Geographic Variation in a Clock Gene Polymorphism in Pink and Chum Salmon & Coho and ^Chinook

J. Hard¹, K. O'Malley² and M. Ford¹

¹NOAA Fisheries, Northwest Fisheries Science Center, Seattle, WA ²Department of Fisheries & Wildlife, Oregon State University, Newport, OR

> NE Pink & Chum Salmon Workshop Juneau, AK 13-15 February 2012

Day length is used as an environmental cue to regulate seasonal behaviors

The circadian clock, which is modulated by day length, may serve as a molecular mechanism for timing of seasonal events¹

Molecular Mechanisms Underlying The Circadian Clock

Clock Polyglutamine Domain (PolyQ)

Series of (CAG)_N repeats that code for the amino acid glutamine:

Variation in the number of repeats affects the transcription-activating potential of *Clock*¹

Latitudinal Cline in Clock PolyQ

If the latitudinal cline in *Clock* PolyQ reflects an adaptation to day length, influencing reproductive timing, then the strength of the cline should correspond to clinal variation in reproductive timing in other Pacific salmon species

Objectives

- Test for a latitudinal cline in Clock PolyQ among chum, coho, and pink salmon populations; determine if it corresponds to clinal variation in reproductive timing
- 2) Test for evidence of selection by comparing clinal variation in *Clock* PolyQ and allozyme loci
- 3) Identify potential ecological factors influencing patterns in *Clock* PolyQ in these species

O'Malley et al. (2010)

Objective 1 Predictions: Test for Latitudinal Cline in *Clock*

Species	Age at	Geographic variation	Geographic variation	Predicted cline
	spawning (yr)	in spawning age	in spawn timing	in <i>Clock</i>
Chum	3 - 5	Increases with latitude	Advances with increasing latitude	Strong
Coho	2-4	Weak increase with latitude	No pattern	None
Pink	2	None	Weak advance with increasing latitude	Weak
Chinook	1 - 8	Increases with latitude	Advances with increasing latitude	Strong

Objective 1 Results: PolyQ Variation

Chum 18 populations, 4 alleles

335 bp (0.519), 341 bp (0.476)

Coho 19 populations, 6 alleles

335 bp (0.761), 338 bp (0.174)

Pink 16 populations, 10 alleles

452 bp (0.923), 428 bp (0.049)

Chinook 42 populations, 8 alleles

335 bp (0.737), 359 bp (0.225)

Objective 1 Results: Chum salmon

Prediction: strong latitudinal cline in *Clock*

Objective 1 Results: Coho salmon

Prediction: no latitudinal cline in Clock

Objective 1 Results: Pink salmon

Prediction: weak latitudinal cline in *Clock*

Objective 1 Results: Chinook salmon

Prediction: strong latitudinal cline in *Clock*

Objective 2: Test for Selection

Compare regression fits (r²; MCA frequency on latitude) of two *Clock* alleles to the distribution of a larger set of allozyme loci

Chum salmon: 21 loci, 45 populations

(C. Kondzela, NOAA Fisheries)

Coho salmon: 12 loci, 28 populations

(D. Teel, NOAA Fisheries)

Pink salmon: 27 loci, 76 populations

(S. Wildes, NOAA Fisheries)

Deviation from neutral expectation is evidence for selection

Objective 2 Results: Comparison of *Clock* and Allozyme r² Values

Summary of Objectives 1 & 2

Species	L. Cline in	L. Cline in	L. Cline in	Evidence
	spawning age	spawn timing	Clock	for selection
Chum	Strong	Strong	Strong	Yes
Coho	Weak	No pattern	None	No
Pink	None	Moderate	Weak	Yes
Chinook	Strong	Strong	Strong	Yes

Objective 3: Potential Ecological Factors Influencing Variation in *Clock*

Univariate Regression Tree Analysis -

Partition populations into groups for which the clinal variation in *Clock* PolyQ among them best corresponds to the ecological factors:

- 1) Day length on the date of peak spawning (DL)
- 2) Index of freshwater migration (M)(distance to and elevation at spawning grounds)

Cross-validated predictive error (CV Error) measures the predictive value of the tree (0 = poor, 1 = perfect predictor)

Most Common Allele (MCA) frequency for Clock PolyQ

Objective 3 Results: Univariate Regression Trees

Chum: Day length explains 87.1% of the variance in MCA

CV Error = 0.661; moderately high

Coho: Day length and freshwater migration index

explain 45.5% of the variance in MCA

CV Error = 0

Pink: Day length explains 53.2% of the variance in MCA

CV Error = 0

Chinook: Day length and freshwater migration index explain

67.8% of the variance in MCA

CV Error = 0.28; low

Conclusions

- Clock PolyQ length diversity does not vary uniformly with latitude among four closely related species
- Clinal variation in Clock PolyQ corresponds to variation in reproductive timing
- Clock PolyQ variation may be maintained by selection in three of the four species
- Concordance between day length and Clock
 PolyQ allele frequency in two species that show robust clines in reproductive timing

Conclusions

- Clinal variation in Clock PolyQ may reflect an adaptation to seasonally changing day length and influence geographic variation in reproductive timing in some of these highly migratory species
- Climate change could result in the decoupling of day length and optimal timing, requiring adaptive shifts in key life history traits involving photoperiodic response
- These results are strictly correlative and could alternatively be explained by parallel evolution or historical contingency
- Future research is directed towards understanding the functional significance of the polyglutamine repeat motif in the salmon Clock gene, as well as characterizing other candidate loci

Acknowledgments

- National Research Council
- Samples and allozyme loci data provided by:
 - O. Johnson, D. Van Doornik, and D. Teel (NWFSC),
 - C. Habicht, B. Templin (Alaska Dept of Fish and Game, ADFG),
 - J. Olsen (U.S. Fish and Wildlife Service, USFWS),
 - C. Kondzela and S. Wildes (NOAA Fisheries, Juneau),
 - S. Blankenship (Washington Dept of Fish and Wildlife, WDFW),
 - T. Beacham (Dept of Fisheries and Oceans DFO)
- J. Cowen (NWFSC) for performing the GIS analyses