GSI applications in Fraser
River Sockeye Management: Confessions from a skeptic turned addict

Talk outline

1. Historical context of stock ID

2. Assessment and management framework
3. Change from SPA to GSI ("soft" to "hard" stock ID)
4. Some examples of GSI applications
a. Individual identification \& "Known-Unknown" mixtures
b. Weak stock management
c. Inter-sample variability
5. Advice from "The Street"

1. Historical context for stock ID

1. Extensive tagging programs (1930's-50's) provided data on migration timing and routes of individual stocks.
2. Systematic estimates of spawning escapement for most areas since 1948.
3. Estimates of stock proportions for all significant catches of Fraser sockeye since 1952.
4. $2 \& 3$ combined with age composition provide 60 years of spawner-recruit data for 19 stocks $\mathbf{7 9 5 \%}$ of total production
5. Real time analysis of stock proportions and intra-season management since late 1950's

- In 1000 aur canta lab "ranad" E1 ann analar 12 ann far

The implementation of GSI occurred in the context of the most extensive salmon data set in the world!
2. Assessment framework Pre-season

- Forecasts (abundance and timing)
- Planning model (similar to FRAM models)

Used to initiate fisheries only

2. Assessment framework

 Pre-season expectationsMarine Area Timing

Intra-seasonal abundance and timing assessments

Assessments for each stock aggregate

Management Jurisdiction of Fraser River Panel

3. Change for SPA (scale patterns)

 to GSI: Motivation
1. Decline in jack abundance

 fewer jacks for baseline2. Increased overlap in scale patterns among stocks

e.g. Chilko and Adams in 1999

3. More accuracy needed in future e.g. Emphasis on single stocks

3. Change for SPA (scale patterns) to GSI: Early work

1. Scored 1150 fish from 10 stocks at 6 microsatellite loci (1998 data)
2. 5 "known unknown" mixtures. ($\mathrm{n}=200$) (Accuracy)
3. Matching scale data (scales vs. GSI)

GSI vs. SPA: Early results were not compelling

In-season Scale baseline

Logistics GSI vs. SPA: GSI more costly \& slower

Item	GSI (Microsatellite DNA)	SPA (Scales)
Cost	\$30/fish for 6 markers	\$0.60/fish for 4 scale variables
Processing time	M 24hrs/200fish	3.5hrs/200fish
Rebaseline	Infrequently	Annually

3. Change for SPA ssale patems)

to GSI: More power!!

Three factors eventually turned the tide in favor of GSI

1. More markers (for 6 to15)
2. More complete baseline
Greatly improved accuracy
3. Automated sequencer

Addiction was inevitable!!!

Increased
throughput for
in-season
work

4. GSI applications

Summary of Fraser sockeye genetic baseline

see Beacham et al. 2004 (TAFS 1117-1137); Beacham et al. 2004 (Cons.Gen. 411-410)

Markers

- 14 microsatellite loci and 1 MHC locus yielding 385 total alleles (8-47 per locus).
Baseline samples
- Approximately 17,000 sockeye from > 60 populations (7+ regions), from 14-16 stock groups, in four managed run-time groups.
Variation statistics
- $F_{S T}=0.064$ (range $0.030-0.215$), 0.3% of total variance among years within populations, 3.8\% among populations within regions, 3.3\% among regions.
Individual stock ID from Baseline
- Individual identification (via Geneclass): 60\% to correct population, 79% to correct lake, 92% to correct region, 15 and 90% to correct run-time.

Summary of Fraser sockeye genetic

 baselinesee Beacham et al. 2004 (TAFS 1117-1137); Beacham et al. 2004 (Cons.Gen. 411-416)
Pure mixture results

- SPAM pure simulations indicate -90% accuracy to population and $\sim 97 \%$ accuracy to stock group (high variance among populations).
Processing time
- Most estimates ready within $24-72$ hours of catch (MHC often requires > 1 day). Express service 12 hrs!!!
Analysis approach
- Unbinned allelic genotypes are processed in SPAM with Rannala-Mountain assumptions.

Total numbers of sockeye analyzed for mixtures since 2001:

4. GSI applications Individual ID
with radio telemetry

Release sites

To Late Stuart Nechako

GSI Classification Accuracy (by stock group)
 - using radio-telemetry data ($\mathrm{n}=264$)

English et al. 2005

DNA Classification Accuracy - Telemetry and Baseline Results

English et al. 2005

GSI Classification Accuracy timing groups in Shuswap Lake
 - using radio-telemetry data (n=144)

4. GSI applications: "Known-Unknown"

mixture analysis with $\mathrm{n}=275$

2002

Stock group	Telemetry location	GSI mixture proportions	Absolute difference
Early Summer	2.2 \%	3.0 \%	0.8 \%
Late Stuart / Stellako	5.1 \%	5.0 \%	0.1 \%
Chilko / Horsefly	30.2 \%	31.7 \%	1.5%
Late Shuswap / Portage	55.6 \%	52.9%	2.7 \%
Other Lates	4.4%	5.5%	1.1 \%
Birkenhead	2.5%	1.9%	0.6 \%

4. GSI applications: Weak stock management

Cultus Lake sockeye

- Cultus sockeye were assessed and recommended for listing under Canada's Species at Risk acting in fall 2002.
- Government chose not to legally list, but instead committed to actions to help stock recover.
- Since 2004 total exploitation rate limits as low as 11\% have been imposed.
- Mixed stock constraints have resulted in 25 large foregone catches

4. GSI applications: Weak stock management

Cultus Lake sockeye

- Cultus sockeye are part of small number of lower Fraser populations which are very distinct genetically from populations elsewhere in drainage.
- Individual classification accuracy was estimated at 96\% (Beacham et al. 2004)

GSI to the rescue!!!

4. GSI applications: Weak stock management

Cultus Lake sockeye
GSI to the rescue? ... Whoa!!!

Year	Cultus forecast	Co-migrating stocks
2004	<500	$3,500,000$
2005	<500	$11,000,000$

2004 Management plan

Considered an index stock, but eventually Abandoned GSI and Used the model expectations with updated in-season abundance and timing

2004 Outcome

Exploitation rate limit $=11 \%$

Exploitation rate estimate $=30 \%$!

4. GSI applications: Weak stock management

2005 even lower proportions expected

Area 20 Date

4. GSI applications: Weak stock management

Bias varied among index stock components

4. GSI applications: Weak stock management

Bias varied among index stock components

Time sequence of events

Index stock proportions

Index stock

projections

2005 Outcome

Variability in GSI results did not create conservation problem in 2005. We stayed within the exploitation rate impacts (10% vs. 11%) GSI to the rescue!!!

but ...

The very limited fishery that occurred (Sept. 14) resulted in a total Canadian Commercial catch of only 130,000 fish.
Fishermen blamed variability in GSI results for missed harvest opportunities.

4. GSI applications: Inter-sample variation

Components of Variation

Sampling error only (perfect classification)

Sampling error only

Sampling error \& classification error Two stocks

Effects of number of markers and stock aggregation on variability

Differences are due to Classification error effects not sampling error effects

Implications of inter-sample variation (sampling error only)

Some inter-variation is likely related to fish behavior

Other sources of Inter-sample variation - Opportunities for GSI application??

Variation in migration route among stocks and over time

5. Advice from "The Street"

1. Application of GSI should be evaluated in the context of the assessment and management system around it.

- Is stock ID the weak link in the assessment?(or forecasts?, aging?)
- Can the management system respond to intra-seasonal changes in stock ID?

5. Advice from "The Street"

2. The first step in implementing a new method (GSI) is comparing it to the current methods (SPA, CWT) for relevant applications.

Is it more accurate and cost effective in providing the same information?

Can it provide other useful information?
Are there other alternatives worth exploring?

5. Advice from "The Street"

3. Implementation of GSI for weak stock management may be sensitive to spatial and temporal variation (sampling, behavior, etc.) in addition to accuracy.

- How will/should the management system react/adapt to this variation?
- Are weak stocks estimable within sample size constraints\$\$? If not, does GSI provide opportunities for identifying better index stocks?
- What level of accuracy is required? (not just statistics and GSI but also risk tolerance for outcomes)

5. Advice from "The Street"

4. We manage people not fish.

- Intra-seasonal management provides opportunities to react to changes in the fish that were not expected pre-season, but from a fishermen's perspective this makes the season is a lot less predictable than under an annual management cycle.
- More information isn't always a good thing.
- What steps need to be taken to assure "buy-in" by people who will be affected by implementation of GSI methods?

Acknowledgements

PSC staff

- Steve Latham (my personal dealer!!)
- Bruce White (soon to be supplying Pink GSI)

The Scale lab
Maxine Reichardt,Jullie Sellers,Holly Anozie (got me hooked on "soft" stock ID)

The Parties (for supporting my GSI habit!)

DFOIPBS staff
-Terry Beacham (personally responsible for my addiction)
-John Candy and Colin
Wallace (in-season analysts unsympathetic to GSI induced side effects!)
PBS Genetics Lab
Brenda McIntosh, Kris
Gordos, Cathy
MacConnachie, and Amy
Tabata ("on demand" suppliers) 46

The End

Fraser Panel

Meeting schedule model

4. GSI applications: Individual

 classification GSI Magic!!- Take a fish caught in the ocean
- Take a small snippet of tissue
- Use GSI to predict where it will spawn
- Insert radio tag at Tab A
- Release fish and track it to the spawning grounds

How well did the GSI do??

2005 Approach

1. Used most accurate index component stocks to track impacts.
2. Increase sample sizes to improve precision for large catch fisheries.
