Small Area Estimation and GSI

What is Small Area Estimation

Direct Estimation:

- Each area only uses information collected in that area
- Problem:
 - * many small areas,
 - * data available is small
 - * estimates are highly variable with poor precision
- E.g. 100 salmon stocks with one or two CWT from each stock.

Small Area Estimation and GSI

Indirect, synthetic, small area estimation

- Areas close together "share" common experiences, e.g.
 - * similar survival rates
 - * similar exploitation patterns
- Use information from neighbouring areas to augment information from an area

Generate data from $Binomial(p_i; n = 25)$ where i=1...100 and p_i vary "smoothly" over the streams but averages about .2.

Each stream will have about 5 recoveries, and $rse \approx 45\%$

Illustration of small area estimation - CAR model

A very simple conditional first order autoregressive moving average model (CAR(1)) $Y_i \sim Binomial(25, p_i)$

$$logit(p_i) = \mu + \varepsilon_i$$

$$\varepsilon_{i} | \varepsilon_{-i} \sim \begin{cases} Normal(\varepsilon_{i+1}, \sigma^{2}) & i = 1 \\ Normal(\frac{\varepsilon_{i-1} + \varepsilon_{i+1}}{2}, \frac{\sigma^{2}}{2}) & i = 2, ..., N \\ Normal(\varepsilon_{i-1}, \sigma^{2}) & i = N \end{cases}$$

Figure 1: Illustration of small area estimation - CAR model

Small Area Estimation and GSI Example Gain in precision

- Direct estimates have $rse \approx 45\%45\%$.
- Small area estimates have $\overline{rse} \approx 16\%$
- Direct estimtes would require about a $(45/16)^2$ =8 times increase in effort to achieve same precision as small area estimates.

Small Area Estimation and GSI Summary

- Small area estimation is form of "localized" pooling.
- Pooling distance can be set a prior or can be estimates with higher weights given to streams that are "closer" to the stream of interest or weights can also be functions of distance.
- Pooling can be done over time and space
- Substantial gains of precision are possible with relative simple models.
- Key to approach is commonality of close sources.