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As a follow-up to the work of the Expert Panel on ‗The Future of the Coded Wire Tag Program 

for Pacific Salmon‘ in 2005, two workshops
1
 were convened to develop recommendations for the 

integration of GSI information into a coordinated coast-wide management system. The goal was 

to improve the ability of ocean fisheries to access abundant stocks within impact constraints 

established for other specific stocks. Workshop participants were directed to identify and 

quantify costs, implementation steps and the timeframe to implement recommendations. 

 

Within these overall objectives, the specific charge to the Genetics Workgroup (WG) was to 

develop specific proposals from the following charges: 1) Recommend additional sampling 

locations, sample sizes, and field and laboratory protocols to improve the GSI database; 2) 

Recommend how best to incorporate GSI data into ocean salmon management models and 

regimes; 3) Suggest further research to more effectively incorporate GSI data into the 

management of ocean fisheries of salmon. The GW focused largely on the first objective because 

of the lack of time to interact constructively with modelers and managers. Within this more 

limited focus, the GW spent most of its time in lively discussions of the relative merits of using 

microsatellites and single nucleotide polymorphisms (SNPs) for GSI. Also included were 

discussions of ways to enhance the accuracy of GSI estimates with improvements of the 

statistical treatment of reporting groups and of GSI estimation procedures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
1
 Portland, Oregon 15–17 May 2007 and Vancouver, British Columbia 11–13 September 2007. 
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GLOSSARY 
 

ADFG  Alaska Department of Fish and Game 

CTC   Chinook Technical Committee (PSC) 

CTC  Chinook technical committee 

CWT   Coded wire tag 

DGO  Department of Fisheries and Oceans, Canada 

DNA  Deoxyribonucleic acid  

ESA   U.S. Endangered Species Act 

ESE  Expected squared error 

EST  Expressed sequence tags (short DNA sequences) 

FOIA  US Freedom of Information Act of 1986 

GAPS  Genetic analysis of pacific salmonids 

GSI   Genetic stock identification 

PCR  Polymerase chain reaction (method of amplifying DNA sequences) 

PSC   Pacific Salmon Commission 

QTL  Quantitative trait loci 

SN  Statistical network 

SNP   Single nucleotide polymorphism 

TRT  Technical recovery team 

WCVI  West Coast of Vancouver Island 

 

 

 

 

 

 

 

 

 

 



 

v 

 

 

 

TABLE OF CONTENTS 
 

PREFACE ...................................................................................................................................... ii 

GLOSSARY.................................................................................................................................. iv 

LIST OF FIGURES ..................................................................................................................... vi 

LIST OF APPENDIX TABLES ................................................................................................ vii 

LIST OF APPENDIX FIGURES ............................................................................................... ix 

LIST OF APPENDIX INFORMATION BOXES ..................................................................... xi 

PART I.: BACKGROUND INFORMATION ............................................................................ 1 

 ........................................................ 1 

 ......................................................................... 3 

PART II.: EXECUTIVE SUMMARY ........................................................................................ 8 

 .................................................................................................................. 8 

 .............................................................................................. 15 

PART III.: JUSTIFICATIONS AND RATIONALE FOR EXPERT PANEL FINDINGS 

AND RECOMMENDATIONS. ................................................................................................. 17 

 ................................................................................................................ 17 

 .............................................................................................. 35 

PART IV. APPENDICES ........................................................................................................... 39 

   CHOICE OF MARKER TYPES FOR GENETIC STOCK IDENTIFICATION ....... 40 

APPENDIX B.   STATUS OF TISSUE COLLECTIONS AND MOLECULAR MARKERS FOR COHO 

AND SOCKEYE SALMON ................................................................................ 57 

APPENDIX C.   COAST-WIDE INTEGRATION OF GSI DATA COLLECTION, INTERPRETATION, 

AND USE IN MIXED STOCK ANALYSES .......................................................... 81 

APPENDIX D.   INDIVIDUAL ASSIGNMENTS AND STOCK COMPOSITION ESTIMATES FOR A 

MIXTURE WHEN SOURCE MARKS ARE NOT DEFINITIVE .............................. 90 

APPENDIX E.   HOW DIFFERENT SOURCES OF ERROR AFFECT THE ACCURACY OF 

GENETIC STOCK IDENTIFICATION ............................................................ 122 

APPENDIX F.   INTRA- AND INTER-ANNUAL VARIATION IN STOCK COMPOSTION OF THE 

QUEEN CHARLOTTE ISLAND TROLL FISHERY 2002–2006 ...................... 129 
 



 

vi 

 

 

 

 

LIST OF FIGURES 
 

Figure 1.   Multiplexed panel of microsatellites 

Figure 2.   Single nucleotide polymorphism (SNP) panel of genotypes 

Figure 3.   Map showing locations of samples in GAPS baseline 

Figure 4.   Statistical Network of Chinook salmon populations in Puget Sound 

Figure 5.  GSI estimates of population origins for April and September in northern 

British Columbia Chinook fishery 

 

 

 

 

 



 

vii 

 

 

 

LIST OF APPENDIX TABLES 
 

Table A1.   Characteristics of molecular marker used in fishery management 

Table A2.   Platforms presently used by laboratories for SNP genotyping with 

TaqMan for the PSC.  ‗Number of SNPs to run‘ indicates the number of 

SNPs that can be genotyped for the same cost as a typical microsatellite 

panel 

Table B1.  DFO: Regions and populations within regions included in the survey of 

variation at 13 microsatellite loci and two MHC exons in coho salmon.  

Number in parentheses after the name refers to the location shown in 

Figure 1 in Beacham et al. (2001) 

Table B2.  Regions, number of collections within regions, and number of individuals 

included in the survey of variation at 13 microsatellite loci and two MHC 

exons in coho salmon (T. Beacham, DFO) 

Table B3.  NOAA Fisheries, Seattle: Coho salmon population samples analyzed for 

variation at 11 core microsatellite loci listed in Table B5). [From Van 

Doornik et al. (2007)] 

Table B4.   NOAA Fisheries, Seattle: Microsatellie loci, annealing temperatures and 

primer references used to evaluate coho salmon stock composition. [from 

Van Doornik et al. (2007)] 

Table B5.  Status of screening for microsatellites in coho salmon among laboratories 

as of July 2007 (compiled by D. Van Doornik, NOAA Fisheries) 

Table B6   Summary of microsatellite markers available and number of observed 

alleles for sockeye salmon at the DFO laboratory (T. Beacham) 

Table B7.   NOAA Fisheries, Seattle: Data for sockeye salmon from Redfish Lake and 

the Wenatchee and Okanagan rivers are available for the following 

microsatellite loci (E. Iwamoto, NOAA Fisheries, Seattle) 

Table B8.  DFO: Summary of the number of sampling sites or populations of sockeye 

salmon within geographic regions. A complete listing of the populations is 

outlined by Beacham et al. (2005) in their Appendix Table 1. Range of 

annual and population samples sizes within regions is in parentheses. 

Fourteen microsatellite loci and an MHC locus were surveyed as outlined 

by Beacham et al. (2005) 

Table B8.   Number of SNP genotyping assays available for each species of Pacific 

salmon (compiled by C. Smith, USFWS) 

Table B9.   Single Nucleotide Polymorphism markers assayed for a) sockeye salmon, 

b) coho salmon, c) chum salmon, and d) Chinook salmon. Nuclear 

markers are diploid and mtDNA are haploid (C. Habicht, ADFG) 

Table B10.   Number of a) sockeye salmon, b) coho salmon, c) chum salmon, and d) 

Chinook salmon from baseline collections throughout the Pacific Rim that 

have been screened for all Single Nucleotide Polymorphism markers 

detailed Table B10. Multilocus genotypes are archived in the Alaska 

Department of Fish and Game database (C. Habicht, ADFG) 



 

viii 

 

 

 

Table E1.   List of stocks used in this analysis.  The numbers correspond to location in 

Figure E1.  Timing is the run timing for the stock: Spring (Sp), Summer 

(Su), and Fall (F).  Origin refers to source of samples, either hatchery (H), 

or in-river (W) 

Table F1.  Potential sources of GSI error 

 

 

 

 

 



 

ix 

 

 

 

LIST OF APPENDIX FIGURES 
 

Figure E1.   General location of stocks used in this analysis.  See Table E1 for names 

of and additional information for each stock.  Base map from Ruckelshaus 

et al. (2006). 

Figure E2.   Stock aggregations, based on the CTC stock complex definitions. The 

Strait of Juan de Fuca group was not listed as a Stock Complex by the 

CTC, but added to this analysis. See Figure E1 and Table E1 for 

individual stock locations.  Base map from Ruckelshaus et al. (2006). 

Figure E3.   Stock aggregations, based on the TRT multidimensional scaling (see text).  

See Figure E1 and Table E1 for individual stock locations.  Base map 

from Ruckelshaus et al. (2006). 

Figure E4.   Results from SN procedure described in the text. Lines between pairs of 

stocks indicate mean probabilities significantly greater than random. That 

is, if a line connects two stocks, the mean of the probabilities of 

individuals from one stock (or both stocks) assign to the other stock is 

greater than expected from a random distribution of probabilities. Note, 

White and Nooksack Rivers without connecting lines.  Individual 

networks shown in different colors (see also Figure E6). Base map from 

Ruckelshaus et al. (2006). 

Figure E5.   Stock aggregations, based on the Statistical Networks model described in 

the text, and shown graphically in Figure E4. Figure E1 and Table E1 for 

individual stock locations. Base map from Ruckelshaus et al. (2006). 

Figure E6.   Neighbor-joining tree from an allele-sharing matrix, with two Fraser River 

stocks included as an outgroup. Colored-filled boxes are management 

group identities for each of the three alternative aggregating procedures (C 

= CTC, T = TRT, S = SN). 

Figure E7.   Box plots showing the distribution of correct assignments for 10,000 

simulated 100% mixtures, for each management group. The box extends 

from the 25
th

 to the 75
th

 percentile, the bars cover the 10
th

 and 90
th

 

percentile, and black dots are the 5
th

 and 95
th

 percentile for the 10,000 runs 

for each management group. The solid and dotted lines associated with 

each plot are the median and mean values, respectively, for the 10,000 

runs. The median values for each management group are also written at 

the bottom of the plot above the group identification. The SJF, WhiteSp, 

NooksackSp, and PSFall groups for the TRT and New Method are 

identical, and therefore produced the same box plot. 

Figure E8.   Frequency distribution for proportion Nooksack Spring samples correctly 

assigned to the Nooksack Spring management group for 10,000, 100% 

simulated mixtures. This plot shows the frequency distribution for the 

Nooksack Spring box plots in Figure E7. 

Figure G1.  April: GSI estimates for Chinook salmon fishery off the northwest coast of 

the Queen Charlotte Islands. 



 

x 

 

 

 

Figure G2.  May: GSI estimates for Chinook salmon fishery off the northwest coast of 

the Queen Charlotte Islands. 

Figure G3.  June: GSI estimates for Chinook salmon fishery off the northwest coast of 

the Queen Charlotte Islands. 

Figure G4.  July: GSI estimates for Chinook salmon fishery off the northwest coast of 

the Queen Charlotte Islands. 

Figure G5.  August: GSI estimates for Chinook salmon fishery off the northwest coast 

of the Queen Charlotte Islands. 

Figure G6.  September: GSI estimates for Chinook salmon fishery off the northwest 

coast of the Queen Charlotte Islands. 

Figure G7.  Summary of GSI estimates for fish from Oregon in Chinook salmon 

fishery off the northwest coast of the Queen Charlotte Islands. 

Figure G8.  Summary of GSI estimates for fish from the Columbia River in Chinook 

salmon fishery off the northwest coast of the Queen Charlotte Islands. 

Figure G9.  Summary of GSI estimates for fish from Washington State (non-Columbia 

River fish) in Chinook salmon fishery off the northwest coast of the Queen 

Charlotte Islands. 

Figure G10.  Summary of GSI estimates for fish from the Fraser River in Chinook 

salmon fishery off the northwest coast of the Queen Charlotte Islands. 

Figure G11.  Summary of GSI estimates for fish from west coast of Vancouver Island 

(WCVI) drainages in Chinook salmon fishery off the northwest coast of 

the Queen Charlotte Islands. 

Figure G12.  Summary of GSI estimates for fish from the northern British Columbia 

drainages in Chinook salmon fishery off the northwest coast of the Queen 

Charlotte Islands. 

Figure G13.  Inter-annual variability (2002–2006) in GSI estimates of fish from Oregon 

State in Chinook salmon fishery off the northwest coast of the Queen 

Charlotte Islands. 

Figure G14.  Inter-annual variability (2002–2006) in GSI estimates of fish from the 

Columbia River in Chinook salmon fishery off the northwest coast of the 

Queen Charlotte Islands. 

Figure G15.  Inter-annual variability (2002–2006) in GSI estimates of fish from 

Washington State in Chinook salmon fishery off the northwest coast of the 

Queen Charlotte Islands. 

Figure G16.  Inter-annual variability (2002–2006) in GSI estimates of fish from the 

Fraser River in Chinook salmon fishery off the northwest coast of the 

Queen Charlotte Islands. 

Figure G17.  Inter-annual variability (2002–2006) in GSI estimates of fish from west 

coast of Vancouver Island drainages in Chinook salmon fishery off the 

northwest coast of the Queen Charlotte Islands. 

 



 

xi 

 

 

 

LIST OF APPENDIX INFORMATION BOXES 

 

Information Box 1.   Genetic markers 

Information Box 2.   Ascertainment bias 

Information Box 3.   Use of mixed-stock analysis for in-season management 
 



 

1 

 

 

 

PART I.: BACKGROUND INFORMATION 
 

 

The history of molecular markers in Pacific salmon research and management reaches back to 

the 1960s, when blood types were used to distinguish populations of sockeye salmon in rivers 

draining into Bristol Bay (Ridgway and Utter 1964) and to identify major stock components in 

ocean fisheries (Ridgway 1964; Utter et al. 1966). These blood-group polymorphisms, detected 

with rabbit serum antibodies, were complex, and the salmon red-blood cells could be stored for 

only a short time (Hodgins 1972). These attempts to use blood-group polymorphisms represented 

the first use of genetic markers to identify stock components in a mixed-stock fishery. 

 

The appearance of electrophoretic methods to detect protein variants represented a breakthrough 

in the search for a suitable molecular marker. Allozyme genotypes reflected Mendelian variation 

and were easy to screen with starch-gel electrophoresis. Allozyme markers were described in 

Pacific salmon in the late 1960s and early 1970s (Hodgins et al. 1969; Utter et al. 1970; Utter 

and Hodgins 1970) and soon after, found their way into a variety of applications, including the 

reconstruction of the Pacific salmon family tree (Utter et al. 1973a), reproductive and population 

biology (Utter et al. 1973b; Wilmot 1974), and fishery management (Utter et al. 1976).  

 

The mid 1970s marked a significant advance in statistical methods to use allozyme variants for 

mixed-stock analysis. Projects had been initiated on chum salmon populations in Puget Sound  

(Seeb and Wishart 1977) and on sockeye salmon in Cook Inlet, Alaska (Grant et al. 1980) to 

tease apart components in mixed-stock fisheries. George Milner wrote a maximum likelihood 

program for mixed stock analysis using the EM algorithm and kindly guided colleagues through 

the analysis of allozyme data. The early version of the program required as much as 30% of 

University of Washington‘s IBM mainframe computing power for some runs. 

 

The 1980s and 1990s witnessed the implementation of GSI capabilities by several laboratories 

and a growing use of GSI by management (Beacham et al. 1985a,b; Shaklee et al. 1990; Utter et 

al. 1987). This activity stimulated substantial improvements in GSI estimation procedures 

(Fournier et al. 1984; Pella and Milner 1987; Wood et al. 1987; Pella et al. 1996; Pella and 

Masuda 2001). One important improvement was implementation of Bayesian methods to use 

previous information to jump-start iterations toward the resolution of stock proportions in a 

fishery sample. Another advance was to use mixture information to improve the population 

allele-frequency estimates in the baseline (Pella and Masuda 2001).  

 

Several DNA markers have been considered for GSI over the past 30 years including restriction 

fragment length polymorphism (RFLP) analysis of mitochondrial DNA (Potter et al. 1975; Avise 

et al. 1979; Avise 1989), minisatellites (Jeffreys et al. 1985; Galvin et al. 1995), random 

amplified polymorphic DNA (RAPD) (Welsh and McClelland 1990; Williams et al. 1990), short 

interspersed nuclear elements (SINEs) (Okada 1991), amplified fragment length polymorphisms 

(AFLPs) (Vos et al. 1995), and microsatellites (Tautz 1989). The DFO laboratory at Nanaimo, 

BC spearheaded the use of minisatellites in GSI applications of Pacific salmon, but minisatellites 

were not cost-effective for GSI and were not widely adopted (Beacham et al. 1996a,b; Miller et 



 

2 

 

 

 

al. 1996). Microsatellites eventually displaced allozymes as a standard tool for Pacific salmon 

research when high throughput methods became available (O‘Connell and Wright 1997).  

 

Single nucleotide polymorphisms (SNPs) are now gaining popularity in some circles and await 

evaluation as a population marker. This class of marker represents a shift in focus from protein 

products or DNA segments to individual nucleotide sites. SNPs ultimately are the sources of 

variability for most molecular markers. They potentially can provide a wealth of markers, as they 

occur at frequencies of 1 in 300–500 nucleotide sites throughout the genome (Nielsen 2000). The 

present generation of SNP assays now provides the capability of screening thousands of SNPs 

for markers of diseases and quantitative traits. Although SNPs were described some time ago 

(Botstein et al. 1980; Fischer and Lerman 1983), they have been applied only recently to 

population surveys of Pacific salmon (Smith et al 2005). 

 

Three criteria have been used to evaluate new population markers as they have appeared. The 

first is whether a new marker provides greater population resolution than existing markers. The 

second is the availability of high throughput assays. This is especially important for GSI 

applications requiring the analyses of thousands of fish annually. A third criterion is the 

compatibility of a new marker with the theoretical framework used to make demographic 

inferences. As SNPs have come into greater use in numerous settings, statistical and theoretical 

investigations of SNP-based inferences have followed (Kuhner et al. 2000; Nielsen 2000; 

Schlötterer and Harr 2002; Wooding and Rogers 2002; Brumfield et al. 2003; among many 

others).  

One potential problem in adopting SNPs arises from the practice of ‗high-grading‘—choosing 

only markers that show large differences among populations (for example, humans, Paschou et 

al. 2007). One mechanism producing high-graded markers is natural selection, which can leave a 

characteristic geographical imprint on populations (e.g. Verrelli and Eames 2001). While high-

graded SNPs may provide greater resolution among populations for GSI (Smith et al. 2005), they 

may be poorly suited to other applications in fishery management. For example, high-graded 

SNPs yield biased estimates of genetic diversity for conservation or of population parameters, 

including effective population size, past demographic events (bottlenecks in population size, 

founder events), and gene flow (‗straying‘).          
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Members of the genetics workgroup wrote reports on seven key issues between workshops and 

discussed the results of these reports at the second workshop. These reports appear in the 

appendix. 

 

Appendix A. Choice of Marker Types for Genetic Stock Identification 

 

One focus of the workgroup was on whether single nucleotide polymorphisms (SNPs) could 

complement, or possibly replace, microsatellites for GSI. This topic is explored by Smith et al., 

who compare the characteristics of microsatellites and SNPs and attempt to capture the diversity 

of opinion voiced at the workshops. Preliminary comparisons of regional microsatellite and SNP 

datasets fail to show clear advantages of one marker type over the other. Cost-benefit analyses of 

these marker types in coast-wide applications have yet to be conducted and are at the top of the 

list of recommended actions.  

 

Appendix B. Status of sample collections and genotypic data 

 

One way of increasing population resolution is to boost sampling effort to improve population 

baselines. Habicht et al. summarize the status of sample collections and available population data 

for the various species of Pacific salmon, but with a focus on coho and sockeye salmon. 

Presently, microsatellite and SNP data are available for tens of thousands of Chinook and 

sockeye salmon over a wide geographic range, and large databases are available for chum 

salmon for both microsatellites and SNPs. This summary will guide future efforts to sample 

populations in under-represented areas. 

 

Appendix C. Coast-wide integration of GSI data collection, interpretation and use in mixed 

stock analysis 

 

Coast-wide GSI applications require locus and allele standardization and data sharing among 

laboratories. Cooperation among laboratories has been excellent for standardizing microsatellite 

loci and alleles in the GAPS Chinook salmon database and will be essential for on-going 

standardizations of coho and sockeye salmon databases. An essay by Grant et al. reviews the 

steps needed to establish a standardized database and the development of mechanisms to 

facilitate the sharing of unpublished data for coast-wide mixed stock analyses. The Logistics 

Workgroup also explored procedures for data sharing and archiving. The two contributions 

together provide a detailed picture of how standardization and data sharing can proceed for 

additional species of Pacific salmon. 

 

Appendix D. Individual assignments and stock composition estimates for mixture analysis 

 

An important way of enhancing the precision of mixed-stock estimates is to refine statistical GSI 

procedures. Three reports address this issue. The first contribution by Jerry Pella evaluates the 

use of individual assignments and summing versus the estimation of stock proportions (mixture 

modeling) for GSI estimation. While individual assignments may be valuable for some non-GSI 

applications, they provide less precision for GSI than does mixture modeling.  
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Appendix E. Stock aggregation methods 

 

Another approach to improving GSI estimation is to aggregate similar stocks into reporting 

groups. A report by Warheit et al. addresses the question of how best to aggregate stocks. The 

somewhat subjective methods used by some management and conservation biologists to 

aggregate populations often place genetically dissimilar populations into one reporting group. A 

method of statistical networks with an underlying phylogenetic approach to stock aggregation is 

developed and applied to Chinook salmon populations in Puget Sound as an example. These 

aggregations produce greater GSI accuracy than did other population groupings used for 

management and conservation.  

 

 

Appendix F. Sources of GSI error 

 

Improvement in GSI precision can be greatly enhanced by identifying and reducing particular 

sources of error in GSI estimates. Steven Kalinowski devised an algorithm to identify major 

sources of error in GSI estimates in a Chinook salmon fishery off southeastern Alaska. Among 

three variables investigated (fishery sampling, genotyping, and baseline sampling), uncertainties 

in baseline allele frequencies represented the largest proportional source of error in this fishery. 

Uncertainties in baseline allele frequencies can be addressed by greater sampling effort and by 

statistical procedures accounting for systematic errors in allele-frequency estimation.  

 

Appendix G. Variation in Chinook salmon migration 

 

Regional and temporal GSI estimates collectively can provide insights into within- and between-

season variability in run timing and annual shifts in migration patterns. Terry Beacham presents 

an in-depth examination of in-season monthly Chinook salmon GSI data extending from 2002 to 

2006. An important conclusion from these in-season and inter-annual comparisons is that sparse 

sampling during a fishing season may give a misleading view of the presences of various stocks 

contributing to a fishery. 
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PART II.: EXECUTIVE SUMMARY 
 

Two workshops brought together experts to evaluate state-of-the-art developments of genetic 

stock identification (GSI)
2
. The genetics workgroup (one of four) discussed several key issues in 

three broad topics. The first of these topics dealt with marker development, baseline sampling, 

standardization and data sharing. The second topic dealt with statistical treatments of genotypic 

data and included an evaluation of individual assignments versus proportion estimation of stock 

proportions, an examination of how stocks can be aggregated to improve GSI precision, and an 

assessment of major sources of error in GSI estimation. The last topic was on the use of GSI 

results to provide insights into Pacific salmon run timing and migration patterns. 

 

 

 

Growing use of genetic markers in fishery management 

 

Finding 1. Genetic markers have been used in numerous facets of fishery management over 

the past 40 years. The use of genetic markers has increased as new markers 

provide greater population resolution and ease of screening. The continuing 

development of statistical methods has provided greater accuracy for GSI 

estimation and for gaining insights into the population structures and for 

evaluating conservation status of Pacific salmon populations. 

 

 

Choice of marker types for genetic stock identification 

 

Finding 2.  Three criteria are used formally or informally to evaluate the usefulness of new 

markers as they appear. 

 

a. A new marker should provide equal or greater resolution of population 

differences than existing markers. 

 

b. High throughput genotyping should be available to support applications 

often requiring the analysis of thousands of fish annually. 

 

c. A large-scale adoption of a marker by laboratories requires that it be 

suitability to continue a well-established tradition of research on salmon 

population biology. 

 

Finding 3. Population resolution is influenced by several factors.  

 

a. For selectively neutral and unbiased alleles, power depends on the number of 

independent alleles. 

                                                 
2
 The term ‗genetic stock identification‘ includes a broad spectrum of genetic applications, but has become 

synonymous with ‗mixed stock analysis‘. 
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b. The use of ‘high-graded markers— markers showing large differences 

between populations—produces greater than expected resolution from the 

independent-alleles rule. This greater discriminating power can be due to the 

use of ‘neutral’ alleles showing greater than average differences among 

populations, or to the use of alleles influenced by natural selection.  

 

Finding 4. High throughput assays are available for both SNPs and microsatellites to 

facilitate rapid sample turnaround for in-season management. The automation of 

genotyping reduces human error. Opportunities for automated genotyping may be 

greater for SNPs than for microsatellites, but this issue remains unresolved.  

 

Finding 5.  Presently, genotyping costs per locus appear to be higher for microsatellites than 

for SNPs, whereas genotyping costs per allele are higher for SNPs. Importantly, 

genotyping costs to achieve a particular level of population resolution are 

unknown.  

 

Finding 6. High-graded genetic markers may be unsuited to other applications commonly 

used in fishery management, including the estimation of genetic diversity for 

conservation or of demographic parameters, such as effective population size, 

past demographic events (bottlenecks in population size, founder events) and gene 

flow (straying). 

 

Finding 7.  Pacific salmon population geneticists are at the forefront of exploring the large-

scale use of SNPs in the fishery management. No other group of fishery 

geneticists can add to the expertise of participants who attended the two 

workshops.  

 

Finding 8. Empirical comparisons of the cost-benefit relationship between microsatellite and 

SNPs are a high priority and must precede recommendations on marker selection.  

 

 

Status of markers and samples of coho and sockeye salmon 

 

Chinook salmon 

 

Finding 9. The development of a coast-wide GAPS microsatellite baseline for Chinook 

salmon represented a considerable advance over the use of allozyme baselines by 

making data readily accessible over the internet. Lessons learned from GAPS can 

be used to develop baselines for other species of Pacific salmon. About 51 SNP 

assays are available for Chinook salmon. About 25,000 fish have been examined 

for SNPs in samples from Russia to California. Several thousand Chinook salmon 

from Southeast Alaska and the Yukon-Kuskokwim rivers have been examined to 

support transboundary management. 

 

Coho salmon 
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Finding 10. Numerous populations of coho salmon have been surveyed for variability at 

numerous microsatellite loci (and two MHC loci in some areas) by various 

agencies. Samples extend from Southeast Alaska to northern California. At least 

42 SNP assays have been developed for coho salmon, but only about 400 fish 

have been examined for variability in samples extending from Russia to 

Washington. 

 

Sockeye salmon 

 

Finding 11. Several regional databases of microsatellite markers have been developed for 

sockeye salmon. Most surveys have included populations in British Columbia, and 

a few populations of conservation concern in the Columbia-Snake river drainage. 

About 35,000 sockeye salmon have been examined for SNP variability in samples 

extending from Russia to Washington-Idaho, but with a concentration in Alaska 

around Bristol Bay and the Alaska Peninsula, where this species is most 

abundant. 

 

Chum salmon 
 

Finding 12. Numerous microsatellites have been developed for chum salmon, and numerous 

populations have been surveyed. About 77 SNP assays have been developed for 

chum salmon. About 12,000 chum salmon have been genotyped in samples 

extending from Korea to Washington. 

 

Pink salmon 
 

Finding 13. No SNP assays have been developed for pink salmon. 

 

 

Coast-wide integration of GSI data collection and use 

 

Finding 14. The value of GSI is greatly enhanced by ensuring that regional datasets can be 

merged into a larger coast-wide dataset. Merging data from several laboratories 

requires attention to four layers of detail.  

 

a. A common set of loci must be used among laboratories for each class of 

molecular marker. 

 

b. Laboratories must standardize allelic identities and allelic nomenclature.  

 

Standardization is complicated for microsatellites, because different automated 

platforms generally produce different allelic mobilities. Rapid standardization of 

alleles may be achieved with allelic ladders, without the need for exchanging 

tissues or DNA. Minimal allelic standardization is required for single nucleotide 
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polymorphisms (SNPs), as only four easily identified nucleotide states are 

possible at a nucleotide position.  

 

c. Spatial scales of sampling effort must be consistent among laboratories, so 

that the most important spawning populations contributing to a fishery are 

sampled.  

 

While allelic identification among laboratories may not be problematic for SNPs, 

polymorphisms identified in one region may not provide adequate population 

resolution in another region. 

 

d. Statistical procedures should be consistent among laboratories. The 

usefulness of coast-wide analyses depends on standardizing these procedures 

among laboratories.   

 

Finding 15. Sharing of baseline data among laboratories is essential to address coast-wide 

GSI problems. Data sharing can be hindered by several factors. 

 

a. Protection by researchers of proprietary information for scientific 

publication. 

 

b. Hesitation among agencies to share data for fear that some interpretations of 

a dataset may not prove beneficial to their interests.  

 

Different interpretations of the same data can potentially arise from the use of 

different statistics, or the inclusion of some samples but not others for mixed 

stock analysis. Data sharing has traditionally depended on the goodwill and 

cooperation of personnel in these agencies. However, when problems arise among 

laboratories, cooperation may have to be implemented by memoranda of 

agreements that clearly outline how shared data can be used. 

 

 

Individual assignments and stock composition estimates for mixtures 
 

Finding 16. Artificial and natural marks have been useful in salmon management to identify 

populations of origin of migrating salmon. An important advantage of natural 

marks is their complete coverage of all stocks and all individuals in the stocks. 

However, natural marks provide less certainty in the source identification of 

individuals than do artificial marks.  

 

Finding 17. The relative frequencies of the natural marks differ among populations and 

provide some information to probabilistically separate mixture individuals to 

their sources. Both the sources of individuals and the stock composition of the 

mixture must be estimated and two general approaches to this dual estimation 

problem are possible.  
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a. Classical individual assignments methods have been less commonly applied in 

fisheries research.  

 

b. Mixture modeling methods are more widely used in fisheries research with 

both frequentist and Bayesian approaches. Mixture modeling is generally 

superior to the classical individual assignments method for the dual 

estimation problem. Although the cost of baseline development and of 

processing sampled mixture individuals for natural marks may be significant, 

the cost of statistical estimation is negligible.  

 

Finding 18. The Bayesian approach extends mixture modeling to include estimation of both 

the stock composition and the allele relative frequencies in contributing stocks. 

 

 

Aggregating Stocks for Improved Genetic Stock Identification 
 

Finding 19. A comprehensive knowledge of all stocks is unnecessary, if stocks can be 

aggregated into groups by assuming that stocks in a group share common 

characteristics that subject the stocks to the same or similar exploitation rates. 

Similar biology and recency of common ancestry, measured by genetic similarity, 

should govern how stocks are aggregated.  

 

Finding 20. Aggregation schemes inconsistent with genetic relationships among stocks reduce 

the accuracy and precision of GSI, thereby limit the usefulness of genetic 

analyses, and compromise the ability to manage fisheries with a full suite of data. 

The use of phylogenetic methods to identify genetically similar populations 

increases GSI accuracy. A Statistical Networks procedure (SN) was superior to 

two other aggregating procedures for identifying monophyletic groups of Chinook 

salmon populations in Puget Sound.  

 

Finding 21. Standard quantitative stock aggregations should be designed coast-wide to be 

consistent with the phylogenetic relationships of stocks, and to maximize value to 

address specific fishery management needs. 
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Sources of error affecting GSI accuracy   
 

Finding 22. Several sources of error influence the accuracy of GSI estimation. 

 

a. Sampling of the fishery. Error arises from small sample sizes and from non-

random sampling. 

 

b. Random sampling fails to include all stocks present in the fishery. 

 

c. Sampling a finite number of genetic markers. 

 

d. Genotyping error.  

 

e. Errors on allele frequencies from sampling a finite number of individuals in 

baseline populations.  

 

f. The inclusion of fish in the fishery sample from populations not in the 

population baseline also introduces error. 

 

Finding 23.  Partitioning of total expected square error (ESE)—a variance-like variable, 

including the effect of bias—into components b, c, and e showed that the largest 

source of error was due to uncertainties in allele frequencies in baseline 

populations (87.5%). A smaller proportion was due to fishery sampling (9.5%) 

and a very small proportion is due to genotypic sampling (2.7%). As the fishery 

used for this study was typical of other fisheries, these results likely show general 

trends for GSI estimates for other fisheries. 

 

Finding 24. When the level of differentiation among baseline populations is low (FST < 0.01), 

increased sampling will improve GSI accuracy. In other cases, statistical 

approaches can be used to improve baseline allele frequencies with two 

approaches.  

 

a. Generalized expectation maximum algorithm uses mixture samples to improve 

allele-frequencies estimates in the baseline populations. This approach is 

incorporated into available Bayesian GSI programs. 

  

b. Spatial models can be used to improve allele-frequency estimates by assuming 

that nearby populations tend to be similar. 

   

Finding 25. The magnitude of error from unsampled source populations potentially can be 

estimated with three approaches.  

 

a. Simulations to examine the impact of excluding some existing populations 

from baselines.  
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b. Spatially explicit models of population structure can be constructed to 

estimate allele frequencies of unsampled populations, and these estimates 

could be used in conventional GSI simulations.  

 

c. The Bayesian missing-data model may successfully identify unsampled 

populations contributing to a fishery. 

 

Finding 26. Error in GSI estimation of low-contributing stocks in a mixture is difficult to 

evaluate, but can be reduced in part by larger fishery sample sizes. Current GSI 

algorithms tend to bias stock composition estimates toward 1/k, where k is the 

number of stocks contributing to the baseline.  

 

 

Intra-annual and inter-annual variation in stock composition  
 

Finding 27. GSI estimates provide an opportunity to understand important features of salmon 

migration and spawning biology. In-season comparisons of GSI estimates in an 

area off northern British Columbia revealed contrasting abundance trends for 

fish from different areas. These estimates show shifts in stock compositions of fish 

in the troll fishery during the fishing season, which likely reflect migration 

patterns of various stock groups past the Queen Charlotte Islands.   

 

Finding 28.  Annual comparisons of five major stocks in either the troll or commercial catches 

showed shifts for some regions but not for others. Annual variation was most 

pronounced for Oregon fish with the highest proportions in August 2004. Fraser 

River fish also increased in 2002 and 2006, likely reflecting the strong returns to 

the Thompson River drainage in those years.  

 

Finding 29. Seasonal and annual comparisons are possible only after a large-scale 

population baseline has been established to identify stocks potentially 

contributing to a fishery. Seasonal and annual comparisons require frequent 

sampling during a fishing season to provide an accurate view of changes in 

contributing stocks. 
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Maintenance of existing databases 

 

Recommendation 1. Maintain and improve existing standardized microsatellite population 

baselines 

 

a. Existing microsatellite baselines provide the only means of addressing some 

management problems. 

 

b. These baselines should be maintained and extended to provide greater levels of 

population resolution.   

 

Recommendation 2.  Support continued development of genetic markers (particularly for SNPs 

in sockeye salmon coast-wide) 

 

a. Use appropriate lessons from the GAPS approach to marker standardization for the 

development of population baselines for additional species. 

 

b. Develop appropriate markers for use in a coast-wide baseline. 

 

Recommendation 3.  Empirical comparisons of SNPs & microsatellites on a coast-wide scale, 

with focus on Chinook and sockeye 

 

a. Even though SNPs often provide a high level of resolution for discriminating among 

regional populations, can they be effective in a coast-wide baseline?  

 

b. The particular sample of SNP or microsatellite loci for a regional comparison can 

determine the outcome of a comparison. Hence, appropriate marker should be used in 

a comparison. 

 

c. Simulations can be used to assess the level of resolution that a marker provides to 

discriminate among a group of populations. 

 

d. Blind samples of known origins should be used in a GSI analysis to examine 

resolution of marker types. 

 

e. Evaluations between marker types should be posed in terms of cost for a given amount 

of population resolution, not just the cost of genotyping.  

 

Recommendation 4.  The potential of a marker type to resolve features of salmon population 

dynamics, in addition to GSI (mixed stock analysis), should be considered 

before adopting one marker and abandoning another.  

 

a. Most models of population structure assume the selective neutrality of alleles. 
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b. High-graded markers showing strong differences among populations may improve 

GSI estimation, but produce biased estimates of demographic parameters, such as 

effective population size and gene flow.   

 

Improvement of statistical GSI methods 
 

Recommendation 5.  Support studies investigating sources of GSI error. Preliminary results of 

theoretical and simulation studies point to ways in improving GSI 

accuracy. 

 

a. Investigate ways of improving allele-frequency estimates of populations in baseline. 

Only marginal gains in accuracy can be achieved with larger samples of fishery 

mixtures and genetic markers. 

  

b. Support studies of other sources of GSI error, including upward bias of low-

frequency stocks in mixture, and missing baseline populations. 

  

c. Adopt mixture modeling for GSI estimation. 

 

Recommendation 6. Re-examine methods used to aggregate baseline stocks into reporting 

groups to increase GSI accuracy. 

 

Use of GSI to understand ocean migration and abundance patterns 

 

Recommendation 7. Support summary studies of seasonal and multi-year GSI results to better 

understand the ocean biology of Pacific salmon. 

 

Incorporation of GSI into Pacific salmon population models and harvest management 

 

Recommendation 8. Support collaborations between geneticists and population modelers and 

harvest managers to enhance the utility of GSI results. 
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PART III.: JUSTIFICATIONS AND RATIONALE FOR 

EXPERT PANEL FINDINGS AND 

RECOMMENDATIONS. 

 

 

Wide-spread use of genetic markers in fishery management 

 

Finding 1. Genetic markers have been used in numerous facets of fishery management over 

the past 40 years. The use of genetic markers has increased as new markers 

provide greater population resolution and ease of screening. The continuing 

development of statistical methods has provided greater accuracy for GSI 

estimation and for gaining insights into the population structures and for 

evaluating conservation status of Pacific salmon populations. 

 

The history of molecular markers in Pacific salmon research and management reaches back to 

the 1960s, when blood types were used to distinguish populations of sockeye salmon in Bristol 

Bay rivers. Since then numerous molecular markers have found their way into a variety of 

management applications, as well as in systematics, reproductive and population biology, and 

conservation.  

 

Choice of marker types for genetic stock identification 

 

Finding 2.  Three criteria are used formally or informally to evaluate the usefulness of new 

markers as they appear. 

 

A new marker should provide equal or greater resolution of population differences than existing 

markers. 

High throughput genotyping should be available to support applications often requiring the 

analysis of thousands of fish annually. 

A large-scale adoption of a marker by laboratories requires that it be suitability to continue a 

well-established tradition of research on salmon population biology. 

 

Several DNA markers have been considered for GSI over the past 30 years including restriction 

fragment length polymorphism (RFLP) analysis of mitochondrial DNA, minisatellites, random 

amplified polymorphic DNA (RAPD), short interspersed nuclear elements (SINEs), amplified 

fragment length polymorphisms (AFLPs), and microsatellites. Microsatellites eventually 

displaced allozymes as a marker of choice for Pacific salmon research and management, when 

high throughput methods became available. 

 

The focus now is on the relative merits of single nucleotide polymorphisms (SNPs) and 

microsatellites (Figure 1). SNPs were initially developed to map genetic diseases in the human 

genome, but are now used for individual identification, pedigree analysis and cultivar selection 
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in fish breeding programs. Recently, SNPs have been used as a population marker, and hence the 

present evaluation to assess the suitability of wider use with Pacific salmon. A new population 

marker should possess three characteristics: 1) equal or greater resolution of population 

differences than existing markers, 2) high throughput genotyping for applications requiring the 

analysis of thousands of fish annually, and 3) suitability to continue a well-established tradition 

of research on salmon population biology. A cost-benefit analysis of these factors is needed 

before a new marker can be adopted for GSI estimation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Multiplexed panel of microsatellites. 

 

 

Finding 3. Population resolution is influenced by several factors.  

 

a. For selectively neutral and unbiased alleles, power depends on the number of 

independent alleles. 

b. The use of ‘high-graded markers— markers showing large differences between 

populations—produces greater than expected resolution from the independent-

alleles rule. This greater discriminating power can be due to the use of 

‘neutral’ alleles showing greater than average differences among populations, 

or to the use of alleles influenced by natural selection.  

 

Population resolution is influenced by several factors. The statistical power provided by a marker 

to resolve population differences, or to estimate contributing stocks in a fishery, largely depends 

on the number of independent alleles, if the markers are not under selection. However, empirical 

comparisons of SNPs demonstrate that SNPs provide more discriminating power than expected 

with the independent-alleles rule. The greater discrimination is apparently due to the use of only 

SNP markers that show large population differences (ascertainment bias). This bias arises from 

neutral markers showing greater than average differences between populations, or from markers 

influenced by directional selection. Presently, SNP markers have been used to address regional 

problems, so the level of resolution among coast-wide populations remains unknown.  
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Finding 4. High throughput assays are available for both SNPs and microsatellites to 

facilitate quick sample turnaround for in-season management. The automation of 

genotyping reduces human error. Opportunities for automated genotyping may be 

greater for SNPs than for microsatellites, but this issue remains unresolved.  

 

Finding 5.  Presently, genotyping costs per locus appear to be higher for microsatellites than 

for SNPs, whereas genotyping costs per allele are higher for SNPs. Importantly, 

genotyping costs to achieve a particular level of population resolution are 

unknown.  

 

High throughput assays are available for both SNPs and microsatellites to facilitate quick sample 

turnaround for in-season management. Automation of laboratory procedures and genotype 

interpretations may improve throughput and reduce genotyping error in both marker types. 

Although opportunities for automated genotyping may be greater for SNPs (Figure 2) than for 

microsatellites, this issue remains unresolved. Presently, genotyping costs per locus appear to be 

higher for microsatellites than for SNPs, whereas genotyping costs per allele are higher for 

SNPs. Importantly, genotyping costs to achieve a particular level of population resolution are 

unknown. 

 

Finding 6. High-graded genetic markers may be unsuited to other applications commonly 

used in fishery management, including the estimation of genetic diversity for 

conservation or of demographic parameters, such as effective population size, 

past demographic events (bottlenecks in population size, founder events) and gene 

flow (straying). 

 

Lastly, a new marker should be compatible with the large body of theory used to interpret 

genotypic data. One hesitation in adopting SNPs arises from the practice of ‗high-grading‘—

choosing only markers showing large differences between populations. One mechanism leading 

to high-graded markers is natural selection, which can produce a characteristic geographical 

imprint. While high-graded SNPs may provide greater resolution for GSI, they may be unsuited 

to other applications commonly used in fishery management. High-graded SNPs cannot provide 

unbiased estimates of genetic diversity for conservation or of demographic parameters, such as 

effective population size, past demographic events (bottlenecks in population size, founder 

events) and gene flow (‗straying‘). 
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Figure 2. Single nucleotide polymorphism (SNP) panel of genotypes. 

 

 

Finding 7.  Pacific salmon population geneticists are at the forefront of exploring the large-

scale use of SNPs in the fishery management. No other group of fishery 

geneticists can add to the expertise of participants at the two workshops.  

 

Pacific salmon population geneticists have historically pioneered the use of genetic markers in 

fishery management are first in exploring the large-scale use of SNPs in the fishery management. 

No other group of fishery geneticists can add to the expertise of participants who attended the 

two workshops. The evaluation of SNPs and microsatellites will have important repercussions, 

not only for the use of molecular markers in the management of Pacific salmon, but also for 

applications of molecular markers to major fisheries in other regions of the globe.  

 

Finding 8. Empirical comparisons of the cost-benefit relationship between microsatellite and 

SNPs are a high priority and must precede recommendations on marker selection.  

 

Empirical comparisons of the cost-benefit relationship between microsatellite and SNPs are a 

high priority and must precede recommendations on marker selection. Cost-benefit relationships, 

however, change with technological advances and depend on species, laboratory infrastructure, 

and geographic scale. These analyses require immediate attention.  
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Status of markers and samples of Chinook, coho, sockeye, and other Pacific salmon 

 

Finding 9. The development of a coast-wide GAPS microsatellite baseline for Chinook 

salmon represented a considerable advance over the use of allozyme baselines by 

making data readily accessible over the internet. Lessons learned from GAPS can 

be used in the development of baselines for other species of Pacific salmon. About 

51 SNP assays are available for Chinook salmon. About 25,000 fish have been 

examined for SNPs in samples from Russia to California. Several thousand 

Chinook salmon from Southeast Alaska and the Yukon-Kuskokwim rivers have 

been examined to support transboundary management. 

 

Finding 10. Numerous populations of coho salmon have been surveyed for variability at 

numerous microsatellite loci (and two MHC loci in some areas) by various 

agencies. Samples extend from Southeast Alaska to northern California. At least 

42 SNP assays have been developed for coho salmon, but only about 400 fish 

have been examined for variability in samples extending from Russia to 

Washington. 

 

Finding 11. Several regional databases of microsatellite markers have been developed for 

sockeye salmon. Most surveys have included populations in British Columbia, and 

a few populations of conservation concern in the Columbia-Snake river drainage. 

About 35,000 sockeye salmon have been examined for SNP variability in samples 

extending from Russia to Washington-Idaho, but with a concentration in Alaska 

around Bristol Bay and the Alaska Peninsula, where this species is most 

abundant. 

 

Finding 12. Numerous microsatellites have been developed for chum salmon and numerous 

populations have been surveyed. About 77 SNP assays have been developed for 

chum salmon. About 12,000 chum salmon have been genotyped in samples 

extending from Korea to Washington. 

 

Finding 13. No SNP assays have been developed for pink salmon. 

 

One step in constructing databases for species of Pacific salmon is the development of regional 

baselines, usually by agencies with regional management mandates. Coast-wide baselines often 

follow the development of regional baselines after standardizations of loci and alleles. 

Previously, coast-wide allozyme baselines were developed and maintained through 

collaborations and workshops to standardize allelic designations. The development of a coast-

wide GAPS microsatellite baseline for Chinook salmon (Figure 3) was a continuation of this 

process, but represented a considerable advance by making data readily accessible over the 

internet. As a start toward the development of additional coast-wide baselines, this section 

summarizes regional and coast-wide datasets with a focus on coho and sockeye salmon. These 

summaries are snapshots of a growing set of regional and coast-wide databases for SNP and 

microsatellite markers. 

 

Microsatellite markers 
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Coho salmon: Numerous populations of coho salmon have been sampled by DFO, Nanaimo in 

several regions and examined for variability in 13 microsatellite loci and two MHC exons. These 

samples are concentrated in British Columbia with representative samples from Southeast Alaska 

and Washington State. A large number of samples have been examined for variability at 11 

microsatellite loci by NOAA Fisheries, Seattle, in samples from populations extending from 

southern British Columbia to northern California. Presently, 61 microsatellite primers developed 

for coho or other species of salmon have been used to screen for variability in coho salmon. 

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Map showing locations of samples in GAPS baseline. 

 

 

Sockeye salmon: Several regional databases for microsatellite markers exist for sockeye salmon 

that have been used by DFO and NOAA. Most surveys of microsatellite loci have been of 

populations in British Columbia, and of a few populations of conservation concern in the 

Columbia-Snake river drainage.  
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Single nucleotide polymorphisms (SNPs) 

 

The number of SNP assays and the number of samples examined are growing rapidly. Most SNP 

databases encompass only regional sets of populations. Presently, 51 genotypic assays are 

available for Chinook salmon, 19 for coho salmon, 77 for chum salmon, 44 for sockeye salmon, 

and none for pink salmon. At least 42 SNP assays have been developed for coho salmon, but 

only about 400 fish have been examined for variability in samples extending from Russia to 

Washington.  

 

Regional surveys for some species are quite large. About 35,000 sockeye salmon have been 

examined for SNP variability in samples extending from Russia to Washington-Idaho, but with a 

concentration in Alaska around Bristol Bay and the Alaska Peninsula, where this species is most 

abundant. About 12,000 chum salmon have been genotyped in samples extending from Korea to 

Washington, and nearly 25,000 Chinook salmon have been examined in samples from Russia to 

California. Several thousand Chinook salmon from Southeast Alaska and the Yukon-Kuskokwim 

rivers have been examined to support transboundary management. 

 

Coast-wide integration of GSI data collection, interpretation and use in mixed stock 

analysis 

 

Finding 14. The value of GSI is greatly enhanced by ensuring that regional datasets can be 

merged into a larger coast-wide dataset. Merging data from several laboratories 

requires attention to four layers of detail.  

 

a. A common set of loci must be used among laboratories for each class of 

molecular marker. 

b. Laboratories must standardize allelic identities and allelic nomenclature. 

c. Spatial scales of sampling effort must be consistent among laboratories, so 

that the most important spawning populations contributing to a fishery are 

sampled. 

d. Statistical procedures should be consistent among laboratories. The 

usefulness of coast-wide analyses depends on standardizing these procedures 

among laboratories.   

 

The value of GSI is greatly enhanced by ensuring that regional datasets can be merged into a 

larger coast-wide dataset. After the creation of a coast-wide baseline, data should be accessible in 

a timely manner to management agencies responsible for maintaining sustainable harvests of 

salmon. Previous efforts to integrate databases for Chinook salmon (GAPS) have proved 

successful, and this database has provided information to management that would not have been 

possible with the separate analyses of individual datasets.  

 

Merging data from several laboratories requires attention to four layers of detail. First, a common 

set of loci must be used among laboratories for each class of molecular marker. Second, 

laboratories must standardize allelic identities and allelic nomenclature. This is complicated for 

microsatellites, because different automated platforms generally produce different allelic 
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mobilities, even in the same laboratory. These two issues can be resolved by collaborations 

among laboratories and periodic workshops. Alternatively, rapid standardization of alleles may 

be achieved with allelic ladders, without the need for exchanging tissues or DNA. Minimal 

allelic standardization is required for single nucleotide polymorphisms (SNPs), as only four 

easily identified nucleotide states are possible at a nucleotide position.  

 

Third, spatial scales of sampling effort must be consistent among laboratories, so that the most 

important spawning populations contributing to a fishery are sampled. While allelic 

identification among laboratories may not be problematic for SNPs, polymorphisms identified in 

one region may not be present in another region. For example, SNP polymorphisms developed 

for Alaskan populations may be useful for differentiating Asian populations from North 

American populations, but may be less useful for distinguishing among Asian populations. 

 

Fourth, statistical procedures should be consistent among laboratories. Sampling design and 

statistical power influence inferences about population structure, and hence influence the 

accuracy and utility of GSI. Sampling design is often complicated by the need to resolve run or 

spawning time components of a population. One goal is to achieve consistency in methods used 

to aggregate reporting groups for GSI. In addition to the completeness of a population data 

baseline, the results of mixed-stock analyses depend on the timing and sizes of samples from 

ocean or river mouth harvests, and on the particular statistical method used to estimate the 

composition of the mixture (e.g. individual assignment or proportion estimation). The usefulness 

of coast-wide analyses depends on standardizing these procedures among laboratories.   

 

These four considerations set the stage for the sharing of genetic data to support GSI of fishery 

samples. The availability of up-to-date, but often unpublished, data is vital to these efforts. 

Requests for information may include tissue samples for additional analyses, genotypic or allele 

frequency data, summary statistics or draft reports. While funding agencies may impose data-

sharing requirements on researchers, laboratories generally receive support from several in-house 

and agency sources, each of which may have different data-sharing mandates.  

 

Finding 15. Sharing of baseline data among laboratories is essential to address coast-wide 

GSI problems. Data sharing can be hindered by several factors. 

 

Protection by researchers of proprietary information for scientific publication. 

Hesitation among to share data for fear that some interpretations of a dataset 

may not prove beneficial to their interests.  

 

 

The first step toward facilitating the easy distribution of data is to establish a web-based 

electronic ‗meta-database‘ accessible to stakeholders and management. The primary function of 

this database would be to catalogue existing primary genetic data (markers, sample dates and 

sampling localities), biological information (population profiles) and biological materials 

(tissues, otoliths and scales) available for genetic analysis. A meta-database would also help to 

improve the designs of research projects and sampling. This database might include the 

following: 
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 Existing allozyme, mtDNA, microsatellite, SNP, and EST datasets and where they are 

located; 

 Existing collections of historical biological material that could be used to extract DNA. 

Archived scales and otoliths can be used to estimate allele frequencies in past populations;  

 List of past and current genetics projects, including laboratory location, researchers‘ names 

and the natures of the projects; 

 Profiles and contact information of active researchers working on the genetics of salmon. 

 

Data sharing can be complicated by other factors. One is the protection by researchers of 

proprietary information for scientific publication. Another is agencies‘ hesitation to share data 

for fear that some interpretations of a dataset may not prove beneficial to their interests. Different 

interpretations of the same data can potentially arise from the use of different statistics or the 

inclusion of some samples but not others for mixed stock analysis. Data sharing has traditionally 

depended on the goodwill and cooperation of personnel in these agencies. However, when 

problems arise among laboratories, cooperation may have to be implemented by memoranda of 

agreements that clearly outline how shared data can be used. 

 

Individual assignments and stock composition estimates for a mixture when source marks 

are not definitive 

 

Finding 16. Artificial and natural marks have been useful in salmon management to identify 

populations of origin of migrating salmon. An important advantage of natural 

marks is their complete coverage of all stocks and all individuals in the stocks. 

However, natural marks provide less certainty in the source identification of 

individuals than do artificial marks. 

 

Artificial and natural marks have been useful in salmon management to identify populations of 

origin of migrating salmon. An important advantage of artificial marks is that the sources of 

marked individuals are known with certainty. Therefore, if marking were complete, for instance, 

the stock proportions from the marks in a fishery sample would be directly observable and these 

would be the maximum likelihood estimator of the catch stock composition. A disadvantage of 

artificial marks is their expense in application and in determination of the source at recovery. As 

a consequence, artificial marking is often incomplete, as neither all stocks nor all individuals in a 

stock are marked. The lack of marks for some stocks in a mixture is highly problematic for 

assessing mixed-stock composition. 

 

Natural marks include scale features, parasites, and genotypes. The important advantage of 

natural marks is that they provide complete coverage of all stocks as well as of all individuals in 

the stocks. However, natural marks provide less certainty in the source identification of 

individuals than do artificial marks. The relative frequencies of the natural marks differ among 

populations and provide some information to probabilistically separate mixture individuals to 

their sources.  

 

Finding 17. The relative frequencies of the natural marks differ among populations and 

provide some information to probabilistically separate mixture individuals to 

their sources. Both the sources of individuals and the stock composition of the 
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mixture must be estimated and two general approaches to this dual estimation 

problem are possible.  

 

a. Classical individual assignments methods have been less commonly applied 

in fisheries research.  

 

b. Mixture modeling methods are more widely used in fisheries research with 

both frequentist and Bayesian approaches. Mixture modeling is generally 

superior to the classical individual assignments method for the dual 

estimation problem. Although the cost of baseline development and of 

processing sampled mixture individuals for natural marks may be significant, 

the cost of statistical estimation is negligible.  

 

Finding 18. The Bayesian approach extends mixture modeling to include estimation of both 

the stock composition and the allele relative frequencies in contributing stocks. 

 

Because the source identity of an individual is almost never certain from its natural marks, both 

the sources of individuals and the stock composition of the mixture must be estimated. Two 

general approaches to this dual estimation problem are possible. The first is termed the classical 

individual assignments method, and although not recommended for the dual estimation problem, 

it has been commonly applied in fisheries research. The classical individual assignments method 

is used here to motivate and explain the second, and recommended, approach based on mixture 

modeling. Mixture modeling methods are well developed and more widely used in fisheries 

research with both frequentist and Bayesian versions available. Mixture modeling is generally 

superior to the classical individual assignments method for the dual estimation problem. 

Although the cost of baseline development and of processing sampled mixture individuals for 

natural marks may be significant, the cost of statistical estimation is negligible.  

 

An ostensibly reasonable approach to the dual estimation is the classical individual assignments 

method. This method includes two steps applied once to the mixture sample: 1) assignment of 

the mixture individuals to source populations, and 2) estimation of the mixture composition from 

the assignments using multinomial sampling theory. In the first step, the multilocus genotype for 

an individual is matched to the population with the most frequent occurrence of the genotype 

(maximum frequency or MAF rule). Promotion of the MAF rule is misleading because a superior 

rule, the maximum a posteriori or MAP rule, has a lower expected frequency of assignment 

errors for arbitrary mixtures. The MAP rule assigns each individual to the source stock estimated 

to contribute the greatest proportion of its genotype to the mixture. The MAF and MAP rules 

agree only when stocks are equally probable in the mixture. A justification for using the MAF 

rule may be a lack of information about the mixture composition, but after assignments are 

completed, some knowledge about stock composition becomes available. In general, the 

estimated composition from the assignments differs from the assumed equal composition. 

Additional cycles of assignments and estimation of the mixture composition take advantage of 

the new knowledge about the mixture composition, but the classical individual assignments 

method fails to do so. Also, at the second step, the classical individual assignments method, 

ignores the probable errors in source assignments and, hence, fails to account for possible bias 

and uncertainty in the stock composition estimate.  
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Mixture modeling takes advantage of new knowledge about mixture composition as individuals 

are assigned to sources. Frequentist and Bayesian versions of this approach have been developed. 

In the frequentist approach, the conditional maximum likelihood estimate of stock composition is 

found by nonlinear search to maximize the probability of the natural marks occurring in the 

mixture sample when considered as a function of the unknown stock proportions. The 

conditional maximum likelihood method essentially allocates each mixture individual to the 

source stocks in proportion to its estimated posterior source probabilities, i.e., the estimated 

fractions of individuals with the same natural mark in the mixture that are contributed by various 

source stocks. If necessary, individuals can be assigned as entities to the sources using the MAP 

rule. The conditional maximum likelihood estimate of the mixture composition equals the 

averaged allocated proportions among mixture individuals.  

 

The Bayesian approach extends the mixture modeling approach to include estimation of both the 

stock composition and the allele relative frequencies in contributing stocks. A chain of 

assignments and mixture composition estimates are generated, in which mixture individuals are 

randomly assigned at each step in the chain to the source stocks with probabilities equal to their 

current estimated posterior source probabilities. Relative frequencies in the source baseline 

samples and the stock composition of the mixture are then updated from the most recent 

assignments of mixture individuals. Chain averages of the posterior source probabilities for 

individuals can be used with the MAP rule, if their assignments as entities are needed. 

 

Empirical evaluations with individuals drawn from known populations indicate that the mixture 

modeling method performs considerably better at estimating stock proportions than does the 

classical individual assignments method. For example, classical individual assignments correctly 

identified only 15 of the 56 wild Atlantic salmon (27%) in a sample from a stock of a 

Scandinavian river, but the Bayesian posterior average was 91%, and the MAP rule (applied to 

the chain averages of posterior source probabilities for individuals) correctly identified 55 of the 

56 individuals (98%).  
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Aggregating Chinook Stocks for Harvest Management and an Improved Genetic Stock 

Identification 

 

Finding 19. A comprehensive knowledge of all stocks is unnecessary if stocks can be 

aggregated into groups by assuming that stocks in a group share common 

characteristics that subject the stocks to the same or similar exploitation rates. 

Similar biology and recency of common ancestry, measured by genetic similarity, 

should govern how stocks are aggregated.  

 

Finding 20. Aggregation schemes inconsistent with genetic relationships among stocks reduce 

the accuracy and precision of GSI, thereby limiting the usefulness of genetic 

analyses, and compromising the ability to manage fisheries with a full suite of 

data. The use of phylogenetic methods to identify genetically similar populations 

increases GSI accuracy. A Statistical Networks procedure (SN) was superior to 

two other aggregating procedures for identifying monophyletic groups of Chinook 

salmon populations in Puget Sound.  

 

Finding 21. Standard quantitative stock aggregations should be designed coast-wide to be 

consistent with the phylogenetic relationships of stocks, and to maximize value to 

address specific fishery management needs. 

 

Harvest management of salmon requires information on temporal and spatial distributions, 

exploitation rates, escapements, spawner abundance, productivity, and basic biology of stocks. 

These variables are difficult to quantify for every stock potentially encountered in a fishery. A 

comprehensive knowledge of all stocks is unnecessary if stocks can be aggregated into groups by 

assuming that stocks in a group share common characteristics that subject the stocks to the same 

or similar exploitation rates. Similar biology and recency of common ancestry, measured by 

genetic similarity, should govern how stocks are aggregated. However, many aggregations used 

for management include stocks of similar geography, run-timing, and management activity, but 

not necessarily genetically related stocks. 

 

As an alternative to stock groupings in TCT reports and NOAA Fisheries assessments, we 

designed a method based on Rannala and Mountain (1997) and illustrated it with data for 25 

Chinook salmon stocks in Puget Sound and the Strait of Juan de Fuca (GAPS 2.1) and for 

additional samples collected by WDFW in the past year. First, we calculated the probability that 

a multilocus genotype occurred in each of the 25 stocks and averaged these probabilities for the 

25 stocks. Second, these probabilities were randomized 10,000 times, and a new mean 

probability for each population was calculated after randomization. If the observed mean 

probability was equal to, or greater than, the 95
th

 percentile of the randomized probabilities, we 

considered the observed mean probability to be significant. Third, we graphically joined 

populations that had significant mean probabilities into a network (Figure 4). This procedure 

revealed two large clusters of stocks connected to each other at two points: Lower Skagit–

Samish rivers and Snoqualmie–Nisqually rivers. Nooksack River Spring and White River Spring 

Chinook salmon populations were wholly independent, and the Elwha and Dungeness river 



 

29 

 

 

 

populations were connected to each other, but not to other populations. Five stock groups could 

be distinguished within the two large clusters that were similar to the TRT groups.  

 

We then constructed a phylogenetic tree using shared alleles at 13 microsatellite loci and 

neighbor-joining rooted by two Middle Fraser River stocks to search for monophyletic groups. 

Stocks within a monophyletic group are expected to have similar development, life histories, 

behaviors, and ocean distributions, and would therefore likely occur in a particular fishery. If 

true, management of monophyletic groups have greater predictive power than management of 

polyphyletic or paraphyletic groups. Hence, the use of monophyletic stock groups would be 

superior in a harvest management program. For the data here, none of the three aggregating 

procedures yielded monophyletic groups, but the Statistical Networks procedure (SN) was 

superior to the other two aggregating procedures. With both the TRT and SN procedures, the 

Puget Sound Spring/Summer group was paraphyletic with respect to the Skykomish, 

Snoqualmie, and Lower Skagit Fall runs. The TRT procedure also produced a paraphyletic 

Snohomish River group. All groups in the CTC procedure were paraphyletic, except for Hood 

Canal and for Strait of Juan de Fuca (which was not considered by the CTC).    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Statistical Network of Chinook salmon populations in Puget Sound. 

 

 

GSI error rates for the management groupings generated by the three aggregating protocols were 

estimated with the CV-ML procedure (Anderson et al. unpublished). We used 100%-simulated 

mixtures to estimate error and pooled the stocks within a management group to obtain a single 

proportion estimate for the aggregation. This process was repeated 10,000 times to produce a 
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distribution of estimated proportions. The SN produced the lowest error rates and the CTC 

procedure the highest. The median value for four of the five management groups in the SN 

procedure was 1.00, while the value for the fifth group was 0.98. That is, for each group one-half 

of the 10,000 runs produced an error rate of 2% or less. The highest error rate was 58% for the 

Hood Canal group under the CTC procedure. Some outliers appeared for each grouping method 

and were due to inclusions of different life-history types in a population sample.  

 

Fishery managers use stock composition estimates to assess catch allocation compliance and 

harvest impacts, which are measured on aggregates rather than on specific stocks (unless ESA 

issues are important). Although various rules can be used to aggregate stocks, these aggregations 

affect the efficacy of genetic stock identification (GSI). Aggregation schemes inconsistent with 

genetic relationships among stocks reduce the accuracy and precision of GSI, thereby limiting 

the usefulness of genetic analyses, and compromising the ability to manage fisheries with a full 

suite of data. Standard quantitative stock aggregations should be designed coast-wide to be 

consistent with the phylogenetic relationships of stocks, and to maximize value to address 

specific fishery management needs. 

 

How different sources of error affect the accuracy of genetic stock 

identification   
 

Finding 22. Several sources of error influence the accuracy of GSI estimation. 

 

a. Sampling of the fishery. Error arises from small sample sizes and from non-

random sampling. 

b. Random sampling fails to include all stocks present in the fishery. 

c. Sampling a finite number of genetic markers. 

d. Genotyping error.  

e. Errors on allele frequencies from sampling a finite number of individuals in 

baseline populations.  

f. The inclusion of fish in the fishery sample from populations not in the 

population baseline also introduces error. 

 

One important step in improving GSI accuracy is to identify the various sources of error. One 

source of error is from sampling of the fishery, but can be reduced by enlarging samples sizes, or 

by sampling larger time periods or more fishing boats. A second source of error arises even when 

the fishery is sampled randomly; the random sampling simply fails to include all stocks present 

in the fishery. Again, larger fishery sample sizes may reduce this source of error. A third source 

is due to the sampling of a finite number of loci. The inclusion of additional markers can 

potentially help to reduce this error. A fourth source of error is due to genotyping error in the 

laboratory. A fifth source arises from errors on allele frequencies from sampling a finite number 

of individuals in baseline populations. Lastly, the inclusion of fish in the fishery sample from 

populations not in the population baseline also introduces error. Here, three of these sources, 

fishery sample size, locus sampling, and baseline allele-frequency estimation are examined with 

a set of empirical data for a Chinook salmon fishery off southeastern Alaska. 
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Finding 23.  Partitioning of total expected square error (ESE)—a variance-like variable, 

including the effect of bias—into components b, c, and e showed that the largest 

source of error was due to uncertainties in allele frequencies in baseline 

populations (87.5%). A smaller proportion was due to fishery sampling (9.5%) 

and a very small proportion is due to genotypic sampling (2.7%). As the fishery 

used for this study was typical of other fisheries, these results likely show general 

trends for GSI estimates for other fisheries. 

 

A convenient measure of how much estimates are expected to be wrong is total expected square 

error (ESE). This is like a variance, but also includes the effect of bias. The goal is to partition 

ESE into three components. Calculating the portion of the ESE due to baseline deficiencies 

requires knowledge of baseline allele frequencies with certainty. However, the problem is that 

these allele frequencies are only based on estimates. One improvement is to adjust population 

allele frequencies to account for the increase in apparent divergence among populations due to 

finite sampling. Here, an unpublished algorithm was used to decompose the ESE into three 

sources of error in GSI estimates for the Chinook salmon fishery based on the GAPS population 

database. The largest source of error was due to uncertainties in allele frequencies in baseline 

populations (87.5%). A smaller proportion was due to fishery sampling (9.5%) and a very small 

proportion is due to genotypic sampling (2.7%). As this fishery was typical of other fisheries, 

these results likely show general trends for GSI estimates for other fisheries. 

 

Finding 24. When the level of differentiation among baseline populations is low (FST < 0.01), 

increased sampling will improve GSI accuracy. In other cases, statistical 

approaches can be used to improve baseline allele frequencies with two 

approaches.  

 

a. Generalized expectation maximum algorithm uses mixture samples to improve 

allele-frequencies estimates in the baseline populations. This approach is 

incorporated into available Bayesian GSI methods. 

b. The use of spatial models can be used to improve allele-frequency estimates 

by assuming that nearby populations tend to be similar. 

 

Further analyses show that when the level of differentiation among baseline populations is low 

(FST < 0.01), increased sampling will improve GSI accuracy. In other cases, statistical 

approaches can be used to improve baseline allele frequencies. One approach is to use a 

generalized expectation maximum algorithm that uses mixture samples to improve estimated 

allele frequencies in the baseline population. This approach is incorporated into available 

Bayesian GSI methods. Another approach might be to use spatial models to improve allele-

frequency estimates by assuming that nearby populations tend to be similar. Models based on 

this assumption are used in epidemiology to map disease occurrence. 

   

Finding 25. The magnitude of error from unsampled source populations can potentially be 

estimated with three approaches.  

 

a. Simulations to examine the impact of excluding some existing populations 

from baselines.  
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b. Spatially explicit models of population structure can be constructed to 

estimate allele frequencies of unsampled populations, and these estimates 

could be used in conventional GSI simulations.  

c. Bayesian missing-data model may successfully identify unsampled 

populations contributing to a fishery. 

   

Other problems were not addressed in the simulations presented here. The most vexing source of 

error is unsampled source populations. Three approaches could be used to evaluate the 

magnitude of this problem. First, simulations could be made to examine the impact of excluding 

some existing populations from baselines while keeping them in mixtures, to which GSI is 

applied. Second, spatially explicit models of population structure could be constructed to 

estimate allele frequencies of unsampled populations, and these estimates could be used in 

conventional GSI simulations. Third, a Bayesian missing-data model may successfully identify 

unsampled populations contributing to a fishery. 

 

Finding 26. Error in GSI estimation of low-contributing stocks in a mixture is difficult to 

evaluate, but can be reduced in part by larger fishery sample sizes. Current GSI 

algorithms tend to bias stock composition estimates toward 1/k, where k is the 

number of stocks contributing to the baseline.  

 

Another problem is error in the estimation of the frequencies of low-contributing stocks. If a 

stock of fish occurs at a low frequency in a fishery, a large fishery sample size is needed to 

accurately reflect the composition of the fishery. Current GSI algorithms tend to bias stock 

composition estimates toward 1/k, where k is the number of stocks contributing to the baseline. 

Hence, estimates of the frequency of a rare stock in a fishery will be biased upward. This bias is 

greatest when a rare stock is genetically similar to an abundant stock, because fish from the 

abundant stock are likely to be ―mistaken‖ for fish from the rare stock; this will not be balanced 

by mistakes in the other direction, because there are fewer individuals of the rare stock to be 

misidentified.  

 

Both simulations and empirical approaches can be useful, but recent experience has 

demonstrated the limitations of relying on simulation, which assumes the neutrality of alleles. In 

particular, the choice of high-graded markers showing large differences among populations can 

violate assumptions of neutrality, as these markers may be under the influence of natural 

selection, or may be neutral, but show larger than average differences between populations. 

Hence, the examination of empirical datasets may provide the best means of assessing power and 

of identifying components of GSI error. 

 

 

Intra-annual and inter-annual variation in stock composition of the Queen 

Charlotte Island troll fishery 2002-2006  

 
Finding 27. GSI estimates provide an opportunity to understand important features of salmon 

migration and spawning biology. In-season comparisons of GSI estimates in an 

area off northern British Columbia revealed contrasting abundance trends for 
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fish from different areas. These estimates show shifts in stock compositions of fish 

in the troll fishery during the fishing season, which likely reflect migration 

patterns of various stock groups past the Queen Charlotte Islands.   

 

Finding 28.  Annual comparisons of five major stocks in either the troll or commercial catches 

showed shifts for some regions but not for others. Annual variation was most 

pronounced for Oregon fish with the highest proportions in August 2004. Fraser 

River fish also increased in 2002 and 2006, likely reflecting the strong returns to 

the Thompson River drainage in those years.  

 

Finding 29. Seasonal and annual comparisons are possible only after a large-scale 

population baseline has been established to identify stocks potentially 

contributing to a fishery. Seasonal and annual comparisons require frequent 

sampling during a fishing season to provide an accurate view of changes in 

contributing stocks. 

Results from mixed-stock analysis of Chinook salmon harvested off northern British Columbia 

provide an opportunity to understand important features of salmon migration and spawning 

biology. Stock compositions for Chinook salmon in either test troll fisheries or commercial troll 

fisheries off the northwest coast of the Queen Charlotte Islands from 2002 to 2006 varied over 

the monthly sampling cycle from April through September.  

 

In-season comparisons of these samples revealed contrasting abundance trends for fish from 

different areas (Figure 5). The abundances of fish from Washington and Oregon progressively 

increased during the season from 4-6% in April to 21-58% in September. Chinook salmon from 

California followed a similar trend, but with much lower abundances. Fish from the Columbia 

River, however, were most abundant early in April (44%) and least abundant in September 

(11%). In contrast to these early or late proportions, fish from the Fraser River were prevalent 

mid season in May-July (27-36%). Fish from the east coast of Vancouver Island comprised a 

minor component of the fishery (1-4% monthly). However, fish from the west coast of 

Vancouver Island (WCVI) peaked at 19% in April and declined to 3% in September. The 

proportion of fish from northern British Columbia was highest in April (7%), and declined 

gradually to a low of 1% in September. These analyses clearly indicate that stock compositions 

of fish in the troll fishery change during the course of the season and likely reflect the migration 

patterns of various stock groups past the Queen Charlotte Islands. 

 

Inter-annual comparisons of the proportions of five major stocks in either the troll or commercial 

catches showed shifts for some regions but not for others. Inter-annual variation was most 

pronounced for Oregon fish in August (15-45%), with the highest proportions in August 2004. 

Contributions from the Columbia River and Washington were relatively stable among years. 

Fraser River fish displayed high proportions in all months during 2002 and 2006, likely 

reflecting the strong returns to the Thompson River drainage in those years. In most months, the 

proportion of WCVI fish was small relative to other major stocks, and thus the absolute level of 

annual variation for this stock was less in comparison the other stocks. 

 

The comparisons presented here were possible only after a large-scale population baseline was 

established so that all the stocks potentially contributing to a fishery could be identified. While 
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proportion estimates are an important starting point, abundance data or additional sampling may 

be required to extrapolate the results of a comparison such as this to other regions or fisheries. 

Abundance data are also required to refine inferences of distribution and migration patterns. An 

important result of these in-season and inter-annual comparisons is that reasonably frequent 

sampling during a fishing season is required to provide an accurate view of the presences of 

various stocks contributing to a fishery. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. GSI estimates of population origins 

for April and September in northern British Columbia Chinook fishery. 
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Recommendation 1.  Support continued development of genetic markers (particularly for SNPs 

in sockeye salmon coast-wide) 

 

a. Use appropriate lessons from the GAPS approach to marker standardization for 

the development of population baselines for additional species. 

b. Develop appropriate markers for use in a coast-wide baseline. 

 

Genetic markers have become firmly established in the toolbox of methods used in the fishery 

management of Pacific salmon. As new markers and statistical methods become available they 

should be incorporated into this toolbox, when they improve population resolution, when they 

can be genotyped with high-throughput methods, and when they are suitable for addressing 

broader problems in fishery management.  

     

New markers and methods of genotypic analysis must be standardized among laboratories to 

support the development of coast-wide data baselines for the various species of Pacific salmon. 

Until recently, microsatellites have been the marker of choice of most laboratories and great 

effort has been made to standardize loci and alleles. This standardization process in Chinook 

salmon has produced the large GAPS baseline that is used in many regional and coast-wide 

applications, including but not limited to GSI. Many of the lessons learned from the creation of 

the GAPS baseline can be applied to the development of baselines for other species. One is the 

use of allelic ladders to standardize genotyping among laboratories.  

 

The standardization of SNP markers, on the other hand, is easier because SNP variants are 

defined by base changes at a specific nucleotide site in a DNA sequence that can be easily 

recognized among laboratories. Nevertheless, discrepancies among laboratories may still arise 

from handling errors, or from the use of different assay chemistries. Standardization of either 

marker type is relatively simple, but it is not yet clear in practical application how 

standardization costs will compare for the hundreds of SNPs that will likely be required to 

compare to coast-wide microsatellite datasets. 

 

Recommendation 2.  Maintain and improve existing standardized microsatellite population 

baselines 

 

a. Existing microsatellite baselines provide the only means of addressing some 

management problems. 

a. These baselines should be maintained and extended to provide greater levels of 

population resolution.   

 

Microsatellites are the current interagency standard for use in a broad range of applications in 

population and ecological genetics of Pacific salmon. Even though SNPs hold considerable 

promise, especially in specific GSI applications, the current capacity for addressing problems 

with microsatellites should be maintained until coast-wide comparisons with SNP markers have 
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been made to decide future directions. Both microsatellites and SNPs appear to provide similar 

levels of population resolution and both classes of marker are capable of supporting the 

development of numerous additional markers. However, at the moment several on-going 

applications are possible only with microsatellites, because the utility of SNPs, in especially 

coast-wide applications, has not yet been demonstrated. 

 

Recommendation 3.  Empirical comparisons of SNPs & microsatellites on a coast-wide scale, 

with focus on Chinook and sockeye. 

 

a. Even though SNPs often provide a high level of resolution for discriminating among 

regional populations, can they be effect in a coast-wide baseline? 

b. The particular sample of SNP or microsatellite loci for a regional comparison can 

determine the outcome of a comparison. Hence, appropriate marker should be used in 

a comparison. 

c. Simulations can be used to assess the level of resolution that a marker provides to 

discriminate among a group of populations. 

d. Blind samples of known origins should be used in a GSI analysis to examine resolution 

of marker types. 

e. Evaluations between marker types should be posed in terms of cost for a given amount 

of population resolution, not just the cost of genotyping.  

 

Members of the Genetics Workgroup agreed that the most urgent recommendation was an 

empirical evaluation of microsatellites and SNPs in a coast-wide setting. The question of 

resolution and numbers of SNPs required for coast-wide applications are best determined 

empirically with direct comparisons of SNP and microsatellite baselines. To date, this analysis 

has not been possible because SNP data are largely local or regional. The only coast-wide SNP 

data sets are still sparse both in terms of the number of lineages, populations, and individuals. 

 

Some in the Pacific salmon research community believe that SNPs will eventually replace 

microsatellites in most applications, including GSI. At this point, however, more SNPs—perhaps 

many more—will be needed to provide the broad utility now enjoyed by microsatellites. The 

hope by some is that this transition would proceed rapidly, but experience is showing that the 

development of SNP markers and assays is more expensive and time consuming than initially 

envisioned. Without a substantial increase in funding, it is likely to be some years before SNPs 

reach widespread implementation, especially in descriptive population genetics and a wide range 

of non-GSI conservation and restoration applications. SNPs will undoubtedly play an 

increasingly larger role in salmon GSI applications, although the timing of that transition remains 

unclear. 

 

These urgently needed comparisons should also account for ascertainment bias in the selection 

of, especially SNP, markers. These high-graded markers have been highlighted as a limitation of 

SNPs in some population genetic studies. Also required in these comparisons is a cost-benefit 

analysis of the amount of population resolution provided for loci-allele combinations. Despite 

the optimism that the cost of developing SNP markers would be comparable to cost of 

developing microsatellites markers, the cost of SNP marker development for most salmon 

species has been substantially higher than that for microsatellite markers. 
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Recommendation 4. The potential of a marker type to resolve features of salmon population 

dynamics in addition to GSI (mixed stock analysis) should be considered 

before adopting the marker.  

a. Most models of population structure assume the selective neutrality of alleles. 

b.  High-graded markers showing strong differences among populations may 

improve GSI estimation, but produce biased estimates of demographic 

parameters.   

 

 

In theory, both microsatellites and SNPs should work equally well for GSI, and with avoidance 

of ascertainment bias, perhaps all applications. In practice, however, there is a danger that the 

development of only high-graded markers for GSI applications may greatly limit the traditional 

use of genetic markers for a variety of other applications in population genetics, and 

conservation. At present, a greater number of population problems can be addressed by 

microsatellite baselines than by SNP markers, because of the greater availability of microsatellite 

markers and the large coast-wide baseline data sets.  

 

 

Recommendation 5.  Support studies investigating sources of GSI error. Preliminary results of 

theoretical and simulation studies point to ways to improve GSI accuracy. 

 

a. Investigate ways of improving allele-frequency estimates of populations in 

baseline. Only marginal gains in accuracy can be achieved with larger samples of 

fishery mixtures and genetic markers. 

b. Support studies of other sources of GSI error, including upward bias of low-

frequency stocks in mixture, and missing baseline populations. 

c. Adopt mixture modeling for GSI estimation. 

 

Improvements in statistical methods for boosting the accuracies of GSI estimates are far less 

costly than the developments of new high-resolution molecular markers. New markers may also 

require modifications of established methods. Hence, studies of statistical methods should be 

encouraged. One important area concerns the best algorithms for making GSI estimates. The 

statistical treatise presented in Appendix D concluded that mixture modeling and not individual 

assignments and summing provided greater GSI accuracy. Strides have also been made by using 

Bayesian methods to estimate stock compositions and to improve baseline allele frequencies. 

Errors in baseline allele-frequency estimation were identified in an analysis presented in 

Appendix F as an important source of GSI error. Additional GSI problems await more in-depth 

statistical treatment. One important problem is the upward bias in estimates of low-frequency 

stocks on a fishery sample. 

 

 

Recommendation 6. Re-examine methods used to aggregate baseline stocks into reporting 

groups to increase GSI accuracy. 
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In the same vein as the previous recommendation, improvements in stock aggregation methods 

can greatly improve GSI accuracy with minimal costs. In the absence of a comprehensive 

knowledge of stock attributes, stock aggregation can be used to group populations with common 

characteristics that subject them to the same or similar exploitation rates. Similar biology and 

recency of common ancestry, measured by genetic similarity, should govern how stocks are 

aggregated. Presently, many aggregations used for management include stocks of similar 

geography, run-timing, and management activity, but not necessarily genetically related stocks. 

 

 

Recommendation 7. Support summary studies of seasonal and multi-year GSI results to better 

understand the ocean biology of Pacific salmon. 

 

Although GSI estimates in mixed-stock fisheries can provide in-season information to manage 

escapement, collections of GSI estimates for a fishery during a season or among years can 

provide insights into the ocean biology of particular stocks. Several datasets are now available 

that can be used to make these inferences, and the PSC should encourage the syntheses of these 

datasets into a broader coast-wide picture of Pacific salmon ocean migration pathways and 

abundances.   

 

 

Recommendation 8. Support collaborations between geneticists and population modelers and 

harvest managers to enhance the utility of GSI results. 

 

Many issues were not addressed in the time available to the Genetics Workgroup. The overall 

goal of the workshops was to explore ways that GSI could be better incorporated into fishery 

management. However, the focus of the WG was largely on the development of new molecular 

markers and on improvements in statistical procedures, and not on the broader issues of 

modeling and management. While the two workshops provided opportunities for geneticists, 

statisticians, modelers, and managers to exchange views, a wider synthesis of genetics into these 

other fields still remains to be achieved. The summaries and views presented in this report 

represent a start toward this synthesis.     
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APPENDIX A.  Choice of Marker Types for Genetic Stock Identification
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1
While every attempt was made to produce a consensus view of marker development and 

future applications, the conclusions expressed in this document may not represent the views of 

all authors. 
2
‗Genetic stock identification‘ (GSI) is a broad concept, including both the identification 

of genetically discrete populations and ‗mixed stock analysis‘ (MSA). In common usage, 

however, GSI has become synonymous with MSA.
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INTRODUCTION 

 

New technologies periodically appear and should be considered in applications of genetic 

methods for the management of salmon species of interest to the Commission. Allozymes were 

replaced with microsatellite as a marker of choice in salmon population studies, because 

microsatellites offered several advantages (see Box A1, e.g. Small et al. 1998; Beacham et al. 

2001). A new technology, single nucleotide polymorphisms (SNPs), has been developed for 

several applications in genomic and population research and has recently been applied to 

resolving management problems in Pacific salmon (e.g. Smith et al. 2005b). The goal of this 

section is to discuss the relative merits of these molecular markers for GSI, but this discussion 

has to be placed in a broader perspective than just the focus on a single application.  

 

A new population marker should possess three characteristics: 1) equal or greater resolution of 

population differences than for existing markers, 2) high throughput genotyping for applications 

often requiring the analysis of thousands of fish annually, and 3) suitability to continue a well-

established tradition of research on salmon population biology. A cost-benefit analysis of these 

factors is needed before a new marker can displace previous markers and be adopted for general 

use. The core use of molecular genetic markers in Pacific salmon has been to describe various 

aspects of genetic population structure; that is, to estimate the degree of genetic connectivity 

among populations, inbreeding, migration and effective population size, among other variables. 

An extension of this has been the use of molecular markers to make individual assignments to 

parents or populations, or to estimate stock proportions in mixed-stock harvests, and this latter 

application is the focus of this document (Table A1).  

 

A large toolbox of population genetic models can be used to interpret genotypic data. Genomic 

markers have provided novel insights into numerous kinds of demographic events in Pacific 

salmon, including the estimation of genetically effective migration rates (Grant 1997) and 

population sizes (Waples 1990), inbreeding and outbreeding, and historical founding events (e.g. 

Teel et al. 2001; Beacham et al. 2003). Most models used to make these kinds of population 

inferences assume that the markers are neutral to natural selection. Markers showing biased 

allele-frequency differences among populations because of regional selection are unsuitable for 

these models. Hence, some loci are more useful than others to address these research problems. 

While several classes of genetic markers, including allozymes, denaturing gel gradient 

electrophoresis (DGGE; Fischer and Lerman 1983), and amplified fragment length 

polymorphism (AFLP; Vos et al. 1995), have been useful for some GSI applications (e.g. 

Beacham et al. 2005; Flannery et al. 2007), these markers have had limited in their flexibility for 

addressing a wide gamut of problems. 

 

One important distinction among markers is whether a technology defining a marker type 

surveys genetic variability at a locus or assays a predetermined polymorphism. Polymorphism 

assays, while useful for some population applications and mixed stock analysis, are limited in 

their use to measure levels of genetic diversity. The use of genetic survey markers has been 

instrumental for detecting loss of genetic diversity through poor hatchery practices (Allendorf 

and Phelps 1980; Ryman and Ståhl 1980; Busack and Currens 1995) or through founder events 

and population bottlenecks (Luikart et al. 1998; Garza and Williamson 2001).  
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Microsatellites have been used over the last decade for PSC-related GSI applications (e.g. Small 

et al. 1998; Beacham et al. 2001; Beacham et al. 2004b; Beacham et al. 2007a) and are the 

current interagency standard for a broad range of applications in population and ecological 

genetics of Pacific salmon. However, SNPs hold considerable promise, especially for specific 

GSI applications. Although SNP assays (largely with restrictions enzymes) were available before 

the development of microsatellite methods (Botstein et al. 1980; Moran et al. 1997), the lack of 

high-throughput assays made SNPs less appealing than allozymes and microsatellites. The 

development of novel chemistries facilitating high-throughput genotyping (Kwok 2003) has 

stimulated renewed interest in SNPs (e.g. Smith et al. 2005b).  

 

BACKGROUND 

 

The first SNPs for fishes were developed in model species (rainbow trout and Atlantic salmon) 

to conduct genome-wide screens for quantitative trait loci. Large numbers of SNPs (1000‘s to 

10‘s of 1000‘s) have been surveyed in relatively small numbers of individuals to assess linkage 

with phenotypic traits of interest. SNPs are gaining popularity in population genetics studies, 

particularly because they offer promise in resolving adaptive variation among populations (Lui et 

al. 2005). SNPs have also recently been used for individual identifications (Seddon et al. 2005), 

pedigree analysis (Werner et al. 2003), and cultivar selection for breeding programs (Shirasawa 

et al. 2006).  

 

The large-scale use of SNPs for population studies is new and the salmon genetics community is 

at the forefront in the use of SNPs for mixed-stock analysis in harvest samples. Although 

microsatellites are the current standard for general molecular genetic research on Pacific salmon, 

some researchers in the salmon research community believe that SNPs may replace 

microsatellites in many applications including GSI. More SNPs—perhaps many more—will be 

needed to provide the broad utility now provided by microsatellites. Once a SNPs population 

baseline is established, a subset of these SNPs can be used for particular applications (see Lui et 

Information Box 1. Genetic markers 

 

Genetic markers reflect different classes of genetic variability. For example, allozyme markers 

reflect non-synonymous coding changes in DNA that produce differences in size or charge of a 

protein product. These two properties can facilitate electrophoretic separation in a supporting 

medium. Microsatellite markers are based on changes in the number of tandem repeats. The 

insertion or deletion of a repeat motif can be detected with electrophoresis. Single nucleotide 

polymorphisms (SNPs) are single-base differences assayed by interrogation of a single 

nucleotide position in a DNA sequence. DNA sequence polymorphisms among individuals 

provide the basis for genetic assignments. The portion of a DNA sequence that is polymorphic 

among the taxa of interest is called a ―genetic marker‖. Rapid and inexpensive assays have 

been developed to allow the inference of either the DNA sequence or some property of the 

DNA marker.  
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al. 2005). The utility of SNPs for descriptive population genetics, restoration and conservation 

applications remains to be demonstrated. Some hoped the transition to SNPs would be rapid, but 

experience is showing that it is more expensive and time consuming to develop robust SNP 

assays suitable for coast-wide applications than to develop microsatellites. Without substantial 

funding the widespread implementation of SNPs is likely to be some years away. 

 

DIFFERENCES BETWEEN SNPs AND MICROSATELLITES 

 

Resolving power 

 

Several factors potentially influence the level of resolution achievable with a molecular marker. 

Theoretical results show that for markers uninfluenced by natural selection, the resolution of 

population differences (Ryman et al. 2006) or of populations in a mixed fishery sample 

(Kalinowski 2004) depend on the number of independent alleles at loci. The number of 

independent alleles for a locus is r – 1, where r is the number of alleles segregating at the locus. 

Consequently, a single SNP locus, if assayed for only one nucleotide change, has one 

independent allele, whereas a highly polymorphic microsatellite locus can have more than 50 or 

more independent alleles.  

 

The independent-allele rule, however, fails to capture the interaction between the numbers of loci 

and alleles in empirical baselines in providing statistical power. A simulation study of 

assignments of individuals to parents found that adding alleles and loci interactively improved 

assignments (Bernatchez and Duchesne 2000). The success in allocating individuals to 

populations, on the other hand, was more influenced by an increase in the number of loci, but for 

a given number of loci, gains in success were achieved by including more alleles. In the 

Bernatchez and Duchesne model, moderately polymorphic loci with 6–10 alleles appeared to 

provide the best allocation success.  

 

However, empirical evaluations for sockeye salmon showed that loci with larger numbers of 

alleles provide greater resolution among populations (Beacham et al. 2005). Loci with large 

numbers of alleles also provide greater resolution than less polymorphic loci among Chinook 

salmon populations regionally (Beacham et al. 2007a, b) and across the North Pacific (Beacham 

et al. 2006a, b). Loci with 6-10 alleles were among the poorest performers for discriminating 

among populations. In the latter study (Beacham et al. 2007b), the resolving power of 9 SNPs 

was similar to that of a single microsatellite locus with 17-22 alleles. Geographically large-scale 

comparisons between microsatellites and SNPs remain to be made.  

 

Another factor influencing power is the interaction among the number of alleles at a locus, 

samples size, and the accuracy of frequency estimation. As the number of alleles per locus 

increases, so should the number of individuals in the baseline. For example, in a SNP sample of 

100 alleles (50 fish), high- to moderate-frequency alleles are estimated with some confidence 

with an error given by multinomial sampling theory. For highly polymorphic microsatellite loci 

(e.g. 50 alleles), a population sample of 50 fish produces a proportionately larger error on allele 

frequencies. Rare alleles often remain unsampled.  
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Table 1. Characteristics of molecular marker used in fishery management 

 

Characteristic or use Microsatellites Single nucleotide polymorphisms 

(Nuclear loci) 

Statistical power 

 

 

Highly polymorphic loci provide the most power 

per locus for detecting differences between 

populations 

Biallelic SNP loci have less power per locus than 

highly polymorphic microsatellite loci. Assuming 

selective neutrality and random selection of loci 

(no ascertainment bias), the number of alleles 

roughly corresponds to statistical power. 

Marker development Moderate cost. GenBank sequences available 

and cross-species PCR amplifications often 

possible 

Presently, screening for polymorphisms is 

somewhat costly, but costs are expected to drop 

with development of additional discovery 

technologies. Cross-species SNPs assays generally 

not possible. Genomic duplications complicate 

SNP development 

Routine genotyping 

 

 

Moderate costs. Multiplexing of several loci 

possible. Bulk runs bring down costs 

Multiplexing in development with the promise of 

low per-locus costs with bulk analysis. Biotech or 

core-lab genotyping of SNPs possible. 

Parental assignment  Large amounts of statistical power Large amounts of statistical certainty when 

numbers of when large numbers of SNPs markers 

are used 

Mixed-stock analysis 

 

Large amount of statistical power for regional 

and coast-wide GSI. Depends on level of 

divergence among populations 

Large amount of statistical power demonstrated 

for regional analyses. Depends on level of 

divergence. Coast-wide power of regionally 

developed SNPs not tested. 

Within-population genetic 

diversity  

Relative comparisons can be made among 

samples. Surveys existing diversity. 

Affected by choice of SNPs. Assays a 

predetermined polymorphism, and marker 

frequencies may be influenced by selection. 

Inbreeding Inbreeding indices, heterozygote deficit Inbreeding indices can be used, but loss of 

information because only two allelic states are 

assayed 

Detection of outbreeding or 

hybridization 

Heterozygote excess, hybrid indices Heterozygote excess, hybrid indices, but 

information content is low because of only two 
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alleles. However, the reduced numbers of alleles 

may be partially offset by larger numbers of loci. 

Gene flow (‗straying‘) Possible with numerous models when alleles can 

be assumed to be neutral  

Natural selection or ascertainment bias more likely 

to violate assumptions. Statistical tests for 

selection can be used to identify neutral alleles. 

Effective population size Models assume neutrality Assumption of neutrality may be violated, but tests 

for selection can be used to identify neutral alleles. 
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In other applications, a recent study of over 15,840 SNPs (on a SNP array) and 328 microsatellite 

loci in humans showed that the information content of random microsatellites was four to twelve 

times greater, on average, than that of a randomly chosen SNP (Lui et al. 2005). However, some 

SNPs were more informative than single microsatellites and this finding suggests that highly 

informative SNPs can reduce the number needed to match the resolution of microsatellite 

baselines. Unfortunately, large numbers of SNPs are still unavailable, except for Atlantic salmon 

and Rainbow trout, which have been the focus of large scale sequencing studies. This deficit 

could possibly be circumvented by using highly informative SNPs or by focusing on genes 

thought to be of adaptive significance (e.g. QTLs from other species). 

 

One key difference between microsatellite loci and SNPs is that, unlike microsatellites, SNPs 

may not be polymorphic coast-wide. While ascertainment bias (Box 2) can be used to identify 

highly informative SNPs for a particular region, a different set of informative SNPs may be 

required for other regions or for coast-wide baselines. The most effective, high-resolution 

baselines will likely contain both adaptive and neutral loci, with neutral loci providing strong 

regional resolution, and adaptive loci identifying particular local populations. The question of 

resolution and numbers of SNPs required for coast-wide applications will ultimately be 

determined with empirical comparisons of the effectiveness of SNP and microsatellite baselines. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Information Box 2. Ascertainment bias 

 

The use of highly informative SNPs (ascertainment bias) aids in the choice of markers for 

resolving allele-frequency differences among populations. Ascertainment bias can be 

advantageous for GSI, but detrimental for other applications in population genetics, 

conservation and evolutionary systematics. However, this result is not limited to SNPs, as 

highly informative microsatellite loci can also be identified.  

 

The better performance of some loci relative to others may be due to two sources: 

 

1). Some alleles show greater than average differences by chance from reproductive sampling 

each generation. This increased resolving power is not due to natural selection.  

 

2) Greater resolution of some loci may reflect directional natural selection (Ford 2002; 

Schlötterer 2002). Usually a greater number of SNPs are surveyed to achieve the same level 

of resolution as with microsatellite markers. Hence, a grater number of SNPs, selected 

because of their resolving power, may be influenced by selection.  

 

One possible drawback of using markers under selection is that baseline allele frequencies 

may be unstable during times of rapid climate change, so that periodic surveys may be 

important. For many applications, the effects of natural selection are immaterial, but for 

others, such as determining the demographic histories of populations, they are problematic. 
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While mitochondrial (mt) DNA sequences are not currently being used to survey variability 

among salmon populations, mtDNA variants occur in the repertoire of SNP markers. These 

organellar DNA variants are expected to show different patterns of variability from nuclear 

variants, because they are maternally inherited, usually without recombination at replication, and 

occur in an individual as a single haploid copy. This mode of inheritance confers an effective 

population size that is about one quarter that of nuclear diploid markers, and hence is subject to 

greater levels of random drift among populations. This expected high level of divergence 

between populations makes them attractive as population markers. 

 

Marker development and throughput: Analysis of cost and time  

 

In a comparison between marker types, several variables in addition to genotyping costs should 

be considered. Although costs per genotype are sometimes used to compare techniques, the cost 

per fish for a given level of resolution may be a better metric for overall comparison. Before a 

new marker technology can be adopted coast-wide, costs of replacement must also be 

considered. Replacement entails effort to establish and standardize new population baselines and 

to implement new infrastructure to provide real time estimates. In some cases, existing 

instruments can be used for both microsatellites and SNP analyses. Alternatively, SNP markers 

could be added to microsatellite markers to resolve particular problems not resolved with 

microsatellites. Dual laboratory capabilities, however, may be inefficient because of the costs of 

additional equipment and personnel training. Differences in cost between SNPs and 

microsatellites can be broadly described under marker development and routine genotyping. 

 

Marker development– Primers for microsatellite markers developed for one species often work 

well on related species. Thousands of microsatellites have been isolated in various species of 

salmon and serve as a starting point for developing new microsatellite markers in other species. 

Hence, when a collection of microsatellite markers cannot resolve a particular problem, 

additional microsatellite markers can be developed rapidly and inexpensively from microsatellite 

sequences in GenBank (National Institute of Health DNA sequence repository). 

 

In contrast, SNPs are not usually transferable among species, but must be developed anew for 

each species. Until recently, the easiest, most cost effective way to obtain SNPs is to search for 

polymorphisms in the EST (express sequence tags) and DNA sequence databases of GenBank. 

Unfortunately these sequences are largely limited to rainbow trout and Atlantic salmon. In the 

absence of these ‗head-start‘ sequences, SNPs must be developed one at a time, and this 

development has been costly and time consuming. New-generation technologies that facilitate 

the rapid sequencing of long stretches of DNA may shorten developmental times and costs. 

Presently, numerous SNP markers have been developed largely for Chinook, chum, and sockeye 

salmon and a few markers for coho salmon (see section on available databases). 

 

 



 

49 

 

 

 

Marker genotyping–Both microsatellite and SNP methods use primer-defined polymerase chain 

reaction (PCR) amplifications of particular regions of a DNA sequence. One limiting step for 

both methods is sample dissection and DNA extraction. Some extraction methods produce DNA 

that can be archived longer than DNA extracted with other methods. While some methods of 

extraction produce DNA more rapidly, usually methods are used that produce high-quality DNA 

extracts with long storage lives. The development of robotic dissection and extraction procedures 

can improve turnaround times for in-season analyses for both methods. 

 

A core set of microsatellite loci has been standardized in all laboratories associated with the PSC. 

Generally, polymerase chain reaction (PCR) is used to amplify a section of DNA containing the 

microsatellite region with standard PCR primers. This is followed by size fractionation of the 

PCR products with an automated DNA sequencer. PCR multiplexing (the amplification of more 

than one microsatellite locus at once) increases the efficiency of the microsatellite PCR 

reactions, but can lead to false peaks that can be mistaken for an allele. Another potential 

problem is that some alleles are preferentially amplified over others in a heterozygous genotype.  

 

Genotyping costs vary from one laboratory to another and depend not only on the costs of 

materials, labor, and genotyping hardware (e.g. thermocyclers, DNA sequencers, robotic 

pipettes), but also on institutional requirements for cost recovery. Even so, costs for 

microsatellite genotyping appear to be similar among laboratories (within a factor of two or 

three). SNP genotypes can be assayed by a variety of methods. Most salmon fishery laboratories 

presently use the 5‘-nuclease reaction implemented with TaqMan. The cost of TaqMan 

genotyping can vary by nearly an order of magnitude, depending on the costs of genotyping 

hardware, and the number of SNPs assayed. Thus, the number of SNPs that can be genotyped for 

a comparable cost of genotyping microsatellites varies widely among laboratories (Table 2). 

Estimating costs is further complicated because SNP and microsatellite loci contain different 

amounts of information depending on the particular application to population genetics or fishery 

management. 

 

Table 2.  Platforms presently used by laboratories for SNP genotyping with TaqMan for the PSC.  

‗Number of SNPs to run‘ indicates the number of SNPs that can be genotyped for the same cost 

as a typical microsatellite panel 

 

Infrastructure Reaction volume Number of SNPs to run 

96-well reader 10-15 μl 18 

384-well reader + robotics 5μl 42 

Fluidigm Nanolitre 87 

 

 

Opportunities for automated genotyping are greater for SNP analyses. Most genotyping errors 

result from human-induced error and not from PCR amplification or instrumental errors. Hence, 

genotyping methods requiring a greater number of steps by technicians may be more prone to 

error than automated methods, especially methods requiring repetitive procedures susceptible to 

technician fatigue. Presently, microsatellite genotyping requires about twice the handling of a 

PCR product than does SNP genotyping. However, a microsatellite locus contains, on average, 

more than twice as much information as a SNP, so that microsatellites and SNPs may have 
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similar levels of experiment-wise errors. Costs may be reduced with the acquisition of multiplex 

technology or by outsourcing genotyping to a core agency laboratory or commercial laboratory.   

 

Microsatellite scoring requires a greater number of visual inspections of computer images than 

does SNP genotyping. For example, in the analysis of 12 microsatellites in 10,000 fish, a 

technician is required to individually assess 12 x 10,000 = 120,000 images. In laboratories that 

double score for quality control, two technicians may spend a few days assessing genotypes on a 

computer screen. In comparison, a technician scoring 77 SNPs in 10,000 fish would individually 

assess either 77 x (10,000/384) = 2,079 images or just 77 images, depending on software. Again, 

this number will double in laboratories double-scoring for quality control. In assays of a few 

hundred individuals, the difference in effort between microsatellite and SNP genotyping may not 

be substantial, so that error due to technician fatigue may be insignificant. However, in assays of 

thousands or tens of thousands of fish, SNP automation can give an advantage in the time 

required to complete the scoring of genotypes and in error rate reduction. Although per locus 

error rates and throughput are favorable for SNPs, the net effect of lower error rates for very 

large numbers of SNPs remains uncertain. 

 

In-season Mixed Stock Analysis 

 

In-season fishery management in some areas has been guided by mixed stock estimates in either 

test or commercial fishery catches. Allozymes, microsatellites and, recently, SNPs have been 

used for in-season management, which requires rapid laboratory and statistical analyses of as 

many as 1000 fish in a day or so. While not all applications require this level of expediency, real-

time GSI may become increasingly more important, as migration patterns of many stocks shift 

annually (Winther and Beacham 2006; Beacham Workshop report). Examples of in-season 

mixed stock identification appear in Box 3.  

 

Several factors influence the ability of a marker to facilitate rapid turnaround times, including 

sample preparation (protein or DNA extraction), genotyping, data collection, and data analysis. 

Rapid SNP analysis for real-time applications may be somewhat limited. Unless a laboratory has 

invested in microarray technology, the number of SNPs that can be surveyed rapidly depends on 

the number of thermocyclers available for PCR, because Taqman assays survey one SNP at a 

time. Rapid throughput of large sample sizes depends on making hundreds of PCR reactions. 

Considerably more efficient genotyping platforms are required for SNPs to achieve similar turn-

around times that are possible with microsatellite loci. 

 

Standardization of data across agencies 

 

Standardization of methods and datasets among laboratories is important for the development of 

a coast-wide data baseline for a particular species of salmon. The goal of standardization is to 

generate the same set of genotypes from the same samples in different laboratories, and to 

generate data in different laboratories that can be combined into a single dataset. The various 

steps for standardizing, based on the experience with GAPS, are outlined in another workgroup 

report.   
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Microsatellite genotypes consist of relative fragment mobilities, which often vary from one 

laboratory to another because of differences in genotyping platforms. Thus, reproducibility 

among laboratories requires that allele sizing be adjusted though laboratory standardization 

before new laboratories can add data to a standardized database or use those databases for mixed 

stock applications. Coast-wide standardizations include the use of a common set of loci, the 

exchange of tissues or alleles ladders (e.g. LaHood et al. 2002), allele curation and periodic 

testing.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SNP markers, in contrast, are defined by base changes at a specific nucleotide site, and variants 

along a DNA sequence are easily recognized among laboratories (dbSNP; 

http://www.ncbi.nlm.nih.gov/projects/SNP/). Discrepancies among laboratories may still arise 

from handling errors or from the failure of specific genotyping chemistry to assay a particular 

SNP. SNP standardization among laboratories does not require ongoing allele curation or the 

exchange of tissues or allele ladders. 

Information Box 3. Use of mixed-stock analysis for in-season management 

 

DFO: Fraser River sockeye salmon 

 

While most Fraser River sockeye salmon populations are abundant and support an offshore 

fishery, some populations have been listed as ‗endangered‘ by the Committee on the Status of 

Endangered Wildlife in Canada (COSEWIC 2002). Fishery managers were concerned that late-

run spawners returning to an endangered population in Lake Cultus would be vulnerable in the 

fishery. Earlier than expected returns of late-run fish led to high levels of mortality enroute to 

spawning areas. Over two months 9300 returning fish were genotyped for 14 microsatellite loci 

and one MHC locus (Beacham et al. 2004b). Samples including as many as 600 fish were 

delivered to the laboratory several times a week and results were returned to fishery managers 

within 9–30 hr. These results showed that the initial river entry of late-run Cultus Lake fish had 

been advanced by over 6 weeks. A large pulse of fish entered the fishery in mid August. These 

returns overlapped with Summer-run fish and precluded harvests of exclusively Summer-run 

sockeye. The estimated exploitation rate of Late-run Fraser River fish was 13% and fell within 

the management objective of 15%. The DFO maintains microsatellite baselines for sockeye, 

Chinook, coho, chum, and pink salmon, which have been used for GSI over the past ten years. 

In the past four years alone, 20,000 fish annually have been analyzed rapidly and used for ―real-

time‖ in-season management of harvests. 

 

ADFG: Bristol Bay sockeye salmon 

 

Over the last two years, ADFG genetics laboratory has used SNP analysis in real-time mixed 

stock analysis to help in the management of the Bristol Bay sockeye salmon fishery.  

Approximately 300 sockeye were analyzed every two days for about a month. As many as 390 

fish can be genotyped for 44 SNPs in 16-20 hrs. New technology has enabled the ADFG to 

increase its throughput such that one technician can comfortably screen 20,000 genotypes in 

about 16 hrs (one day to run the samples, a morning to score the samples, and an afternoon to 

produce mixed stock estimates). New technology is being implemented that can assay 48 fish 

for 48 genotypes in one thermal cycler run lasting about 2 hr. If 48 SNPs are used in the 

analysis, about 400 fish (8 gene chips) can be genotyped in a short amount of time with one 

thermocycler. As with microsatellites, the time needed to dissect samples manually and to 

extract DNA limits rapid analyses. The time for genotype analysis may be further reduced by 

automated methods of DNA extraction.  
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 Microsatellite data for Chinook salmon have been standardized among ten laboratories 

(http://www.nwfsc.noaa.gov/research/divisions/cbd/documents/gaps_year2_final.pdf) (Seeb et al 

submitted), for coho salmon between some laboratories (WDFW+CDFO, NOAA 

Seattle+USFWS Longview), and for chum salmon (DFO+USFWS Anchorage; DFO+WDFW, 

WDFW+NOAA, Seattle, DFO+University of Alaska, Juneau). The cost of microsatellite 

standardization has declined substantially and has become simpler and more robust with the use 

of allelic ladders (LaHood et al. 2002). Standardization of either marker type is now relatively 

simple, but in practice, the cost of standardizing hundreds SNP markers for coast-wide 

applications is yet uncertain. 

 

DISCUSSION 
 

The goal of this report was to evaluate the relative merits of microsatellites and SNPs for use in 

ocean GSI of Chinook, coho, and sockeye salmon. The shift to a new technology will require 

considerable effort and cost, and hence, must be undertaken carefully. The choice of a marker 

type for application to large-scale management problems must be made in view of several 

criteria. Among these are greater or equal population resolution than provided by existing 

markers, ease and cost of genotyping, and suitability of the markers to continue in a well-

established tradition of salmon research using genetic tools to provide insights into the breeding 

biology and genetic population structures of salmon. 

 

Allozyme and microsatellite markers have proved useful in the management of Chinook salmon 

in several regions stretching from Alaska to California. The development of a coast-wide 

Chinook salmon database (GAPS) has been the foundation for mixed stock analysis in areas 

where harvests potentially impact spawning populations in several jurisdictions. This baseline 

provides helpful insights into the population biology, migration patterns and distributions of 

Chinook salmon along the coast. At present, a greater number of GSI problems can be addressed 

by microsatellite baselines than by SNP markers, because of the greater availability of 

microsatellite markers. Hence, several questions of interest to management presently can be 

addressed only with microsatellite markers. Microsatellites are usually chosen when both marker 

types provide similar resolution and are presently the only marker type with proven capability for 

coast-wide, real-time applications.  

 

Nevertheless, SNPs hold promise for numerous applications. Studies in several taxonomic 

groups have demonstrated that when SNPs are chosen judiciously, small numbers of SNPs can 

carry sufficient resolving power for a wide variety of applications, including pedigree analysis in 

bovids (Werner et al. 2003), individual identification in wolves (Seddon et al. 2005), cultivar 

identification for breeding studies in rice (Shirasawa et al. 2006), and population genetics in 

humans (Lui et al. 2005). Smith and Seeb (submitted) have pioneered the use of SNP markers in 

population studies of Pacific salmon. However, it remains to be seen whether SNP markers 

should replace existing markers for GSI applications. In the long-term, improvements in 

technology may reduce the price of DNA sequencing so that GSI applications could rely directly 

on sequence data, rendering genotype assays unnecessary.  

 

http://www.nwfsc.noaa.gov/research/divisions/cbd/documents/gaps_year2_final.pdf
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SNP markers may improve resolution of some management issues, presently addressed solely 

with microsatellites. Opportunities for greater resolution may prompt the use of both markers for 

some applications to maximize resolution. The use of a single marker type will depend upon the 

resolution provided and cost of analysis of an individual fish. Direct comparisons between 

microsatellites and SNPs for salmon stock identification applications have been limited to date, 

as SNP baselines are still under development. SNPs showing large amounts of resolution may be 

under natural selection and periodic updating of population databases may be important during 

periods of rapid climate change. 

 

A PSC Expert Panel (Expert Panel PSC 2005) recommended that an evaluation be made of a 

transition to the use of SNPs for stock identification. Further research is required to determine 

whether SNPs are capable of outperforming, or meeting the current levels of performance, of 

microsatellite loci not only for analyzing coast-wide fishery samples, but also for understanding 

the biology of spawning populations. To help in this decision process, larger SNP databases are 

required to allow empirical evaluations of resolution. Collaborative projects are underway to 

collect duplicate tissues for laboratories in the U.S. and Canada. At the same time, established 

microsatellite population baselines should be maintained and used to aid harvest management.  

 

An important next step is the empirical evaluation of the resolving power for the two markers. 

This may best be accomplished by focusing closely on one or two species (e.g. Chinook and 

sockeye salmon), for which coast-wide microsatellite baselines (standardized for Chinook) are 

available, and for which there is a growing SNPs database (largely developed by ADFG). A 

coast-wide evaluation has not been possible because SNP databases are largely limited to 

regional population baselines. Importantly, empirical evaluations should include simulations that 

merge highly informative markers of both classes, as the combination of microsatellite and SNP 

markers in a single baseline may offer the greatest resolution.  
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INTRODUCTION 

 

One step in constructing databases for salmon populations is the development of regional 

baselines, usually by agencies with regional management mandates. The developments of coast-

wide baselines often arise from these regional baselines following a standardization process. 

Coast-wide allozyme baselines were developed and maintained through collaborations and 

workshops to describe and standardize allele nomenclatures. Development of a coast-wide 

microsatellite baseline for Chinook salmon was a continuation of this process, but represented a 

considerable advance in standardization protocols and data access by making much of the data 

accessible over the internet.  

 

The term ‗standardization‘ as used here may describe different levels of cooperation among 

laboratories. For example, several laboratories may share a set of markers and allele 

designations, but no common set of population baseline data (e.g. present state of the steelhead 

baseline), or some laboratories may share markers, allelic nomenclature and baseline data (e.g. 

present state for coho salmon). While these two scenarios represent steps toward standardized 

coast-wide databases, neither is as valuable to the Pacific Salmon Commission as the GAPS 

Chinook baseline standardization, which ties together the activities of at least 12 laboratories.  

 

The goal of this section is to summarize existing regional and coast-wide datasets with a focus on 

coho and sockeye salmon. The following tables of data are snapshots of a growing set of regional 

and coast-wide databases for SNP and microsatellite markers.  

 

  

MICROSATELLITE BASELINE DATA 

 

Coho salmon 
 

Populations of coho salmon have been sampled by DFO in several areas and examined for 13 

microsatellite loci and two MHC exons. These samples are concentrated in British Columbia 

with representative samples from Southeast Alaska and from Washington State (Tables B1, B2). 

A large number of samples have been examined for variability at 11 microsatellite loci by 

NOAA Fisheries, Seattle from populations extending from southern British Columbia to northern 

California (Tables B3, B4). Presently, 61 microsatellite primers developed for coho or other 

species of salmon have been used to screen for variability in coho salmon (Table B5). 
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Table B1. Coho salmon. DFO: Regions and populations within regions included in the survey of 

variation at 13 microsatellite loci and two MHC exons in coho salmon.  Number in parentheses 

after the name refers to the location shown in Figure 1 in Beacham et al. (2001) 

 

Region Subregion 

 

Number of 

populations 

Populations 

Southeast 

Alaska 

 9 Berners (1), Gastineau Hatchery (2), Hidden Falls (3), 

Reflection Lake (4), Indian Creek (5), Margaret Creek (6), 

Karta (7),  Whitman Lake (8), Hugh Smith (9) 

Queen 

Charlotte 

Islands 

North coast 3 Sangan River (10), Awun River (11), Yakoun River (12) 

 East coast 3 Deena (13), Copper River (14), Pallant Creek (15) 

 West coast 1 Tasu (16) 

Nass River  3 Meziadin (17), Zolzap (18), Tseax (19)  

North coast  1 Lachmach (20) 

Upper 

Skeena 

River 

Upper 

drainage 

3 Kluatantan (21), Sustut River (22), Motase (23)  

 Babine River 3 Babine Fence (24), Boucher (25), Upper Babine (26) 

 Bulkley 

River 

4 Toboggan Creek (27), Bulkley River (28), Morice River 

(29), Owen (30) 

Lower 

Skeena 

River 

Mid drainage 3 Kispiox (31), Kitwanga (32), Singlehurst (33) 

 Lower 

drainage 

14 Hadenschild (34), Cedar (35), Clear (36), Deep (37), 

Kitsumkalum (38), Zymagotitz (39), Sockeye (40), 

Schulbuckhand (41), Clearwater (42), Coldwater (43), 

Exchamsiks (44), Kasiks (45), Green (46), Ecstall (47)  

Central 

Coast 

 11 Kitimat (48), Hartley Bay (49), Kitasoo (50), McLaughlin 

Bay (51), Atnarko (52), Salloomt (53), Thorsen (54), 

Sheemahant (55), Docee (56), Devereux (57), Klinaklini 

(58)  

Northern 

Vancouver 

Island 

 8 Nahwitti (59), Wanokana (60), Stephens (61), Quatse  (62), 

Waukwass (63), Cluxewe (64), Glen Lyon (65), Nimpkish 

(66)  

Eastern 

Vancouver 

Island 

 8 Quinsam (67), Black Creek (68), Puntledge (69), Big 

Qualicum (70), Nanaimo (71), Chemainus (72), Cowichan 

(73), Goldstream (74) 

Western 

Vancouver 

Island 

 13 Conuma (75), Cypre (76), Tranquil (77), Kennedy (78), 

Kootowis (79), Robertson Creek (80), Sarita (81), Pachena 

(82), Nitinat (83), San Juan (84), Kirby Creek (85), Sooke 

(86), Craigflower (87)  

Southern 

mainland 

 6 Homathko (88), Lang Creek (89), Sliammon (90), Squamish 

(91), Seymour (92), Capilano River (93)   

Fraser River Lower 

drainage 

10 Pitt (94), Alouette (95), Stave (96), Inch Creek (97), Norrish 

(98), Nicomen (99), Chehalis (100), Chilliwack (101), 

Kanaka Creek (102), Salmon River (103) 
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 Upper 

drainage 

2 Bridge River (104), McKinley Creek (105) 

Thompson 

River 

Lower 

drainage 

3 Spius Creek (106), Coldwater (107), Deadman (108)  

 North 

Thompson 

5 Louis Creek (109), Dunn Creek (110), Lemieux Creek 

(111), Mann (112), Lion (113)  

 South 

Thompson 

7 Momich (114), Eagle (115), Salmon (116), Danforth (117), 

Duteau (118), Bessette (119), Lang Channel (120)  

Puget Sound  6 Nooksack (121) Marblemount (122), Wallace (123), Grizzly 

(124), Minter (125), Nisqually (126) 

Hood Canal  1 Dewatto (127) 

Juan de Fuca  2 Dungeness (128), Elwha (129) 

Coastal  6 Quillayute (130), Clearwater (131), Shale (132), Queets 

(133), Bingham (134), Willapa (135) 

Columbia 

River 

 3 Cowlitz (136), Lewis (137), Clackamas (138) 
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Table B2. Coho salmon. Regions, number of collections within regions, and number of 

individuals included in the survey of variation at 13 microsatellite loci and two MHC exons in 

coho salmon (T. Beacham, DFO) 
 

Region 

Number of 

collections 

Number of 

individuals 

Transboundary 7 700 

SE Alaska 9 1450 

QCI 20 1400 

Nass 3 750 

Skeena 29 4500 

Central Coast 40 5850 

South Coast 28 3650 

ECVI 22 6350 

WCVI 13 4300 

Fraser 47 13,300 

Washington 15 1400 

Columbia 9 800 

Oregon 10 850 

California 4 150 
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Table B3. Coho salmon. NOAA Fisheries, Seattle: Population samples analyzed for variation at 

11 core microsatellite loci listed in Table B5). [From Van Doornik et al. (2007)]  

 

 
Region  

  Subregion     Sample 

       Location      size   Life stage 

 

British Columbia  

West coast Vancouver Island 

1 Tranquil Creek Hatchery      81   Adult 

2 Upper Kennedy River Hatchery     72   Adult 

3 Nitinat River Hatchery      95   Adult 

 

East coast Vancouver Island 

4 Nanaimo River Hatchery      96   Adult 

5 Cowichan Fish Hatchery      89   Adult 

6 Goldstream Salmon Hatchery      96   Adult 

 

Southern BC coast  

7 Homathko River       73   Adult 

8 Tenderfoot Creek Hatchery      91   Adult 

9 Capilano Salmon Hatchery      79   Adult 

 

Lower Fraser River 

10 Inch Creek Hatchery      78   Adult 

11 Chehalis River Hatchery      87   Adult 

12 Chilliwack Hatchery       82   Adult 

 

Mid-Fraser–Thompson River 

13 Dunn Creek        76   Adult 

14 Bridge Creek       90   Adult 

15 Bessette Creek       79  Adult 

 

Puget Sound  

Puget Sound without Hood Canal  

16 Nooksack Hatchery       95   Parr 

17 Ennis Creek, Samish River    140   Adult 

18 Skagit Hatchery       87  Parr 

19 Fortson Creek       41  Adult 

20 Grizzly Creek, Snoqualmie River   105  Adult 

21 Soos Creek Hatchery    450   Adult, parr 

22 Minter Creek Hatchery      40   Adult 

 

Hood Canal 

23 Quilcene Hatchery     141   Adult 

24 Rockybrook Creek, Dosewallips River    32   Adult 

25 Big Beef Creek     134  Adult, smolt 

26 Hatchery Creek, Duckabush River     78  Adult 
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27 John Creek, Hamma Hamma River     86  Adult 

28 Dewatto River     115  Adult 

29 George Adams Hatchery      91  Adult 

30 Kirkland and Fir Creek, Skokomish River    94   Adult 

 

Washington coast   

Strait of Juan de Fuca 

31 Snow Creek      137  Adult 

32 Dungeness Hatchery       47  Parr 

33 Elwha Hatchery     186   Adult 

 

North Washington coast  

34 Hoko River        76   Adult 

35 Makah Hatchery     143   Adult 

36 Sol Duc Hatchery (summer run)     96  Parr 

36 Sol Duc Hatchery (fall run)      94   Parr 

36 Sol Duc River (summer run)      95   Parr 

37 Clearwater River     117   Adult, smolt 

38 Queets River     156   Adult, parr 

39 Quinault Hatchery     139   Adult 

 

South Washington coast  

40 Humptulips Hatchery (early run)     47   Parr 

41 Bingham Creek Hatchery, Chehalis River    66   Parr 

42 Hope Creek, Chehalis River     44   Parr 

43 Nemah Hatchery       94   Parr 

44 Naselle Hatchery       94   Parr 

 

Columbia River 

45 Elochoman Hatchery (early run)     42   Parr 

45 Elochoman Hatchery (late run)     46   Parr 

46 Cowlitz Hatchery     137  Parr 

47 Fallert Creek (Kalama) Hatchery (early run)    92   Parr 

47 Kalama Falls Hatchery (late run)     83  Parr 

48 Lewis Hatchery (early run)      46   Parr 

48 Lewis Hatchery (late run)      48  Parr 

49 Big Creek Hatchery       88  Parr 

50 Clackamas River (early run)      54  Adult 

50 Clackamas River (late run)      31  Adult 

51 Eagle Creek Hatchery      96  Adult 

52 Sandy Hatchery       95  Parr 

53 Bonneville Hatchery       94  Parr 

 

Oregon coast region 

North-central Oregon coast 

54 Nehalem Hatchery       92   Parr 

55 Trask Hatchery       94   Parr 

56 Devil‘s Lake       60  Adult 

57 Siletz River        69   Adult 

58 Yaquina River       66  Adult 
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59 Beaver Creek       64  Adult 

60 Alsea River        62  Adult 

61 Siuslaw River     150  Adult 

62 Coos River        76  Parr 

63 Bethel Creek, New River      30  Parr 

 

Oregon lakes complex 

64 Sutton Creek       48  Adult 

65 Mercer Lake       28  Adult 

66 Siltcoos Lake       53  Adult 

67 Tahkenitch Lake       34  Adult 

68 Ten Mile Lake       75   Adult, parr 

 

Umpqua River 

69 Mainstem Umpqua River      53   Adult 

70 Smith River, Umpqua River    128  Adult, parr 

71 Elk Creek, Umpqua River      30  Adult 

72 Calapooya River, Umpqua River     34  Adult 

73 Rock Creek, North Umpqua River     55   Parr 

74 South Fork, Umpqua River      67  Adult 

 

South Oregon–north California coasts  

75 Elk River        23   Parr 

76 Cole Rivers Hatchery (Rogue stock)     34  Parr 

77 Irongate Hatchery     106  Parr 

78 Trinity River Hatchery    102  Parr 
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Table B4  Coho salmon. NOAA Fisheries, Seattle: Microsatellie loci, annealing temperatures 

and primer references used to evaluate stock composition. [from Van Doornik et al. (2007)] 

 
   Annealing 

Locus    temperature  Reference 

Ocl8    60   Condrey and Bentzen (1998) 

Oki1    58   Smith et al. (1998) 

Oki10    60   Smith et al. (1998) 

Oki23    58   Spidle et al. (2000) 

One13    58   Scribner et al. (1996) 

Ots3    47   Banks et al. (1999) 

Ots103    54   Small et al. (1998) 

Ots213    58   Greig et al. (2003) 

Ots505 NWFSC  54   Naish and Park (2002) 

OtsG422   58   Williamson et al. (2002) 

P53    58   de Fromentel et al. (1992) 
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Table B5. Coho salmon. Status of screening for microsatellites among laboratories as of July 

2007 (compiled by D. Van Doornik, NOAA Fisheries) 
 

Locus 

NMFS  

Manchester 

NMFS 

Santa 

Cruz 

CDFO/WDFW 

collaboration 

USFWS 

Abernathy 

USFWS 

Alaska OSU BML 

Allele 

ladder 

candidates 

Ocl8 X X X X     1 

Oki1 X X X X X  X 1 

Oki10 X  X X     2 

Oki23 X   X  X   3 

One13 X X  X  X X 2 

Ots103 X X X X  X X 1 

Ots213 X  X X  X   2 

Ots3 X   X  s X 3 

OtsB3 X   X     3 

OtsG422 X X  X     2 

P53 X   X X   X X 1 

iso-Ots2 S      X  

Oki11 S    X     

Oki13 S X        

Oki2 S         

Oki3 S    X     

Ots101 S  X      3 

Ots105 S X   X    3 

Ots2 S     X X  

Ots208 S         

Ots212 S     s    

OtsG249 S         

OtsG253b S  X      3 

OtsG3 S X        

OtsG68 S X        

OtsG78b S X        

OtsG83b S X        

Ogo1a          

Ogo2   X      3 

Oke2     X     

Oke3     X     

Oke4     X     

Oki100   X      3 

Oki101   X      3 

Oki16      X    

Omm1121          

Omm1128          

Omy1011   X      3 

Omy116  X        

Omy325   X      3 

Omy77      s    
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One111   X      3 

One11b  X        

One13M   X      3 

One2          

One3     X     

Ots1      s    

Ots10      s    

Ots108  X        

Ots1b  X        

Ots206      s    

Ots208b      s    

Ots209      s    

Ots215      X    

Ots2M   X      3 

Ots3.1     X     

Ots3M   X      3 

Ots9      s    

Ssa14  X        

Ssa407   X      3 

Ssa85   X            

Total in use 11 17 18 11 9 8 7  

X = locus is in use        

s = locus has been screened and is being or has been evaluated for possible use   
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Sockeye salmon 
 

Several regional databases for microsatellite markers in sockeye salmon have been used by DFO 

(Table B6) and NOAA (TableB7). Most surveys of microsatellite loci have been of populations 

in British Columbia (Table B8), and only of a few populations of conservation concern in 

Washington (Table B7).  

 

 

Table B6  Sockeye salmon. DFO: Summary of microsatellite markers available and number of 

observed alleles recorded by the DFO laboratory (T. Beacham) 
 

Microsatellite locus Number of alleles 

Oki1a 8 

Oki1b 10 

Ots107 15 

Omy77 20 

Ots2 26 

Ots3 26 

Oki16 26 

Ots108 29 

Ots103 30 

One8 32 

Ots100 33 

Oki6 37 

Oki29 39 

Oki10 83 

DAB- 1 15 
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Table B7.  Sockeye salmon. NOAA Fisheries, Seattle: Data from Redfish Lake and the 

Wenatchee and Okanagan rivers are available for the following microsatellite loci (E. Iwamoto, 

NOAA Fisheries, Seattle) 

 
Locus 

 

Oke2 

One110 

Omm1085 

One18 

Ots10M 

Ots100 

Ssa85 

Ots519 

One13 

Omm 1159 

Omy77 

Ots103 

Ots3 

One21 

Omm1068 

Oki29 
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Table B8. Sockeye salmon. DFO: Summary of the number of sampling sites or populations 

within geographic regions. A complete listing of the populations is outlined by Beacham et al. 

(2005) in their Appendix Table 1. Range of annual and population samples sizes within regions 

is in parentheses. Fourteen microsatellite loci and an MHC locus were surveyed as outlined by 

Beacham et al. (2005) 

 
 

Region Number of 

populations 

Mean annual sample size Mean population 

sample size 

Columbia River 2 71 (15, 194) 285 (68,502) 

Washington 3 114 (50, 201) 114 (50, 201) 

Fraser River 53 94 (5, 400) 270 (15, 858) 

West coast Vancouver 

Island 

15 90 (19, 197) 132 (19, 279) 

Nimpkish River 3 108 (42, 290) 288 (203, 367) 

Southern BC 6 114 (12, 219) 171 (18, 325) 

Central BC 16 79 (27, 223) 97 (27, 223) 

Owikeno Lake 10 77 (7, 114) 224 (86, 398) 

Long Lake 3 99 (39, 205) 297 (139, 490) 

Queen Charlotte Islands 5 71 (41, 99) 114 (41, 190) 

Nass River 11 96 (24, 264) 313 (40, 797) 

Skeena River 14 78 (33, 200) 151 (33, 287) 

Babine Lake 11 95 (54, 200) 208 (78, 499) 

Unuk River 1 50 (50,50) 50 (50,50) 

Stikine River 17 83 (6, 405) 152 (26, 474) 

Taku River 10 57 (12, 100) 86 (12, 199) 

Alsek River 15 83 (10, 238) 144 (10, 592) 

Southeast Alaska 20 151 (45, 343) 197 (45, 300) 

Kodiak Island 15 73 (15, 112) 73 (15, 112) 

Bristol Bay 14 76 (47, 101) 97 (50, 153) 

Alaska Peninsula 2 88 (75, 100) 88 (75, 100) 

Chukotka 8 25 (20, 30) 25 (20, 30) 

Olutorsky Bay 5 75 (48, 180) 105 (48, 180) 

Navarinsky Region 1 100 (100, 100) 100 (100, 100) 

Karaginsky Bay 1 98 (98, 98) 98 (98, 98) 

Kamchatka River 16 58 (15, 120) 72 (15, 190) 

Kronotzky Bay 1 44 (44, 44) 44 (44, 44) 

Southeast Kamchatka 3 48 (35, 71) 48 (35, 71) 

Kurilskoye Lake 12 58 (35, 103) 78 (50, 121) 

Southwest Kamchatka 1 52 (52, 52) 52 (52, 52) 

Bolshaya River 4 56 (25, 97) 84 (25, 147) 

Tigil River 1 101 (101, 101) 101 (101, 101) 

Palana River 1 49 (49, 49) 49 (49, 49) 

Hokkaido Island 1 75 (75, 75) 75 (75, 75) 
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SNP BASELINE DATA 
 

Most SNP databases encompass only regional sets of populations. Presently, 51 genotypic assays 

are available for Chinook salmon, 19 for coho salmon, 77 for chum salmon, 44 for sockeye 

salmon and none for pink salmon (Tables B9, B10a). The numbers of SNP assays and the 

numbers of samples examined is growing rapidly. About 35,000 sockeye salmon have been 

examined for SNP variability (Table B11a) in samples extending from Russia to Washington-

Idaho, but with a concentration in Alaska around Bristol Bay and the Alaska Peninsula, where 

this species is most abundant (Table B11a). About 42 SNP assays have been developed for coho 

salmon (Table B10b), but only about 400 fish have been examined for variability in samples 

extending from Russia to Washington (Table B11b). SNP assays have also been developed for 

chum salmon (n = 77; Tables B9 and B10c) and for Chinook salmon (n = 51; Tables B9 and 

B10d). About 12,000 chum salmon have been examined for variability in samples extending 

from Korea to Washington (Table B11c), and nearly 25,000 Chinook salmon have been 

examined in samples from Russia to California (Table B11d). Several thousand Chinook salmon 

from Southeast Alaska and the Yukon-Kuskokwim rivers have been examined to support 

transboundary management.     

  

 

 

Table B9.  Number of SNP genotyping assays available for each species of Pacific salmon 

(compiled by C. Smith, USFWS). 

 

Species Number of available genotyping assays 

Chinook salmon 51
1,2,3,4

 

Coho salmon 19
5
 

Chum salmon 77
1,6,7,8

 

Sockeye salmon 44
1,9

 

Pink salmon 0 

 

1) Smith et al. (2005a), 2) Smith et al. (2005d), 3) Smith et al. (in press), 4) Narum et al. (in 

press), 5) Smith et al. (2006), 6) Elfstrom et al. (in press), 7) Smith et al. (2005c), 8) Garvin and 

Gharrett (in press), 9) Elfstrom et al. (2006). 

 

 



 

73 

 

 

 

Table B10.  Single Nucleotide Polymorphism markers assayed for a) sockeye salmon, b) coho 

salmon, c) chum salmon, and d) Chinook salmon. Nuclear markers are diploid and mtDNA are 

haploid (C. Habicht, ADFG). 

 
a. Sockeye salmon 

Published name Ploidy Reference* 

   

One_ACBP-79 D 1 

One_ALDOB-135 D 1 

One_CO1 H 1 

One_ctgf-301 D 1 

One_Cytb_17 H 1 

One_Cytb_26 H 1 

One_E2-65 D 2 

One_GHII-2165 D 1 

One_GPDH-201 D 2 

One_GPDH2-187 D 2 

One_GPH-414 D 1 

One_hsc71-220 D 1 

One_HGFA-49 D 2 

One_HpaI-71 D 1 

One_HpaI-99 D 1 

One_IL8r-362 D 3 

One_KPNA-422 D 1 

One_LEI-87 D 1 

One_MARCKS-241 D 3 

One_MHC2_190 D 1 

One_MHC2_251 D 1 

One_Ots213-181 D 1 

One_p53-534 D 1 

One_ins-107 D 2 

One_Prl2 D 1 

One_RAG1-103 D 1 

One_RAG3-93 D 1 

One_RFC2-102 D 2 

One_RFC2-285 D 2 

One_RH2op-395 D 1 

One_serpin-75 D 2 

One_STC-410 D 1 

One_STR07 D 1 

One_Tf_ex11-750 D 1 

One_Tf_in3-182 D 1 

One_U301-92 D 1 

One_U401-224 D 3 

One_U404-229 D 3 

One_U502-167 D 3 
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One_U503-170 D 3 

One_U504-141 D 3 

One_U508-533 D 3 

One_VIM-569 D 1 

One_ZNF-61 D 3 

One_Zp3b-49 D 2 

* 1) Elfstrom et al. (2006), 2) Smith et al. (2005a), 3) Alaska Department of Fish and Game (unpublished) 

 

b. Coho salmon 

Published name Ploidy Reference** 

      

Oki_arf-115 D 1 

Oki_BAMBI-128 D 2 

Oki_BAMBI-172 D 2 

Oki_CR-209 H 1 

Oki_CR-296 H 1 

Oki_E2-84 D 1 

Oki_eif4ebp2-148 D 2 

Oki_eif4ebp2-58 D 1 

Oki_GnRH-151 D 1 

Oki_GPDH-146 D 1 

Oki_GPDH-187 D 1 

Oki_HGFA-311 D 1 

Oki_IGF-I.1-163 D 1 

Oki_ins-167 D 1 

Oki_ins-323 D 1 

Oki_LWSop-554 D 1 

Oki_RACP-176 D 1 

Oki_SClkF2R2-120 D 1 

Oki_serpin-130 D 1 

Oki_serpin-328 D 1 

Oki_SWS1op-38 D 1 

Oki_u6-258 D 1 

**1) Smith et al. (2006), 2) Alaska Department of Fish and Game (unpublished) 

 

 

c. Chum salmon 

Published name Ploidy Reference*** 

      

Oke_PPA2-635 D 1 

Oke_AhR1-278 D 1 

Oke_AhR1-78 D 1 

Oke_arf-319 D 2 

Oke_U401-143 D 1 

Oke_U401-220 D 1 

Oke_CKS-389 D 3 

Oke_copa-211 D 2 

Oke_Cr30 H 3 

Oke_Cr386 H 3 
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Oke_ctgf-105 D 1 

Oke_DM20-548 D 3 

Oke_eif4ebp2-64 D 2 

Oke_FARSLA-242 D 1 

Oke_GHII-2943 D 1 

Oke_GHII-3129 D 1 

Oke_GnRH-373 D 3 

Oke_GnRH-527 D 3 

Oke_GPDH-191 D 2 

Oke_GPH-105 D 1 

Oke_GPH-78 D 1 

Oke_hnRNPL-239 D 1 

Oke_HP-182 D 1 

Oke_HSP90BA-299 D 1 

Oke_hsc71-199 D 2 

Oke_il-1racp-67 D 2 

Oke_IL8r-272 D 3 

Oke_IL8r-406 D 3 

Oke_KPNA2-87 D 1 

Oke_MAPK1-135 D 1 

Oke_MARCKS-362 D 1 

Oke_Moesin-160 D 2 

Oke_ND3-69 H 3 

Oke_ras1-249 D 1 

Oke_RFC2-618 D 2 

Oke_RH1op-245 D 2 

Oke_serpin-140 D 2 

Oke_TCP1-78 D 1 

Oke_Tf-278 D 1 

Oke_Tsha1-196 D 2 

Oke_u1-519 D 3 

Oke_u202-131 D 2 

Oke_u212-87 D 2 

Oke_u216-222 D 2 

Oke_u217-172 D 2 

Oke_u200-385 D 2 

Oke_U302-195 D 1 

Oke_U502-241 D 1 

Oke_U503-272 D 1 

Oke_U504-228 D 1 

Oke_U505-112 D 1 

Oke_U506-110 D 1 

Oke_U507-286 D 1 

Oke_U507-87 D 1 

Oke_U509-219 D 1 

Oke_U510-204 D 1 

Oke_U511-271 D 1 

Oke_U514-150 D 1 

Oke_U305-130 D 1 
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Oke_U305-307 D 1 

***1) Elfstrom et al. (in press), 2) Smith et al. (2005a), 3) Smith et al. (2005b) 

 

 

d. Chinook salmon 

Published Name Ploidy Reference**** 

      

GTH2B-550 D 1 

NOD1 D 1 

Ots_E2-275 D 2 

Ots_arf-188 D 2 

Ots_AsnRS-60 D 2 

Ots_C3N3 H 2 

Ots_E9BAC D 1 

Ots_ETIF1A D 1 

Ots_FARSLA-220 D 3 

Ots_FGF6A D 1 

Ots_FGF6B D 1 

Ots_GH2 D 2 

Ots_GPDH-338 D 2 

Ots_GPH-318 D 3 

Ots_GST-207 D 3 

Ots_GST-375 D 3 

Ots_HGFA-446 D 2 

Ots_hnRNPL-533 D 3 

Ots_HSP90B-100 D 3 

Ots_HSP90B-385 D 3 

Ots_IGF-I.1-76 D 2 

Ots_Ikaros-250 D 2 

Ots_il-1racp-166 D 2 

Ots_LEI-292 D 3 

Ots_MetA D 1 

Ots_MHC1 D 2 

Ots_MHC2 D 2 

Ots_ZNF330-181 D 2 

Ots_LWSop-638 D 2 

Ots_SWS1op-182 D 2 

Ots_P450 D 2 

Ots_P53 D 2 

Ots_Prl2 D 2 

Ots_ins-115 D 2 

Ots_PSMB1-197 D 3 

Ots_RFC2-558 D 2 

Ots_SClkF2R2-135 D 2 

Ots_SERPC1-209 D 3 

Ots_SL D 2 

Ots_TAPBP D 1 

Ots_Tnsf D 2 
 

 

****1) GAPS (2006), 2) Smith et al. (2005a), 3) Smith et al. (in press) 
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Table B11.  Number of a) sockeye salmon, b) coho salmon, c) chum salmon, and d) Chinook 

salmon from baseline collections throughout the Pacific Rim that have been screened for all 

Single Nucleotide Polymorphism markers detailed Table B10. Multilocus genotypes are archived 

in the Alaska Department of Fish and Game database (C. Habicht, ADFG). 

 
a. Sockeye salmon 

Region Number of 

samples 

Number of 

individuals 

      

Washington/Idaho 2 193 

British Columbia 41 3,347 

Southeast Alaska 36 3,244 

North Gulf Coast 7 554 

Southcentral Alaska 78 8,035 

Kodiak and AK Peninsula 74 6,985 

Bristol Bay 98 9,770 

Arctic-Yukon-Kuskokwim 16 1,046 

Russia 40 2,211 

      

Total 393 35,385 

 

 

b. Coho salmon 

Region Number of 

samples 

Number of 

individuals 

      

Washington/Idaho 1 96 

Southeast Alaska 1 48 

Southcentral Alaska 1 94 

Bristol Bay 1 54 

Arctic-Yukon-Kuskokwim 1 48 

Russia 1 38 

      

Total  6 378 

 

 

c. Chum salmon 

Region  Number of 

samples 

Number of 

individuals 

      

Washington/Idaho 8 281 

British Columbia 2 96 

Southeast Alaska 11 887 

Southcentral Alaska 7 568 

Kodiak and AK Peninsula 17 1,307 

Bristol Bay 8 636 

Arctic-Yukon-Kuskokwim 59 5,606 

Russia 13 745 

Japan 19 1,532 
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Korea 2 191 

      

Total 146 11,849 

 

 

 
d. Chinook salmon 

Region Number of 

samples 

Number of 

individuals 

   

California 9 366 

Oregon 3 282 

Washington/Idaho 11 976 

British Columbia 61 5,522 

Southeast Alaska 50 3,965 

North Gulf Coast 32 1,833 

Southcentral Alaska 23 2,190 

Kodiak and AK Peninsula 14 864 

Bristol Bay 9 480 

Arctic-Yukon-Kuskokwim 119 7,837 

Russia 8 411 

      

Total 339 24,726 
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INTRODUCTION 

 

The value of genetic stock identification is greatly enhanced by ensuring that individual datasets 

can be merged into a larger coast-wide dataset. Unified datasets are especially important for 

Pacific salmon which often make migrations of several thousand kilometers and which can be 

harvested in fisheries far removed from spawning areas. Several studies have provided insights 

into high seas abundance patterns of adults (Seeb et al. 2004) and juveniles (Teel et al. 2003; 

Van Doornik et al. 2007) in areas far removed from spawning streams and rivers. These data 

should be accessible in a timely manner to management agencies responsible for maintaining 

sustainable harvests of salmon. Previous efforts to integrate databases for Chinook salmon 

(GAPS) have proved successful and have provided insights into the biology of Chinook 

populations that were not apparent with the separate analyses of individual datasets. The need for 

greater integration of existing data for other species of Pacific salmon is recognized by the 

Pacific Salmon Commission and by the Tribal, State and Provincial agencies responsible for 

harvest management in the Northeastern Pacific. 

 

COMPONENTS OF DATA SHARING 
 

Some of the existing regional or agency datasets cannot be merged to provide a broader picture 

for a particular species because of differences in sampling or laboratory protocols. The use of 

genetic data from several laboratories requires attention to several layers of detail to be able to 

merge datasets to provide a broad geographic perspective on genetic population structure and to 

use in mixed stock analyses (Moran et al. 2006). 

 

Common set of loci must be examined among laboratories for each class of molecular 

marker 

 

The first criterion requires that the various laboratories have similar capabilities in examining 

particular marker classes. When allozymes were used by most laboratories, standardization of 

loci could easily be accomplished by the use of common electrophoretic conditions, staining 

methods and locus-protein interpretations. However, with the advent of DNA technologies, 

laboratory protocols increasingly depend on the acquisition of costly analytical instruments, such 

as automated sequencers, to produce genotypic data. Most governmental laboratories charged 

with the use of genetics in management are able to acquire or have access to equipment to 

standardize markers among laboratories.    

 

When cooperating laboratories use the same class of markers (e.g. allozymes, microsatellites or 

single nucleotide polymorphisms), standardization of a common set of loci among labs can be 

achieved through collaboration. As new technologies appear, however, some labs may adopt 

methods not implemented in other labs. The development of a coast-wide database, in these 

circumstances, depends on the adoption of the new methods in other labs or the sharing of tissues 

to extend the range of geographic data for the new marker.    
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Common nomenclature among laboratories for corresponding allelic states  

 

The second criterion requires that laboratories standardize the nomenclatures of allelic states. 

Virtually no standardization is required for nucleotide sequences, as only four easily identified 

nucleotide states are possible. While sequence data are ideal for many applications, they are 

costly to produce and greatly limit the numbers of individuals and populations that can be 

reasonably analyzed. The use of single nucleotide polymorphisms is attractive because at least 

one nucleotide state defines a standard genotype and avoids the need for allelic standardization 

among laboratories.  

 

As previously with allozymes, the standardization of microsatellite datasets among laboratories 

requires comparisons of genotypic voucher samples on each analytical platform or the use of 

allelic ladders (LaHood et al. 2002). Different models of automated sequencers, or even the same 

model in the same laboratory, can produce different electrophoretic mobilities for the same size 

allele (see Moran et al. 2006). The electrophoretic properties of slab gels often differ from 

capillary tubes so that the same sized microsatellite fragment may have different mobilities in 

different instruments. Additionally, some alleles deviate from the expected repeat sizes of 

variable motif, showing apparent sizes that are inconsistent with the repeat motif. The pooling of 

these alleles of similar sizes must be agreed upon for datasets to be compatible. 

  

Issues 1 and 2 can be resolved by active collaboration among laboratories and periodic 

workshops to standardize the selection of loci and the nomenclature of alleles. Workshops in 

1999, 2000 and 2001 were convened and attended by major agencies to discuss these two issues. 

In past efforts to standardize allozyme markers, progress toward standardized datasets was slow 

and incremental over several years, except when agency management directives provided 

‗specific and immediate motivation‘ (Moran et al. 2006; Seeb et al., in press).   

 

Agreed upon sampling of important contributing spawning populations 

 

A third issue involves the standardization of geographical sampling effort. A coordinated dataset 

of baseline populations requires the same geographical resolution of spawning populations in 

different regions. As databases expand geographically or are merged with other regional 

databases greater diversity is encountered in allelic size and may present problems for multiplex 

analysis of different microsatellite loci on the same electrophoretic system. Greater geographical 

sampling may compromise the utility of some microsatellite loci as new alleles may produce 

complex allele frequency distributions that complicate the identification of alleles. Greater allelic 

diversity is also likely to include null microsatellite alleles, in part due to the failure of 

polymerase chain reactions (PCR) to amplify a target fragment. Standardization of microsatellite 

alleles may be more difficult on a broad geographical scale for some species because of these 

complicating factors, and recommendations must include costs and benefits of sampling at 

various spatial scales.  

 

Applications of SNPs over large distances may be confronted with other problems. Marker 

development and sampling strategies are usually shaped by problems under the jurisdictions of 

regional management agencies. While allelic identification among laboratories may not be 
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problematic for SNPs, SNP polymorphisms identified in one region may not be present in 

another region. For example, SNP polymorphisms developed for Alaskan populations may be 

useful for differentiating Asian populations from North American populations, but may be less 

informative within Asia. 

 

Use of a common set of statistical procedures 

 

A fourth issue concerns the consistency of statistical analyses among laboratories. One 

consideration is the identification of genetically discrete populations. Detecting population 

differences depends on the geography of sampling and on statistical power for finding allele-

frequency differences, which is influenced by both sample size and the particular approach to 

probability adjustment. Sampling design may also influence inferences about population 

structure as salmon populations can be resolved temporally by run or spawning time and by 

geography, often on small spatial scales. In addition to the completeness of a population data 

baseline, the results of mixed-stock analyses depend on the timing and sizes of samples from 

ocean or river mouth harvests, on reporting aggregations of baseline populations, and on the 

statistical method used to estimate the composition of the mixture.      

 

Access to data 

 

The foregoing considerations set the stage for the sharing of genetic data to conduct mixed-stock 

analyses of fishery harvests and to infer ocean abundances and migratory pathways of particular 

populations. Genetic data now play a fundamental role in the management of salmon populations 

by federal, state, and tribal agencies. The distribution of current, but often unpublished, data is 

vital to these efforts. Requests for information may include tissue samples for additional 

analyses, genotypic or allele frequency data, summary statistics or draft reports. Although 

funding from federal agencies often comes with agreements on data sharing, genetic databases 

are usually constructed over several years with multiple sources of funding. Data sharing 

directives in the USA are embodied in the Freedom of Information Act of 1986 (FOIA), 

guidelines from the Department of Justice and the Office of Management and Budget, court 

judgments and executive orders (Moran et al. 2006). FOIA requests for the release of genetic 

data in a timely manner, however, can be impeded by three exemptions: 1) confidential trade 

information, 2) pre-decisional legal deliberations, and 3) criminal investigations. To date, no 

court deliberations have commented specifically on the use of FOIA to obtain genetic data 

(Moran et al. 2006). Data-sharing agreements between governmental agencies within a particular 

country, however, have limited value for facilitating data sharing between agencies in different 

countries. 

 

META-DATABASE 

 

The first step toward facilitating the easy distribution of data is to establish a web-based 

electronic ‗meta-database‘ that would be easily accessible to stakeholders and management. The 

primary function of this database would be to catalogue existing primary genetic data (markers, 

sample dates and sampling localities), biological information (population profiles) and biological 

materials (tissues, otoliths and scales) that can be used for genetic analysis. The mandates of the 

present workshop provide the impetus for the construction of such a database. A meta-database, 
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however, would be logistically complex and would require continuing support to maintain as 

new information became available. A similar genetic meta-database is being established by ICES 

for commercially important species in the North Atlantic (ICES 2007).  

 

Several benefits would accrue to stakeholders and users. A meta-database would allow 

researchers and fishery managers to immediately gather relevant information on databases and 

researchers for a particular fishery management problem. A meta-database would also improve 

the designs of research projects and sampling. This database might include the following: 

 

 Existing allozyme, mtDNA, microsatellite, SNP, and EST datasets and where they are 

located; 

 Existing collections of historical biological material that could be used to extract DNA. 

Archived scales and otoliths can be used to estimate allele frequencies in past populations;  

 List of past and current genetics projects, including laboratory location, researcher names 

and the natures of the projects; 

 Profiles and contact information of active researchers working on the genetics of salmon. 

 

This database would provide ready access to information on experts and on geographic areas 

where data are available. The development of a frequently updated meta-database would 

promote communication between geneticists and between geneticists and other researcher and 

managers. Such a database would also help to reduce the overlapping of sampling effort and 

encourage collaborations and lead to more efficient research efforts. The present state-of-the-art 

software could be used to make the meta-database portable, so that the responsibility of 

maintaining the database could be rotated periodically among agencies. The development of a 

meta-database of information on genetic markers, regional datasets and researchers, would be the 

first step in establishing a central database containing raw or summary data that could be used by 

fishery managers.   

 

DATA SHARING 

 

Several stumbling blocks appear to prevent the easy exchange of data among research agencies. 

A fundamental concern of many researchers is the protection of proprietary information for use 

in scientific publications. An agreement for the use of current, unpublished genetic data would 

have to be made between researchers producing genetic data and agency personnel wanting to 

use the information for management or conservation evaluations. The use of unpublished data by 

agencies has longstanding precedents in the writing of status reviews on threatened and 

endangered species by the US Fish and Wildlife Service and NOAA Fisheries (Waples 1991, and 

numerous status reviews).   

 

Another facet of this problem is that university researchers are disinclined to maintain large 

databases or to routinely analyze large numbers of samples for management. The development of 

comprehensive databases usually falls under the mandates of state, national, and international 
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fishery management agencies. Presently, most genetic data for Pacific salmon in the North East 

Pacific are held by governmental agencies to assist in their management obligations. 

Nevertheless, other databases have been generated or are maintained by tribal or university 

researchers. Ultimately, the easy sharing of data depends on the goodwill and cooperation of 

personnel at these laboratories.  

 

Agencies may hesitate to share data for fear that some interpretations of a dataset may not prove 

beneficial to a particular stakeholder‘s take of the harvest. Differences in interpretation can 

potentially arise from the use of different statistics or the inclusion of some samples but not 

others in a database used for mixed stock analysis in areas including fish originating from 

different jurisdictions. Such differences must be negotiated in the light of the best possible use of 

data and statistics.  

 

Motivation for sharing and building a standardized dataset for each species of interest to the 

Pacific Salmon Commission arises from two sources. As scientists, laboratory directors are 

interested in researching and testing hypotheses that illuminate the sources of genetic population 

structure in view of historical and contemporary evolutionary and ecological processes. A large 

body of literature based on genetic data for Pacific salmon has been the cornerstone in fish 

biology and fisheries management circles for understanding the effects of harvests and climate 

change on fish populations. No other group of fishes has been examined with genetic markers to 

the same extent as Pacific salmon.  

 

Laboratory directors in management agencies are also motivated by the mandates of their 

agencies to manage natural resources as sustainably as possible. The mandate of the Pacific 

Salmon Commission is to provide management information in areas where fish from different 

national jurisdictions potentially mix. While these management problems may be limited to 

trans-boundary areas, the management of these areas often depends on coast-wide databases of 

populations potentially contributing to harvests in trans-boundary areas. Hence, integrated 

genetic datasets are all the more important. While funding agencies may impose data-sharing 

requirements on researchers, laboratories generally received support from several in-house and 

agency sources, each of which may have different data-sharing mandates. As agency laboratories 

are part of a hierarchy, the ultimate responsibility for data sharing lies with the administrations of 

these agencies. When problems arise among laboratories, cooperation may have to be 

implemented by memoranda of agreements that clearly outline lines of responsibility and how 

shared data can be used. 
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INTRODUCTION 

 

Artificial marks, such as coded wire tags and otolith thermal marks, are created to provide 

definitive source identification for individual fish found in stock mixtures. Unless an infrequent 

human error is made during application or recovery, the origin of a fish carrying an artificial 

mark is known with certainty. The usual shortcomings of artificial marks include their expense in 

application and in determination of the source at recovery. Further, artificial marking is 

incomplete in scope because neither all the stocks nor all the individuals in the stocks composing 

mixtures are marked. Natural marks of individuals, such as scale features, parasites, and 

genotypes, provide less certain source identification. Usually the contributing stocks to a mixture 

share all the natural marks (i.e., individuals with the various marks are found in all the stocks) 

but the relative frequencies of the marks differ among stocks (i.e., the proportions of individuals 

with any one of the various marks differ among the stocks). The advantages of natural marks are 

complete coverage of all stocks as well as all individuals in the stocks. However, the cost of 

baseline development (i.e., the initial samples to characterize the distributions of the natural mark 

among individuals of each stock) may be large and the cost in sampling mixtures and 

determining the natural marks of mixture individuals may be significant. Although source 

composition estimation of a mixture and of the origins of individuals in a sample requires more 

complex methods for natural marks than for artificial marks, appropriate statistical theory and 

estimation algorithms are well-developed, and software for their implementation is freely 

available. 

 

 

ARTIFICIAL MARKS 

 

Artificial marks identify each individual to its source, and so the problem of estimating the 

sources of individuals in a mixture sample does not apply. For example, if 100% of individuals 

of each stock are marked, the problem of estimating the source composition of the mixture from 

its random sample is solved through straightforward application of multinomial sampling theory. 

Assume that c stocks occur in a mixture. The unknown source composition of the mixture p 

occurs on the simplex, 


K  where  K  and . The 

array of stock counts found in a random sample of size M from the mixture is denoted as 

 K , where mi is the count of individuals from the i-th stock and . The 

multinomial probability function that describes the sampling variation is 

 K
K . 

The obvious estimator of the stock composition of the mixture is the observed stock composition 

of the sample itself. If frequentist methods of estimation are used, the maximum likelihood 

estimate (MLE) of the stock composition of the mixture is simply this observed stock 

composition


K , it is unbiased in that the average value equals the actual 
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composition over repeated sampling,  K , and its estimated covariance matrix 

is , where  and  for  K . The MLE 

estimator of the stock composition is sensible provided no additional information besides the 

mixture sample is available by which to estimate the stock composition. 

 

 

NATURAL MARKS  

 

The source identity of an individual is almost never certain from its natural marks and so both 

the sources of individuals and the stock composition of the mixture must be estimated. The 

duality of the estimation problem—individual sources and stock composition—is used hereafter 

to motivate the various solutions that have been developed. Here we introduce the methods in 

order of their increasing strength and suitability. 

 

Classical Individual Assignments Method 

 

The classical individual assignments method is an ostensibly reasonable approach to the dual 

estimation problem and comprises two steps that are applied just once to the mixture sample. 

First, assign the individuals to their sources based on their marks and the relative frequencies of 

their marks in a set of baseline samples from all the possible source stocks. Second, estimate the 

mixture composition from the assignments using the multinomial theory described under the 

preceding section. At the second step, the assignments are treated as accurate, and the probable 

errors in the assignments are ignored. Quite likely, early workers in scale pattern analysis during 

the 1950s used this method before the statistical adjustments for assignment errors by Worlund 

and Fredin (1962), Cook and Lord (1978), Pella and Robertson (1979), Millar (1987) and Wood 

et al. (1987) (see summary by Pella and Masuda 2005). The assignment errors were well known 

to cause both bias and overstated precision in estimated mixture composition. Nonetheless, many 

geneticists have also used the method in more recent times (Banks and Eichert 2000, Potvin and 

Bernatchez 2001) that were evidently unaware of the statistical adjustments by scale pattern 

analysts.  

 

In addition to neglecting the effects of assignment errors on the mixture composition estimates, 

the assignment rule commonly used in the method is inferior to another well-known rule that has 

lower expected error rate for nearly every possible mixture provided, and here is the crux, that 

the mixture composition is specified. Practitioners usually assign an individual with 

measurement vector X (this could be any of the following variable subsets for an individual fish 

as well as their combination: scale characters, morphometric measurements, binary parasite 

occurrence indicators, and multilocus genotype indicators) to the source population for which the 

measurement is most common or frequent (the rule will be termed the maximum frequency or 

MAF rule). Specifically, the individual is assigned to the stock i* for which 


K , where  is the estimated relative frequency (probability 

function if X is discrete, or probability density if X is continuous) of individuals with 

measurement X in the i-th stock.  The underlying relative frequency, , is unknown and so 

the estimated value from the baseline samples is used in its place. Notice that the relative 
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frequency of individuals with measurement X in the mixture is , where pi is 

the proportion of the mixture from the i-th stock, and that the fraction of such individuals 

contributed by the i-th stock is the ratio specific to X (called the posterior source probability of 

that stock), 


K . What better guess for the source of an 

individual with measurement X than the stock contributing the most individuals with the 

measurement? In fact, assignment errors are minimized by using this so-called Bayes‘ classifier 

in which the individual with measurement X is assigned to the stock for which the posterior 

source probability is highest (called the maximum a posteriori, or MAP rule), that is, to the i*-th 

stock if  K . Notice that if the stocks contribute equally to the 

mixture so that  L , only then do the MAF and MAP rules agree. In fact, the stock 

proportions cancel from the formula for the posterior source probabilities so that the analyst 

appears to be relieved of having to provide these values. A further justification for using the 

MAF rule may be an apparent lack of information about the mixture composition. In fact, the 

very reason for performing the assignments is usually to estimate the unknown composition. 

Although this argument for the MAF rule claiming ignorance seems reasonable at first glance, it 

fails to convince after the assignments are completed and some knowledge regarding 

composition becomes available. In general, the estimated composition from the assignments will 

differ from the assumed equal composition. If the classical individual assignments method were 

trusted to produce a more accurate composition estimate than the initial equal proportions 

assumption, why not substitute the better estimate for unknown p into the posterior source 

probabilities, and repeat assignments with the superior MAP rule? In fact, what about repeating 

this process to convergence in the estimate of p if possible? As we emphasized earlier, the 

superior MAP rule is available provided the mixture composition can be specified. An iterative 

series of assignments using the MAP rule with the resulting mixture composition estimates to 

restart the rule provide the recipe. The only inconvenience is that the assignments and estimation 

need to be done again and again, but that is what computers do so well. The approach is well 

grounded in sound statistical theory. Also, suppose that none of the posterior source probabilities 

for an individual is large relative to the others. Should the individual be assigned to a single 

stock, or would it be better to assign it fractionally to the possible stocks in proportion to the 

posterior source probabilities? Why not fractionally assign every individual regardless of the 

relative magnitudes of the posterior source probabilities? Two modern valid approaches are 

discussed next in the context of genetic marks in which these ideas are completed. The general 

approach is termed mixture modeling, under which two methods are important, conditional 

maximum likelihood and Bayesian. To see the parallel developments for non-genetic characters 

using discriminant analysis, see the review by Pella and Masuda (2005). 

 

Conditional Maximum Likelihood Method of Mixture Modeling 

 

The first valid estimation method developed for the stock composition of a genetic mixture is 

called the conditional maximum likelihood method (Fournier et al. 1984, Millar 1987, Pella and 

Milner 1987). The term ―conditional‖ refers to the fact that the genetic parameters are estimated 

using so-called baseline samples from the contributing stocks and the likelihood function is 
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maximized only with respect to the unknown stock proportions. The genetic parameters for the i-

th stock are denoted by 


K K and refer to the allele relative 

frequencies at the L loci defining the multilocus genotypes of individuals ( ). 

The relative frequencies of multilocus genotypes in any stock are computed from estimates of 

allele relative frequencies under Hardy-Weinberg and linkage equilibrium conditions. Let the 

multilocus genotype of the m-th mixture individual be denoted by  K , where 


K  is the vector of allele counts for the individual at the h-th locus. Note that 

each individual has 2 alleles per locus giving . Then the relative frequency of 

the genotype of the m-th individual in the i-th stock is , where 

 if the individual is homozygous, and equals 0 if it is heterozygous, for locus h. These 

Hardy-Weinberg and linkage equilibrium conditions are quite plausible for large panmictic 

populations that do not exchange immigrants. The estimation of the allele relative frequencies 

 K  is considered shortly and for now we use the unknown value recognizing that an 

estimate is substituted for computations. 

 

The probability of the genotypes, X1, , XM, observed in a random sample of M individuals from 

the mixture is 

  


K . 

It can be shown that the maximizing value of p given the genotypes can be obtained by 

iteratively (t = 1,2, ,T) solving the equation system, 

  



M  

An arbitrary value for  with positive components of unit sum can be substituted into the right 

hand side of the equation system to start the iteration. The composition for  results on the left 

hand side, and it is substituted into the right hand side again. The process is continued to 

convergence, which can be judged to have occurred by various criteria. Typically convergence is 

assumed when the changes between successive estimates of p become arbitrarily small. This 

method of computing the conditional maximum likelihood estimate  is called the EM 

algorithm. Although the conditional MLE for p by the EM algorithm may not be as fast to 
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compute as by other algorithms (Pella et al. 1996), it has the advantages of simplicity and the 

guarantee to converge with monotonic increase in likelihood function values during the search. 

Another advantage is the simple and intuitive interpretation of what is being done to compute the 

conditional MLE. Notice from the equation system that at convergence each individual has a unit 

value that is divided up among the possible stocks in proportion to its posterior source 

probabilities, and that the stock composition estimate is the arithmetic average of these posterior 

source probabilities. Therefore, instead of assigning the entire individual to a stock as though one 

knew its source, the individual is assigned fractionally in proportion to measures of our belief of 

its sources. 

 

The estimation of the allele relative frequencies Q among loci and stocks has become more 

complex as choice in genetic marks changed. Initially, allozymes were available and these loci 

typically had only a few alleles per locus. Therefore, maximum likelihood estimation of the 

allele frequencies was based on the standard multinomial sampling model described under the 

section ―Artificial Marks‖. Random samples of fish from escapements, called baseline samples, 

were assayed for their genotypes, i.e., the pairs of alleles per fish. The maximum likelihood 

estimates of the Qi are the observed allele compositions of the combined alleles of the baseline 

sample from each stock and locus. More recently, microsatellite loci were used for which the 

number of different alleles among stocks could be large (as many as 50 or even more) and many 

of these alleles were rare or in low relative frequency in stocks. The result was that sampling 

zeros were presumably common in the baseline samples and this became very problematic to 

stock composition estimation. If maximum likelihood was used to estimate the allele relative 

frequencies from the baseline samples, stocks whose baseline samples had sampling zeros were 

necessarily eliminated as potential sources for mixture individuals having the corresponding 

alleles in their genotypes. Other stocks without sampling zeros became the candidates, and with 

far greater posterior source probabilities than should have occurred. Because certainty about the 

absence of a rare allele is not possible with limited sample size from large populations, stock 

composition estimation from microsatellites performs better if the possibility is maintained that 

any baseline stock could be the source of any mixture individual. This possibility is achieved 

through use of Bayesian methods that in the present context provides a probability distribution 

for allele relative frequencies of Q rather than a point estimate and associated measure of 

variation. Under this Bayesian probability distribution, every allele is potentially present in every 

stock. Were a point estimate needed, the location parameter, e.g., mean or median, of the Bayes 

distributions of components of Q should suffice. 

 

 

The recommended method of estimating the sampling variation in the conditional MLE, , is by 

bootstrap resampling. The reason that asymptotic methods are not useful for this purpose is they 

are inaccurate and overestimate the uncertainty. Asymptotic methods are inaccurate because they 

depend on an assumption, nearly always violated, that the distributions of composition estimates 

do not encounter the boundaries for the unknown proportions (


K ). 

In the bootstrap method, the mixture and baseline samples are sampled with replacement to 

generate random analogs of the same size. The allele relative frequencies Q are estimated by 

either maximum likelihood from the bootstrap baseline samples (appropriate if none of the 
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alleles is rare), or by a single draw from the Bayes distribution of Q (appropriate when some 

alleles are rare). Then the conditional maximum likelihood estimate of p is computed for the 

bootstrap mixture sample using the EM algorithm, for example. A large number of repetitions of 

this process (e.g., 1000 times) generates an empirical bootstrap distribution from which the mean 

and lower /2 100-th percentile and upper (1- /2) 100-th percentile provide a point estimate 

and symmetric (1- ) 100% confidence bounds. 

 

Software to perform the conditional maximum likelihood estimation method and bootstrap 

resampling of baseline and mixture samples is freely available from two sources. The earliest 

software is the program called Statistical Package for Analyzing Mixtures (SPAM) (Debevec et 

al. 2000). SPAM originally did not include the option during bootstrap resampling of using the 

Bayesian posterior for baseline allele relative frequencies. Meanwhile, Kalinowski (2003) 

developed the program called Genetic Mixture Analysis (GMA) that did. Later, SPAM was 

updated to include the option (Alaska Department of Fish and Game 2003). 

 

Bayesian Method of Mixture Modeling 
 

The Bayesian approach has been extended to include estimation of both the stock composition p 

and the allele relative frequencies Q (Pella and Masuda 2001). The combination of a Bayesian 

analysis for Q and a maximum likelihood approach for p described above is a peculiarity in that 

frequentist and Bayesian statisticians view any estimation problem as mirror images. Under 

Bayesian methods, data are considered fixed and unknown parameters are considered random 

variables. Under frequentist methods such as maximum likelihood, data are considered random 

and parameters are fixed. Although the two schools have long debated the validity of their 

approaches, the more recent Bayesian methods have gained favor by more exact modeling of 

complex problems made possible by availability of greater computing power. The premise of the 

Bayesian method for estimation of a collection of unknowns, say , is that information 

exists about  before a sample is drawn and data Y become available. The information is 

provided in the form of a prior probability distribution, in the present problem by 

. That is, the prior information about the stock proportions, p, and genetic 

parameters, Q, is assumed to be statistically independent so that their joint prior probability 

distribution equals the product of their separate prior distributions. Uninformative priors are 

chosen for both p and Q so that the data ―do the talking‖. The information in the data Y is 

combined with that of the prior by integration of the product of the prior, , and the 

likelihood of the data, , to produce the posterior distribution, 

. The posterior distribution summarizes the 

knowledge and uncertainty about the unknowns. Pella and Masuda (2001) chose so-called 

conjugate priors for both p and Q so that the Bayes posterior distribution for the unknowns has 

an explicit solution. The prior for p is the Dirichlet density function, which is defined on the 

stock composition simplex, . The density function is 
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parameterized by  K  and is . Pella and 

Masuda (2001) set the  K , which has the desired effect of providing low 

information about p: this prior information is equivalent to adding a single individual to the 

mixture sample and specifies that the prior contributions from the source stocks to the mixture 

are equal. If the source identities of the M individuals in the random multinomial mixture sample 

were available and the array of stock counts is denoted by 


K , the 

posterior distribution is the Dirichlet density function, 


K . The means, variances, and covariances of 

this distribution are given by 


K  


K  


K  

As M becomes large, these values for the posterior distribution of p agree closely with the MLE 

estimates of the corresponding values from the multinomial probability function (substitute 

components of Z in place of m into the multinomial formulas under ―Artificial Marks‖), so that 

the Bayesian posterior distribution will be a reasonable description of knowledge and uncertainty 

for both Bayesian and frequentist statisticians. Of course, the actual counts of individuals by 

source stock are unknown and what the Bayesian method does to accommodate this uncertainty 

is described shortly. 

 

The remaining unknowns are the allele relative frequencies Q at H different loci among the c 

stocks. Two information sources about Q are available: the baseline samples, and the mixture 

sample. In contrast to the conditional maximum likelihood method, which uses only the baseline 

samples for estimating Q, the Bayesian method extracts the information about Q from both. 

First, a separate Bayesian analysis is performed with the baseline samples to develop the baseline 

posterior distribution for Q. Second, the baseline posterior distribution for Q becomes the 

mixture prior for Q to be updated during the mixture sample analysis. The baseline sample for 

the h-th locus from the i-th stock is viewed as a random draw from the multinomial probability 

function with Jh different alleles possible at the locus. In practice, the value for Jh is the number 

of different alleles at the locus observed among the baseline stocks. Again, the Dirichlet prior 

probability density has been used to describe knowledge and uncertainty in Q. Two 

specifications for the parameters of the Dirichlet prior have been used. The most straightforward 

specification (Rannala and Mountain 1997) is the analog to that described above for stock 

composition p, but now applied to each of the unknown allele relative frequency arrays 

denoted by 


K K K  (see Kalinowski 2003). To distinguish 
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these prior parameters from those used for p, they will be denoted by 


K , where 

 if the h-th locus has Jh alleles among the baseline stocks. The other specification by 

Pella and Masuda (2001) chooses the prior parameters for a locus to be proportional to a baseline 

center of allele relative frequencies. The baseline center is the unweighted arithmetic average of 

the observed allele relative frequencies at the locus among the stocks in the baseline. The value 

for the constant of proportionality of each locus is chosen to minimize the sum of squared 

deviations between the observed allele relative frequencies and their posterior mean. With this 

definition for the prior parameters, the prior mean equals the baseline center, and the posterior 

mean for any stock is the weighted average of its observed allele relative frequencies and the 

baseline center with the weights equal to simple ratios involving the baseline sample sizes and 

the constant of proportionality. The method is called pseudo-Bayes because it hedges by using 

the baseline samples both to choose the prior parameters and to evaluate the posterior 

distribution for the allele relative frequencies. 

 

The Bayesian approach to describing the knowledge and uncertainty in the unknowns for 

complex problems is to generate a very large number of samples from their posterior 

distribution. Then summary measures of the posterior distribution, such as for location (mean, 

median, mode) and variation (standard deviation and various quartiles) can be computed from 

the samples with ignorable sampling error. In particular, the Bayesian method for stock mixtures 

used by Pella and Masuda (2001) is called a Markov chain Monte Carlo (MCMC) method 

because the samples for the unknowns are generated sequentially with each depending on the 

immediately preceding sample. The Bayesian method for stock mixtures also uses the data 

augmentation algorithm in which additional random observations, namely the unknown and 

purported sources of mixture individuals, are generated to greatly simplify estimation. At the k-th 

sample of the unknowns, let the current values from the posterior of p and Q be denoted by 

 and . The data augmentation algorithm has two steps: 

1. Draw a random stock source of each mixture individual, 


K , where 

 K , if the source of the m-th individual is the i-th stock, and  

otherwise. The stock source is drawn with c probabilities proportional to the posterior 

source probabilities based on the genotype and current values of p and Q. 

2. Draw new values from their respective posterior densities given 

the mixture sample genotypes, X, baseline samples for allele relative frequencies, Y, and 

the stock identities at step 1, Z
(k)

 . 

 

The posterior distribution for p is obtained by updating the Dirichlet prior for p with the assigned 

stock identities for the mixture individuals, 


K . Notice that each updated Dirichlet parameter 

for a stock equals the sum of its prior parameter and the total number of mixture individuals 

assigned to the stock at the preceding sample in the chain. The posterior density for Qi is 


K . Notice that each 
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updated Dirichlet parameter for an allele in the i-th stock equals the sum of its prior parameter, 

the count of the allele in the baseline sample, and the count of the allele for mixture individuals 

assigned to the i-th stock at the preceding sample in the chain. 

 

The data augmentation algorithm generates a chain of samples from the posterior distribution for 

p and Q. However, the early samples in the sequence are influenced by the values chosen for p 

and Q to begin computations. Early burn-in samples need to be discarded, and a sufficiently 

large number of subsequent samples must be drawn to describe the posterior distribution 

accurately. Care is needed to assure that convergence has occurred. Recommended practice is to 

run several independent chains, ideally a chain for each reporting group, with dispersed starting 

points to reduce the possibility that a chain is accepted as representative of the posterior 

distribution before having converged. Usual starting points of the chains are mixture 

compositions p for which each reporting group is preponderant and each member stock 

contributes equally to the group.  

 

To determine the necessary chain lengths, an iterative scheme of processing pilot chains with the 

Raftery-Lewis convergence diagnostic (Raftery and Lewis 1996) is applied to each sequence of 

reporting group proportions (see Pella and Masuda 2001). To monitor convergence, the Gelman-

Rubin shrink factor (Gelman and Rubin 1992) is computed for the mixture proportion from each 

reporting group. After convergence of chains is verified, the MCMC samples after burn-in are 

combined across chains. Various statistics of the pooled chains (equivalent to parameters of the 

posterior distribution given the large samples) such as means, standard deviations, and various 

percentiles (2.5, 5.0, and 97.5) are computed for the reporting group proportions. Also reported 

for each mixture individual are the chain average relative frequencies of assignment to each of 

the baseline stocks, which are the averages of the posterior distributions for posterior source 

probabilities and can be used to assign individuals to their sources by the MAP rule. Pella and 

Masuda (2001) provide the implementing software (see the Fortran program BAYES on the 

Auke Bay Laboratory website) for all computations. More recently, the algorithms have been 

reprogrammed at the Pacific Biological Station as the C program cBAYES, which is available at 

their website. 

 

 

DISCUSSION AND SUMMARY  

 

Artificial marks are definitive of the source for individuals, and estimation of mixture 

composition is straightforward under the multinomial sampling model. Natural marks differ in 

their distributions among stocks, and the sources of individuals cannot be ascertained with 

certainty. This document describes various solutions to the dual problem of estimating both the 

stock sources of individuals and the mixture composition from the natural marks in a random 

sample of the mixture. In this discussion, we restrict the natural marks to be genetic even if the 

term is broader. Two general approaches to the dual problem have been used: classical individual 

assignments and mixture modeling. The classical individual assignments method couches the 

solution in terms evocative of hypothesis testing (Banks and Eichert 2000, Cornuet et al. 1999, 

Luikart and England 1999, Paetkau et al. 1995). The individuals are assigned to the baseline 

stock in which the relative frequency of their genotype is the greatest (maximum frequency or 
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MAF rule). These assignments are performed once and no further use from learning about the 

mixture composition is made. The proponents call this an assignment test. The assignment tests 

partition the possible genotypes into assignment classes that have a one-to-one correspondence 

with the baseline stocks. Each assignment class is composed of those genotypes whose relative 

frequencies are greatest in its associated stock. Regardless of the assignments made of other 

mixture individuals, each mixture individual is assigned to the stock corresponding to its 

assignment class based on its genotype. Because any of the genotypes are estimated as present in 

any of the stocks, sources of individuals are uncertain and misclassifications occur. After the 

individuals have been assigned to the stocks based on their genotypes, their genotype relative 

frequencies among stocks are not used further and their uncertain stock sources are treated as if 

known and correct. The proportions assigned to the possible sources estimate the source 

composition. This apparent stock composition from the assignments is biased by 

misclassifications and the precision of the composition estimate is overstated because the 

uncertain stock sources of the individuals are treated as known (e.g., see pp. 532-536 of Pella and 

Masuda 2005). 

 

In the mixture modeling approach, the genotypes in the mixture sample are viewed as having 

been drawn from the baseline stocks with prior probabilities equal to the unknown mixture 

composition. The relative frequencies of the genotypes in the mixture are written as weighted 

sums of their relative frequencies in the contributing stocks. The weights are the unknown stock 

proportions, i.e., the prior probabilities, composing the mixture. The estimation problem is seen 

to be a decision problem and Bayes‘ theorem of mathematical statistics is used to provide the 

posterior source probabilities of each genotype X. Two methods of estimating the stock 

proportions are described: conditional maximum likelihood and a Bayesian method. One 

algorithm for the conditional maximum likelihood method is used to demonstrate that individuals 

are assigned fractionally to the source stocks in proportion to their posterior source probabilities. 

If an individual must be assigned as an entity, the choice should be the source with the largest 

posterior source probability. The Bayesian method uses a Markov chain Monte Carlo method 

together with the data augmentation algorithm. The Bayesian method is somewhat more efficient 

than the conditional maximum likelihood method in that it extracts the information for allele 

relative frequencies in the source stocks Q from not only the baseline samples but also the 

mixture sample. The steps of the Bayesian algorithm show that the mixture individuals are 

repeatedly assigned as entities at random to the source stocks with probabilities proportional to 

the current chain values for the posterior source probabilities. The long run chain average 

relative frequencies of assignment to the baseline stocks can be used with the MAP rule to 

choose the source of an individual.  

 

Proponents of the classical individual assignments method often demonstrated the capacity of 

their method with genetic data by application to either simulated or real mixture samples 

composed of equal or nearly equal contributions of individuals from known sources (Cornuet et 

al. 1999, Manuel et al. 2002, Potvin and Bernatchez 2001). The authors were evidently unaware 

that they are rigging the circumstances such that the maximum frequency (MAF) rule of the 

classical individual assignments method is even better than the optimal classifier. Ordinarily, 

application of the true optimal rule, namely the maximum a posteriori (MAP) rule, requires 

estimation of the unknown stock composition of the mixture, but when the MAF rule is applied, 

the result is the same as if the MAP rule were provided with the supposedly unknown mixture 
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composition. Performance of the classical individual assignments method would more 

convincingly be demonstrated with very uneven mixtures (e.g., 100% mixtures in which only 

one of the baseline stocks is present), but when the genotypes are less powerful for stock 

identification, the little evidence available shows as expected that the method is inferior to the 

MAP rule under these conditions.  

 

Koljonen et al. (2005) compared both self-assignment tests and independent tests of mixture 

samples for 26 stocks of Baltic Atlantic salmon. In the self-assignment tests, each of the 26 

baseline samples played two roles: first, as one of the 26 baseline samples for estimating the 

allele relative frequencies in the source stocks, Q, and, second, as a 100% pure mixture sample 

composed entirely of a single stock. Among the 26 self-assignment tests, the average estimated 

correct stock proportion was 75.1% (range 44%-94%) by classical individual assignments (using 

program GeneClass of Cornuet et al. 1999) versus 97.0%, the average of the 26 Bayesian 

posterior averages (posterior averages ranged from 91.0%-98.7%) by mixture modeling using the 

Bayesian method (program BAYES of Pella and Masuda 2001). Self-assignment tests are biased 

toward better performance than can be expected with independent mixture samples. Two 

independent pure stock samples were available: 50 hatchery fish from the Neva River in Russia 

and 56 wild fish from the Tornionjoki River in Finland and Sweden.  Program GeneClass 

identified the correct source of 44 (88%) of the Neva River stock. However, program BAYES 

estimated the mixture composition to be 97.1% (Bayesian posterior average) from the Neva 

River stock and when the individuals were assigned by the MAP rule applied to the chain 

averages of posterior source probabilities for individuals, all (100%) were correctly identified. 

When the Tornionjoki River wild fish were analyzed, GeneClass correctly identified only 15 of 

the 56 individuals (26.8%) whereas the BAYES posterior average proportion was 91.0% and 

BAYES correctly identified 55 of 56 (98.2%) of the individuals correctly using the MAP rule. 
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INTRODUCTION 

 

Harvest management of Chinook salmon requires information on temporal and spatial 

distributions, exploitation rates, escapements, spawner abundance, productivity, and basic 

biology of stocks. Optimally, these data should be available for all stocks (here defined as 

biological populations). However, many of these variables are difficult to quantify on single 

stocks, and nearly impossible for all stocks potentially encountered in a managed fishery. A 

comprehensive knowledge of all stocks is unnecessary if stocks can be aggregated into groups. 

 

All fishery analyses using coded wire tags (CWTs) are based on aggregates. For example, TCT 

models base exploitation rates on cohort analysis of CWTs and apply these rates to indicator 

stock complexes. These complexes or management groups do not necessarily include closely 

related stocks, but stocks of similar geography, run-timing, and management activities. The 

application of these indicator stock aggregates is based on at least two assumptions: (1) stocks in 

the aggregate co-occur in the fishery, and (2) data from the indicator stocks in the aggregate (e.g. 

exploitation rates) are applicable to the other stocks in the aggregate. These two assumptions are 

difficult to test, and may be violated if aggregates are simply ad hoc collections of populations 

designed to address single issues.  

 

Fishery managers need to a construct aggregates that are useful for a suite of fishery 

management issues, where the managers can assume confidently that stocks within the aggregate 

share common characteristics that subject the stocks to the same or similar exploitation rates, for 

example. Closely related stocks with similar biology (e.g. run-timing) should have similar smolt 

development and outmigration timing, growth and development patterns, and ocean 

distributions, and should be subjected to the same or similar fishery pressures. Consequently, 

aggregates based on biology and recency of common ancestry (i.e. genetic similarity) may be 

groups that are best suited to address the needs of fishery management (even if recent common 

ancestry is a function of broodstock sharing among geographically distant hatcheries).   

 

The goal of this section is to examine ways in which stocks can be aggregated into management 

groups. In addition, we consider the consequences of different aggregation methods on our 

ability to use GSI techniques to estimate mixture proportions or to assign individuals from a 

mixed stock fishery to stock aggregates. By way of example, we use stocks within Puget Sound 

to illustrate the effects of three aggregation procedures:  

 

1. CTC indicator stock complexes 

 

2. Puget Sound TRT stock groups 

 

3. Statistical networks, a statistical method developed here 

 

Our intention is not to advocate any particular method, but to provide a starting point for 

discussion on the purpose, methods, and consequences of aggregating stocks into management 

groups. 
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GENETIC DATA 

 

We limited our statistical analysis to 25 Chinook stocks from Puget Sound and the Strait of Juan 

de Fuca (Table E1; Figure E1). The GAPS coastwide Chinook microsatellite baseline (v. 2.1) 

provides the foundation for this analysis, with the addition of collections genotyped by WDFW 

in the past year. These new data will be included in the next version of the GAPS baseline. Table 

1 lists the stocks included in this analysis and indicates how the data used here differ from those 

in GAPS v. 2.1.   

 

 

CTC INDICATOR STOCK COMPLEXES 

 

Different stock groupings appear in various CTC reports. TCCHINOOK7-1 (2007, Appendix 

C.3) records three Areas for indicator stocks in Puget Sound:  North/Central Puget Sound, Hood 

Canal, and South Puget Sound. Within these Areas there are Annex stock groups, Annex 

indicator stocks, escapement indicator stocks, exploitation rate indicator stocks, and model 

stocks.  Alternatively, TCCHINOOK6-1 (2006, Table 7-1, for example) lists four Stock 

Complexes from the Puget Sound Area to summarize changes in the impacts of AABM fisheries 

on exploitation rate indicator stocks from 1979 to 2004: Puget Sound Spring (PSSp), North 

Puget Sound Fall (NPSFall), South Puget Sound Fall (SPSFall), and Hood Canal (HC) Chinook 

salmon.  Based on the descriptions of these stock complexes, we placed 23 of the 25 GAPS 

stocks into one of these four Stock Complexes (Table E1; Figure E2).  The Dungeness and 

Elwha stocks were not indicated as Stock Complexes, but were added to the analysis and 

grouped into a Strait of Juan de Fuca aggregate.   

 

 

TRT STOCK GROUPS 

 

The Puget Sound Technical Recovery Team (TRT) considered 22 populations of Chinook in 

Puget Sound (Ruckelshaus et al. 2006). All populations of Chinook in Puget Sound are 

considered part of a single ESU, and Ruckelshaus et al. (2006) were concerned mostly with 

describing individual populations. However, in their multidimensional scaling analysis, 

Ruckelshaus et al. (2006, Figure 6) aggregate the Puget Sound stocks into six groups. Although 

the authors do not suggest that these groups represent historical entities or should be used for 

fishery management, the groups include clusters of genetically similar stocks (although these 

clusters were not tested for statistical coherence). These aggregates are used here as a second 

example of how stocks can be grouped for fishery management (Table E2, Figure E3).   
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LIKELIHOOD-BASED STATISTICAL NETWORK 

 

As an alternative to the two aggregate procedures described above, we designed a method based 

on Rannala and Mountain (1997).  For each sample (i.e. individual fish), we calculated the 

Rannala and Mountain (1997) probability that its multilocus genotype occurred in each of the 25 

stocks (i.e. 25 probabilities for each sample, scaled so that the probabilities for a single 

individual summed to one). ijX = probability for the genotype of individual i occurring in 

population j.  For each population, we calculated mean probability for each of the 25 stocks.  

That is, for each population we calculated 
24
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representing the mean probabilities that a multilocus genotype from that stock may occur in each 

of the 25 stocks (including itself).  To determine the statistical significance of each of these mean 

probabilities, we randomly shuffled the probabilities for each individual, with respect to the 

populations.  Therefore, if the original vector of probabilities for individual i = 1, with respect to 

j = 1–25 populations was  

25,124,123,122,121,120,119,118,117,116,115,114,113,112,111,110,19,18,17,16,15,14,13,12,11,1 ,,,,,,,,,,,,,,,,,,,,,,,, XXXXXXXXXXXXXXXXXXXXXXXXX

 the randomly shuffled vector of probabilities for individual i = 1 could be 

2,119,14,123,116,121,18,19,117,11,115,17,125,15,118,120,111,124,113,114,122,13,112,110,16,1 ,,,,,,,,,,,,,,,,,,,,,,,, XXXXXXXXXXXXXXXXXXXXXXXXX

Once the probabilities for all individuals were randomly shuffled, we calculated a new vector of 

mean probabilities for each population, and repeated the randomization procedure 10,000 times, 

producing 10,000 mean probability vectors for each population.  If the true mean probability was 

equal to or greater than the 95
th

 percentile of the randomized probabilities, we considered the 

true mean probability to be significant. For example, if the true mean probability for the Upper 

Skagit versus the Upper Cascade was significant (i.e. greater than the 95
th

 percentile of the 

randomized probabilities), for any given multilocus genotype from the Upper Skagit there is a 

significantly greater probability that it will also occur in the Upper Cascade than it would occur 

in any randomly chosen population from Puget Sound. This suggests that there is either current 

or historical gene flow between these two populations. [Since the mean probability for a 

multilocus genotype from the Upper Skagit occurring in Upper Cascade may not be the same as 

the mean probability for a multilocus genotype from the Upper Cascade occurring in Upper 

Skagit, this method may be useful to test for asymmetric gene flow]. 

 

We can discover with this method networks of shared multilocus genotypes among populations 

within a defined geographic area such as Puget Sound. We graphically represented these 

networks by joining with a line those pairwise populations with significant mean probabilities 

(Figure E4). The interconnected lines reveal two main clusters of stocks in Figure E4 connected 

to each other at two points: Lower Skagit – Samish rivers, and Snoqualmie – Nisqually rivers. 

The Nooksack River Spring and White River Spring populations are wholly independent, and the 

Elwha and Dungeness river populations are mutually connected. Although the connections 

between the two large clusters create some ambiguity, five stock groups in total can be 
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distinguished (Figure E5, Table E1). These five aggregates are similar to the TRT groups, with 

the only exception being that the Puget Sound Spring/Summer group established by this method, 

was split into the Snohomish and Puget Sound Spring/Summer groups in the TRT analysis.   

 

 

RELATIONSHIPS BETWEEN PROPOSED MANAGEMENT GROUPS 

AND COMMON ANCETRY/GENETIC SIMILARITY 

 

We constructed a phylogenetic hypothesis for the evolutionary relationships of the Puget Sound 

stocks using an allele-sharing matrix for the 13 microsatellite loci, and a neighbor-joining tree
3
. 

The tree was rooted by two Middle Fraser River stocks (Stuart River Fall and Upper Chilcotin 

River Spring), with the assumption that these two stocks were outgroups with respect to a 

monophyletic
4
 Puget Sound group (Figure E6). Stocks were labeled with a color-code signifying 

its management group identity, for each of the three alternative aggregating procedures. The 

intent was to determine if any of the aggregating procedures produced mutually exclusive 

monophyletic groups. Genetically similar groups are not necessarily monophyletic, so 

management groups are not expected to be exclusively monophyletic. However, in this exercise 

the stocks within a monophyletic group likely have similar development, life histories, 

behaviors, and ocean distributions, and would therefore have similar probabilities of occurring in 

particular fisheries
5
. If true, management groups consisting of monophyletic groups of 

populations would have greater predictive power than polyphyletic or paraphyletic
6
 management 

groupings for determining the effects of a fishery on a particular stock. Hence, the use of 

monophyletic stock groups would be superior in a harvest management program.   

 

None of the three aggregating procedures produced mutually exclusive monophyletic groups 

(Figure E6), but the Statistical Networks (SN) procedure was superior to the other two 

procedures. With both the TRT and SN procedures, the Puget Sound Spring/Summer group is 

paraphyletic with respect to the Skykomish, Snoqualmie, and Lower Skagit Fall runs. The TRT 

procedure also produced a paraphyletic Snohomish River group. All groups in the CTC 

procedure are paraphyletic except Hood Canal and Strait of Juan de Fuca, the latter of which was 

not considered by the CTC (Figure E6).   

 

 

                                                 
3
 Microsatellites are arguably not the best marker to reconstruct the phylogenetic history of salmonid stocks.  

Perhaps a better procedure would be to construct phylogenetic hypotheses using a suite of different marker and 

marker types, and use microsatellites (or SNPs), for example, to estimating aggregate proportions. 
4
 A monophyletic group includes a common ancestor and all its descendents.   

5
 The main point here is that stocks within aggregates based on monophyly are assumed to be encountered in the 

same fisheries.  Although in this exercise we are limiting our discussion to the process of aggregating Chinook 

stocks, the methods may be applicable to any species of salmonids, even those species with highly divergent life 

histories within monophyletic groups (e.g., Oncorhynchus mykiss, O. nerka).  For O. mykiss and O. nerka, for 

example, only one of the divergent life histories is subjected to ocean fisheries (steelhead and sockeye, respectively).  

Therefore, steelhead stock aggregates based on monophyly are indeed assumed to be encountered in the same 

fisheries. 
6
 A paraphyletic group includes a common ancestor and some, but not all, its descendents, while a polyphyletic 

group includes taxa (e.g. stocks), but no common ancestor. 
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GENETIC STOCK IDENTIFICATION ERROR RATES 

 

Genetic stock identification (GSI) error rates associated with each management group for the 

three aggregating procedures were estimated using the Anderson et al. (unpublished) CV-ML 

procedure. Here, 100% simulated mixtures were used with sizes for each stock that were 50% of 

the sample sizes listed in Table E1. For example, a 100% simulated mixture for North Fork 

Nooksack was N = 70. For each stock-based 100% simulated mixture, we estimated the 

proportion of the correct management group (e.g., for the Upper Cascade simulated mixture we 

estimated the Puget Sound Spring/Summer proportion in that mixture), and pooled all stocks 

within that management group to produce a single estimated proportion for the correct 

management group (e.g. results from the 100% simulated mixtures for all stocks within the Puget 

Sound Spring/Summer were pooled together to produce a single Puget Sound Spring/Summer 

estimate). This process was repeated 10,000 times to produce a distribution of estimated 

proportions (Figure E7).  

 

As with the phylogenetic analysis in Figure E6, the SN performed best, producing the lowest 

error rates, while the error rates for the CTC model were the highest. The median value for four 

of the five management groups in the SN procedure was 1.00, with the value for the fifth group 

being 0.98. That is, for each group one-half of the 10,000 runs produced an error rate of 2% or 

less. The highest error rate for the analysis was 58% for the Hood Canal management group 

under the CTC procedure. The SN produced relatively good results, but several outlier runs 

appeared for each of the management groups, resulting in skewed distributions (note the relative 

positions of the median and mean values in Figure E7). The cause of these outlier runs is best 

illustrated with the Nooksack Spring group (Figure E8). Although the mixture proportion for 

6,689 of the 10,000 simulated mixtures was correctly identified as 99% or greater (i.e. error rate 

of 1% or less), 1,102 of the runs produced stock proportions for the Nooksack Spring group as 

10% or less (i.e. error rate of 90% or greater; see also Figure E7).  The Nooksack Spring 

collection in the GAPS database (v. 2.1) apparently contains a higher than expected number of 

fall fish of Samish origin. Since each run of the simulation effectively resamples the baseline, the 

1,102 runs that produced poor results contained a high proportion of these fall fish, resulting in a 

bimodal distribution (Figure E8).    

 

 

CONCLUSION 

 

Fishery managers use stock composition estimates to assess catch allocation compliance and 

harvest impacts.  For the most part compliance and impacts are measured on aggregates of stocks 

rather than on specific stocks, unless ESA issues are a factor.  As the CTC documents cited 

above demonstrate, there are a variety of reasons to aggregate stocks, and different stock 

aggregates are used to make different calculations pertaining to a fishery.  However, the method 

used to aggregate stocks will affect the efficacy of genetic stock identification (GSI).  That is, 

aggregation schemes that are inconsistent with the genetic relationships of the stocks will reduce 

the accuracy and precision of GSI, thereby limiting the usefulness of genetic analyses, and 

compromising our ability to manage fisheries with a full suite of data.  
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RECOMMENDATIONS 

 

Standard quantitative stock aggregations should be designed coast-wide to accomplish two goals:  

 

1. To be consistent with the phylogenetic relationships of stocks, and  

 

2. To maximize value to address specific fishery management needs. 
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Table E1.  List of stocks used in this analysis.  The numbers correspond to location in 

Figure E1.  Timing is the run timing for the stock: Spring (Sp), Summer (Su), and Fall (F).  

Origin refers to source of samples, either hatchery (H), or in-river (W).   

  Stock Name Timing Origin N 
New 
Data

2
 

Stock Grouping
3
 

CTC TRT SN 

1 North Fork Nooksack Sp HW 139  PSSp Nooksack Sp. Nooksack Sp. 

2 Samish F H 82  NPSFall PSSpSu PSSpSu 

3 Lower Skagit F W 108 1 NPSFall PSSpSu PSSpSu 

4 Upper Skagit
1
 Su HW 226 2 NPSFall PSSpSu PSSpSu 

5 Upper Cascade Sp W 48 2 PSSp PSSpSu PSSpSu 

6 Marblemount Hatchery Sp H 121 2 PSSp PSSpSu PSSpSu 

7 Lower Sauk Su W 30  NPSFall Snoh PSSpSu 

8 Upper Sauk Sp W 164 2 PSSp PSSpSu PSSpSu 

9 Suiattle Sp W 152  PSSp PSSpSu PSSpSu 

10 North Fork Stillaguamish Su HW 345  NPSFall PSSpSu PSSpSu 

11 Skykomish Su HW 309 2 NPSFall Snoh PSSpSu 

12 Snoqualmie Su W 54  NPSFall Snoh PSSpSu 

13 Elwha Sp HW 388  SJF SJF SJF 

14 Dungeness Sp W 132  SJF SJF SJF 

15 Hood Canal (Hamma Hamma) F W 140  HC PSFall PSFall 

16 Skokomish F HW 329 2 HC PSFall PSFall 

17 Grover's Creek Hatchery F H 95 1 SPSFall PSFall PSFall 

18 North Lake Washington (Bear Creek) F HW 237 1 SPSFall PSFall PSFall 

19 Portage Bay (UW) Hatchery F H 140 1 SPSFall PSFall PSFall 

20 Issaquah Creek F HW 229 1 SPSFall PSFall PSFall 

21 Cedar River F HW 221 1 SPSFall PSFall PSFall 

22 Green River (Soos Creek) Hatchery F H 184  SPSFall PSFall PSFall 

23 Puyallup River F HW 198  SPSFall PSFall PSFall 

24 Nisqually River F HW 238 2 SPSFall PSFall PSFall 

25 White River (Puyallup) Sp HW 242   PSSp White Sp. White Sp. 

1
 Includes Marblemount summer broodstock and natural spawning fish in the Upper Skagit River. 

2
 New data indicates how data used in this analysis differs from that in GAPS v. 2.1.  1 = populations not included in GAPS 

2.1.  2 = population included in GAPS v. 2.1, but additional samples from new collections added to GAPS 2.1 data.   
3
 See text and Figures 2 (CTC), 3 (TRT), and 5 (SN).   
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Figure E1.  General location of stocks used in this analysis.  See Table E1 for names of and 

additional information for each stock.  Base map from Ruckelshaus et al. (2006).   
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Figure E2.  Stock aggregations, based on the CTC stock complex definitions. The Strait of Juan 

de Fuca group was not listed as a Stock Complex by the CTC, but added to this analysis. See 

Figure E1 and Table E1 for individual stock locations.  Base map from Ruckelshaus et al. 

(2006).   
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Figure E3.  Stock aggregations, based on the TRT multidimensional scaling (see text).  See 

Figure E1 and Table E1 for individual stock locations.  Base map from Ruckelshaus et al. 

(2006).   
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Figure E4.  Results from SN procedure described in the text. Lines between pairs of stocks 

indicate mean probabilities significantly greater than random. That is, if a line connects two 

stocks, the mean of the probabilities of individuals from one stock (or both stocks) assign to the 

other stock is greater than expected from a random distribution of probabilities. Note, White and 

Nooksack Rivers without connecting lines.  Individual networks shown in different colors (see 

also Figure E6). Base map from Ruckelshaus et al. (2006).   
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Figure E5.  Stock aggregations, based on the Statistical Networks model described in the text, 

and shown graphically in Figure E4. Figure E1 and Table E1 for individual stock locations. Base 

map from Ruckelshaus et al. (2006).   
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Figure E6.  Neighbor-joining tree from an allele-sharing matrix, with two Fraser River stocks 

included as an outgroup. Colored-filled boxes are management group identities for each of the 

three alternative aggregating procedures (C = CTC, T = TRT, S = SN). 
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Figure E7.  Box plots showing the distribution of correct assignments for 10,000 simulated 

100% mixtures, for each management group. The box extends from the 25
th

 to the 75
th

 

percentile, the bars cover the 10
th

 and 90
th

 percentile, and black dots are the 5
th

 and 95
th

 

percentile for the 10,000 runs for each management group. The solid and dotted lines associated 

with each plot are the median and mean values, respectively, for the 10,000 runs. The median 

values for each management group are also written at the bottom of the plot above the group 

identification. The SJF, WhiteSp, NooksackSp, and PSFall groups for the TRT and New Method 

are identical, and therefore produced the same box plot. 
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Figure E8.  Frequency distribution for proportion Nooksack Spring samples correctly assigned 

to the Nooksack Spring management group for 10,000, 100% simulated mixtures. This plot 

shows the frequency distribution for the Nooksack Spring box plots in Figure E7.   
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INTRODUCTION 

 

One important step in improving GSI accuracy is to identify sources of error affecting GSI 

estimates. Estimates can differ substantially from actual proportions in a mixture, as in 100% 

simulations of baseline data. Is this error due to sampling too few fish, to not genotyping enough 

loci, or perhaps to an inadequate baseline of contributing populations? Answers to these 

questions would help to improve GSI results. A recently development method is used here to 

decompose the total expected square error into important sources of error. 

 

SOURCES OF GSI ERROR 

 

GSI estimation error can arise from several factors (Table F1). One source of error occurs 

during the sampling of the fishery. Sampling may be biased toward fish from some 

populations, but not others. This error can be reduced by enlarging samples sizes or by 

sampling over larger periods of time or from a greater number of fishing boats. A second 

source of error can occur even when the fishery is sampled randomly; the random sampling 

simply fails to include all stocks present in the fishery. Larger fishery sample sizes may 

reduce this source of error. A third source may be due to the sampling of a finite number of 

loci. The inclusion of additional markers can potentially help to reduce this error. A fourth 

source of error can arise from genotyping error in the laboratory. A fifth source arises from 

errors on allele frequencies that arise from sampling a finite number of individuals in baseline 

populations. The last source of error is the presence of fish in the fishery sample from 

population that have not been included population in the baseline. Here, three of these sources 

of error, fishery sample size (2), locus sampling (3), and baseline allele-frequency estimation 

(5) are examined in a set of empirical data for a Chinook salmon fishery off southeastern 

Alaska.   

 

Table F1. Potential sources of GSI error. 

 

a. a. Fishery sampling bias 

b. b. Finite sampling of fishery 

c. c. Finite sampling of genetic markers 

d. d. Genotyping error 

e. e. Finite sampling of baseline populations 
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ERROR DECOMPOSITON
7
 

 

A convenient measure of how much estimates are expected to be wrong is total expected square 

error (ESE) 

 

 

 

 

This is like a variance, but also includes the effect of bias. The goal is to partition ESE into three 

components 

 

 

 

 

Total ESE is estimated with simulations using a ‗conventional‘ method assuming allele 

frequencies in the baseline are known with certainty. Estimates of these three sources of error 

can be used to improve GSI accuracy. For example if ESE(θi)baseline is small, then increasing 

sample sizes of baseline populations will add little to GSI accuracy. Likewise if ESE(θi)fishery or 

ESE(θi)genotypic are relatively large then expanding fishery sampling or the number of genetic 

markers can reduce GSI error.  

  

Using this approach, total error was decomposed for the Chinook fishery in SE Alaska. First total 

ESE can be calculated with ‗conventional‘ simulation methods assuming alleles frequencies are 

known  

 

  

 

 

ESEfishery due to fishery sampling can be calculated from the binomial variance based on sample 

size (N). 

 

 

 

 

Calculating the portion of the ESE due to baseline deficiencies requires knowledge of baseline 

allele frequencies. However, the problem is that these allele frequencies are unknown. One way 

around this problem is to adjust the population allele frequencies  (GAPs frequencies in this 

case) to account for the increase in apparent divergence among populations due to finite 

sampling. A recently developed formula that adjusts allele frequencies towards the mean to 

reduce variance appears to work well (Kalinowski, unpublished). 

 

 

                                                 
7
 Software for the methods outlined here will soon be available on the Web at: 

www.montana.edu/kalinowski.  
 

http://www.montana.edu/kalinowski
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These new frequency estimates are subtracted from total ESE to yield ESE due to baseline 

sampling 

 

 

 

 

 

 

 

ESEgenotypic is obtained by subtraction, since the three variance components are additive. 

 

 

 

Table F1. Decomposition of GSI error in fishery samples of Chinook salmon from southeastern 

Alaska. 

 

 

Source of error  Proportion 

 

   Fishery     9.5% 

   Genotypic     2.7% 

Baseline   87.5% 

   

 

RESULTS 

 

The results of these simulations to estimate GSI error in a Chinook salmon fishery in 

southeastern Alaska appear in Table F2. Surprisingly, a large portion of the error is due to 

uncertainties in allele frequencies in baseline populations. A smaller proportion is due to fishery 

sampling and a very small proportion is due to genotypic sampling. 
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DISCUSSION 

 

The results of this preliminary study show that errors from baseline sampling, and not fishery or 

genotypic sampling, are the major sources of error in these GSI estimates. In this particular case, 

accuracy would be improved only marginally by adding more loci or by enlarging the fishery 

sample. A greater improvement in accuracy can be achieved by improving baseline estimates. 

Preliminary results of other simulations appear to indicate that greater baseline sampling effort is 

justified when levels of divergence between contributing populations are small (e.g. FST < 0.01). 

In other circumstances, larger baseline samples will add little accuracy to GSI estimates. As GSI 

estimation in southeastern Alaska is typical of GSI estimation in several other fisheries, these 

results likely apply generally to other fisheries. 

 

The effect of baseline sampling on the accuracy of GSI estimation has been investigated by 

several authors. For example, simulations show that the sampling of more than 50 individuals per 

population in a Columbia River steelhead baseline was unlikely to increase the accuracy of GSI 

estimates (Winans et al. 2004). This indicates that baseline sampling error is likely to be minimal 

for population sample sizes greater than 50. While baseline sample sizes of 100 appear to be 

sufficient for many GSI applications (Kalinowski 2004), recent work demonstrates the benefit of 

increasing baseline sample sizes when the level of genetic differentiation among populations is 

low (Kalinowski, unpublished). If baseline populations are similar (e.g. FST < 0.005), increasing 

baseline sample sizes to 200 or more may be needed to increase the accuracies of GSI estimates. 

 

If baseline allele-frequency estimation is in fact the largest source of GSI error, the focus should 

be on ways of improving the accuracies of these estimates. Two ways might be used without 

sampling more fish. 

  

1. A generalized expectation maximum algorithm would use mixture samples to improve 

estimated allele frequencies in the baseline population. 

  

2. Spatial models of allele frequencies are based on the tendency of populations near to each 

other to be similar, and can be adapted from mathematical modeling used in 

epidemiology.  

 

Other problems were not addressed with the simulations presented here. The most vexing source 

of error is unsampled source populations, and it is difficult to use simulations to estimate how 

unsampled populations impact GSI estimation. Nevertheless, three approaches could be used to 

evaluate the magnitude of this problem. First, simulations could be made to examine the impact 

of excluding some existing populations from baselines while keeping them in mixtures to which 

GSI is applied. Second, spatially explicit models of population structure could be constructed to 

estimate allele frequencies of unsampled populations, and these estimates could be used in 

conventional GSI simulations. Third, a Bayesian missing-data model may successfully identify 

unsampled populations contributing to a fishery (Pella and Masuda 2006). 
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Another problem not addressed here is error in the estimation of the frequencies of low-

contributing stocks. This problem is challenging for two reasons. First, if a stock of fish is rare in 

a fishery, a large fishery sample size will be needed to accurately reflect the composition of the 

fishery. Second, the statistical approaches used to perform GSI tend to bias stock composition 

estimates toward 1/k, where k is the number of stocks contributing to the baseline. Hence, 

estimates of the frequency of a rare stock in a fishery will be biased upward. This bias is greatest 

when a rare stock is genetically similar to an abundant stock, because fish from the abundant 

stock are likely to be ―mistaken‖ for fish from the rare stock; this will not be balanced by 

mistakes in the other direction because there are fewer individuals of the rare stock to be 

misidentified.  

 

Both simulations and empirical approaches can be useful, but recent experience has 

demonstrated the limitations of relying on simulation alone. When the neutrality of alleles is 

assumed in a simulation model, other factors influencing GSI estimates may be unrecognized. In 

particular, the choice of high-graded markers showing large differences among populations can 

violate assumptions of neutrality, as these markers may be under the influence of natural 

selection or may be neutral but show larger than average differences between populations. 

Hence, the examination of empirical datasets may provide the best means of assessing power and 

of identifying components of GSI error. 
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INTRODUCTION 

 

Results from mixed-stock analysis provide an opportunity to understand important features of 

salmon migration and spawning biology. Several datasets are now available that can be used to 

make these inferences. The following is an in-depth examination of data for an area off northern 

British Columbia that has been studied for several years and offers excellent insights into the 

migrations of particular Chinook salmon populations through an area. 

 

Stock compositions were examined for Chinook salmon caught in either test troll fisheries or 

commercial troll fisheries off the northwest coast of the Queen Charlotte Islands. Samples were 

pooled on a monthly basis from April through September 2002–2006, with the regional stock 

composition determined as the mean of each monthly estimate over the five-year interval. 

Regional stock compositions by month are plotted in a series of figures, and the monthly changes 

in relative contributions are also indicated for the major stocks. In 2005, samples were 

unavailable from April, so a late March sample was considered as indicative of an April sample. 

Samples were also unavailable for July 2003. 

 

IN-SEASON VARIABILITY 

 

Stock composition of the samples analyzed clearly varied over the monthly sampling cycle. On a 

relative scale, Chinook salmon from Oregon were least prevalent in April (6%) and the most 

prevalent in September (58%), with the proportion of Oregon Chinook salmon increasing in 

every month during sampling (Figures G1–G6, G7). Similarly, Chinook salmon from 

Washington were relatively least abundant during April (4%), but the proportion of Washington 

populations increased in every month sampled, with the maximum proportion in September 

(21%) (Figure G8, G9). Chinook salmon from California followed the same trend as those from 

Washington and Oregon, with higher proportions (0.2%) observed in the later sampling months. 

 

Columbia River Chinook salmon comprised an important component of the fish sampled from 

April through August. The maximum relative abundance of Columbia River populations 

appeared in April (44%) and the least in September (11%), but they constituted 23–29% of the 

monthly sample from May through August (Figure G8). 

  

Fraser River Chinook salmon displayed a trend in relative abundance different from that 

observed in Oregon and Washington populations. Fraser River Chinook salmon were relatively 

most prevalent in May, June, and July, including between 27–36% of the fish sampled in these 

months (Figure G10). The peak Fraser River composition was observed in June (36%). By 

September, only about 3% of the fish sampled were estimated to be of Fraser River origin. 

Chinook salmon from the east coast of Vancouver Island comprised a minor component of the 

fish sampled in any month, ranging from 4% in April to 1-2% in the other months. Chinook 

salmon from the west coast of Vancouver Island were most prevalent in April (19%) and least 

prevalent in September (3%), with June and July the next months of least prevalence (6–7%) 

(Figure G11). 
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Chinook salmon from northern British Columbia were most prevalent in April (7%), and 

declined sequentially in each month to a low of 1% in September (Figure G12). Skeena River 

Chinook salmon were most prevalent from April through June (4–6%), and subsequently 

comprised about 1% of the monthly samples. Nass River and transboundary Chinook salmon 

displayed a similar pattern, each with higher prevalence from April to June (1–3%), and 

subsequently < 1% of the monthly sample.  

 

The analyses of samples from troll fisheries indicated that stock compositions of the sampled fish 

changed during the course of the season. Very different stock compositions were observed in 

April as compared with the September samples. Monthly changes in stock composition likely 

reflected the migration patterns of various stock groups past the Queen Charlotte Islands.   

 

INTER-ANNUAL VARIABILITY 

 

Inter-annual variation was illustrated for five major stocks sampled from either the troll or 

commercial catches. Inter-annual variation in estimated stock composition was most pronounced 

for Oregon Chinook salmon in August, with the estimated proportion of the Oregon component 

ranging from 15–45%, and with the highest proportions observed in the August 2004 samples 

(Figure G13). The proportion of Columbia River Chinook salmon in the monthly samples was 

reasonably stable, with the greatest variance observed in May and August (Figure G14). A 

similar degree of variation was observed for Washington Chinook salmon, with relatively high 

proportions for the 2002 return year in all months (Figure G15). Fraser River Chinook salmon 

displayed relatively high proportions in all months during 2002 and 2006, likely reflecting the 

strong returns to the Thompson River drainage in those years (Figure G16). The proportions of 

west coast Vancouver Island displayed some variation, but the variation in the April samples 

may have been accentuated by the inclusion of the March 2005 sample in the analysis (Figure 

G17). In most months, the proportion of WCVI Chinook salmon was small relative to other 

major stocks present, and thus the absolute level of annual variation for this stock was less in 

comparison the other stocks.   

 

 

DISCUSSION 

 

This detailed examination of in-season and inter-annual variation stock-compositions in the 

Queen Charlotte Island fisheries illustrates the potential for using GSI estimates to evaluate the 

abundances and migration patterns of Chinook salmon. The comparisons presented here were 

possible only after a large-scale population baseline was established so that all the stocks 

potentially contributing to a fishery could be identified. While proportion estimates are an 

important starting point, abundance data or additional sampling may be required to extrapolate 

the results of a comparison such as this to other regions or fisheries. For example, additional 

samples may be needed to account for the non-random sampling by the troll fishery, as 

populations may be possibly differentially exploited by troll gear. Abundance data are also 

required to refine inferences of distribution and migration patterns. An important result of in-

season and inter-annual comparisons is that sporadic sampling during a fishing season may give 

an incomplete view of the presences of various stocks contributing to a fishery.    
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Figure G1. April: GSI estimates for Chinook salmon fishery off the northwest coast of the Queen 

Charlotte Islands. 
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Figure G2. May: GSI estimates for Chinook salmon fishery off the northwest coast of the Queen 

Charlotte Islands. 
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Figure G3. June: GSI estimates for Chinook salmon fishery off the northwest coast of the Queen 

Charlotte Islands. 
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Figure G4. July: GSI estimates for Chinook salmon fishery off the northwest coast of the Queen 

Charlotte Islands. 
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Figure G5. August: GSI estimates for Chinook salmon fishery off the northwest coast of the 

Queen Charlotte Islands. 
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Figure G6. September: GSI estimates for Chinook salmon fishery off the northwest coast of the 

Queen Charlotte Islands. 

 

September

0

10

20

30

40

50

60

C
al
ifo

rn
ia

O
re

go
n

C
ol
um

bi
a

W
as

hi
ng

to
n

Fra
se

r

S
ou

th
er

n 
B
C

E
C
V
I

W
C
V
I

N
or

th
er

n 
B
C

S
ke

en
a

N
as

s

Tra
ns

bo
un

da
ry

A
la
sk

a

E
s
ti

m
a

te
d

 %

 
 



 

136 

 

 

 

Figure G7. Summary of GSI estimates for fish from Oregon in Chinook salmon fishery off the 

northwest coast of the Queen Charlotte Islands. 
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Figure G8. Summary of GSI estimates for fish from the Columbia River in Chinook salmon 

fishery off the northwest coast of the Queen Charlotte Islands. 
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Figure G9. Summary of GSI estimates for fish from Washington State (non-Columbia River fish) 

in Chinook salmon fishery off the northwest coast of the Queen Charlotte Islands. 
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Figure G10. Summary of GSI estimates for fish from the Fraser River in Chinook salmon fishery 

off the northwest coast of the Queen Charlotte Islands. 
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Figure G11. Summary of GSI estimates for fish from west coast of Vancouver Island (WCVI) 

drainages in Chinook salmon fishery off the northwest coast of the Queen Charlotte 

Islands. 
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Figure G12. Summary of GSI estimates for fish from the northern British Columbia drainages in 

Chinook salmon fishery off the northwest coast of the Queen Charlotte Islands. 
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Figure G13. Inter-annual variability (2002–2006) in GSI estimates of fish from Oregon State in 

Chinook salmon fishery off the northwest coast of the Queen Charlotte Islands. 
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Figure G14. Inter-annual variability (2002–2006) in GSI estimates of fish from the Columbia 

River in Chinook salmon fishery off the northwest coast of the Queen Charlotte 

Islands. 
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Figure G15. Inter-annual variability (2002–2006) in GSI estimates of fish from Washington State 

in Chinook salmon fishery off the northwest coast of the Queen Charlotte Islands. 
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Figure G16. Inter-annual variability (2002–2006) in GSI estimates of fish from the Fraser River 

in Chinook salmon fishery off the northwest coast of the Queen Charlotte Islands. 
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Figure G17. Inter-annual variability (2002–2006) in GSI estimates of fish from west coast of 

Vancouver Island drainages in Chinook salmon fishery off the northwest coast of the Queen 

Charlotte Islands. 
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