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A Bayesian hierarchical analysis of stock-recruit
data: quantifying structural and parameter

uncertainties

Catherine G.J. Michielsens and Murdoch K. McAllister

Abstract: Stock-recruit functions are important in fisheries stock assessment, but there is often uncertainty surrounding
the appropriate stock—recruit model and its parameter values. Combining different stock—recruit data sets of related
species through Bayesian hierarchical analysis can decrease these uncertainties and help to characterize appropriate
stock-recruit forms and ranges of plausible parameter values. Two different stock—recruit functions (Beverton—Holt and
Ricker) have been parameterized in terms of the steepness, which is a parameter that is comparable between popula-
tions. In the hierarchical analysis, the prior probability distribution of parameters for the cross-population variation in
steepness is determined through a concise model structure. By calculating the Bayes’ posteriors for alternative model
forms, model uncertainty is accounted for. This methodology has been applied to Atlantic salmon (Salmo salar) stock—
recruit data to provide predictions for the steepness of the stock-recruit function for Baltic salmon for which no stock—

recruit data exist.

Résumé : Les fonctions stock—recrutement sont de grande importance pour 1’évaluation des stocks des péches commer-
ciales, mais il y a souvent de I’incertitude au sujet du choix d’un modele approprié et des valeurs de ses parametres.
La combinaison de plusieurs séries de données de stock-recrutement d’especes apparentées dans une analyse hiérar-
chique bayésienne peut réduire ces incertitudes, aider a identifier les relations stock-recrutement appropriées et déter-
miner les étendues plausibles des valeurs des parametres. Nous avons caractérisé les parametres de deux fonctions
stock-recrutement (Beverton—-Holt et Ricker) en ce qui concerne I’inclinaison de la pente, qui est un parametre compa-
rable entre les populations. Dans 1’analyse hiérarchique, la distribution de probabilité a priori des parametres en ce qui
a trait a la variation de I’inclinaison d’une population a une autre est déterminée par une structure de modele concis.
Le calcul des distributions bayésiennes a posteriori pour les différentes formes de modeles permet de tenir compte de
I’incertitude. Nous avons appliqué cette méthodologie a des données de stock—recrutement du saumon de 1’ Atlantique
(Salmo salar) afin de pouvoir prédire I’inclinaison de la fonction stock—recrutement du saumon de la Baltique pour
lequel il n’existe pas de données sur la relation stock—recrutement.

[Traduit par la Rédaction]

Introduction

The parameters and the functional form of the stock—
recruit function are among the most important model specifi-
cations in fisheries stock assessments. This is because the
parameter values and functional forms determine the pre-
dicted impacts of changes in the fish stock on future fish re-
cruitment. Quantitative—empirical knowledge of the stock—
recruit function for a fish stock can thus improve the ability
of managers to make appropriate policy decisions. However,
stock—recruit data sets are often short and noisy (Myers et al.
1995), which increases the uncertainty about the underlying
stock—recruit relationships. Combining different stock—
recruit data sets of related species within an hierarchical
model can decrease that uncertainty (Myers 2001). Several

such hierarchical analyses have been undertaken for stock—
recruit data (Liermann and Hilborn 1997; Myers et al. 1999;
Dorn 2002).

This paper provides a general framework for the analysis
of stock—recruit data through a Bayesian hierarchical analy-
sis whereby both model form and parameter uncertainties
are taken into account. The paper reformulates a set of meth-
odologies to be used for the construction and validation of
Bayesian hierarchical models (Gelman et al. 1995). It pres-
ents an Atlantic salmon (Salmo salar) case study to which
the methodology is applied and the stock-recruit data used
in the analysis. The models are run using these data to ob-
tain the posterior probability density functions for the steep-
ness of the different stock—recruit functions and to predict
the steepness of the stock—recruit function of Baltic salmon
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for which no stock-recruit data have been available. The
credibility of the stock-recruit functions is examined by
computing the marginal posterior probabilities of the differ-
ent models.

Methodology

This paper advocates the use of hierarchical models for
the analysis of a group of related stock—recruit data sets. Hi-
erarchical modelling is a statistical technique that allows the
modelling of the dependence among parameters that are re-
lated or connected through the use of a hierarchical model
structure (Gelman et al. 1995). Hierarchical models can be
used to combine data from several independent sources
(Liermann and Hilborn 1997). In contrast with non-
hierarchical models, hierarchical models can estimate pa-
rameters simultaneously at the population level and at the
metapopulation level. In doing so, hierarchical models also
allow the prediction of parameters of a population for which
no data are observed, based on the estimates for the meta-
population and the similarities between individual stocks.
Furthermore, by structuring some dependence among param-
eters, we can avoid the problem of overfitting the data, i.e.,
producing models that fit the data very well but provide infe-
rior predictions for new data (Su et al. 2001).

To allow different stock—recruit data to be used together in
the same meta-analysis, stock—recruit functions can be para-
meterized in terms of steepness (Mace and Doonan 1988;
Punt and Hilborn 1997). The steepness of a stock-recruit
function is the proportion of the long-term unfished recruit-
ment obtained when the stock abundance is reduced to 20%
of the virgin level. The advantage of this parameterization is
that the steepness parameter is transportable or comparable
between stocks (Hilborn and Liermann 1998). Because of
this advantage, this parameterization is a common feature of
hierarchical analyses of stock-recruit data (Liermann and
Hilborn 1997; Myers et al. 1999; Dorn 2002). The para-
meterization in terms of steepness was originally derived for
the Beverton—Holt stock—recruit function (Beverton and Holt
1957), but a similar parameterization in terms of steepness
can be derived for other stock-recruit functions such as the
Ricker stock-recruit function (Ricker 1954).

The steepness parameterization permits comparison of es-
timates of the same parameter between fits of different
stock—recruit functions to the same data. If different steep-
ness estimates are found between different models, this may
require an evaluation of the goodness-of-fit of the different
models to the data to facilitate model selection. However,
comparing the fit of the different stock—recruit functions to
the data is, by itself, insufficient. Instead, the model uncer-
tainty should be assessed probabilistically to allow it to be
incorporated in stock assessments and decision analysis
(McAllister and Kirchner 2002).

A Bayesian hierarchical analysis (Gelman et al. 1995) of-
fers a natural way to incorporate both model and parameter
uncertainty regarding stock—recruit relationships. The prior
probability density function (pdf) of the steepness values for
the different stocks used in the hierarchical analysis is deter-
mined through the model structure. This is achieved through
the use of a mean steepness for the combined set of popula-
tions and a cross-population variance in the steepness, which
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is made to depend on the mean. By calculating the Bayes’
posteriors for each stock-recruit model, the model uncer-
tainty can be formally incorporated in fisheries stock assess-
ments and decision analyses. This paper, however, is restricted
to the stock-recruit analysis.

The Bayesian hierarchical analysis within this paper has
been implemented using a Gibbs sampler to sample from the
posterior distribution. Such a method can be executed using
WinBUGS (Bayesian inference Using Gibbs Sampling) soft-
ware (available from http://mrc-bsu.cam.ac.uk/bugs) (Meyer
and Millar 1999). As with any Markov Chain Monte Carlo
simulation, the Gibbs sampler requires an evaluation to de-
termine if it is reasonable to believe that the samples are rep-
resentative of the underlying stationary distribution, i.e., if
the Markov Chain has converged. To examine convergence, a
convergence diagnosis and output analysis software for Gibbs
sampling output (CODA) is used (Best et al. 1995). All of
the modelling results described in this paper have undergone
tests to remove the “burn-in” and to assess convergence and
it is assumed that the reported distributions obtained through
Gibbs sampling are representative of the underlying station-
ary distributions.

The hierarchical analysis developed for this paper has been
thoroughly tested using a variety of different model forms
and data distributional assumptions. The posterior probabil-
ity distribution for model parameters is determined by the
product of the prior pdf of the parameters and a likelihood
function of the data given these parameters. Bayesian metho-
dology has been criticized because of the subjective choices
of the prior pdf and the likelihood function. Therefore, it is
important to assess the sensitivity of the posterior probabil-
ity distribution to reasonable changes in the choices for the
prior probabilities and likelihood functions (Clarke and
Gustafson 1998).

To assess the fit of the stock-recruit models to the data,
the data can be compared with the posterior predictive distri-
bution of the model, i.e., the distribution of data simulated
from the model (Gelman et al. 1995). This will allow us to
assess whether the observed data look plausible under the
posterior predictive distribution. Systematic differences be-
tween the simulations and the data indicate potential failings
of the model. We define R™P as the replicated data point on
recruitment that could have been observed as the data if we
were to replicate the recruitment data using the model and
the observed stock abundance data. Simulation of potential
data given the observed data and the joint posterior for 0 is
easily obtained using WinBUGS. The distribution of R™P is
called the posterior predictive distribution:

(1) p(REPIR™™) = [ p(R™P16)p (BIR™)dO

The underlined symbols represent vectors of either data or
parameters. For example R°® represents the vector of ob-
served recruitment data. We can thereafter compare the ob-
served data with the posterior predictive distribution. The
results of this comparison can be expressed in terms of a
Bayesian p-value (Meng 1994; Gelman et al. 1995, 1996).
Bayesian p-values can be defined as the probability that the
replicated data could be as extreme or more extreme than the
observed data (Meng 1994):

) Bayesian p-value = p(R™P|8) > R°>
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We can also measure the discrepancy between the model
and the data using test quantities or discrepancy measures,
T(R,0). A discrepancy measure is a scaler summary of pa-
rameters and data that is used as a standard when comparing
data with predictive simulations. One test quantity useful for
routine checks of goodness-of-fit is the x> discrepancy mea-
sure (Gelman et al. 1995):

(3)  x* discrepancy: T(R ) = ZW

i

It is therefore possible to compare the realized discrepancy
T(R,06) with the discrepancy under the posterior predictive
distribution 7(R™P,0). To do this, we take a random sample
from the posterior distribution for the full set of parameters
in the model, 6. For each set of parameter values 0;, we can
simulate a new recruitment data set, R*P, and we can then
plot T(R™,0;) against 7(R,6;). The estimated Bayesian p-
value is the proportlon of times that T(R™P,0;) is greater
than T(R,6;) (Brooks et al. 2002). It is recommended that
both the graph1cal summary and Bayesian p-value be used,
since it is possible for the distributions of 7(R™P, Gj) and
T(R,8;) to differ even though a p-value of 0.5 is obtained
(Brooks et al. 2000).

Apart from the models themselves, the data used in these
hierarchical models need to be tested on certain assump-
tions. For a hierarchical analysis, the different data sets need
to be exchangeable, i.e., the differences among the data sets
should not have predictable effects on the results of the anal-
ysis (Gelman et al. 1995). To examine the exchangeability of
the data sets, the hierarchical analysis can be run excluding
one data set each time. The marginal probability distribu-
tions for the steepness parameter of the stock—recruit func-
tion obtained from the remaining data sets can be compared
to assess the exchangeability of the data sets. If the different
data sets are exchangeable in terms of the steepness parame-
ter, the exclusion of one data set should not substantially
alter the marginal posterior predictive distribution for the
steepness. These different tests on model and data assump-
tions will be applied within this paper.

Bayesian analyses also allow us to compare the probabil-
ity of the different models given the stock-recruit data. The
posterior probability distribution of model i given the ob-
served data is given by the equation

P(datal M;) P(M,)

4)  P(M|data) =
“) (M| data) P(data)

or

(5)  P(M, data)=<P(M)) j P(datal®,, M,) P(®,| M ,)d6,

Kass and Raftery (1995) have proposed a method to approx-
imate the Bayes’ posterior using the harmonic mean of the
likelihood function

(6) P(datalM;) =

,; P(dataIG M;)
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where 6% is the kth set of draws from the different model pa-
rameters and m is the number of Markov Chain Monte Carlo
iterations. The harmonic mean of the likelihood values con-
verges to the correct value as the number of samples m ap-
proaches infinity (Newton and Raftery 1994). However, the
harmonic mean of the likelihood value does not satisfy the
Gaussian central limit theorem. The occasional occurrence
of a value of ¢ with a small likelihood, resulting in large
values for the harmonic mean, makes the harmonic mean un-
stable (Kass and Raftery 1995). The harmonic mean cannot
be obtained directly from WinBUGS. Instead, WinBUGS
will calculate the deviance (-2 x log likelihood). Using these
output values, the harmonic mean and the Bayes’ posterior
can be derived.

Case study: Atlantic salmon

The proposed methodology can be applied to any species,
and in this paper, Atlantic salmon stocks are taken as an ex-
ample. Stock-recruit data exist for some Atlantic salmon
stocks and not for others. For example, in the Baltic Sea
area, no stock—recruit data have been compiled and no infor-
mation exists about the stock—recruit function of Baltic
salmon stocks. Potentially, we could assume that nothing is
known about the stock—recruit function and its parameters in
the Baltic Sea area, but this would be ignoring all of the
Atlantic salmon stock-recruit data from outside this area
(Myers et al. 1999; Barrowman and Myers 2000; Prévost et
al. 2001). Because each Baltic salmon stock could be con-
sidered as one of the many different Atlantic salmon stocks,
the stock-recruit functions obtained by analysing stock—
recruit data of Atlantic salmon index rivers can be extrapo-
lated to salmon stocks in the Baltic Sea area. Three compo-
nents are involved in the extrapolation: a functional form, a
scale component, and a population dynamics component
(Prévost et al. 2001). Although functional forms could vary
among stocks, it is generally accepted that owing to similari-
ties in biology, life history, and ecology among populations
of the same species, the functional form is the same. The
scale component, irrespective of the functional form, is re-
lated to the concept of carrying capacity and can be obtained
through an evaluation of habitat quality and (or) availability
(Uusitalo 2001). The third component is the population dy-
namics component, i.e., the steepness parameter, which is
comparable between stocks and which can be obtained
through a hierarchical analysis of stock-recruit data. The
concept of steepness also holds across different functional
forms. Bayesian hierarchical analyses therefore allow an ex-
trapolation of the stock—recruit functions of sampled Atlan-
tic salmon stocks to unsampled salmon stocks such as those
in the Baltic Sea area (Prévost et al. 2001).

Stock-recruit data

The stock—recruit data of Atlantic salmon used in the hier-
archical analysis are obtained through a search of both pub-
lished and grey literature. The number of stock—recruit data
sets is small and limited compared with the number of At-
lantic salmon stocks present. Therefore, it is crucial to make
sure that the data set is representative for the entire Atlantic
salmon population and that no bias is introduced when se-
lecting the data sets (Myers and Mertz 1998; Prévost et al.
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Table 1. Description of the different Atlantic salmon stock—recruit data sets found in the literature according to the river and country of oc-
currence, data format, number of data points collected, form and language in which they have been published, and the publication reference.

Data

River Country Data format  points  Publication Language Reference(s)
Little Codroy River  Canada Eggs—smolts 7 Journal English Chadwick 1982
Margaree River Canada Eggs—adults 36 Research document  English Chaput and Jones 1992
Pollett River Canada Eggs—smolts 8 Journal English Elson 1975; Myers et al. 1995
Trinite River Canada Eggs—smolts 8 Research document  French Caron 1992; Myers et al. 1995
Western Arm Canada Eggs—smolts 15 Research document  English Chaput et al. 1992

Brook
River Bush United Kingdom  Eggs—smolts 17 Journal English Crozier and Kennedy 1995
River Ellidaar Iceland Eggs—adults 37 Journal English Mundy et al. 1978
River Oir France Eggs—smolts 10 Journal French Prévost et al. 1996
River Bec-Scie Canada Eggs—smolts 5 Research document  French Caron 1992
2001). The selected stock-recruit data sets needed to be Beverton—-Holt curve through the following equation

transformed to express the relationship between eggs and
smolts. Eggs—adults data were transformed by applying an
approximation of the survival rate from smolts to adults
(10%). This transformation does not account for any uncer-
tainty in the value for the survival rate from smolts to adults.
The assumed survival rate from smolts to adults will affect
the estimated steepness parameters of the stocks in question,
but sensitivity analyses demonstrate that the impact of the
assumed survival rate on the predicted steepness parameter
for the Baltic salmon stocks is relatively small owing to the
large amount of uncertainty surrounding these estimates.
Eggs—parr data, on the other hand, were not transformed and
used because of the possible density-dependent relationship
between the parr and smolt stage.

In total, nine different stock—recruit data sets (consisting
of 143 data points in total) were found covering both sides
of the Atlantic Ocean (Table 1). The data sets were found in
journal articles and research documents and were all inde-
pendent of each other. Although searched for, no publica-
tions of stock-recruit data were encountered in languages
other than English or French.

Description of stock-recruit functions and their
parameterization

In order for a stock-recruit model to be useful, it should
adequately represent the biological processes of the stock, fit
well to the stock-recruit data and behave sensibly in proba-
bilistic projections (Needle 2002). For Salmonids, the most
commonly used stock—recruit functions are the Ricker and
the Beverton-Holt stock—recruit functions (Hilborn and
Walters 1992). These stock-recruit functions are governed
by the following equations (eq. 7, Beverton and Holt 1957;
eq. 8, Ricker 1954):

_ S
o+pBS

(7

(8) R =aSe™

where S is a measure of the spawning stock size and R is the
number of recruits. These two functions can be paramete-
rized in terms of river specific parameters: steepness (z), re-
cruitment at equilibrium (Rj), and spawner biomass per
recruit (S). The definition for steepness is illustrated for the

(Liermann and Hilborn 1997):

© ik =025
o+ OZBSO

The following equations convert steepness (z), recruitment at
equilibrium (R;), and spawner biomass per recruit (S) into
the alpha and beta parameters of the Beverton—Holt stock—
recruit function:

(10) (X=(1_Z)'&=(1_Z)'§
4z R, 4z

5z-1
B=
Similarly, the a and b parameter of the Ricker stock—recruit

function can be expressed in terms of steepness (z), recruit-
ment at equilibrium (R;), and spawner biomass per recruit

(§);
(SZ)5/4
11 ==
(I a 3

5
b=—"r-log(5z
RS 2(52)

The similar parameterization of the Beverton—Holt and the
Ricker models allows us to estimate the steepness of the dif-
ferent stock-recruit models within similar overall model
structures.

Description of the prior pdfs

According to Liermann and Hilborn (1997), the most dif-
ficult part of using hierarchical models is the construction of
prior probability distributions. Some prior information about
the model parameters will be present based on their defini-
tions and the structural limitations of the models in which
they are placed. By definition, the steepness parameter for
the Beverton—Holt stock—recruit function can only have val-
ues between 0.2 and 1. Therefore, the mean steepness ()
across salmon stocks will lie between those boundaries. A
flat distribution for the mean steepness would be inappropri-
ate, since a mean steepness of 0.2 or 1 would imply zero
variation around the mean, i.e., all stocks would have a
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Fig. 1. Prior probability density functions of (a« and b) mean steepness across Atlantic salmon stocks, (¢ and d) maximum standard de-
viation around the mean steepness, (e and f) cross-population standard deviation in steepness, and (g and &) steepness for each of the
different Atlantic salmon stocks assuming a Beverton—Holt (B—-H) or Ricker stock-recruit function.

(@)

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Prior mean B-H steepness across stocks

T T 1

0.0 1.0 2.0 3.0
Prior mean Ricker steepness across stocks

(d)

Prior SD of B-H steepness across stocks

(@)

0.0 0.2 0.4 0.6 0.8 1.0
Prior steepness of B-H function for each stock

steepness of exactly 0.2 or 1, which is a highly unlikely
event considering previous steepness estimates (Myers et al.
1999). The pdf of the mean steepness is therefore assumed
to follow a beta distribution Beta(2,2) rescaled to lie be-
tween 0.2 and 1 and with unlikely outer values. The prior
pdf for the mean steepness is shown in Fig. la.

Apart from a cross-population mean steepness, we also
need to define a cross-population variance in steepness. The
maximum possible variance max(c?2) given a particular value
for mean steepness, a symmetrical uniform distribution for z
under the maximum possible variance, and the 0.2—1 bound-
aries can be calculated using equation (Evans et al. 2000)
(12) max(csi) = [max(z) — min(2)]*/12
where max(6?) is the maximum possible variance in steep-
ness z, max(z) is the upper limit of the range of steepness z,
and min(z) is the lower limit of the range of steepness z.
Practically speaking, if, for example, one particular draw
from the prior distribution for the mean steepness is 0.8,
then the upper limit of the range for steepness would be 1
and the minimum would be 0.6. The corresponding maxi-
mum possible standard deviation in steepness in this exam-

2
g T T d T T T |
g 00 0.1 0.2 0.3 0.0 0.5 1.0 1.5 2.0
£ Prior maximum B-H standard deviation (max,) Prior maximum Ricker standard deviation (max)
]
S
o (e) (U]
0.0 0.1 0.2 0.3 0.0 0.5 1.0 1.5

Prior SD of Ricker steepness across stocks

(h)

T T T 1

0.0 1.0 2.0 3.0 4.0
Prior steepness of Ricker function for each stock

Table 2. Median and 95% probability interval of the prior proba-
bility distributions for the spawner biomass (eggs) per recruit
(smolts) (SBPR) parameter of the different Atlantic salmon stocks.

River Median SBPR  95% probability interval
Little Codroy River 308 81-613
Margaree River 367 95-762
Pollett River 368 95-759
Trinite River 360 93-749
Western Arm Brook 294 73-593
River Bush 210 54-410
River Ellidaar 282 73-555
River Oir 388 101-806
River Bec-Scie 409 106-859
Baltic salmon rivers 500 127-1000

ple is therefore 0.12. The prior pdf for the maximum stan-
dard deviation in steepness max(c ) is also shown in Fig. lc.
It is assumed that the maximum standard deviation is the
most likely value for the cross-stock standard deviation with
a linear relationship expressing the reduction in probability
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Table 3. Summary of model parameters and their description and WinBUGS representation.

Model WinBUGS

parameter Description representation

z Steepness of the Beverton—Holt stock—recruit function for stock j z[j]

zt Steepness of the Beverton—Holt stock—recruit function for stock j scaled to lie between O and 1 zt[j]

o First shape parameter of the beta distribution for scaled steepness alpha_zt

B Second shape parameter of the beta distribution for scaled steepness beta_zt

W Mean of the steepness across stocks scaled to lie between 0 and 1 mu_zt

u, Mean steepness across stocks mu_z

(o Cross-stock standard deviation in the scaled steepness sd_zt

O Cross-stock relative standard deviation in the scaled steepness sd_ztt

max (o ) Maximum cross-stock standard deviation in the scaled steepness max_sd_zt

K River-specific spawner biomass per recruit SBPR[j]

R River-specific recruitment potential R[j]

Ur Mean recruitment potential across stocks mu_R

TR Cross-stock precision of recruitment potential tau_R

o Alpha parameter of the Beverton—Holt stock—recruit function for stock j, where 1/o is the maximum alphal[j]
recruitment per spawner as spawner abundance approaches 0

B Beta parameter of the Beverton—Holt stock—recruit function for stock j, where 1/B is the maximum betal[j]
number of recruits

0 Vector of parameters that are treated as random variables exp_Smolts[i]

Eggs Observed number of eggs counted in sample i Eggsli]

smolts°® Observed number of smolts resulting from eggs of sample i obs_Smolts[i]

smolts®*P Mean number of smolts expected from eggs of sample i exp_Smolts[i]

smolts"P Replicated number of smolts that could have been observed using the model rep_Smolts[i]

Temolts Precision of the number of smolts expected tau_Smolts

as the cross-stock standard deviation approaches 0 Ricker stock—recruit function for each stock (Figs. 1d, 1f,

(Beta(2, 1)). The resulting prior for the cross-stock standard
deviation (G ,) is also shown (Fig. le). The prior pdf of the
mean steepness of the meta-population, i, and of the stan-
dard deviation of steepness of the meta-population, ¢, are
used to define the marginal prior pdf of the steepness for
each population or stock (z) (Fig. 1g).

For the Ricker stock-recruit function, the steepness pa-
rameter cannot be smaller than 0.2 but it can be larger than
1. Applying the same prior probability distribution for the
steepness parameter as for the Beverton—Holt stock-recruit
model would result in an underestimation of the steepness of
the Ricker curve. Instead, a new prior needs to be con-
structed for the steepness parameter of the Ricker model.
The main problem when constructing such a prior is to de-
fine the upper limit for the prior mean steepness across pop-
ulations. This prior knowledge has been based on the results
of Myers et al. (1999) who have estimated the slope at the
origin for many different stocks. Based on their results ob-
tained for Salmonidae (transformed into steepness values for
the Ricker model using eq. 11), it is unlikely that the mean
steepness across stocks will be larger than 2.8. This prior
knowledge can be translated into a prior probability distribu-
tion for the mean steepness across stocks defined by a beta
distribution Beta(2, 2) rescaled between 0.2 and 2.8 (Fig. 1b).

Using the same rules as for the steepness-related priors of
the Beverton—Holt function, it is possible to derive the corre-
sponding prior probability distributions for the maximum
standard deviation around the mean steepness, the cross-
standard deviation in steepness, and the steepness of the

and 1h). Compared with the prior for the Beverton—Holt
function, the maximum standard deviation around the mean
steepness only has a lower boundary but no upper boundary
when assuming a symmetrical distribution for o .

The prior probability distributions for the smolt produc-
tion capacity are assumed to be lognormally distributed. The
log-transformed mean smolt production capacity across At-
lantic salmon stocks is given an uninformative normal distri-
bution N(0, 1000%). The cross-stock deviance around that
mean capacity is defined in terms of precision (precision =
I/variance) and given an uninformative gamma distribution
G(0.001,0.001).

The spawner biomass per recruit parameter is given stock-
specific informative priors. The spawner biomass per recruit
can be calculated through the following equation:

- 3SW
(13)  S=HF Y psiW
k=1SW

where H is the smolt to grilse survival rate from natural
mortality (expressed as a proportion), p is the relative pro-
portion given natural mortality and homing rates of one-sea-
winter (1SW), 2SW, or 3SW salmon, s is the proportion of
females, W is the weight of the fish, and F is the relative
fecundity of female salmon (eggs per kilogram). Different
Atlantic salmon stocks may have a different productivity de-
pending on the relative proportion of female salmon in dif-
ferent age groups. River-specific estimates for the relative
proportion of 1SW, 2SW, and 3SW salmon and the propor-

© 2004 NRC Canada



1038

Can. J. Fish. Aquat. Sci. Vol. 61, 2004

Fig. 2. Prior and marginal posterior predictive probability distribution of the steepness for (a, c, e, and g) Beverton—Holt and (b, d, f,
and &) Ricker stock—recruit functions for Baltic salmon when using different prior probability distributions for the mean steepness
across Atlantic salmon stocks: (¢ and b) Beta(2,2); (¢ and d) U(0,1); (e and f) Beta(1,2); (g and &) Beta(2, 1).
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tion of females have been obtained from Hutchings and
Jones (1998) and the International Council for the Explora-
tion of the Sea (2003). Where river specific estimates were
missing, as for example for the Rivers Pollet and Bec-Scie,
region-specific estimates have been chosen (Hutchings and
Jones 1998). Hutchings and Jones (1998) also provided esti-
mates for the smolt to grilse survival (1.3-17.4%). This has
been translated into a probability distribution for H in
eq. 13 (N(0.1,0.05%)1(0.013,0.17), meaning that the normal
distribution has been truncated at 0.013 and 0.17). The
weight of a grilse is assumed to be between 1.5 and 3 kg
(N(2.25,0.38%)I(1.5,3)), while the weight of a 2SW and 3SW
salmon is assumed to vary between 3 and 7 kg (N(5, 1.29)I(3,7))
and between 6 and 14 kg (N(10,2.24%)I(6, 14)), respectively.
The relative fecundity is given a uniform distribution be-
tween 1600 and 1800 eggs per kilogram female salmon
(U(1600, 1800)) (Bardonnet and Bagliniere 2000). The re-
sulting statistics for the prior probability distributions of the
spawner biomass per recruit parameter for the different
rivers are presented in Table 2.

Description of the hierarchical model

The joint posterior density function of the hierarchical
model parameters is given by the equation

Steepness of Ricker stock-recruit function

(14)  p(@lsmolts®™) = p( )p(© )P RP (TP (Tymot)

X p(Dp(zIn,.6,)p(RlIng Te)p(smolts ™Iz, 5, R)

where 0 represents all parameters treated as random vari-
ables in the model, namely
(15) 0= g’uz’o-z’ 5’ B’HR’ TRs Tsmolts

We give an overview of all the model parameters and their
description in Table 3. We also present part of the Win-
BUGS code for the hierarchical model for the Beverton—
Holt stock-recruit function of different Atlantic salmon
stocks (Appendix A). The model assumes a lognormal likeli-
hood function. The WinBUGS code for the Ricker model is
similar to this code except for the stock—recruit function. In
the model, the river-specific values of S are to be obtained
from eq. 13.

In this model, we are mainly interested in the marginal
posterior distribution of the steepness for some unsampled
stock, which is determined by the mean and standard devia-
tion in steepness across stocks. The joint posterior distribu-
tion for the mean and standard deviation in steepness is
governed by the equation
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Fig. 3. Prior and marginal posterior predictive probability distribution of the steepness for (a, ¢, and e) Beverton-Holt and (b, d, and f)
Ricker stock—recruit functions for Baltic salmon when using different prior probability distributions for the precision of the likelihood
function: (a and b) G(0.001,0.001); (¢ and d) G(0.1,0.001); (e and f) G(10, 10).
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Fig. 4. Discrepancy plots between the data and the models using
(a) Beverton—Holt and (b) Ricker stock—recruit functions. The
corresponding Bayesian p-values, computed as the proportion of
points above the line, are 0.78 and 0.8, respectively. Values close
to 0.5 represent a good fit to the data.
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(16) p(uz,czsmolts()bs) =

J.J.J.J.J.J. p(elmobs) dp‘R dTR dtsmoltsdg dS dr

The marginal predictive posterior distribution function of the
steepness for some unsampled stock, z;, is given by the equa-
tion

A7) p(z;! smolts®™) =

[[ P, 00pm 0 Jsmolts™)dy, dr,

Results

Tests concerning model structure and data assumptions
Evaluations of the sensitivity of results to prior pdf speci-
fications for all of the major model parameters have been
conducted. However, since the probability distribution for
the steepness parameter is of most interest for the current
analysis, we present mostly results for changes in the prior
for the steepness parameter. We have replaced the dome-
shaped prior probability distribution (Beta(2,2) rescaled to
lie between 0.2 and 1 or between 0.2 and 2.8 depending on
the stock—recruit function) with distinctly different prior dis-
tributions (U(0, 1), Beta(1,2), and Beta(2,1) all rescaled,
e.g., to lie between 0.2 and 1) to assess the impacts on the
marginal posterior distribution of the steepness parameter for
Baltic salmon. The graphs (Fig. 2) show limited differences
between the posterior density functions when using different
prior density functions. Similar sensitivity analyses have
been done for the distribution of the precision parameter of
the likelihood function. The graphs show no substantial dif-
ferences in the marginal posterior probability distribution for
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Fig. 5. For each data set, the observed smolt abundance at the lowest stock level is compared with the predictive probability distribu-
tion. The observed number of smolts (vertical line) is compared with the posterior predictive distribution of the number of smolts us-
ing a Beverton—-Holt (broken line) or Ricker (solid line) stock-recruit function. The posterior predictive p-value is defined as the
probability that the replicated data are more extreme than the observed data.
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the steepness of the different stock—recruit functions for Bal-
tic salmon (Fig. 3).

The observed data have been compared with the posterior
predictive distributions of the data. When looking at the re-
sulting Bayesian p-values for all of the data points, 4.9% of
the data points fell outside the 95% probability intervals of
the predictive probability distribution when using a
Beverton—Holt stock-recruit function compared to 2.1% of
the data points when assuming a Ricker stock—recruit func-
tion. The discrepancy plots indicate that the models fit the

data relatively well and that the Beverton—Holt stock—recruit
model is performing slightly better than the Ricker stock—
recruit model (Fig. 4). Because of the concern of Barrow-
man and Myers (2000) that at low stock or egg abundance,
the Ricker and the Beverton—Holt functions tend to lie above
the observed data points, we have selected from each data
set the point at the lowest stock level and compared this
point with the predictive probability distribution of the data
(Fig. 5). We have done this graphical comparison for the
two different stock—recruit functions. When comparing the
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observed value against the predictive probability distribution
for each data point at the lowest stock level, there does not
seem to be consistent overprediction of smolt recruitment.

To examine the exchangeability of the data sets, the two
different stock—recruit models are each run nine times, ex-
cluding one data set each time. The graphs (Fig. 6) indicate
that none of the data sets substantially alter the outcome of
the hierarchical analysis. Therefore, it is concluded that the
requirement of exchangeability between data sets has been
met.

Estimating and predicting the steepness of different
stock-recruit functions

After having tested the different model and data assump-
tions, the models have been used to estimate the steepness
parameter of the different stocks and to predict the steepness
parameter of an unsampled stock such as the salmon stock in
the Baltic Sea. The results of the hierarchical analysis for the
two stock-recruit functions are presented in Figs. 7 and 8
and Table 4. The posterior probability distributions of steep-
ness are markedly more informative than the prior probabil-
ity distributions but still reflect considerable uncertainty. The
lower percentiles of the posterior probability distributions
for the steepness of the Ricker stock—recruit function overlap
with the posterior pdfs for the Beverton—Holt function.
There does not seem to be a relationship between the origin
of the stock-recruit data (Europe or Canada) and the esti-
mated values for steepness. The marginal probability distri-
bution of the steepness parameter for the Beverton—Holt
stock—recruit function is much more informative than the
marginal pdf for the steepness of the Ricker stock-recruit
function. The medians of the marginal probability distribu-
tions for steepness of the Beverton—Holt and Ricker stock—
recruit functions for Baltic salmon are 0.72 and 1.15, respec-
tively. The probability distributions for steepness can be
compared with the steepness calculated by Myers et al.
(1999). By using a standard linear mixed model and a Ricker
stock-recruit function, Myers et al. (1999) obtained a me-
dian steepness of 0.54 for Atlantic salmon with a 60% prob-
ability interval between 0.46 and 0.62. The results for the
steepness of Atlantic salmon by Myers et al. (1999) are
lower and the confidence interval is narrower than the proba-
bility intervals obtained in the current study. The reasons for
the differences in results will be discussed in the Discussion
section.

From the graphs of the fitted stock—recruit functions (Fig. 7),
it becomes clear that the Beverton—Holt model consistently
estimated a higher slope at the origin than the Ricker model,
resulting in a higher predictive value for the slope at the ori-
gin for the Baltic salmon population (Table 5). Significant
autocorrelation in the stock-recruit data has only been de-
tected for one data set and there was no strong correlation
between the steepness parameter and the smolt production
capacity.

Calculating Bayes’ posteriors for the different models
The previous section illustrated that depending on the
stock—recruit model, the marginal predictive posterior den-
sity function for the steepness is very different. It is common
to assess the fit of the individual models with the data, con-
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Fig. 6. Marginal predictive probability distributions of the steep-
ness parameter for two different stock—recruit functions exclud-
ing one data set from the analysis at a time.
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tinue with the model that fits best, and discard the other
models. In WinBUGS, the statistic used for this is the devi-
ance information criterion (DIC), which is a Bayesian mea-
sure of model complexity and fit that can be used to compare
models of arbitrary structure (Spiegelhalter et al. 2002). It is
the sum of the posterior mean of the deviance (defined as -2
times the log likelihood from the Markov chain) and the ef-
fective number of parameters (defined as the posterior mean
of the deviance minus the deviance of the posterior means).
In this case, the DIC for the model with the Beverton—Holt
function is 311, while the DIC for the Ricker model is 336.
Discarding the Ricker stock—recruit function, however, would
be ignoring model uncertainty.

Using the harmonic mean of the likelihood function, it is
possible to calculate the Bayes’ posterior model probability.
The Beverton—-Holt model obtains 99.9% probability, while
the Ricker model obtains 0.1%, given the current stock—re-
cruit data. This result was obtained consistently from several
different chains with different starting values and is there-
fore reliable. The Beverton—Holt is favoured over the Ricker
stock-recruit function, largely because it fits the data better.
In addition, the Bayes’ posterior, based on the harmonic
means, tends to favour models containing less uncertainty
whereby the variance of the deviances is smaller and this
variance was less for the Beverton—Holt model (Fig. 9). The
statistical models using the Beverton—Holt and Ricker stock—
recruit functions are practically identical except for the prior
for the steepness parameter. This steepness prior pdf is much
more informative for the Beverton—Holt stock—recruit func-
tion than for the Ricker stock-recruit function owing to the
strict boundaries for this parameter when using the
Beverton—Holt function. This results in a smaller variance in
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Fig. 7. Median values of the marginal posterior probability distributions for the Beverton—Holt (broken line) and Ricker (solid line)
stock-recruit functions for (a) Little Codroy River, (b) Margaree River, (¢) Pollett River, (d) Trinite River, (¢) Western Arm Brook,
(H) River Bush, (g) River Ellidaar, () River Oir, and (i) River Bec-Scie.
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deviances in the Beverton—Holt model output than in that for
the Ricker model and contributes further to the higher
weighting for the Beverton—Holt model. This issue is treated
in further detail below.

Discussion

Hierarchical analyses have become standard methods to
obtain stock—recruit functions for fisheries stock assessment
(Liermann and Hilborn 1997; Myers and Mertz 1998). The
Beverton—Holt stock—recruit function is commonly para-
meterized in terms of the steepness parameter, which is
transportable from stock to stock, making it ideal for hierar-
chical analyses of stock-recruit data. This paper advocates a
similar parameterization for other possible stock—recruit
functions such as the Ricker function, allowing estimation of
the parameters of the stock-recruit function and estimation

0.0 0.1 0.2
Eggs (million)

0.3 0.4 0.5

of the probability of the different stock—recruit functions
given the stock—recruit data through the use of Bayes’ poste-
rior probabilities.

However, several dangers are connected to the use of a
hierarchical analysis of stock-recruit data, which can make
the results invalid: publication and selection bias, the use of
studies of poor academic quality, and the mixing of dissimi-
lar studies (Arnqvist and Wooster 1995). Furthermore, the
different studies used in the hierarchical analysis should be
exchangeable (Gelman et al. 1995). Most authors conclude
that it is more important to be unbiased than to include every
existing study (Englund et al. 1999).

As mentioned before, a steepness parameter is transport-
able from stock to stock. However, the value of the steepness
parameter is not independent of the functional form of the
stock—recruit function (e.g., steepness values above 1 can
only occur for a Ricker stock-recruit function and not for
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Fig. 8. Prior (thick broken line) and posterior probability distributions for stock—recruit data sets from Europe (thin solid line) and
Canada (thin broken lines) and the corresponding marginal predictive probability distributions for Baltic salmon (thick solid lines) of

the steepness parameter for different stock-recruit functions.
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Table 4. Estimated mean and CV for the posterior probability
distribution of the steepness for the Beverton—Holt and Ricker
stock—recruit functions.

Beverton—Holt Ricker
Parameter Mean CV Mean CV
Little Codroy River 0.78 0.15 1.75 0.29
Margaree River 0.65 0.22 0.61 0.25
Pollett River 0.72 0.17 1.40 0.27
Trinite River 0.78 0.16 1.91 0.29
Western Arm Brook 0.63 0.26 0.48 0.27
River Bush 0.69 0.22 0.93 0.27
River Ellidaar 0.70 0.22 0.44 0.27
River Oir 0.69 0.22 0.60 0.32
River Bec-Scie 0.67 0.22 1.25 0.31
Baltic rivers 0.70 0.23 1.24 0.48

the Beverton—Holt function). Myers et al. (1999) have used
a Ricker stock-recruit function within an hierarchical model
to estimate the slope at the origin. From these results, they
have estimated a steepness value for the Beverton—Holt
function based on the assumption that the slope at the origin
is the same for the Ricker and Beverton—Holt stock—recruit

functions. According to our results (Table 5), the estimates
for the slope at the origin can be distinctly different between
the two different functions given the same stock-recruit
data. By assuming the slopes to be the same and transform-
ing the slope at the origin of a Ricker stock—recruit function
to a steepness value for the Beverton—Holt function, Myers
et al. (1999) have underestimated the steepness parameter
for the Beverton—-Holt function. This explains their lower
steepness estimates compared with the current analysis.

Within this paper, a different approach has been advocated
by implementing the same definition of steepness to both the
Beverton—Holt and Ricker stock-recruit functions (i.e., the
corresponding proportion of virgin recruitment when reduc-
ing the stock biomass to 20% of its virgin level). Using this
parameterization, posterior distributions can be obtained for
the steepness parameter for each stock-recruit function
whereby the steepness parameters are dependent on the
functional form of the stock-recruit function. This parame-
terization has produced plausible results for both the
Beverton-Holt and Ricker stock-recruit functions. Poten-
tially, this parameterization could also be expanded to other
stock—recruit formulations. For some stock—recruit functions,
however, there may be no reduction in recruitment when re-
ducing the stock biomass to 20% of its virgin level. This, for
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Table 5. Estimated mean and 95% probability interval for the posterior probability distribution of the
slope at the origin for the Beverton—Holt and Ricker stock-recruit functions.

Beverton—Holt Ricker
Parameter Mean 95% probability interval Mean 95% probability interval
Little Codroy River 0.060 0.031-0.207 0.035 0.022-0.053
Margaree River 0.025 0.013-0.082 0.008 0.006-0.010
Pollett River 0.038 0.022-0.094 0.022 0.015-0.032
Trinite River 0.052 0.028-0.235 0.034 0.023-0.052
Western Arm Brook 0.026 0.009-0.138 0.007 0.005-0.010
River Bush 0.051 0.022-0.227 0.023 0.015-0.034
River Ellidaar 0.040 0.015-0.204 0.007 0.005-0.010
River Oir 0.027 0.010-0.146 0.008 0.004-0.012
River Bec-Scie 0.025 0.013-0.106 0.018 0.011-0.030
Baltic rivers 0.026 0.009-0.153 0.017 0.004-0.039

Fig. 9. Probability density function of the log-likelihood values
for samples of the posterior distributions when fitting the
Beverton—Holt (solid line) and Ricker (broken line) stock-recruit
functions to Atlantic salmon stock-recruit data.
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example, is the case for the hockey stick model, a simple
segmented regression line that starts at the origin at a certain
slope and whereby the recruitment becomes constant above
some level of spawner abundance (Barrowman and Myers
2000). Unless the steepness parameter is actually 1 or the
slope parameter is very low and gives a high value for the
spawning stock inflection point relative to the carrying ca-
pacity, and there are some data available near the origin, this
parameterization will not contain the necessary information
to estimate the slope at the origin for the hockey stick model.
Within this paper, two different stock—recruit functions
have been fitted to stock-recruit data within a Bayesian
framework. This requires the selection of appropriate prior
probability distributions for the model parameters. The prior
for the steepness parameter has traditionally been given dis-
tributions between 0.2 and 1 because of the shape of the
Beverton—Holt stock—recruit function. When expanding the
concept of steepness to other stock—recruit functions, this
prior needs to be revised. For the Ricker stock—recruit func-
tion, it is, for example, possible to obtain a value for the
steepness parameter larger than 1. Therefore, the prior distri-
bution for steepness should be dependent on the functional
form of the stock—recruit function. The prior for steepness
proposed within this paper is formed by the structure of the
model. The mean steepness and standard deviation, which is

dependent on the mean, shape the probability distribution of
the steepness through a concise model structure.

The steepness parameter is commonly used in population
assessments. By parameterizing more than one stock-recruit
function in terms of steepness, the uncertainty in the stock—
recruit function can be incorporated in the population assess-
ments by running the same assessment models using differ-
ent stock—recruit functions. The DIC has been developed to
compare the fit of hierarchical models to the data (Spiegel-
halter et al. 2002). This criterion, however, does not provide
a mechanism to compare the overall plausibility of the dif-
ferent model structures given the data.

Within this paper, the computation of marginal Bayes’
posterior probabilities for alternative models is advocated
because this allows the estimation of the probability (or
credibility) of each stock—recruit function given the available
stock—recruit data (McAllister and Kirchner 2002). The
Bayes’ posterior probabilities have been calculated using the
harmonic mean of the likelihood (Kass and Raftery 1995).
This harmonic mean, however, may be unstable owing to the
occasional occurrence of a set of parameters with a very
small likelihood. Furthermore, the harmonic mean can be
biased towards models with lower prior uncertainty in the
parameter values owing to smaller prior variances. Gelman
et al. (1995) identified this biasing effect as a potential dis-
traction and suggested an alternative approach to accounting
for model uncertainty that instead uses a continuous family
of models. If the alternative model structures only differ in
the use of the stock-recruit function and are limited to a
Beverton—Holt or Ricker stock—recruit function, then the two
discrete models could be replaced with a continuous family
of models by using a three-parameter model for which the
Ricker and Beverton—Holt stock—recruit functions are special
cases.

The use of alternative discrete models, however, still has
some advantages (McAllister and Kirchner 2002). It is more
flexible when it is of interest to explore the probability of a
wide variety of different model structures. The use of two
two-parameter models as opposed to a single generalized
three-parameter model may offer improved statistical perfor-
mance in parameter estimation, particularly for stock—recruit
data that are typically relatively uninformative even for two-
parameter models. Instability problems from using the har-
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monic mean likelihood can be overcome by using other
computational methods such as reversible jump or impor-
tance sampling (Kass and Raftery 1995; Patterson 1999;
McAllister and Kirchner 2002). Moreover, in our calcula-
tions, instability was not a problem because Markov chains
with different starting points gave the same results. Also,
when the harmonic means for the two alternative stock—
recruit models were recalculated using deviances with the
original mean deviance but constrained to have the same
variance in deviances, practically the same results were ob-
tained.

The proposed methodology enables prediction of the steep-
ness of the stock-recruit function for unsampled salmon
stocks such as the salmon in the Baltic Sea even though no
stock—recruit data have been collected in the region. The
means of the marginal probability distributions for steepness
of the Beverton—Holt and Ricker stock-recruit functions for
Baltic salmon are 0.70 (CV 23%) and 1.24 (CV 48%), re-
spectively. Although by definition, the steepness of the dif-
ferent stock-recruit functions has the same meaning, the
estimated value for steepness is dependent on the functional
form of the stock—recruit function, thus explaining the different
results obtained for the different stock—recruit functions. Ac-
cording to the Bayes’ model posteriors, the Beverton—Holt
stock—recruit function is more likely than the Ricker stock—
recruit function given the current stock-recruit data, al-
though the Ricker model cannot be ruled out. This model
uncertainty should be carried along into fisheries stock as-
sessments and decision analyses. To identify plausible
stock—recruit functions for a given stock where no stock—
recruit data exist, the posterior predictive distribution for
steepness obtained through hierarchical modelling can be
used in combination with estimates for the carrying capacity
of salmon in the Baltic Sea area (Geiger and Koenings 1991;
Adkison and Peterman 1996). For example, estimates for the
smolt carrying capacity of salmon in the Baltic Sea have
been obtained through an evaluation of habitat availability
and quality (Uusitalo 2001). When incorporating the stock—
recruit functions in fisheries stock assessments, the steepness
parameter still needs to be adjusted for region-specific mor-
tality effects. In the Baltic Sea, for example, this should in-
clude the juvenile mortality resulting from the M74
syndrome (Karlsson and Karlstrom 1994). This syndrome
occurs only in the Baltic Sea and not in the areas where the
stock—recruit data have been collected and should lower the
steepness for salmon stocks in this region.
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Appendix A. WinBUGS code for a Bayesian hierarchical model of the Beverton-Holt stock-

recruit function

model {
for(j in 1:n) { # for the n samples

obs_Smolts[j] ~ dlnorm(X[j], tau_Smolts) # Likelihood function

X[j] <— log(exp_Smolts[j])

exp_Smolts[j] <— Eggs[j] / (alpha[river[j]] + (beta[river[j]] * Eggs[j])) # B-H function

for(j in 1:m) { # for the m Atlantic salmon stocks

alpha[j] <— ((1 = z[j]) / (4 * z[j])) * SBPR[j] # definition of alpha in terms of steepness

beta[j] <— ((5 * z[j]) — 1) / (4 * z[j] * R[j]) # definition of beta in terms of steepness

z[j] <— (0.8 * zt[j]) + 0.2 # transformation to beta distribution between 0.2 and 1

zt[j] ~ dbeta(alpha_zt, beta_zt) # prior for the transformed steepness

R[j] ~ dlnorm(mu_R, tau_R)I(0.001, ) # prior for recruitment potential

SBPR[j] # river specific prior for spawner biomass per recruit

# the detailed code for the calculation of the river specific SBPR is not shown to avoid cluttering the presentation

}

tau_Smolts <— 1/pow(sigma, 2) # derived prior for precision of predicted smolts
sigma ~ dgamma(0.001, 0.001) # prior for the standard deviation of predicted smolts
mu_R ~ dnorm(0.0, 1.0E-6)I(1.01, 25) # hyperprior for mean of recruitment potential
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tau_R ~ dgamma(0.001, 0.001) # hyperprior of precision of recruitment potential
alpha_zt <— (pow(mean_zt, 2) — pow(mean_zt, 3) — (mean_zt * pow(sd_zt, 2))) / pow(sd_zt, 2)
beta_zt <— ((1 — mean_zt) / pow(sd_zt, 2)) * ((mean_zt * (1 — mean_zt)) — pow(sd_zt, 2))
# reparameterisation from mean and variance to alpha and beta parameters
sd_zt <— sd_ztt * max_sd_zt # defining the distribution of the transformed variance zt
sd_ztt ~ dbeta(2, 1)
mean_zt ~ dbeta(2, 2)
mean_z <— (0.8 * mean_zt) + 0.2 # transformation to beta dist. between 0.2 and 1
k <— step(mean_zt — 0.5) # if mean_zt — 0.5 >0 then k = 1 else k =0
min <— (1 — ((1 — mean_zt) * 2)) * k
max <— ((1 — (mean_zt * 2)) * k) + (mean_zt * 2)
max_sd_zt <— sqrt(pow((max — min), 2) / 12)} # maximum variance given a mean
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