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Example Application: I

Goal

p̂ for all stocks by time, area, fishery

Statistical objectives (each stratum)

Q ≥ 0.999 for p ≥ 0.01
CV ≤ 0.20 for p ≥ 0.03

Minimum n per stratum

≈ 800
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CV ≤ 0.20 for p ≥ 0.03

Minimum n per stratum

≈ 800



Sampling II

Mohr

Assumptions

Metrics

Detection

CV

CI

Difference

Application

Comments

Summary

Example Application: I

Goal

p̂ for all stocks by time, area, fishery

Statistical objectives (each stratum)

Q ≥ 0.999 for p ≥ 0.01
CV ≤ 0.20 for p ≥ 0.03

Minimum n per stratum

≈ 800



Sampling II

Mohr

Assumptions

Metrics

Detection

CV

CI

Difference

Application

Comments

Summary

Example Application: II

Goal

p̂ for all stocks by time, area, fishery

Statistical objectives (each stratum)

Q ≥ 0.999 for p ≥ 0.01
CV ≤ 0.20 for p ≥ 0.03
w ≤ 0.06 for p ≥ 0.01 with α = 0.05

Minimum n per stratum

≈ 1070
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Example Application: II

Goal

p̂ for all stocks by time, area, fishery

Statistical objectives (each stratum)

Q ≥ 0.999 for p ≥ 0.01
CV ≤ 0.20 for p ≥ 0.03
w ≤ 0.06 for p ≥ 0.01 with α = 0.05

Minimum n per stratum

≈ 1070
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Example Application: III

Goal

p̂ for all stocks by time, area, fishery
compare p inshore/offshore

Statistical objectives (each stratum)

Q ≥ 0.999 for p ≥ 0.01
CV ≤ 0.20 for p ≥ 0.03
w ≤ 0.06 for p ≥ 0.01 with α = 0.05
power ≥ 0.80 to detect d = poff −pin with α = 0.05

assume poff ≥ 0.03, and pin ≤ poff /2

Minimum nin, noff per stratum

≈ 1350
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Example Application: III

Goal

p̂ for all stocks by time, area, fishery
compare p inshore/offshore

Statistical objectives (each stratum)

Q ≥ 0.999 for p ≥ 0.01
CV ≤ 0.20 for p ≥ 0.03
w ≤ 0.06 for p ≥ 0.01 with α = 0.05
power ≥ 0.80 to detect d = poff −pin with α = 0.05

assume poff ≥ 0.03, and pin ≤ poff /2

Minimum nin, noff per stratum

≈ 1350



Sampling II

Mohr

Assumptions

Metrics

Detection

CV

CI

Difference

Application

Comments

Summary

Example Application: III

Goal

p̂ for all stocks by time, area, fishery
compare p inshore/offshore

Statistical objectives (each stratum)

Q ≥ 0.999 for p ≥ 0.01
CV ≤ 0.20 for p ≥ 0.03
w ≤ 0.06 for p ≥ 0.01 with α = 0.05
power ≥ 0.80 to detect d = poff −pin with α = 0.05

assume poff ≥ 0.03, and pin ≤ poff /2

Minimum nin, noff per stratum
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Age-specific stock composition

Chinook

distribution is stock-age-specific
assessment requires stock-age-specific catch

Minimum n

treat stock-age components as “separate stocks”
apply sample size formulas

Additional requirements

GSI individual assignment (versus MSA)
age assignment (scale collection and reading)
both assignments assumed 100% accurate
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Factors affecting stock proportion

Size-selective fishery (for a stratum)

pi =
Ci

∑Ck
=

N∗i αiqi f `i

∑N∗k αkqk f `k
=

N∗i αiqi`i

∑N∗k αkqk`k

Assume q1 = q2 = q3 = . . .

pi =
N∗i αi`i

∑N∗k αk`k

Variation in pi across strata (at time t)

numerator: stock i
denominator: other stocks, e.g. 50/100 vs 50/1000
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Some potential uses of stock proportion estimates

Quota management: p̂i/ ˆ̀
i

Cohort analysis: [Ĉ p̂i/ ˆ̀
i ]

Seasonal management: [Ĉ p̂i/ ˆ̀
i ] / d

Distribution studies: [Ĉ p̂i/ ˆ̀
i ] / f̂

p itself not necessarily quantity of interest

Compounded estimates compound error
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Summary

Binomial-based n formulas useful for planning

Assumes random sampling

Addresses sampling errors only—not assignment errors

Suite of metrics to consider

Minimum n depends on statistical objectives

Low CV (p̂) for p < 0.02 probably not achievable

For age-specific stock composition, treat stock-age
components as separate stocks

Variation in pi across strata can be due to variation in
local abundance of stock i , or variation in local abundance
of other stocks

Compounded estimates compound error
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