Genetic structure of Japanese pink salmon populations inferred from nucleotide sequence analysis of mitochondrial DNA

Shunpei Sato and Shigeiko Urawa

Hokkaido National Fisheries Research Institute Fisheries Research Agency

25th Pink & Chum Salmon Workshop Centennial Hall, Juneau AK, USA February 13, 2012

Presentation outline

- 1. Background and Objectives
 - Features of Japanese pink salmon
- 2. Materials and Methods
 - Sample collection (location, year, number, etc)
 - Genetic analysis
- 3. Result
 - Haplotype data
 - Gene diversity
 - Genetic structure
- 4. Summery

Main spawning area of pink salmon in Japan

- Return and spawning period: August-October
- Main spawning field: Okhotsk Sea and Nemuro strait in Hokkaido

Number of hatchery released fry and returning pink salmon in Hokkaido

- Release: consistent at 140 million per year since 1985
- Return: fluctuated greatly since early-1990s

Status of Japanese pink salmon

Since 1990s,

The constant number of pink salmon fry has been released

However,

 Show fluctuation of returning numbers between even- and odd-year broodlines

Should clear up the cause of year-to-year differentiation to

- stabilize fisheries resources of Japanese pink salmon
- improve the Japanese hatchery program management

Require more detailed and basic information of stock assessment, ecological, and genetic data of Japanese pink salmon

Status of Japanese pink salmon

However, genetic data of Japanese pink salmon is...

Objectives

Estimation of genetic structure of Japanese pink salmon populations using mitochondrial (mt) DNA

Sampling locations, years, & sample numbers

Even-year: total of 354 individuals from 9 river populations Odd-year: total of 426 individuals from 9 river populations

Genetic analysis

- 1. Genetic samples: pectoral fins or liver tissues
- 2. DNA extraction
- 3. PCR: mtDNA control region
- 4. Nucleotide sequence: direct sequencing
- 5. Haplotype ditection

Haplotype tree (Maximum parsimony)

Total 62 haplotypes

Haplotype tree (Maximum parsimony)

Haplotype tree (Maximum parsimony)

Haplotype distribution of pink salmon in Hokkaido

- Main distribution of haplotype clades
 Even-year:Hap03 (red), Hap05 (blue), Hap15 (perpule)
 Odd-year:Hap01 (yellow), Hap09 (green)
- Significant differentiation between odd- and even-year populations (contingency χ^2 test, P<0.001)
- No differentiation among populations within same year

Haplotype diversity of pink salmon populations in Hokkaido

River name	Even-year	Odd-year
1. Kitamihorobetsu	0.901 ± 0.020	0.878±0.029
2. Tokushibetsu	0.884 ± 0.035	0.896 ± 0.026
3. Yuubetsu	0.912 ± 0.024	0.875 ± 0.028
4. Tokoro	0.883 ± 0.028	0.853 ± 0.029
5. Shari	0.885 ± 0.032	0.799 ± 0.051
6. Ichani	0.860 ± 0.032	0.719 ± 0.054
7. Shibetsu	0.907 ± 0.025	0.881 ± 0.027
8. Nishibetsu	0.898 ± 0.022	0.833 ± 0.038
9. Kushiro	0.925 ± 0.018	0.859 ± 0.027
Total	0.893 ± 0.008	0.846 ± 0.011

Haplotype diversity: even-year > odd-year

Grater genetic variation in even-year than odd-year

Neighbor-joining tree of 18 populations of pink salmon in Hokkaido

- Showed strong divergence between even- and odd-year broodlines
- No geographical structure among populations within broodline

Hierarchical analysis of molecular variance (AMOVA) for pink salmon broodlines in Hokkaido

- Percentages of genetic variation was higher between broodlines than among populations within broodline
- No significant genetic structure among populations within broodline

Comparison of pairwise F_{ST} values among populations within or between even- and odd-year broodlines

F_{ST}: Same population between even- and odd-year broodline > among populations within the same year broodline

Strong genetic differentiation between even- and odd-year broodlines

Summery

1. Haplotype data

Total of 62 haplotypes:

Even-year: 27 haplotypes were unique

Odd-year: 27 haplotypes were unique

Both years: 8 haplotypes were common

- Grouped in 6 clades
- Distribution patterns were different between even- and odd-year bloodlines

2. Gene diversity

Haplotype diversity: even-year > odd-year

3. Genetic structure

- Strong genetic differentiation between even- and odd-year broodlines
- No genetic structure among populations within same year broodline

Summery: What's the cause of these results?

Biological features of pink salmon:

- A rigid 2-year life cycle
- Reproductive isolation of the broodline

Reflected in strong genetic differentiation between broodlines

- Low rate of homing migration to a natal river
- High straying rate among populations

Relate to no genetic structure among populations within broodline