

Genetic Stock Identification (GSI)

- What is GSI?
- Advantages of GSISoftware (Oncor, chayes.ink)
- GSI in management
- Limitations of GSI

Pinks more difficult to identify?

Pinks more difficult to identify?

- Faithfulness to spawning site?
 - Some populations stray; others don't
- Overall interest in the species (sampling)?
 - Smallest DFO baseline of 5 major salmonids
- Genetic separation among population (Fst)
 - Variable no. of selected (16 vs.13) loci increased regional accuracy (Beacham et al in press)

Objectives

 Test if using a variable number of selected loci increases within-region and stock specific accuracy (real data).

2. Explore the limitations of GSI, identify gaps and biases of software, and propose corrective mechanisms (simulated data).

Methods Objective 1 Testing variable number of selected loci

Kalinowsi, S. T., K. R. Manlove, and M. L. Taper. 2007. ONCOR A computer program for Genetic Stock Identification. . Department of Ecology, Montana State University, Bozeman MT 59717. Available for download from http://www.montana.edu/kalinowski

Neaves, P. I., C. G. Wallace, J. R. Candy, and T. D. Beacham. 2005. CBayes: Computer program for mixed stock analysis of allelic data. Version v5.01.

Results Objective 1

Testing variable number of selected loci

PLOT OF DEVIATIONS ~1/3 EACH REGION

Population Specific Estimates

Within-Region Mixtures

Within-Region Mixtures

Within-Region Mixtures

Methods Objective 2

Exploring GSI Limitations

50 baselines *EASYPOP* (16 loci, Avg 48 alleles)
0.0007 to 0.04 AVG *Fsts*

POP1. (400 fish each) POP₂ POP₃ POP₁₀

Simulated Populations

Simulated Baselines in EasyPOP

Methods Objective 2

Exploring GSI Limitations

Results

Exploring GSI limitations

CBayes vs Oncore and GSI accura

Conclusions

- Using more or fewer Loci does not increase the stock-specific or within-region definition. Using 16 Loci increases the among-region accuracy, current management application.
- For GSI purposes, very distant populations may belong to the same stock. Neighbouring populations may be genetically very different.
- GSI subject to large errors and biases when Fsts are small.
 Simulation shows GSI very inaccurate (more than 20% error) when Fst < 0.01.

Conclusions

- GSI is limited in two ways: mathematically (failure to identify stocks at very low Fsts), and biologically (assumes that populations are highly faithful to spawning sites).
- Software ONCOR performs better at lower Fsts (< 0.01) than CBAYES. No difference in performance at larger Fsts.
- It is crucial to assess the Fst in Baseline populations and combine genetically closely related stocks when possible (Avg Fst>0.01).

Acknowledgements

Lab Staff at MGL

Carrie Gummer

Katherine Horst

Kim Jonsen

Khai D. Lee

Cathy MacConnachie

Brenda McIntosh

Liane Stenhouse

Amy Tabata

Debra Tuck

Michael Wetklo

Colin G. Wallace

Pacific Salmon Commission

Steve Latham Bruce White

Simulated Populations

Simulated Baselines in EasyPOP

Easy POP

Mating System			
proportion of female migration within g	roups?(be	tween 0 a	ınd 1)
proportion of male migration within gro	ups?(betv	veen 0 and	d 1)
proportion of female migration between	ngroups?((between (0 and 1)
proportion of male migration between of	group?(bet	tween 0 ai	nd 1)
Mutation rate			
Number of generations?			
Disidu la 12 (Onlanda distribut de la 12 12 12	2 - di - l - i - l	-l:l-:-l	
Ploidy level? (0=haplo-diploid; 1=haploid;	∠=aipioia)		
Two sexes?:y/n		yes	
Number of populations?		10	
Same number of individuals in each popul	ation		
?:y/n	yes		
Number of females in each population?		200	
Number of males in each population?	200		
Same migration scheme over all simulatio	yes		
Migration model?		hierarchical stepping stone	
Number of loci?		16	
Free recombination between loci?: y/n	yes		
Do all loci have the same mutation schem	yes		
Mutation model		Ssm	
Number of possible allelic states ?(below	48		
Variability of the initial population	max		