Stock Identification of Chinook Salmon from Southeast Alaska: A review of the past and a look forward

Lisa Seeb Bill Templin

Alaska Department of Fish and Game

SE Alaska Troll Fishery

1999-2006

Fishing Seasons:

October-December January-April 14 April 15-June July-September

Legal-sized Chinook (>28 in) Sublegal Chinook (<28 in)

Sampling of SE Alaska Chinook Fisheries

SE Alaska Chinook sampling effort 1999 - 2006

What are the questions?

- Composition of catch spatially, temporally within and among years:
 - Troll
 - Sport
 - Gillnet, seine
- Sublegal vs. legal sized

100% sim results (SPAM)

GAPS version 2.1

Options:

- 1) Add more individuals and/or populations
- Add more genetic markers
- 3) Combine with a genetically similar group

Challenges Study Design

- Sampling difficulties
 - Coordinating proportional sampling in diverse and remote ports across SEAK
- Improvement of markers
 - 1999 2003, Allozymes
 - 2004 present, Microsatellites

Troll Legal Sampling Design 2007

Port	Early Winter	Late Winter	Spring	Summer
	October 11 – Dec. 31	January 1 – April 14	May 1 – June 30	July 1 – September 30 1 st ret./ 2 nd ret.
Sitka	400	350	300	300/300
Yakutat	30	30		30/30
Juneau	30	30	200	
Port Alex	ander			60/60
Elfin Cov	Elfin Cove			
Pelican				30/30
Hoonah			75	40/40
Wrangell			300	
Petersbu	rg 25	40	100	60/60
Ketchikar	า 40	60	200	100/50
Craig	20	20		150/50
Projected	I totals 545	530	1175	800/650
Overall to	otal 3975			

Troll Sampling Design 9 Ports

Size Class	Early Winter Oct 11 – Dec. 31	Late Winter Jan 1 – April 14	Spring May 1 – June 30	Summer July 1 – Sept 30
Legal	550	550	1200	1500
Sublegal	400	400	400	Project Ended
Overall tota	al Legal Sublegal	3800 1200		

Sport Fish Sampling Design 11 Ports

Size	Northern Inside	Northern Outside	Central	South
Legal	400	500	300	300
Sublegal	110	200	80	210
Overall totals	Legal Sublegal	1500 600		

Gillnet Fishery Sampling Design

Area	District	Port	Goal	Weekly Sampling Rate
Stikine	108	Petersburg Wrangell	440 880 1320	40 fish per week 80 fish per week
Taku Inlet	111	Juneau	880	80 fish per week
		Total	2200	

SE Alaska Troll Fishery 2004

SE Alaska Sport Fishery 2004 after July 1

Local Gillnet Fisheries2005

District 108 Directed Fishery - Stikine 2005 Troll vs. Gillnet

Legal and Sublegal Composition - Troll Fishery Within 2004 Across Fisheries

ADFG Priorities

- Database development
 - Web accessible PSC GAPs database
 - Within laboratory—LOKI
- Development of high resolution genotyping
 - With Kalinowski/Taper from Montana State Univ.
 - "Statistical methods to improve genetic stock identification" funded by US LOA
- Conversion to SNPs
 - ADFG has converted all GSI applications to SNPs except SEAK Chinook
 - Pacific Rim Chinook, chum, sockeye
 - Improve automation, multiplexing, reduced costs

LOKI—Within Laboratory Database

- Control and error checking for:
 - Loci
 - Alleles
 - Collections/individuals
- Directly imports from multiple instruments
 - NO "cut and paste" or manual alignments
- Built in QC abilities
 - ADFG reruns 8% of scores
- Tracks metadata, tissue collections, extractions
- 5.5 million genotypes in ADFG database

ADFG Priorities

- Database development
 - Within laboratory—LOKI
 - Web accessible PSC GAPs database
- Development of high resolution genotyping
 - With Kalinowski/Taper from Montana State Univ.
 - "Statistical methods to improve genetic stock identification" funded by US LOA
- Conversion to SNPs nearly complete
 - GSI applications converted to SNPs except SEAK Chinook
 - Highly automated, cost-efficient
 - Low error rate

ADFG Priorities Development of high resolution genotyping

- Pls Kalinowski/Taper from Montana State Univ., Templin ADFG
 - "Statistical methods to improve genetic stock identification" funded by US LOA
- Objectives
 - Refine methods to estimate contribution of low freq stocks
 - Identification of the source of estimation error in mixtures
 - Incorporate improvements into GMA computer program

ADFG Priorities

- Database development
 - Within laboratory—LOKI
 - Web accessible PSC GAPs database
- Development of high resolution genotyping
 - With Kalinowski/Taper from Montana State Univ.
 - "Statistical methods to improve genetic stock identification" funded by US LOA
- Conversion to SNPs nearly complete
 - GSI applications converted to SNPs except SEAK Chinook
 - Highly automated, cost-efficient
 - Low error rate
 - Ease of standardization

SNPs 45 loci

Microsatellites

GAPs 13

High concordance in population structure

Genetic Markers for Stock Identification of Copper Chinook

100% Simulations By Region

Alleles: 255 mSATS,

45 SNP loci

Accuracy of proportional assignments Chum Salmon

Cost of SNP Analyses

Reagents & Consumables

	Reaction volume	Cost/Genotype	Total cost (approx.)
96-well format, low volume purchasing	20 μL	\$0.003 Plastics \$0.710 TaqMan \$0.827 Assay	\$1.540
96-well format, high volume purchasing	20 μL	\$0.003 Plastics \$0.453 TaqMan \$0.220 Assay	\$0.676
384-well format, high volume purchasing	5 μL	\$0.009 Plastics \$0.113 TaqMan \$0.055 Assay	\$0.177

48.48 Dynamic Array

(48 samples X 48 assays)

10 nL reaction volume

2304 wells

Biomark Chip by Fluidigm

Cost of SNP Analyses Reagents & Consumables

	Reaction volume	Cost/Genotype	Total cost (approx.)
96-well format, low volume purchasing	20 μL	\$0.003 Plastics \$0.710 TaqMan \$0.827 Assay	\$1.540
96-well format, high volume purchasing	20 μL	\$0.003 Plastics \$0.453 TaqMan \$0.220 Assay	\$0.676
384-well format, high volume purchasing	5 μL	\$0.009 Plastics \$0.113 TaqMan \$0.055 Assay	\$0.177
Multiplex-48.48	10 nL	\$0.102 Chip \$0.002 TaqMan \$0.001 Assay	\$0.106

2007 Sockeye SNP Baseline

2007 Chum SNP Baseline

2007 Chinook SNP Baseline

BSAI Bycatch of Chinook salmon (by run year)

Origin of samples: 2005 Pollock B fishery

100% Simulations

(48 SNPs)

2005 B Season Estimates

(Composition of sample)

N = 887

GSI Applications in PSC ADFG Perspective

- Fishery sampling--extensive
 - Multiple strata---time, area, age, gear
 - Sample size adequate to provide resolution required by managers (control sampling error)
- Laboratory processing--highly automated, cost-efficient
 - Continued baseline improvement (control genetic error)
 - Very low genotyping error rate, extensive QC procedures
 - Robotics, barcoding, fast turnaround when needed
 - Coastwide labs will vary in processing power
 - Low throughput -- 10,000+ samples/year
 - High throughput (most efficient) -- 50,000+ samples/year
- Data processing
 - Statistical development to reduce effects of errors
 - Within- and among-laboratory databases

GSI Applications in PSC ADFG Perspective

- Fishery sampling--extensive
 - Multiple strata---time, area, age, gear
 - Sample size adequate to provide resolution required by managers (control sampling error)
- Laboratory processing--highly automated, cost-efficient
 - Continued baseline improvement (control genetic error)
 - Very low genotyping error rate, extensive QC procedures
 - Robotics, barcoding, fast turnaround when needed
 - Coastwide labs will vary in processing power
 - Low throughput -- 10,000+ samples/year
 - High throughput (most efficient) -- 50,000+ samples/year
- Data processing
 - Statistical development to reduce effects of errors
 - Within- and among-laboratory databases

GSI Applications in PSC ADFG Perspective

- Fishery sampling--extensive
 - Multiple strata---time, area, age, gear
 - Sample size adequate to provide resolution required by managers (control sampling error)
- Laboratory processing--highly automated, cost-efficient
 - Continued baseline improvement (control genetic error)
 - Very low genotyping error rate, extensive QC procedures
 - Robotics, barcoding, fast turnaround when needed
 - Coastwide labs will vary in processing power
 - Low throughput -- 10,000+ samples/year
 - High throughput (most efficient) -- 50,000+ samples/year
- Data processing
 - Statistical development to reduce effects of errors
 - Within- and among-laboratory databases

Acknowledgements

Funding received from Southeast
Sustainable Salmon Fund, PSC Northern
Fund, LOA US CTC, Arctic Yukon
Kuskokwim Sustainable Salmon Initiative,
Office of Subsistence Management, and
State of Alaska