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As a followup to the work of the Expert Pareln 6 The Futur e oProgtame Cod e

f or Paci fni2a05, SvaWworkshagavere convened tdevelop recommendations fitve
integration of GSI information into a coordinated ceagte management system. The goal was

to improve the ability of ocean fisheries to access abundant stocks within impactiect:stra
established for other specific stocks. Workshop participants were directed to identify and
guantify costs, implementation steps dnetimeframe to implement recommendations.

Within these overall objectives, the specific charge to the Genetics YWdak@gWG) was to
develop specific proposals from the followiparges 1) Recommendadditional sampling
locations sample sizes, and field and laboratory protocols to improve the GSI database; 2)
Recommend how best to incorporate GSI data into ocean rsainamagement models and
regimes; 3) Suggestfurther research to more effectively incorporate GSI data into the
management of ocean fisheries of salmon. The GW focused largely on the first objective because
of the lack of time to interact constructively itmodelers and managers. Within this more
limited focus, the GW spent most of its time in lively discussions of the relative merits of using
microsatellites and single nucleotide polymorphisms (SNPs) for GSI. Also included were
discussions of ways to enlw@n the accuracy of GSI estimates with improvesait the
statistical treatment of reporting groups and of GSI estimation procedures.

! Portland, Oregon 18.7 May 2007 and Vancouver, British Columbia 13 S@tember 2007.
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GLOSSARY

ADFG Alaska Department of Fish and Game

CTC Chinook Technical Committee (PSC)

CTC Chinook tehnical committee

CWT Coded wire tag

DGO Department of Fisheries and Oceans, Canada
DNA Deoxyribonucleic acid

ESA U.S. Endangered Species Act

ESE Expected squared error

EST Expressed sequence tags (short DNA sequences)
FOIA US Freedom of Informabn Act of 1986

GAPS Genetic analysis of pacific salmonids

GSI Genetic stock identification

PCR Polymerase chain reaction (method of amplifying DNA sequences)
PSC Pacific Salmon Commission

QTL Quantitative trait loci

SN Statistical network

SNP Single nucleotide polymorphism

TRT Technical recovery team

WCVI West Coast of Vancouver Island
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PART I. BACKGROUND INFORMATION
BRIEF HISTORY OF GENETIC STOCK IDENTIFICATION

The history of molecular markers in Pacific salmon research and management reaches back to
the 1960s, when blood types were used to distinguish populations of sockeye sahersin
draining nto Bristol Bay (Ridgway and Utter 1964) and to identify major stock components in
ocean fisheries (Ridgway 1964; Utitral 1966). These bloedroup polymorphisms, detected

with rabbit serum antibodiesvere complexand the salmon reblood cells coulde stored for

only a short time (Hodgins 1972). These attenptsse blood-group polymorphisms represented

the first use of genetic markers to identify stock components in a raigel fishery.

The appearance of electrophoretic methods to detectpragants represented a breakthrough

in the search for a suitable molecular marker. Allozyme genotypes reflected Mendelian variation
and were easy to screen with stageh electrophoresis. Allozyme markers were described in
Pacific salmon in the late 196 and early 1970s (Hodgies$ al 1969; Utteret al. 1970; Utter

and Hodgins 1970) and soon after, found their way into a variety of applications, including the
reconstruction of the Pacific salmon family tree (Utter et al. 1973a), reproductive andtipopula
biology (Utteret al. 1973b; Wilmot 1974), and fishery management (Udteal 1976).

The mid 1970s marked a significant advance in statistical methods to use allozyme variants for
mixed-stock analysis. Projects had been initiated on chum salmaumgtmns in Puget Sound

(Seeb and Wishart 1977) and on sockeye salmon in Cook Inlet, Alaska €6@nt980) to

tease apart components in mix&dck fisheries. George Milner wrote a maximum likelihood
program for mixed stock analysis using the EMoallpm and kindly guided colleagues through

the analysis of allozyme data. The early version of the program required as much as 30% of
University of Washingtonés | BM mainframe comp

The 1980s and 1990s witnessed the implementatiddS| capabilities by several laboratories
and a growing use of GSI by management (Beacttaath 1985a,b; Shakleet al 1990; Utteret

al. 1987). This activity stimulated substantial improvements in GSI estimation procedures
(Fournier et al. 1984; Palland Milner 1987; Wooet al. 1987; Pellaet al. 1996; Pella and
Masuda 2001). One important improvement waglementation oBayesian methods to use
previous information to jumpgtart iterations toward the resolution of stock proportions in a
fishery sanple. Another advance was to use mixture information to improve the population
allelefrequency estimates in the baseline (Pella and Masuda 2001).

Several DNA markers have been considered for GSI over the past 30 years including restriction
fragment lenth polymorphism (RFLP) analysis of mitochondrial DNA (Po#eal. 1975; Avise

et al. 1979; Avise 1989), minisatellites (Jeffregs al 1985; Galvinet al. 1995), random
amplified polymorphic DNA (RAPD) (Welsh and McClelland 1990; Williagtsal. 1990),short
interspersed nuclear elements (SINEs) (Okada 1991), amplified fragment length polymorphisms
(AFLPs) (Voset al 1995), and microsatellites (Tautz 1989). The DFO laboratory at Nanaimo,
BC spearheaded the use of minisatellites in GSI applicationscdicPaImon, but minisatellites

were not coseffective for GSI and were not widely adopted (Beacleaml 1996a,b; Milleret
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al. 1996). Microsatellites eventually displaced allozymes as a standard tool for Pacific salmon
research when high throughputtne o d s became avail able (06Connel

Single nucleotide polymorphisms (SNPs) are now gaining popularity in some circles and await
evaluation as a population marker. This class of marker represents a shift in focus from protein
products or DA segments to individual nucleotide sites. SNPs ultimately are the sources of
variability for most molecular markers. They potentially can provide a wealth of markers, as they
occur at frequencies of 1 in 3T0 nucleotide sites throughout the genomel@éin 2000). The
present generation of SNP assays now provides the capability of screening thousands of SNPs
for markers of diseases and quantitative traits. Although SNPs were described some time ago
(Botstein et al. 1980; Fischer and Lerman 1983), thegvé been applied only recently to
population surveys of Pacific salmon (Smethal 2005).

Three criteria have been used to evaluate new population makéngy have appearethe

first is whether a new marker provides greater population resolutionettisting markers. The
second is the availability of high throughput assays. This is especially important for GSI
applications requiring the analyses of thousands of fish annually. A third criteritme is
compatibility of a new marker with the theoretideamework used to make demographic
inferences. As SNPs have come into greater use in numerous settings, statistical and theoretical
investigations of SN#ased inferences have followed (Kuhredr al. 2000; Nielsen 2000;
Schlotterer and Harr 2002; Woodiraqnd Rogers 2002; Brumfieldt al 2003; among many
others).

One potenti al problem in adopt ignrga dBddgsingar i s e ¢
only markers that show large differences among populationexample humansPaschowet

al. 2007).0One mechanism producing higinaded markers is natural selection, which can leave a
characteristic geographical imprint on populatioag.(Verrelli and Eames 2001). While high

graded SNPs may provide greater resolution among populations for GSI €5ahith005), they

may be poorly suétd to other applications in fishery management. For example -drayhed

SNPs vyield biased estimates of genetic diversity for conservation or of population parameters,
including effective population size, past demograpdwents (bottlenecks in population size,
founder events), and gene flow (O0strayingo).



INTRODUCTION TO WORKGROUP REPORTS

Members of the genetics workgrowpote repors on seven key issudsetweenworkshopsand
discussed the results of theseap at the second workshophese reports appear the
appendk.

Appendix A. Choice of Marker Types for Genetic Stock Identification

One focus of the workgroup was on whether single nucleotide polymorphisms (SNPs) could
complement, or possibly replagejcrosatellites for GSI. This topic is explored by Snethal,

who compare the characteristics of microsatellites and SNPs and attempt to capture the diversity
of opinion voiced at the workshops. Preliminary comparisons of regional microsatellite 8nd SN
datasets fail to show clear advantages of one marker type over the othdre@dgtanalyses of

these marker types in coagide applications have yet to be conducted and are at the top of the
list of recommended actions.

Appendix B. Status of samp collections and genotypic data

One way of increasing population resolution is to boost sampling effompoove population
baselines. Habicldt al. summarize the status of sample collections and available population data
for the various species of €&fc salmon, but with a focus on coho and sockeye salmon.
Presently, microsatellite and SNP data are available for tens of thousands of Chinook and
sockeye salmon over a wide geographic range, and large databases are available for chum
salmon for both miwmsatellites and SNPs. This summary will guide future efforts to sample
populations in underepresented areas.

Appendix C. Coastwide integration of GSI data collection, interpretation and use in mixed
stock analysis

Coastwide GSI applications requirecus and allele standardization and data sharing among
laboratories. Cooperation among laboratories has been excellent for standardizing microsatellite
loci and alleles in the GAPS Chinook salmon database and will be essential-goingn
standardizatios of coho and sockeye salmon databases. An essay by dbrainreviews the

steps needed to establish a standardized database and the development of mechanisms to
facilitate the sharing of unpublished data for ceeisle mixed stock analyses. The Logistic
Workgroup also explored procedures for data sharing and archiving. The two contributions
together provide a detailed picture of how standardization and data sharing can proceed for
additional species of Pacific salmon.

Appendix D. Individual assignmentsand stock composition estimates for mixture analysis

An important way of enhancing the precision of mistdck estimates is to refine statistical GSI
procedures. Three reports address this issue. The first contribution by Jerry Pella evaluates the
use @ individual assignments and summingrsusthe estimation of stock proportions (mixture
modeling) for GSI estimation. While individual assignments may be valuable for sor@Sion
applications, they provide less precision for GSI than does mixture mgdelin

3



Appendix E. Stock aggregation methods

Another approach to improving GSI estimation is to aggregate similar stocks into reporting
groups. A report by Warheét al addresses the question of how best to aggregate stocks. The
somewhat subjective meth®dused by some management and conservation biologists to
aggregate populations often place genetically dissimilar populations into one reporting group. A
method of statistical networks with an underlying phylogenetic approach to stock aggregation is
develgped and applied to Chinook salmon populations in Puget Sasirah exampleThese
aggregations produce greater GSI| accuracy tthia@nother population groupings used for
management and conservation.

Appendix F. Sources of GSI error

Improvement in GSI m@cision can be greatly enhanced by identifying and reducing particular
sources of error in GSI estimates. Steven Kalinowski devised an algorithm to identify major
sources of error in GSI estimates in a Chinook salmon fishery off southeastern Alaska. Among
three variables investigated (fishery sampling, genotyping, and baseline sampling), uncertainties
in baseline allele frequencies represented the largest proportional source of error in this fishery.
Uncertainties in baseline allele frequencies can be asielleby greater sampling effort and by
statistical procedures accounting for systematic errors in-ftegi@ency estimation.

Appendix G. Variation in Chinook salmon migration

Regional and temporal GSI estimates collectively can provide insights iitmio+vand between

season variability in run timing and annual shifts in migration patterns. Terry Beacham presents
an indepth examination of iseason monthly Chinook salmon GSI data extending from 2002 to
2006. An important conclusion from theseswasn and intetfannual comparisons is that sparse
sampling during a fishing season may give a misleading view of the presences of various stocks
contributing to a fishery.
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PART Il. EXECUTIVE SUMMARY

Two workshops brought together experts to evaluate -efatee-art developments of genetic

stock identification (GSf) The genetics workgroup (one of four) discussed several key issues in
three broad topics. The first of these topics dealt with marker deweltp baseline sampling,
standardization and data sharing. The second topic dealt with statistical treatments of genotypic
data and included an evaluation of individual assignmesrtsusproportion estimation of stock
proportions, an examination of howosks can be aggregated to improve GSI precision, and an
assessment of major sources of error in GSI estimation. The last topic was on the use of GSI
results to provide insights into Pacific salmon run timing and migration patterns.

MAJOR FINDINGS
Growing use of genetic markers in fishery management

Finding 1.  Genetic markers have been used in numerous facets of fishery management over
the past 40 years. The use of genetic markers has increased as new markers
provide greater population resolution and eas screening. The continuing
development of statistical methods has provided greater accuracy for GSI
estimation and for gaining insights into the population structures and for
evaluating conservation status of Pacific salmon populations.

Choice of maiker types for genetic stock identification

Finding 2.  Three criteria are used formally or informally to evaluate the usefulness of new
markers as they appear.

a. A new marker should provide equal or greater resolution of population
differences than exisnmarkers.

b. High throughput genotyping should be available to support applications
often requiring the analysis of thousands of fish annually.

c. Alargescale adoption of a marker by laboratories requires that it be
suitability to continue a wekkstablishd tradition of research on salmon
population biology.

Finding 3.  Population resolution is influenced by several factors.

a. For selectively neutral and unbiased alleles, power depends on the number of
independent alleles.

The term 6genetic stock identificationd includes a bro
synonymous with émixed stock anal ysi sbd.
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b. The us egraudéd markeid gniarkers showing large differences
between populatiodsproduces greater than expected resolution from the
independentlleles rule. This greater discriminating power can be due to the
use of O6neutral é alleles showing great
populations, or to the use of alleles influenced by natural selection.

Finding 4.  High throughput assays are available for both SNPs and microsatellites to
facilitate rapid sample turnaround for kseason management. The automation of
genotyping reducesuman error. Opportunities for automated genotyping may be
greater for SNPs than for microsatellites, but this issue remains unresolved.

Finding 5.  Presently, genotyping costs per locus appear to be higher for microsatellites than
for SNPs, whereas genging costs per allele are higher for SNPs. Importantly,
genotyping costs to achieve a particular level of population resolution are
unknown.

Finding 6.  High-graded genetic markers may be unsuited to other applications commonly
used in fishery managemenmntcluding the estimation of genetic diversity for
conservation or of demographic parameters, such as effective population size,
past demographic events (bottlenecks in population size, founder events) and gene
flow (straying).

Finding 7.  Pacific salmorpopulation geneticists are at the forefront of exploring the large
scale use of SNPs in the fishery management. No other group of fishery
geneticists can add to the expertise of participavite attendedhe two
workshops.

Finding 8.  Empirical comparisas of the cosbenefit relationship between microsatellite and
SNPs are a high priority and must precede recommendations on marker selection.

Status of markers and samples of coho and sockeye salmon
Chinook salmon

Finding9.  The development of a coaside GAPS microsatellite baseline for Chinook
salmon represented a considerable advance over the use of allozyme baselines by
making data readily accessible over the internet. Lessons learned from GAPS can
be usedo develop baselines for other specie®atific salmon. About 51 SNP
assays are available for Chinook salmon. About 25,000 fish have been examined
for SNPs in samples from Russia to California. Several thousand Chinook salmon
from Southeast Alaska and the Yukarskokwim rivers have been exagdrto
support transboundary management.

Coho salmon



Finding 10.

Numerous populations of coho salmon have been surveyed for variability at
numerous microsatellite loci (and two MHC loci in some areas) by various
agencies. Samples extend from SoutheaskAlto northern California. At least
42 SNP assays have been developed for coho salmon, but only about 400 fish
have been examined for variability in samples extending from Russia to
Washington.

Sockeye salmon

Finding 11.

Several regional databases ofamusatellite markers have been developed for
sockeye salmon. Most surveys have included populations in British Columbia, and
a few populations of conservation concern in the Colurimake river drainage.
About 35,000 sockeye salmon have been examin&Nfvariability in samples
extending from Russia to Washingtoiaho, but with a concentration in Alaska
around Bristol Bay and the Alaska Peninsula, where this species is most
abundant.

Chum salmon

Finding 12.

Pink salmon

Finding 13.

Numerous microsatellites have been devaldpe chum salmgrand numerous
populations have been surveyed. About 77 SNP assays have been developed for
chum salmon. About 12,000 chum salmon have been genotyped in samples
extending from Korea to Washington.

No SNP assays hawbeen developed for pink salmon.

Coastwide integration of GSI data collection and use

Finding 14.

The value of GSl is greatly enhanced by ensuring that regional datasets can be
merged into a larger coastide dataset. Merging data from several laboras
requires attention to four layers of detail.

a. A common set of loci must be used among laboratories for each class of
molecular marker.

b. Laboratories must standardize allelic identities and allelic nomenclature.
Standardization is complicated forarosatellites, because different automated
platforms generally produce different allelic mobilities. Rapid standardization of

alleles may be achieved with allelic ladders, without the need for exchanging
tissues or DNA. Minimal allelic standardizationréqjuired for single nucleotide

10



Finding 15.

polymorphisms (SNPs), as only four easily identified nucleotide states are
possible at a nucleotide position.

c. Spatial scales of sampling effort must be consistent among laboratories, so
that the most important spawning pdgitions contributing to a fishery are
sampled.

While allelic identification among laboratories may not be problematic for SNPs,
polymorphisms identified in one region may not provide adequate population
resolution in another region.

d. Statistical procedues should be consistent among laboratorigse
usefulness of coastide analyses depends on standardizing these procedures
among laboratories.

Sharing of baseline data among laboratories is essential to addressvidast
GSI problems. Dataharing can be hindered by several factors.

a. Protection by researchers of proprietary information for scientific
publication.

b. Hesitation amon@genciedo share data for fear that some interpretations of
a dataset may not prove beneficial to their ins¢se

Different interpretations of the same data can potentially arise from the use of
different statisticsor the inclusion of some samples but not others for mixed

stock analysis. Data sharing has traditionally depended on the goodwill and
cooperatiorof personnel in these agencies. However, when problems arise among
laboratories, cooperation may have to be implemented by memoranda of
agreements that clearly outline how shared data can be used.

Individual assignments and stock composition estimatesfonixtures

Finding 16.

Finding 17.

Artificial and natural marks have been useful in salmon management to identify
populations of origin of migrating salmon. An important advantage of natural
marks is their complete coverage of all stocks and all individuals in dlksst
However, natural marks provide less certainty in the source identification of
individuals than do artificial marks.

The relative frequencies of the natural marks differ among populations and
provide some information to probabilisticabgparate mixture individuals to

their sources. Both the sources of individuals and the stock composition of the
mixture must be estimated and two general approaches to this dual estimation
problem are possible.
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a. Classical individual assignmentsethods Ave been less commonly applied in
fisheries research.

b. Mixture modelingmethods are more widely used in fisheries research with
both frequentist and Bayesian approaches. Mixture modeling is generally
superior to the classical individual assignments mefioothe dual
estimation problem. Although the cost of baseline development and of
processing sampled mixture individuals for natural marks may be significant,
the cost of statistical estimation is negligible.

Finding 18. The Bayesian approach extendxtmie modeling to include estimation of both
the stock composition and the allele relative frequencies in contributing stocks.

Aggregating Stocks for Improved Genetic Stock Identification

Finding 19. A comprehensive knowledge of all stocks is unneggskatocks can be
aggregated into groups by assuming that stocks in a group share common
characteristics that subject the stocks to the same or similar exploitation rates.
Similar biology and recency of common ancestry, measured by genetic similarity,
should govern how stocks are aggregated.

Finding 20. Aggregation schemes inconsistent with genetic relationships among stocks reduce
the accuracy and precision of GSI, thereby limit the usefulness of genetic
analyses, and comprasethe ability to managadheries with a full suite of data.

The use of phylogenetic methods to identify genetically similar populations
increases GSI accuracy. A Statistical Networks procedure (SN) was superior to
two other aggregating procedures for identifying monophyleticggai Chinook
salmon populations in Puget Sound.

Finding 21. Standard quantitative stock aggregations should be designedwabesto be

consistent with the phylogenetic relationships of stocks, and to maximize value to
address specific fishery managermeeeds.
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Sources of error affecting GSI accuracy

Finding 22.

Finding 23.

Finding 24.

Finding 25.

Several sources of error influence the accuracy of GSI estimation.

a. Sampling of the fishery. Error arises from small sample sizes and from non
random sampling.

b. Random sampling fails togtude all stocks present in the fishery.
c. Sampling a finite number of genetic markers.
d. Genotyping error.

e. Errors on allele frequencies from sampling a finite number of individuals in
baseline populations.

f. The inclusion of fish in the fishery samplenfrpopulations not in the
population baseline also introduces error.

Partitioning of total expected square error (ESE) variancelike variable,
including the effect of bidsinto components b, ¢, and e showed that the largest
source of error \@s due to uncertainties in allele frequencies in baseline
populations (87.5%). A smaller proportion was due to fishery sampling (9.5%)
and a very small proportion is due to genotypic sampling (2.7%). As the fishery
used for this study was typical of otliisheries, these results likely show general
trends for GSI estimates for other fisheries.

When the level of differentiation among baseline populations is lew« (:01),
increased sampling will improve GSI accuracy. In other cases, statisti
approaches can be used to improve baseline allele frequencies with two
approaches.

a. Generalized expectation maximum algorithm uses mixture samples to improve
allele-frequencies estimates in the baseline populations. This approach is
incorporated intcavailable Bayesian G®irograns.

b. Spatial models can be used to improve aligeuency estimates by assuming
that nearby populations tend to be similar.

The magnitude of error from unsampled source populations poterdzaailye
estimatedvith three approaches.

a. Simulations to examine the impact of excluding some existing populations
from baselines.
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Finding 26.

b. Spatially explicit models of population structure can be constructed to
estimate allele frequencies of unsampled populations, and thesatest
could be used in conventional GSI simulations.

c. TheBayesian missingata model may successfully identify unsampled
populations contributing to a fishery.

Error in GSI estimation adbw-contributing stocks in a mixture is difficult to
evaluate, but can be reduced in partlésger fishery sample sizes. Current GSI
algorithms tend to bias stock composition estimates toward 1/k, where k is the
number of stocks contributing to the baseline.

Intraaannual and inteannual variation in sttk composition

Finding 27.

Finding 28.

Finding 29.

GSI estimates provide an opportunity to understand important features of salmon
migration and spawning biology.4season comparisons of GSI estimates in an
area off northern British Columbia revealed contrasting abundancel$réor

fish from different areas. These estimates show shifts in stock compositions of fish
in the troll fishery during the fishing season, which likely reflect migration

patterns of various stock groups past the Queen Charlotte Islands.

Annual comparisons of five major stocks in either the troll or commercial catches
showed shifts for some regions but not for others. Annual variation was most
pronounced for Oregon fish with the highest proportions in August 2004. Fraser
River fish also inaased in 2002 and 2006, likely reflecting the strong returns to
the Thompson River drainage in those years.

Seasonal and annual comparisons are possible only after a-$aaje
population baseline has been established to identify stockstadiie
contributing to a fishery. Seasonal and annual comparisons require frequent
sampling during a fishing season to provide an accurate view of changes in
contributing stocks.
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MAJOR RECOMMENDATIONS

Maintenance of existing databases

Recommendatioh. Maintain and improve existing standardized microsatellite population
baselines

a. Existing microsatellite baselines provide the only means of addressing some
management problems.

b. These baselines should be maintained and extended to provide greateoflevels
population resolution.

Recommendation 2.Support continued development of genetic markers (particularly for SNPs
in sockeye salmon coaside)

a. Use appropriate lessons from the GAPS approach to marker stanak@wdifor the
development of population baselines for additional species.

b. Develop appropriate markers for use in a coagie baseline.

RecommendatioB. Empirical comparisons of SNPs & microsatellites on a ceade scale,
with focus on Chinook anaskeye

a. Even though SNPs often provide a high level of resolution for discriminating among
regional populations, can they be effeein a coastwide baseline?

b. The particular sample of SNP or microsatellite loci for a regional comparison can
determinette outcome of a comparison. Hence, appropriate marker should be used in
a comparison.

c. Simulations can be used to assess the level of resolution that a marker provides to
discriminate among a group of populations.

d. Blind samples of known origins shouldused in a GSI analysis to examine
resolution of marker types.

e. Evaluations between marker types should be posed in terms of cost for a given amount
of population resolution, not just the cost of genotyping.

Recommendation 4.The mtential of a marker fye to resolve features of salmon population
dynamics, in addition to GSI (mixed stock analysis), should be considered
before adopting one marker and abandoning another.

a. Most models of population structure assume the selective neutrality of alleles.
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b. High-graded markers showing strong differences among populations may improve
GSI estimation, but produce biased estimates of demographic paransetgrsas
effective population size and gene flow
Improvement of statistical GSI methods

Recommendation 5.Support studies investigating sources of GSI error. Preliminary results of
theoretical and simulation studies point to ways in improving GSI

accuracy.
a. Investigate ways of improving alleleequency estimates of populations in baseline.
Only marginal gainsn accuracy can be achieved with larger samples of fishery
mixtures and genetic markers.

b. Support studies of other sources of GSI error, including upward bias of low
frequency stocks in mixture, and missing baseline populations.

c. Adoptmixture modelingor GSI estimation.

Recommendation 6.Reexamine methods used to aggregate baseline stocks into reporting
groups to increase GSI accuracy.

Use of GSI to understand ocean migration and abundance patterns

Recommendation 7.Support summary studies of seelcand multiyear GSI results to better
understand the ocean biology of Pacific salmon.

Incorporation of GSI into Pacific salmon population models and harvest management

Recommendation 8.Support collaborations between geneticists and population madaher
harvest managers to enhance the utility of GSI results.
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PART Il . JUSTIFICATIONS AND RATIONALE FOR
EXPERT PANEL FINDINGS AND
RECOMMENDATIONS.

MAJOR FINDINGS
Wide-spread use of genetic markers in fishery management

Finding 1.  Genetic markers hae been used in numerous facets of fishery management over
the past 40 years. The use of genetic markers has increased as new markers
provide greater population resolution and ease of screening. The continuing
development of statistical methods has pravigeeater accuracy for GSI
estimation and for gaining insights into the population structures and for
evaluating conservation status of Pacific salmon populations.

The history of molecular markers in Pacific salmon research and management reaches back to
the 1960s, when blood types were used to distinguish populations of sockeye salmon in Bristol
Bay rivers. Since then numerous molecular markers have found their way into a variety of
management applications, as well as in systematics, reproductive andtipophiology, and
conservation.

Choice of marker types for genetic stock identification

Finding 2.  Three criteria are used formally or informally to evaluate the usefulness of new
markers as they appear.

A new marker should provide equal or greatesolution of population differences than existing
markers.

High throughput genotyping should be available to support applications often requiring the
analysis of thousands of fish annually.

A large-scale adoption of a marker by laboratories requires thhe suitability to continue a
well-established tradition of research on salmon population biology.

Several DNA markers have been considered for GSI over the past 30 years including restriction
fragment length polymorphism (RFLP) analysis of mitochohddidA, minisatellites, random
amplified polymorphic DNA (RAPD), short interspersed nuclear elements (SINEs), amplified
fragment length polymorphisms (AFLPs), and microsatellites. Microsatellites eventually
displaced allozymes as a marker of choice forfRasalmon research and management, when
high throughput methods became available.

The focus now is on the relative merits of single nucleotide polymorphisms (SNPs) and
microsatellites (Figure 1). SNPs were initially developed to map genetic diseakeshuntan
genome, but are now used for individual identification, pedigree analysis and cultivar selection
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in fish breeding programs. Recently, SNPs have been used as a population marker, and hence the
present evaluation to assess the suitability of widerwith Pacific salmon. A new population
marker should possess three characteristics: 1) equal or greater resolution of population
differences than existing markers, 2) high throughput genotyping for applications requiring the
analysis of thousands of figimnually, and 3) suitability to continue a we#tablished tradition

of research on salmon population biology. A doshefit analysis of these factors is needed
before a new marker can be adopted for GSI estimation.

Figure 1. Multiplexd panel of microsatellites.

Finding 3.  Population resolution is influenced by several factors.

a. For selectively neutral and unbiased alleles, power depends on the number of
independent alleles.

b. The us egranéd mérkeid griarkers showing large défences between
population® produces greater than expected resolution from the independent
alleles rule. This greater discriminating power can be due to the use of
6neutral 6 alleles showing greater than
or to the usef alleles influenced by natural selection.

Population resolution is influenced by several factors. The statistical power provided by a marker
to resolve population differences, or to estimate contributing stocks in a fishery, largely depends
on the numbr of independent alleles, if the markers are not under selection. However, empirical
comparisons of SNPs demonstrate that SNPs provide more discriminating power than expected
with the independerdlleles rule. The greater discrimination is apparentlytdube use of only

SNP markers that show large population differences (ascertainment bias). This bias arises from
neutral markers showing greater than average differences between populations, or from markers
influenced by directional selection. Presen8yP markers have been used to address regional
problems, so the level of resolution among ce@de populations remains unknown.
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Finding 4.  High throughput assays are available for both SNPs and microsatellites to
facilitate quick sample turnaround far-season management. The automation of
genotyping reduces human error. Opportunities for automated genotyping may be
greater for SNPs than for microsatellites, but this issue remains unresolved.

Finding 5.  Presently, genotyping costs per locus appedrd higher for microsatellites than
for SNPs, whereas genotyping costs per allele are higher for SNPs. Importantly,
genotyping costs to achieve a particular level of population resolution are
unknown.

High throughput assays are available for both SNiésnaicrosatellites to facilitate quick sample
turnaround for irseason management. Automation of laboratory procedures and genotype
interpretations may improve throughput and reduce genotyping error in both marker types.
Although opportunities for automategenotyping may be greater for SNPs (Figure 2) than for
microsatellites, this issue remains unresolved. Presently, genotyping costs per locus appear to be
higher for microsatellites than for SNPs, whereas genotyping costs per allele are higher for
SNPs. inportantly, genotyping costs to achieve a particular level of population resolution are
unknown.

Finding 6.  High-graded genetic markers may be unsuited to other applications commonly
used in fishery management, including the estimation of genetic dierrsit
conservation or of demographic parameters, such as effective population size,
past demographic events (bottlenecks in population size, founder events) and gene
flow (straying).

Lastly, a new marker should be compatible with the large body of thexsg to interpret
genotypic dat a. One hesitation in -gda@Wtmngd S
choosing only markers showing large differences between populations. One mechanism leading

to high-graded markers is natural selection, which casdpce a characteristic geographical

imprint. While highgraded SNPs may provide greater resolution for GSI, they may be unsuited

to other applications commonly used in fishery management-gtaghed SNPs cannot provide

unbiased estimates of genetic dair for conservation or of demographic parameters, such as
effective population size, past demographic events (bottlenecks in population size, founder
events) and gene flow (O6straying6).
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Figure 2. Single nucleotide polymorphig8NP) panel of genotypes.

Finding 7.  Pacific salmon population geneticists are at the forefront of exploring the-large
scale use of SNPs in the fishery management. No other group of fishery
geneticists can add to the expertise of participants at theviovkshops.

Pacific salmon population geneticists have historically pioneered the use of genetic markers in
fishery management are first in exploring the lasgale use of SNPs in the fishery management.
No other group of fishery geneticists can addh® expertise of participantgho attendedhe

two workshops. The evaluation of SNPs and microsatellites will have important repercussions,
not only for the use of molecular markers in the management of Pacific salmon, but also for
applications of molecutamarkers to major fisheries in other regions of the globe.

Finding 8.  Empirical comparisons of the celgenefit relationship between microsatellite and
SNPs are a high priority and must precede recommendations on marker selection.

Empirical comparisomn of the cosbenefit relationship between microsatellite and SNPs are a
high priority and must precede recommendations on marker selectiorbébedit relationships,
however, change with technological advances and depend on species, laboratorycinfrastru
and geographic scale. These analyses require immediate attention.
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Status of markers and samples of Chinook, coho, sockeye, and other Pacific salmon

Finding 9.  The development of a coaside GAPS microsatellite baseline for Chinook
salmon repesented a considerable advance over the use of allozyme baselines by
making data readily accessible over the internet. Lessons learned from GAPS can
be used in the development of baselines for other species of Pacific salmon. About
51 SNP assays are availe for Chinook salmon. About 25,000 fish have been
examined for SNPs in samples from Russia to California. Several thousand
Chinook salmon from Southeast Alaska and the Y-#kskokwim rivers have
been examined to support transboundary management.

Finding 10. Numerous populations of coho salmon have been surveyed for variability at
numerous microsatellite loci (and two MHC loci in some areas) by various
agencies. Samples extend from Southeast Alaska to northern California. At least
42 SNP assays have basveloped for coho salmon, but only about 400 fish
have been examined for variability in samples extending from Russia to
Washington.

Finding 11. Several regional databases of microsatellite markers have been developed for
sockeye salmon. Most surveyséancluded populations in British Columbia, and
a few populations of conservation concern in the Colurimake river drainage.
About 35,000 sockeye salmon have been examined for SNP variability in samples
extending from Russia to Washingtolaho, but wih a concentration in Alaska
around Bristol Bay and the Alaska Peninsula, where this species is most
abundant.

Finding 12. Numerous microsatellites have been developed for chum salmon and numerous
populations have been surveyed. About 77 SNP assaysdvedveloped for
chum salmon. About 12,000 chum salmon have been genotyped in samples
extending from Korea to Washington.

Finding 13. No SNP assays have been developed for pink salmon.

One step in constructing databases for species of Pacific saltf@dsvelopment of regional
baselines, usually by agencies with regional management mandateswi@ealsaiselines often
follow the development of regional baselines after standardizations of loci and alleles.
Previously, coaswide allozyme baselines weraleveloped and maintained through
collaborations and workshops to standardize allelic designations. The development of a coast
wide GAPS microsatellite baseline for Chinook salmon (Figure 3) was a continuation of this
process, but represented a consideraddlvance by making data readily accessible over the
internet. As a start toward the development of additional so@dst baselines, this section
summarizes regional and coagatle datasets with a focus on coho and sockeye salmon. These
summaries are snapsts of a growing set of regional and ceasle databases for SNP and
microsatellite markers.

Microsatellite markers
21



Coho salmonNumerous populations of coho salmon have been sampled by DFO, Nanaimo in
several regions and examined for variability innii@rosatellite loci and two MHC exons. These
samples are concentrated in British Columbia with representative samples from Southeast Alaska
and Washington State. A large number of samples have been examined for variability at 11
microsatellite loci by NOA Fisheries, Seattle, in samples from populations extending from
southern British Columbia to northern California. Presently, 61 microsatellite primers developed
for coho or other species of salmon have been used to screen for variability in coho salmon.

TaRWIE

e +hi Bestasr e

Khbabe B
'

Keina i hubea R
Tagwycr URaHER LTabhar R
Ky dalicr b "

aming
" theier TemR
" HenlR

onsran R
'
ek
' CHke R
Warr ek R "
'
L
' Lowl £

d
T Y
T apak
'

itk
' Uikar ke b
| Conmak
P ebemace o, Bl Ok 1N Charvae R
T WoHmaR
amtinark Caner b
LLTLE Iuljz«“-ff. e
g EMRAR e R
prrss
e

Gl Bl R o
Cotinbap ' )

Coto ki kalmg bap

'
el = .
'
L, LR Rl R
e bt
Fohak  Hekerne b
"UHE i b
'
ConleR
.
el Cr
chuler
'
Km Kl R o
N N Trks R
Py Baiecr
0 250 500 1.000 TR e

R Rwrcrip
s WFHEHE
Feaibark s
LT

Supling R
"R i
'

Figure 3. Map showing locations of samples in GAPS baseline.

Sockeye salmorseveral regional databases for microsatellite markers exist for sockeye salmon
that have been used by DFO and NOAA. Most surveys of microsateltitchave been of
populations in British Columbia, and of a few populations of conservation concern in the
ColumbiaSnake river drainage.
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Single nucleotide polymorphisms (SNPs)

The number of SNP assays and the number of samples examined are gromiyghast SNP
databases encompass only regional sets of populations. Presently, 51 genotypic assays are
available for Chinook salmon, 19 for coho salmon, 77 for chum salmon, 44 for sockeye salmon,
and none for pink salmon. At least 42 SNP assays haveds¥ehoped for coho salmon, but

only about 400 fish have been examined for variability in samples extending from Russia to
Washington.

Regional surveys for some species are quite large. About 35,000 sockeye salmon have been
examined for SNP variabilitynisamples extending from Russia to Washingtt@aho, but with a
concentration in Alaska around Bristol Bay and the Alaska Peninsula, where this species is most
abundant. About 12,000 chum salmon have been genotyped in samples extending from Korea to
Washirgton, and nearly 25,000 Chinook salmon have been examined in samples from Russia to
California. Several thousand Chinook salmon from Southeast Alaska and the Kuiarkwim

rivers have been examined to support transboundary management.

Coastwide integration of GSI data collection, interpretation and use in mixed stock
analysis

Finding 14. The value of GSl is greatly enhanced by ensuring that regional datasets can be
merged into a larger coastide dataset. Merging data from several laboratories
requiresattention to four layers of detail.

a. A common set of loci must be used among laboratories for each class of
molecular marker.

b. Laboratories must standardize allelic identities and allelic nomenclature.

c. Spatial scales of sampling effort must be consisteming laboratories, so
that the most important spawning populations contributing to a fishery are
sampled.

d. Statistical procedures should be consistent among laboratories. The
usefulness of coastide analyses depends on standardizing these procedures
amonglaboratories.

The value of GSI is greatly enhanced by ensuring that regional datasets can be merged into a
larger coastvide dataset. After the creation of a ceasle baseline, data should be accessible in

a timely manner to management agencies msipte for maintaining sustainable harvests of
salmon. Previous efforts to integrate databases for Chinook salmon (GAPS) have proved
successful, and this database has provided information to management that would not have been
possible with the separateadyses of individual datasets.

Merging data from several laboratories requires attention to four layers of detail. First, a common
set of loci must be used among laboratories for each class of molecular marker. Second,
laboratories must standardize atedentities and allelic nomenclature. This is complicated for

microsatellites, because different automated platforms generally produce different allelic
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mobilities even in the same laboratoryhese two issues can be resolved by collaborations
among labratories and periodic workshops. Alternatively, rapid standardization of alleles may
be achieved with allelic ladders, without the need for exchanging tissues or DNA. Minimal
allelic standardization is required for single nucleotide polymorphisms (SEB)nly four
easily identified nucleotide states are possible at a nucleotide position.

Third, spatial scales of sampling effort must be consistent among laboratories, so that the most
important spawning populations contributing to a fishery are samplédie allelic
identification among laboratories may not be problematic for SNPs, polymorphisms identified in
one region may not be present in another region. For example, SNP polymorphisms developed
for Alaskan populations may be useful for differentigtiAsian populations from North
American populations, but may be less useful for distinguishing among Asian populations.

Fourth, statistical procedures should be consistent among laboratories. Sampling design and
statistical power influence inferences abqopulation structure, and hence influence the
accuracy and utility of GSI. Sampling design is often complicated by the need to resolve run or
spawning time components of a population. One goal is to achieve consistency in methods used
to aggregate repang groups for GSI. In addition to the completeness of a population data
baseline, the results of mixetiock analyses depend on the timing and sizes of samples from
ocean or river mouth harvests, and on the particular statistical method used to esi@mate t
composition of the mixter (e.g. individuahssignment or proportion estimation). The usefulness

of coastwide analyses depends on standardizing these procedures among laboratories.

These four considerations set the stage for the sharing of geattitodsupport GSI of fishery
samples. The availability of wjp-date, but often unpublished, data is vital to these efforts.
Requests for information may include tissue samples for additional analyses, genotypic or allele
frequency data, summary statistior draft reports. While funding agencies may impose- data
sharing requirements on researchers, laboratories generally receive support from sbhoeess in

and agency sources, each of which may have differenstiateng mandates.

Finding 15. Sharing @ baseline data among laboratories is essential to address-eodst
GSI problems. Data sharing can be hindered by several factors.

Protection by researchers of proprietary information for scientific publication.
Hesitation among to share data for feaat some interpretations of a dataset
may not prove beneficial to their interests.

The first step toward facilitating the easy distribution of data is to establish @asel

el ectrodatctaanee @ accessible to s makfenbtionoler s a
this database would be tamtalogue existing primary genetic data (markers, sample dates and
sampling localities), biological information (population profiles) and biological materials
(tissues, otoliths and scales) available for genetadyais. A metadatabase would also help to

improve the designs of research projects and sampling. This database might include the
following:
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e Existing allozyme, mtDNA, microsatellite, SNP, and EST datasets and where they are
located;

e EXxisting collection®f historical biological material that could be used to extract DNA.
Archived scales and otoliths can be used to estimate allele frequencies in past populations;

e List of past and current genetics projects,
and the natures of the projects;

e Profiles and contact information of active researchers working on the genetics of salmon.

Data sharing can be complicated bther factors. One is the protection by researchers of
proprietary information for scientific jul i cat i on. Another i s agenci i
for fear that some interpretations of a dataset may not prove beneficial to their interests. Different
interpretations of the same data can potentially arise from the use of different statigties or t
inclusion of some samples but not others for mixed stock analysis. Data sharing has traditionally
depended on the goodwill and cooperation of personnel in these agencies. However, when
problems arise among laboratories, cooperation may have to be iempézhby memoranda of
agreements that clearly outline how shared data can be used.

Individual assignments and stock composition estimates for a mixture when source marks
are not definitive

Finding 16. Artificial and natural marks have been useful in satnmanagement to identify
populations of origin of migrating salmon. An important advantage of natural
marks is their complete coverage of all stocks and all individuals in the stocks.
However, natural marks provide less certainty in the source identiificat
individuals than do artificial marks

Artificial and natural marks have been useful in salmon management to identify populations of
origin of migrating salmon. An important advantage of artificial marks is that the sources of
marked individuals arknown with certainty. Therefore, if marking were complete, for instance,
the stock proportions from the marks in a fishery sample would be directly observable and these
would be the maximum likelihood estimator of the catch stock composition. A disaglwaita
artificial marks is their expense in application and in determination of the source at recovery. As
a consequence, artificial marking is often incomplete, as neither all stocks nor all individuals in a
stock are marked. The lack of marks for somelstan a mixture is highly problematic for
assessing mixestock composition.

Natural marks include scale features, parasites, and genotypes. The important advantage of
natural marks is that they provide complete coverage of all stocks as well asdfvédiuals in

the stocks. However, natural marks provide less certainty in the source identification of
individuals than do artificial marks. The relative frequencies of the natural marks differ among
populations and provide some information to probaimb#ly separate mixture individuals to

their sources.

Finding 17. The relative frequencies of the natural marks differ among populations and
provide some information to probabilistically separate mixture individuals to
their sources. Both the sourcesmdividuals and the stock composition of the
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mixture must be estimated and two general approaches to this dual estimation
problem are possible.

a. Classical individual assignmentgethods have been less commonly applied
in fisheries research.

b. Mixture moddéing methods are more widely used in fisheries research with
both frequentist and Bayesian approaches. Mixture modeling is generally
superior to the classical individual assignments method for the dual
estimation problem. Although the cost of baselineldpweent and of
processing sampled mixture individuals for natural marks may be significant,
the cost of statistical estimation is negligible.

Finding 18. The Bayesian approach extends mixture modeling to include estimation of both
the stock compositioma the allele relative frequencies in contributing stocks.

Because the source identity of an individual is almost never certain from its natural marks, both
the sources of individuals and the stock composition of the mixture must be estimated. Two
generalapproaches to this dual estimation problem are possible. The first is termed the classical
individual assignmentsethod, and although not recommended for the dual estimation problem,
it has been commonly applied in fisheries research. The classicatirdiassignments method

is used here to motivate and explain the second, and recommended, approach basgdeon
modeling Mixture modeling methods are well developed and more widely used in fisheries
research with both frequentist and Bayesian vessevailable. Mixture modeling is generally
superior to the classical individual assignments method for the dual estimation problem.
Although the cost of baseline development and of processing sampled mixture individuals for
natural marks may be significarhe cost of statistical estimation is negligible.

An ostensibly reasonable approach to the dual estimation is the classical individual assignments
method. This method includes two steps applied once to the mixture sample: 1) assignment of
the mixture ndividuals to source populations, and 2) estimation of the mixture composition from
the assignments using multinomial sampling theory. In the first step, the multilocus genotype for
an individual is matched to the population with the most frequent occer@nthe genotype
(maximum frequency or MAF rule). Promotion of the MAF rule is misleading because a superior
rule, the maximuma posteriorior MAP rule, has a lower expected frequency of assignment
errors for arbitrary mixtures. The MAP rule assigns eadlvidual to the source stock estimated

to contribute the greatest proportion of its genotype to the mixture. The MAF and MAP rules
agree only when stocks are equally probable in the mixture. A justification for using the MAF
rule may be a lack of inforation about the mixture composition, but after assignments are
completed, some knowledge about stock composition becomes available. In general, the
estimated composition from the assignments differs from the assumed equal composition.
Additional cycles ofassignments and estimation of the mixture composition take advantage of
the new knowledge about the mixture composition, but the classical individual assignments
method fails to do so. Also, at the second step, the classical individual assignments method,
ignores the probable errors in source assignments and, hence, fails to account for possible bias
and uncertainty in the stock composition estimate.
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Mixture modeling takes advantage of new knowledge about mixture composition as individuals
are assigned teources. Frequentist and Bayesian versions of this approach have been developed.
In the frequentist approach, the conditional maximum likelihood estimate of stock composition is
found by nonlinear search to maximize the probability of the natural madksriong in the
mixture sample when considered as a function of the unknown stock proportions. The
conditional maximum likelihood method essentially allocates each mixture individual to the
source stocks in proportion to its estimated posterior source lplitbs, i.e., the estimated
fractions of individuals with the same natural mark in the mixture that are contributed by various
source stocks. If necessary, individuals can be assigned as entities to the sources using the MAP
rule. The conditional maximunfikelihood estimate of the mixture composition equals the
averaged allocated proportions among mixture individuals.

The Bayesian approach extends the mixture modeling approach to include estimation of both the
stock composition and the allele relativeequencies in contributing stocks. A chain of
assignments and mixture composition estimates are generated, in which mixture individuals are
randomly assigned at each step in the chain to the source stocks with probabilities equal to their
current estimategosterior source probabilities. Relative frequencies in the source baseline
samples and the stock composition of the mixture are then updated from the most recent
assignments of mixture individuals. Chain averages of the posterior source probabilities for
individuals can be used with the MAP rule, if their assignments as entities are needed.

Empirical evaluations with individuals drawn from known populations indicate that the mixture
modeling method performs considerably better at estimating stock pomgothan does the
classical individual assignments method. For example, classical individual assignments correctly
identified only 15 of the 56 wild Atlantic salmon (27%) in a sample from a stock of a
Scandinavian river, but the Bayesian posterior avevaage91%, and the MAP rule (applied to

the chain averages of posterior source probabilities for individuals) correctly identified 55 of the
56 individuals (98%).
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Aggregating Chinook Stocks for Harvest Management and an Improved Genetic Stock
Identification

Finding 19. A comprehensive knowledge of all stocks is unnecessary if stocks can be
aggregated into groups by assuming that stocks in a group share common
characteristics that subject the stocks to the same or similar exploitation rates.
Similar biology and recency of common ancestry, measured by genetic similarity,
should govern how stocks are aggregated.

Finding 20. Aggregation schemes inconsistent with genetic relationships among stocks reduce
the accuracy and precision of GSI, thereby limiting tisefulness of genetic
analyses, and compromising the ability to manage fisheries with a full suite of
data. The use of phylogenetic methods to identify genetically similar populations
increases GSI accuracy. A Statistical Networks procedure (SN) wassup
two other aggregating procedures for identifying monophyletic groups of Chinook
salmon populations in Puget Sound.

Finding 21. Standard quantitative stock aggregations should be designedwatesto be
consistent with the phylogenetic relatships of stocks, and to maximize value to
address specific fishery management needs.

Harvest management of salmon requires information on temporal and spatial distributions,
exploitation rates, escapements, spawner abundance, productivity, and bagig tiatocks.

These variables are difficult to quantify for every stock potentially encountered in a fishery. A
comprehensive knowledge of all stocks is unnecessary if stocks can be aggregated into groups by
assuming that stocks in a group share commoractexistics that subject the stocks to the same

or similar exploitation rates. Similar biology and recency of common ancestry, measured by
genetic similarity, should govern how stocks are aggregated. However, many aggregations used
for management includstocks of similar geography, rdiming, and management activity, but

not necessarily genetically related stocks.

As an alternative to stock groupings in TCT reports and NOAA Fisheries assessments, we
designed a method based on Rannala and Mountain (a@@7ilustrated it with data for 25
Chinook salmon stocks in Puget Sound and the Strait of Juan de Fuca (GAPS 2.1) and for
additional samples collected by WDFW in the past year. First, we calculated the probability that
a multilocus genotype occurred iaah of the 25 stocks and averaged these probabilities for the
25 stocks. Second, these probabilities were randomized 10,000 times, and a new mean
probability for each population was calculated after randomization. If the observed mean
probability was equab, or greater than, the %ercentile of the randomized probabilities, we
considered the observed mean probability to be significant. Third, we graphically joined
populations that had significant mean probabilities into a network (Figure 4). Thislprece
revealed two large clusters of stocks connected to each other at two points: Lowei Skagit
Samish rivers and Snoqualmiisqually rivers. Nooksack River Spring and White River Spring
Chinook salmon populations were wholly independent, and the Elwh&Dandeness river

28



populations were connected to each other, but not to other populations. Five stock groups could
be distinguished within the two large clusters that were similar to the TRT groups.

We then constructed a phylogenetic tree using sharetbsalg 13 microsatellite loci and
neighbo¥joining rooted by two Middle Fraser River stocks to search for monophyletic groups.
Stocks within a monophyletic group are expected to have similar development, life histories,
behaviors, and ocean distributiom®d would therefore likely occur in a particular fishery. If
true, management of monophyletic groups have greater predictive power than management of
polyphyletic or paraphyletic groups. Hence, the use of monophyletic stock groups would be
superior in a havest management program. For the data here, none of the three aggregating
procedures yielded monophyletic groups, but the Statistical Networks procedure (SN) was
superior to the other two aggregating procedures. With both the TRT and SN procedures, the
Puget Sound Spring/Summer group was paraphyletic with respect to the Skykomish,
Snoqualmie, and Lower Skagit Fall runs. The TRT procedure also produced a paraphyletic
Snohomish River group. All groups in the CTC procedure were paraphyletic, except for Hood
Canal and for Strait of Juan de Fuca (which was not considered by the CTC).

Noﬂ%ork Nooksack

Figure 4. Statistical Network of Chinook salmon populations in Puget Sound.

GSI error rates for the management groupings generated by the three aygymg#bcols were
estimated with the CAKML procedure (Anderson et al. unpublished). We used 18@%alated
mixtures to estimate error and pooled the stocks within a management group to obtain a single
proportion estimate for the aggregation. This process repeated 10,000 times to produce a
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distribution of estimated proportions. The SN produced the lowest error rates and the CTC
procedure the highest. The median value for four of the five management groups in the SN
procedure was 1.00, while the value fioe fifth group was 0.98. That is, for each group-bak

of the 10,000 runs produced an error rate of 2% or less. The highest error rate was 58% for the
Hood Canal group under the CTC procedure. Some outliers appeared for each grouping method
and weradue to inclusions of different lifaistory types in a population sample.

Fishery managers use stock composition estimates to assess catch allocation compliance and
harvest impacts, which are measured on aggregates rather than on specific stocks§nless

issues are important). Although various rules can be used to aggregate stocks, these aggregations
affect the efficacy of genetic stock identification (GSI). Aggregation schemes inconsistent with
genetic relationships among stocks reduce the accurdgyraaision of GSI, thereby limiting

the usefulness of genetic analyses, and compromising the ability to manage fisheries with a full
suite of data. Standard quantitative stock aggregations should be desigetgideto be

consistent with the phylogenetelationships of stocks, and to maximize value to address

specific fishery management needs.

How different sources of error affect the accuracy of genetic stock
identification

Finding 22. Several sources of error influence the accuracy of GSI estima

a. Sampling of the fishery. Error arises from small sample sizes and from non
random sampling.

Random sampling fails to include all stocks present in the fishery.
Sampling a finite number of genetic markers.

Genotyping error.

Errors on allele frequeries from sampling a finite number of individuals in
baseline populations.

The inclusion of fish in the fishery sample from populations not in the
population baseline also introduces error.

®cooo

—h

One important step in improving GSI accuracy is to identify #iréous sources of erro@ne

source of error is from sampling of the fishery, but can be reduced by enlarging samples sizes, or
by sampling larger time periods or more fishing boats. A second source of error arises even when
the fishery is sampled randomiyre random sampling simply fails to include all stocks present

in the fishery. Again, larger fishery sample sizes may reduce this source of error. A third source
is due to the sampling of a finite number of loci. The inclusion of additional markers can
potentially help to reduce this error. A fourth source of error is due to genotyping error in the
laboratory. A fifth source arises from errors on allele frequencies from sampling a finite number
of individuals in baseline populations. Lastly, the inclusibfish in the fishery sample from
populations not in the population baseline also introduces error. Here, three of these sources,
fishery sample size, locus sampling, and baseline dfledgiency estimation are examined with

a set of empirical data far Chinook salmon fishery off southeastern Alaska.
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Finding 23. Partitioning of total expected square error (ESH) variancelike variable,
including the effect of biéisinto components b, ¢, and e showed that the largest
source of error was due to uncertées in allele frequencies in baseline
populations (87.5%). A smaller proportion was due to fishery sampling (9.5%)
and a very small proportion is due to genotypic sampling (2.7%). As the fishery
used for this study was typical of other fisheries, thesalts likely show general
trends for GSI estimates for other fisheries.

A convenient measure of how much estimates are expected to be wrong is total expected square
error (ESE). This is like a variance, but also includes the effect of bias. The gophrsition

ESE into three components. Calculating the portion of the ESE due to baseline deficiencies
requires knowledge of baseline allele frequencies with certainty. However, the problem is that
these allele frequencies are only based on estimatesmpr@vement is to adjust population

allele frequencies to account for the increase in apparent divergence among populations due to
finite sampling. Here, an unpublished algorithm was used to decompose the ESE into three
sources of error in GSI estimates fbe Chinook salmon fishebased on the GAPS population
databaseThe largest source of error was due to uncertainties in allele frequencies in baseline
populations (87.5%). A smaller proportion was due to fishery sampling (9.5%) and a very small
proporton is due to genotypic sampling (2.7%). As this fishery was typical of other fisheries,
these results likely show general trends for GSI estimates for other fisheries.

Finding 24. When the level of differentiation among baseline populations is lgy (6.01),
increased sampling will improve GSI accuracy. In other cases, statistical
approaches can be used to improve baseline allele frequencies with two
approaches.

a. Generalized expectation maximum algorithm uses mixture samples to improve
allele-frequendges estimates in the baseline populations. This approach is
incorporated into available Bayesian GSI methods.

b. The use of spatial models can be used to improve -ditkd@iency estimates
by assuming that nearby populations tend to be similar.

Further analges show that when the level of differentiation among baseline populations is low
(Fst< 0.01), increased sampling will improve GSI accuracy. In other cases, statistical
approaches can be used to improve baseline allele frequencies. One approacheais to use
generalized expectation maximum algorithm that uses mixture samples to improve estimated
allele frequencies in the baseline population. This approach is incorporated into available
Bayesian GSI methods. Another approach might be to use spatial madgsdoee allele
frequency estimates by assuming that nearby populations tend to be similar. Models based on
this assumption are used in epidemiology to map disease occurrence.

Finding 25. The magnitude of error from unsampled source populations cantjadiiebe
estimated with three approaches.

a. Simulations to examine the impact of excluding some existing populations
from baselines.
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b. Spatially explicit models of population structure can be constructed to
estimate allele frequencies of unsampled popaati and these estimates
could be used in conventional GSI simulations.

c. Bayesian missingata model may successfully identify unsampled
populations contributing to a fishery.

Other problems were not addressed in the simulations presented here. Thexmngssource of

error is unsampled source populations. Three approaches could be used to evaluate the
magnitude of this problem. First, simulations could be made to examine the impact of excluding
some existing populations from baselines while keepiamtim mixtures, to which GSl is

applied. Second, spatially explicit models of population structure could be constructed to
estimate allele frequencies of unsampled populations, and these estimates could be used in
conventional GSI simulations. Third, a Bsyan missinglata model may successfully identify
unsampled populations contributing to a fishery.

Finding 26. Error in GSI estimation afbw-contributing stocks in a mixture is difficult to
evaluate, but can be reduced in partlésger fishery sampleizes. Current GSI
algorithms tend to bias stock composition estimates toward 1/k, where k is the
number of stocks contributing to the baseline.

Another problem is error in the estimationtioé frequencies of lowgontributing stockslf a

stock of fish @curs at a low frequency in a fishery, a large fishery sample size is needed to
accurately reflect the composition oetlishery. Current GSI algorithms tend to bias stock

composition estimates towardkliherek is the number of stocks contributing teetbaseline.

Hence, estimates of the frequency of a rare stock in a fishery will be biased upward. This bias is
greatest when a rare stock is genetically similar to an abundant stock, because fish from the
abundant stock ar e |Hfroretheyrard stock;ithés wili not be batatkcedn 6 f o
by mistakes in the other direction, because there are fewer individuals of the rare stock to be
misidentified.

Both simulations and empirical approaches can be useful, but recent experience has

demonstraté the limitations of relying on simulation, which assumes the neutrality of alleles. In
particular, the choice of highraded markers showing large differences among populations can
violate assumptions of neutrality, as these markers may be under tleadeflof natural

selection, or may be neutral, but show larger than average differences between populations.
Hence, the examination of empirical datasets may provide the best means of assessing power and
of identifying components of GSI error.

Intra -annual and inter-annual variation in stock composition of the Queen
Charlotte Island troll fishery 2002-2006

Finding 27. GSI estimates provide an opportunity to understand important features of salmon
migration and spawning biology.eason comparisons oSGestimates in an
area off northern British Columbia revealed contrasting abundance trends for
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fish from different areas. These estimates show shifts in stock compositions of fish
in the troll fishery during the fishing season, which likely reflect mignat
patterns of various stock groups past the Queen Charlotte Islands.

Finding 28. Annual comparisons of five major stocks in either the troll or commercial catches
showed shifts for some regions but not for others. Annual variation was most
pronouncedor Oregon fish with the highest proportions in August 2004. Fraser
River fish also increased in 2002 and 2006, likely reflecting the strong returns to
the Thompson River drainage in those years.

Finding 29. Seasonal and annual comparisons are possihlg after a largescale
population baseline has been established to identify stocks potentially
contributing to a fishery. Seasonal and annual comparisons require frequent
sampling during a fishing season to provide an accurate view of changes in
contributing stocks.
Results from mixegtock analysi®f Chinook salmon harvested off northern British Columbia
provide an opportunity to understand important features of salmon migration and spawning
biology. Stock compositions for Chinook salmon in eithertreditfisheries or commercial troll
fisheries off the northwest coast of the Queen Charlotte Islands from 2002 to 2006 varied over
the monthly sampling cycle from April through September.

In-season comparisons of these samples revealed contrastingradmutrdads for fish from
different areas (Figure 5). The abundances of fish from Washington and Oregon progressively
increased during the season fror6% in April to 2258% in September. Chinook salmon from
California followed a similar trend, but with rolu lower abundances. Fish from the Columbia
River, however, were most abundant early in April (44%) and least abundant in September
(11%). In contrast to these early or late proportions, fish from the Fraser River were prevalent
mid season in Mayuly (27#36%). Fish from the east coast of Vancouver Island comprised a
minor component of the fishery-@% monthly). However, fish from the west coast of

Vancouver Island (WCVI) peaked at 19% in April and declined to 3% in September. The
proportion of fish from arthern British Columbia was highest in April (7%), and declined
gradually to a low of 1% in September. These analyses clearly indicate that stock compositions
of fish in the troll fishery change during the course of the season and likely reflect theamigra
patterns of various stock groups past the Queen Charlotte Islands.

Inter-annual comparisons of the proportions of five major stocks in either the troll or commercial
catches showed shifts for some regions but not for others-anteral variation wamost

pronounced for Oregon fish in August {45%), with the highest proportions in August 2004.
Contributions from the Columbia River and Washington were relatively stable among years.
Fraser River fish displayed high proportions in all months duri®@ 2td 2006, likely

reflecting the strong returns to the Thompson River drainage in those years. In most months, the
proportion of WCVI fish was small relative to other major stocks, and thus the absolute level of
annual variation for this stock was leesxcomparison the other stocks.

The comparisons presented here were possible only after sstaigepopulation baseline was
established so that all the stocks potentially contributing to a fishery could be identified. While

33



proportion estimates are anportant starting point, abundance data or additional sampling may
be required to extrapolate the results of a comparison such as this to other regions or fisheries.
Abundance data are also required to refine inferences of distribution and migratiorspattern
important result of these-season and inteannual comparisons is that reasonably frequent

sampling during a fishing season is required to provide an accurate view of the presences of
various stocks contributing to a fishery.
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Figure 5. GSI estimates of population origins
for April and September in northern British Columbia Chinook fishery.
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MAJOR RECOMMENDATIONS

Recommendation 1.Support continued development of genetic markers (particularly for SNPs
in sockeye salmoroastwide)

a. Use appropriate lessons from the GAPS approach to marker standardization for
the development of population baselines for additional species.
b. Develop appropriate markers for use in a coasie baseline.

Genetic markers have become firmly éfithed in the toolbox of methods used in the fishery
management of Pacific salmon. As new markers and statistical methods become available they
should be incorporated into this toolb@ienthey improve population resolutiowhenthey

can be genotypedith high-throughput methods, anehenthey are suitable for addressing

broader problems in fishery management.

New markers and methods of genotypic analysis must be standardized among laboratories to
support the development of coagtle data baselas for the various species of Pacific salmon.
Until recently, microsatellites have been the marker of choice of most laboratories and great
effort has beemadeto standardize loci and alleles. This standardization process in Chinook
salmon has producedeltarge GAPS baseline that is used in many regional andwaest
applications, including but not limited to GSI. Many of the lessons learned from the creation of
the GAPS baseline can be applied to the development of baselines for other speciehiéOne is t
use of allelic ladders to standardize genotyping among laboratories.

The standardization of SNP markers, on the other hand, is easier because SNP variants are
defined by base changes at a specific nucleotide site in a DNA sequence that can be easily
recognized among laboratories. Nevertheless, discrepancies among laboratories may still arise
from handling errors, or from the use of different assay chemistries. Standardization of either
marker type is relatively simple, but it is not yet clear in pcattpplication how

standardization costs will compare for the hundreds of SNPs that will likely be required to
compare to coastide microsatellite datasets.

Recommendation 2.Maintain and improve existing standardized microsatellite population
baseines

a. Existing microsatellite baselines provide the only means of addressing some
management problems.

a. These baselines should be maintained and extended to provide greater levels of
population resolution.

Microsatellites are the current interagencyd&d for use in a broad range of applications in
population and ecological genetics of Pacific salmon. Even though SNPs hold considerable
promise, especially in specific GSI applications, the current capacity for addressing problems
with microsatellites Isould be maintained until coaside comparisons with SNP markers have
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been made to decide future directions. Both microsatellites and SNPs appear to provide similar
levels of population resolution and both classes of marker are capable of supporting the
development of numerous additional markers. However, at the moment sevgoahgn

applications are possible only with microsatellites, because the utility of SNPs, in especially
coastwide applications, has not yet been demonstrated.

Recommendation 3.Empirical comparisons of SNPs & microsatellites on a ceade scale,
with focus on Chinook and sockeye.

a. Even though SNPs often provide a high level of resolution for discriminating among
regional populations, can they be effect in a cagisie baselie?

b. The particular sample of SNP or microsatellite loci for a regional comparison can
determine the outcome of a comparison. Hence, appropriate marker should be used in
a comparison.

c. Simulations can be used to assess the level of resolution that a markeiegrto
discriminate among a group of populations.

d. Blind samples of known origins should be used in a GSI analysis to examine resolution
of marker types.

e. Evaluations between marker types should be posed in terms of cost for a given amount
of population esolution, not just the cost of genotyping.

Members of the Genetics Workgroup agreed that the most urgent recommendation was an
empirical evaluation of microsatellites and SNPs in a emat setting. The question of

resolution and numbers of SNPs reqdifor coastvide applications are best determined
empirically with direct comparisons of SNP and microsatellite baselines. To date, this analysis
has not been possible because SNP data are largely local or regional. The onyden8stP

data sets arstill sparse both in terms of the number of lineages, populations, and individuals.

Some in the Pacific salmon research community believe that SNPs will eventually replace
microsatellites in most applications, including GSI. At this point, however, mdRsSperhaps

many moré will be needed to provide the broad utility now enjoyed by microsatellites. The

hope by some is that this transition woptdceedapidly, but experience is showing that the
development of SNP markers and assays is more expensitienarmbnsuming thamitially

envisioned. Without a substantial increase in funding, it is likely to be some years before SNPs
reach widespread implementation, especially in descriptive population genetics and a wide range
of nonGSI conservation and resation applications. SNPs will undoubtedly play an

increasingly larger role in salmon GSI applications, although the timing of that transition remains
unclear.

These urgently needed comparisons should also account for ascertainment bias in the selection
of, especially SNP, markers. These hgthded markers have been highlighted as a limitation of
SNPs in some population genetic studies. Also required in these comparisons-iseebst

analysis of the amount of population resolution provided fordtiele combinations. Despite

the optimism that the cost of developing SNP markers would be comparable to cost of
developing microsatellites markers, the cost of SNP marker development for most salmon
species has been substantially higher than that foosatzllite markers.
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Recommendation. 4 The mtential of a marker type to resolve features of salmon population
dynamics in addition to GSI (mixed stock analysis) should be considered
before adopting the marker.

a. Most models of population structure assuhegelective neutrality of alleles.
b. High-graded markers showing strong differences among populations may
improve GSI estimation, but produce biased estimates of demographic

parameters.

In theory, both microsatellites and SNPs should work equadliyfor GSI, and with avoidance

of ascertainment bias, perhaps all applications. In practice, however, there is a danger that the
development of only higaraded markers for GSI applications may greatly limit the traditional

use of genetic markers for a vayietf other applications in population genetics, and

conservation. At present, a greater number of population problems can be addressed by
microsatellite baselines than by SNP markers, because of the greater availability of microsatellite
markers and the lge coaswide baseline data sets.

Recommendation 5 Support studies investigating sources of GSI error. Preliminary results of
theoretical and simulation studies point to ways to improve GSI accuracy.

a. Investigate ways of improving alleleequency esmates of populations in
baseline. Only marginal gains in accuracy can be achieved with larger samples of
fishery mixtures and genetic markers.

b. Support studies of other sources of GSI error, including upward bias of low
frequency stocks in mixture, andssing baseline populations.

c. Adoptmixture modelingor GSI estimation.

Improvements in statistical methods for boosting the accuracies of GSI estimates are far less
costly than the developments of new higlsolution molecular markers. New markers mag als
require modifications of established methods. Hence, studies of statistical methods should be
encouraged. One important area concerns the best algorithms for making GSI estimates. The
statistical treatise presented in Appendix D concluded that mixtudelmg and not individual
assignments and summing prouddgeater GSI accuracy. Strides have also been made by using
Bayesian methods to estimate stock compositions and to improve baseline allele frequencies.
Errors in baseline allelrequency estimatiowereidentified in an analysis presented in
Appendix F as an important source of GSI error. Additional GSI problems await rraeptim
statistical treatment. One important problem is the upward bias in estimatesfoédosncy

stocks on a fishery sangl

Recommendation 6.Reexamine methods used to aggregate baseline stocks into reporting
groups to increase GSI accuracy.
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In the same vein as the previous recommendation, improvements in stock aggregation methods
can greatly improve GSI accuracy withmmhal costs. In the absence of a comprehensive
knowledge of stock attributes, stock aggregation can be used to group populations with common
characteristics that subject them to the same or similar exploitation rates. Similar biology and
recency of commoancestry, measured by genetic similarity, should govern how stocks are
aggregated. Presently, many aggregations used for management include stocks of similar
geography, rutiming, and management activity, but not necessarily genetically related stocks.

Recommendation 7.Support summary studies of seasonal and makir GSI results to better
understand the ocean biology of Pacific salmon.

Although GSI estimates in mixestock fisheries can provide-geason information to manage
escapement, collection$ GSI estimates for a fishery during a season or among years can

provide insights into the ocean biology of particular stocks. Several datasets are now available
that can be used to make these inferences, and the PSC should encourage the syntheses of thes
datasets into a broader ce®astle picture of Pacific salmon ocean migration pathways and
abundances.

Recommendation 8.Support collaborations between geneticists and population modelers and
harvest managers to enhance the utility of GSI results.

Many issues were not addressed in the time available to the Genetics Workgroup. The overall
goal of the workshops was to explore ways that GSI could be better incorporated into fishery
management. However, the focus of the WG was largely on the develogment molecular
markers and on improvements in statistical procedares not on the broader issues of

modeling and managemefthile the two workshops provided opportunities for geneticists,
statisticians, modelers, and managers to exchange views, rasyundleesis of genetics into these
other fields still remains to be achieved. The summaries and views presented in this report
represent a start toward this synthesis.
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"While every attempt was made to produce a consensus view of marker development and

future applications, the conclusions expressed in this document may not representdiod view
all authors.

’%6Genetic stock identificationé (GSI) is a

of genetically discrete populations and &émi xe
however, GSI has become synonymous with MSA.
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INTRODUCTION

New technologies periodically appear and should be considered in applications of genetic
methods for the management of salmon species of interest to the Commission. Allozymes were
replaced with microsatellite as a marker of choice in salmon populatiorestuaecause
microsatellites offered several advantages (see BoxeAlSmall et al. 1998; Beachast al

2001). A new technology, single nucleotide polymorphisms (SNPs), has been developed for
several applications in genomic and population researchhasdrecently been applied to
resolving management problems in Pacific salmag.Smith et al. 2005b). The goal of this
section is to discuss the relative merits of these molecular markers for GSI, but this discussion
has to be placed in a broader persipedhan just the focus on a single application.

A new population marker should possess three characteristics: 1) equal or greater resolution of
population differences than for existing markers, 2) high throughput genotyping for applications
often requiing the analysis of thousands of fish annually, and 3) suitability to continue -a well
established tradition of research on salmon population biology. Abeosffit analysis of these
factors is needed before a new marker can displace previous markées ashopted for general

use. The core use of molecular genetic markers in Pacific salmon has been to describe various
aspects of genetic population structure; that is, to estimate the degree of genetic connectivity
among populations, inbreeding, migratiamdaeffective population size, among other variables.

An extension of this has been the use of molecular markers to make individual assignments to
parents or populations, or to estimate stock proportions in rsitaetk harvests, and this latter
applicationis the focus of this document (Table Al).

A large toolbox of population genetic models can be used to interpret genotypic data. Genomic
markers have provided novel insights into numerous kinds of demographic events in Pacific
salmon, including the estimian of genetically effective migration rates (Grant 1997) and
population sizes (Waples 1990), inbreeding and outbreeding, and historical founding events (e.g.
Teel et al 2001; Beachanet al 2003). Most models used to make these kinds of population
inferences assume that the markers are neutral to natural selection. Markers showing biased
allelefrequency differences among populations because of regional selection are unsuitable for
these models. Hence, some loci are more useful than others to addsesesiearch problems.
While several classes of genetic markers, including allozymes, denaturing gel gradient
electrophoresis (DGGE; Fischer and Lerman 1983), and amplified fragment length
polymorphism (AFLP; Voset al 1995), have been useful for some Gfpplications €.g.
Beachanet al 2005; Flannergt al 2007), these markers have had limited in their flexibility for
addressing a wide gamut of problems.

One important distinction among markers is whether a technology defining a marker type
surveysgeneic variability at a locus oassaysa predetermined polymorphism. Polymorphism
assays, while useful for some population applications and mixed stock analysis, are limited in
their use to measure levels of genetic diversity. The use of genetic surveysrtzakebeen
instrumental for detecting loss of genetic diversity through poor hatchery practices (Allendorf
and Phelps 1980; Ryman and Stahl 1980; Busack and Currens 1995) or through founder events
and population bottlenecks (Luikat al 1998; Garza an@illiamson 2001).

42



Information Box 1. Genetic markers

Genetic markers reflect different classes of genetic variability. For example, allozyme ma
reflect nonsynonymous coding changes in DNA that produce differences in size oe dfarg
protein product. These two properties can facilitate electrophoretic separation in a suppo
medium. Microsatellite markers are based on changes in the number of tandem repeats.
insertion or deletion of a repeat motif can be detected with electrophdewyle nucleotide
polymorphisms (SNPs) are singlase differences assayed by interrogation of a single

provide the basis for genetic assignments. The portion of a 2yéesce that is polymorphic
among the taxa of i1interest is called a
been developed to allow the inference of either the DNA sequence or some property of t
DNA marker.

nucleotide position in a DNA sequence. DNA sequence polymorphisms among individua

Microsatellites have been used over the last decade for&&€d GSI application®(g.Small

et al 1998; Beachanet al 2001; Beachanet al 2004b; Beachanet al 2007a) and are the
current interagency standard for a broad eawnd applications in population and ecological

genetics of Pacific salmon. However, SNPs hold considerable promise, especially for specific
GSI applications. Although SNP assays (largely with restrictions enzymes) were available before

the development of itrosatellite methods (Botsteat al. 1980; Moraret al 1997), the lack of

high-throughput assays made SNPs less appealing than allozymes and microsatellites. The

development of novel chemistries facilitating higpnoughput genotyping (Kwok 2003) has

stimulated renewed interest in SNRsg. Smithet al. 2005b).

BACKGROUND

The first SNPs for fishes were developed in model species (rainbow trout and Atlantic salmon)
to conduct genomwide screens for quantitative trait loci. Large numbers of SNPs ¢1600 t o

106s of 10006s) have been surveyed in rel

ati v

with phenotypic traits of interest. SNPs are gaining popularity in population genetics studies,

particularly because they offer promise in resolving adepariation among populations (Led
al. 2005). SNPs have also recently been used for individual identifications (SetdaloA005),

pedigree analysis (Wernet al 2003), and cultivar selection for breeding programs (Shirasawa

et al 2006).

The lage-scale use of SNPs for population studies is new and the salmon genetics community is

at the forefront in the use of SNPs for mix@dck analysis in harvest samples. Although
microsatellites are the current standard for general molecular geneticheged?acific salmon,

some researchers in the salmon research community believe that SNPs may replace

microsatellites in many applications including GSI. More SNPsrhaps many modewill be

needed to provide the broad utility now provided by microsatelli@nce a SNPs population

baseline is established, a subset of these SNPs can be used for particular applicationgisee Lui
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al. 2005). The utility of SNPs for descriptive population genetics, restoration and conservation
applications remains to be demtrated. Some hoped the transition to SNPs would be rapid, but
experience is showing that it is more expensive and time consuming to develop robust SNP
assays suitable for coastde applications than to develop microsatellites. Without substantial
fundingthe widespread implementation of SNPs is likely to be some years away.

DIFFERENCES BETWEEN SNPs AND MICROSATELLITES
Resolving power

Several factors potentially influence the level of resolution achievable with a molecular marker.
Theoretical results skothat for markers uninfluenced by natural selection, the resolution of
population differences (Rymast al. 2006) or of populations in a mixed fishery sample
(Kalinowski 2004) depend on the number of independent alleles at loci. The number of
independenalleles for a locus isi 1, wherer is the number of alleles segregating at the locus.
Consequently, a single SNP locus, if assayed for only one nucleotide change, has one
independent allele, whereas a highly polymorphic microsatellite locus can hazé¢haor50 or

more independent alleles.

The independerallele rule, however, fails to capture the interaction between the numbers of loci
and alleles in empirical baselines in providing statistical power. A simulation study of
assignments of individuak® parents found that adding alleles and loci interactively improved
assignments (Bernatchez and Duchesne 2000). The success in allocating individuals to
populations, on the other hand, was more influenced by an increase in the number of loci, but for
a given number of loci, gains in success were achieved by including more alleles. In the
Bernatchez and Duchesne model, moderately polymorphic loci with @lleles appeared to
provide the best allocation success.

However,empirical evaluations for sockeygalmon showed that loci with larger numbers of
alleles provide greater resolution among populations (Beaataah 2005). Loci with large
numbers of alleles also provide greater resolution than less polymorphic loci among Chinook
salmon populations regiatly (Beachanet al. 2007a, b) and across the North Pacific (Beacham

et al 2006a, b). Loci with 40 alleles were among the poorest performers for discriminating
among populationdn the latter studyBeachamet al 2007b), the resolving power of 9 SNPs
was similar to that of a single microsatellite locus withR2P7alleles. Geographically largeale
comparisons between microsatellites and SNPs remain to be made.

Another factor influencing power is the interaction among the number of alleles at a locus
samples size, and the accuracy of frequency estimation. As the number of alleles per locus
increases, so should the number of individuals in the baseline. For example, in a SNP sample of
100 alleles (50 fish), highto moderatdrequency alleles are estated with some confidence

with an error given by multinomial sampling theory. For highly polymorphic microsatellite loci
(e.g.50 alleles), a population sample of 50 fish produces a proportionately larger error on allele
frequencies. Rare alleles oftemma&@n unsampled.
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Table 1. Characteristics of molecular marker used in fishery management

Characteristic or use

Microsatellites

Single nucleotide polymorphisms
(Nuclear loci)

Statistical power

Highly polymorphic loci provide the most pow
per locudor detecting differences between
populations

Biallelic SNP loci have less power per locus tha
highly polymorphic microsatellite loci. Assuming
selective neutrality and random selection of loci
(no ascertainment bias), the number of alleles
roughly correponds to statistical power.

Marker development

Moderate cost. GenBank sequences availableg
and crossspecies PCR amplifications often
possible

Presently, screening for polymorphisms is
somewhat costly, but costs are expected to dro
with development of adtional discovery
technologies. Crosspecies SNPs assays genera
not possible. Genomic duplications complicate
SNP development

Routine genotyping

Moderate costs. Multiplexing of several loci
possible. Bulk runs bring down costs

Multiplexing in develpment with the promise of
low perlocus costs with bulk analysis. Biotech ¢
corelab genotyping of SNPs possible.

Parental assignment

Large amounts of statistical power

Large amounts of statistical certainty when
numbers of when large numbers of SNPskais
are used

Mixed-stock analysis

Large amount of statistical power for regional
and coastvide GSI. Depends on level of
divergence among populations

Large amount of statistical power demonstratec
for regional analyses. Depends on level of
divergenceCoastwide power of regionally
developed SNPs not tested.

Within-population genetic
diversity

Relative comparisons can be made among
samples. Surveys existing diversity.

Affected by choice of SNPs. Assays a
predetermined polymorphism, and marker
frequences may be influenced by selection.

Inbreeding

Inbreeding indices, heterozygote deficit

Inbreeding indices can be used, but loss of
information because only two allelic states are
assayed

Detection of outbreeding or
hybridization

Heterozygote excess, hythindices

Heterozygote excess, hybrid indices, but
information content is low because of only two
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alleles. However, the reduced numbers of allelg
may be partially offset by larger numbers of loci

Gene flow (06s

Possible with numerous models evhalleles can

be assumed to be neutral

Natural selection or ascertainment bias more lik
to violate assumptions. Statistical tests for
selection can be used to identify neutral alleles.

Effective population size

Models assume neutrality

Assumption oheutrality may be violated, but tes
for selection can be used to identify neutral alle
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In other applications, a recent study of over 15,840 SNPs (on a SNP array) and 328 microsatellite
loci in humans showed that the information content of randuocrosatellites was four to twelve

times greater, on average, than that of a randomly chosen SNét @lu2005). Howeversome

SNPs were more informative than single microsatellites and this finding suggests that highly
informative SNPs can reduce tmember needed to match the resolution of microsatellite
baselines. Unfortunately, large numbers of SNPs are still unavailable, except for Atlantic salmon
and Rainbow trout, which have been the focus of large scale sequencing studies. This deficit
could pasibly be circumvented by using highly informative SNPs or by focusing on genes
thought to be of adaptive significan@ed.QTLs from other species).

One key difference between microsatellite loci and SNPs is that, unlike microsatellites, SNPs
may not bepolymorphic coastvide. While ascertainment bias (Box 2) can be used to identify
highly informative SNPs for a particular region, a different set of informative SNPs may be
required for other regions or for coasgide baselines. The most effective, higisolution
baselines will likely contain both adaptive and neutral loci, with neutral loci providing strong
regional resolution, and adaptive loci identifying particular local populations. The question of
resolution and numbers of SNPs required for ceoade applications will ultimately be
determined with empirical comparisons of the effectiveness of SNP and microsatellite baselines.

Information Box 2. Ascertainment bias

The use of highly informative SNPs (ascertainmeas)oaids in the choice of markers for
resolving allelefrequency differences among populations. Ascertainment bias can be
advantageous for GSI, but detrimental for other applications in population genetics,
conservation and evolutionary systematics. Havgthis result is not limited to SNPs, as
highly informative microsatellite loci can also be identified.

The better performance of some loci relative to others may be due to two sources:

1). Some alleles show greater than average differences by dh@maeproductive sampling
each generation. This increased resolving power is not due to natural selection.

2) Greater resolution of some loci may reflect directional natural selection (Ford 2002;
Schlétterer 2002). Usually a greater number of SNPsuaveyged to achieve the same leve
of resolution as with microsatellite markers. Hence, a grater number of SNPs, selected
because of their resolving power, may be influenced by selection.

One possible drawback of using markers under selection is théihbadkele frequencies
may be unstable during times of rapid climate change, so that periodic surveys may be
important. For many applications, the effects of natural selection are immaterial, but for
others, such as determining the demographic histofigspulations, they are problematic.
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While mitochondrial (mt) DNA sequences are not currently being used to survey variability
among salran populations, mtDNA variants occur in the repertoire of SNP markers. These
organellar DNA variants are expected to show different patterns of variability from nuclear
variants, because they are maternally inherited, usually without recombinationcati@pliand

occur in an individual as a single haploid copy. This mode of inheritance confers an effective
population size that is about one quarter that of nuclear diploid markers, and hence is subject to
greater levels of random drift among populatiofbis expected high level of divergence
between populations makes them attractive as population markers.

Marker development and throughput: Analysis of cost and time

In a comparison between marker types, several variables in addition to genotypirghoakis

be considered. Although costs per genotype are sometimes used to compare techniques, the cost
per fish for a given level of resolution may be a better metric for overall comparison. Before a
new marker technology can be adopted cweadé, ®sts of replacement must also be
considered. Replacement entails effort to establish and standardize new population baselines and
to implement new infrastructure to provide real time estimates. In some cases, existing
instruments can be used for both microsagalitnd SNP analyses. Alternatively, SNP markers
could be added to microsatellite markers to resolve particular problems not resolved with
microsatellites. Dual laboratory capabilities, however, may be inefficient because of the costs of
additional equipman and personnel trainingDifferences in cost between SNPs and
microsatellites can be broadly described under marker development and routine genotyping.

Marker developmenti Primers for microsatellite markers developed for one species often work
well on rdated species. Thousands of microsatellites have been isolated in various species of
salmon and serve as a starting point for developing new microsatellite markers in other species.
Hence, when a collection of microsatellite markers cannot resolve a upartioroblem,
additional microsatellite markers can be developed rapidly and inexpensively from microsatellite
sequences in GenBank (National Institute of Health DNA sequence repository).

In contrast, SNPs are not usually transferable among speciesububendeveloped anew for

each species. Until recently, the easiest, most cost effective way to obtain SNPs is to search for
polymorphisms in the EST (express sequence tags) and DNA sequence databases of GenBank.
Unfortunately these sequences are largetytéd to rainbow trout and Atlantic salmon. In the
absence of-sttaretsée sOeheuwednc e s, SNPs must be dev
development has been costly and time consuming.-gdaweration technologies that facilitate

the rapid sequencing dbng stretches of DNA may shorten developmental times and costs.
Presently, numerous SNP markers have been developed largely for Chinook, chum, and sockeye
salmon and a few markers for coho salmon (see section on available databases).
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Marker genotypingi Both microsatellite and SNP methods use prigedined polymerase chain
reaction (PCR) amplifications of particular regions of a DNA sequence. One limiting step for
both methods is sample dissection and DNA extraction. Some extraction methods produce DNA
that can be archived longer than DNA extracted with other methods. While some methods of
extraction produce DNA more rapidly, usually methods are used that produeguiaility DNA
extracts with long storage lives. The development of robotic dissectioexénadtion procedures

can improve turnaround times forgeason analyses for both methods.

A core set of microsatellite loci has been standardized in all laboratories associated with the PSC.
Generally, polymerase chain reaction (PCR) is used to angsBction of DNA containing the
microsatellite region with standard PCR primers. This is followed by size fractionation of the
PCR products with an automated DNA sequencer. PCR multiplexing (the amplification of more
than one microsatellite locus at ondecreases the efficiency of the microsatellte PCR
reactions, but can lead to false peaks that can be mistaken for an allele. Another potential
problem is that some alleles are preferentially amplified over others in a heterozygous genotype.

Genotyping osts vary from one laboratory to another and depend not only on the costs of
materials, labor, and genotyping hardwar=g( thermocyclers, DNA sequencers, robotic
pipettes), but also on institutional requirements for cost recovery. Even so, costs for
microsatellite genotyping appear to be similar among laboratories (within a factor of two or
three). SNP genotypes can be assayed by a variety of methods. Most salmon fishery laboratories
present | y-nudleage rebdion implémented with TagMan. The adsfTagMan
genotyping can vary by nearly an order of magnitude, depending on the costs of genotyping
hardware, and the number of SNPs assayed. Thus, the number of SNPs that can be genotyped for
a comparable cost of genotyping microsatellites varies widelgng laboratories (Table 2).
Estimating costs is further complicated because SNP and microsatellite loci contain different
amounts of information depending on the particular application to population genetics or fishery
management.

Table 2. Platforms psently used by laboratories for SNP genotyping with TagMan for the PSC.
ONumber of SNPs to rundé indicates the number
as a typical microsatellite panel

Infrastructure Reaction volume Number of SNPs to run
96-well reader 10015 ¢l 18
384-well reader + robotics 5 ¢ | 42
Fluidigm Nanolitre 87

Opportunities for automated genotyping are greater for SNP analyses. Most genotyping errors
result from humainduced error and not from PCR amplification or instrurakeatrors. Hence,
genotyping methods requiring a greater number of steps by technicians may be more prone to
error than automated methods, especially methods requiring repetitive procedures susceptible to
technician fatigue. Presently, microsatellite ggpotg requires about twice the handling of a

PCR product than does SNP genotyping. However, a microsatellite locus contains, on average,
more than twice as much information as a SNP, so that microsatellites and SNPs may have
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similar levels of experimenwise errors. Costs may be reduced with the acquisition of multiplex
technology or by outsourcing genotyping to a core agency laboratory or commercial laboratory.

Microsatellite scoring requires a greater number of visual inspections of computer images tha
does SNP genotyping. For example, in the analysis of 12 microsatellites in 10,000 fish, a
technician is required to individually assess 12 x 10,000 = 120,000 images. In laboratories that
double score for quality control, two technicians may spend a & alssessing genotypes on a
computer screen. In comparison, a technician scoring 77 SNPs in 10,000 fish would individually
assess either 77 x (10,000/384) = 2,079 images or just 77 images, depending on software. Again,
this number will double in laboraies doublescoring for quality control. In assays of a few
hundred individuals, the difference in effort between microsatellite and SNP genotyping may not
be substantial, so that error due to technician fatigue may be insignificant. However, in assays of
thousands or tens of thousands of fish, SNP automation can give an advantage in the time
required to complete the scoring of genotypes and in error rate reduction. Although per locus
error rates and throughput are favorable for SNPs, the net effect of domwerrates for very

large numbers of SNPs remains uncertain.

In-season Mixed Stock Analysis

In-season fishery management in some areas has been guided by mixed stock estimates in either
test or commercial fishery catches. Allozymes, microsatellites mueéntly, SNPs have been

used for inseason management, which requires rapid laboratory and statistical analyses of as
many as 1000 fish in a day or so. While not all applications require this level of expediency, real
time GSI may become increasingly mamportant, as migration patterns of many stocks shift
annually (Winther and Beacham 2006; Beacham Workshop report). Examplessedsion

mixed stock identification appear in Box 3.

Several factors influence the ability of a marker to facilitate réyidaround times, including

sample preparation (protein or DNA extraction), genotyping, data collection, and data analysis.
Rapid SNP analysis for reaime applications may be somewhat limited. Unless a laboratory has
invested in microarray technologhet number of SNPs that can be surveyed rapidly depends on
the number of thermocyclers available for PCR, because Tagman assays survey one SNP at a
time. Rapid throughput of large sample sizes depends on making hundreds of PCR reactions.
Considerably morefcient genotyping platforms are required for SNPs to achieve similar turn
around times that are possible with microsatellite loci.

Standardization of data across agencies

Standardization of methods and datasets among laboratories is important ®evdlopehent of

a coaswide data baseline for a particular species of salmon. The goal of standardization is to
generate the same set of genotypes from the same samples in different laboratories, and to
generate data in different laboratories that can ebowed into a single dataset. The various
steps for standardizing, based on the experience with GAPS, are outlined in another workgroup
report.
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Microsatellite genotypes consist of relative fragment mobilities, which often vary from one
laboratory to aother because of differences in genotyping platforms. Thus, reproducibility
among laboratories requires that allele sizing be adjusted though laboratory standardization
before new laboratories can add data to a standardized database or use those fitatabasds

stock applications. Coastide standardizations include the use of a common set of loci, the
exchange of tissues or alleles laddexgy.(LaHood et al. 2002), allele curation and periodic
testing.

Information Box 3. Use of mixedstock analysis for iseason management
DFO: Fraser River sockeye salmon

While most Fraser River skeye salmon populations are abundant and support an offshore
fishery, some popul ations have been | i st
Endangered Wildlife in Canada (COSEWIC 2002). Fishery managers were concerned-tha
run spawnerseturning to an endangered population in Lake Cultus would be vulnerable in
fishery. Earlier than expected returns of {aia fish led to high levels of mortality enroute to
spawning areas. Over two months 9300 returning fish were genotyped for b4atedite loci
and one MHC locus (Beachashal 2004b). Samples including as many as 600 fish were
delivered to the laboratory several times a week and results were returned to fishery man
within 91 30 hr. These results showed that the initial remiry of laterun Cultus Lake fish had
been advanced by over 6 weeks. A large pulse of fish entered the fishery in mid August. ]
returns overlapped with Summem fish and precluded harvests of exclusively Suramer
sockeye. The estimated exploitaticate of Laterun Fraser River fish was 13% and fell within
the management objective of 15%. The DFO maintains microsatellite baselines for socke
Chinook, coho, chum, and pink salmon, which have been used for GSI over the past ten
Inthe pastfar years alone, 20,000 fish annual
t i meseasan management of harvests.

ADFG: Bristol Bay sockeye salmon

Over the last two years, ADFG genetics laboratory has used SNP analysigimeeaaixed
stock aalysis to help in the management of the Bristol Bay sockeye salmon fishery.
Approximately 300 sockeye were analyzed every two days for about a month. As many a
fish can be genotyped for 44 SNPs inZlbhrs. New technology has enabled the ADFG to
increase its throughput such that one technician can comfortably screen 20,000 genotyps
about 16 hrs (one day to run the samples, a morning to score the samples, and an aftern
produce mixed stock estimates). New technology is being implementexhthassay 48 fish
for 48 genotypes in one thermal cycler run lasting about 2 hr. If 48 SNPs are used in the | variants
analysis, about 400 fish (8 gene chips) can be genotyped in a short amount of time with cdlbSNP;

thermocycler. As with microsatellites, the time neettedissect samples manually andto |l arise
extract DNA limits rapid analyses. The time for genotype analysis may be further reducedticular
automated methods of DNA extraction. bn or the
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Microsatellite data for Chinook sabn have been standardized among ten laboratories
(http://www.nwfsc.noaa.gov/research/divisions/cbd/documents/gaps_year2 finébedbet al
submitted), for coho salmon between some laboratories (WDFW+CDFO, NOAA
Seattle+USFWS Longview), and for chum salmon (DFO+USFWS Anchorage; DFO+WDFW,
WDFW+NOAA, Seattle, DFO+University of Alaska, Juneau). The cost of microsatellite
standardization has declined substantialig has become simpler and more robust with the use
of allelic ladders (LaHooet al 2002). Standardization of either marker type is now relatively
simple, but in practice, the cost of standardizing hundreds SNP markers forwmmst
applications is yetincertain.

DISCUSSION

The goal of this report was to evaluate the relative merits of microsatellites and SNPs for use in
ocean GSI of Chinook, coho, and sockeye salmon. The shift to a new technology will require
considerable effort and cost, and henoest be undertaken carefully. The choice of a marker
type for application to largecale management problems must be made in view of several
criteria. Among these are greater or equal population resolution than provided by existing
markers, ease and cost genotyping, and suitability of the markers to continue in a-well
established tradition of salmon research using genetic tools to provide insights into the breeding
biology and genetic population structures of salmon.

Allozyme and microsatellite markehswve proved useful in the management of Chinook salmon

in several regions stretching from Alaska to California. The development of awidast
Chinook salmon database (GAPS) has been the foundation for mixed stock analysis in areas
where harvests potenilia impact spawning populations in several jurisdictions. This baseline
provides helpful insights into the population biology, migration patterns and distributions of
Chinook salmon along the coast. At present, a greater number of GSI problems candsedddre

by microsatellite baselines than by SNP markers, because of the greater availability of
microsatellite markers. Hence, several questions of interest to management presently can be
addressed only with microsatellite markers. Microsatellites are ustren when both marker

types provide similar resolution and are presently the only marker type with proven capability for
coastwide, reaitime applications.

Nevertheless, SNPs hold promise for numerous applications. Studies in several taxonomic
groupshave demonstrated that when SNPs are chosen judiciously, small numbers of SNPs can
carry sufficient resolving power for a wide variety of applications, including pedigree analysis in
bovids (Werneret al. 2003), individual identification in wolves (Seddeh al 2005), cultivar
identification for breeding studies in rice (Shirasastaal 2006), and population genetics in
humans (Luiet al. 2005). Smith and Seeb (submitted) have pioneered the use of SNP markers in
population studies of Pacific salmon. Hoxge, it remains to be seen whether SNP markers
should replace existing markers for GSI applications. In the-temg, improvements in
technology may reduce the price of DNA sequencing so that GSI applications could rely directly
on sequence data, rendgrigenotype assays unnecessary.
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SNP markers may improve resolution of some management issues, presently addressed solely
with microsatellites. Opportunities for greater resolution may prompt the use of both markers for
some applications to maximize resadm. The use of a single marker type will depend upon the
resolution provided and cost of analysis of an individual fish. Direct comparisons between
microsatellites and SNPs for salmon stock identification applications have been limited to date,
as SNP bselines are still under development. SNPs showing large amounts of resolution may be
under natural selection and periodic updating of population databases may be important during
periods of rapid climate change.

A PSC Expert Panel (Expert Panel PSC 20@8pmmended that an evaluation be made of a
transition to the use of SNPs for stock identification. Further research is required to determine
whether SNPs are capable of outperforming, or meeting the current levels of performance, of
microsatellite loci nbonly for analyzing coaswide fishery samples, but also for understanding

the biology of spawning populations. To help in this decision process, larger SNP databases are
required to allow empirical evaluations of resolution. Collaborative projects alerway to

collect duplicate tissues for laboratories in the U.S. and Canada. At the same time, established
microsatellite population baselines should be maintained and used to aid harvest management.

An important next step is the empirical evaluatiortha resolving power for the two markers.

This may best be accomplished by focusing closely on one or two spege€hinook and
sockeye salmon), for which coaside microsatellite baselines (standardized for Chinook) are
available, and for which thene a growing SNPs database (largely developed by ADFG). A
coastwide evaluation has not been possible because SNP databases are largely limited to
regional population baselines. Importantly, empirical evaluations should include simulations that
merge highy informative markers of both classes, as the combination of microsatellite and SNP
markers in a single baseline may offer the greatest resolution.
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INTRODUCTION

One step in constructing databases for salmon populations is the development of regional
baselines, usually by agencies with regional management mandates. The developments of coast
wide baselines often ariseofn these regional baselines following a standardization process.
Coastwide allozyme baselines were developed and maintained through collaborations and
workshops to describe and standardize allele nomenclatures. Development of-aidmast
microsatellitebaseline for Chinook salmon was a continuation of this process, but represented a
considerable advance in standardization protocols and data access by making much of the data
accessible over the internet.

The term O6standar di z aibe differ@nt lavels ai soepgratibneameng ma y
laboratories. For example, several laboratories may share a set of markers and allele
designations, but no common set of population baseline dafg(esent state of the steelhead
baseline), or some laboratoriegy share markers, allelic nomenclature and baseline elgta (
present state for coho salmon). While these two scenarios represent steps toward standardized
coastwide databases, neither is as valuable to the Pacific Salmon Commission as the GAPS
Chinookbaseline standardization, which ties together the activities of at least 12 laboratories.

The goal of this section is to summarize existing regional and-ai@dstdatasets with a focus on
coho and sockeye salmon. The following tables of data are sigmsta growing set of regional
and coastvide databases for SNP and microsatellite markers.

MICROSATELLITE BASELINE DATA

Coho salmon

Populations of coho salmon have been sampled by DFO in several areas and examined for 13
microsatellite loci and tv MHC exons. These samples are concentrated in British Columbia
with representative samples from Southeast Alaska and from Washington State (Tables B1, B2).
A large number of samples have been examined for variability at 11 microsatellite loci by
NOAA Fisheries, Seattle from populations extending from southern British Columbia to northern
California (Tables B3, B4). Presently, 61 microsatellite primers developed for coho or other
species of salmon have been used to screen for variability in coho salmtnE%ab
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Table B1.Coho salmonDFO: Regions and populations within regions included in the survey of
variation at 13 microsatellite loci and two MHC exons in coho salmon. Number in parentheses
after the name refers to the location shown in FigureBeacham et al. (2001)

Region Subregion Number of Populations
populations
Southeast 9 Berners (1), Gastineau Hatchery (2), Hidden Falls (3),
Alaska Reflection Lake (4), Indian Creek (5), Margaret Creek (6
Karta (7), Whitman Lake (8), Hugh Smith (9)
Queen North coast 3 Sangan River (10), Awun River (11), Yakoun River (12)
Charlotte
Islands
East coast 3 Deena (13), Copper River (14), Pallant Creek (15)
West coast 1 Tasu (16)
Nass River 3 Meziadin (17), Zolzap (18), Tseax (19)
North coast 1 Lachmach (20)
Upper Upper 3 Kluatantan (21), Sustut River (22), Motase (23)
Skeena drainage
River
Babine River 3 Babine Fence (24), Boucher (25), Upper Babine (26)
Bulkley 4 Toboggan Creek (27), Bulkley River (28), Morice River
River (29), Owen (30)
Lower Mid drainage 3 Kispiox (31), Kitwanga (32), Singlehurst (33)
Skeena
River
Lower 14 Hadenschild (34), Cedar (35), Clear (36), Deep (37),
drainage Kitsumkalum (38), Zymagotitz (39), Sockeye (40),
Schulbuckhand (41), Clearwater (42), Coldwater (43),
Exchamsiks (44), Kasiks (45), Green (46), Ecstall (47)
Central 11 Kitimat (48), Hartley Bay (49), Kitasoo (50), McLaughlin
Coast Bay (51), Atnarko (52), Salloomt (53), Thorsen (54),
Sheemahant (55), Docee (56), Devereux (57), Klinaklini
(58)
Northern 8 Nahwitti (59), Wanokana (60), Stephens (61), Quatse (€
Vancouver Waukwass (63), Cluxewe (64), Glen Lyon (65), Nimpkist
Island (66)
Eastern 8 Quinsam (67), Black Creek (68), Puntledge (69), Big
Vancouver Qualicum (70), Nanaimo (71), Chemain(@g), Cowichan
Island (73), Goldstream (74)
Western 13 Conuma (75), Cypre (76), Tranquil (77), Kennedy (78),
Vancouver Kootowis (79), Robertson Creek (80), Sarita (81), Pache
Island (82), Nitinat (83), San Juan (84), Kirby Creek (85), Sooki
(86), Craigflowen(87)
Southern 6 Homathko (88), Lang Creek (89), Sliammon (90), Squan
mainland (91), Seymour (92), Capilano River (93)
Fraser River Lower 10 Pitt (94), Alouette (95), Stave (96), Inch Creek (97), Norr

drainage

(98), Nicomen (99), Chehalis (10@hilliwack (101),
Kanaka Creek (102), Salmon River (103)
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Upper

drainage
Thompson  Lower
River drainage

North

Thompson

South

Thompson
Puget Sound

Hood Canal
Juan de Fuc:
Coastal

Columbia
River

N

Bridge River (104), McKinley Creek (105)
Spius Creek (106), Coldwater (107), Deadman (108)

Louis Creek (109), Dunn Creek ()1@emieux Creek
(111), Mann (112), Lion (113)

Momich (114), Eagle (115), Salmon (116), Danforth (117
Duteau (118), Bessette (119), Lang Channel (120)
Nooksack (121) Marblemount (122), Wallace (123), Griz
(124), Minter (125), Nisqually (126)

Dewatto (127)

Dungeness (128), Elwha (129)

Quillayute (130), Clearwater (131), Shale (132), Queets
(133), Bingham (134), Willapa (135)

Cowlitz (136), Lewis (137), @Glckamas (138)
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Table B2.Coho salmonRegions, number of collections within regions, and number of
individuals included in the survey of variation at 13 microsatellite loci and two MHC exons in
coho salmon (T. Beacham, DFO)

Number of Number of

Region collectiors individuals
Transboundary 7 70C
SE Alaska 9 145C
QCI 20 140C
Nass 3 75C
Skeena 29 450(
Central Coast 40 585(
South Coast 28 365C
ECVI 22 635(
WCVI 13 430C
Fraser 47 13,30(
Washington 15 140C
Columbia 9 80C
Oregon 10 850
California 4 15C
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TableB3. Coho salmonNOAA Fisheries, Seattle: Population samples analyzed for variation at
11 core microsatellite loci listed in Table B5). [From Van Doornik et al. (2007)]

Region
Subregion Sample
Location size Life stage

British Columbia
West coast Vancouver Island

1 Tranquil Creek Hatchery 81 Adult
2 Upper Kennedy River Hatchery 72 Adult
3 Nitinat River Hatchery 95 Adult
East coast Vancouver Island

4 Nanaimo River Hatchery 96 Adult
5 Cowichan Fish Hatchery 89 Adult
6 Goldstream Salmon Hatchery 96 Adult
Southern BC coast

7 Homathko River 73 Adult
8 Tenderfoot Creek Hatchery 91 Adult
9 Capilano Salmon Hatchery 79 Adult
Lower Fraser River

10 Inch Creek Hahery 78 Adult
11 Chehalis River Hatchery 87 Adult
12 Chilliwack Hatchery 82 Adult
Mid-Fraser Thompson River

13 Dunn Creek 76 Adult
14 Bridge Creek 90 Adult
15 Bessette Creek 79 Adult

Puget Sound
Puget Sounavithout Hood Canal

16 Nooksack Hatchery 95 Parr

17 Ennis Creek, Samish River 140 Adult

18 Skagit Hatchery 87 Parr

19 Fortson Creek 41 Adult

20 Grizzly Creek, Snoqualmie River 105 Adult

21 Soos Creek Hatchery 450 Adult, parr
22 Minter Creek Hatchery 40 Adult
Hood Canal

23 Quilcene Hatchery 141 Adult

24 Rockybrook Creek, Dosewallips River 32 Adult

25 Big Beef Creek 134 Adult, smolt
26 Hatchery Creek, Duckabush River 78 Adult
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27 John Creek, HamermHamma River 86
28 Dewatto River 115
29 George Adams Hatchery 91
30 Kirkland and Fir Creek, Skokomish River 94

Washington coast
Strait of Juan de Fuca

31 Snow Creek 137
32 Dungeness Hatchery 47
33 Elwha Hatchery 186
North Washington coast

34 Hoko River 76
35 Makah Hatchery 143
36 Sol Duc Hatchery (summer run) 96
36 Sol Duc Hatchery (fall run) 94
36 Sol Duc River (summer rlin 95
37 Clearwater River 117
38 Queets River 156
39 Quinault Hatchery 139
South Washington coast

40 Humptulips Hatchery (early run) 47
41 Bingham Creek Hatchery, Chehalis River 66
42 Hope Creek, Chehalis River 44
43 Nemah Hatchery 94
44 Naselle Hatchery 94
Columbia River

45 Elochoman Hatchery (early run) 42
45 Elochoman Hatchery (late run) 46
46 Cowlitz Hatchery 137
47 Fallert Creek (Kalama) Hatchery (early run®2
47 Kalama Falls Hatchery (late run) 83
48 Lewis Hatchery (early run) 46
48 Lewis Hatchery (late run) 48
49 Big Creek Hatchery 88
50 Clackama River (early run) 54
50 Clackamas River (late run) 31
51 Eagle Creek Hatchery 96
52 Sandy Hatchery 95
53 Bonneville Hatchery 94

Oregon coast region
North-central Oregon coast

54 Nehalem Hatchgr 92
55 Trask Hatchery 94
56 Devil ds Lake 60
57 Siletz River 69
58 Yaquina River 66

64

Adult
Adult
Adult
Adult

Adult
Parr
Adult

Adult

Adult

Parr

Parr

Parr

Adult, smolt
Adult, parr
Adult

Parr
Parr
Parr
Parr
Parr

Parr
Parr
Parr
Parr
Parr
Parr
Parr
Parr
Adult
Adult
Adult
Parr
Parr

Parr
Parr
Adult
Adult
Adult



59 Beaver Creek

60 Alsea River

61 Siuslaw River

62 Coos Rrer

63 Bethel Creek, New River

Oregon lakes complex
64 Sutton Creek

65 Mercer Lake

66 Siltcoos Lake

67 Tahkenitch Lake
68 Ten Mile Lake

Umpqua River

69 Mainstem Umpqua River

70 Smith River, Umpqua River

71 Elk Creek, Umpqua River

72 Calapooya River, Umpqua River
73 Rock Creek, North Umpqua River
74 South Fork, thpgqua River

South Oregomorth California coasts
75 Elk River

76 Cole Rivers Hatchery (Rogue stock)
77 Irongate Hatchery

78 Trinity River Hatchery

64
62
150
76
30

48
28
53
34
75

53
128
30
34
55
67

23
34
106
102

Adult
Adult
Adult
Parr
Parr

Adult
Adult
Adult
Adult
Adult, parr

Adult
Adult, parr
Adult
Adult

Parr

Adult

Parr
Parr
Parr
Parr
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Table B4 Coho salmonNOAA Fisheries, Seattle: Microsatellie loci, annealing temperatures
and primer references used to evaluate stock composition. [from Van Doornik et al. (2007)]

Annealing
Locus temperature Reference
Ocl8 60 Condrey and Bentzen (1998)
Okil 58 Smith & al. (1998)
Oki10 60 Smith et al(1998)
Oki23 58 Spidle et al. (2000)
Onel3 58 Scribner et al. (1996)
Ots3 47 Banks et al. (1999)
Ots103 54 Small et al. (1998)
Ots213 58 Greig et al(2003)
Ots505 NWFSC 54 Naish and Park002)
OtsG422 58 Williamson et al. (2002)
P53 58 de Fromentel et a(1992)
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Table B5.Coho salmonStatus of screening for microsatellites among laboratories as of July
2007 (compiled by D. Van Doornik, NOAA Fisheries)

NMFS Allele
NMFS Santa CDFO/WDFW  USFWS USFWS ladder
Locus Manchester Cruz collaboration Abernathy Alaska OSU BML | candidates
Ocl8 X X 1
Okil X X
Okil0 X
Oki23
Onel3
Ots103
Ots213
Ots3
OtsB3
OtsG422

X X

XX XXX XXXXXX
X
x
XXXXXXXXXXX
n X X X X
X
P NWWNEDNWDNPEP

iso-Ots2
Okil1
Okil3
Oki2

Oki3
Ots101
Ots105
Ots2
Ots208
Ots212
OtsG249
OtsG253b
OtsG3
OtsG68
OtsG78b
OtsG83b
Ogola
Ogo2 X 3
Oke2

Oke3

Oke4

Oki100 X
Oki101 X 3
Okil6 X
Omm1121

Omm1128

Omy1011 X 3
Omyl16 X
Omy325 X 3
Omy77 S
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DO OLLLLOLLLOLOLOLOO O
X X X X

X X X

w




Onelll X

Onellb X

Onel3M X

One2

One3 X

Otsl S
Ots10 S
Ots108 X

Otsilb X

Ots206

Ots208b

Ots209

Ots215

Ots2M X

Ots3.1 X
Ots3M X

Ots9 S
Ssald X

Ssa407 X

Ssa85 X

Xun non

Total in use 11 17 18 11 9 8

X = locus isin use
s = locus has been screened and is being or has been evaluated for possible |
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Sockeye salmon

Several regional databases for microsatellite markers in sockeye salmon have been used by DFO
(Table B6) and NOAA (TableB7). Most surveykmicrosatellite loci have been of populations

in British Columbia (Table B8), and only of a few populations of conservation concern in
Washington (Table B7).

Table B6 Sockeye salmomFO: Summary of microsatellite markers available and number of
obseved alleles recorded by the DFO laboratory (T. Beacham)

Microsatellite locus | Number of alleles
Okila 8
Okilb 10
Ots107 15
Oomy77 20
Ots2 26
Ots3 26
Okil6 26
Ots108 29
Ots103 30
One8 32
Ots100 33
Oki6 37
Oki29 39
Okil0 83
DAB-B1 15
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Table B7. Sockeye saImohNOAA Fisheries, Seattle: Data from Redfish Lake and the
Wenatchee and Okanagan rivers are available for the following microsatellite loci (E. lwamoto,
NOAA Fisheries, Seattle)

Locus

Oke2
Onell0
Omm1085
Onel8
Ots10M
Ots100
Ssa85
Ots519
Onel3
Omm 1159
Oomy77
Ots103
Ots3
One21
Omm1068
Oki29
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Table B8.Sockeye salmoFO: Summary of the number of sampling sites or populations

within geographic regions. A complete listing of the populations is outlined by Beacham et al.
(2005) in their Appendix Table 1. Range of annual and population samples sizes within regions
is in parentheses. Fourteen microsatellite loci and an MHC locus were surveyed as outlined by
Beacham et al. (2005)

Region Number of Mean annual sampkize Mean population
populations sample size
Columbia River 2 71 (15, 194) 285 (68,502)
Washington 3 114 (50, 201) 114 (50, 201)
Fraser River 53 94 (5, 400) 270 (15, 858)
West coast Vancouver 15 90 (19, 197) 132 (19, 279)
Island
Nimpkish River 3 108 (42, 290) 288 (203, 367)
Southern BC 6 114 (12, 219) 171 (18, 325)
Central BC 16 79 (27, 223) 97 (27, 223)
Owikeno Lake 10 77 (7, 114) 224 (86, 398)
Long Lake 3 99 (39, 205) 297 (139, 490)
Queen Charlotte Islands 5 71 (41, 99) 114 (41, 190)
Nass River 11 96 (24,264) 313 (40, 797)
Skeena River 14 78 (33, 200) 151 (33, 287)
Babine Lake 11 95 (54, 200) 208 (78, 499)
Unuk River 1 50 (50,50) 50 (50,50)
Stikine River 17 83 (6, 405) 152 (26, 474)
Taku River 10 57 (12, 100) 86 (12, 199)
Alsek River 15 83 (10, 238) 144 (10, 592)
Southeast Alaska 20 151 (45, 343) 197 (45, 300)
Kodiak Island 15 73 (15, 112) 73 (15, 112)
Bristol Bay 14 76 (47, 101) 97 (50, 153)
Alaska Peninsula 2 88 (75, 100) 88 (75, 100)
Chukotka 8 25 (20, 30) 25 (20, 30)
Olutorsky Bay 5 75 (48,180) 105 (48, 180)
Navarinsky Region 1 100 (100, 100) 100 (100, 100)
Karaginsky Bay 1 98 (98, 98) 98 (98, 98)
Kamchatka River 16 58 (15, 120) 72 (15, 190)
Kronotzky Bay 1 44 (44, 44) 44 (44, 44)
Southeast Kamchatka 3 48 (35, 71) 48 (35, 71)
Kurilskoye Lake 12 58 (35, 103) 78 (50, 121)
Southwest Kamchatka 1 52 (52, 52) 52 (52, 52)
Bolshaya River 4 56 (25, 97) 84 (25, 147)
Tigil River 1 101 (101, 101) 101 (101, 101)
Palana River 1 49 (49, 49) 49 (49, 49)
Hokkaido Island 1 75 (75, 75) 75 (75, 75)
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SNP BASELINE DATA

Most SNP databases encompass only regional sets of populations. Presently, 51 genotypic assays
are available for Chinook salmon, 19 for coho salmon, 77 for chum salmon, 44 for sockeye
salmon and none for pink salmon (Tables B9, B10&e numbers of SNP assays and the
numbers of samples examined is growing rapidly. About 35,000 sockeye salmon have been
examined for SNP variability (Table B11a) in samples extending from Russia to Washington
Idaho, but with a concentration in Alaska arduBristol Bay and the Alaska Peninsula, where

this species is most abundant (Table B11a). About 42 SNP assays have been developed for coho
salmon (Table B10b), but only about 400 fish have been examined for variability in samples
extending from Russia to 8ghington (Table B11b). SNP assays have also been developed for
chum salmonr(= 77; Tables B9 and B10c) and for Chinook salmor (51; Tables B9 and

B10d). About 12,000 chum salmon have been examined for variability in samples extending
from Korea to Wasington (Table Bllc), and nearly 25,000 Chinook salmon have been
examined in samples from Russia to California (Table B11d). Several thousand Chinook salmon
from Southeast Alaska and the Yukiinskokwim rivers have been examined to support
transboundary nreagement.

Table B9. Number of SNP genotyping assays available for each species of Pacific salmon
(compiled by C. Smith, USFWS).

Species Number of available genotyping assays
Chinook salmon 511234

Coho salmon 19

Chum salmon 775678

Sockeg/e salmon 44%°

Pink salmon 0

1) Smithet al (2005a), 2) Smitlet al. (2005d), 3) Smitket al. (in press), 4) Narurat al. (in
press), 5) Smitlet al. (2006), 6) Elfstronet al (in press), 7) Smitht al (2005c), 8) Garvin and
Gharrett (in press), Blfstromet al (2006).
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Table B10. Single Nucleotide Polymorphism markers assayed for a) sockeye salmon, b) coho
salmon, ¢) chum salmon, and d) Chinook salmon. Nuclear markers are diploid and mtDNA are
haploid (C. Habicht, ADFG).

a. Sockeye salmon

Published name Ploidy Reference*

One_ACBR79 D 1
One_ALDOB135 D 1
One_CO1 H 1
One_ctgf301 D 1
One_Cytb_17 H 1
One_Cytb_26 H 1
One_E265 D 2
One_GHII2165 D 1
One_GPDH201 D 2
One_GPDH2187 D 2
One_GPH414 D 1
One_hsc72220 D 1
One_HGFA49 D 2
One_Hpal71 D 1
One_Hpal99 D 1
One_IL8k362 D 3
One_KPNA422 D 1
One_LEI87 D 1
One_MARCKS241 D 3
One_MHC2_190 D 1
One_MHC2_251 D 1
One Ots21381 D 1
One_p53:34 D 1
One_insl107 D 2
One_PrI2 D 1
One_ RAG1103 D 1
One_ RAG393 D 1
One_RK2-102 D 2
One_RFC2285 D 2
One_RH20g395 D 1
One_serpifrs D 2
One_STG410 D 1
One_STRO7 D 1
One_Tf ex11750 D 1
One_Tf_in3182 D 1
One_U30192 D 1
One_U401224 D 3
One_U404229 D 3
One_U502167 D 3

~
w



One_U503170
One_U504141
One_U508533
One_VIM-569
One_ZNF61
One_Zp3K49

o000 0O0O
NWE WwWww

* 1) Elfstrom et al. (2006), 2) Smith et #005a), 3) Alaska Department of Fish and Game (unpublished)

b. Coho salmon

Published name Ploidy Reference**

Oki_art115
Oki_BAMBI-128
Oki_BAMBI-172
Oki_CR-209
Oki_CR-296
Oki_E2-84
Oki_eif4ebp2148
Oki_eif4ebp258
Oki_GnRH151
Oki_GPDH146
Oki_GPDH187
Oki_HGFA-311
Oki_IGFI.1-163
Oki_ins167
Oki_ins-323
Oki_LWSop554
Oki_RACR176
Oki_SCIkF2R2120
Oki_serpinl130
Oki_serpin328
Oki_SWS10p38
Oki_u6-258

0000000000000 000O0OITIT00O0O
PRRPRRPRPRRPRPRRPRPRPRPRPRPRPREPNRPRRPNNR

**1) Smith et al. (2006), 2) Alaska Department

o

f Fish and Game (unpublished)

¢. Chum salmon
Published name Ploidy Reference***

Oke_PPA2635
Oke_AhR1278
Oke_AhR178
Oke_art319
Oke_U401143
Oke_U401220
Oke_CKS389
Oke_copa211
Oke_Cr30
Oke Cr386

ITOO0OO0ODO0ODU0ODUOOO
WWNWRPREPNR R

~
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Oke_ctgf105
Oke_DM20548
Oke_eifdebpb4
Oke_FARSLA242
Oke_GHIF2943
Oke_GHIF3129
Oke GnRH373
Oke_GnRH527
Oke_GPDH191
Oke_GPH105
Oke_GPH78
Oke_hnRNPE239
Oke_HR182
Oke_HSP90BA299
Oke hsc74199
Oke_itlracp67
Oke_IL8F272
Oke_IL8F406
Oke_KPNA2-87
Oke_MAPKZ1135
Oke_MARCKS362
Oke_Moesinl60
Oke_ND369

Oke rasi249
Oke_RFC2618
Oke_RH1o0p245
Oke_serpinAl40
Oke_TCP178
Oke_TF#278
Oke_Tsha1196
Oke_u1519
Oke_u202131
Oke u21287
Oke_u216222
Oke_u217172
Oke_u206385
Oke_U302195
Oke_U502241
Oke_U503272
Oke_U504228
Oke_U505112
Oke_U506110
Oke_U507286
Oke_U50787
Oke_U509219
Oke_U516204
Oke U511271
Oke_U514150
Oke_U305130

0000000000000 000000000000IT0000000000000000000000

PRRPRPRPRRPRPRPRPRPREPRPENNNNNONRPREPNNNNRPONRPRRPOONNRPREPRPRPNOWORREPRELNWR
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Oke_U305307 D 1

***1) Elfstrom et al. (in press), 2) Smith et al. (2005a), 3) Smith et al. (2005b)

d. Chinook salmon

Published Name Ploidy Reference****
GTH2B-550 D 1
NOD1 D 1
Ots_E2275 D 2
Ots_arf188 D 2
Ots_AsnR$50 D 2
Ots_C3N3 H 2
Ots_E9BAC D 1
Ots_ETIF1A D 1
Ots_FARSLA220 D 3
Ots_FGF6A D 1
Ots_FGF6B D 1
Ots_GH2 D 2
Ots_GPDH338 D 2
Ots_GPH318 D 3
Ots_GST207 D 3
Ots_GST375 D 3
Ots_HGFA446 D 2
Ots_hnRNPE533 D 3
Ots_HSP90BL00 D 3
Ots_HSP90B385 D 3
Ots_IGFI.1-76 D 2
Ots_lkaros250 D 2
Ots_itlracpl66 D 2
Ots_LEF292 D 3
Ots_MetA D 1
Ots_MHC1 D 2
Ots_MHC2 D 2
Ots_ZNF330181 D 2
Ots_LWSop638 D 2
Ots_SWS1lof82 D 2
Ots_P450 D 2
Ots_P53 D 2
Ots_Prl2 D 2
Ots_insl115 D 2
Ots_PSMB1197 D 3
Ots_RFC2558 D 2
Ots_SCIkF2R2135 D 2
Ots_SERPCR209 D 3
Ots_SL D 2
Ots_TAPBP D 1
Ots_Tnsf D 2

****%1) GAPS (2006), 2) Smith et al. (2005a), 3) Smith et al. (in press)
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Table B11. Number of a) sockeye salmon, b) coho salg)jochum salmon, and d) Chinook

salmon from baseline collections throughout the Pacific Rim that have been screened for all
Single Nucleotide Polymorphism markers detailed Table B10. Multilocus genotypes are archived
in the Alaska Department of Fish aB@&me database (C. Habicht, ADFG).

a. Sockeye salmon

Region Number of Number of
samples individuals
Washington/ldaho 2 193
British Columbia 41 3,347
Southeast Alaska 36 3,244
North Gulf Coast 7 554
Southcentral Alaska 78 8,035
Kodiak and AK Painsula 74 6,985
Bristol Bay 98 9,770
Arctic-Yukon-Kuskokwim 16 1,046
Russia 40 2,211
Total 393 35,385
b. Coho salmon
Region Number of Number of
samples individuals
Washington/ldaho 1 96
Southeast Alaska 1 48
Southcentral Alaska 1 94
Bristol Bay 1 54
Arctic-Yukon-Kuskokwim 1 48
Russia 1 38
Total 6 378
¢. Chum salmon
Region Number of Number of
samples individuals
Washington/ldaho 8 281
British Columbia 2 96
Southeast Alaska 11 887
Southcentral Alaska 7 568
Kodiak and AK Peninsula 17 1,307
Bristol Bay 8 636
Arctic-Yukon-Kuskokwim 59 5,606
Russia 13 745
Japan 19 1,532
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Korea 2 191
Total 146 11,849
d. Chinook salmon
Region Number of Number of
samples individuals
California 9 366
Oregon 3 282
Washington/ldaho 11 976
British Columbia 61 5,522
Southeast Alaska 50 3,965
North Gulf Coast 32 1,833
Southcentral Alaska 23 2,190
Kodiak and AK Peninsula 14 864
Bristol Bay 9 480
Arctic-Yukon-Kuskokwim 119 7,837
Russia 8 411
Total 339 24,726
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INTRODUCTION

The value of genetic stock identification is greatly enhdrmeensuring that individual datasets

can be merged into a larger coastle datasetlUnified datasets are especially important for
Pacific salmon which often make migrations of several thousand kilometers and which can be
harvested in fisheries far remexv from spawning areas. Several studies have provided insights
into high seas abundance patterns of adults (8eab 2004) and juveniles (Teet al. 2003;

Van Doorniket al 2007) in areas far removed from spawning streams and riMeese data
shouldbe accessible in a timely manner to management agencies responsible for maintaining
sustainable harvests of salmon. Previous efforts to integrate databases for Chinook salmon
(GAPS) have proved successful and have provided insights into the biology mdo&hi
populations that were not apparent with the separate analyses of individual datasets. The need for
greater integration of existing data for other species of Pacific salmon is recognized by the
Pacific Salmon Commission and by the Tribal, State andifri@al agencies responsible for
harvest management in the Northeastern Pacific.

COMPONENTS OF DATA SHARING

Some of the existing regional or agency datasets cannot be merged to provide a broader picture
for a particular species because of differencesampling or laboratory protocols. The use of
genetic data from several laboratories requires attention to several layers of detail to be able to
merge datasets to provide a broad geographic perspective on genetic population structure and to
use in mixed sick analyses (Moraet al 2006).

Common set of loci must be examined among laboratories for each class of molecular
marker

The first criterion requires that the various laboratories have similar capabilities in examining
particular marker classes. Whatozymes were used by most laboratories, standardization of
loci could easily be accomplished by the use of common electrophoretic conditions, staining
methods and locugrotein interpretations. However, with the advent of DNA technologies,
laboratory prtocols increasingly depend on the acquisition of costly analytical instruments, such
as automated sequencers, to produce genotypic data. Most governmental laboratories charged
with the use of genetics in management are able to acquire or have accesprieer@qto
standardize markers among laboratories.

When cooperating laboratories use the same class of magkgrallbzymes, microsatellites or
single nucleotide polymorphisms), standardization of a common set of loci among labs can be
achieved throgh collaboration. As new technologies appear, however, some labs may adopt
methods not implemented in other labs. The development of awmstdatabase, in these
circumstances, depends on the adoption of the new methods in other labs or the shasungsof t

to extend the range of geographic data for the new marker.
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Common nomenclature among laboratories for corresponding allelic states

The second criterion requires that laboratories standardize the nomenclatures of allelic states.
Virtually no g¢andardization is required for nucleotide sequences, as only four easily identified
nucleotide states are possible. While sequence data are ideal for many applications, they are
costly to produce and greatly limit the numbers of individuals and populati@iscan be
reasonably analyzed. The use of single nucleotide polymorphisms is attractive because at least
one nucleotide state defines a standard genotype and avoids the need for allelic standardization
among laboratories.

As previously with allozymegshe standardization of microsatellite datasets among laboratories
requires comparisons of genotypic voucher samples on each analytical platform or the use of
allelic ladders (LaHooét al. 2002). Different models of automated sequencers, or even the same
model in the same laboratory, can produce different electrophoretic mobilities for the same size
allele (see Moraret al 2006). The electrophoretic properties of slab gels often differ from
capillary tubes so that the same sized microsatellite fragmenthmae different mobilities in
different instruments. Additionally, some alleles deviate from the expected repeat sizes of
variable motif, showing apparent sizes that are inconsistent with the repeat motif. The pooling of
these alleles of similar sizes nile agreed upon for datasets to be compatible.

Issues 1 and 2 can be resolved by active collaboration among laboratories and periodic
workshops to standardize the selection of loci and the nomenclature of alleles. Workshops in
1999, 2000 and 2001 werertvened and attended by major agencies to discuss these two issues.
In past efforts to standardize allozyme markers, progress toward standardized datasets was slow
and incremental over several years, except when agency management directives provided
O0spgdacci and | mmedi atetal BOOG Serld dl,inpness). ( Mor an

Agreed upon sampling of important contributing spawning populations

A third issue involves the standardization of geographical sampling effort. A coordinated dataset
of baselinepopulations requires the same geographical resolution of spawning populations in
different regions. As databases expand geographically or are merged with other regional
databases greater diversity is encountered in allelic size and may present problamsiax
analysis of different microsatellite loci on the same electrophoretic system. Greater geographical
sampling may compromise the utility of some microsatellite loci as new alleles may produce
complex allele frequency distributions that complidae identification of alleles. Greater allelic
diversity is also likely to include null microsatellite alleles, in part due to the failure of
polymerase chain reactions (PCR) to amplify a target fragment. Standardization of microsatellite
alleles may be nre difficult on a broad geographical scale for some species because of these
complicating factors, and recommendations must include costs and benefits of sampling at
various spatial scales.

Applications of SNPs over large distances may be confronted oflitr problems. Marker
development and sampling strategies are usually shaped by problems under the jurisdictions of
regional management agencies. While allelic identification among laboratories may not be
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problematic for SNPs, SNP polymorphisms idendifiem one region may not be present in
another region. For example, SNP polymorphisms developed for Alaskan populations may be
useful for differentiating Asian populations from North American populations, but may be less
informative within Asia.

Use of a ommon set of statistical procedures

A fourth issue concerns the consistency of statistical analyses among laboratories. One
consideration is the identification of genetically discrete populations. Detecting population
differences depends on the geograptiysampling and on statistical power for finding aHlele
frequency differences, which is influenced by both sample size and the particular approach to
probability adjustment. Sampling design may also influence inferences about population
structure as salmopopulations can be resolved temporally by run or spawning time and by
geography, often on small spatial scales. In addition to the completeness of a population data
baseline, the results of mixatiock analyses depend on the timing and sizes of samplas fr
ocean or river mouth harvests, on reporting aggregations of baseline populations, and on the
statistical method used to estimate the composition of the mixture.

Access to data

The foregoing considerations set the stage for the sharing of gedattito conduct mixestock
analyses of fishery harvests and to infer ocean abundances and migratory pathways of particular
populations. Genetic data now play a fundamental role in the management of salmon populations
by federal, state, and tribal agenci&be distribution of current, but often unpublished, data is
vital to these efforts. Requests for information may include tissue samples for additional
analyses, genotypic or allele frequency data, summary statistics or draft reports. Although
funding fran federal agencies often comes with agreements on data sharing, genetic databases
are usually constructed over several years with multiple sources of funding. Data sharing
directives in the USA are embodied in the Freedom of Information Act of 1986 (FOIA),
guidelines from the Department of Justice and the Office of Management and Budget, court
judgments and executive orders (Mornal 2006). FOIA requests for the release of genetic
data in a timely manner, however, can be impeded by three exempticcenfitlential trade
information, 2) predecisional legal deliberations, and 3) criminal investigations. To date, no
court deliberations have commented specifically on the use of FOIA to obtain genetic data
(Moranet al 2006). Datesharing agreements betwegovernmental agencies within a particular
country, however, have limited value for facilitating data sharing between agencies in different
countries.

META -DATABASE

The first step toward facilitating the easy distribution of data is to establish @ased

el ectrodhattcaanee®@ t hat would be easily accessi
primary function of this database would bectdalogue existing primary genetic data (markers,
sample dates and sampling localities), biological informafimpulation profiles) and biological
materials (tissues, otoliths and scales) that can be used for genetic analysis. The mandates of the
present workshop provide the impetus for the construction of such a database-daialetse,
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however, would be logtically complex and would require continuing support to maintain as
new information became available. A similar genetic roetimbase is being established by ICES
for commercially important species in the North Atlantic (ICES 2007).

Several benefits wdd accrue to stakeholders and users. A rietabase would allow
researchers and fishery managers to immediately gather relevant information on databases and
researchers for a particular fishery management problem. Adatthase would also improve

the deigns of research projects and sampling. This database might include the following:

e Existing allozyme, mtDNA, microsatellite, SNP, and EST datasets and where they are
located,;

e EXxisting collections of historical biological material that could be used t@axDNA.
Archived scales and otoliths can be used to estimate allele frequencies in past populations;

e List of past and current genetics projects, including laboratory location, researcher names
and the natures of the projects;

¢ Profiles and contact infaration of active researchers working on the genetics of salmon.

This database would provide ready access to information on experts and on geographic areas
where data are available. The development of a frequently updateddatabase would
promotecommurication between geneticists and between geneticists and other researcher and
managers. Such a database would also help to reduce the overlapping of sampling effort and
encourage collaborations and lead to more efficient research efforts. The presaftth@sat

software could be used to make the nudtabase portable, so that the responsibility of
maintaining the database could be rotated periodically among agencies. The development of a
metadatabase of information on genetic markers, regional datasd researchers, would be the

first step in establishing a central database containing raw or summary data that could be used by
fishery managers.

DATA SHARING

Several stumbling blocks appear to prevent the easy exchange of data among reseaesh agenc
A fundamental concern of many researchers is the protection of proprietary information for use
in scientific publications. An agreement for the use of current, unpublished genetic data would
have to be made between researchers producing geneticndasgency personnel wanting to

use the information for management or conservation evaluations. The use of unpublished data by
agencies has longstanding precedents in the writing of status reviews on threatened and
endangered species by the US Fish and Mél&ervice and NOAA Fisheries (Waples 1991, and
numerous status reviews).

Another facet of this problem is that university researchers are disinclined to maintain large
databases or to routinely analyze large numbers of samples for management eldpnu=v of
comprehensive databases usually falls under the mandates of state, national, and international
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fishery management agencies. Presently, most genetic data for Pacific salmon in the North East
Pacific are held by governmental agencies to assistheir management obligations.
Nevertheless, other databases have been generated or are maintained by tribal or university
researchers. Ultimately, the easy sharing of data depends on the goodwill and cooperation of
personnel at these laboratories.

Agendes may hesitate to share data for fear that some interpretations of a dataset may not prove
beneficial to a particul ar stakehol derds tak
potentially arise from the use of different statistics or the giotu of some samples but not

others in a database used for mixed stock analysis in areas including fish originating from
different jurisdictions. Such differences must be negotiated in the light of the best possible use of
data and statistics.

Motivation for sharing and building a standardized dataset for each species of interest to the
Pacific Salmon Commission arises from two sources. As scientists, laboratory directors are
interested in researching and testing hypotheses that illuminate the sougeastaf population
structure in view of historical and contemporary evolutionary and ecological processes. A large
body of literature based on genetic data for Pacific salmon has been the cornerstone in fish
biology and fisheries management circles forarmsthnding the effects of harvests and climate
change on fish populations. No other group of fishes has been examined with genetic markers to
the same extent as Pacific salmon.

Laboratory directors in management agencies are also motivated by the maoidtteir
agencies to manage natural resources as sustainably as possible. The mandate of the Pacific
Salmon Commission is to provide management information in areas where fish from different
national jurisdictions potentially mix. While these managen@onblems may be limited to
transboundary areas, the management of these areas often depends -ovidedstabases of
populations potentially contributing to harvests in trosndary areas. Hence, integrated
genetic datasets are all the more importsvihile funding agencies may impose datering
requirements on researchers, laboratories generally received support from selveuskeirand
agency sources, each of which may have differentstaieing mandates. As agency laboratories

are part of a hiarchy, the ultimate responsibility for data sharing lies with the administrations of
these agencies. When problems arise among laboratories, cooperation may have to be
implemented by memoranda of agreements that clearly outline lines of responsibillipwnd
shared data can be used.
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INTRODUCTION

Artificial marks, such as coded wire tags and otolith thermal marks, are created to provide
definitive source identification for individual fish found in stock mixtures. Unless an infrequent
human error is made during applicationrecovery, the origin of a fish carrying an artificial
mark is known with certainty. The usual shortcomings of artificial marks include their expense in
application and in determination of the source at recovery. Further, artificial marking is
incomplete m scope because neither all the stocks nor all the individuals in the stocks composing
mixtures are marked. Natural marks of individuals, such as scale features, parasites, and
genotypes, provide less certain source identification. Usually the contrilstiicigs to a mixture

share all the natural markisg(, individuals with the various marks are found in all the stocks)
but the relative frequencies of the marks differ among stogksthe proportions of individuals

with any one of the various markdfdr among the stocks). The advantages of natural marks are
complete coverage of all stocks as well as all individuals in the stocks. However, the cost of
baseline developmentéd., the initial samples to characterize the distributions of the natural mark
among individuals of each stock) may be large and the cost in sampling mixtures and
determining the natural marks of mixture individuals may be significant. Although source
composition estimation of a mixture and of the origins of individuals in a saneqpléres more
complex methods for natural marks than for artificial marks, appropriate statistical theory and
estimation algorithms are waealkeveloped, and software for their implementation is freely
available.

ARTIFICIAL MARKS

Artificial marks identify each individual to its source, and so the problem of estimating the
sources of individuals in a mixture sample does not apply. For example, if 100% of individuals
of each stock are marked, the problem of estimating the source composition of the noxture fr
its random sample is solved through straightforward application of multinomial sampling theory.
Assume that stocks occur in a mixture. The unknown source composition of the migture

occurs on the simplex§(p) = {:(pl,K ,pC)’ :Whereo <p <l i=1K,c and Zp, =1.The
array of stock counts found in a random sample of Mz&om the mixture is denoted as

m= (ml,K m)' wherem is the count of individuals from theth stock andM = Zm,. . The
i=1

multinomial probability function that describes the sampling variation is

M!
Prob(m)=———p/"K p-.
m, 'K m,!
The obvious estimator of the stock composition of the mixture is the observed stock composition
of the sample itself. If frequentist methods edtimation are used, the maximum likelihood
estimate (MLE) of the stock composition of the mixture is simply this observed stock

compositiorp = m%,K m/M) it is unbiased in that the average value equals the actual
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composition over repeatedrspling, E(p,)= p,» i=1K ,c, and its estimated covariance matrix
is iﬁ :I:c;'”], where 6, = p,(1- p,)/M and 6, =-p,p,/M for i,j=1K c,i# j. The MLE

estimator of the stock composition is sefesiprovided no additional information besides the
mixture sample is available by which to estimate the stock composition.

NATURAL MARKS

The source identity of an individual is almost never certain from its natural marks and so both
the sources of indiduals and the stock composition of the mixture must be estimated. The
duality of the estimation problednindividual sources and stock compositiois used hereafter

to motivate the various solutions that have been developed. Here we introduce the methods in
order of their increasing strength and suitability.

Classical Individual Assignments Method

The classical individual assignments method is an ostensibly reasonable approach to the dual
estimation problem and comprises two steps that are applied justt@nice mixture sample.

First, assign the individuals to their sources based on their marks and the relative frequencies of
their marks in a set of baseline samples from all the possible source stocks. Second, estimate the
mixture composition from the agaments using the multinomial theory described under the
preceding section. At the second step, the assignments are treated as accurate, and the probable
errors in the assignments are ignored. Quite likely, early workers in scale pattern analysis during
the 1950s used this method before the statistical adjustments for assignment errors by Worlund
and Fredin (1962), Cook and Lord (1978), Pella and Robertson (1979), Millar (1987) and Wood
et al (1987) (see summary by Pella and Masuda 2005). The assigmmoestveere well known

to cause both bias and overstated precision in estimated mixture composition. Nonetheless, many
geneticists have also used the method in more recent times (Banks and Eichert 2000, Potvin and
Bernatchez 2001) that were evidently unasvaf the statistical adjustments by scale pattern
analysts.

In addition to neglecting the effects of assignment errors on the mixture composition estimates,
the assignment rule commonly used in the method is inferior to anothétneelh rule that has

lower expected error rate for nearly every possible mixture provahetihere is the cryxhat

the mixture composition is specified. Practitioners usually assign an individual with
measurement vectof (this could be any of the following variable subdetsan individual fish

as well as their combination: scale characters, morphometric measurements, binary parasite
occurrence indicators, and multilocus genotype indicators) to the source population for which the
measurement is most common or frequent (tie will be termed the maximum frequency or

MAF rule). Specifically, the individual is assigned to the stock for which

%*(X)zmax,. {fj(X),K,ﬁ,(X)}, where Z(X) Is the estimated relative frequency (probability

function if X is disaete, or probability density ifX is continuous) of individuals with
measuremenX in thei-th stock. The underlying relative frequencg(X), is unknown and so

the estimated value from the baseline samples is used in its placee Mwit the relative
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frequency of individuals with measuremefitin the mixture is /(X) = Zp,.f,.(X), wherep; is

i=1
the proportion of the mixture from thieth stock, and that the fraction of such individuals
contributed by the-th stock is the atio specific toX (called the posterior source probability of

that stock), P(i | X) = p, 7(X) Zp/f/.(X), i=1LK,c. What better guess for the source of an
/=1

individual with measuremenX than the stock contributing the most individuals with the
measurement? In fact,sagnment errors are minimized by using thiscsa | | ed Bayes?®o
in which the individual with measuremeHt is assigned to the stock for which the posterior
source probability is highest (called the maximaiposteriorj or MAP rule), that is, to #i* -th

stock if P(i*| X) = max, {P(1| X),K ,P(c|X)}. Notice that if the stocks contribute equally to the

mixture so thatp, = p, =L = p_, only then do the MAF and MAP rules agree. In fact, the stock

proportions cancel from the formula for the postesource probabilities so that the analyst
appears to be relieved of having to provide these values. A further justification for using the
MAF rule may be an apparent lack of information about the mixture composition. In fact, the
very reason for performgnthe assignments is usually to estimate the unknown compaosition.
Although this argument for the MAF rule claiming ignorance seems reasonable at first glance, it
fails to convince after the assignments are completed and some knowledge regarding
compositionbecomes available. In general, the estimated composition from the assignments will
differ from the assumed equal composition. If the classical individual assignments method were
trusted to produce a more accurate composition estimate than the initihl pegpertions
assumption, why not substitute the better estimate for unkrpwrio the posterior source
probabilities, and repeat assignments with the superior MAP rule? In fact, what about repeating
this process to convergence in the estimatg df possible? As we emphasized earlier, the
superior MAP rule is available provided the mixture composition can be specified. An iterative
series of assignments using the MAP rule with the resulting mixture composition estimates to
restart the rule provide thecipe. The only inconvenience is that the assignments and estimation
need to be done again and again, but that is what computers do so well. The approach is well
grounded in sound statistical theory. Also, suppose that none of the posterior source fesbabili
for an individual is large relative to the others. Should the individual be assigned to a single
stock, or would it be better to assign it fractionally to the possible stocks in proportion to the
posterior source probabilities? Why not fractionallgigis every individual regardless of the
relative magnitudes of the posterior source probabilities? Two modern valid approaches are
discussed next in the context of genetic marks in which these ideas are completed. The general
approach is termed mixture malohg, under which two methods are important, conditional
maximum likelihood and Bayesian. To see the parallel developments fayemetic characters

using discriminant analysis, see the review by Pella and Masuda (2005).

Conditional Maximum Likelihood M ethod of Mixture Modeling

The first valid estimation method developed for the stock composition of a genetic mixture is
called the conditional maximum likelihood method (Fournier et al. 1984, Millar 1987, Pella and
Mi Il ner 1987). T h eersttoghe fact that the gbneticiparamatéroarerestimated
using secalled baseline samples from the contributing stocks and the likelihood function is
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maximized only with respect to the unknown stock proportions. The genetic parameters-for the
th stock @e denoted byQ, = (q,,”) h=1K L;j=1K.,J, and refer to the allele relative

Jh
frequencies at the loci defining the multilocus genotypes of individuals<{g,, <1, qu =1).

j=1
The relative frequencies of multilocus genotypes in any stock are compoiecdetimates of
allele relative frequencies under Hatdieinberg and linkage equilibrium conditions. Let the

multilocus genotype of therth mixture individual be denoted bX, = (X,,,,,K X ) where
X

mL

(m,ﬂ,K Xn, ) is the vector of kele counts for the individual at theth locus. Note that
Jh

each individual has 2 alleles per locus giving, =meh, =2. Then the relative frequency of

j=1

mh

the genotype of therth individual in thei-th stock is £(X,:Q,)= HZ' "'(XWHq”’ where

ihj
h=

0,(X,)=1 if the individual is homozygous, and equals O if it is heterozygous, for locus h. These

Hardy-Weinberg and linkage equilibrium conditions are quite plausible for large panmictic
populations that do not exchange immigrantse Estimation of the allele relative frequencies

Q= (Q,,K Q) is considered shortly and for now we use the unknown value recognizing that an
estimate is substituted for computations.

The probability of the genotypeX;,..., Xy, observed in aandom sample d¥l individuals from
the mixture is

Prob (X,.K ,XM)OCH[ZP, f(X,:Q, )]

m=1

It can be shown that the maximizing valugpafiven the genotypes can be obtained by
iteratively ¢ = 1,2,..,T) solving the equation system,

(t) Mi pl(t l)f(Xm,H) :Lip(t—l)(uxm)

m= Mm:
IZ ft 1)]{(Xm’ ) :
i=1
M
M (1-1) M
X,:0 1 _
(l‘) Z p f( m HZP(I‘ 1)(0 | Xm) .
Ay x,0) M

i=1
An arbitrary value forp'” with positive components of unit sum can be substituted into the right
hand side of the equation system to start the iteration. The compositip™ fogsults on the left

hand side,and it is substituted into the right hand side again. The process is continued to
convergence, which can be judged to have occurred by various criteria. Typically convergence is
assumed when the changes between successive estimadsecbme arbitrarilysmall. This
method of computing the conditional maximum likelihood estimpteis called the EM

algorithm. Although the conditional MLE fgp by the EM algorithm may not be as fast to
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compute as by other algorithms (Pedtaal 196), it has the advantages of simplicity and the
guarantee to converge with monotonic increase in likelihood function values during the search.
Another advantage is the simple and intuitive interpretation of what is being done to compute the
conditional MLE. Notice from the equation system that at convergence each individual has a unit
value that is divided up among the possible stocks in proportion to its posterior source
probabilities, and that the stock composition estimate is the arithmetic averhgsepbsterior
source probabilities. Therefore, instead of assigning the entire individual to a stock as though one
knew its source, the individual is assigned fractionally in proportion to measures of our belief of
its sources.

The estimation of the alle relative frequencie® among loci and stocks has become more
complex as choice in genetic marks changed. Initially, allozymes were available and these loci
typically had only a few alleles per locus. Therefore, maximum likelihood estimation of the
allele frequencies was based on the standard multinomial sampling model described under the
section AArtificial Mar ks o. Random samples of
were assayed for their genotypeg,, the pairs of alleles per fish. Theaximum likelihood
estimates of th€); are the observed allele compositions of the combined alleles of the baseline
sample from each stock and locus. More recently, microsatellite loci were used for which the
number of different alleles among stocks cduddlarge (as many as 50 or even more) and many

of these alleles were rare or in low relative frequency in stocks. The result was that sampling
zeros were presumably common in the baseline samples and this became very problematic to
stock composition estinian. If maximum likelihood was used to estimate the allele relative
frequencies from the baseline samples, stocks whose baseline samples had sampling zeros were
necessarily eliminated as potential sources for mixture individuals having the corresponding
dleles in their genotypes. Other stocks without sampling zeros became the candidates, and with
far greater posterior source probabilities than should have occurred. Because certainty about the
absence of a rare allele is not possible with limited sampée fsbm large populations, stock
composition estimation from microsatellites performs better if the possibility is maintained that
any baseline stock could be the source of any mixture individual. This possibility is achieved
through use of Bayesian metlsothat in the present context provides a probability distribution

for allele relative frequencies d rather than a point estimate and associated measure of
variation. Under this Bayesian probability distribution, every allele is potentially preserdrin ev
stock. Were a point estimate needed, the location pararaggemean or median, of the Bayes
distributions of components f should suffice.

The recommended method of estimating the sampling variation in the conditionalpVli€by
bootstrap resampling. The reason that asymptotic methods are not useful for this purpose is they
are inaccurate and overestimate the uncertainty. Asymptotic methods are inaccurate because they
depend on an assumption, nearly always violated thieadistributions of composition estimates

do not encounter the boundaries for the unknown proportiossp( <1, i =1.K ,c, Zpi =1).
i=1
In the bootstrap method, the mixture and baseline samples are sampled with replacement to
generate random analogs of thensasize. The allele relative frequenci@sare estimated by
either maximum likelihood from the bootstrap baseline samples (appropriate if none of the
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alleles is rare), or by a single draw from the Bayes distributio@ ¢fppropriate when some
alleles arerare). Then the conditional maximum likelihood estimatg a$ computed for the
bootstrap mixture sample using the EM algorithm, for example. A large number of repetitions of
this processgg., 1000 times) generates an empirical bootstrap distributoon Which the mean

and lowera/2 -100th percentile and upper {&/2) -100th percentile provide a point estimate
and symmetric (x) -100% confidence bounds.

Software to perform the conditional maximum likelihood estimation method and bootstrap
resamplingof baseline and mixture samples is freely available from two sources. The earliest
software is the program called Statistical Package for Analyzing Mixtures (SPAM) (Dedtevec
al. 2000). SPAM originally did not include the option during bootstrap resagph using the
Bayesian posterior for baseline allele relative frequencies. Meanwhile, Kalinowski (2003)
developed the program called Genetic Mixture Analysis (GMA) that did. Later, SPAM was
updated to include the option (Alaska Department of Fish anceGan3).

Bayesian Method of Mixture Modeling

The Bayesian approach has been extended to include estimation of both the stock conpposition
and the allele relative frequenci€s(Pella and Masuda 2001). The combination of a Bayesian
analysis forQ and a naximum likelihood approach fqr described above is a peculiarity in that
frequentist and Bayesian statisticians view any estimation problem as mirror images. Under
Bayesian methods, data are considered fixed and unknown parameters are considered random
variables. Under frequentist methods such as maximum likelihood, data are considered random
and parameters are fixed. Although the two schools have long debated the validity of their
approaches, the more recent Bayesian methods have gained favor by momaagemg of

complex problems made possible by availability of greater computing power. The premise of the
Bayesian method for estimation of a collection of unknowns @&ay(p,Q), is that information

exists about® before a sample is drawand datayY become available. The information is
provided in the form of a prior probability distribution, in the present problem by
7z(p,Q)=7(p)~(Q). That is, the prior information about the stock proportigpsand genetic
parametersQ), is assimed to be statistically independent so that their joint prior probability
distribution equals the product of their separate prior distributions. Uninformative priors are
chosen for bottp andQ s o t hat the data fAdo the atYad ki ngo
combined with that of the prior by integration of the product of the pri¢p,Q), and the

m=1]i=1

M C
likelihood of the dataz(Y | p,Q)ocH|:z p.f(X, | Q,)] to produce the posterior distribution,

7(p,Q|Y)o Iﬁ(p,Q))-/Z(Y|p,Q)1’de. The posterior idtribution summarizes the

knowledge and uncertainty about the unknowns. Pella and Masuda (2001) chuzkedso
conjugate priors for both andQ so that the Bayes posterior distribution for the unknowns has
an explicit solution. The prior fop is the Drichlet density function, which is defined on the

stock composition Simp|ex,S(p)={p:0<p,<1,Zp,=1}. The density function is

i=1
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F[cha’j c
parameterized by =(2,.K .,) and is z(p|a)=D(p|a)=—""—][p"". Pella and

[Tre)

Masuda (2001) set ther, =1/c, i=1K ,c, which has the desired effect of providing low

information aboutp: this prior information is equivalent to adding a single individual to the
mixture sample and specifies that the prior contributions from the source stocks to the mixture
are equal. Iflie source identities of thé individuals in the random multinomial mixture sample

were available and the array of stock counts is denoted b(zl,K z) where Zz, =M , the
i=1

posterior distribution IS the Dirichlet density function,
1 1 . .

7Z(p | Z)= D(p | Z+—-1) = D[p | Z+—~(1,K 1)) . The means, variances, and covariances of
C C

this distribution are given by

E(p|Z)=(z +c" Y(M+1). i=1K c

var(p, | 2)=| (& + " M +1-( +))| [ +1y (M +2)) i=1K e
cov(p,., D, | Z)= —[(z,. +c! XZ/. +c! )J/[(M +1) (M + 2)], ii=1K ¢

As M becomes large, these values for the posterior distributipragfee closely with the MLE

estimates ofthe corresponding values from the multinomial probability function (substitute
components oZ in placeofmi nt o t he mul ti nomi al formul as wun
the Bayesian posterior distribution will be a reasonable description of knovdadgencertainty

for both Bayesian and frequentist statisticians. Of course, the actual counts of individuals by
source stock are unknown and what the Bayesian method does to accommodate this uncertainty

is described shortly.

The remaining unknowns are théele relative frequencie® at H different loci among the

stocks. Two information sources abdtare available: the baseline samples, and the mixture
sample. In contrast to the conditional maximum likelihood method, which uses only the baseline
sampes for estimatingQ, the Bayesian method extracts the information algpdtom both.

First, a separate Bayesian analysis is performed with the baseline samples to develop the baseline
posterior distribution forQ. Second, the baseline posterior distribaitimr Q becomes the
mixture prior forQ to be updated during the mixture sample analysis. The baseline sample for
the h-th locus from the-th stock is viewed as a random draw from the multinomial probability
function with J, different alleles possible #te locus. In practice, the value féyis the number

of different alleles at the locus observed among the baseline stocks. Again, the Dirichlet prior
probability density has been used to describe knowledge and uncertain@. ihwo
specifications for th@arameters of the Dirichlet prior have been used. The most straightforward
specification (Rannala and Mountain 1997) is the analog to that described above for stock
compositionp, but now applied to each of the 7 unknown allele relate frequency arrays

denoted byqi,7=(q,.,1l,K vqﬂw) i=1LK.,c, h=1LK,H (see Kalinowski 2003). To distinguish
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these prior parameters from those usedfdhey will be denoted by, = (ﬁ,,ﬂ,K B, ) where

B, =J," if the h-th locus hasl, alleles among the baseline steckhe other specification by

Pella and Masuda (2001) chooses the prior parameters for a locus to be proportional to a baseline
center of allele relative frequencies. The baseline center is the unweighted arithmetic average of
the observed allele relatifeequencies at the locus among the stocks in the baseline. The value
for the constant of proportionality of each locus is chosen to minimize the sum of squared
deviations between the observed allele relative frequencies and their posterior mean. With this
definition for the prior parameters, the prior mean equals the baseline center, and the posterior
mean for any stock is the weighted average of its observed allele relative frequencies and the
baseline center with the weights equal to simple ratios inwplthe baseline sample sizes and

the constant of proportionality. The method is called ps&ai@s because it hedges by using

the baseline samples both to choose the prior parameters and to evaluate the posterior
distribution for the allele relative fregucies.

The Bayesian approach to describing the knowledge and uncertainty in the unknowns for
complex problems is to generate a very large number of samples from their posterior
distribution. Then summary measures of the posterior distribution, such Exdtion (mean,
median, mode) and variation (standard deviation and various quartiles) can be computed from
the samples with ignorable sampling error. In particular, the Bayesian method for stock mixtures
used by Pella and Masuda (2001) is called a Marmain Monte Carlo (MCMC) method
because the samples for the unknowns are generated sequentially with each depending on the
immediately preceding sample. The Bayesian method for stock mixtures also uses the data
augmentation algorithm in which additionelndom observations, namely the unknown and
purported sources of mixture individuals, are generated to greatly simplify estimation kAhthe
sample of the unknowns, let the current values from the posterjpraod Q be denoted by

p=p" andQ=Q". The data augmentation algorithm has two steps:

1. Draw a random stock source of each mixture individg@l,= (zf,f]),K ,zﬁ,f‘j), where
zgm= - = K, ,if the source of thexthindividual is thei-th stock, and

otherwise. The stock source is drawn vatbrobabilities proportional to the posterior
source probabilities based on the genotype and current valpesdf).

2. Draw new values from their respective posteridensities given

the mixture sample genotypes, baseline samples for allele relative frequendfesand
the stock identities at step2% .

The posterior distribution fqu is obtained by updating the Dirichlet prior fowith the assigned
stock icentities for the mixture individuals,

. Notice that each updated Dirichlet parameter

for a stock equals the sum of its prior parameter and the total number of mixture individuals
assigned to the stock at the preceding sampleeichain. The posterior density fQris

. Notice that each
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