

SCALE: Salmon Comparisons Across Large Ecosystems

Thanks to:

- William Smoker Advisor
- Pete Hagen
- Gordon Kruse
- Franz Mueter

Funding

- NPMR, North Pacific Marine Research Program
- AYK-SSI, Arctic-Yukon-Kuskokwim Sustainable Salmon Initiative
- Alaska Department of Fish and Game

Pacific Decadal Oscillation

Warm phase Cool phase

PDO cool phase – 1947-1976 PDO warm phase – 1977 to mid-1990s

After Hare and Mantua

- During warm phase of PDO, it is warm along coast
- So expect better growth in juveniles
- Cold in ocean basin
- So...slower growth in SW3 growth zone
- Thus, we chose to focus on Sea Surface Temperature (SST)

BB Sockeye Length & Climate Change

L = 550.9 - .178(sockeye) - .144(pinks), r2 = .40

No. of Hatchery Releases Is it Competition?

Studies show sockeye growth reduced during odd years at sea due to Asian pink salmon abundance

Hypotheses

- Do climatic factors affect growth of western Alaska chum salmon?
 - Used several environmental variables for comparisons
- Does Asian pink salmon abundance inhibit growth of western Alaska chum salmon?
 - Interspecific competition
- Does Asian chum salmon abundance inhibit growth of western Alaska chum salmon?
 - Intraspecific competition

Study Areas

- •Norton Sound Unalakleet R 1975-2006
- •Yukon R Big Eddy 1965-2006
- •Kuskokwim R Quinhagak 1967-2007
- •Bristol Bay Nushagak R 1966-2006
- •Russia Anadyr R 1962-2007
- •Japan Chitose R 1976-2008

Scale Digitizing Equipment

Annuli & Circuli Measurements

Chum Salmon scale

- Used mean growth per year.
- Age 0.3 or 4-year old fish &
- Age 0.4 or 5-year old fish
- •First compared all growth zones then chose to model 2 growth zones:
 - SW1: Critical period Critical size hypothesis.
 - SW3: Time when fish "choose" to stay in marine waters or return to spawn.

Environmental Variables

- North Pacific Index (NPI)
- Aleutian Low Pressure Index (ALPI)
- Arctic Oscillation Index (AO)
- El Nino Southern Oscillation Index (ENSO)
- Annual Sea Surface Temperature (SST)
 - North Pacific & Gulf of Alaska
- Ice Cover Index
- 2 wind mixing indices
- Bering Sea Level Pressure (winter & spring)
- Local Air Temp (by system, summer, winter, annual)
- Pacific Decadal Oscillation Index (PDO)
 - Winter index November March

Explanatory Variables

 SST from specific areas – annual, summer

- Pacific Decadal Oscillation (PDO)
 - Used Winter Index, November –
 March

Mantua et al.

Abundance Data

Asian Chum Salmon Abundance

- Catch and escapement data in millions of fish from Japan and Russia
- 4-year running average

Pink Salmon Abundance

Total catch and escapement from Russia

Scale growth - proxy for overall growth

Yukon River – Age 0.3

Scale growth (mm)

Length = 362.9 + 68.1(scale growth) + 8.1(males), $R^2 = 0.65$, p < 0.001

BB SW3 Growth During Even vs. Odd Years at Sea

Year at sea

Methods

Correlations

Compared salmon growth with environmental variables using correlation analysis
Used significant p values to assist in determining what to use in multiple regression models

Generalized additive models (GAMS) to explore data

Generalized Least Squares models (GLS) to model the data (why? – accommodate auto-correlation)

Full models

SW1

SW1 ~ ALPI + NPI + Local annual SST + May wind mixing + Local air temperature + Ice Cover

SW3

SW3 ~ Pinks + Asian chums + SST + NPI + Pinks*Asian chums + Gender

SW3 ~ Pinks + Asian chums + SST + NPI + Gender

Are there climatic factors that affect growth of chum salmon?

Final models
SW1
Age 0.3

What affects growth?

Final models

SW3 – Age 0.3

Norton Sound: SW3 = Finks + Gender

Yukon River: SW3 = Pinks + Asian chums + NP SST + NPI + Interaction + Cender

Kuskokwim R: SW3 = Pinks + Asian chums + NP SST + Interaction + Gender

Bristol Bay: SW3 = Pinks + Asian chums + Interaction + Gender

Russia: SW3 = Asian chums + Gender

Japan: SW3 Pinks + Asian hums + NPI + Interaction

How did growth change?

SW3 – Individual Models

How did growth change?

SW3 – Individual Models

Does Asian pink & chum salmon inhibit growth?

SW3

Age 0.3

Age 0.4

Bristol Bay Chinook SW2 Growth vs. SST

Chum SW3 Growth vs. SST

Japan Age 0.3

◆ Males ● Females — Linear (Males) — Linear (Females)

Norton Sound Chum Length-at-age declined with greater Asian Hatchery Chum Abundance, 1974-2005

Also, Kwiniuk SW2 & SW3 scale growth inversely related to Asian chum abundance

 $R^2 = 0.24, 0.12$

Do AK Chum Salmon Compete with Asian Chum & Pink Salmon?

Wild chum did not increase after 1977; hatchery chum (mostly Japan)

Ruggerone et al. 2010

AYK chum overlap
Japanese
hatchery chum
salmon
K. Myers, UW
Urawa et al. 2008

Conclusions

- SST is important throughout life cycle.
- Several environmental variables are important during first year of growth.
 - Determined by location & system.
- Dynamic system conditions changed over these 45-year times series.
- Difficult to examine density-dependent interactions.
- For chum salmon, intraspecific competition appears likely.
 - Distributions overlap during SW3.
 - But what are the consequences of density-dependence?

Thanks & questions?

The many technicians and biologists who collected samples.

Mark, Tag, and Age Lab and ADFG staff who aged and read samples.

Samples

Dr. Zavolokin (Russia)

Dr. Saito (Japan)

ADF&G

Megan Lovejoy, crew leader Cathy Robinson & Ron Josephson, supervisors Tim Frawley & Bill Rosky, IT Staff Dion Oxman, Fishery Biologist

What affects growth?

