Using catch at Age models For Pacific Northwest Chinook salmon

4.

Rishi Sharma,
Columbia River InterTribal
Fisheries Commission

Structure of Talk

- Background
- Life History and relationship to model
- PSC Chinook Model
- Statistical Catch at Age Analysis (SCAA).
- Using the SCAA on a Columbia stock.
- Testing the approach through Simulations.
- Tying recruitment variability to environmental conditions.
- Comparisons across approaches.
- Adapting to a multi-stock framework.
- Precision in Exploitation rates.
- Wrap Up.

Background

- Jurisdiction.
-Fisheries.
-Value (\$20-50 M/yr X-vessel price).
-Cost tagging and assessment (\$15 M/yr).

Why?

- Inter-annual variability.
-Understand mechanisms.
-Possibly improve management precision.
-Use a holistic approach to management.

Ocean Abundance Trends over Time (Normailized)

Chinook Life Cycle

Tag Data used in assessment

$\mathrm{ER}=\frac{\text { Catch }}{\text { Population }}$

Cohort Analysis

CURRENT VPA MODEL MECHANISM

Environmental Forcing functions

SCAA MODEL

 MECHANISM

Trade-Offs

- Lesser assumptions.
- Estimation framework.
- Numerically intensive \& Challenging.

Essential Approach

Number $_{\text {age }+1, \text { time }+1}=$ Number $_{\text {age,time }}-$ Deaths $_{\text {age,time }}-$ Maturation $_{\text {a,t }}$

Deaths $_{\text {age,time }}=$ Fishing $_{\text {age,time }}+$ Nat.Mortality ${ }_{\text {age,time }}$

Fishing_Mortality $_{\text {age, time }}=\left(\right.$ catchability $\left._{\text {time }}\right) *\left(v u \ln\right.$ erability $\left._{\text {age }, \text { time }}\right) *\left(\right.$ Effort $\left._{t}\right)$

Maximum Likelihood

$$
L\left(\theta \mid C_{a, t, f}\right)=\prod_{f=1}^{n} \frac{1}{\sqrt{2 \pi\left(\sigma_{f}^{\prime}\right)}} \exp \left[-\frac{\left.\left(C_{a, t, f}\right)-\left(\hat{C}_{a, t, f}\right)\right)^{2}}{2 \overparen{C}_{f}}\right]
$$ Estimation

$$
-\ln L\left(\theta \mid C_{a, t, f}\right)=\sum_{f=1}^{n} \ln (G)+\frac{\ln \left(\left(C_{a, t, f}\right)-\ln \left(\hat{C}_{a, t, f}\right)\right)^{2}}{2 \widehat{\varepsilon}_{t}^{2}}
$$

Escapement by age

Alternative Model Structures

Comparisons: Simple 2 fishery model

Parameters	Model 1 All time variant Maturation	Model 2: Maturation decadal structure	Model 3: Different catchability by decade	Model 4: Different vulnerability*catchabil ity by decade (ENV DRIVEN)	Model 5: Constant recruitment varying catchability by time period	Model 6:Model 5+age 2's	Model 7: Model 4 but time periods $q \& v$ corresponding to PST, Mat corresponding to Env
initial ages	3	3	3	3	3	3	3
vuln_ocn	3	3	3	9	9	9	9
vuln_term	3	3	3	9	9	9	9
q_ocn	1	1	3	3	25	25	3
q_term	1	1	3	3	25	25	3
maturity rates	75	9	9	9	9	9	9
initialAge 2's	25	25	25	25	1	25	25
Total paramters	111	45	49	61	81	105	61
-LN(likeihood)	374.5	391.6	370	352	484	359	336
AIC	971	873	838	827	1129	927	794

URB age 2 recruitment

Comparison with current management model

- PSC model \rightarrow Catch at age

MEAN SQUARE ERROR COMPARISONS

	Ocean Decadal Mat Cotch		
root(MSE)	SCAA	PSC	\% PSC
Age 2	1350	5163	26%
Age 3	10399	20880	50%
Age 4	22214	33061	67%
Age 5	21343	25589	83%

root(MSE)		Terminal catch	\% PSC
	SCAA	PSC	
Age 2	10979	12098	91\%
Age 3	8196	11115	74\%
Age 4	7421	11741	63\%
Age 5	8458	26986	31\%

	Escapement		
root(MSE)	SCAA	PSC	\% PSC
Age 2	18257	42650	43%
Age 3	9064	9096	100%
Age 4	14988	22446	67%
Age 5	18558	19927	93%

Observed vs predicted Fit (OCNCatch)

Observed vs predicted Fit (TERM Catch)

Observed vs predicted Fit (ESC)

magnbias (OCN)

Testing the Approach

Simulation Testing

- Used a Ricker stock recruit with process error. Simulated different catchability, vulnerability and maturation schedules by different fisheries and time periods.
- Estimated the recruitment deviates, and thereby age 2 recruitment.
- Estimated vulnerability, catchability and maturation by time periods specified.
- Ran 10,000 times (each run takes approximately 10 seconds-27 hours).

Age 2 Recruitment

Catchability

Terminal catchability Period 1

Ocean catchability Period 2

Ocean catchability Period 1

Terminal catchability Period 2

Ocean catchability Period 3

Catchability

Terminal catchability Period 1

Terminal catchability Period 3

Ocean catchability Period 2

Terminal catchability Period 2

Ocean catchability Period 1

Ocean catchability Period 3

Catchability --Estimated - Simulated (real)

Maturation

Age 2 Maturation Period 1

Age 3 Maturation Period 1

Age 4 Maturation Period 1

Age 2 Maturation Period 2

Age 3 Maturation Period 2

Age 4 Maturation Period 2

Age 2 Maturation Period 3

Age 3 Maturation Period 3

Age 4 Maturation Period 3

Maturation

Maturation --Estimated — Simulated (real)

Terminal Vulnerability

Age 2 Vulnerability Period 1

Age 3 Vulnerability Period 1

Age 4 Vulnerability Period 1

Age 2 Vulnerability Period 2

Age 3 Vulnerability Period 2

Age 4 Vulnerability Period 2

Age 2 Vulnerability Period 3

Age 3 Vulnerability Period 3

Age 4 Vulnerability Period 3

Terminal Vulnerability

Age 2 Vulnerability Period 1

Age 3 Vulnerability Period 1

Age 4 Vulnerability Period 1

Age 2 Vulnerability Period 2

Age 3 vulnerability Period 2

Age 4 vulnerability Period 2

Age 2 Vulnerability Period 3

Age 3 vulnerability Period 3

Age 4 vulnerability Period 3

Vulnerability --Estimated _ Simulated (real)

Ocean Vulnerability

Age 2 Vulnerability Period 1

Age 3 Vulnerability Period 1

Age 4 Vulnerability Period 1

Age 2 Vulnerability Period 2

Age 3 Vulnerability Period 2

Age 4 Vulnerability Period 2

Age 2 Vulnerability Period 3

Age 3 Vulnerability Period 3

Age 4 Vulnerability Period 3

Ocean Vulnerability

Vulnerability ---Estimated _ Simulated (real)

Summary of simulations

- Model has a high accuracy on estimating Recruitment \& Exploitation Rates.
- Model is biased (underestimating) on true parameters on Catchability and Maturation.
- The model does not appear to capture terminal vulnerability, though ocean vulnerability is marginally better.
- Adding measurement error to the data, creates problems in estimation (lower error, $\mathrm{CV}<0.1$, implies greater identifiability versus larger error, $\mathrm{CV}>0.1$)

Can we tie recruitment variation to Environmental variables?

Explaining Recruitment Variability Adding additional Covariates

URB Naturals

Flow versus recruitment

Flow (stdized from April through June at Preiest Rapids)

Expected Age 2 Ocean Recruits per Spawner

Recruitment Variability using Spawners, SST \& Flow

Recruitment Variability using Spawners and SST

Advantages of catch at age approaches

- Statistical catch at age models are more robust (empirical data and likelihood functions). Can quantify the Uncertainty in our estimates.
- Model complexity trade-off.
- Recruitment variation can partially be explained by environmental variables.
- Use GLM's or GAM's for explanatory purposes.
- Build environmental process directly into the model structure.

Testing Finer resolution Fishery structure with data

- 5 fisheries (4 ocean and 1 terminal).
- CWT data by strata and effort.
- Estimating recruitment, q, v (selectivity) by fishery and time as well as Maturation by time.

Estimated Parameters

Maturation Rates

EFFORT US-PT

EFFORT Canada-PT

Observed vs predicted Fit (US ISBM Catch)

Observed vs predicted Fit (other OCN Catch)

Observed vs predicted Fit (ESC)

Observed vs predicted Fit (Canada ISBM Catch)

Observed vs predicted Fit (Term Run)

Backward cohort analysis with Uncertainty

$5-t_{0}+2,2 \cos$

$$
p_{g, t, a}=\frac{C_{g, t, a}}{\sum_{a} C_{g, t, a}}
$$

$$
-\ln L\left(C^{o b s} \mid \theta\right)=\sum_{g, t} \ln \left[\sigma_{g}\right]+\frac{\left(\ln \left[C_{g, t}^{o b s}\right]-\ln \left[C_{g, t}\right]\right)^{2}}{2 \sigma_{g}^{2}}
$$

$$
-\ln L\left(E^{\text {obs }} \mid \theta\right)=\sum_{t, a} \ln \left[\sigma_{E}\right]+\frac{\left(\ln \left[\phi E_{t, a}^{o s s}\right]-\ln \left[E_{t, a}\right]\right)^{2}}{2 \sigma_{E}^{2}}
$$

Comparisons across methods

Model Comparisons for URB

Multi-fishery and multi-stock Model

- Determine a set of stocks to manage for on which we have good escapement data.
- Use the above described approach with tags or GSI to get age structured catch in fisheries.
- Incorporate stock composition using a multinomial likelihood, and adding that to the objective function.

3 stock- 2fishery model

$$
-\operatorname{Ln}\left(L\left(\theta \mid C_{f, i}\right)=\sum_{i=1}^{3} \sum_{f=1}^{2} \ln \left(\sigma_{f, i}\right)+\frac{\left(C_{f, i}-\hat{C}_{f,}\right)^{2}}{2 \sigma_{f, i}{ }^{2}}\right.
$$

GSI and CWT

$$
-\ln L\left(\theta \mid C_{a, t, f}\right)=\sum_{f=1}^{n} \ln \left(\sigma_{f}\right)+\frac{\ln \left(\left(C_{a, t, f}\right)-\ln \left(\hat{C}_{a, t, f}\right)\right)^{2}}{2 \sigma_{f}^{2}}
$$

- Vary Sigma as a function of both observation (sampling) and process error.
- Quantify Uncertainty in SER for the URB CWT data.
- Once we have those estimates externally determined, a fair comparison can be made between CWT and GSI and their effect on ER's.

Simple Terminal ER (URB) :More Uncertainty

Conclusions

- Difficult problem but can be done.
- Data and computer intensive.
- If sampling error is large, the approach will not work.
- Explicitly incorporates uncertainty in the estimates.
- Possible framework to use multiple types of data.
- Provides an ER target to manage for with Uncertainty.

Acknowledgements

- Mike Matylewich (CRITFC) for supporting this project.
- Henry Yuen (USFWS) \& Mark Maunder (IATTC) for help in the ADMB coding, Robert Kope (NMFS) for initial review of the approach.
- John Carlile (ADFG), \& members of the Chinook Technical Committee (CTC-AWG).
- Dr. Ray Hilborn \& Dr. Bob Francis at the University of Washington.
- Students of the Quantitative Ecology and Resource Management, UW for support and ideas.
- Francis \& Hilborn lab at UW.
- NOAA for funding this research.

Sampling error and Harvest Rates

