Estimating Escapement Using GSI and CWT

Jim Packer
Brad Thompson

Escapement Data Applications

- Stock-recruitment analysis
 - Escapement goals
 - MSY (Exploitation Rate constraints)
- Pre-season fisheries impact modeling
- Post-season monitoring harvest impacts
- Stock status and trends analysis
 - Viability analysis
 - Recovery monitoring

Wild Escapement Estimation Problems

- Uncertainty in estimates based on direct measurement methods
 - Numerous methods and assumptions
 - Expansion factors
- Mark-recapture method is expensive
- Unknown hatchery stray component on spawning grounds

Proposed Alternative Method

Indirectly estimate wild escapement using GSI-based stock composition with CWTbased exploitation (harvest) rates

Proposed Alternative Method

Indirectly estimate wild escapement using GSI-based stock composition with CWTbased exploitation (harvest) rates

Escapement = Catch x 1 – Harvest Rate

Harvest Rate

Terminal Fishery Example

Escapement = Catch x 1 – Harvest Rate
Harvest Rate

Catch = 100 Harvest Rate = 0.1 (10%) Escapement = 900

Assumptions

- Terminal fishery on mature fish
- > No incidental or natural mortality
- Harvest rate equal for all ages

Additional Pre-terminal Considerations

- Incidental fishery mortality
- Natural mortality
- Maturation Rate
- Age-specific harvest impacts
- Catch estimate is reflective of escapement estimate

Pre-Terminal Algorithm using Maturation Rates

$$Esc_{a} = Catch_{a, f} * \frac{[1 - \sum_{f} (ER_{a, f} + IM_{a, f})] * MR_{a} * [1 - (HR_{term} - IM_{term} - NM_{term})]}{ER_{a, f}}$$

Esc_a Escapement Estimate (Stock/Age)

Catch_{a,f} Catch estimated by GSI (Stock/Age/Fishery)

> ER_{a,f} Exploitation Rate CWT (Stock/Age/Fishery)

➤ IM_f Fishery Incidental Mortality (Fishery)

> NM_{term} Natural Mortality Rate (Stock/Age)

MR_a Maturation Rate (Stock/Age)

> HR_{term} Terminal CWT Harvest Rate (Fishery)

Pre-Terminal Example

North Oregon Coast Chinook using SE Alaska Troll (PSC Expert Panel)

Age	Age Comp	GSI Catch	Maturation Rate	GSI Mature Catch	Ratio SEAK to Terminal	Terminal Estimate
6	0.018	467	1.000	467	0.727	642
5	0.118	3,033	0.988	2,995	0.192	15,571
4	0.766	19653	0.394	7,737	0.045	170,289
3	0.098	2,508	0.113	284	0.005	57,677
2	0.000	0	0.068	0	0.000	0

Revised Pre-Terminal Algorithm

$$\hat{M}$$
 term (W) = \sum_{a} \sum_{f} $\hat{\pi}_{a(I)}\hat{C}_{fa(W)}$

$$\hat{\pi}_{a(I)} = \frac{n_{term, a(I)}}{\sum_{f} n_{fa(I)}}$$

C = Catch by fishery, stock, and age from GSI

n = CWT recoveries for stock and brood year

M = Mature Run (terminal)

 $\pi = CWT$ multiplier for terminal run

Revised Pre-Terminal Example

Brood Year	CWT SEAK	CWT Term	π _{α(1)} SEAK/ Term	GSI SEAK Catch	Mature Term Wild
1995	8	11	1.375	467	642
1996	52	267	5.135	3,033	15,571
1997	337	2,920	8.665	19,653	170,289
1998	43	989	23.000	2,508	57,677
1999	0	337	-	-	-

Advantages of Revised Algorithm

- Maturation Rates not needed for calculations
- > Variance can be estimated
- ➤ Age Composition not needed if estimates are the same for GSI estimate (Wild Stock) and indicator stock (CWT)

Major Assumptions for Expansion of GSI – CWT Method

- Natural stock vulnerability and distribution in the ocean fishery is the same as that of the associated hatchery indicator stock. ("gorilla assumption")
- ➤ Both stocks have the same growth and maturation rates.
- ➤GSI stock catch estimates by age can be made without error.

Variance Estimate of NOC Terminal Run using multiple fishery recoveries

Brood Year	CWT SEAK	CWT Other	CWT Term	$\pi_{lpha(\mathrm{I})}$	Variance $\pi_{\alpha(I)}$	\mathbf{CV} $\pi_{\alpha(\mathbf{I})}$
1995	8	6	11	0.786	0.287	68%
1996	52	26	267	3.423	0.803	26%
1997	337	204	2,920	5.397	0.281	10%
1998	43	60	989	9.602	4.585	22%
1999	0	0	337	-	-	-
Totals	440	296	4187	5.689	0.223	8%

Comparison of Estimates

- > ODFW Terminal Run Estimate ~ 150,000
- > GSI + CWT Estimate 244,178
- ➤ Difference ~ 60%

High Level of uncertainty in escapement estimate and terminal fishery numbers