rate of Nass River sockeye salmon in all Canadian and Alaska fisheries has declined from an average of 68% from 1985 to 2000 to 48% from 2009 to 2018 (Figure 47).

Figure 46.-Harvest rate on Nass River sockeye salmon in the District 104 purse seine fishery, 19852018.

Figure 47.-Total run of Nass River sockeye salmon and overall harvest rate by year, 1985-2018.
Average weekly harvest rates on Nass River sockeye salmon peaked in weeks 30, 31, and 32 at $1.0,2.7$, and 1.7%, respectively (Table 2). Average harvest rates were less than 1% in all other
weeks of the fishery. There have been thirteen instances of weekly harvest rates exceeding 5\% and the maximum weekly harvest rates were 11.8% in week 31 in 1996 and 12.3% in week 31 in 1997 (Table 2). In both 1996 and 1997 Nass River total runs were approximately one million fish

SKEENA RIVER

Skeena River sockeye salmon use three migration routes as they enter inside waters on their approach to the river. Most of these fish move inshore through Dixon Entrance and enter upper Hecate Strait before arriving at the Skeena River (77-98\%; Hoffman et al. 1983, 1984). A small proportion ($2-3 \%$) move around the north end of Prince of Wales Island and move south down Clarence Strait towards the Skeena River (Hoffman et al. 1983, 1984). In some years a significant component of the Skeena River sockeye salmon run may arrive via lower Hecate Strait (20% in 1982; Hoffman et al. 1983). A portion of the fish entering Dixon Entrance or moving around the north end of Prince of Wales Island enter District 104 waters, and Skeena River sockeye salmon have accounted for an annual average of 45% of the total District 104 sockeye salmon harvest from 1985 to 2018 (NBTC unpublished data).

Harvest rates on Skeena River sockeye salmon in the District 104 purse seine fishery averaged 7.6% from 1985-2018 (NBTC unpublished data). Harvest rates have generally declined along with effort in the fishery, and the recent 10-year average (2009-2018) harvest rate of 5.6% is well below the 1985-2000 average of 9.3%. Harvest rates on Skeena River sockeye salmon in the District 104 purse seine fishery have ranged from a low of 0.4% in 2010 to a high of 16.8% in 1994 (Figure 48). Harvest rates during the pre-week 31 Treaty period averaged 1.6% (range = $0.2-7.9 \%$) from 1985 to 2018 and only 0.8% from 2009 to 2018 . Harvest rates post week 30 averaged 6.0% (range $=0.2-14.6 \%$) from 1985 to 2018 and 4.6% from 2009 to 2018 (NBTC unpublished data). The overall harvest rate of Skeena River sockeye salmon in all Canadian and Alaska fisheries has declined from an average of 57% from 1985 to 2000 to 31% from 2009 to 2018 (Figure 49).
Harvest rates on Skeena River sockeye salmon in the District 104 purse seine fishery have been low in years of very poor Skeena River total runs (Figure 50). In the eight years since 1985 that had Skeena River sockeye salmon total runs of less than 1.5 million fish, the harvest rate in the District 104 purse seine fishery has averaged only 4.4% (Figure 50). In the four most recent runs below 1.5 million fish the District 104 harvest rate has averaged only 2.6% (range $=0.4-4.5 \%$). In the two most recent years of very low runs, the total harvest rate in all Canadian and Alaskan fisheries combined was below 10\% (Figure 50).

Table 2.-Weekly harvest rates on Nass River sockeye salmon in the District 104 purse seine fishery.

Statistical Week											
Year	27	28	29	30	31	32	33	34	35	36	Total
1985	0.0\%	0.1\%	0.1\%	0.7\%	0.6\%	0.6\%	0.2\%	0.5\%	0.2\%	0.0\%	3.0\%
1986	0.0\%	0.4\%	1.5\%	1.8\%	5.0\%	5.3\%	2.6\%	0.1\%	0.0\%	0.0\%	16.7\%
1987	0.0\%	0.3\%	2.1\%	1.2\%	0.5\%	2.6\%	0.0\%	0.0\%	0.0\%	0.0\%	6.7\%
1988	0.0\%	0.5\%	2.8\%	1.6\%	0.4\%	2.1\%	0.8\%	0.3\%	0.2\%	0.0\%	8.9\%
1989	0.2\%	0.7\%	1.3\%	2.0\%	3.5\%	1.6\%	0.8\%	0.2\%	0.1\%	0.0\%	10.4\%
1990	2.9\%	2.8\%	0.9\%	0.6\%	5.9\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	13.0\%
1991	0.0\%	0.6\%	0.8\%	0.2\%	4.6\%	3.5\%	0.2\%	0.0\%	0.0\%	0.0\%	10.1\%
1992	0.0\%	0.5\%	0.2\%	0.0\%	3.9\%	2.6\%	1.0\%	0.2\%	0.1\%	0.0\%	8.5\%
1993	0.0\%	0.9\%	0.4\%	0.7\%	3.1\%	2.8\%	0.3\%	0.1\%	0.1\%	0.0\%	8.5\%
1994	0.0\%	0.4\%	1.3\%	4.2\%	5.3\%	1.3\%	1.6\%	0.4\%	0.0\%	0.0\%	14.6\%
1995	0.1\%	0.1\%	0.6\%	1.2\%	4.6\%	1.0\%	0.8\%	0.5\%	0.3\%	0.0\%	9.2\%
1996	0.0\%	0.6\%	2.3\%	0.7\%	11.8\%	0.4\%	0.1\%	0.1\%	0.0\%	0.0\%	15.9\%
1997	0.0\%	6.1\%	4.3\%	5.8\%	12.3\%	0.4\%	0.5\%	0.2\%	0.0\%	0.0\%	29.6\%
1998	0.0\%	0.1\%	0.3\%	0.4\%	2.6\%	6.7\%	4.1\%	1.8\%	0.4\%	0.0\%	16.5\%
1999	0.0\%	0.0\%	0.1\%	0.0\%	0.1\%	1.4\%	1.3\%	1.0\%	0.3\%	0.0\%	4.2\%
2000	0.0\%	0.0\%	0.3\%	0.3\%	0.8\%	0.8\%	0.4\%	0.1\%	0.0\%	0.0\%	2.8\%
2001	0.5\%	2.6\%	2.1\%	0.0\%	5.9\%	0.9\%	0.3\%	0.4\%	0.1\%	0.0\%	12.8\%
2002	0.0\%	0.1\%	0.2\%	0.2\%	0.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.6\%
2003	0.0\%	0.0\%	0.4\%	0.4\%	1.1\%	1.3\%	0.2\%	0.5\%	0.3\%	0.0\%	4.2\%
2004	0.0\%	0.2\%	0.2\%	0.7\%	1.6\%	2.9\%	2.6\%	2.6\%	0.6\%	0.0\%	11.3\%
2005	0.0\%	0.3\%	0.2\%	0.6\%	0.6\%	2.4\%	0.9\%	0.5\%	0.1\%	0.0\%	5.7\%
2006	0.1\%	0.2\%	0.2\%	2.3\%	3.0\%	0.8\%	0.3\%	0.3\%	0.0\%	0.0\%	7.1\%
2007	0.3\%	0.3\%	0.6\%	2.8\%	6.2\%	8.6\%	6.0\%	2.1\%	1.9\%	0.0\%	28.8\%
2008	0.0\%	0.0\%	0.2\%	0.3\%	0.9\%	0.8\%	0.5\%	0.3\%	0.1\%	0.0\%	3.1\%
2009	0.0\%	0.0\%	0.1\%	0.8\%	3.1\%	0.1\%	0.6\%	0.8\%	0.2\%	0.0\%	5.7\%
2010	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	0.2\%
2011	0.0\%	0.1\%	0.4\%	0.6\%	0.8\%	0.9\%	0.3\%	0.0\%	0.0\%	0.0\%	3.1\%
2012	0.0\%	0.0\%	0.1\%	0.0\%	0.1\%	0.2\%	0.1\%	0.0\%	0.0\%	0.0\%	0.6\%
2013	0.0\%	0.1\%	0.1\%	0.1\%	0.2\%	0.1\%	0.0\%	0.1\%	0.0\%	0.0\%	0.7\%
2014	0.0\%	0.3\%	0.6\%	1.1\%	0.5\%	0.4\%	0.2\%	0.8\%	0.0\%	0.0\%	3.9\%
2015	0.0\%	0.2\%	0.1\%	0.7\%	1.2\%	1.2\%	0.7\%	0.8\%	0.2\%	0.0\%	5.1\%
2016	0.0\%	1.2\%	2.1\%	0.3\%	1.4\%	2.6\%	0.5\%	0.3\%	0.0\%	0.0\%	8.3\%
2017	0.0\%	0.0\%	0.3\%	0.2\%	0.6\%	0.3\%	0.3\%	0.1\%	0.1\%	0.0\%	2.0\%
2018	0.0\%	0.0\%	0.1\%	0.2\%	0.0\%	0.2\%	0.3\%	0.4\%	0.0\%	0.0\%	1.3\%
Mean	0.1\%	0.6\%	0.8\%	1.0\%	2.7\%	1.7\%	0.8\%	0.5\%	0.2\%	0.0\%	8.3\%

Figure 48.-Harvest rate on Skeena River sockeye salmon in the District 104 purse seine fishery, 19852018.

Figure 49.-Total run of Skeena River sockeye salmon and overall harvest rate by year, 1985-2018.

Figure 50.-Harvest of Skeena River sockeye salmon in the District 104 purse seine fishery in years of very low abundance. The dashed line represents the Skeena River sockeye salmon escapement goal of 900,000 fish.

Average weekly harvest rates on Skeena River sockeye salmon peaked in weeks 31, 32, and 33 at $1.9,2.2$, and 1.0% respectively (Table 3). Average harvest rates were less than 1% in all other weeks of the fishery. There have been five instances of weekly harvest rates exceeding 5% and the maximum weekly harvest rates were 7.0% in week 32 in 2016, 6.3% in week 31 in 1992, and 6.2% in week 32 in 1994 (Table 3).

Table 3.-Weekly harvest rates on Skeena River sockeye salmon in the District 104 purse seine fishery.

Statistical Week											
Year	27	28	29	30	31	32	33	34	35	36	Total
1985	0.0\%	0.1\%	0.2\%	0.9\%	1.5\%	2.0\%	0.5\%	0.3\%	0.1\%	0.0\%	5.7\%
1986	0.0\%	0.1\%	0.5\%	1.6\%	2.7\%	4.9\%	1.5\%	0.5\%	0.2\%	0.0\%	12.0\%
1987	0.0\%	0.0\%	0.4\%	0.4\%	0.5\%	1.1\%	0.1\%	0.0\%	0.0\%	0.0\%	2.7\%
1988	0.0\%	0.2\%	2.0\%	2.0\%	0.6\%	4.5\%	1.3\%	0.3\%	0.3\%	0.1\%	11.3\%
1989	0.2\%	1.3\%	0.6\%	1.6\%	2.3\%	1.3\%	0.4\%	0.1\%	0.1\%	0.0\%	8.1\%
1990	0.2\%	0.7\%	1.7\%	1.0\%	3.8\%	2.5\%	1.8\%	1.0\%	0.1\%	0.0\%	12.7\%
1991	0.0\%	0.3\%	0.9\%	0.3\%	5.9\%	3.7\%	1.8\%	0.9\%	0.2\%	0.0\%	14.0\%
1992	0.0\%	0.3\%	0.6\%	0.2\%	6.3\%	4.2\%	2.4\%	0.8\%	0.3\%	0.0\%	15.1\%
1993	0.0\%	0.3\%	0.2\%	1.1\%	3.0\%	1.4\%	0.9\%	0.5\%	0.7\%	0.1\%	8.2\%
1994	0.0\%	0.1\%	0.4\%	1.6\%	3.6\%	6.2\%	3.5\%	0.9\%	0.2\%	0.1\%	16.8\%
1995	0.0\%	0.0\%	0.2\%	0.4\%	1.4\%	1.3\%	0.9\%	0.7\%	0.3\%	0.0\%	5.2\%
1996	0.0\%	0.1\%	1.2\%	0.1\%	1.6\%	2.0\%	0.5\%	0.2\%	0.2\%	0.0\%	5.9\%
1997	0.0\%	2.6\%	3.2\%	2.1\%	2.0\%	1.1\%	1.6\%	1.4\%	0.0\%	0.0\%	14.1\%
1998	0.0\%	0.1\%	0.1\%	0.3\%	1.3\%	5.1\%	1.4\%	1.0\%	0.2\%	0.0\%	9.6\%
1999	0.0\%	0.1\%	0.1\%	0.0\%	0.1\%	1.6\%	1.3\%	0.6\%	0.3\%	0.1\%	4.2\%
2000	0.0\%	0.1\%	0.3\%	0.2\%	0.8\%	0.8\%	0.4\%	0.0\%	0.0\%	0.0\%	2.5\%
2001	0.1\%	1.2\%	1.5\%	0.3\%	3.8\%	1.0\%	0.3\%	0.2\%	0.0\%	0.0\%	8.5\%
2002	0.0\%	0.1\%	0.3\%	0.4\%	0.1\%	0.0\%	0.0\%	0.0\%	0.0\%	0.0\%	1.1\%
2003	0.0\%	0.0\%	0.5\%	1.1\%	1.1\%	1.3\%	0.4\%	0.6\%	0.2\%	0.0\%	5.2\%
2004	0.0\%	0.0\%	0.1\%	0.4\%	1.5\%	2.4\%	1.8\%	1.5\%	0.3\%	0.0\%	7.9\%
2005	0.0\%	0.2\%	0.3\%	0.6\%	0.8\%	2.8\%	1.4\%	3.5\%	0.5\%	0.0\%	10.1\%
2006	0.0\%	0.1\%	0.5\%	1.1\%	1.3\%	0.8\%	0.1\%	0.3\%	0.0\%	0.0\%	4.2\%
2007	0.2\%	0.5\%	0.5\%	1.3\%	3.8\%	3.5\%	3.7\%	1.4\%	0.5\%	0.0\%	15.3\%
2008	0.0\%	0.0\%	0.0\%	0.1\%	0.2\%	0.3\%	0.3\%	0.2\%	0.0\%	0.0\%	1.0\%
2009	0.0\%	0.0\%	0.1\%	0.3\%	1.9\%	0.3\%	0.6\%	0.5\%	0.1\%	0.0\%	3.8\%
2010	0.0\%	0.0\%	0.0\%	0.1\%	0.1\%	0.1\%	0.0\%	0.0\%	0.1\%	0.0\%	0.4\%
2011	0.0\%	0.0\%	0.2\%	0.3\%	1.3\%	2.8\%	0.7\%	0.1\%	0.0\%	0.0\%	5.4\%
2012	0.0\%	0.0\%	0.2\%	0.1\%	0.2\%	0.7\%	0.3\%	0.1\%	0.0\%	0.0\%	1.7\%
2013	0.0\%	0.1\%	0.2\%	0.3\%	0.6\%	0.3\%	0.1\%	0.0\%	0.0\%	0.0\%	1.5\%
2014	0.0\%	0.4\%	0.5\%	1.0\%	2.5\%	3.3\%	1.0\%	1.7\%	0.4\%	0.0\%	10.9\%
2015	0.0\%	0.1\%	0.1\%	0.4\%	3.3\%	3.3\%	1.5\%	1.8\%	0.5\%	0.0\%	11.0\%
2016	0.0\%	0.7\%	1.9\%	0.3\%	2.4\%	7.0\%	1.2\%	0.6\%	0.0\%	0.0\%	14.1\%
2017	0.0\%	0.0\%	0.3\%	0.2\%	0.8\%	0.5\%	0.6\%	1.0\%	0.9\%	0.2\%	4.5\%
2018	0.0\%	0.0\%	0.1\%	0.4\%	0.1\%	0.3\%	0.3\%	1.3\%	0.0\%	0.0\%	2.4\%
Mean	0.0\%	0.3\%	0.6\%	0.7\%	1.9\%	2.2\%	1.0\%	0.7\%	0.2\%	0.0\%	7.6\%

Conservation Actions in the District 104 Purse Seine fishery

In order to meet Treaty obligations, Alaska typically reduces fishing time in District 104 to ensure the harvest of Canadian Skeena and Nass river sockeye salmon stays within agreed limits. From 1985 to 1988, the Chapter 2 agreement called for a maximum of 480,000 sockeye salmon harvested over a four-year period (prior to week 31), or approximately 120,000 fish per year. This agreement was rolled over for one year in 1989, and the pre-week 31 sockeye salmon harvest limit remained at 120,000 for the year. From 1990 to 1993, the agreement again called for a maximum of 480,000 sockeye salmon harvested over a four-year period (prior to week 31), or approximately 120,000 fish per year. From 1994 through 1998 there was no agreement in place.
In 1999, the new agreement switched management to an abundance-based approach that has remained in place to the present time. Since 1999, Alaska has had an annual catch share of 2.45% of the Nass and Skeena rivers sockeye salmon AAH for the year, which was calculated as the combined total run of adult Nass and Skeena sockeye salmon minus the combined escapement target of 1.1 million fish, or the actual spawning escapement if it is below the target level. Since 1999, the allowable harvest in the District 104 fishery prior to week 31 has only exceeded 100,000 fish in one year (2000) and has been below 50,000 fish 75% of the time from 1999 to 2018. Due to this reduction in allowable sockeye salmon harvest in most years, Alaska has had to reduce fishing time and/or area in the fishery specifically to conserve Canadian sockeye salmon on an annual basis since 1999.
The following paragraphs describe conservation actions Alaska has taken in the District 104 fishery specifically for Canadian sockeye salmon conservation; closures and reduced time related to domestic stock considerations were not included in this assessment. The District 104 traditional purse seine fishery opens on the first Sunday in July, which typically occurs in weeks 27 or 28 . Fishing time typically begins with single day openings of varying length and if pink salmon returns are strong enough to warrant additional fishing time, the fishery will go to a 2 -days-on/2-days-off, or a more continuous fishing schedule in years of very large pink salmon returns (Gray et al. 2018). In the following paragraphs "initial" opening simply refers to the first opening in a statistical week and "midweek" openings refers to the second opening that may occur.

In 1989, there was a 1-year rollover of the existing agreement and the fishery was managed with a goal of 120,000 sockeye salmon prior to week 31 . To conserve Canadian sockeye salmon, Alaska delayed the initial opening in week 29 by one day and the fishery remained closed for the potential midweek opening in week 30.

In 1990, the fishery was managed under an agreement for a total maximum harvest of 480,000 sockeye salmon over a 4 -year period (1990-1993; prior to week 31), with a yearly goal of 120,000 fish. Fishing was stopped if a harvest of 160,000 sockeye salmon was reached prior to week 31. To conserve Canadian sockeye salmon, Alaska reduced the initial openings in week 29 from 15 to 6 hours and the fishery remained closed for the potential midweek opening. The initial opening in week 30 was reduced from 15 to 6 hours and was open only north of Juel Point, and the midweek opening was again closed.

In 1991, the fishery continued to be managed under an agreement for a total maximum harvest of 480,000 sockeye salmon over a 4-year period (1990-1993; prior to week 31), with a yearly goal of 120,000 fish. To conserve Canadian sockeye salmon, Alaska reduced the initial openings in
week 29 from 15 to 10 hours and reduced the midweek opening from 15 to 10 hours. In week 30 , the initial opening was reduced from 15 to 6 hours and was only open south of Ritter Point, and the fishery remained closed for the potential midweek opening.
In 1992, the fishery continued to be managed under an agreement for a total maximum harvest of 480,000 sockeye salmon over a 4-year period (1990-1993; prior to week 31), with a yearly goal of 120,000 fish. To conserve Canadian sockeye salmon, Alaska closed for the potential midweek opening in week 28 . In week 29 , the initial opening was reduced from 15 to 8 hours, and the fishery remained closed for the potential midweek opening. In week 30, the initial opening was reduced from 15 to 6 hours and was only open south of Cape Augustine, and the fishery remained closed for the potential midweek opening.
In 1993, the fishery continued to be managed under an agreement for a total maximum harvest of 480,000 sockeye salmon over a 4-year period (1990-1993; prior to week 31), with a yearly goal of 120,000 fish. To conserve Canadian sockeye salmon, Alaska reduced the initial openings in weeks 28 and 29 from 15 to 10 hours and remained closed for the potential midweek openings. In week 30 , the midweek opening was reduced from 15 to 10 hours.

In 1994, there was no Annex in place and the U.S. conducted the fishery in a manner limiting fishing time and sockeye salmon harvest in District 104 to levels like the 1990-1993 time period (120,000 sockeye salmon harvest pre-week 31). To conserve Canadian sockeye salmon, Alaska reduced the initial openings in week 28 from 15 to 10 hours and the fishery remained closed for the potential midweek opening. The initial opening in week 29 was reduced from 39 to two 7hour openings, and the midweek opening was reduced from 15 to 8 hours. The midweek opening in week 30 was also reduced from 15 to 8 hours for Canadian sockeye salmon conservation.

In 1995, there was no Annex in place and the U.S. conducted the fishery in a manner limiting fishing time and sockeye salmon harvest in District 104 to levels like the 1990 to 1993 time period. To conserve Canadian sockeye salmon, Alaska reduced the initial openings in weeks 27 and 28 from 15 to 10 hours, and the fishery remained closed for the potential midweek openings in both weeks. The midweek opening in week 30 was also reduced from 15 to 8 hours for Canadian sockeye salmon conservation.

In 1996, there was no Annex in place and the U.S. managed the District 104 fishery consistent with Treaty principles and objectives. To conserve Canadian sockeye salmon, Alaska reduced the initial opening in week 28 from 15 to 10 hours, and the fishery remained closed for the potential midweek opening. In week 29 , the initial opening was reduced from 15 to 7 hours and the potential midweek opening was closed. In week 30, the fishery was open only north of Cape Bartolome for 7 hours for Canadian sockeye salmon conservation. The potential midweek opening in week 30 was also closed. These closures were implemented despite the highest pink salmon abundance on record at the time. The final southern Southeast Alaska pink salmon harvest was 53.7 million fish, and approximately 19 million were harvested in District 104.

In 1997, there was no Annex in place and the U.S. managed the District 104 fishery consistent with Treaty principles and objectives. The initial opening in week 30 was closed to conserve Canadian Nass River sockeye salmon.

In 1998, there was no Annex in place and the U.S. managed the District 104 fishery consistent with Treaty principles and objectives. In week 28 , the initial opening was reduced from 15 to 8 hours, and in weeks 29 and 30 the initial opening was reduced to 12 hours. In all three weeks of
the Treaty period, the potential midweek openings remained closed for Canadian sockeye salmon conservation.

In 1999, the new Treaty agreement adopted an abundance-based management approach and dictated a District 104 sockeye harvest of 2.45% of AAH of Nass and Skeena rivers sockeye salmon prior to week 31. Canada forecasted a combined 1.2 million sockeye salmon run to the Skeena and Nass rivers. To stay within the AAH on Canadian sockeye salmon, Alaska reduced the initial openings in weeks $28-30$ from 15 to 10 hours and closed for midweek openings in all three Treaty period weeks. The total run of 1.8 million sockeye salmon to the Skeena and Nass rivers was above the preseason forecasts and Alaska ended the season with a 17,209 fish underage of Canadian sockeye salmon in the District 104 fishery.

In 2000, Canada forecasted a combined 3.1 million sockeye salmon run to the Skeena and Nass rivers. To stay within the AAH on Canadian sockeye salmon, Alaska reduced the initial and midweek openings in week 28 from 15 to 12 hours. In week 29 , the initial opening was reduced from 15 to 12 hours. The total run of 5.3 million sockeye salmon to the Skeena and Nass rivers was well above the preseason forecasts and Alaska ended the season with a 74,126 fish underage of Canadian sockeye salmon in the District 104 fishery.

In 2001, Canada forecasted a combined 3.5 million sockeye salmon run to the Skeena and Nass rivers. To stay within the AAH on Canadian sockeye salmon, Alaska reduced the initial opening in week 27 from 15 to 12 hours and closed for the midweek opening. In week 28 , the initial opening was reduced from 15 to 12 hours and the midweek opening was reduced from 15 to 10 hours. In week 29 the initial opening was reduced from 15 to 10 hours and closed for the midweek opening, and in week 30 the initial opening was reduced from 15 to 6 hours and there was no midweek opening. The total run of 5.0 million sockeye salmon to the Skeena and Nass rivers was well above the preseason forecasts, and Alaska ended the season with a 73,154 fish overage of Canadian sockeye salmon in the District 104 fishery despite closures and decreased hours in all weeks of the Treaty period. The overage occurred primarily due to very high abundance of Canadian sockeye salmon.

In 2002, Canada forecasted a combined 1.7 million sockeye salmon run to the Skeena and Nass rivers. To stay within the AAH on Canadian sockeye salmon, Alaska reduced the initial opening in week 28 from 15 to 12 hours and closed for the midweek opening. The total run of 2.8 million sockeye salmon to the Skeena and Nass rivers was well above the preseason forecasts, and Alaska ended the season with a 23,640 fish underage of Canadian sockeye salmon in the District 104 fishery.
In 2003, Canada forecasted a combined 1.9 million sockeye salmon run to the Skeena and Nass rivers. To stay within the AAH on Canadian sockeye salmon, Alaska reduced the initial opening in week 28 from 15 to 10 hours and closed for the midweek opening. In week 29 , the initial opening was reduced from 15 to 10 hours and the midweek opening was reduced from 39 hours to two 6-hour openings. In week 30, the initial opening was reduced from 39 hours to two 6 -hour openings and the midweek opening was reduced from 15 to 8 hours. The total run of 3.3 million sockeye salmon to the Skeena and Nass rivers was well above the preseason forecasts, and Alaska ended the season with a 9,802 fish underage of Canadian sockeye salmon in the District 104 fishery.

In 2004, Canada forecasted a combined 2.9 million sockeye salmon run to the Skeena and Nass rivers. To stay within the AAH on Canadian sockeye salmon, Alaska reduced initial and
midweek openings in week 28 from 15 to 10 hours and from 15 to 12 hours in week 29 . In week 30 , the midweek opening was reduced from 39 hours to two 12 -hour openings. The total run of 2.6 million sockeye salmon to the Skeena and Nass rivers was below the preseason forecasts, and Alaska ended the season with a 18,032 fish underage of Canadian sockeye salmon in the District 104 fishery.

In 2005, Canada forecasted a combined 2.4 million sockeye salmon run to the Skeena and Nass rivers. To stay within the AAH on Canadian sockeye salmon, Alaska reduced initial opening in weeks 28 and 29 from 15 to 12 hours, and the midweek openings were reduced from 15 to 10 hours. In week 30, the initial and midweek openings were reduced from 39 hours to two 6 -hour openings each. The total run of 1.8 million sockeye salmon to the Skeena and Nass rivers was below the preseason forecasts, and Alaska ended the season with a 569 fish overage of Canadian sockeye salmon in the District 104 fishery.

In 2006, Canada forecasted a combined 3.0 million sockeye salmon run to the Skeena and Nass rivers. To stay within the AAH on Canadian sockeye salmon, Alaska reduced the initial opening in week 27 from 15 to 12 hours and the midweek opening in week 28 was reduced from 15 to 8 hours. The total run of 3.6 million sockeye salmon to the Skeena and Nass rivers was above the preseason forecasts and Alaska ended the season with a 6,452 fish overage of Canadian sockeye salmon in the District 104 fishery.
In 2007, Canada forecasted a combined 3.3 million sockeye salmon run to the Skeena and Nass rivers. To stay within the AAH on Canadian sockeye salmon, Alaska reduced the initial openings in weeks 27 and 28 from 15 to 12 hours and had no midweek fishery in week 28 . In week 29 , the initial opening was reduced from 15 to 8 hours. In week 30 , the initial opening was reduced from 15 to 12 hours, and the midweek opening was reduced from 15 to 6 hours. The total run of 2.8 million sockeye salmon to the Skeena and Nass rivers was below the preseason forecasts and Alaska ended the season with a 35,139 fish overage of Canadian sockeye salmon in the District 104 fishery.

In 2008, Canada forecasted a combined 1.6 million sockeye salmon run to the Skeena and Nass rivers. To stay within the AAH on Canadian sockeye salmon, Alaska reduced the initial opening in week 28 from 15 to 8 hours and had no midweek fishery. In week 29 , the initial opening was reduced from 15 to 10 hours and there was again no midweek opening. The total run of 2.5 million sockeye salmon to the Skeena and Nass rivers was above the preseason forecasts, and Alaska ended the season with a 30,197 fish underage of Canadian sockeye salmon in the District 104 fishery.

In 2009, Canada forecasted a combined 2.8 million sockeye salmon run to the Skeena and Nass rivers. To stay within the AAH on Canadian sockeye salmon, Alaska reduced the initial opening in week 28 from 15 to 12 hours. The total run of 1.6 million sockeye salmon to the Skeena and Nass rivers was well below the preseason forecasts. Despite the fact that the Skeena River total run of 1.0 million was less than half of the preseason forecast, Alaska ended the season with a 3,325 fish underage of Canadian sockeye salmon in the District 104 fishery and the total harvest rate on Skeena River sockeye salmon in District 104 was only 3.8% for the season.

In 2010, Canada forecasted a combined 1.3 million sockeye salmon run to the Skeena and Nass rivers. To stay within the AAH on Canadian sockeye salmon, Alaska reduced the initial and midweek openings in week 28 from 15 to 10 hours. The total run of 1.4 million sockeye salmon
to the Skeena and Nass rivers was very close to the preseason forecasts. Alaska ended the season with a 9,656 fish underage of Canadian sockeye salmon in the District 104 fishery.

In 2011, Canada forecasted a combined 1.3 million sockeye salmon run to the Skeena and Nass rivers. To stay within the AAH on Canadian sockeye salmon, Alaska reduced the initial and midweek openings in week 28 from 15 to 12 hours. Fish passage through the Tyee test fishery began to increase in early July and the total run of 2.5 million sockeye salmon to the Skeena and Nass rivers was well above preseason forecasts. Alaska ended the season with a 17,407 fish underage of Canadian sockeye salmon in the District 104 fishery.
In 2012, Canada forecasted a combined 1.8 million sockeye salmon run to the Skeena and Nass rivers. To stay within the AAH on Canadian sockeye salmon, Alaska reduced the initial opening in week 27 from 15 to 12 hours. The total run of 2.7 million sockeye salmon to the Skeena and Nass rivers was well above preseason forecasts and Alaska ended the season with a 30,513 fish underage of Canadian sockeye salmon in the District 104 fishery.
In 2013, Canada forecasted a combined 1.2 million sockeye salmon run to the Skeena and Nass rivers. The Skeena River forecast of 700,000 sockeye salmon was particularly poor and was well below the escapement target of 900,000 fish. To stay within the AAH on Canadian sockeye salmon, Alaska reduced the initial openings in weeks 28 and 29 to 12 hours and remained closed for potential mid-week openings. Opening time remained restrictive in week 30 when the fishery was only opened initially for 12 hours. Due to very low catches of sockeye salmon, the fishery was opened for a short 10 -hour midweek opening in week 30. Although Southeast Alaska was experiencing the largest pink salmon returns ever recorded, Alaska took the unprecedented step of making a closure to the District 104 fishery after the Treaty period due to extreme concerns with the Skeena River sockeye salmon run. In week 31, District 104 was closed south of Juel Point to further reduce the harvest of Skeena River sockeye salmon. The total run of 981,000 sockeye salmon to the Skeena and Nass rivers was just below the preseason forecasts. Despite harvesting 10.9 million pink salmon in the District 104 fishery, only 7,400 Skeena River sockeye salmon were harvested, and Alaska ended the season with a 4,078 fish underage of Canadian sockeye salmon.
In 2014, Canada forecasted a combined 2.9 million sockeye salmon run to the Skeena and Nass rivers. To stay within the AAH on Canadian sockeye salmon, Alaska did not open the fishery for the mid-week potential opening in week 29. The total run of 3.8 million sockeye salmon to the Skeena and Nass rivers was well above preseason forecasts and Alaska ended the season with a 7,254 fish overage of Canadian sockeye salmon in the District 104 fishery.
In 2015, Canada forecasted a combined 4.2 million sockeye salmon run to the Skeena and Nass rivers. To stay within the AAH on Canadian sockeye salmon, Alaska did not open the fishery for the midweek potential opening in week 29 and reduced the midweek openings in week 30 from 15 to 12 hours. The total run of 3.0 million sockeye salmon to the Skeena and Nass rivers was below preseason forecasts. Despite the lower-than-expected run, Alaska ended the season with a 25,485 fish underage of Canadian sockeye salmon in the District 104 fishery.
In 2016, Canada forecasted a combined 1.8 million sockeye salmon run to the Skeena and Nass rivers. To stay within the AAH on Canadian sockeye salmon, Alaska reduced the midweek openings in weeks 28 and 29 to 12 hours. Opening time was more restrictive in week 30 when the fishery was only opened initially for 6 hours and there was no mid-week opening. The total run of 2.1 million sockeye salmon to the Skeena and Nass rivers was just above the preseason
forecasts. Despite the higher than expected run and reduced fishing time, Alaska ended the season with a 39,553 fish overage of Canadian sockeye salmon in the District 104 fishery.

In 2017, Canada forecasted an extremely poor run of sockeye salmon to the Skeena River and a below average run to the Nass River. The Skeena River sockeye salmon forecast of 594,000 fish was well below the escapement target, and the combined forecast for the Nass and Skeena rivers of just over one million fish indicated that there would be very little AAH on Canadian sockeye salmon. Alaska implemented a very restrictive fishing regime in District 104 and kept the fishery closed for the first four potential openings in weeks 27,27 midweek, 28 , and 28 midweek. In week 29 , the fishery initially opened for a restrictive 10 hours and was closed for the potential midweek opening due to continued Canadian sockeye salmon concerns. Opening time continued to be very restrictive in week 30 when the fishery was only opened initially for 6 hours and there was no mid-week opening. Fish passage through the Tyee test fishery began to increase in midJuly, and the total run of 1.1 million sockeye salmon to the Skeena River greatly exceeded the preseason and early inseason forecasts. Despite the higher-than-expected total run to the Skeena River, Alaska ended the season very close to the AAH with a 992 fish underage of Canadian sockeye salmon in the District 104 fishery.
In 2018, Canada again forecasted an extremely poor run of sockeye salmon to the Skeena River and a below-average run to the Nass River. The Skeena River sockeye salmon forecast of 645,000 fish was well below the escapement target and the combined forecast for the Nass and Skeena rivers of just over one million fish indicated that there would be very little AAH on Canadian sockeye salmon. Alaska implemented a very restrictive fishing regime in District 104 and kept the fishery closed for the first four potential openings in weeks 27,27 midweek, 28, and 28 midweek. In week 29 , the fishery initially opened for a restrictive 8 hours and in the midweek opening for 10 hours due to continued Canadian sockeye salmon concerns. Opening time continued to be very restrictive in week 30 when the fishery was only opened initially for 6 hours and there was no mid-week opening. Fish passage through the Tyee Test Fishery began to increase significantly in mid-July, and the total run of 1.8 million sockeye salmon to the Skeena River greatly exceeded the preseason and early inseason forecasts. Alaska ended the season with a preliminary estimate of a 14,200 fish underage of Canadian sockeye salmon in the District 104 fishery.

DISCUSSION

The District 104 purse seine fishery has undergone continuous change since it began in the early 1930s. Until the late 1960 s , the fishery was generally opened for 5.5 days, which was two days longer than fisheries on more inside waters (ADF\&G unpublished document). The long fishing periods were allowed due to the belief that weather and rough seas would limit effort and that the fishery utilized only a small area of the outer coast (ADF\&G unpublished document). To manage the district based on run strength, the standard fishing week was reduced to 3.5 days in 1969 to match inside districts. Throughout the 1970s and early 1980s, opening hours were based on domestic pink salmon returns and were frequently reduced, or in some cases closed for openings when pink salmon abundance was very low. The fishery also became a limited entry fishery in 1975, when 419 permanent purse seine permits were issued for Southeast Alaska (Shriver 2014).
With the signing of the Treaty in 1985, early season management of the fishery became tied to the abundance of Skeena and Nass river sockeye salmon, as well as domestic pink salmon returns. The initial agreements allowed for an annual harvest of 120,000 sockeye salmon in the

District 104 fishery prior to week 31. At the time this agreement was reached, pink salmon abundance was increasing dramatically, and Skeena and Nass river sockeye salmon runs were at historical high levels. This resulted in a situation where Alaska frequently had to reduce opportunity in the fishery prior to week 31 despite very high abundance of both Canadian sockeye salmon and Alaskan pink salmon. From 1985 to 1998, pink salmon harvests in Southeast Alaska averaged approximately 43 million fish (Piston and Heinl 2014) and the combined Nass and Skeena river sockeye salmon runs averaged 4.7 million fish. From 1985 to 1998, opportunity in the District 104 fishery prior to week 31 averaged just 61 hours, compared to 198 hours from 1969 to 1984 , despite a much higher abundance of fish. A high abundance of both species in most years made it much more likely that Alaska would reach the 120,000 sockeye salmon harvest limit prior to week 31. Conversely, in a poor year for Skeena River sockeye salmon, like 1998 (the last year Alaska could have managed to a 120,000 pre-week 31 sockeye salmon harvest), fishing to attain that level of harvest could have led to an overharvest of Canadian sockeye salmon, and in practice Alaska greatly restricted openings in all three Treaty period weeks and only harvested 17,000 total sockeye salmon prior to week 31 (Appendix D).

In 1999, the new Chapter 2 Treaty agreement moved to an abundance-based management approach to the District 104 fishery, allowing Alaska to harvest 2.45% of the annual allowable harvest of Nass and Skeena river sockeye salmon prior to week 31. The allowable harvest was now tied to the total run size of the Nass and Skeena rivers, which allowed for higher effort and harvest in District 104 when Nass and Skeena sockeye salmon runs were strong and required greater restrictions in District 104 when runs were low. Since switching to an abundance-based management regime in 1999, the combined run size of Nass and Skeena river sockeye salmon has generally declined and the average allowable harvest in District 104 was approximately 39,000 fish from 1999 to 2018. During this same time, Nass and Skeena sockeye salmon comprised approximately 54% of the District 104 sockeye salmon harvest, which would allow for average annual sockeye salmon harvests of approximately 73,000 fish. The actual harvest of sockeye salmon in District 104 has averaged approximately 51,000 fish since 1999.
The size of the Southeast Alaska purse seine fleet has also been reduced since the 1999 agreement. Permit buybacks occurred in 2008 (35 permit reduction) and 2012 (65 permit reduction) and resulted in an overall 24% reduction in the size of the purse seine fleet (Shriver 2014). An additional buyback of 36 permits was approved in 2019, which will result in another significant reduction in fleet size. The initial 419 Southeast Alaska purse seine permits that were issued in 1975 will have been reduced to 279 permits in 2019 , a 33% reduction. This large decrease in permits means that effort is unlikely to ever return to historical high levels observed in the 1980s and early 1990s in the District 104 fishery; a time when weekly effort levels could occasionally exceed 200 boats in a single week.

Another factor impacting the District 104 purse seine fishery, as well as other net fisheries in Southeast Alaska, was the maturing of the enhancement program in Southeast Alaska. The modern Alaska enhancement program began in the early 1970s in response to a period of poor salmon production and depressed commercial fisheries (Clark et al. 2006). For Southeast Alaska purse seine fisheries, enhanced chum salmon have become an increasingly important part of the annual harvest, particularly since the early 1990s when releases first surpassed 300 million fry (Piston and Heinl 2017). By 2018, release numbers had risen to 550 million fry, and from 2007 to 2016, chum salmon were the most valuable species, on average, in Southeast Alaska
commercial fisheries (Piston and Heinl 2017). Despite a reduction in effort in the District 104 purse seine fishery, the harvest of chum salmon increased from an average of 79,000 from 1960 to 1999 to 278,000 from 2000 to 2018. An important impact of the hatchery program on Treaty fisheries in southern Southeast Alaska was to help keep the net gear fleets more dispersed throughout Southeast Alaska. Since the mid-1980s, there has generally been close to 20 chum salmon release sites distributed throughout the region (McNair 1995; Stopha 2018; Piston and Heinl 2017), and most of these sites offer terminal harvest opportunities for the various gear groups. Additional hatchery terminal harvest opportunities can factor in a fisherman's decision about where to concentrate their effort and likely draws some fisherman away from District 104 in some weeks.

Although highly variable, the average harvest rates on Nass and Skeena River sockeye salmon have declined significantly since 1985 when the Treaty was signed. Over the most recent decade, harvest rates in the District 104 purse seine fishery have averaged 3.1% on Nass River sockeye salmon and 5.6% on Skeena River sockeye salmon. Overall harvest rates on Nass River sockeye salmon in all Canadian and Alaskan fisheries combined have also declined from 68.2% from 1985 to 2000 to 48.4% from 2009 to 2018. In that same time, Alaska's average overall harvest rate in all fisheries dropped by more than half, from 30.0% to 13.8%, while Canada's harvest rate dropped modestly from 38.2% to 34.6%. For the Skeena River, harvest rates have dropped significantly in both countries. Total harvest rates in Alaska's fisheries dropped from an average 12.6% from 1985 to 2000 to 8.4% from 2009 to 2018, while Canadian harvest rates dropped from 44.7% to 22.6% during the same time periods.
Despite the general decline in average harvest rates, Canada has expressed concern regarding the harvest of Canadian sockeye salmon in District 104 in years when run timing of Canadian sockeye salmon is later than average, particularly in years where Nass and/or Skeena runs were poor. Following a six-year period from 2008 to 2013 when the District 104 harvest rate on Skeena sockeye salmon averaged only 2.3%, harvest rates bumped up to 11.0% in 2014 and 2015, and 14.1% in 2016 (Table 3). In 2015 and 2016, the midpoint of the run through the Tyee Test Fishery at the mouth of the Skeena River was reached 5 to 7 days later than the long-term average date of 23 July. Widespread late run timing of Canadian sockeye salmon would potentially result in more of these fish being available to harvest in District 104 after the Treaty period is over and effort increases in the fishery. Although the harvest rate in District 104 did increase in 2015 and 2016, the harvest rates were within the range of previous years since 1985. The midpoint of the run through the Tyee Test Fishery was approximately 8 days later than average in 2017, but the harvest rate in District 104 declined to 4.5%.

The higher harvest rate observed in 2016 was in part due to the impact of regionwide pink salmon distribution in Southeast Alaska on fishing fleet behavior. Since 2006, pink salmon returns to northern Southeast Alaska inside waters have exhibited extreme odd-year dominance, with almost no harvest in even years since 2012 (Figure 51) and escapements below formal escapement goals (Piston and Heinl 2018). Due to the poor pink salmon returns to this subregion, very little fishing opportunity has been offered in northern inside waters and as a result the fleet became more concentrated in southern Southeast Alaska and off the northern outer coast. Although effort levels have remained well below the levels of the 1980s to mid-1990s, the number of boats fishing District 104 was above what has been typical since the late 1990s in 2014 and 2016 (Figure 27). In 2018, pink salmon returns were poor regionwide and the number of hours open and boats fishing both dropped to less than half of the 1985 to 2017 average in the

District 104 fishery (Figures 24 and 27). Effort levels in the District 104 fishery can vary depending on a myriad of variables that affect fishermen's decisions on where to fish each opening.

Figure 51.-Annual pink salmon harvest for the Northern Southeast Inside Subregion of Southeast Alaska, 1960-2018.

At the same time Canada was concerned about late run timing and increased harvest on their sockeye salmon stocks, Alaska expressed concerns that the timing of pink salmon runs to southern Southeast Alaska were earlier than normal and fishermen were losing valuable harvest opportunity. Sustainable harvest of wild salmon stocks is of paramount importance, but Alaska felt that in some years reductions in opportunity that were necessary to ensure the AAH of Nass and Skeena river sockeye salmon led to unnecessary reductions in pink salmon harvest at times when the harvest rates on Canadian sockeye salmon in the District 104 fishery were very low. As noted above, there is very little information to assess the run timing of specific stocks of pink salmon through the District 104 fishery, but it is very clear that there have been more pink salmon available for harvest early in the season since the Treaty was signed due to the general increase in pink salmon abundance since the early 1980s, and the strong returns to early-timed pink salmon stock groups in recent decades (Figures 3-23, 36).

The ability to assess the stock specific timing for pink salmon passing through District 104 is limited by a lack of data. Large scale tagging studies, such as those conducted in the early 1980s to address migration patterns and timing of salmon stocks in Southeast Alaska and northern B.C. (Hoffman et al. 1983, 1985), are extremely expensive and labor intensive, and would be unlikely to answer questions regarding persistent changes in run timing or stock compositions unless conducted over many years. Escapements of pink salmon in Southeast Alaska are primarily monitored by aerial surveys, which have limited utility in identifying modest changes in run timing. Genetic stock identification may provide stock specific harvest information on pink
salmon in the future, which would potentially allow for an assessment of stock specific timing changes in the District 104 fishery. ADF\&G has been collecting baseline pink salmon genetic samples in recent years and has obtained samples from approximately 70 streams in Southeast Alaska (ADF\&G Gene Conservation Laboratory unpublished data). A small-scale project to genotype 12 populations in Southeast Alaska and determine if regional groupings can be identified using existing markers (see Lescak et al. 2019 for description of markers) was initiated by ADF\&G in 2020; the results of that work may lead to further efforts to look for new pink salmon genetic markers to improve stock separation.
Canada's concern with later-than-average Nass and Skeena sockeye salmon run timing has focused on the 2014-2016 time period, while the north Pacific Ocean was experiencing very warm conditions commonly known as the Blob (Bond et al. 2015). In 2016, earlier than average pink salmon harvest timing occurred in Alaska districts 101-104 (Figures 52 and 53). In that year, Alaska lost out on potentially large pink salmon catches in week 30 in District 104 when closures became necessary despite record pink salmon catches (1.2 million pink salmon; Appendix B) and CPUE of approximately 11,000 fish per boat day in week 29 (Figure 52). Despite the record catches of pink salmon for the timing, the District 104 fishery was only opened for 6 hours in week 30 to reduce the harvest of Nass and Skeena river sockeye salmon. Although fishing opportunity was reduced during the Treaty period, Alaska still had an overage of approximately 40,000 sockeye salmon in the fishery in 2016. In 2016, peak catches of pink salmon occurred three weeks earlier than average in District 104, although peak abundance may have been only two weeks early. With similar opportunity in the fishery in week 30, catches may have surpassed week 29 as the CPUE remained near 11,000 fish per boat day (Figure 52). In 2016, harvests were also two weeks earlier than average in District 103, one week earlier in District 102, and one week earlier than average in District 101 (ADF\&G unpublished data). Large harvests and high CPUE prior to week 31 also occurred in 2014, although peak harvest and peak CPUE occurred with normal timing in week 32. The timing of peak pink salmon CPUE in 2015, 2017, and 2018 also occurred in weeks 32 and 33 (Figure 52).

Figure 52.-Pink salmon CPUE in the District 104 purse seine fishery from 2014 to 2018 compared to 1985-2013 average by statistical week.

Figure 53.-Cumulative pink salmon CPUE proportions in the District 104 purse seine fishery from 2014 to 2018 compared to 1985-2013 average by statistical week.

In practice, it would be very difficult to reach an agreement on how to handle situations where either Canadian sockeye salmon exhibit later than normal run timing or Alaskan pink salmon show high abundance early in the season, especially if both situations happen concurrently as they did in 2016. The timing of a specific salmon stock, and whether it deviates from average, is not generally apparent until after the season is over. The cost of being wrong could be very high; either by potentially overharvesting Canadian sockeye salmon in a situation where Alaska sought to fish harder in District 104 prior to week 31 based on assumed early timing of pink salmon, or in a large, missed harvest opportunity for Alaska in a situation where fishing in District 104 was curtailed into week 31 based on the assumption of late sockeye salmon run timing. In a typical year, the timing of pink salmon entering Southeast Alaska (Figure 23) ensures that Alaska can manage the District 104 fishery to take advantage of surplus pink salmon abundance while limiting lost opportunity due to Canadian sockeye salmon concerns. The timing of Nass and Skeena river sockeye salmon ensures that a high proportion of the runs pass through District 104 during the pre-week 31 Treaty period, which helps maintain the Alaska harvest rate on these stocks to relatively low levels in most years (Tables 2 and 3).

Article III of the Treaty outlines guiding principles of fisheries management for the U.S. and Canada, which includes preventing overfishing and taking into account the "desirability in most cases" of reducing interceptions, avoiding undue disruption of existing fisheries, and accounting for annual variations in stock abundance. Since 1985, when the Treaty took effect, each of these principles has been met regarding management of Boundary Area fisheries in Alaska. Harvest rates on Canadian sockeye salmon have trended downward since the Treaty was signed and Alaska has consistently met Treaty obligations in its fisheries. Alaska has had an underage in 14 of 20 years and currently has a cumulative underage of approximately 117,000 sockeye salmon in the District 104 fishery.

ACKNOWLEDGEMENTS

I would like to thank Sara Miller, Steve Heinl, Lowell Fair, and Michele Masuda for their thoughtful reviews of this report. Kyle Shedd provided numerous answers to questions regarding the use of GSI in Southeast Alaska fisheries. Milo Adkison and Randall Peterman acted as independent reviews for the U.S. and Canada respectively, and provided extensive reviews that improved the final product. Scott Walker provided a very helpful summary of management actions taken in the District 104 fishery for Canadian sockeye salmon concerns.

REFERENCES CITED

Alexandersdottir, M. 1987. Life history of pink salmon (Oncorhynchus gorbuscha) in Southeast Alaska and implications for management. Ph.D. Thesis. University of Washington, Seattle.
Beacham, T. D., S. Cox-Rogers, C. MacConnachie, B. McIntosh, and C. G. Wallace. 2014. Population structure and run timing of sockeye salmon in the Skeena River, British Columbia. North American Journal of Fisheries Management 34: 335-348.

Beamish, R. J., and D. R. Bouillon. 1993. Pacific salmon production trends in relation to climate. Canadian Journal of Fisheries and Aquatic Sciences 50: 1002-1016.

Bloomquist, Richard, A. Reynolds, and I. S. Frank. 2002. Contribution of Alaskan, Canadian, and transboundary sockeye salmon stocks to catches in Southeast Alaska purse seine and gillnet fisheries, districts 101-108, based on analysis of scale patterns, 1998. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 1J02-40, Juneau.

Bond, N. A., M. F. Cronin, H. Freeland, and N. Mantua. 2015. Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophysical Research Letters, 42, 3414-3420.

Brunette, M. T, and A. W. Piston. 2017. Hugh Smith Lake sockeye salmon, 2016. Alaska Department of Fish and Game, Fishery Data Series No. 17-34, Anchorage.

Buettner, A. R., A. M. Reynolds-Manney, and S. C. Heinl. 2020. Southeast Alaska commercial salmon port sampling 2016. Alaska Department of Fish and Game, Regional Information Report No. 1J20-02, Douglas.
Byerly, M., B. Brooks, B. Simonson, H. Savikko, and H. J. Geiger. 1999. Alaska commercial salmon catches, 1878-1999. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report No. 5J99-05, Juneau.

Clark, J. H. 1995. Biological escapement goals for even and odd-year pink salmon returning to the Situk River and to Humpy Creek near Yakutat, Alaska. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report No. 1J95-08, Juneau.

Clark, J. H., A. McGregor, R. D. Mecum, P. Krasnowski, and A. M. Carroll. 2006. The commercial salmon fishery in Alaska. Alaska Fishery Research Bulletin 12:1-146.

Clark, R. A., D. M. Eggers, A. R. Munro, S. J. Fleischman, B. G. Bue, and J. J. Hasbrouck. 2014. An evaluation of the percentile approach for establishing sustainable escapement goals in lieu of stock productivity information. Alaska Department of Fish and Game. Fishery Manuscript No. 14-06. Anchorage.

Cox-Rogers, S., and B. Spilsted. 2002. Comparison of monofilament and multifilament gillnet catch rates at the Tyee test fishery: 1996-2001. Fisheries \& Oceans Canada. Unclassified Memorandum, April 24, 2002. 19 p.
Crawford, W. 2006. Recent trends in waters of the subarctic NE Pacific. PICES Press 14(2): 24-25.
Dangel, J. R., and J. D. Jones. 1988. Southeast Alaska pink salmon total escapement and stream life studies. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report No. 1J88-24, Juneau.

Downton, M.W., and Miller, K.A. 1998. Relationships between Alaska salmon catch and North Pacific climate on interannual and interdecadal time scales. Canadian Journal of Fisheries and Aquatic Sciences 55: 2255-2265.

Durley, K. E., and M. C. Seibel. 1972. Forecast of the 1972 pink salmon runs, Southeastern Alaska. Alaska Department of Fish and Game, Division of Commercial Fisheries, Informational Leaflet No. 158, Juneau.

Gazey, W.J., and K.K. English. 2000. Assessment of sockeye and pink salmon stocks in the northern boundary area using run reconstruction techniques, 1982-95. Canadian Technical Report of Fisheries and Aquatic Sciences. 2320: 132p.
Gray, D., T. Thynes, E. Coonradt, A. Piston, D. Harris, and S. Walker. 2018. 2018 Southeast Alaska purse seine fishery management plan. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report No. 1J18-08, Douglas.

REFERENCE CITED (continued)

Guthrie, C. M., H. Nguyen, J. R. Guyon. 2014. Northern Boundary area sockeye salmon genetic stock identification for year 2012 District 101 gillnet and District 104 purse seine fisheries. Final Report to Pacific Salmon Commission Northern Fund. National Marine Fisheries Service, Alaska Fisheries Science Center, Auke Bay Laboratories, Juneau.

Haeseker, S. L., R. M. Peterman, and Z. Su. 2005. Retrospective evaluation of preseason forecasting models for pink salmon. North American Journal of Fisheries Management 25:897-918.
Hare, S. R., and N. J. Mantua. 2000. Empirical evidence for North Pacific regime shifts in 1977 and 1989. Progress in Oceanography 47:103-145.
Heard, W.R. 1991. Life history of pink salmon (Oncorhynchus gorbuscha). Pages 119-230 [in] C. Groot and L. Margolis, editors. Pacific Salmon Life Histories. UBC Press, Vancouver, B.C.

Heinl, S. C., R. L. Bachman, and K. Jensen. 2011. Sockeye salmon stock status and escapement goals in Southeast Alaska. Alaska Department of Fish and Game, Special Publication No. 11-20, Anchorage.
Heinl, S. C., and A. W. Piston. 2009. Standardizing and automating the Southeast Alaska pink salmon escapement index. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report No. 1J09-06, Douglas.

Heinl, S. C., D. M. Eggers, and A. W. Piston. 2008. Pink salmon stock status and escapement goals in Southeast Alaska and Yakutat. Alaska Department of Fish and Game, Special Publication No. 08-16, Anchorage.
Heinl, S. C., and H. J. Geiger. 2005. Pink salmon stock status and escapement goals in Southeast Alaska and Yakutat [in] Stock status and escapement goals for salmon stocks in Southeast Alaska 2005. Der Hovanisian, J. A., and H. J. Geiger [eds.] Alaska Department of Fish and Game, Divisions of Sport Fish and Commercial Fisheries, Special Publication No. 05-22, Anchorage.

Heinl, S. C., J. F Koerner, and D. James Blick. 2000. Portland Canal chum salmon coded-wire-tagging project, 1988-1995. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report No. 1J00-16, Juneau.
Heinl, S. C., R. L. Bachman, and K. Jensen. 2011. Sockeye salmon stock status and escapement goals in Southeast Alaska. Alaska Department of Fish and Game, Special Publication No. 11-20, Anchorage.

Hilborn, R., and C. J. Walters. 1992. Quantitative fisheries stock assessment: choice, dynamics, and uncertainty. Chapman Hall. New York.

Hoffman, S. H. 1983. Southern Southeastern Alaska pink salmon (Oncorhynchus gorbuscha) tagging investigations, 1981. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report No. 92, Juneau.
Hoffman, S. H., L. Talley, and M. C. Seibel. 1983. 1982 U.S./Canada research pink and sockeye salmon tagging, interception rates, migration patterns, run timing, and stock intermingling in southern Southeast Alaska and Northern British Columbia. [in]: Final Report 1982 salmon research conducted in Southeast Alaska by the Alaska Department of Fish and Game in conjunction with joint U.S.-Canada Interception investigations. Contract No. NASO-82-00134.
Hoffman, Stephen H., Larry Talley, and M. C. Seibel. 1984. 1983 sockeye and chum salmon tagging, national contribution rates, migration patterns, run timing, and stock intermingling research in southern Southeast Alaska and northern British Columbia. [in]: Final Report. 1983 salmon research conducted in Southeast Alaska by the Alaska Department of Fish and Game in conjunction with National Marine Fisheries Service Auke Bay Laboratory for joint U.S.-Canada Interception Studies. Contract No. WASC-83-ABC-00157.

Hoffman, Stephen H., Larry Talley, and M. C. Seibel. 1985. 1984 pink and chum salmon tagging, national contribution rates, migration patterns, run timing, and stock intermingling research in southern Southeast Alaska and northern British Columbia [in]: Final Report. 1984 salmon research conducted in Southeast Alaska by the Alaska Department of Fish and Game in conjunction with National Marine Fisheries Service Auke Bay Laboratory for joint U.S.-Canada Interception Studies. Contract No. WASC-84-00179.

REFERENCE CITED (continued)

Hofmeister, K. 1990. Southeast Alaska pink and chum salmon investigations, 1989-1990. Final report for the period July 1, 1989 to June 30, 1990. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report No. 1J90-35, Juneau.

Hofmeister, K. 1998. Standardization of aerial salmon escapement counts made by several observers in Southeast Alaska. Pages 117-125 [In] Proceedings of the Northeast Pacific Pink and Chum Salmon Workshop, 26-28 February 1997, Parksville, British Columbia, Department of Fisheries and Oceans, 3225 Stephenson Point Road, Nanaimo, B. C., V9T 1K3.
Hofmeister, K., and J. Blick. 1991. Pages 39-41 [In] H. Geiger and H. Savikko, editors. Preliminary forecasts and projections for 1991 Alaska salmon fisheries and summary of the 1990 season. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report No. 5J91-01, Juneau.

Hofmeister, K., J. Blick, and J. R. Dangel. 1993. Southeast Alaska pink and chum salmon investigations, 19911992. Final report for the period July 1, 1991 to June 30, 1992. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report No. 1J93-12, Juneau.
Jones, D., and K. Hofmeister. 1981. Pages 18-20 [In] ADF\&G, Preliminary forecasts and projections for 1981 Alaskan salmon fisheries. Alaska Department of Fish and Game, Division of Commercial Fisheries, Informational Leaflet No. 190, Juneau.

Jones, E. L., III, T. J. Quinn, II, and B. W. Van Alen. 1998. Observer accuracy and precision in aerial and foot survey counts of pink salmon in a Southeast Alaska stream. North American Journal of Fisheries Management. 18:832-846.

Jones, J. D., and J. Dangel. 1983. Southeastern Alaska 1982 brood year pink (Oncorhynchus gorbuscha) and chum salmon (O. keta) escapement surveys and pre-emergent fry program. Alaska Department of Fish and Game, Division of Commercial Fisheries, Technical Data Report No. 97, Juneau.

Krkosek, M., R. Hilborn, R. M. Peterman, and T. Quinn. 2011. Cycles, stochasticity and density dependence in pink salmon population dynamics. Proceedings of the Royal Society B 278:2060-2068.
Lescak E. A., K. R. Shedd, T. H. Dann. 2019. Relative productivity of hatchery pink salmon in a natural stream. North Pacific Research Board, Project 1619 Final report. 46 pp.

Mantua N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis. 1997. A Pacific interdecadal climate oscillation with impacts on salmon production. Bulletin of the American Meteorological Society 78:1069-1079.

Marshall, S. L., G. T. Oliver, D. R. Bernard, and S. A. McPherson. 1984. Accuracy of scale pattern analysis in separating major stocks of sockeye salmon (Oncorhynchus nerka) from southern Southeastern Alaska and northern British Columbia. Alaska Department of Fish and Game, Informational Leaflet 230, Juneau.
McCurdy, S. J. 2009. Production of coho salmon from the 2006 smolt emigration from Chuck Creek in Southeast Alaska. Alaska Department of Fish and Game, Fishery Data Series No. 09-57, Anchorage.
McCurdy, S. J. 2010. Production of coho salmon from the 2008 smolt emigration from Chuck Creek in Southeast Alaska. Alaska Department of Fish and Game, Fishery Data Series No. 10-75, Anchorage.
McCurdy, S. J. 2012. Production of coho salmon from the 2009 smolt emigration from Chuck Creek in Southeast Alaska. Alaska Department of Fish and Game, Fishery Data Series No. 12-56, Anchorage.

McKinnell, S. 2017. Atmospheric and oceanic extrema in 2015 and 2016 and their effect on North American salmon. Pacific Salmon Commission Technical Report No. 37.

McLachlan, G. J., and T. Krishnan. 1997. The EM algorithm and extensions. John Wiley and Sons. New York.
McNair, M. 1996. Alaska fisheries enhancement program 1995 annual report. Alaska Department of Fish and Game, Regional Information Report No. 5J96-08.
Moran, B. M., and E. C. Anderson. 2019. Bayesian inference from the conditional genetic stock identification model. Canadian Journal of Fisheries and Aquatic Sciences 76:551-560.

REFERENCE CITED (continued)

Moss, J. H., D. A. Beauchamp, A. D. Cross, K. W. Myers, E. V. Farley, Jr., J. M. Murphy, and J. H. Helle. 2005. Evidence for size-selective mortality after the first summer of ocean growth by pink salmon. Transactions of the American Fisheries Society 134:1313-1322.

Mueter, F. J., R. M. Peterman, and B. J. Pyper. 2002. Opposite effects of ocean temperature on survival rates of 120 stocks of Pacific salmon (Oncorhynchus spp.) in northern and southern areas. Canadian Journal of Fisheries and Aquatic Sciences 59:456-463.

Munro, A. R., and E. C. Volk. 2014. Summary of Pacific salmon escapement goals in Alaska with a review of escapements from 2005 to 2013. Alaska Department of Fish and Game, Special Publication No. 14-01, Anchorage.

Murphy, J. M., E.A. Fergusson, A. Piston, S. Heinl, A. Gray, and E. Farley. 2019. Southeast Alaska pink salmon growth and harvest forecast models. North Pacific Anadromous Fish Commission Technical Report No. 15: 7591.

Nakatani, R. E., G. J. Paulik, and R. Van Cleve. 1975. Pink salmon (Oncoryhnchus gorbuscha) tagging experiments in S. E. Alaska, 1938-1942 and 1945. National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Special Scientific Report, Fisheries Series 686, Seattle.

NBTC (Northern Boundary Technical Committee). 2005. Stock Composition Estimates and individual stock assignments based on genetic microsatellites and scale patterns for test mixtures of Alaskan and Canadian sockeye salmon. TCNB (05)-2.

Orsi, J. A., E. A. Fergusson, M. V. Sturdevant, B. L. Wing, A. C. Wertheimer, and W. R. Heard. 2006. Annual survey of juvenile salmon and ecologically-related species and environmental factors in the marine waters of Southeastern Alaska, May-August 2005. North Pacific Anadromous Fish Commission Document 955.

Orsi, J., A. Wertheimer, M. Sturdevant, E. Fergusson, and B. Wing. 2009. Insights from a 12-year biophysical time series of juvenile Pacific salmon in Southeast Alaska: the Southeast Alaska Coastal Monitoring Project (SECM). Alaska Fisheries Science Center Quarterly Report July-September 2009.
Pella, J., and M. Masuda. 2001. Bayesian methods for analysis of stock mixtures from genetic characters. Fishery Bulletin 99:151-167.

Pella, J., M. Hoffman, S. Hoffman, M. Masuda, S. Nelson, and L. Talley. 1993. Adult sockeye and pink salmon tagging experiments for separating stocks in northern British Columbia and southern Southeast Alaska, 19821985. NOAA Technical Memorandum, NMFS-AFSC-18.

Pella, J., and M. Masuda. 2004. Classical discriminant analysis, classification of individuals, and source population composition of mixtures, in S. Cadrin, K. Friedland, and J. Waldman (Eds.) Stock Identification Methods: applications in fishery science. Academic Press.

Piston, A. W. 2008. Hugh Smith Lake sockeye salmon adult and juvenile studies, 2007. Alaska Department of Fish and Game, Fishery Data Series No. 08-43, Anchorage.

Piston, A. W. and S. C. Heinl. 2011. Pink salmon stock status and escapement goals in Southeast Alaska. Alaska Department of Fish and Game, Special Publication No.11-18, Anchorage.

Piston, A. W. and S. C. Heinl. 2011b. Chum salmon stock status and escapement goals in Southeast Alaska. Alaska Department of Fish and Game, Special Publication No.11-21, Anchorage.

Piston, A. W., and S. C. Heinl. 2013. Pages 49-53 [In] D. M. Eggers, C. Tide, and A. M. Carroll. 2013. Run forecasts and harvest projections for 2013 Alaska salmon fisheries and review of the 2012 season. Alaska Department of Fish and Game, Special Publication No. 13-03, Anchorage.

Piston, A. W. and S. C. Heinl. 2014. Pink salmon stock status and escapement goals in Southeast Alaska. Alaska Department of Fish and Game, Special Publication No.14-14, Anchorage.

Piston, A. W. and S. C. Heinl. 2017. Chum salmon stock status and escapement goals in Southeast Alaska. Alaska Department of Fish and Game, Special Publication No.17-12, Anchorage.

REFERENCE CITED (continued)

Piston, A. W. and S. C. Heinl. 2018. Pink salmon stock status and escapement goals in Southeast Alaska. Alaska Department of Fish and Game, Special Publication No.18-14, Anchorage.
Pyper, B. J., F. J. Mueter, R. M. Peterman, D. J. Blackbourn, and C. C. Wood. 2001. Spatial covariation in survival rates of Northeast Pacific pink salmon. Canadian Journal of Fisheries and Aquatic Sciences 58:1501-1515.
Quinn II, T. J., and R. B. Deriso. 1999. Quantitative Fish Dynamics. Oxford University Press. New York.
Rich, W. H. 1927. Salmon-tagging experiments in Alaska, 1924 and 1925. Bulletin of the United States Bureau of Fisheries 42:109-146.
Rich, W. H., and F. G. Morton. 1930. Salmon-tagging experiments in Alaska, 1927 and 1928. Bulletin of the United States Bureau of Fisheries 45:1-23.

Rich, W. H., and A. J. Suomela. 1929. Salmon-tagging experiments in Alaska, 1926. Bulletin of the United States Bureau of Fisheries 43(Part 2):71-104.
Rogers Olive, S.D., E. K. C. Fox, and S. E. Gilk-Baumer. 2018. Genetic baseline for mixed stock analyses of sockeye salmon harvested in Southeast Alaska for Pacific Salmon Treaty applications, 2018. Alaska Department of Fish and Game, Fishery Manuscript No. 18-03, Anchorage.

Shaul, L., E. Jones, and K. Crabtree. 2005. Coho salmon stock status and escapement goals in Southeast Alaska [in] Der Hovanisian, J. A., and H. J. Geiger, editors. Stock status and escapement goals for salmon stocks in Southeast Alaska 2005. Alaska Department of Fish and Game, Special Publication No. 05-22, Anchorage.
Shriver, J. C. 2014. Changes in the value of the Southeast Alaska purse seine limited entry permits following two permit buyback programs. Master's Thesis, University of Alaska, Fairbanks.
Stopha, M. 2018. Alaska salmon fisheries enhancement annual report 2017. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report 5J18-02, Juneau.
Taylor, S.G. and J.L. Lum. 2005 Auke Creek weir 2004. Annual report, operations, fish counts, and historical summaries. National Marine Fisheries Service, Auke Bay Laboratory, Juneau. http://www.adfg.alaska.gov/staticsf/Region1/escapement/PDFS/Auke_2004.PDF (Accessed March 2019).
Valentine, J. P., L. A. Gwartney, C. C. Larson, and G. D. Downey. 1970. Forecast of the 1970 pink salmon runs, Southeastern Alaska. Alaska Department of Fish and Game, Division of Commercial Fisheries, Informational Leaflet No. 142, Juneau.

Van Alen, B. W. 2000. Status and stewardship of salmon stocks in Southeast Alaska. Pages 161-194 [In] E. E Knudsen, C.R. Steward, D. D. McDonald, J. E. Williams, D. W. Reiser, editors. Sustainable Fisheries Management: Pacific salmon. CRC Press. Boca Raton.
Wertheimer, A. C., J. A. Orsi, E. A. Fergusson, and M. V. Sturdevant. 2011. Forecasting pink salmon harvest in Southeast Alaska from juvenile salmon abundance and associated environmental parameters: 2010 harvest and 2011 forecast. North Pacific Anadromous Fish Commission Document1343. 20 pp.

Wertheimer, A. C., J. A. Orsi, E. A. Fergusson, and M. V. Sturdevant. 2013. Forecasting pink salmon harvest in Southeast Alaska from juvenile salmon abundance and associated biophysical parameters: 2012 returns and 2013 forecast. North Pacific Anadromous Fish Commission Document 1486. 23 pp.
Wickett, W. P. 1958. Review of certain environmental factors affecting the production of pink and chum salmon. Journal of the Fisheries Research Board of Canada 15:1103-1126.

Willette, T. M., R. T. Cooney, V. Patrick, D. M. Mason, G. L. Thomas, and D. Scheel. 2001. Ecological processes influencing mortality of juvenile pink salmon (Oncorhynchus gorbuscha) in Prince William Sound, Alaska. Fisheries Oceanography 10:14-41.
Wing, B. L. 2006. Unusual invertebrates and fish observed in the Gulf of Alaska, 2004-2005. PICES Press 14(2): 26-28.

REFERENCE CITED (continued)

Wolter, K. and M. S. Timlin. 2011. El Nino/Southern Oscillation behavior since 1871 as diagnosed in an extended multivariate ENSO index (MEI.ext). International Journal of Climatology 31:1074-1087.

Woods, G. F. 2003. Yakutat set gillnet fishery 2003 management plan. Alaska Department of Fish and Game, Division of Commercial Fisheries, Regional Information Report No. 1J03-21, Juneau.

Woods, G. F., and N. L. Zeiser. 2014. Annual Management Report of the 2013 Yakutat Area commercial salmon fisheries. Alaska Department of Fish and Game, Fishery Management Report No. 14-29, Anchorage.
Zadina, T. P., S. C. Heinl, A. J. McGregor, and H. J. Geiger. 2004. Pink salmon stock status and escapement goals in Southeast Alaska and Yakutat [in] Stock Status and Escapement Goals for Salmon Stocks in Southeast Alaska. H.J. Geiger and S. McPherson [eds]. Alaska Department of Fish and Game, Divisions of Sport and Commercial Fisheries, Special Publication No. 04-02, Anchorage.

APPENDIX A ADF\&G PINK SALMON STOCK GROUP MAPS IN SOUTHERN SOUTHEAST ALASKA

Appendix A1.-The ADF\&G Ketchikan salmon management area and associated pink salmon escapement stock groups. Horizontally hatched stock groups indicate areas with no index streams or escapement targets.

Appendix A2.-The ADF\&G Petersburg salmon management area and associated pink salmon escapement stock groups.

APPENDIX B
 PINK SALMON ESCAPEMENT AND HARVEST IN SOUTHERN SOUTHEAST ALASKA

Appendix B1.-Southern Southeast Alaska pink salmon escapement index in millions of index fish, 1960-2018.

BEG Lower Range BEG Upper Range	$\begin{aligned} & 3.00 \\ & \mathbf{8 . 0 0} \\ & \hline \end{aligned}$
1960	0.66
1961	1.22
1962	2.91
1963	2.50
1964	2.90
1965	2.32
1966	3.40
1967	1.48
1968	2.99
1969	1.72
1970	2.57
1971	2.90
1972	2.45
1973	2.42
1974	2.25
1975	3.26
1976	3.39
1977	5.04
1978	4.22
1979	3.43
1980	4.84
1981	4.68
1982	4.04
1983	6.52
1984	7.67
1985	9.95
1986	11.42
1987	4.51
1988	3.27
1989	7.33
1990	5.14
1991	5.63
1992	5.49
1993	6.47
1994	5.27
1995	7.79
1996	11.90
1997	5.97
1998	6.95
1999	11.28
2000	5.40
2001	10.99
2002	8.85
2003	9.78
2004	8.26
2005	9.40
2006	4.33
2007	10.59
2008	6.29
2009	7.20
2010	5.94
2011	5.50
2012	6.47
2013	14.45
2014	9.65
2015	4.30
2016	6.60
2017	6.39
2018	4.87

Appendix B2.-Southern Southeast Alaska pink salmon escapement index series and management target ranges by district (in millions of index fish), 1960-2018.

Management Target	101	102	103	105	106	107	108
Lower	1.02	0.29	0.95	0.25	0.21	0.26	0.02
Upper	2.71	0.77	2.54	0.66	0.57	0.69	0.06
1960	0.24	0.06	0.18	0.08	0.04	0.05	0.00
1961	0.31	0.10	0.37	0.13	0.16	0.11	0.04
1962	0.79	0.21	0.73	0.41	0.31	0.45	0.01
1963	0.73	0.23	0.77	0.24	0.20	0.28	0.04
1964	0.77	0.28	0.73	0.36	0.38	0.34	0.04
1965	0.39	0.18	0.80	0.45	0.29	0.20	0.01
1966	0.98	0.35	0.92	0.39	0.33	0.41	0.03
1967	0.43	0.14	0.47	0.22	0.11	0.09	0.01
1968	0.92	0.26	0.80	0.39	0.35	0.21	0.05
1969	0.49	0.23	0.51	0.15	0.12	0.20	0.01
1970	0.87	0.18	0.80	0.21	0.18	0.30	0.04
1971	0.71	0.36	0.88	0.29	0.27	0.36	0.03
1972	0.86	0.19	0.63	0.20	0.19	0.36	0.02
1973	0.73	0.24	0.66	0.25	0.31	0.20	0.02
1974	0.82	0.21	0.61	0.14	0.22	0.24	0.01
1975	0.99	0.44	0.93	0.22	0.32	0.34	0.01
1976	1.06	0.38	1.01	0.14	0.44	0.36	0.02
1977	1.87	0.45	1.23	0.27	0.31	0.89	0.03
1978	1.59	0.38	1.33	0.27	0.24	0.40	0.01
1979	0.73	0.41	1.22	0.31	0.29	0.41	0.06
1980	1.80	0.46	1.62	0.24	0.33	0.36	0.04
1981	1.51	0.33	1.89	0.38	0.30	0.24	0.03
1982	1.39	0.28	1.40	0.24	0.31	0.36	0.06
1983	2.20	0.79	2.14	0.48	0.44	0.41	0.05
1984	3.16	0.72	2.54	0.46	0.33	0.42	0.04
1985	3.20	0.79	3.66	0.67	0.82	0.77	0.05
1986	4.03	0.95	4.46	0.65	0.72	0.56	0.06
1987	1.83	0.38	1.57	0.17	0.22	0.30	0.05
1988	1.14	0.38	1.07	0.19	0.21	0.26	0.02
1989	2.39	0.57	2.50	0.45	0.52	0.83	0.08
1990	1.59	0.47	1.77	0.41	0.47	0.38	0.06
1991	1.42	0.51	1.97	0.63	0.41	0.58	0.11
1992	2.63	0.71	1.23	0.14	0.19	0.53	0.06
1993	1.77	0.61	2.42	0.58	0.56	0.49	0.04
1994	1.58	0.34	1.78	0.39	0.64	0.51	0.04
1995	3.10	0.50	2.63	0.53	0.60	0.39	0.03
1996	4.23	1.58	4.27	0.66	0.59	0.55	0.03
1997	2.00	0.67	1.59	0.61	0.52	0.54	0.04
1998	2.44	0.82	2.19	0.40	0.56	0.51	0.04
1999	2.58	1.23	3.30	1.70	1.56	0.83	0.07
2000	1.73	0.89	1.70	0.33	0.30	0.43	0.01
2001	3.71	1.15	3.14	1.05	1.01	0.81	0.12
2002	3.03	1.25	2.69	0.68	0.57	0.58	0.04
2003	3.17	1.13	2.67	0.97	0.89	0.79	0.15
2004	2.48	0.64	3.30	0.64	0.58	0.56	0.06
2005	2.89	1.22	2.63	1.03	0.71	0.80	0.11
2006	1.36	0.63	1.33	0.24	0.34	0.37	0.05
2007	3.98	1.42	3.48	0.45	0.54	0.67	0.05
2008	2.13	0.94	1.98	0.26	0.38	0.59	0.01
2009	2.66	1.06	2.32	0.38	0.32	0.43	0.03
2010	2.35	0.71	1.58	0.35	0.43	0.46	0.06
2011	2.08	0.80	1.51	0.58	0.30	0.20	0.03
2012	2.90	0.83	1.72	0.29	0.28	0.42	0.02
2013	5.07	2.59	4.56	0.96	0.63	0.56	0.08
2014	4.42	1.29	2.72	0.30	0.47	0.43	0.01
2015	1.18	0.69	1.35	0.45	0.28	0.32	0.04
2016	3.34	0.87	1.56	0.19	0.31	0.29	0.03
2017	1.98	0.88	2.18	0.50	0.27	0.51	0.08
2018	2.04	0.25	1.42	0.28	0.33	0.53	0.02

Appendix B3.-Escapement index series and management targets for pink salmon stock groups in the Ketchikan management area, 1960-2018.

Stock Group	E. Behm	Portland	W. Behm	Kasaan	Moira	E. Dall	Hetta	Klawock	Sea Otter Sound
Management Area	Ketchikan								
Subregion	SSE ${ }^{1}$	SSE							
District	1	1	1	2	2	3	3	3	3
No. of Streams	41	16	34	28	12	32	15	47	18
Lower Target	670,000	100,000	250,000	240,000	50,000	130,000	300,000	420,000	100,000
Upper Target	1,770,000	280,000	660,000	640,000	130,000	360,000	790,000	1,110,000	280,000
1960	177,762	15,677	47,524	48,694	10,031	29,595	22,514	114,806	15,418
1961	190,729	44,518	79,186	82,099	15,787	41,190	77,649	223,948	28,660
1962	494,675	109,169	184,078	162,294	44,083	127,845	158,409	344,883	101,136
1963	415,782	150,249	167,517	179,102	49,914	83,866	241,314	377,034	65,623
1964	362,407	126,098	278,438	238,199	41,836	151,831	171,108	316,618	94,581
1965	190,649	123,325	71,566	142,112	34,359	117,830	155,231	396,870	133,524
1966	541,879	160,780	282,144	279,978	67,182	131,155	222,798	414,378	147,840
1967	274,793	55,330	102,635	120,129	21,111	65,940	126,628	230,205	48,313
1968	434,209	253,016	233,417	217,108	45,510	124,471	219,406	355,436	98,620
1969	291,218	75,133	123,124	207,180	26,164	73,417	111,051	267,493	56,138
1970	574,954	78,351	219,415	154,966	26,303	114,748	200,292	395,666	85,561
1971	426,284	86,675	192,388	309,370	50,992	94,095	256,895	443,449	87,721
1972	511,517	139,943	206,490	157,909	33,756	84,567	152,099	328,905	65,422
1973	493,350	92,631	145,144	170,175	68,941	98,027	145,135	316,629	105,086
1974	563,905	76,914	175,297	139,030	75,222	94,748	199,357	230,419	85,846
1975	677,986	122,204	185,297	345,515	98,941	127,590	298,404	342,434	166,169
1976	705,487	129,350	222,197	295,889	85,020	196,788	216,352	452,477	140,045
1977	1,050,919	283,948	534,872	370,922	80,294	200,353	279,569	568,795	179,246
1978	960,140	188,526	439,113	328,594	55,885	228,084	309,043	617,811	177,048
1979	328,634	40,758	361,852	366,742	45,532	175,154	258,256	630,763	155,592
1980	1,102,909	137,872	563,365	348,505	107,446	332,478	421,149	687,148	174,841
1981	916,630	206,445	386,107	253,952	72,403	292,054	435,151	977,223	185,718
1982	831,492	98,591	463,851	215,146	61,378	203,456	450,062	570,045	172,789
1983	1,512,445	227,730	454,986	682,319	111,334	252,267	504,541	1,133,029	253,631
1984	1,944,340	319,785	900,031	589,139	135,556	458,267	587,422	1,291,220	204,216
1985	1,635,238	436,835	1,126,743	644,636	145,200	563,605	777,601	1,980,094	337,400
1986	2,972,027	246,917	812,796	727,851	217,642	671,939	1,179,279	2,198,456	412,000
1987	1,193,959	294,478	343,920	302,747	77,344	159,787	546,813	793,468	65,484
1988	881,041	102,629	157,873	244,388	138,592	223,809	387,521	374,067	82,582

Appendix B3.-continued (page 2 of 2)

Stock Group	E. Behm	Portland	W. Behm	Kasaan	Moira	E. Dall	Hetta	Klawock	Sea Otter Sound
Management Area	Ketchikan								
Subregion	SSE ${ }^{1}$	SSE							
District	1	1	1	2	2	3	3	3	3
No. of Streams	41	16	34	28	12	32	15	47	18
Lower Target	670,000	100,000	250,000	240,000	$\mathbf{5 0 , 0 0 0}$	130,000	300,000	420,000	100,000
Upper Target	1,770,000	280,000	660,000	640,000	130,000	360,000	790,000	1,110,000	280,000
1989	1,252,591	470,927	670,662	525,579	46,192	199,110	475,862	1,656,890	163,556
1990	1,955,415	93,081	539,208	387,781	80,443	274,125	493,803	772,110	234,031
1991	954,414	138,228	328,444	430,891	74,595	173,309	543,332	1,119,384	135,890
1992	1,789,005	123,521	714,492	594,910	110,210	234,098	313,004	484,713	200,144
1993	1,105,713	279,700	386,450	572,800	40,550	270,031	596,193	1,418,734	136,300
1994	1,197,482	134,109	247,384	268,078	74,997	249,976	489,543	780,511	257,286
1995	2,080,905	327,500	691,600	378,342	124,800	375,214	835,500	1,184,535	233,010
1996	3,126,352	263,783	837,221	1,440,395	144,483	738,609	1,518,661	1,558,227	451,221
1997	1,297,271	172,701	525,755	619,436	53,962	161,180	451,655	876,723	95,825
1998	1,446,994	320,292	669,793	706,035	116,904	281,482	503,160	1,231,699	171,668
1999	1,602,403	268,371	711,714	1,038,954	195,475	274,985	1,374,047	1,321,969	330,960
2000	1,187,349	186,759	355,116	818,729	73,930	231,491	889,726	428,055	150,552
2001	2,717,693	307,792	680,731	1,053,217	98,007	343,951	488,500	1,821,121	485,438
2002	1,996,170	412,327	621,950	1,149,593	101,561	439,418	998,994	987,733	262,986
2003	2,158,576	331,150	675,373	1,027,646	107,346	253,985	474,400	1,606,070	335,740
2004	1,462,810	423,550	592,932	588,519	49,672	584,072	644,590	1,722,373	346,700
2005	2,026,508	339,694	528,558	1,095,679	123,650	317,780	833,377	1,323,920	153,193
2006	1,037,370	76,379	243,303	519,826	108,756	141,772	530,522	514,772	146,516
2007	2,531,650	557,100	895,829	1,262,000	158,000	437,883	866,119	1,968,846	209,206
2008	1,373,134	54,850	700,899	733,500	211,400	251,221	849,949	758,068	123,808
2009	1,785,355	299,223	576,673	933,327	130,833	326,752	579,728	1,234,026	176,000
2010	1,626,270	262,013	466,569	602,492	106,000	234,650	480,430	683,946	180,833
2011	1,260,400	483,099	338,045	703,461	91,844	234,100	504,700	566,764	204,000
2012	1,825,824	474,322	611,455	766,900	60,410	262,750	746,544	514,000	193,946
2013	2,904,710	1,063,332	1,097,510	1,978,000	615,000	532,100	1,863,500	1,787,632	373,768
2014	2,829,611	690,215	895,307	1,174,507	118,000	399,388	929,364	1,152,250	238,000
2015	818,240	130,026	231,499	561,072	125,300	192,329	410,726	578,879	166,000
2016	2,184,218	435,509	723,576	812,000	59,500	257,628	553,800	646,993	105,250
2017	1,204,658	417,394	357,858	608,495	269,000	182,075	905,432	1,021,688	72,618
2018	1,073,570	529,456	438,944	200,733	47,000	241,823	284,450	742,315	146,850

${ }^{1}$ SSE $=$ Southern Southeast Subregion.

Appendix B4.-Escapement index series and management targets for pink salmon stock groups in the Petersburg management area, 1960-2018.

Stock Group	Affleck Canal	Shipley Bay	Burnett	Ratz Harbor	Totem Bay	Whale Pass	Anan	Union Bay	Stikine
Management Area	Petersburg								
Subregion	SSE^{1}	SSE							
District	5	5	6	6	6	6	7	7	8
No. of Streams	33	12	10	4	13	10	27	8	6
Lower Target	140,000	110,000	50,000	40,000	50,000	70,000	210,000	$\mathbf{5 0 , 0 0 0}$	20,000
Upper Target	380,000	280,000	140,000	120,000	130,000	180,000	570,000	120,000	$\mathbf{6 0 , 0 0 0}$
1960	56,874	22,310	11,550	11,093	13,166	6,429	42,794	7,955	4,087
1961	74,339	50,943	40,571	44,013	45,652	27,755	103,336	9,733	40,618
1962	315,377	97,339	42,737	40,793	87,067	138,456	405,147	46,603	11,009
1963	97,325	145,371	43,516	42,059	45,197	70,966	238,163	41,490	41,166
1964	241,853	115,376	178,169	48,812	60,893	88,234	299,409	45,390	37,150
1965	153,497	295,773	74,494	87,152	49,045	79,089	154,275	47,802	9,077
1966	231,652	155,599	60,480	57,336	71,513	144,414	337,890	68,023	27,104
1967	72,436	150,244	21,837	24,903	27,512	36,129	81,790	8,355	9,355
1968	184,459	207,042	122,870	50,333	98,850	82,573	183,423	26,442	49,493
1969	67,882	81,999	13,503	40,617	31,524	37,848	172,749	28,544	11,397
1970	129,948	75,689	42,015	31,198	53,612	53,908	266,527	29,447	38,702
1971	138,841	150,207	45,652	62,240	51,714	113,759	297,139	64,458	28,088
1972	151,062	48,888	50,854	44,876	45,620	47,925	318,011	44,942	17,595
1973	132,759	112,327	97,417	15,615	44,388	156,723	163,409	41,041	20,422
1974	98,977	41,438	50,581	37,318	35,629	95,447	202,365	37,747	9,157
1975	106,500	115,722	96,097	21,500	60,761	145,081	293,493	47,928	11,919
1976	96,352	39,023	138,003	60,817	40,803	201,678	261,615	93,602	19,184
1977	109,549	158,069	110,856	69,743	54,178	72,579	752,891	136,570	26,450
1978	165,405	104,074	44,248	70,400	50,147	72,002	326,129	70,541	8,154
1979	163,469	148,839	67,722	47,304	98,575	72,087	365,703	48,789	58,611
1980	156,218	78,975	66,601	77,412	75,422	112,301	281,714	79,778	35,080
1981	196,117	187,128	77,582	53,653	60,233	106,979	173,749	69,910	30,113
1982	127,583	115,259	65,220	86,300	85,091	72,089	293,009	67,500	59,058
1983	281,474	203,496	115,251	66,482	99,580	163,179	331,447	78,082	51,972
1984	286,050	171,794	65,811	16,300	83,180	166,773	348,254	68,997	37,607
1985	356,587	309,768	116,600	223,500	231,159	247,362	608,270	160,984	53,200
1986	445,786	206,313	132,775	196,900	143,793	244,710	371,920	183,950	59,410
1987	68,864	96,521	43,665	22,510	102,391	46,517	240,188	58,600	52,209
1988	157,710	34,861	47,711	70,000	55,841	37,856	163,871	94,600	15,513
1989	229,656	220,500	83,540	141,442	126,821	165,907	628,423	197,917	76,478
1990	320,857	88,806	115,300	71,300	85,607	194,488	236,062	142,004	56,136

[^1]Appendix B4.-continued (page 2 of 2)

Stock Group	Affleck Canal	Shipley Bay	Burnett	Ratz Harbor	Totem Bay	Whale Pass	Anan	Union Bay	Stikine
Management Area	Petersburg								
Subregion	SSE^{1}	SSE							
District	5	5	6	6	6	6	7	7	8
No. of Streams	33	12	10	4	13	10	27	8	6
Lower Target	140,000	110,000	50,000	40,000	50,000	70,000	210,000	50,000	20,000
Upper Target	380,000	280,000	140,000	120,000	130,000	180,000	$\mathbf{5 7 0 , 0 0 0}$	120,000	$\mathbf{6 0 , 0 0 0}$
1991	249,688	375,693	121,845	67,700	124,099	96,027	457,152	125,847	114,009
1992	111,985	30,386	76,973	17,500	58,711	38,045	480,860	50,618	56,504
1993	278,371	296,693	67,650	119,500	283,415	93,105	402,151	89,273	35,864
1994	251,082	134,593	172,054	107,200	82,617	273,690	402,878	107,800	35,744
1995	256,297	277,912	58,250	191,700	133,828	217,765	263,085	129,691	26,186
1996	449,929	209,200	147,200	131,200	149,539	161,045	363,694	183,400	25,950
1997	319,271	290,546	128,366	70,462	132,101	188,081	485,466	57,990	44,185
1998	223,369	174,409	125,780	138,300	80,728	214,377	388,962	120,063	38,002
1999	821,107	874,712	387,587	391,000	469,386	316,310	632,197	198,069	66,598
2000	214,344	118,400	120,867	56,700	79,902	47,214	358,607	72,200	12,436
2001	578,079	476,567	263,219	178,800	271,757	295,729	610,633	196,732	118,313
2002	536,426	146,757	212,455	148,313	108,662	100,420	441,025	138,527	41,915
2003	396,633	578,350	203,072	247,200	154,436	282,876	631,599	158,721	154,196
2004	463,593	177,835	96,600	172,000	175,843	131,787	450,034	110,842	62,188
2005	564,872	467,966	162,221	132,800	134,719	278,036	633,828	168,548	110,330
2006	140,991	96,959	70,447	101,200	72,993	99,245	274,024	97,589	54,895
2007	231,447	220,266	161,032	137,950	70,771	166,498	535,219	131,031	50,525
2008	107,628	149,191	132,750	181,200	30,752	39,204	488,822	98,482	9,511
2009	188,558	190,990	88,327	86,300	44,075	103,505	355,772	72,826	29,498
2010	206,291	142,859	128,350	118,600	94,069	90,770	341,055	122,274	55,300
2011	347,775	230,003	38,349	88,000	84,676	89,684	127,211	71,112	34,500
2012	209,649	75,409	75,166	89,400	49,638	67,917	327,410	96,062	22,640
2013	554,918	409,800	175,193	192,400	127,479	135,987	417,989	138,984	79,840
2014	209,065	88,285	146,750	160,400	49,470	117,387	292,477	141,850	13,250
2015	329,978	118,838	69,531	63,750	49,737	94,771	240,028	76,568	38,400
2016	103,817	81,600	101,328	70,750	63,970	74,600	222,924	67,750	33,900
2017	259,502	236,084	51,569	56,500	87,668	72,043	406,898	99,300	79,683
2018	113,122	170,100	77,769	59,500	55,232	137,683	470,082	58,988	20,719

[^2]Appendix B5.-Harvest of pink salmon by statistical week in the Southern Southeast Alaska Subregion for all fisheries combined, 1960-2018.

Year	27	28	29	30	31	32	33	34	35	36	Total ${ }^{\text {a }}$
1960	1,252	14,121	23,046	414,877	125,645	96,220	59,276	157,448	342,958	155,543	1,439,666
1961	3,469	6,735	40,136	43,931	263,849	599,186	1,149,259	1,115,690	352,126	65,296	3,771,200
1962	20,897	575,328	891,747	702,082	757,687	1,417,195	1,772,165	2,007,128	1,600,594	622,006	10,740,428
1963	9,005	20,604	37,077	280,049	1,043,840	1,004,122	1,217,210	841,911	535,161	63,755	5,136,144
1964	6,551	179,184	507,540	510,094	980,640	1,666,860	2,260,415	2,596,724	1,289,686	955,400	11,257,947
1965	2,456	21,331	76,557	344,563	331,750	564,025	1,433,003	1,452,150	1,064,752	366,035	5,710,458
1966	14,489	522,521	861,003	569,782	1,111,246	2,053,525	2,449,630	2,759,004	3,433,531	1,479,650	15,561,555
1967	3,830	13,231	41,734	93,915	260,092	140,096	71,402	553	1,792	3,521	641,540
1968	201,150	356,060	712,190	562,156	836,231	1,162,043	3,870,635	4,050,829	2,608,917	627,979	15,193,876
1969	5,855	9,128	45,364	89,985	228,045	520,698	240,265	54,626	1,633	855	1,199,140
1970	31,015	370,306	503,572	360,484	357,903	330,550	693,210	1,624,624	940,026	122,839	5,370,759
1971	2,782	4,362	25,128	48,516	81,406	122,133	884,213	1,939,705	1,436,638	1,176,309	6,259,244
1972	21,518	554,584	918,986	1,180,265	864,929	1,125,061	1,214,674	1,789,962	866,655	466,049	9,152,645
1973	10,739	62,249	317,092	542,771	1,097,215	1,608,700	619,689	216,916	42,266	25,539	4,558,505
1974	15,048	17,994	192,044	185,214	387,416	822,923	884,153	855,700	717,112	121,732	4,220,805
1975	17,682	30,980	77,015	11,062	6,310	908,924	1,158,544	762,783	338,438	289	3,332,982
1976	12,895	21,015	94,778	235,984	57,404	88,676	336,563	755,926	1,905,959	1,175,120	5,161,936
1977	38,211	157,862	577,961	787,436	2,868,582	3,651,723	2,387,388	518,598	189,009	105,362	11,298,253
1978	114,316	435,843	860,152	1,733,756	3,863,745	2,148,312	4,423,833	3,350,278	1,323,362	114,070	18,424,978
1979	77,453	285,765	740,937	744,074	464,218	2,266,879	1,969,188	399,751	16,993	764	6,989,781
1980	29,458	200,087	229,246	309,055	697,583	2,447,867	3,745,608	3,662,877	1,289,489	290,327	12,924,273
1981	21,709	236,227	226,523	460,709	1,632,955	4,819,424	4,449,997	1,199,597	322,914	145,278	13,524,934
1982	25,419	104,385	227,077	251,062	194,315	725,186	2,134,365	2,612,464	2,779,676	3,335,280	12,961,072
1983	60,020	255,935	487,385	1,698,717	5,624,186	6,024,283	9,325,737	4,728,897	2,731,590	476,982	31,461,882
1984	70,893	373,620	995,346	1,097,137	2,274,889	4,119,659	4,746,400	4,043,517	1,602,542	277,461	19,676,515
1985	42,943	123,868	350,640	846,141	1,978,744	6,383,526	8,774,755	9,140,442	2,674,277	353,053	30,712,155
1986	17,761	178,267	685,501	2,361,520	4,223,500	11,411,143	10,327,554	6,298,081	7,948,314	1,502,215	45,019,457
1987	23,690	100,332	310,473	602,295	465,904	1,724,192	727,012	328,180	155,255	146,759	4,631,329
1988	2,487	59,951	276,327	232,023	224,497	1,040,696	2,046,956	1,362,835	2,675,243	764,029	9,054,789
1989	63,937	472,516	2,084,025	5,694,928	8,477,888	11,315,173	10,462,673	4,326,184	2,746,942	94,536	45,763,480

[^3]Appendix B5.-continued (page 2 of 2)

Year	27	28	29	30	31	32	33	34	35	36	Total ${ }^{\text {a }}$
1990	78,736	195,215	433,690	689,328	3,031,519	4,708,680	9,637,342	5,248,315	2,473,260	150,147	26,683,252
1991	18,972	286,039	1,471,030	1,963,770	10,621,190	11,330,908	7,478,707	6,948,165	2,843,641	510,765	43,497,275
1992	45,479	533,205	732,118	543,337	2,480,476	4,497,734	3,905,899	3,380,048	2,742,039	125,471	19,009,576
1993	66,946	521,809	548,613	1,092,031	3,555,505	4,960,306	9,205,826	7,815,877	7,194,508	3,944,764	39,218,951
1994	22,055	169,616	500,080	368,020	1,274,171	4,352,741	5,301,919	4,251,415	3,548,219	1,252,452	21,060,265
1995	189,099	205,812	281,598	1,042,520	2,336,428	8,233,242	13,018,105	9,311,050	5,353,637	1,221,464	41,315,465
1996	49,535	834,299	2,048,421	2,351,256	7,252,462	13,493,739	11,370,546	7,564,821	8,033,452	626,880	53,676,323
1997	42,575	594,857	1,280,428	1,538,333	3,753,813	2,299,391	3,481,773	1,893,653	343,758	28,696	15,298,105
1998	22,288	155,104	252,534	1,306,760	2,812,067	5,866,820	6,065,777	5,434,380	1,491,589	324,889	23,748,765
1999	24,945	237,046	337,023	1,792,244	2,261,977	5,139,989	6,937,659	8,012,513	10,221,774	3,692,003	38,857,000
2000	7,649	123,520	268,932	547,924	1,196,895	1,623,293	4,320,879	3,038,376	1,189,369	34,185	12,376,777
2001	280,974	856,548	2,061,923	3,404,943	8,110,369	11,418,950	11,005,019	7,669,803	5,667,846	1,160,118	52,011,540
2002	91,445	164,201	387,246	681,728	2,629,846	5,465,177	5,115,598	6,395,650	2,242,528	120,825	23,319,261
2003	333,872	1,050,417	1,317,156	3,049,874	6,040,415	6,706,239	5,071,435	4,159,979	1,373,365	82,753	29,277,547
2004	28,823	226,138	448,662	1,120,042	2,251,280	5,068,060	5,879,436	4,363,041	1,417,501	112,907	20,924,256
2005	134,816	604,072	1,119,136	2,820,797	5,694,275	6,524,427	5,630,156	4,474,893	1,496,560	301,113	28,864,281
2006	46,970	165,444	323,378	598,579	853,094	716,417	284,125	225,704	27,300	16,463	3,267,182
2007	103,821	393,729	575,722	1,587,704	6,392,135	10,870,698	8,356,984	2,504,652	916,894	10,693	31,776,856
2008	32,277	114,560	285,383	340,932	380,717	1,724,447	5,406,558	4,122,926	962,405	230,917	13,638,249
2009	98,289	268,039	1,477,425	1,740,066	4,931,971	6,214,551	5,856,732	4,029,940	1,781,105	18,411	26,425,304
2010	62,879	140,203	334,347	417,349	1,530,384	3,099,528	3,586,302	2,923,880	1,330,078	245,885	13,694,673
2011	34,021	211,543	334,351	637,406	551,293	1,821,132	2,282,152	2,130,811	1,892,686	1,161,366	11,207,085
2012	200,650	212,235	291,740	993,756	3,199,730	7,519,028	4,462,144	1,512,265	168,991	11,109	18,586,213
2013	283,068	1,300,867	1,765,303	4,092,852	10,667,122	11,284,224	11,659,788	7,675,815	4,011,987	684,003	53,463,227
2014	94,687	637,588	2,222,577	3,491,929	6,248,727	9,817,940	6,486,347	3,566,347	624,952	16,610	33,213,584
2015	56,137	255,397	213,530	729,031	2,045,116	3,935,222	2,458,358	1,395,623	1,125,205	204,683	12,468,441
2016	80,980	777,533	2,173,148	2,073,275	2,772,784	4,912,446	2,277,181	1,049,691	90,974	42,926	16,269,948
2017	158,851	204,541	443,358	261,794	511,331	1,124,505	1,676,433	3,365,916	1,213,732	412,220	9,415,126
2018	14,894	66,417	341,539	848,414	1,143,923	1,501,791	1,123,268	305,216	37,768	11,710	5,398,004

${ }^{\mathrm{a}}$ Total includes small harvests before and after week 27-36.

Appendix B6.-Harvest of pink salmon by statistical week in the Subdistrict 104-10 purse seine fishery, 1960-2018 (- indicates no effort or harvest).

Year	27	28	29	30	31	32	33	34	35	36	37	Total
1960	-	-	72	-	97	6	9	-	-	-	-	184
1961	-	-	-	-	-	-	-	-	-	-	-	0
1962	-	-	-	-	-	-	-	-	-	-	-	0
1963	-	-	-	-	-	8,426	38,209	13,741	-	-	-	60,376
1964	-	-	-	58	-	-	-	-	-	-	-	58
1965	-	-	-	-	46	-	18,200	1,811	-	-	-	20,057
1966	-	-	-	-	738	-	30,052	23,319	10,920	-	-	65,029
1967	-	-	-	-	-	-	-	-	-	-	-	0
1968	-	-	-	-	-	-	1,576	-	-	-	-	1,576
1969	-	-	-	-	-	293	-	-	-	-	-	293
1970	-	-	-	-	715	-	-	-	-	-	-	715
1971	-	-	-	-	-	-	-	-	-	-	-	0
1972	-	-	-	-	-	1,653	579	3,260	315	-	1,046	6,853
1973	-	-	-	4,353	17,930	-	-	-	-	-	-	22,283
1974	-	-	951	-	4,866	26,867	3,960	3,223	-	-	-	39,867
1975	-	-	-	-	-	-	-	-	-	-	-	0
1976	-	35	100	8,703	-	-	-	-	-	-	-	8,838
1977	-	6,195	35,250	18,771	12,650	35,876	4,778	-	3,517	-	-	117,037
1978	1,597	22	305	-	3,855	4,080	-	3,100	5,982	-	-	18,941
1979	743	2,670	14,642	23,659	10,746	-	6,273	1,571	,	-	-	60,304
1980	-	3,937	8,984	5,950	40,376	125,187	35,897	40,420	-	250	-	261,001
1981	-	10,839	18,343	140,979	221,225	307,923	135,687	49,382	4,074	-	-	888,452
1982	-	4,567	24,454	21,058	2,734	18,877	12,983	27,258	126,551	114,992	-	353,474
1983	-	66,182	42,838	174,852	554,631	972,103	758,558	-	-	-	-	2,569,164
1984	3,155	5,333	55,559	102,827	207,698	191,605	276,265	284,586	5,142	-	-	1,132,170
1985	-	7,729	12,201	50,695	123,427	301,976	5,224	41,890	-	-	-	543,142
1986	-	13,440	61,586	197,587	576,154	1,291,027	395,515	529,864	404,906	43,088	-	3,513,167
1987	-	4,448	15,367	24,299	22,213	118,454	39,450	40,032	-	-	-	264,263
1988	-	3,298	11,881	17,836	2,777	39,587	135,262	60,004	81,125	18,175	-	369,945
1989	1,008	14,941	84,769	238,156	769,268	819,086	958,723	229,181	129,428	-	-	3,244,560

-continued-

Appendix B6.-continued (page 2 of 2)

Year	27	28	29	30	31	32	33	34	35	36	37	Total
1990	15,683	16,137	24,693	-	305,713	363,357	578,373	313,053	96,375	-	-	1,713,384
1991	-	48,299	153,095	127,674	1,422,712	1,115,567	608,721	579,217	240,300	88,433	-	4,384,018
1992	-	7,627	19,769	15,324	273,934	494,170	420,357	327,302	183,567	-	-	1,742,050
1993	-	49,356	35,219	86,935	289,497	265,010	323,265	266,851	294,612	158,018	-	1,768,763
1994	-	6,852	12,321	60,259	234,574	510,671	538,213	394,189	258,239	90,710	-	2,106,028
1995	1,255	675	8,772	38,563	139,397	370,265	718,734	712,401	339,806	210,651	-	2,540,519
1996	-	99,366	89,711	-	477,134	1,214,012	657,763	347,646	613,476	125,442	-	3,624,550
1997	-	58,731	133,119	136,319	241,090	232,198	224,911	91,184	-	-	-	1,117,552
1998	-	4,109	5,455	6,420	214,809	444,090	471,495	387,757	95,120	-	-	1,629,255
1999	-	2,062	4,203	19,258	70,591	456,273	525,209	514,824	550,175	81,731	52,101	2,276,427
2000	-	2,311	2,493	6,017	48,520	187,637	253,354	103,620	503	-	-	604,455
2001	22,514	66,708	38,735	48,256	641,269	456,537	372,590	188,484	9,681	-	-	1,844,774
2002	-	11,328	9,154	15,205	14,838	-	110	-	-	-	-	50,635
2003	-	1,846	42,660	91,900	319,292	386,971	91,486	125,940	20,667	-	-	1,080,762
2004	-	2,679	3,213	68,858	130,566	51,185	131,655	82,232	14,253	-	-	484,641
2005	-	5,159	17,791	96,901	205,539	233,532	142,649	104,432	17,455	-	-	823,458
2006	576	-	18,248	11,423	4,456	14,015	3,933	4,579	-	-	-	57,230
2007	3,391	7,402	20,726	109,847	414,063	267,215	25,129	-	39,422	-	-	887,195
2008	-	94	10	103	7	-	108,726	48,784	0	2,358	-	160,082
2009	-	2,225	24,775	88,302	109,922	181,751	25,517	39,722	7,355	-	-	479,569
2010	-	-	447	-	30	-	15,164	-	5,283	-	-	20,924
2011	-	473	19,199	63,244	41,722	70,060	160,582	807	20,579	23,238	1,032	400,936
2012	-	1,203	13,348	26,893	40,074	162,551	395,139	93,553	3,553	-	-	736,314
2013	-	31,185	1,917	26,715	218,370	361,155	518,798	211,932	169,011	27,279	-	1,566,362
2014	-	1,451	49,805	120,622	317,465	1,027,002	386,247	99,431	29,126	-	-	2,031,149
2015	-	1,752	1,586	17,224	78,036	258,344	95,522	32,817	54,886	-	-	540,167
2016	-	41,273	187,037	34,229	73,595	261,516	59,932	16,467	-	-	-	674,049
2017	-	-	24,629	7,106	26,884	77,315	40,072	105,293	140,009	6,697	-	428,005
2018	-	-	14,606	45,172	19,391	50,710	18,903	14,300	-	-	-	163,082

Appendix B7.-Harvest of pink salmon by statistical week in the Subdistrict 104-20 purse seine fishery, 1960-2018 (- indicates no effort or harvest).

Year	27	28	29	30	31	32	33	34	35	36	37	Total
1960	-	-	18	-	24	220	2	52	210	12	-	538
1961	-	-	-	-	-	381	580	313	-	-	-	1,274
1962	-	-	-	-	-	-	-	-	879	-	-	879
1963	-	-	-	-	-	214,159	111,776	871	60	-	-	326,866
1964	-	-	-	53	-	-	333	-	-	-	-	386
1965	-	-	-	-	274	4,572	7,200	-	-	-	-	12,046
1966	-	-	-	-	-	-	10,335	8,065	-	-	-	18,400
1967	-	-	-	-	-	277	112	-	-	-	-	389
1968	-	-	-	-	20,718	32	3,125	-	76,688	-	-	100,563
1969	-	-	-	-	-	-	272	-		-	-	272
1970	-	-	-	-	1,597	2,209	-	-	-	-	-	3,806
1971	-	-	-	-	-	-	-	-	-	-	-	0
1972	-	-	1,189	-	-	-	-	-	6,212	-	-	7,401
1973	-	-	-	8,862	25,348	10,403	-	-	-	-	-	44,613
1974	-	103	252	-	2,245	31,427	941	20,341	-	-	-	55,309
1975	-	-	-	-	-	-	-	-	-	-	-	0
1976	-	7	145	-	-	-	-	-	-	-	-	152
1977	-	365	-	10,635	-	15,194	11,273	-	470	-	-	37,937
1978	88	-	4	119	6,861	6,853	33,811	0	-	-	-	47,736
1979	-	736	3,128	11,223	4,288	-	1,727	0	-	-	-	21,102
1980	-	-	1	76	770	58,078	-	4,187	-	-	-	63,112
1981	-	1,779	750	-	6,500	81,028	21,063	164	-	-	-	111,284
1982	-	1,586	524	2,953	447	51,766	261,101	16,228	25,904	94,185	-	454,694
1983	-	24,304	37,854	49,207	966,059	742,706	1,100,065	165,436	81,077	-	-	3,166,708
1984	461	27,025	6,136	48,842	312,236	686,791	576,945	362,012	2,279	-	-	2,022,727
1985	-	3,204	1,365	31,784	104,623	660,256	283,667	519,700	104,305	-	-	1,708,904
1986	-	6,296	91,208	301,073	907,748	3,503,790	1,701,621	409,551	518,402	111,766	-	7,551,455
1987	-	1,891	31,068	22,646	64,984	470,820	57,284	43,941	-	-	-	692,634
1988	-	4,243	15,079	27,106	9,786	98,388	270,579	219,305	444,111	110,065	-	1,198,662
1989	2,786	24,094	87,281	270,596	760,378	806,680	1,200,467	241,316	79,600	-	-	3,473,198

Appendix B7.-continued (page 2 of 2)

Year	27	28	29	30	31	32	33	34	35	36	37	Total
1990	18,718	30,465	32,354	-	838,535	1,655,212	1,978,331	719,945	158,027	-	-	5,431,587
1991	-	26,158	53,687	43,534	3,344,783	3,170,435	862,994	1,085,847	164,106	87,214	-	8,838,758
1992	-	5,686	4,016	13,202	370,806	612,876	1,023,065	784,272	355,629	-	-	3,169,552
1993	-	23,551	16,923	153,992	749,634	738,385	1,276,333	548,089	534,879	272,443	-	4,314,229
1994	-	6,750	26,254	23,499	423,777	1,140,113	1,001,795	901,048	557,653	201,420	-	4,282,309
1995	2,633	221	2,436	71,409	315,600	1,183,333	1,726,653	2,442,496	845,366	159,611	-	6,749,758
1996	-	16,445	145,859	-	1,562,741	2,081,244	2,107,973	486,660	968,692	41,470	-	7,411,084
1997	-	119,322	165,035	221,302	615,351	58,786	201,671	153,112	-	-	-	1,534,579
1998	-	2,668	6,814	40,742	193,984	536,033	448,145	192,234	46,287	-	-	1,466,907
1999	-	3,883	1,018	-	3,755	697,733	1,059,870	659,938	318,186	190,998	-	2,935,381
2000	-	1,042	260	2,102	52,752	150,760	326,344	81,379	885	-	-	615,524
2001	7,193	11,935	20,862	3,632	1,046,719	817,090	1,134,767	289,296	-	-	-	3,331,494
2002	-	11,999	10,929	696	21,141	2,300	7,786	,	-	-	-	54,851
2003	-	4,901	128,907	126,304	697,870	554,886	59,427	47,453	-	-	-	1,619,748
2004	-	1,005	-	-	54,225	11,202	201,575	63,042	-	-	-	331,049
2005	-	13,208	-	44,509	225,916	178,664	43,957	81,849	-	-	-	588,103
2006	30	-	7,523	21,677	7,390	-	-	-	-	-	-	36,620
2007	17,607	15,759	29,781	131,889	839,259	177,140	156,472	83,360	4,984	-	-	1,456,251
2008	-	-	-	-	4,425	45,552	43,101	-	-	-	-	93,078
2009	-	274	1,224	38,915	185,330	27,670	335,969	329,124	20,640	-	-	939,146
2010	-	277	4,056	76	1,874	-	-	4,447	2,861	-	-	13,591
2011	-	294	3,185	13,313	-	16,939	88,507	74,916	-	-	-	197,154
2012	-	337	385	14,167	64,801	251,205	471,132	126,582	2,966	-	-	931,575
2013	-	38,082	3,482	54,164	47,406	1,032,348	1,326,799	359,277	10,409	-	-	2,871,967
2014	-	18,874	120,148	190,223	1,015,210	2,677,546	785,668	100,633	4,806	-	-	4,913,108
2015	-	699	-	463	150,993	134,840	94,408	31,667	24,893	-	-	437,963
2016	-	26,152	199,645	12,652	81,735	141,200	65,013	37,577	-	-	-	563,974
2017	-	-	2,004	-	-	152,717	-	26,113	3,276	-	-	184,110
2018	-	-	6,783	3,432	23,417	60,036	1,588	3,668	-	-	-	98,924

Appendix B8.-Harvest of pink salmon by statistical week in the Subdistrict 104-30 purse seine fishery, 1960-2018 (- indicates no effort or harvest).

Year	27	28	29	30	31	32	33	34	35	36	37	Total
1960	-	-	-	-	-	-	-	-	-	-	-	0
1961	-	-	-	-	-	-	31	6,077	-	-	-	6,112
1962	-	-	-	-	123	-	-	5,204	1615	-	-	6,942
1963	-	-	-	-	-	-	24	-	309	41	-	374
1964	-	-	-	-	-	-	-	-	-	-	-	0
1965	-	-	-	-	-	-	640	-	5691	-	-	6,331
1966	-	-	-	1,232	407	5,454	18,720	2,687	96	-	-	28,596
1967	-	-	-	-	-	-	-	-	-	-	-	0
1968	-	-	-	-	-	-	-	1477	-	-	-	1,477
1969	-	-	-	-	-	-	-	-	-	-	-	0
1970	-	-	-	-	-	-	-	28330	-	-	-	28,330
1971	-	-	-	-	-	-	-	-	-	-	-	0
1972	-	-	-	996	-	-	-	-	156	-	-	1,152
1973	-	-	-	-	-	-	-	-	-	-	-	0
1974	-	-	-	-	-	-	-	-	-	-	-	0
1975	-	-	-	-	-	-	-	-	-	-	-	0
1976	-	168	586	1,226	-	-	-	-	-	-	-	1,980
1977	-	6,549	144	18,601	14,472	21,343	8,732	-	1	-	-	69,842
1978	1,941	1,509	1,682	22,596	33,503	11,003	27,605	-	-	-	-	99,839
1979	3,359	6,014	531	8,013	2,021	-	554	4,422	-	-	-	24,914
1980	-	718	296	5,464	572	52,206	73,112	105,566	3,150	-	-	241,084
1981	-	10,769	2,468	26,698	212,124	601,674	164,867	54,598	-	-	-	1,073,198
1982	-	1,843	4,158	3,004	1,202	26,157	17,043	1,565	3,054	3,400	-	61,426
1983	-	6,581	3,741	14,591	131,025	173,492	109,530	3,200	-	-	-	442,160
1984	55	268	-	2,518	5,871	171,689	297,715	227,131	15,416	-	-	720,663
1985	-	459	1,548	12,198	46,633	468,504	418,250	807,294	37,967	-	-	1,792,853
1986	-	833	-	1,906	10,063	395,435	483,295	138,423	63,330	732	-	1,094,017
1987	-	38	5,766	15,531	10,952	126,174	72,400	-	-	-	-	230,861
1988	-	950	3,183	1,858	712	11,416	43,268	137,972	156,668	18,757	-	374,784
1989	7,520	1,174	-	54,528	69,229	144,756	121,243	21,951	-	-	-	420,401

-continued-

Appendix B8.-continued (page 2 of 2)

	Year	27	28	29	30	31	32	33	34	35	36	37	Total
	1990	83	1,983	183	191	27,788	96,196	177,707	55,704	2,807	-	-	362,642
	1991	-	1,531	3,862	-	313,433	75,612	108,045	13,803	2,492	-	-	518,778
	1992	-	283	-	-	23,284	14,346	48,105	33,531	5,143	-	-	124,692
	1993	-	-	-	25,066	72,291	33,760	72,648	182,244	92,589	49,749	-	528,347
	1994	-	-	-	-	56,373	128,536	72,494	24,258	27,344	4,289	-	313,294
	1995	-	-	-	6,626	10,225	163,450	126,293	224,625	125,697	1,430	-	658,346
	1996	-	-	-	-	141,034	148,679	91,443	71,506	53,766	-	-	506,428
	1997	-	1,017	10,315	24,161	13,022	0	37,929	12,021	,	-	-	98,465
	1998	-	26	-	-	25,782	8,437	23,518	17,156	7,122	-	-	82,041
	1999	-	-	-	1,672	-	14,146	103,174	68,587	80,639	22,386	-	290,604
	2000	-	-	-		-	21559	26207	-	-	-	-	47,766
	2001	-	6,131	5,294	-	101,108	215,823	80,867	63,093	8,068	-	-	480,384
	2002	-	-	-	-	459	13,857	35,329	75,777	7,195	-	-	132,617
	2003	-	-	3,749	-	33,753	12,650	7,456	9,151	,	-	-	66,759
	2004	-	-	-	-	-	17,192	-	-	-	-	-	17,192
0	2005	-	-	-	4,673	12,880	12,653	47,268	-	9,577	-	-	87,051
心	2006	-	-	-	6,362	-	10,495	-	-	-	-	-	16,857
	2007	-	-	1,822	20,862	76,530	707	-	-	5,390	-	-	105,311
	2008	-	-	-	-	906	-	13,376	-	-	-	-	14,282
	2009	-	-	964	17,202	65,871	103,383	78,307	15,502	13,332	-	-	294,561
	2010	-	-	-	-	7,895	72,015	260,328	85,760	31,861	-	-	457,859
	2011	-	-	-	10,968	16,659	41,222	71,082			-	-	139,931
	2012	-	-	-	4,463	98,583	63,873	14,226	11,949	2,090	-	-	195,184
	2013	-	-	980	-	143,385	76,460	189,654	44,141	24,441	-	-	479,061
	2014	-	4,836	-	19,017	176,725	159,424	104,411		62	-	-	464,475
	2015	-	668	970	-	26,462	28,998	68,031	23,409	2,618	-	-	151,156
	2016	-	-	-	-	23,760	1,300	19,780	17,179	-	-	-	62,019
	2017	-	-	-	-	6,630	-	55,666	18,789	878	21,138	-	103,101
	2018	-	-	-	4,750	5,483	36,870	16,520	1,829	-	-	-	65,452

Appendix B9.-Harvest of pink salmon by statistical week in the Subdistrict 104-35 purse seine fishery, 1960-2018 (- indicates no effort or harvest).

	Year	27	28	29	30	31	32	33	34	35	36	Total
	1960	-	-	-	-	-	-	-	-	-	-	0
	1961	-	-	-	-	-	-	-	-	-	-	0
	1962	-	-	-	-	-	288	-	-	-	69	357
	1963	281	-	-	67,077	253,044	105,358	73,835	52,753	24,001	-	576,349
	1964	796	7,211	12,056	28,342	68,933	108,113	121,056	86,314	145	-	432,966
	1965	30	5,888	17,505	89,889	66,246	61,004	11,002	668	46	-	252,278
	1966	-	443	329	4,255	9,911	98,630	220,433	213,617	60,853	733	609,204
	1967	144	2,636	7,131	18,151	61,032	16,306	7,259	-	-	-	112,659
	1968	1,489	4,964	6,158	5,099	28,503	29,531	568,133	311,242	101,626	832	1,057,577
	1969	-	263	3,186	7,064	22,786	83,304	18,654	13,413	-	-	149,129
	1970	-	124	714	2,841	7,967	5,496	8,266	8,422	192	-	34,022
	1971	-	-	-	-	-	-	71,365	115,148	25,698	29,765	241,976
	1972	-	-	24,052	4,618	3,848	79,135	127,392	165,196	62,227	15,460	481,928
	1973	-	10,147	28,533	36,399	110,603	71,175	51	1	-	-	256,909
$\stackrel{\rightharpoonup}{\circ}$	1974	-	669	3,697	12,232	30,039	79,443	74,861	44,999	66,213	90	312,243
	1975	-	6,090	20,514	-	-	-	-	-	-	-	26,604
	1976	-	2,729	12,941	43,054	-	-	-	19,355	-	-	78,079
	1977	-	1,975	-	6	13,000	40,628	26	-	-	-	55,635
	1978	164	15	21	-	14,919	1,238	25,040	4,010	23,552	-	68,959
	1979	0	16,264	1,341	3,781	14,600	-	2,935	-	-	-	38,921
	1980	-	62	566	4,397	59,981	39,131	21,180	52,703	535	-	178,555
	1981	-	13,430	4,903	22,923	31,725	37,353	5,443	18,435	-	-	134,212
	1982	-	151	809	560	16	15,272	68,904	14,827	42,718	50,080	193,337
	1983	-	3,782	31,227	59,636	369,214	66,635	169,626	25,738	-	-	725,858
	1984	1,448	2,209	3,663	14,338	74,578	223,852	179,788	20,443	1,000	-	521,319
	1985	-	495	58	7,943	49,732	162,388	21,314	41,071	30,401	-	313,402
	1986	-	2,929	33,449	64,158	170,390	787,926	351,152	229,128	132,096	55,640	1,826,868
	1987	-	216	17,814	7,623	8,319	110,897	1,779	-	-	-	146,648
	1988	-	211	1,783	2,730	1,291	65,279	92,978	53,970	138,168	14,686	371,096
	1989	1,991	20,654	36,431	62,812	39,211	134,672	96,285	11,571	2,846	-	406,473

-continued-

Appendix B9.-continued (page 2 of 2)

	Year	27	28	29	30	31	32	33	34	35	36	Total
	1990	959	5,573	72,683	12,474	68,505	108,211	270,731	126,256	41,594	-	706,986
	1991	-	43,466	54,732	-	328,226	375,641	508,000	148,586	26,596	-	1,485,247
	1992	-	2,134	9,012	-	19,814	47,879	15,334	35,869	40,328	-	170,370
	1993	-	6,182	9,964	16,731	84,191	106,289	247,239	191,214	230,600	19,841	912,251
	1994	-	1,357	841	-	48,518	263,019	247,137	201,494	171,454	17,441	951,261
	1995	602	28	1,081	7,505	76,901	212,139	302,201	192,022	109,473	13,307	915,259
	1996	-	617	4,792	5,359	131,582	283,661	281,458	30,061	345,990	-	1,083,520
	1997	-	37,976	24,313	81,869	121,006	27,208	55,033	57,748	-	-	405,153
	1998	-	135	60	1,549	8,569	87,956	216,146	188,650	14,358	-	517,423
	1999	-	234	9,263	4,777	-	122,018	378,205	237,286	86,386	57,000	895,169
	2000	-	507	865	954	8,015	56,386	1,147	6,672	-	-	74,546
	2001	182	19,135	26,725	18,391	459,696	439,633	387,927	175,012	5,800	-	1,532,501
	2002	-	1,211	7,223	5,103	8,582	56,394	2,909	-	-	-	81,422
	2003	-	-	72,791	286,983	398,464	227,361	143,476	27,910	-	-	1,156,985
	2004	-	880	4,773	53,520	83,407	312,054	332,693	178,002	14,807	-	980,136
\bigcirc	2005	-	5,871	126,402	170,176	235,884	311,422	292,445	296,485	80,299	-	1,518,984
Or	2006	10	2,411	5,152	5,868	5,450	17,514	15,884	5,228	-	-	57,517
	2007	8,454	17,414	28,774	249,713	850,512	251,728	185,652	20,742	20,624	-	1,633,613
	2008	-	179	1,613	16,757	28,734	123,866	361,494	154,160	-	-	686,803
	2009	-	17	7,368	25,325	335,025	143,205	516,536	116,910	46,222	-	1,190,608
	2010	-	-	1,192	-	-	19,576	-	9,033	13,322	1,549	44,672
	2011	-	243	1,758	11,747	16,470	186,562	37,322	-	17,907	-	272,009
	2012	320	976	3,425	39,274	149,911	180,359	329,252	77,088	374	-	780,979
	2013	-	22,422	42,704	104,040	472,055	260,822	589,189	441,264	242,991	21,060	2,196,547
	2014	-	13,750	114,592	220,943	582,046	260,003	470,966	139,204	42,318	-	1,843,822
	2015	-	1,175	3,490	31,550	160,697	126,207	90,263	61,915	37,649	-	512,946
	2016	-	17,835	77,733	6,146	98,413	268,329	60,949	47,313	-	-	576,718
	2017	-	-	21,460	3,850	19,639	54,673	48,168	161,958	33,119	291	343,158
	2018	-	-	3,566	14,089	19,362	48,874	26,353	22,918	-	-	135,162

Appendix B10.-Harvest of pink salmon by statistical week in the Subdistrict 104-40 purse seine fishery, 1960-2018 (- indicates no effort or harvest).

Year	27	28	29	30	31	32	33	34	35	36	37	Total
1960	-	12,485	20,757	19,674	25,166	21,179	18,901	92,046	220,555	53,589	12,497	496,849
1961	3	-	6,312	5,705	32,087	194,898	182,620	3,769	1,025	4	-	426,423
1962	4,768	3,651	16,225	58,016	19,296	144,583	390,017	363,229	78,236	477	-	1,078,498
1963	522	-	-	124,572	469,938	195,665	137,122	97,971	44,572	-	-	1,070,362
1964	1,478	13,392	22,389	52,636	128,018	200,781	224,817	160,297	270	-	-	804,078
1965	56	10,935	32,510	166,937	123,029	113,294	20,431	1,240	86	-	-	468,518
1966	-	822	612	7,901	18,406	183,170	409,375	396,718	113,013	1,362	-	1,131,379
1967	267	4,895	13,243	33,709	113,344	30,282	13,482	-	-	-	-	209,222
1968	2,764	9,219	11,437	9,470	52,934	54,842	1,055,105	578,022	188,733	1,545	-	1,964,071
1969	-	607	2,434	20,738	50,656	184,379	30,381	38,840	-	-	-	328,035
1970	-	655	2,482	5,536	15,736	10,398	13,670	19,481	495	-	-	70,843
1971	-	-	-	-	-	-	92,430	200,823	39,802	66,052	-	399,107
1972	-	8,449	30,909	8,377	8,322	152,731	266,642	287,899	114,398	34,082	4,559	916,368
1973	-	27,344	65,018	60,528	164,030	123,745	367	393	-	-	-	441,425
1974	-	2,413	5,908	30,767	52,073	134,444	120,499	78,210	123,209	319	-	547,842
1975	-	12,295	32,511	-	-	-	-	-	-	-	-	44,806
1976	-	4,357	25,210	103,091	-	-	-	87,828	-	-	-	220,486
1977	-	37,572	161,500	90,547	171,982	119,148	50,703	-	7,071	-	-	638,523
1978	28,048	11,166	31,931	61,415	323,925	209,418	903,653	184,768	59,373	1,383	-	1,815,080
1979	30,905	183,667	316,490	119,106	82,258	2,838	16,489	350	-	-	-	752,615
1980	-	121,543	72,502	103,213	325,085	522,310	198,383	227,635	15,436	1	-	1,586,108
1981	-	133,147	38,464	74,034	335,166	611,929	318,539	40,121	-	-	-	1,551,400
1982	-	10,623	17,915	21,214	4,069	68,817	535,974	777,020	1,007,944	1,102,500	-	3,546,076
1983	-	68,721	209,930	441,972	1,754,729	2,743,010	3,152,592	940,873	474,941	-	-	9,786,768
1984	6,948	10,086	19,436	38,909	178,414	352,532	718,178	239,755	132,161	-	-	1,696,419
1985	-	6,251	6,436	213,261	350,647	1,735,938	1,071,778	522,411	194,809	-	-	4,101,531
1986	-	6,051	67,517	190,351	570,945	1,985,746	1,065,927	322,729	525,945	62,492	-	4,797,703
1987	-	2,422	16,406	32,944	$39,031$	192,956	54,563	-	-	-	-	338,322
1988	-	824	$12,442$	5,575	2,195	159,602	322,565	133,016	519,171	72,969	-	1,228,359
1989	5,427	111,034	135,896	503,876	985,528	1,282,848	1,657,668	487,807	296,086	-	-	5,466,170

Appendix B10.-continued (page 2 of 2)

Year	27	28	29	30	31	32	33	34	35	36	37	Total
1990	7,709	43,860	96,888	79,007	777,806	795,681	2,916,998	1,526,257	136,360	-	-	6,380,566
1991	-	44,392	106,487	-	3,157,077	3,683,793	2,433,122	2,457,163	1,060,702	188,149	-	13,130,885
1992	-	9,728	15,524	-	985,006	1,581,939	861,031	148,589	77,241	-	-	3,679,058
1993	-	28,846	23,042	90,296	457,137	395,980	1,054,707	917,174	851,306	239,110	-	4,057,598
1994	-	3,300	30,221	160,963	242,541	1,607,345	1,508,388	477,692	609,128	147,110	-	4,786,688
1995	7,148	17	2,377	26,486	243,901	481,577	791,776	420,252	233,385	132,610	-	2,339,529
1996	-	10,652	54,008	29,343	1,342,120	2,590,615	896,925	670,389	752,979	15,244	-	6,362,275
1997	-	140,145	273,494	247,128	619,760	483,265	466,963	141,230	-	-	-	2,371,985
1998	-	338	1,884	1,708	54,816	814,684	805,735	347,408	70,605	-	-	2,097,178
1999	-	3,531	12,831	9,251	28,800	960,162	1,814,737	1,425,474	1,128,478	182,022	-	5,565,286
2000	-	822	5,055	8,937	24,767	209,259	145,146	67,611	,	-	-	461,597
2001	3,139	121,636	86,097	9,554	1,698,490	1,358,497	669,345	441,910	247,841	-	-	4,636,509
2002	-	766	14,373	62,811	75,713	161,108	144,991	15,789	22,046	-	-	497,597
2003	-	8,231	99,148	375,232	653,706	623,937	346,684	342,558	147,393	-	-	2,596,889
2004	-	5,224	14,803	52,440	266,843	770,589	763,030	370,622	87,899	-	-	2,331,450
2005	-	23,897	97,533	338,377	362,718	1,064,802	486,741	633,805	50,010	-	-	3,057,883
2006	194	1,323	17,976	187,069	297,687	160,083	15,215	24,764	-	-	-	704,311
2007	11,126	38,052	44,814	235,771	1,967,931	2,485,389	1,790,585	392,974	153,449	-	-	7,120,091
2008	-	234	355	17,193	146,832	443,661	642,707	528,743	93,220	6,797	-	1,879,742
2009	-	403	45,160	112,758	605,733	270,168	707,030	534,139	270,862	-	-	2,546,253
2010	-	712	3,413	11,045	44,163	62,029	168,512	99,365	56,613	4,161	-	450,013
2011	-	658	16,900	12,805	79,785	583,775	263,916	57,391	197,601	158,222	-	1,371,053
2012	98	-	11,768	61,408	271,904	1,520,810	982,754	278,897	20,991	-	-	3,148,630
2013	-	76,042	42,549	240,414	896,504	565,112	741,481	644,666	390,218	72,122	-	3,669,108
2014	-	106,727	222,420	324,223	386,969	252,182	224,549	56,230	41,754	-	-	1,615,054
2015	-	8,470	10,124	147,043	631,300	735,335	304,233	245,161	274,766	-	-	2,356,432
2016	-	226,803	694,548	46,430	295,913	401,047	79,322	39,071	-	-	-	1,783,134
2017	-	-	11,495	10,437	124,050	117,271	128,899	348,764	273,175	34,778	-	1,048,869
2018	-	-	31,907	133,985	64,028	50,084	12,459	31,374	-	-	-	323,837

Appendix B11.-Harvest of pink salmon by statistical week in the Subdistrict 104-50 purse seine fishery, 1960-2018 (- indicates no effort or harvest).

	Year	27	28	29	30	31	32	33	34	35	36	37	Total
	1960	-	-	-	-	-	-	-	-	-	-	-	0
	1961	-	-	-	-	-	-	-	-	-	-	-	0
	1962	-	-	-	-	-	-	-	-	-	-	-	0
	1963	-	-	-	-	29,749	-	989	402	-	-	-	31,140
	1964	-	-	-	-	6,809	1,529	-	-	-	-	-	8,338
	1965	-	-	-	-	-	4,681	-	-	-	-	-	4,681
	1966	-	-	-	-	-	-	3,843	-	-	-	-	3,843
	1967	-	-	-	-	1,070	681	-	-	-	-	-	1,751
	1968	-	-	-	-	-	-	133,481	28,117	669	-	-	162,267
	1969	-	5	-	865	2	742	4,956	928	-	-	-	7,498
	1970	-	-	-	-	-	-	-	-	-	-	-	0
	1971	-	-	-	-	-	-	4,622	13,006	13,591	473	-	31,692
	1972	-	-	22,720	5,792	-	59,111	3,858	110,019	14,565	-	-	216,065
	1973	-	-	922	0	128	41,209	-	-	-	-	-	42,259
\bigcirc	1974	-	-	-	0	-	-	-	12,837	49700	-	-	62,537
	1975	-	-	-	-	-	-	-	-	-	-	-	0
	1976	-	531	439	6,622	-	-	-	-	-	-	-	7,592
	1977	-	806	-	1	-	-	8	-	-	-	-	815
	1978	-	-	-	-	-	-	-	-	-	-	-	0
	1979	5,605	16,188	21,670	-	-	-	-	-	-	-	-	43,463
	1980	-	19,171	2,613	1,469	6,720	-	-	-	-	-	-	29,973
	1981	-	-	-	-	-	1,070	6,485	-	-	-	-	7,555
	1982	-	1,146	360	-	475	2,347	4,175	801	5,136	-	-	14,440
	1983	-	10,914	-	-	-	113,053	-	-	-	-	-	123,967
	1984	45	1,530	-	53		6,939	5,519	19,157	-	-	-	33,243
	1985	-	213	-	1,039		51,524	-	-	-	-	-	52,776
	1986	-	-	-	161	41,443	5,270	825	31,810	-	-	-	79,509
	1988	-	-	-	-	-	-	-	-	-	1,240	-	1,240
	1989	-	-	-	-	-	-	-	-	-	-	-	-

-continued-

Year	27	28	29	30	31	32	33	34	35	36	37	Total
1990	-	-	-	-	-	-	5,296	-	-	-	-	5,296
1991	-	-	-	-	4,059	11,904	5,632	-	-	-	-	21,595
1992	-	-	-	-	-	706	-	-	137	-	-	843
1993	-	-	-	-	-	-	21,840	-	17,281	-	-	39,121
1994	-	-	-	-	-	-	-	-	-	-	-	0
1995	-	-	-	-	-	4,986	-	26,250	21,016	-	-	52,252
1997	-	1,611	-	-	-		7,905	-	-	-	-	9,516
1998	-	-	-	-	-	-	-	37,859	-	-	-	37,859
1999	-	-	-	-	-	-	-	-	21,703	-	-	21,703
2001	-	288	-	-	47,387	-	-	-	41,523	-	-	89,198
2002	-	-	-	-	-	-	20,894	-	-	-	-	20,894
2003	-	-	-	-	-	-	-	-	-	-	-	0
2004	-	-	-	-	-	-	-	-	-	-	-	0
2005	-	-	-	-	-	-	-	-	-	-	-	0
2006	-	-	-	-	-	-	-	-	-	-	-	0
2007	-	-	-	-	117,095	-	25,423	-	-	-	-	142,518
2008	-	-	-	-	-	-	13,730	-	-	-	-	13,730
2009	-	-	-	-	-	4,295	-	-	-	-	-	4,295
2010												0
2011	-	-	-	-	-	9,872	-	-	-	-	-	9,872
2012	-	-	-	-	-	-	-	771	-	-	-	771
2013	-	-	-	-	-	7,956	-	-	72,893	-	-	80,849
2014												0
2015	-	-	-	-	-	19,332	-	-	-	-	-	19,332
2016	-	-	-	-	-	-	-	-	-	-	-	0
2017												0
2018	-	-	-	-	3,095	-	-	-	-	-	-	3,095

APPENDIX C

 DISTRICT 104 PURSE SEINE FISHERY EFFORTAppendix C1.-Number of hours open in the District 104 purse seine fishery, 1960-2018 (- indicates no opening).

	Year	27	28	29	30	31	32	33	34	35	36	37
	1960	-	132	132	132	132	132	60	60	60	60	60
	$1961^{\text {a }}$	-	132	132	132	132	132	60	60	60	60	60
	1962	132	132	132	132	132	132	132	132	132	132	-
	1963	132	132	132	132	132	132	132	132	132	132	-
	1964	24	132	132	132	132	132	132	132	84	84	-
	1965	-	132	132	132	132	132	132	132	108	-	-
	1966	-	132	132	132	132	132	132	132	132	132	132
	1967	60	60	84	84	114	84	60	-	-	-	-
	1968	132	132	132	132	132	132	162	114	-	-	-
	1969	-	84	84	84	84	132	84	84	-	-	-
	1970	-	60	108	84	84	84	108	132	132	108	-
	1971	-	-	-	-	-	-	60	84	132	108	108
	1972	-	84	108	108	84	108	84	108	84	60	36
	1973	-	84	84	84	84	84	60	36	-	-	-
	1974	-	84	60	36	60	54	63	63	84	39	-
三	1975	-	84	60	-		-	-	-	-	-	-
	1976	-	84	84	84	-	-	-	15	-	-	-
	1977	-	84	84	36	51	45	45	-	15	-	-
	1978	84	84	84	96	78	30	63	102	111	38	-
	1979	84	84	84	39	15	-	39	63	-	-	-
	1980	-	84	84	39	39	63	102	111	63	87	-
	1981	-	39	39	54	30	78	78	78	-	-	-
	1982	-	39	39	39	12	30	54	78	78	102	-
	1983	-	39	39	30	78	54	78	39	63	-	-
	1984	15	39	39	39	54	78	78	63	63	-	-
	1985		15	15	54	54	78	39	174	87	-	-
	1986	-	15	39	54	54	78	78	63	87	63	-
	1987	-	15	45	30	15	39	39	15	-	-	-
	1988	-	39	54	15	15	39	54	15	54	30	-
	1989	15	15	15	39	39	126	63	63	87	-	-
	1990	15	15	6	6	30	54	78	63	39	-	-
	1991	-	15	20	6	78	78	57	60	78	39	-
	1992	-	15	8	6	78	78	57	60	78	-	-

	Year	27	28	29	30	31	32	33	34	35	36	37
	1993		10	10	25	54	78	78	39	77	53	
	1994	-	10	22	23	30	54	78	57	60	39	-
	1995	10	10	15	23	30	78	78	57	60	39	-
	1996	-	10	14	7	78	78	39	78	78	39	-
	1997	-	30	14	12	30	39	78	54	-	-	-
	1998	-	8	12	12	54	54	78	78	39	-	-
	1999	-	10	10	10	78	78	39	78	78	150	150
	2000	-	24	27	30	30	30	78	78	54	-	-
	2001	12	22	10	6	78	78	39	78	105	-	-
	2002	-	12	30	30	78	82	131	129	105	-	-
	2003	-	10	22	20	52	72	60	87	126	-	-
	2004	-	20	24	63	69	90	60	78	174	-	-
	2005	-	22	22	24	54	90	75	90	69	-	-
	2006	12	23	30	30	30	23	15	15	-	-	-
	2007	12	12	8	18	54	90	90	60	78	-	-
ニ	2008	-	8	10	15	30	30	78	78	39	39	-
N	2009	-	12	30	30	78	78	39	78	78	-	-
	2010	-	10	30	15	30	54	78	39	78	39	-
	2011	-	24	30	30	39	78	54	39	78	78	39
	2012	12	15	30	30	54	78	39	78	15	-	-
	2013	-	12	12	22	78	78	39	78	78	78	-
	2014	-	15	15	30	78	78	39	78	54	-	-
	2015	-	30	15	25	54	78	39	78	78	-	-
	2016	-	27	27	6	30	78	54	30	-	-	-
	2017	-	-	10	10	30	30	39	78	78	15	-
	2018	-	-	18	30	30	30	30	30	-	-	-

${ }^{\text {a }}$ Estimated from unpublished reports; no hours in ADF\&G database for 1961.

Appendix C2.-Number of boats fishing by statistical week in the District 104 purse seine fishery, 1969-2018 (- indicates no opening).

	Year	27	28	29	30	31	32	33	34	35	36	37
	1969	-	19	10	20	40	53	40	42	-	-	-
	1970	-	11	8	13	30	35	22	26	5	0	-
	1971	-	-	-	-	-	-	32	33	20	22	0
	1972	-	6	23	31	9	58	66	85	67	$18^{\text {a }}$	-
	1973	-	24	70	49	67	59	9	5	-	-	-
	1974	-	33	29	32	82	69	56	41	59	4	-
	1975	-	86	89	-	-	-	-	-	-	-	-
	1976	-	72	95	105	-	-	-	29	-	-	-
	1977	-	90	112	64	31	36	22	-	37	-	-
	1978	166	43	83	41	60	45	73	41	24	14	-
	1979	109	166	161	102	59	-	40	9	-	-	-
	1980	-	207	232	161	132	128	50	44	12	2	-
	1981	-	156	169	73	136	135	98	52	-	-	-
	1982	-	206	177	169	105	91	100	100	90	94	-
	1983	-	184	165	152	171	231	219	102	72	-	-
$\underset{\omega}{\vec{\omega}}$	1984	119	109	47	110	148	153	139	111	39	-	-
	1985	-	94	55	98	119	138	93	105	46	-	-
	1986	-	54	105	178	184	235	195	95	92	57	-
	1987	-	64	67	96	62	151	141	114	-	-	-
	1988	-	81	167	182	116	214	198	217	195	125	-
	1989	35	85	81	91	121	137	126	93	40	-	-
	1990	68	143	76	87	204	196	214	180	111	-	-
	1991		101	96	35	223	213	199	178	72	23	-
	1992	-	91	52	58	193	193	189	139	93	-	-
	1993	-	88	89	135	156	127	127	96	99	80	-
	1994	-	35	51	68	165	160	155	114	130	81	-
	1995	36	17	20	106	130	132	101	123	111	49	-
	1996	-	32	88	52	159	145	126	56	66	9	-
	1997	-	92	118	143	179	87	115	104	-	-	-
	1998	-	57	35	38	66	113	121	65	25	-	-

-continued-

Year	27	28	29	30	31	32	33	34	35	36	37
1999	-	29	19	18	14	70	113	91	62	$35^{\text {a }}$	-
2000	-	19	42	43	58	90	72	34	2	-	-
2001	26	68	78	24	126	104	78	57	19	-	-
2002	-	32	27	22	19	13	18	5	4	-	-
2003	-	12	26	38	59	59	30	23	18	-	-
2004	-	18	12	14	31	44	37	39	21	-	-
2005	-	16	16	29	40	50	37	66	13	-	-
2006	6	8	14	36	57	55	19	20	-	-	-
2007	23	35	49	53	95	85	78	43	24	-	-
2008	-	3	7	16	51	65	40	45	15	4	-
2009	-	6	17	28	58	33	61	56	38	-	-
2010	-	2	13	12	15	13	24	17	17	6	-
2011	-	8	9	23	16	58	50	11	18	$11^{\text {a }}$	-
2012	3	9	21	20	45	56	104	71	13	-	-
2013	-	18	17	21	31	38	57	53	33	13	-
2014	-	31	75	77	87	98	91	55	62	-	-
2015	-	17	11	33	65	70	51	40	36	-	-
2016	-	82	94	37	64	75	62	46	-	-	-
2017	-	-	20	10	29	24	16	40	31	11	-
2018	-	-	33	41	37	34	14	48	-	-	-

${ }^{2}$ Weeks 36 and 37 combined due to confidential information.

APPENDIX D

DISTRICT 104 PURSE SEINE FISHERY SOCKEYE SALMON HARVEST

Appendix D1.- Harvest of sockeye salmon by statistical week in the Subdistrict 104-10 purse seine fishery, 1960-2018 (- indicates no effort or harvest).

Year	27	28	29	30	31	32	33	34	35	3637	Total
1960	-	-	109	-	86	683	4	-	-	-	882
1961	-	-	-	-	-	-	-	-	-	-	0
1962	-	-	-	-	-	-	-	-	-	-	0
1963	-	-	-	-	-	248	784	216	-	-	1,248
1964	-	-	-	24	-	-	-	-	-	-	24
1965	-	-	-	-	5	-	1,384	66	-	-	1,455
1966	-	-	-	-	18	-	273	46	4	-	341
1967	-	-	-	-	-	-	-	-	-	-	0
1968	-	-	-	-	-	-	16	-	-	-	16
1969	-	-	-	-	-	61	-	-	-	-	61
1970	-	-	-	-	222	-	-	-	-	-	222
1971	-	-	-	-	-	-	-	-	-	-	0
1972	-	-	-	-	-	50	24	20	3	-	97
1973	-	-	-	1,435	1,178	-	-	-	-	-	2,613
1974	-	-	1,236	-	1,376	1,516	49	16	-	-	4,193
1975	-	-	-	-	-	-	-	-	-	-	0
1976	-	32	59	4,045	-	-	-	-	-	-	4,136
1977	-	1,544	3,889	3,364	1,080	2,830	526		54	-	13,287
1978	2,951	90	-	-	301	52	-	-	3	-	3,397
1979	161	641	2,043	6,056	1,547		6	-	-	-	10,454
1980	-	3,962	8,351	1,607	3,501	3,767	381	83	-	-	21,652
1981	-	4,856	9,244	13,920	9,572	13,151	4,795	2,173	65	-	57,776
1982	-	6,410	39,926	22,602	1,403	1,463	318	137	431	118	72,808
1983	-	6,112	4,917	7,896	15,782	16,112	12,849	-	-	-	63,668
1984	660	839	9,952	15,293	14,975	5,203	2,247	1,093	4	-	50,266
1985	-	3,768	8,342	15,026	24,706	6,034	37	1,867	-	-	59,780
1986	-	1,857	7,147	11,174	16,256	17,898	3,633	4,126	1,333	494	63,918
1987	-	1,030	5,524	3,856	3,451	6,064	1,858	750	-	-	22,533
1988	-	3,931	19,849	17,155	6,411	8,661	3,321	1,528	956	200	62,012
1989	606	5,888	6,744	10,608	28,664	12,794	18,450	3,287	1,568	-	88,609

Appendix D1.-continued (page 2 of 2)

Year	27	28	29	30	31	32	33	34	35	3637	Total
1990	6,689	8,493	12,959	-	22,898	24,211	10,541	7,817	2,298	-	95,906
1991	-	5,296	18,935	12,894	58,622	32,981	15,307	9,434	2,123	677	156,269
1992	-	10,545	9,228	6,824	63,536	55,705	26,693	12,370	7,547	-	192,448
1993	-	20,663	13,192	23,582	49,666	23,565	15,235	9,626	9,638	2,085	167,252
1994	-	3,942	6,478	19,968	28,904	29,078	19,986	14,470	15,836	6,938	145,600
1995	392	856	9,653	13,055	28,972	12,437	13,316	8,320	4,415	3,864	95,280
1996	-	11,456	24,713	-	29,907	38,487	5,376	1,978	3,235	912	116,064
1997	-	38,958	34,191	23,737	39,843	18,025	24,057	16,183	-	-	194,994
1998	-	910	882	772	12,453	13,620	16,967	7,525	1,637	-	54,766
1999	-	634	209	2,099	3,061	11,447	4,804	3,289	3,555	871	29,969
2000	-	2,327	3,753	4,878	12,155	16,777	9,900	896	-	-	50,686
2001	8,016	18,225	12,169	6,632	17,615	5,212	1,716	1,210	-	-	70,795
2002	-	3,107	1,635	1,467	858	-	-	-	-	-	7,067
2003	-	45	2,579	4,327	18,972	10,906	2,695	2,666	437	-	42,627
2004	-	955	1,067	6,026	8,473	3,129	3,138	4,575	1,016	-	28,379
2005	-	337	752	1,286	5,018	7,528	6,164	8,673	3,087	-	32,845
2006	605	-	4,818	1,068	278	1,208	128	1,675		-	9,780
2007	663	1,472	1,314	6,519	23,381	16,709	780	-	3,931	-	54,769
2008	-	-	3	32	1	-	532	49	6	2	625
2009	-	753	1,391	3,331	3,419	2,300	197	185	15	-	11,591
2010	-	-	309	-	10	-	76	-	41	-	436
2011	-	382	4,927	9,416	9,373	10,040	5,464	7	305	438	40,352
2012	-	734	3,109	1,760	453	1,436	1,412	429	23	-	9,356
2013	-	1,086	68	189	1,138	1,371	2,665	667	596	95	7,875
2014	-	148	2,876	5,441	16,632	46,937	19,665	10,252	8,925	-	110,876
2015	-	2,288	886	2,958	7,442	28,086	9,720	3,500	6,241	-	61,121
2016	-	3,217	13,565	1,794	9,504	28,770	8,173	1,154	-	-	66,177
2017	-	-	1,356	628	964	$1,673$	436	2,335	6,203	112	13,707
2018	-	-	1,778	2,263	907	1,368	1,011	7,564	-	-	14,891

Appendix D2.- Harvest of sockeye salmon by statistical week in the Subdistrict 104-20 purse seine fishery, 1960-2018 (- indicates no effort or harvest).

Year	27	28	29	30	31	32	33	34	35	36	Total
1960	-	-	27	-	21	319	1	1	1	-	370
1961	-	-	-	-	-	20	10	4	-	-	0
1962	-	-	-	-	-	-	-	-	2	-	2
1963	-	-	-	-	-	8,672	1,560	14	1	-	$10,247$
1964	-	-	-	18	-	-	6	-	-	-	24
1965	-	-	-	-	66	847	259	-	-	-	1,172
1966	-	-	-	-	-	-	203	21	-	-	224
1967	-	-	-	-	-	79	18	-	-	-	97
1968	-	-	-	-	2,122	145	3	-	110	-	2,380
1969	-	-	-	-	-	-	8	-	-	-	8
1970	-	-	-	-	415	219	-	-	-	-	634
1971	-	-	-	-	-	-	-	-	-	-	0
1972	-	-	250	-	-	-	-	-	34	-	284
1973	-	-	-	1,948	1,820	241	-	-	-	-	4,009
1974	-	214	635	-	856	1,183	19	23	-	-	2,930
1975	-	-	-	-	-	-	-	-	-	-	0
1976	-	15	185	-	-	-	-	-	-	-	200
1977	-	181	-	2,305	-	1,118	314	-	11	-	3,929
1978	141	-	9	16	241	20	219	-	-	-	646
1979	-	328	1,150	454	-	-	16	-	-	-	1,948
1980	-	-	871	9	187	1,659		1	-	-	2,727
1981	-	818	1,108	-	37	3,829	811	781	-	-	7,384
1982	-	2,493	5,414	3,137	181	2,192	4,695	191	196	156	18,655
1983	-	4,141	6,682	4,306	37,001	11,431	12,346	515	660	-	77,082
1984	226	5,525	3,042	7,395	27,072	26,280	9,822	3,987	13	-	83,362
1985	-	2,307	1,303	17,395	26,672	20,608	4,552	5,483	1,213	-	79,533
1986	-	2,000	7,384	16,723	32,515	55,830	24,328	3,544	3,112	780	146,216
1987	-	1,050	12,348	8,382	6,147	25,481	1,518	1,063	-	-	55,989
1988	-	5,368	35,575	38,347	11,458	26,248	13,437	4,817	4,959	1,567	141,776
1989	1,996	9,168	10,095	16,787	28,341	17,262	16,481	2,243	643	-	103,016

Appendix D2.-continued (page 2 of 2)

Year	27	28	29	30	31	32	33	34	35	36	Total
1990	11,150	15,584	11,684		51,404	79,510	41,085	13,668	2,746	-	226,831
1991	-	3,665	9,010	5,070	92,669	83,886	18,759	10,440	1,340	472	225,311
1992	-	7,618	3,691	3,794	86,110	69,615	46,722	32,910	15,464	-	265,924
1993	-	7,719	10,140	34,549	116,341	79,761	34,353	19,506	12,108	4,548	319,025
1994	-	4,369	10,054	8,276	47,564	47,450	44,797	36,289	18,183	8,463	225,445
1995	584	674	3,400	9,868	53,956	23,520	32,448	24,571	9,517	1,882	160,420
1996	-	4,210	108,248	-	104,152	50,464	17,089	3,628	6,623	144	294,558
1997	-	56,253	42,698	44,041	85,893	9,001	10,349	34,121	-	-	282,356
1998	-	918	2,735	6,223	11,464	27,425	13,459	4,592	822	-	67,638
1999	-	345	120	-	321	14,794	9,441	4,297	2,076	847	32,241
2000	-	710	1,193	3,003	32,719	16,247	12,398	1,120	2	-	67,392
2001	1,814	7,378	9,705	378	34,555	15,065	6,179	916	-	-	75,990
2002	-	2,135	2,305	272	211	17	28	-	-	-	4,968
2003	-	159	9,449	5,070	32,729	14,092	933	1,028	-	-	63,460
2004	-	654	-	-	3,770	268	7,962	3,212	-	-	15,866
2005	-	1,976	-	1,175	5,103	3,248	1,508	6,329	-	-	19,339
2006	65	-	2,967	2,180	1,732	-	-	-		-	6,944
2007	3,154	2,953	2,539	13,065	35,973	13,710	4,882	4,042	378	-	80,696
2008	-	-	-	-	197	848	159	-	-	-	1,204
2009	-	83	69	2,783	7,217	199	2,521	2,058	109	-	15,039
2010	-	179	242	38	72	-	-	110	50	-	691
2011	-	103	434	1,460	-	2,218	2,360	1,257	-	-	7,832
2012	-	85	78	456	587	2,302	1,853	476	54	-	5,891
2013	-	1,296	107	817	132	3,580	6,231	1,199	101	-	13,463
2014	-	1,614	6,081	8,828	54,861	132,161	36,866	23,271	2,118	-	265,800
2015	-	70	-	67	13,681	10,937	5,799	3,512	1,555	-	35,621
2016	-	1,671	15,457	1,040	8,079	24,562	6,594	3,268	-	-	60,671
2017	-	-	424	-	-	2,884	-	408	9	-	3,725
2018	-	-	639	232	677	1,546	66	1,761	-	-	4,921

Appendix D3.- Harvest of sockeye salmon by statistical week in the Subdistrict 104-30 purse seine fishery, 1960-2018 (- indicates no effort or harvest).

Year	27	28	29	30	31	32	33	34	35	36	Total
1960	-	-	-	-	-	-	-	-	-	-	0
1961	-	-	-	-	-	-	6	19	-	-	0
1962	-	-	-	-	68	-	-	28	3	-	99
1963	-	-	-	-	-	-	1	-	-	-	1
1964	-	-	-	-	-	-	-	-	-	-	0
1965	-	-	-	-	-	-	-	-	52	-	52
1966	-	-	-	392	61	350	123	2	-	-	928
1967	-	-	-	-	-	-	-	-	-	-	0
1968	-	-	-	-	-	-	-	-	-	-	0
1969	-	-	-	-	-	-	-	-	-	-	0
1970	-	-	-	-	-	-	-	120	-	-	120
1971	-	-	-	-	-	-	-	-	-	-	0
1972	-	-	-	793	-	-	-	-	1	-	794
1973	-	-	-	-	-	-	-	-	-	-	0
1974	-	-	-	-	-	-	-	-	-	-	0
1975	-	-	-	-	-	-	-	-	-	-	0
1976	-	322	879	1,487	-	-	-	-	-	-	2,688
1977	-	2,294	11	1,991	420	1,238	335	-	-	-	6,289
1978	4,168	1,207	1,237	2,595	452	68	308	2	-	-	10,037
1979	1,665	1,820	246	1,621	659	-	2	2	-	-	6,015
1980	-	408	555	-	105	1,586	1,247	493	-	-	4,394
1981	-	2,538	993	1,704	3,415	6,601	1,842	174	-	-	17,267
1982	-	1,774	1,920	2,969	655	806	817	-	1	-	8,942
1983	-	1,226	319	741	2,899	1,890	762	-	-	-	7,837
1984	124	178	-	413	539	4,001	2,576	401	6	-	8,238
1985	-	12	731	3,888	3,789	12,688	2,648	4,359	952	-	29,067
1986	-	-	346	933	3,416	5,339	3,281	1,026	468	66	14,875
1987	-	94	1,276	2,352	4,332	3,633	1,316	-	-	-	13,003
1988		1,791	5,469	2,917	328	3,911	1,199	1,111	860	148	17,734
1989	2,861	619	-	910	577	1,711	787	77	-	-	7,542

Year	27	28	29	30	31	32	33	34	35	36	Total
1990	57	994	1,723	100	1,452	1,512	2,600	1,056	225	-	9,719
1991	-	110	646	-	2,520	1,265	6,305	307	33	-	11,186
1992	-	447	276	-	5,586	1,856	1,269	766	1,087	-	11,287
1993	-	-	-	4,192	13,591	4,262	991	2,468	678	131	26,313
1994	-	-	118	521	5,811	4,697	5,634	1,312	350	246	18,689
1995	-	-	-	1,499	1,040	4,243	923	1,784	949	-	10,438
1996	-	-	-	-	6,858	4,671	471	371	179	-	12,550
1997	-	1,336	5,243	3,509	577	1,457	3,157	2,175	-	-	17,454
1998	-	18	6	-	934	102	366	39	18	-	1,483
1999	-	-	-	287	-	165	710	167	270	122	1,721
2000	-	-	-	-	-	2,641	960	-	-	-	3,601
2001	-	1,566	2,570	-	2,360	2,154	205	106	3	-	8,964
2002	-	-	-	-	85	72	72	63	3	-	295
2003	-	-	415	-	796	225	24	18	-	-	1,478
2004	-	-	-	-	-	1,052	-	-	-	-	1,052
2005	-	-	-	39	110	1,117	655	-	10	-	1,931
2006	-	-	-	376	-	74	-	-	-	-	450
2007	-	-	380	1,687	2,490	17	-	-	583	-	5,157
2008	-	-	-	-	14	-	97	-	-	-	111
2009	-	-	111	768	2,887	524	324	87	13	-	4,714
2010	-	-	-	-	148	1,073	1,455	363	269	-	3,308
2011	-	-	-	522	466	2,612	671	-	-	-	4,271
2012	-	-	-	177	1,185	608	106	67	-	-	2,143
2013	-	-	56	-	267	329	798	15	34	-	1,499
2014	-	335	-	446	8,669	2,562	1,847		24	-	13,883
2015	-	92	97	-	1,533	414	3,045	639	131	-	5,951
2016	-	-	-	-	798	202	231	185	-	-	1,416
2017	-	-	-	-	118	-	149	192	8	3	470
2018	-	-	-	217	314	1,135	275	965	-	-	2,906

Appendix D4.- Harvest of sockeye salmon by statistical week in the Subdistrict 104-35 purse seine fishery, 1960-2018 (- indicates no effort or harvest).

Year	27	28	29	30	31	32	33	34	35	36	Total
1960	-	-	-	-	-	-	-	-	-	-	0
1961	-	-	-	-	-	-	-	-	-	-	0
1962	12	-	-	-	-	-	-	-	-	-	12
1963	3,205	-	-	14,470	19,268	4,451	1,506	629	298	-	43,827
1964	1,698	8,672	16,294	26,779	16,907	7,799	1,897	671	-	-	80,717
1965	4	6,899	12,518	31,584	19,731	8,404	804	44	-	-	79,988
1966	-	551	272	1,443	1,316	4,292	1,814	513	165	4	10,370
1967	1,084	11,764	24,749	38,243	45,524	4,035	1,278	-	-	-	126,677
1968	2,004	3,564	8,327	3,770	2,725	493	1,103	1,898	123	1	24,008
1969	-	869	2,164	2,739	5,818	6,182	813	231	-	-	18,816
1970	-	296	35	1,173	1,898	542	324	36	1	-	4,305
1971	-	-	-	-	-	-	854	1,493	135	64	2,546
1972	-	-	4,892	2,655	1,732	6,942	7,136	1,935	211	5	25,508
1973	-	6,573	7,378	7,186	10,494	3,133	231	-	-	-	34,995
1974	-	882	4,820	13,998	9,216	6,637	1,447	283	265	-	37,548
1975	-	2,107	8,195	-	-	-	-	-	-	-	10,302
1976	-	3,479	8,879	16,242	-	-	-	152	-	-	28,752
1977	-	603	-	9	2,623	3,119	202	-	-	-	6,556
1978	-	46	303	-	522	208	257	77	91	-	1,504
1979	470	3,926	1,140	1,711	1,421	-	55	-	-	-	8,723
1980	-	54	1,825	3,632	10,389	3,730	3,044	153	-	-	22,827
1981	-	5,719	1,832	3,876	1,957	2,133	2,638	1,082	-	-	19,237
1982	-	2,880	6,830	3,114	108	2,369	5,470	871	171	57	21,870
1983	-	979	5,592	8,754	24,209	1,976	6,389	488	-	-	48,387
1984	870	1,439	1,011	5,045	11,874	11,344	7,823	472	8	-	39,886
1985	-	480	137	231	6,485	12,209	2,399	2,346	1,065	-	25,352
1986	-	1,468	5,586	7,469	12,282	20,116	7,246	3,333	1,336	370	59,206
1987	-	439	10,065	3,601	2,053	11,701	232	-	-	-	28,091
1988	-	1,503	17,268	14,427	2,118	39,730	12,102	2,418	1,737	340	91,643
1989	2,095	8,108	3,115	6,921	790	6,298	4,796	335	365	-	32,823

Appendix D4.-continued (page 2 of 2)

Year	27	28	29	30	31	32	33	34	35	36	Total
1990	567	973	16,636	10,386	7,441	6,731	9,758	4,353	2,701	-	59,546
1991	-	8,779	15,622	-	12,359	12,324	11,532	5,413	220	16	66,265
1992	-	3,233	9,630	-	15,345	7,664	4,422	889	2,113	-	43,296
1993	-	3,168	2,168	8,581	19,194	27,977	16,440	15,916	8,130	2,556	104,130
1994	-	1,273	1,606	-	19,771	26,100	18,451	18,898	7,732	1,330	95,161
1995	172	106	1,279	5,110	18,420	12,052	7,097	2,756	1,959	458	49,409
1996	-	447	12,595	6,161	48,804	12,145	3,080	304	2,627	-	86,163
1997	-	38,388	19,844	25,864	28,357	6,887	12,496	25,444	-	-	157,280
1998	-	223	186	689	1,756	20,839	10,364	11,720	154	-	45,931
1999	-	62	523	207	-	4,027	4,659	2,228	508	212	12,426
2000	-	1,834	3,904	2,117	2,696	11,540	303	213	-	-	22,607
2001	301	6,428	17,216	3,533	43,144	14,480	3,958	1,827	-	-	90,887
2002	-	94	2,283	1,059	567	163	2	-	-	-	4,168
2003	-	-	6,496	20,406	15,191	12,478	5,437	1,130	-	-	61,138
2004	-	624	1,525	9,121	8,948	20,541	14,587	13,447	1,688	-	70,481
2005	-	283	2,994	5,979	5,957	13,794	20,123	51,315	4,809	-	105,254
2006	71	3,454	2,911	910	1,720	4,388	4,811	2,884	-	-	21,149
2007	1,660	6,559	6,693	28,939	39,219	12,870	14,090	2,078	3,361	-	115,469
2008	-	293	2,276	1,715	895	3,378	3,342	913	-	-	12,812
2009	-	7	385	1,070	17,852	1,378	4,331	1,184	148	-	26,355
2010	-	-	1,205	-	-	196	-	192	878	244	2,715
2011	-	787	1,394	1,182	9,096	22,260	1,293	-	64	-	36,076
2012	320	685	2,317	2,575	1,890	1,334	3,507	938	4	-	13,570
2013	-	1,022	2,058	1,176	3,709	2,501	3,853	2,368	1,309	21	18,017
2014	-	825	8,940	22,125	38,798	15,432	34,063	40,222	21,765	-	182,170
2015	-	762	3,145	6,955	21,933	16,428	7,432	7,653	2,641	-	66,949
2016	-	2,965	6,848	2,722	14,480	54,772	6,770	4,299	-	-	92,856
2017	-	-	3,163	707	1,999	5,009	1,506	4,452	1,161	1	17,998
2018	-	-	638	907	101	866	5,416	13,861	-	-	21,789

Appendix D5.- Harvest of sockeye salmon by statistical week in the Subdistrict 104-40 purse seine fishery, 1960-2018 (- indicates no effort or harvest).

Year	27	28	29	30	31	32	33	34	35	3637	Total
1960	-	12,026	27,726	34,227	31,925	12,309	2,166	3,238	3,107	882	127,606
1961	-	-	4,604	2,123	8,267	19,235	8,228	34	4	-	0
1962	15,896	15,101	32,746	53,017	10,069	6,425	4,117	1,415	458	-	139,244
1963	5,952	-	-	26,872	35,783	8,265	2,796	1,169	553	-	81,390
1964	3,154	16,104	30,260	49,732	31,400	14,484	3,524	1,246	1	-	149,905
1965	7	12,813	23,247	58,657	36,643	15,607	1,494	81	1	-	148,550
1966	-	1,024	506	2,679	2,443	7,970	3,369	954	307	7	19,259
1967	2,012	21,847	45,962	71,023	84,544	7,493	2,373	-	-	-	235,254
1968	3,721	6,620	15,464	7,001	5,062	916	2,049	3,525	228	1	44,587
1969	-	1,205	2,600	4,435	10,914	16,236	1,757	605	-	-	37,752
1970	-	519	169	958	6,667	617	240	142	2	-	9,314
1971	-	-	-	-	-	-	3,849	4,435	142	158	8,584
1972	-	2,374	7,267	3,832	3,157	12,986	11,546	3,591	718	291	45,762
1973	-	21,355	16,094	11,275	16,906	6,622	35	3	-	-	72,290
1974	-	1,811	11,905	31,136	14,235	12,130	1,954	983	113	-	74,267
1975	-	4,178	12,698	-	-	-	-	-	-	-	16,876
1976	-	6,372	18,190	40,071	-	-	-	274	-	-	64,907
1977	-	25,885	65,260	30,456	37,929	16,085	3,308	-	100	-	179,023
1978	29,498	4,688	17,056	8,420	18,106	3,657	6,156	646	233	188	88,648
1979	24,470	78,460	108,089	39,230	12,872	-	1,272	575	-	-	264,968
1980	-	92,029	92,324	44,462	65,280	37,396	5,910	906	12	1	338,320
1981	-	88,966	27,080	22,534	14,296	16,553	15,982	1,232	-	-	186,643
1982	-	24,042	65,563	20,775	3,515	6,423	14,848	11,835	6,450	3,103	156,554
1983	-	28,396	43,473	44,047	97,993	99,742	79,993	32,125	16,801	-	442,570
1984	2,767	8,785	15,910	23,279	35,173	11,891	11,145	2,257	281	-	111,488
1985	-	5,120	5,519	36,062	52,404	88,247	24,828	14,109	9,548	-	235,837
1986	-	1,867	9,844	17,503	39,700	55,643	24,611	3,843	5,768	1,332	160,111
1987	-	1,645	9,001	11,722	6,832	20,049	2,114	-	-	-	51,363
1988	-	3,687	52,765	28,734	9,929	132,533	37,944	4,788	6,548	1,151	278,079
1989	1,705	24,469	11,392	33,479	58,866	47,266	74,434	20,741	12,259	-	284,611

Appendix D5.-continued (page 2 of 2)

Year	27	28	29	30	31	32	33	34	35	3637	Total
1990	6,022	15,073	21,793	29,060	82,806	56,148	121,759	65,827	6,251	-	404,739
1991	-	5,158	13,398	-	131,148	128,310	41,177	52,136	16,933	2,372	390,632
1992	-	8,390	15,967	-	256,508	175,394	83,401	11,629	7,600	-	558,889
1993	-	10,224	1,901	23,110	77,686	53,130	45,877	52,695	48,320	15,249	328,192
1994	-	2,284	23,549	76,086	78,241	195,806	138,265	64,791	56,083	16,085	651,190
1995	749	46	6,348	17,585	44,376	50,380	36,289	15,508	7,516	2,437	181,234
1996	-	4,912	26,365	16,037	139,392	120,867	23,163	12,321	7,847	200	351,104
1997	-	67,258	94,187	77,247	98,348	69,981	96,880	88,197	-	-	592,098
1998	-	505	1,524	1,803	15,034	188,903	75,810	29,040	4,559	-	317,178
1999	-	619	1,731	828	2,491	27,001	26,065	18,009	10,692	1,043	88,479
2000	-	922	13,735	10,593	18,475	28,013	9,428	1,587	-	-	82,753
2001	1,671	51,864	49,087	4,283	130,377	36,371	6,446	6,288	2,466	-	288,853
2002	-	351	4,193	7,653	2,953	1,577	531	75	328	-	17,661
2003	-	819	7,572	27,405	22,555	37,139	14,893	40,969	9,664	-	161,016
2004	-	1,268	2,264	7,254	47,287	59,032	58,853	41,225	16,178	-	233,361
2005	-	3,809	4,753	12,307	20,013	67,897	38,014	208,138	7,554	-	362,485
2006	259	444	7,868	61,619	79,040	38,208	8,089	8,184	-	-	203,711
2007	1,929	6,563	10,693	15,353	105,079	161,748	150,128	41,308	20,885	-	513,686
2008	-	83	252	1,608	7,145	6,097	5,564	4,526	1,053	47	26,375
2009	-	71	1,141	4,008	18,802	2,863	11,574	6,896	6,293	-	51,648
2010	-	147	1,044	1,453	2,780	1,906	1,886	770	506	209	10,701
2011	-	858	2,532	1,283	18,982	72,109	13,303	1,139	2,111	1,520	113,837
2012	52	-	2,984	2,968	4,069	21,048	7,068	2,724	518	-	41,431
2013	-	1,748	961	2,518	6,162	8,192	11,907	6,624	3,137	732	41,981
2014	-	18,488	13,963	24,265	18,774	11,180	13,984	13,788	14,670	-	129,112
2015	-	3,175	1,716	21,662	89,861	87,485	51,734	48,152	19,348	-	323,133
2016	-	20,098	35,811	5,158	38,226	68,837	10,919	5,820	-	-	184,869
2017	-	-	2,549	3,209	16,268	6,703	7,571	12,638	11,801	1,385	62,124
2018	-	-	4,503	8,566	1,715	5,855	3,789	52,386	-	-	76,814

Appendix D6.- Harvest of sockeye salmon by statistical week in the Subdistrict 104-50 purse seine fishery, 1960-2018 (- indicates no effort or harvest).

Year	27	28	29	30	31	32	33	34	35	36	Total
1960	-	-	-	-	-	-	-	-	-	-	0
1961	-	-	-	-	-	-	-	-	-	-	0
1962	-	-	-	-	-	-	-	-	-	-	0
1963	-	-	-	-	1,657	-	-	-	-	-	1,657
1964	-	-	-	-	546	29	-	-	-	-	575
1965	-	-	-	-	-	204	-	-	-	-	204
1966	-	-	-	-	-	-	28	-	-	-	28
1967	-	-	-	-	460	119	-	-	-	-	579
1968	-	-	-	-	-	-	84	24	-	-	108
1969	-	13	-	320	227	200	237	25	-	-	1,022
1970	-	-	-	-	-	-	-	-	-	-	0
1971	-	-	-	-	-	-	135	177	144	2	458
1972	-	-	3,970	2,151	-	4,702	188	1,647	50	-	12,708
1973	-	-	55	-	4	1,545	-	-	-	-	1,604
1974	-	-	-	-	-	-	-	138	48	-	186
1975	-	-	-		-	-	-	-	-	-	0
1976	-	943	338	2,611	-	-	-	-	-	-	3,892
1977	-	774	-	6	-	-	41	-	5	-	826
1978	-	-	-	-	-	-	-	-	-	-	0
1979	5,165	7,892	11,565	-	-	-	-	-	-	-	24,622
1980	-	12,318	2,741	1,125	1,507	-	-	-	-	-	17,691
1981	-		-	-	-	241	-	-	-	-	241
1982	-	2,206	1,092	3	450	401	313	5	59	-	4,529
1983	-	2,725	-	-	-	2,283	216	-	-	-	5,224
1984	13	350	-	203	-	304	22	30	-	-	922
1985	-	56	-	213	-	1,815	-	-	-	-	2,084
1986	-	-	-	19	326	-	-	-	-	-	345
1987	-	-	-	-	-	-	-	-	-	-	0
1988	-	-	-	3	-	-	-	-	-	38	41
1989	-	-	-	-	-	-	-	-	-	-	0

[^0]: 1 "Statistical week" is a classification used by ADF\&G to divide the year into sequentially numbered weeks for management of the salmon fisheries. Each year, statistical week 1 begins the first week of January and ends on the first Saturday of the month; subsequent statistical weeks start on Sunday at 12:01 AM and end on the following Saturday at midnight.

[^1]: ${ }^{1}$ SSE $=$ Southern Southeast Subregion

[^2]: ${ }^{1}$ SSE $=$ Southern Southeast Subregion

[^3]: ${ }^{\mathrm{a}}$ Total includes small harvests before and after weeks 27-36.

