Factors influencing the efficacy of GSI; examples using Washington, Oregon and Idaho stocks in the GAPS 2.1 database

Workshop: Current and Future Applications of GSI to Ocean Salmon Management

Portland, OR
May 15, 2007

Kenneth I. Warheit

This Talk is NOT

- Power analysis of the GAPS baseline
- Banks et al. (GAPS consortium)
- Comprehensive analysis (entire baseline)
- Mix-stock analysis and individual assignments
- Multiple methods and procedures

This Talk is

- Exploring specific issues that will affect our ability to conduct genetic analyses on fishery samples
- Present questions that should be addressed by this workshop

Genetics and Fishery Management

Population
Definition

Genetics and Fishery Management

Population
Definition

Definitions

- Mix-stock Analysis
- Genetic analysis of fishery samples to determine stock proportions. Individual fish are NOT assigned to stock
- Individual Assignment Analysis
- Individual fish from a fishery sample are assigned to stock based on some criterion
- Required if additional data are needed (e.g., cohort)

More Definitions

$P($ stock \mid genotype $)=\left(\frac{P(\text { genotype } \mid \text { stock }) \cdot P(\text { stock })}{P(\text { genotype })}\right)$
$P($ stock \mid genotype $)=$ Posterior Probability
$P($ genotype \mid stock $)=$ Likelihood
(calculated using Rannala and Mountain)
$P($ stock $)=$ Prior Probability

and More Definitions

(sort of)

- GAPS Baseline v. 2.1
- (Genetic Analysis of Pacific Salmonids
- Coastwide Chinook database
- 13 microsatellite loci
- Dataset (n=69 populations)
- Washington
- Idaho Snake River
- Oregon Columbia River, Willamette, Coastal
- Jackknife (leave-one-out) analysis

Posterior Probability Cutoffs

(when do we accept an assignment as being correct)

and

Unassigned Fish

Snake River - Fall

Percentage

Posterior Probability $\begin{aligned} & \text { Assigned Correctly Unassigned }\end{aligned}$

0.00	0.68	0.00
0.25	0.68	0.00
0.50	0.74	0.10
0.75	0.85	0.34
0.90	0.93	0.48
0.95	0.96	0.59
1.00	0.97	0.81

Summary

- Assignment error rates not equal
- Increasing stringency (higher posterior probability cutoff) will decrease error
- Increasing stringency will result in more unassigned individuals
- Unassigned rate not equal
- Stock proportions of unassigned fish are not equal to stock proportions of assigned fish

Aggregating Populations

Subgroup Analysis

Subgroup Analysis

Summary

- Stocks are aggregated
- If stocks are aggregated based on geographic proximity and genetic similarity
- Assignment error rate is low
- Unassigned rate is low
- Can use a single, low posterior probability cutoff as assignment criterion

Questions

- Do we need to assign individuals to stocks?
- What method(s)?
- What criteria should we use to define "confidence"?
- How stringent a criterion?
- What do we do with unassigned fish?
- Should stocks be aggregated?
- How should we aggregate stocks?

Acknowledgements

- PSC and Workshop Steering Committee
- WDFW Molecular Genetics Lab, especially Denise Hawkins, Sewall Young
- Craig Busack, Annette Hoffman, Jim Scott, Brodie Cox
- Eric Anderson (NOAA - Santa Cruz)
- GAPS Labs
- Washington State General Fund

