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The workgroup recommends that catch composition (incidental and legal) determined
from GSI data be compared to predictions from the PSC Chinook Model for major
fisheries. The model was not originally intended to estimate total catch composition for
the fisheries that are simulated, and has a number of shortcomings due to incomplete
representation of stocks, use of potentially inappropriate CWT indicator stocks, and other
factors (see Section 2.1.2). Given these issues, model- and GSI-based estimates of stock
composition in the Southeast Alaska all-gear fishery were surprisingly similar. However,
there were some consistent biases for several stock groups. The Fraser, Lower Columbia
and Puget Sound stock groups were consistently underestimated and the Mid/Upper
Columbia stock group was consistently over-estimated by the PSC Chinook Model.

GSI data can be used in conjunction with estimated cohort vital rates based on CWTs and
some very strong assumptions to estimate terminal run size for natural stocks (see Section
2.9). The workgroup felt that direct estimates of escapement (e.g. mark-recapture) would
be much preferred over GSI-based indirect ones because direct estimates do not depend
on assumptions about similar exploitation and maturation rates of natural and hatchery
indicator stocks. However, given the costs of measuring escapement, the indirect method
was considered to have promise. It was considered to be more useful for coho than
Chinook, because direct estimates of coho escapement are more difficult, and because
most coho stocks return at a single age. The workgroup recommends continued
refinement of GSI-based methods, such as development of a hybrid approach to estimate
regional escapement by incorporating information from wild escapement measurements
of index stocks.

The workgroup recommends that collection of GSI data for in season management be
done judiciously in cases where the benefits are well justified (see Section 1.5). While
successful inseason programs have been undertaken using other technologies (e.g. scales)
and in more spatially limited fisheries using GSI (e.g. Fraser sockeye) in the past, a
coastwide application to evaluate inseason stock composition would be a very significant
effort. There is also a need to investigate the cumulative impacts of using GSI for in
season management if applied to a large number of fisheries. Given that resources are



finite and management conflicts may be difficult to resolve, the benefits of such a
program are likely difficult to justify.

The workgroup recommends that evaluation of the stock proportions of incidental fish
based on GSI be compared to estimates from the CTC model on a limited scale to
evaluate CTC model assumptions. Incidental morality is the sum of release mortality as
well as mortality due to drop-off/drop-out (see Section 2.3). Only release mortality can be
estimated, and it depends on the product of the release mortality rate, the encounter rate,
and the proportion of each stock that cannot be retained. GSI data could be used to
estimate the latter component, which would be an improvement relative to the current
approach based on the CTC model. However, the estimate of release mortality may still
be highly uncertain because of large variability in the release mortality rate and encounter
rate, and the program would be costly and would require on-board observers to take
samples and measure encounter rates.

Sample size requirements for GSI data depend on the objectives for estimation and the
desired precision and bias (see Section 2.8). There are a number of statistical tools that
can be used to estimate sample size, but the PSC will first have to identify and prioritize
objectives and their risk tolerances that determine required levels of precision and bias.
Sample sizes for estimating presence/absence are considerably more modest than
estimation of stock proportions in the catch. For many stock assessment purposes,
estimates of stock-age-specific fishery encounters are required, and this will typically
require estimation of total catch, proportion legal-size, and possibly fishing effort, as well
as age-specific stock proportions using GSI and scale data. The variance of such a
compound statistics depends on the variance components, and reducing variance in just
one component (e.g. stock proportions) does not necessarily lead to substantive gains in
precision of the compound statistic. Under the optimistic assumption of random sampling
and binomial or multinomial variation, achieving reasonable relative variance (CV=0.2)
for stocks that constitute a very minor component of the catch (e.g., p=0.03) requires very
large within-strata sample size (ca. 800). Misclassification error and clumping of stocks
over space and time increase sample size requirements substantially. It is therefore not
realistic to expect to be able to estimate the probability of occurrence or the fishery
encounters of weak stocks that make up a very minor component (e.g. p<2%) of a
particular fishery, regardless of sample size. Given this reality, a new approach to
management of weak stocks is required (see Section 2.5.2).

Regarding sample size, the workgroup recommends: 1) prioritization of objectives for
sampling; 2) sample representatively and continuously check that sampling protocols are
being followed; 3) oversample the catch and process GSI data from a random sample of
the larger sample to ensure that the data are representative; 4) coordinate GSI and CWT
sampling programs; 5) aggregate the data as much as possible to improve precision and
minimize misclassification error; and 6) recognize that a stock can be too small to be
effectively sampled by GSI given sampling and misclassification error. More work needs
to be done to define the parameters that determine this situation.



The workgroup recommended development of a multi-stock synthesis model (see Section
2.7). This model would estimate biological and observation parameters by fitting to
multiple sources of information, including stock-specific catch and escapement based on
GSI and CWT data. This modeling approach has the advantages of replacing CTC model
assumptions with estimated parameters, therefore providing a more realistic assessment
of uncertainty and a better understanding of the data.

The workgroup recommends that a demonstration project be used to explore the utility of
small area estimation statistical methods. The current Chinook and coho management
approach requires estimation of many more parameters than can be supported by the data.
As a result, many of these parameters cannot be estimated but are assumed and treated as
known in the CTC model. Small area estimation (see Section 2.8) offers a statistical
alternative to this dilemma, by pooling data across neighboring strata, where strata can be
defined by area (stocks geographically close together), time (stocks that pass through a
fishery near the same time), or based on other criteria. The extent of pooling is flexible
and will depend on the amount of information in the data.

The modeling and sampling workgroup unanimously agreed that current GSI data cannot
replace the function of CWT program. Thus funding to resurrect the CWT program
should still be a top priority. GSI provides useful additional information (e.g. may permit
estimation of terminal run size for natural stocks) and can be used to test specific
hypotheses. GSI may provide a more substantive contribution under a different
management paradigm. The workgroup recommends evaluation of the cost of a
coastwide GSI ocean sampling and escapement program that allows run reconstruction
based on GSI and ageing (for GSI reporting groups). The costs and benefits of this
program should be compared to the CWT program.
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The overall objective of the PSC workshop series on GSI data is to develop
recommendations for integration of GSI information into a coordinated coast-wide
management system to improve the ability of ocean Chinook and coho fisheries to access
abundant stocks within impact constraints established for other specific stocks. This draft
report summarizes discussions of the GSI modeling and sampling workgroup that
occurred during the May 2007 workshop, and compiles the reports provided by
workgroup members following the May workshop. These reports address the key
questions identified during the May workshop, and will be presented at the September
2007 workshop in Vancouver.

This report is organized into two major sections. Section 1.0 summarizes the May
workshop discussions and the key questions that were identified. Section 2.0 compiles the
individual reports addressing these specific questions. The final report will provide
updated versions of individual reports and an additional section containing
recommendations and synthesis developed during the September workshop.



1.0 Summary of May Workshop Discussions and Key Questions

Two issues were common to many of the GSI-modelling and sampling
discussions during the May 2007 workshop. First, given the key role of models in coast-
wide management decisions for chinook, there was much discussion about how GSI data
could be incorporated into the models or used to evaluate model assumptions and
predictions. There was some debate among workgroup members about the utility of the
CTC model to address current and future management issues (e.g. operation of fisheries
to avoid weak stocks), as well as wide range in understanding about how this model and
other management models work. As a result, conversations related to GSI and the CTC
model and other models were sometimes complex, and there was not always agreement
among workgroup members concerning the utility and application of GSI data with
respect to the CTC model. Second, it was recognized that the utility of GSI data to
address some modeling and sampling questions very much depends on the temporal and
spatial scale of management objectives. Because the scale of management objectives is
broad and was not well defined at the workshop, workgroup responses to particular
questions were variable and often depended on the scales assumed by individual
participants.

The workgroup identified 10 key GSI-modeling and sampling questions. In summarizing
discussions here, it was apparent that issues associated with question 4 (How can GSI be
used in a post-season assessment of CTC model predictions?) were covered in
discussions associated with questions 1 (How can GSI data be used to improve stock
representation in the CTC model?) and 8 (Can a stock synthesis modeling approach be
used...). Question 4 was therefore removed from this summary, and discussions
associated with a total of 9 questions are summarized below.



1.1  How can GSI data be used to improve stock representation in the CTC model?

Issues: The CTC model simulates the dynamics of only a small proportion of the total number of
Chinook stocks on a coast-wide basis. GSI data could be used to estimate the proportion of the
catch that is comprised of stocks that are not associated with CTC Model stocks, potentially
reducing uncertainty associated with the assumption that the currently modeled stocks
adequately represent the dynamics of the many stocks that are not modeled. As well, the CTC
model provides no representation for Chinook stock groups in the northern transboundary area or
for Southern spring Chinook stocks. These stock groupings could potentially be included in the
model if GSI data, and other supporting information, such as CWT data, were available.

Uncertainties: Estimates of catch proportions based on GSI data will be highly uncertain in
cases where: 1) stocks are very small; 2) stocks are of moderate-size, but rarely caught in distant
fisheries; 3) genetic classification error for stocks is large (in some cases it may not be possible
to segregate stocks that need to be segregated for management purposes). Uncertainties
associated with 1) and 2) are not unique to GSI data, but apply to any tagging program with
sparse recoveries. This issue is of particular concern for weak ESA-listed stocks.

Discrepancies between CTC model-based catch composition and that derived from GSI data will
depend on the spatial and temporal scale of the analysis. It is uncertain what scale is appropriate
and how to integrate GSI-based catch proportion estimates into the CTC model.

GSI data could be used to estimate the proportion of the catch that is comprised of stocks which
are represented in the base period and which are not represented in the CTC Model. However,
the correspondence between Model stocks, CWT indicator stocks, and the GSI baseline is not at
all clear. A number of other issues could enter into this type of evaluation, such as stocks that
are genetically related to CTC Model stocks, but which are not represented in the CTC Model,
and the methods employed to estimate the stock composition (e.g., assignment error, cut-off
criteria, proportion unassigned). The evaluation of the distribution of individual stocks will
require GSI estimates wherever individual stocks are impacted by fisheries; consequently, unless
methods are standardized and baseline discrimination power is consistent, these results will not
be comparable and hence cannot be readily combined. Further, GSI methods would need to be
capable of distinguishing between hatchery and wild fish if artificial production alters migratory
or maturation behavior (e.g., yearling production of fall Chinook), and would be affected by
stock/age assignment error.

Regarding northern transboundary area and Southern stocks not represented in the CTC model,
GSI data alone would not constitute a sufficient information basis to include these stocks in the
model. CWT data would be required since the current model is based on stock-age-fishery
specific exploitation rates. The reason why some Southern US stocks are not included in the
CTC Model is that available CWT data indicated little evidence of significant impact by ocean
fisheries on these stocks.

Discussion needs to be expanded to Chinook models in general, rather than limited to just the
CTC Model. Most of the detailed fishery management planning is actually done using other
models such as Chinook FRAM, Klamath Ocean Harvest Model, and terminal fishery models.




Workgroup Tasks:

1. Provide brief and clear descriptions of Chinook management models to facilitate future
workgroup discussions about GSI-model linkages. See Section 2.1.1 for descriptions of
Chinook management models.

ii. Compare GSI- and CTC model-based catch composition of Chinook in South East
Alaskan troll fishery across range of spatial and temporal scales. See Section 2.1.2.
iil. Compare list of stock groupings in CTC model with genetic reporting groups. See

Section 5 of genetics workgroup report.

1.2 The CTC model assumes that exploitation rates estimated from CWT data for
hatchery stocks adequately represent the exploitation rates on wild stocks. How can
GSI data be used to evaluate or avoid this assumption?

Issues: GSI data could be used to estimate the proportion of the catch comprised of specific wild
stocks. For wild stocks where escapement and age composition in catch and escapement is
reasonably well determined, these data could be combined to estimate exploitation rates.

Uncertainties: GSI data cannot discriminate between hatchery stocks and progeny of hatchery
fish that spawn in the wild in the same system. Relatively accurate escapement estimates are
required to calculate exploitation rates and there are few accurate escapement estimates for wild
stocks.

Workgroup Tasks: None identified.

1.3 How can GSI data to better account for incidental mortalities of sub-legal fish that
are released?

Issues: With increases in mark-selective fisheries, the magnitude of errors in predicted harvest
impacts on sub-legal fish will likely increase. GSI data could be collected from sub-legal fish
prior to improve estimates of sub-legal mortality rates for wild stocks.

The CTC Model computes the stock composition of sub-legal sized fish based on the proportion
of each stock-age that is non-vulnerable to a given fishery (< min size limit) and the stock-age
cohort sizes for stocks that are caught at any age in the fishery. Thus, only stocks that are caught
as legal-sized fish are presumed to be present as sub-legal fish. Note that the CTC Model does
not directly represent “distribution” of either the legal or sub-legal sized fish, rather
distributional inferences are drawn from model estimates of mortalities across fisheries. The
total population of sub-legal sized fish is first computed based on cohort strengths and age-
fishery specific proportions of non-vulnerable fish. The composition of the sub-legal mortalities
is determined by the proportion of this aggregated sub-legal population that is comprised of
individual stocks and ages. The stock composition of the legal sized fish will depend on stock-
age cohort sizes and their associated stock-age exploitation rates. As the cohort sizes of different
ages and stocks differ, the stock compositions of the legal and sub-legal sized fish will differ.
The magnitude of the incidental mortalities estimated by the CTC Model is derived through a
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variety of methods, depending on the availability of data on the total number of sub-legal
encounters observed in monitoring programs.

A related key assumption of the current CTC Model is that all fish of a given age in a specific
fishery have the same size distribution, i.e., there are no stock-specific differences in growth
functions; this also means that fish of a given age from a given stock have different size
distributions depending on the fishery in which it is caught. This assumption is an artifact of the
limited amount of size-at-age data that was available when the CTC Model was originally
formulated.

A second issue is related to the use of different methods to compute incidental fishing mortalities
and hence cohort sizes in the CTC Model and the CWT cohort analysis programs. The CTC
Model computes incidental mortalities for all stocks and ages simultaneously while the cohort
analysis is performed on each stock individually.

Uncertainties: GSI data could improve estimates of incidental mortality impacts on wild stocks,
but these estimates may still very imprecise or biased due to the considerable uncertainty about
the shaker-mortality rates. As for 1), it will be difficult to estimate sub-legal proportions for
small stocks and due to other factors.

Workgroup Tasks: Provide more detail on issue and how GSI data would be collected and used
in CTC model. See Section 2.3.

1.4 How can GSI data be used to improve estimates of the underlying stock distribution
over space and time?

Issues: The CTC model assumes that the underlying distribution of stocks, in the absence of
fishing, estimated from data collected during the base period, is consistent over time. Although
GSI data could be used to estimate stock proportions by fishery, it is less evident how GSI could
be used to evaluate the assumption about the temporal stability of the underlying distribution.

Uncertainties: The timing and location of fisheries will change, thus it will be difficult to
determine whether observed changes in proportions of various stocks in the catch are due to
changes in the underlying distribution over time, or due to differences in fishing patterns. The
assessment is further complicated by the fact that recruitment rates to fisheries will be temporally
variable due to changes in survival and maturity schedules that may differ among stocks. It may
be difficult to evaluate changes in the underlying distribution without a non-fishery based
sampling program where effort over space and time is consistent. The cost of such a monitoring
program would be very large. In short, the ease at which the underlying stock distribution can be
determined from GSI data given other sampling limitations has very likely been oversimplified.

Workgroup Tasks: Provide more detail on issue and use data from CROOS program to
illustrate challenges. See Section 2.4.




1.5  How will stock distribution information provided by GSI data be used in fishery
management decisions?

Issues: GSI data could contribute to a better understanding of the underlying distribution of
stocks, as well as the catch composition of existing fisheries. This information could be used to
make pre-season or in-season adjustments to time and area closures to protect weak stocks and
optimize catches of more productive stocks. GSI data, in conjunction with effort information,
could be used to track catch per unit effort (CPUE) for specific stocks, which could incorporated
in the fitting procedure of a future stock assessment model, or for improved pre-season or in-
season forecasts.

Uncertainties: Even if the underlying stock distribution, and stock-specific catch compositions
for various fisheries could can be better defined from GSI data (see uncertainties associated with
question 1.4), it may still be difficult to use this information to shape fisheries if many weak
stocks are involved. In this situation it may be necessary to close most areas or openings in a
management area. Prioritization of closures in these cases will also depend on the relatively
productivity of weak stocks and their status, which may be poorly determined. How would rules
for closures based on underlying stock distributions or catch-proportions within certain fisheries
be formalized in the current institutional setting?

Workgroup Tasks.
1. Provide more detail on management issues. See Section 2.5.1.
ii. Write-up description of potential new management model that uses GSI data. The

resolution at which stocks were represented in the model (i.e., the extent aggregations)
would depend on the expected proportions of stocks of concern in a fishery. For example,
where the proportions of stocks of concern are small, more aggregated reporting groups
would be used. See Section 2.5.2.

1.6 Can GSI data be used in cohort reconstruction?

Issues: Cohort reconstruction requires reliable estimates of catch, escapement, marine survival,
and age proportions in the escapement and catch. Currently, cohort reconstruction can only be
done on CWT-tagged indicator stocks. GSI could potentially be used to estimate the catch for
wild untagged stocks and increase the number of stocks where reconstruction could be applied.

Uncertainties: The workgroup felt that GSI data has little to no potential for reconstruction of
Chinook stocks due to errors in ageing, and limited ability to assign fish to individual groups due
to stock assignment error. Most coho stocks show little variation in age-at-maturity so ageing
error is less of an issue, but escapement estimates for wild coho stocks are generally poor, the
genetic baseline for coho is less well developed, and coho generally show less genetic
differentiation making increasing the uncertainty in stock proportion estimates. Thus, cohort
reconstruction for coho based on GSI data was also viewed rather pessimistically by the
subgroup. Uncertainties associated with other questions, such as difficulty in separating key
stock groupings from GSI data (e.g. fall and spring Klamath Chinook) also apply to cohort
reconstruction.




Workgroup Tasks:

1. Investigate the effects of both stock assignment error and aging error on estimates
generated by cohort reconstruction methods and try to devise methods for correcting for
stock/age assignment error. See Sections 2.6.1 and 2.6.2

ii. Describe small area estimation approaches in GSI setting when aging data is not
available. See Section 2.6.3.

1.7  Can a stock synthesis modeling approach be used to integrate multiple sources of
data, including GSI data, to provide improved estimates of harvest rate impacts and
better account for uncertainty?

Issues: The CTC model has been successful in helping to make difficult coast-wide decisions on
chinook management, but the modeling framework has a number of deficiencies that could be
improved by using a stock synthesis approach. For example, the underlying distribution of stocks
is estimated using data only from the base period, and uncertainty in escapement data, estimates
of harvest rates, marine survival rates, and age composition from index stocks based on CWT
data are not considered in the CTC model. GSI data could be used to improve understanding of
the underlying stock distribution and the proportion of the catch of various fisheries made up by
specific wild stocks. If this information was integrated in a stock synthesis framework it could
lead to improved estimates of harvest impacts, and would certainly lead to more realistic
estimates of uncertainty due to variations or trends in underlying stock distribution patterns from
those implicitly assumed in the CTC model. The improved model would take full advantage of
GSI data, and be useful in prioritizing and designing future sampling programs. To some extent,
the workgroups ability to assess the utility of GSI data for coast-wide chinook management was
limited by not having such a modeling framework.

Uncertainties: Stock synthesis modeling approaches are widely applied in fisheries
management, but there are few examples where they have been applied in multi-stock and multi-
fishery settings. A coast-wide stock synthesis model may not be feasible given the large number
of chinook and coho stocks and fisheries. GSI data, while potentially providing a better
accounting of wild untagged stocks, also increases the complexity of the model. Depending on
the extent of stock and fishery aggregation, a coast-wide stock synthesis model for coho or
chinook could have thousands of parameters. It may not be computationally feasible to estimate
these parameters and their uncertainty, and would likely be very difficult to understand and
hence trust the model output. Considering these potential difficulties, and the institutional
challenges in chinook and coho management, it is highly uncertain whether a more complex
model will aid the decision making process.

Workgroup Tasks: Provide a conceptual overview of a multi-stock, multi-fishery, Bayesian
stock synthesis model applied in a chinook or coho management setting with emphasis on how
GSI data would be integrated. See Section 2.7.




1.8 What are the sample size requirements for GSI data?

Issues and Uncertainties: The workgroup spent little time discussing this issue due to time
limitations. It was recognized that required levels of precision and accuracy vary for different
components of the fishery. For example, in large mixed-stock ocean fisheries it may be sufficient
to be able to identify stock aggregates, while in terminal fisheries it may be necessary to identify
the component stocks within the aggregates The adequacy of the CWT sampling approach in
relation to GSI requirements was briefly discussed. For example, the CWT program currently
samples 20% of the catch. This may be sufficient to determine catch composition for stocks of
interest in cases where the catch is large and where a substantial proportion of the catch is made
up of these stocks, but inadequate when these conditions are not met. The number of GSI
samples required for various levels of precision, accuracy, and reporting aggregation, needs to be
determined and compared to the costs of sampling and processing to determine the feasibility of
using GSI data on a coast-wide basis. Finally, as for any sampling program, the problem of lack
of independence among fish within a sample must be recognized when evaluating the precision
associated with alternate sample sizes.

Workgroup Tasks:
i.  Outline issues and statistical methods for sample size computations. See sections 2.8.1-
2.8.4.

1.9  How can GSI data be used to improve escapement estimates, and would it be better
to invest in direct estimates of escapement rather than improving estimates of stock
composition via GSI data?

Issues: Escapement data is the most important information to evaluate the success of harvest
management decisions for conserving weak stocks. There are two separate and somewhat
conflicting issues associated with estimating escapement and GSI data. In cases where it is very
difficult or expensive to estimate escapement of wild non-index stocks directly, GSI data could
be used to calculate escapements based on the proportion of CWTs represented in terminal
fisheries for the index stock relative to the total number of CWTs for that stock that were
released, and the proportion of the catch represented by the wild stock (production-expansion
estimation method). Direct estimates of escapement would be preferred, and large investments in
GSI data potentially reduce funding to directly estimate escapement in cases where it is feasible.

Uncertainties: This issue is not unique to GSI data, and has been well described in PSC’s expert
panel report on the CWT program.

Workgroup Tasks:

1. The management workgroup will be preparing a brief summary of how escapement
estimates generated from GSI and CWT data might be compared with estimates
generated by other means. See Section 2.9.

1.10 Alternate Monitoring and Assessment Approaches




Much of the GSI-modeling and sampling discussions were to some extent constrained by
existing management and stock assessment frameworks. Some workgroup members felt strongly
that a broader and more open-minded approach should be used in discussions concerning GSI
data to fully explore its potential to help meet PSC management objectives. Two relatively
significant and alternate monitoring and stock assessment approaches were briefly discussed and
are reviewed below.

Coast-wide fishery independent juvenile trawl survey. Catch per effort from trawl-based
surveys of juveniles could be used in conjunction with stock composition estimates of the
surveyed populations from GSI data to improve the accuracy of pre-season forecasts.

Systematic fishery sampling program. As reviewed in question 4), changes in the timing and
location of fisheries since the model base period, as well as potential changes in the underlying
distribution of stocks, have compromised the ability of the CTC Chinook model to characterize
fishery impacts. Considering that the shape of future fisheries may change, a systematic
sampling program will be more efficient at estimating the underlying stock distribution and the
extent to which it changes due to factors like climate change.




2.0 Individual Modelling and Sampling Workgroup Reports

2.1.1 Overview of Chinook Management Models

Overviews of PSC Chinook Model and the Chinook Fram Model were provided by Gary

Morishima
DRAFT MODEL DESCRIPTION
Pacific Salmon Commission Chinook Model
August 8, 2000
Primary Use:

The Pacific Salmon Commission (PSC) Chinook Model is used annually by the
PSC to set catch levels of southeast Alaskan and some British Columbia Chinook
fisheries tat are driven by model estimates of aggregate chinook abundance in
those fisheries (Aggregate Abundance Based Management). Some outputs of the
PSC Chinook model are used as inputs to the Chinook FRAM for Alaskan and
BC fisheries. The model is also used to generate a portion of the Snake River Fall
Index and to compute the Individual Stock Based Management (ISBM) indices
for PFMC and inside fisheries as required by the new Pacific Salmon Treaty.

Brief History of Development:

The PSC Chinook model, unlike other models used in the PFMC process, is a
multiple year, annual time step model that predicts future stock abundance and
fishery catches given historic data on catches, stock abundances, and stock
productivity.

Development of the PSC Chinook model began with a single stock model
designed to estimate the effects of catch restrictions on stock rebuilding over a
number of years. In 1984 a 4 stock, 9 fishery model was used for the Pacific
Salmon Treaty negotiations. In 1986 the model was recoded in QuickBasic.
Over the years the model has been expanded and revised in important ways.

e Model resolutions has increased to 25 fisheries and 30 stocks

e Ability to evaluate effects of Chinook non-retention and size limit changes
were developed

e Stock enhancement (hatchery releases) and supplementation strategies can

be evaluated.

e Chinook abundance by fishery can be calculated
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e Special reports allow flexibility in post processing of model data (eg
ISBM indices).

Stratification:

Stocks:

There are 30 stocks represented in the PSC Chinook model. In some cases, stocks
have been combined for purposes of ocean fishery assessments (e.g., Puget Sound

Fingerling, Cowlitz/Kalama/Lewis).

Alaska/Canada Puget Sound/Wash Coast | Columbia River/Oregon
Alaska South SE Nooksack Fall Columbia River Upriver
Northern/Central B.C. Puget Sound Fingerling | Bright
Fraser Early Puget Sound Natural Spring Creek Hatchery
Fraser Late Fingerling Lower Bonneville Hatchery
WCVI Hatchery Puget Sound Yearling Cowlitz Fall Hatchery
WCVI Wild Nooksack Spring Lewis River Wild
Upper Strait of Georgia Skagit Wild Willamette River Spring
Lower Strait of Georgia Stillaguamish Wild Hatchery
Natural Snohomish Wild Cowlitz Spring Hatchery
Lower Strait of Georgia Washington Coastal Columbia River Summer
Hatchery Hatchery Snake River Wild Fall

Washington Coastal Mid Columbia Bright Fall
Wild Hatchery

Oregon Coastal

Fisheries:
There are 25 fisheries represented in the PSC model. Fisheries can be considered
preterminal or terminal, for each stock.
Troll Sport Net
Southeast Alaska Southeast Alaska Southeast Alaska
North BC North/Central BC North BC
Central BC WCVI Outside Central BC
WCVI Washington Ocean WCVI
Strait of Georgia North Puget Sound Juan de Fuca
Washington/Oregon | South Puget Sound North Puget Sound
Strait of Georgia South Puget Sound
Freshwater Johnstone Strait
Washington Coast
Fraser
Freshwater
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Time Periods:

Base Period:

The PSC Chinook Model uses one time step per year, over multiple years.
Model simulations are usually run from catch year 1979 through 2005. Data
projected beyond the upcoming fishing year is seldom used, however.

The PSC Chinook Model relies upon escapement, catch, and CWT recovery data
collected during the 1979-1981 base period. Data from this period represent
fishery reflect exploitation patterns over an extensive geographic area during an
extended period of time. This is important to permit evaluation of fishery impacts
under a wide variety of season structures. Base period exploitation rates for
preterminal fisheries, harvest rates for terminal fisheries, and maturation rates are
estimated through cohort analysis procedures.

Not all stocks represented in Chinook FRAM have CWT data directly available
from the 1979 —1981 base. (e.g. Snake River Fall Chinook). These stocks are
known as ‘Out of Base’ stocks. For these stocks, time series of available CWT
derived exploitation rates (harvest rates in terminal fisheries) by fishery are used
to estimate what the base period recoveries would have been had the stock been
CWTed. These generated recoveries are then used in cohort analysis procedures
to estimate base period exploitation rates for the stock.

Capacity to Evaluate Fishery Regulations:

The model has the capacity to simulate three general types of measures to
constrain fishery impacts: (1) effort controls; (2) catch ceilings; and (3) catch
quotas. These are the same types of measures evaluated by the Chinook FRAM,
and the methods used are essentially the same for both models. More detail on
the methods is available in the Chinook FRAM description.

Another primary used of the Chinook Model is to predict fishery abundance
indices for Aggregate Abundance Based Management (AABM) fisheries and
exploitation rate reduction indices for Individual Stock Based Management
(ISBM) fisheries. Both types of fisheries are defined by the new Pacific Salmon
Treaty agreementModel Structure:

The PSC Chinook model is a deterministic model that essentially performs book-
keeping functions to track the progress of individual stock/brood year groups as
they are exploited by various fisheries over a number of years.

Individual stock/brood groups are exploited as a single pool; that is, each year, all
pre-terminal fisheries operate on the entire cohort and all terminal fisheries
operate on the mature run. This structure poses the potential problem thatSAME
CHANGE AS IN CHINOOK FRAM HERE since each fishery is modeled
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independently, it is possible for all fisheries combined to catch more fish than
exist in the entire cohort or mature run.

The PSC Chinook model does not contain an explicit migration mechanism, other
than the movement of fish from preterminal fishing areas to terminal fishing areas
upon maturation. Migration is otherwise implied by base period exploitation rates
that vary by time,age, and fishery strata.
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Sequence of Computations:

For each year and fishery strata, the PSC Chinook model simulates fishery
regulations and salmon population dynamics using the sequence of computations

depicted in figure 1:

Natural
Mortality
By age

Model
PreTerminal
Fisheries

Cohort For Next ﬁ]tMl@ﬂ Rate
Year <

Mkt [Refte

Terminal
Run Size

Model
Terminal
Fisheries

Spawning
Escapement

Figure 1. Sequence of Computations for the PSC Chinook Model.

Age 2 cohort next
year +1

Algorithms:

The PSC Chinook Model simulates fisheries through the use of simple linear
equations. Ifall fish can be retained above a given size, the following general

form is used:

Cs,a,f = BPERs,a,f * Ns,a * PVs,a,f >ksf
Where:
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Csarf Catch for stock s of age a in fishery f

BPER,s Base Period Exploitation Rate (Harvest Rate for Terminal
Fisheries) for stock s of age a in fishery f. The BPER is
derived from cohort analysis using CWT release and
recovery data for 1979-1981.

Nsa Number of fish in cohort (for PreTerminal Fisheries;
Terminal Run Size for Terminal Fisheries) for stock S of
age a

PVgar Proportion of Cohort of age a vulnerable to the gear
employed in fishery f.

St Impact scalar for fishery f relative to the base period

The parameter S lies at the crux of the model’s fishery simulation algorithms.

The model can evaluate two general types of fisheries: (1) effort-based; or (2)
catch-based. For effort-based fisheries, the parameter S is specified by the
modeler to reflect expected effort relative to the effort observed during the
model’s base period. For catch-based fisheries, S is computed automatically so as
to attain a specified catch level. If the catch level is to be modeled as a quota,
then S is computed as:

Quotalevel

S, = ——
f ch,f

If the catch level is to be modeled as a ceiling or guideline, then S is computed in
the same manner, but has a maximum value of 1.0.

Shaker mortalities are computed only for stocks with landed catch in a fishery.

The following steps are used to compute shaker mortalities:

1. For the stocks with landed catch in a fishery, compute the encounter rate as
the ratio of the combined total of the sublegal populations to combined legal

populations.

2. Compute the total sublegals encountered by multiplying the landed catch by
the encounter rate.

3. Compute the incidental mortality by multiplying encounters by the sum of the
release mortality rate and the drop off mortality rate.

4. Allocate the total incidental mortality to each stock and age in proportion to
fraction of the total sublegal populations which is comprised of that stock and
age.
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An additional ‘dropoff” mortality is also included as a percentage of the landed
catch.

Reproduction for stocks with biologically based escapement goals is modeled
through a simple Ricker Spawner-Recruit function of the form

Recruits = Spawners * EXP(a * (1 — Spawners/ )

Annual Management Process:

The PSC Chinook model is calibrated annually by the bilateral Chinook Technical
Committee (CTC) of the Pacific Salmon Commission. The calibration process
involves updating historic data on fishery catch and effort scalers, stock ocean or
spawning escapements, Chinook non-retention data, Interdam losses for Columbia
river stocks, and hatchery releases. Abundance forecasts, in the form of predicted
terminal returns or spawning escapement, are also input to the model. The
calibration process itself involves iteratively estimating stock and brood year
survival scalars to achieve the best fit with the historic and forecast catch and
terminal run/escapement data. After the CTC has reached agreement on a model
calibration, the model is run to generate chinook abundance estimates for AABM
fisheries. These abundance estimates are then translated into allowable catches as
outlined in the PSC agreement and input to the model as quota catches. As the
management season progresses, the model is used to generate effort scalars for the
northern fisheries for use in Chinook FRAM, and for evaluation of ISBM and
other indices. More details about the PFMC management process is provided in
the Chinook FRAM documentation.
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DRAFT MODEL DESCRIPTION
Chinook FRAM
August 8, 2000

Primary Use:

The Chinook Fishery Regulation Assessment Model (Chinook FRAM) is
currently employed by the PFMC to evaluate impacts of ocean and Puget Sound
fisheries from California to central British Columbia on chinook stocks
originating from southern British Columbia, Puget Sound, and the Columbia
River.

Brief History of Development:

In the late 1970s, the Washington Department of Fisheries and U.S. National
Bureau of Standards developed a model to provide a means of evaluating
alternative fishery regulatory packages. The WDF/NBS Model could be
configured for either chinook or coho by using different data files. This model
was coded in FORTRAN and ran on a CDC mainframe computer at the
University of Washington. Model runs were usually processed over night; results
were painstakingly extracted from large volumes of printed output reports. The
WDEF/NBS model was not extensively employed by the PFMC because it proved
costly to operate and results were difficult to obtain in a timely manner.

In the mid 1980s a spreadsheet model was developed to evaluate impacts of
PFMC management on Columbia River Chinook.

In the mid 1990s, an early version of Chinook FRAM was developed in QUICK
BASIC, primarily to assess the impacts of PFMC regulations on Puget Sound
stocks and fisheries. As needs grew, Chinook FRAM was expanded to include
more stocks, fisheries, and time periods. In 1998, FRAM was converted to
VISUAL BASIC to take advantage of improved user interfaces available through
the MS WINDOWS operating system. The computer code for Chinook FRAM is
currently maintained by Jim Packer of the Washington Department of Fish &
Wildlife. A multi-agency Model Evaluation Subgroup periodically reviews
model performance and parameter estimation methods and coordinates revisions
to model capabilities.
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Stratification:

Stocks:
There are 32 stocks represented in the Chinook FRAM. In some cases, stocks
have been combined for purposes of ocean fishery assessments (e.g.,
Nooksack/Samish; Cowlitz/Kalama/Lewis).
Puget Sound Columbia River/Oregon Canada
1. Nooksack/Samish 19. Oregon Hatchery Tule | 29. West Coast
Fall 20. Washington Hatchery Vancouver Island Fall
2. N.F. Nooksack Tule 30. Fraser Late Fall
Spring 21. Lower Columbia River | 31. Fraser Early Fall
3. S.F. Nooksack Wild 32. Lower Georgia Strait
Spring 22. Bonneville Pool Fall
4. Skagit Summer/Fall Hatchery
Fingerling 23. Columbia River
5. Skagit Summer/Fall upriver Summer
Yearling 24. Columbia River
6. Skagit Spring Upriver Bright
Yearling 25. Cowlitz/Kalama/Lewis
7. Snohomish Fall Spring
Fingerling 26. Willamette Spring
8. Snohomish Fall 27. Snake River Fall
Yearling 28. Oregon Coastal North
9. Stillaguamish Fall migrating Fall
Fingerling
10. Tulalip Fall
Fingerling
11. Mid Puget Sound
Fall Fingerling
12. U.W. Accelerated
13. South Puget Sound
Fall Fingerling
14. South Puget Sound
Fall Yearling
15. White River Spring
Fingerling
16. Hood Canal Fall
Fingerling
17. Hood Canal Fall
Yearling
18. Juan de Fuca Tribs

Fall

Fisheries:
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There are 73 fisheries represented in Chinook FRAM. Fisheries can be
considered preterminal or terminal, for each stock.

Troll Sport Net
Southeast Alaska Southeast Alaska Southeast Alaska
North/Central BC BC Outside North/Central BC
WCVI WCVI WCVI
Strait of Georgia North Strait of Georgia | Strait of Georgia
Treaty Juan de Fuca South Strait of Georgia | BC Juan de Fuca

Non-treaty Wash
Areas 3,4,4B

Treaty Wash Areas
3,4,4B

Non-treaty Wash Area
2

Treaty Wash Area 2
Wash Area 1

Central Oregon
Klamath Management
Zone

Southern California

BC Juan de Fuca
Wash Areas 3,4
Wash Area 2

Wash Area 1

CR Bouy 10
Central Oregon
Klamath Mgmt Zone
Southern California
Wash Areas 5,6
Wash Area 7

Wash Area §8-1
Wash Area 8D
Wash Area 9

Wash Area 10
Wash Area 10A
Wash Area 10E
Wash Area 11
Wash Area 12
Wash Area 13
Freshwater

N. Wash Coastal

Non-treaty Greys
Harbor

Treaty Greys Harbor

Willapa Bay

Columbia River

Non-treaty Wash Area
6A,7,7A

Treaty Wash Area
6A,7,7A

Non-treaty Wash Area
7B-7D

Treaty Wash Area 7B-
7D

Non-treaty Juan de
Fuca

Treaty Juan de Fuca

Non-treaty Skagit

Treaty Skagit

Non-treaty
Stilly/Snohomish

Treaty
Stilly/Snohomish

Non-treaty Tulalip Bay

Treaty Tulalip Bay

Non-treaty Wash Area
6B,9

Treaty Wash Area 6B,9

Non-treaty Wash Area
10,11

Treaty Wash Area
10,11

Treaty Wash Area 10A

Treaty Wash Area 10E

Non-treaty Hood Canal

Treaty Hood Canal

Non-treaty South Puget
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Sound
Treaty South Puget
Sound
Non-treaty Area 13A
Treaty Area 13A
Freshwater

Time Periods:

Base Period:

Chinook FRAM uses four time steps over an 18 month period. The time steps
are:

October 1 (previous year) — April 30 (current year)

May 1 —June 30

July 1 — September 30

October 1 (current year) — April 30 (next year)

Chinook FRAM is calibrated using escapement, catch, recovery data from the
1979-1981 base. The CWT recovery data from this period reflect exploitation
patterns over an extensive geographic area during an extended period of time.
This is important to permit evaluation of fishery impacts under a wide variety of
season structures. Base period exploitation rates for preterminal fisheries, harvest
rates for terminal fisheries, and maturation rates are estimated for by stock
through cohort analysis procedures.

Not all stocks represented in Chinook FRAM have CWT data directly available
from the 1979 —1981 base. (e.g. Snake River Fall Chinook). These stocks are
known as ‘Out of Base’ stocks. For these stocks, time series of available CWT
derived exploitation rates (harvest rates in terminal fisheries) by fishery are used
to estimate what the base period recoveries would have been had the stock been
CWTed. These generated recoveries are then used in cohort analysis procedures
to estimate base period exploitation rates for the stock.

Capacity to Evaluate Fishery Regulations:

Chinook FRAM has the capacity to simulate three general types of measures to
constrain fishery impacts: (1) effort controls; (2) catch ceilings; and (3) catch
quotas.

e Effort controls are specified by the user by fishery as scalar values reflecting
expected effort levels relative to those observed during the 1979-1981 base
period. In addition, the user can specify stock specific scalars to apply to base
period exploitation rates to evaluate management measures that are expected
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to differentially impact individual stocks. Effort scalars are computed
externally to the model.

e Catch ceilings represent the maximum allowable retained catch specified by
the user for a given time-area-fishery stratum. Catch ceilings are simulated by
computing scalars that reflect the ratio between expected catches and the
target ceiling levels given estimates of cohort abundance and base period
exploitation rates (harvest rates in the case of terminal fisheries). Model
catches are computed through an iterative process that estimates the ceiling
ratio [cohort abundance * proportion vulnerable * effort scalars * base period
exploitation/harvest rates * ceiling ratio] until the model catches approximate
target levels within specified precision. With catch ceilings, the scalar value
is not allowed to exceed 1.0, that is, catch cannot exceed the level expected
under base period exploitation rates applied to current year abundances.
PFMC catch ‘guidelines’ are modeled as catch ceilings in Chinook FRAM.

e Catch quotas represent the allowable level of retained catch specified by the
user for a given time-area-fishery stratum. Catch quotas are computed
identically to catch ceilings, except that the exploitation rate scalar is not
constrained in any way. In a quota fishery, the exploitation rate scalar may
exceed 1.0; it is adjusted as needed to to force the fishery to take the entire
allowable catch.

Model Structure:

Chinook FRAM is a deterministic model that essentially performs book-keeping
functions to track the progress of individual stock/age groups as they are exploited
by various fisheries over time.

Individual stock/age groups are exploited as a single pool; that is, in each time
step, all pre-terminal fisheries operate on the entire cohort and all terminal
fisheries operate on the mature run. Each fishery is modeled independently. This
structure poses a potential problem in that it is possible for all fisheries combined
to catch more fish than exist in the entire cohort or mature run. If this occurs,
Chinook FRAM issues a warning message to alert the user, but continues with its
calculations.

Chinook FRAM does not contain an explicit migration mechanism, other than the
movement of fish from preterminal fishing areas to terminal fishing areas upon
maturation. Migration is otherwise implied by base period exploitation rates that
vary by time, age, and fishery strata.
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Sequence of Computations:

For each timestep and fishery strata, Chinook FRAM simulates fishery
regulations using the sequence of computations depicted in figure 1:

Natural
Mortality
By age

Model
PreTerminal
Fisheries

Cohort For Next ﬁ]tMl@ﬂ Rate
TimeStep <

Mkt [Refte

Terminal
Run Size

Model
Terminal
Fisheries

Spawning
Escapement

Figure 1. Sequence of Computations for Chinook FRAM

Algorithms:

Chinook FRAM models fisheries through the use of simple linear equations. If all
fish can be retained above a given size, the following general form is used:

Cs,a,f = BPERs,a,f * Ns,a * PV f *Sf

s,a,

Where:

22



Csarf Catch for stock s of age a in fishery f

BPER,+ Base Period Exploitation Rate (Harvest Rate for Terminal
Fisheries) for stock s of age a in fishery f. The BPER is
derived from cohort analysis using CWT release and
recovery data for 1979-1981.

Nsa Number of fish in cohort (for Preterminal Fisheries;
Terminal Run Size for Terminal Fisheries) for stock S of
age a

PVgar Proportion of Cohort of age a vulnerable to the gear
employed in fishery f.

St Impact scalar for fishery f relative to the base period

The parameter S lies at the crux of the model’s fishery simulation algorithms.
Chinook FRAM can evaluate two general types of fisheries: (1) effort-based; or
(2) catch-based. For effort-based fisheries, the parameter S is specified by the
modeler to reflect expected effort relative to the effort observed during the
model’s base period. For catch-based fisheries, S is computed automatically so as
to attain a specified catch level. If the catch level is to be modeled as a quota,
then S is computed as:

Quotalevel

S, = ——
f ch,f

If the catch level is to be modeled as a ceiling or guideline, then S is computed in
the same manner, but has a maximum value of 1.0.

Shaker mortalities are computed only for stocks with landed catch in a fishery.

The following steps are used to compute shaker mortalities:

5. For the stocks with landed catch in a fishery, compute the encounter rate as
the ratio of the combined total of the sublegal populations to combined legal

populations.

6. Compute the total sublegals encountered by multiplying the landed catch by
the encounter rate.

7. Compute the incidental mortality by multiplying encounters by the sum of the
release mortality rate and the drop off mortality rate.

8. Allocate the total incidental mortality to each stock and age in proportion to
fraction of the total sublegal populations which is comprised of that stock and
age.
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An additional ‘dropoff” mortality is also included as a percentage of the landed
catch.

ESA Assessments:

Chinook FRAM outputs are used in ESA assessments for a number of Puget
Sound and Columbia River basin chinook stocks. For Snake River Fall Chinook,
an age 3/4 adult equivalent exploitation rate, indexed to the 1988-1993 average, is
computed for PFMC fisheries from the U.S./Canada border to Cape Falcon, Cape
Falcon to Pigeon point, and inside Puget Sound. These indices are combined with
analogous indices from the PSC Chinook model for northern fisheries to create
the Snake River Fall Index.

For other listed Columbia basin and Puget Sound stocks, calendar year total
exploitation rates and/or escapements are estimated and used in the assessments.

Annual Management Process:

Chinook FRAM is used extensively during the annual management process that
leads to the development of recommendations for regulation of ocean salmon
fisheries in the PFMC area. The elements of this process are described below and
are graphically depicted in figure 2.

e The annual management process is initiated in mid-February when
abundance forecasts for the individual stock groups represented in
Chinook FRAM become available. These forecasts are provided by state
and tribal managers and are reviewed by the Salmon Technical Team.

The forecasts may be of ocean abundance, ocean escapement, or spawning
escapement. They are age specific for some, but not all, model stocks.

e Chinook FRAM is configured each year by scaling stock abundance to
correspond to forecast levels. Forecasts of abundance are provided by the
Salmon Technical Team in Preseason Report I.

e Planning processes involving state and tribal managers and their fishery
constituencies are convened for North of Cape Falcon, South of Cape
Falcon and the Klamath Management Area. Meetings occur prior to the
March and April meetings of the PFMC to discuss the range of
alternatives to be considered by the PFMC.

e The PFMC adopts a set of options in March and publishes its Preseason
Report II. This report serves two purposes: (1) facilitates discussion of
resource status and fishery impacts for public hearings and written
comments; and (2) provides information for continuation of planning
processes using Chinook FRAM. It is between the March and April
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meetings of the Council regional meetings are convened to identify a
preferred regulatory package.

e In April, the PFMC identifies a set of tentative options which is evaluated
using Chinook FRAM along with other tools and models. The PFMC
concludes the meeting with adoption of a regulatory package to submit for
consideration by the Secretary of Commerce. The STT and PFMC staff
submit the recommended regulations in the Preseason Report III along
with a biological opinion for ESA-listed species and an Environmental
Assessment to the Secretary.

o If'the Secretary disapproves the package, then the PFMC is reconvened to
modify its recommendations. If the package is approved, regulations are
published in the Federal Register and implemented.

e The adoption of the ocean fishery regulatory package is accompanied by
tentative agreements and understandings between State and Tribal
managers regarding the conduct of inside fisheries impacting critical
stocks. These agreements are generally formalized following the PFMC’s
April meeting, generally by June.

e As inseason management proceeds, sometimes Chinook FRAM is used to
adjust allowable catch levels so as to maintain impacts on limiting stocks
at levels anticipated during the preseason process.

e At the conclusion of the season, fishery performance and escapements are
compiled and reported in the PFMC’s annual Post-Season Review.

In essence, Chinook FRAM is employed in an iterative planning process
involving multiple model runs to help shape fisheries so as to distribute allowable
stock-specific impacts in a socially acceptable manner (Figure 3). It is not
unusual for managers and fishery constituents to generate dozens of scenarios
during the course of their deliberations in preseason planning processes.

Documentation of Regulatory Packages Using Chinook FRAM:

Each model run is identified by a unique 4 character name to facilitate sharing of
model results. Input data for Chinook FRAM are documented and maintained
through the use of “command files” (*.CMD). CMD files contain all the
information required to model a specific package of regulations and includes the
basic data required to configure the model (e.g., fisheries, stock groups,
abundance forecasts, exploitation rate scalers, etc). Base period data are
contained in a separate file. Details regarding inside Puget Sound fishery regimes
are similarly recorded and maintained in Terminal Area Management Module
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spreadsheets. Outputs from Chinook FRAM are generated either from a set of
standard reports specified by “driver files” (*.DRV) or from a custom report
designed by the user.
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Figure 2. Annual PFMC Planning Process
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Figure 3. Iterative use of Chinook FRAM in PFMC Preseason Planning Process
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2.1.2 Comparison Between Fishery Specific Stock composition Estimates Derived From
The PSC Chinook Model And From Genetic Stock Identification

John Carlile
Alaska Department of Fish and Game

The Pacific Salmon Commission’s (PSC) Chinook Model was originally developed as a tool to
evaluate the effect of fishery management actions on the rebuilding of depressed Chinook stocks.
The number of stocks and fisheries in the model has grown from 4 stocks and 9 fisheries at the
time the Pacific Salmon Treaty was signed in 1985 to 30 stocks and 25 fisheries currently. The
main purpose of the model in the early years was to determine the effects of proposed
management actions on the terminal runs or escapements of the stocks in the model. However,
over the years the PSC Chinook Model was adapted for other uses. Currently the main use of the
model is in determining an index of the overall abundance of Chinook in the Aggregate
Abundance Based Management (AABM) fisheries. There are currently three AABM fisheries,
the Southeast Alaska All-gear fishery (Troll, Net and Sport), North BC Troll and Sport, and the
WCVI Troll and Outside Sport. Over the years of its existence, the PSC Chinook Model has also
been used for another task to which it is not ideally suited. The model has been used to generate
yearly estimates of the stock composition for fisheries represented in the model. Utilizing the
PSC Chinook Model for this purpose has several drawbacks. These drawbacks include:

1. Not all stock groups present in the fisheries are represented in the model.

2. The catches that are modeled are catches of “treaty” Chinook which are sometimes less
than the actual total catch in the fishery.

3. The yearly stock and fishery specific catch estimates provided by the PSC Chinook
Model are the partially the result of various model based assumptions. For example,
assumptions underlie the use of CWT indicator stocks and the methods used to scale the
base period exploitation rates.

Notwithstanding these limitations, and with a few additional adjustments, comparisons can be
made between the fishery specific stock composition estimates derived from the PSC Chinook
Model and from Genetic Stock Identification (GSI).

Although the Southeast Alaska AABM fishery consists of troll, net and sport gears, only the
Southeast Alaska troll fishery was chosen for comparison purposes in this paper due to a longer
and more complete time series of GSI data for the troll fishery as compared to the other gears.
PSC Chinook Model stock composition estimates are available from 1979 to the present and GSI
stock composition estimates for the Southeast Alaska troll fishery are available for the years
2001 through 2005. Although stock composition estimates can be obtained from both sources,
some manipulation of the stock composition estimates from the PSC Chinook Model is required
to make them more directly comparable to the estimates derived from GSI. This manipulation is
needed due to the fact the allowable catch of “treaty” Chinook or treaty catch that is actually less
than the total catch of Chinook in the Southeast Alaska troll fishery. Since the GSI stock
composition estimates reflect the composition of the total catch and the PSC Chinook Model
stock composition estimates reflect the composition of the treaty catch, adjustments to the PSC
Chinook Model estimates must be made so that they reflect the composition of the total catch.
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The discrepancy between the treaty catch and the total catch comes from two sources. One
source is from the exclusion of the catch of wild Chinook from the transboundary river systems
of the Taku and Stikine in areas adjacent to these wild systems. The second source is from
something entitled the Alaska Hatchery Addon. The Alaska Hatchery Addon is an increase or
“add-on” to the treaty catch to account for increased Chinook production from Alaska hatcheries
above the level present in 1985 when the original Pacific Salmon Treaty was signed. The Addon
is calculated as a lower 90% one sided confidence limit of the estimated contribution of Alaska
hatchery Chinook based on coded-wire-tags minus the pre-1985 contribution level of
approximately 5,000 Alaska hatchery Chinook. Therefore, adding the wild transboundary
excluded catch and the Alaska Hatchery Addon to the catch composition estimates from the PSC
Chinook Model will provide estimates more directly comparable with the GSI estimates.

The PSC Chinook Model operates on a yearly time step. However, GSI stock composition
estimates for the Southeast Alaska troll fishery were collected from several distinct time periods
during the year. The Southeast Alaska troll fishery operates on an accounting year that stretches
from October 1 of the prior calendar year to September 30 of the current calendar year. The
Early Winter period runs from October to December, the Late Winter period runs from January
to April, the Spring period occurs in May and June and the Summer periods (the are usually 2 or
more) occur from July through September. In order to make the GSI stock composition
estimates from these individual time periods comparable to the model estimates, the period
specific estimates were multiplied by the associated total troll catch from each period and
summed across the year. This effectively weighted the stock composition estimates by the catch
level in each of the time periods.

In order to facilitate comparisons between the PSC Chinook Model stock composition estimates
and the GSI based estimates some aggregation of stocks in both the PSC Chinook Model and the
GSI estimates was necessary due to the lack of one-to-one correspondence between the stocks
from the two methods. This aggregation also had the advantage of producing less cluttered
charts and tables for comparison purposes.
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Table 1. PSC Chinook Model Stocks and Stock Group Aggregations for Comparison Purposes.

PSC Model Stock

Stock Group

Alaska TBR"
Fraser Early
Fraser Late

Fall Cowlitz Hat
Lewis R Wild

Lwr Bonneville Hat
Spr Cowlitz Hat
Spring Creek Hat
Willamette R

Col R Summer
Lyons Ferry

Mid Col R Brights
UpRiver Brights
North/Centr
Oregon Coast
Nooksack Fall
Nooksack Spring
Pgt Sd Fing

Pgt Sd NatF

Pgt Sd Year
Skagit Wild
Snohomish Wild
Stillaguamish Wild
Alaska South SE
Alaska Hatchery®
Georgia St. Lwr Ha
Georgia St. Lwr Na
Georgia St. Upper
Unknown

WA Coastal Hat
WA Coastal Wild
WCVI Hatchery
WCVI Natural

AK/BC Transboundary
Fraser

Fraser

Lower Columbia
Lower Columbia
Lower Columbia
Lower Columbia
Lower Columbia
Lower Columbia
Mid/Upper Columbia
Mid/Upper Columbia
Mid/Upper Columbia
Mid/Upper Columbia
North/Central BC
Oregon Coast
Puget Sound

Puget Sound

Puget Sound

Puget Sound

Puget Sound

Puget Sound

Puget Sound

Puget Sound
Southeast Alaska
Southeast Alaska (H)
Strait of Georgia
Strait of Georgia
Strait of Georgia
Unknown
Washington Coast
Washington Coast
WCVI

WCVI

! Not an actual PSC Chinook Model stock.

31



Table 2. GSI Stocks from 2001-2003 Allozyme-Based Estimates and Stock Group Aggregations

for Comparison Purposes.

Stock Stock Group

AK/BC Transboundary AK/BC Transboundary
California, S. Oregon Coastal California

Central Valley (Sp, F, W) California

Klamath (Sp and F) California

Lower Fraser Fraser

Mid and Upper Fraser Fraser

Thompson River Fraser

Lower Columbia Spring and Fall
Willamette

Mid and Upper Columbia, Snake Sp
Upper Columbia (Su, F), Snake F
Central BC Coastal

Nass

Skeena

Mid and North Oregon Coastal
AK Peninsula

Gulf of Alaska

Kodiak

Susitna

Western AK

Puget Sound

Chilkat

King Salmon River

Southern SE AK

Strait of Georgia

Unknown

Upper Canadian Yukon
Washington Coastal

WCVI

Lower Columbia
Lower Columbia
Mid/Upper Columbia
Mid/Upper Columbia
North/Central BC
North/Central BC
North/Central BC
Oregon Coast

Other Alaska

Other Alaska

Other Alaska

Other Alaska

Other Alaska

Puget Sound
Southeast Alaska
Southeast Alaska
Southeast Alaska
Strait of Georgia
Unknown

Upper Canadian Yukon
Washington Coast
WCVI
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Table 3. GSI Stocks from 2004-2005 Microsatellite-Based Estimates and Stock Group

Aggregations for Comparison Purposes.

Stock Stock Group

Taku River AK/BC Transboundary
Upper Stikine R AK/BC Transboundary
California Coast California

Central Valley Fa California

Central Valley Sp California

Central Valley Wi California

Kalamath R Basin California

Lower Fraser Fraser

Lower Thompson Fraser

Mid Fraser Fraser

North Thompson R Fraser

South Thompson Fraser

Upper Fraser Fraser

Lower Columbia Fa
Lower Columbia Sp
Willamette River
Deschutes R fa

Mid and Upp Columbia
Mid Columbia tule
Snake R fa

Snake River Sp Su
Upp Columbia Su Fa
Central BC Coast
Lower Skeena

Nass River

Upper Skeena

Mid Oregon Coast

North CA, South OR coast

North OR Coast
Rogue River

Hood Canal

Juan de Fuca
North Puget Sound
South Puget Sound
Alsek R

Andrew Creek
Chilkat R

King Salmon

S. Southeast AK
Situk R

East Vancouver
South BC Mainland
Unknown
Washington Coast
West Vancouver

Lower Columbia
Lower Columbia
Lower Columbia
Mid/Upper Columbia
Mid/Upper Columbia
Mid/Upper Columbia
Mid/Upper Columbia
Mid/Upper Columbia
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Figures 1-5 present comparisons of the PSC Chinook Model calibration #0705 and GSI stock
composition estimates for the years 2001 through 2005 respectively. The PSC Chinook Model
estimates were modified to include the Southeast Alaska (H) group that represents the Alaska
Hatchery Addon, the AK/BC Transboundary group that represents the transboundary excluded
catch and an Unknown group that represents the difference between the PSC Chinook Model’s
estimated catch and the treaty catch. This was done so that the catch composition estimates
would represent the total catch in the fishery and would therefore be more directly comparable
with the GSI catch composition estimates. The GSI Model estimates were modified to include
some terminal Alaska hatchery catch that is not sampled for GSI as part of the Southeast Alaska
stock. This hatchery terminal catch only accounts for a few thousand fish per year. The 2001
through 2003 GSI estimates are based on allozyme data and the 2004 to 2005 data are based on
microsatellite data using the GAPS 2.0 baseline.

Table 4 contains the numerical estimates of the Southeast Alaska troll catch by stock as
estimated by the PSC Chinook Model for 2001 to 2005. Tables 5-9 contain the numerical
estimates of the Southeast Alaska troll catch by stock as estimated by GSI for the years 2001 to
2005.
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Figure 1. 2001 PSC Model and GSI Stock Composition Estimates for the SEAK Troll Fishery.
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Figure 2. 2002 PSC Model and GSI Stock Composition Estimates for the SEAK Troll Fishery.
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Figure 3. 2003 PSC Model and GSI Stock Composition Estimates for the SEAK Troll Fishery.
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Figure 4. 2004 PSC Model and GSI Stock Composition Estimates for the SEAK Troll Fishery.
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Figure 5. 2005 PSC Model and GSI Stock Composition Estimates for the SEAK Troll Fishery.
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Table 4. PSC Chinook Model Estimates of the Stock Composition of the Southeast Alaska Troll
Fishery Catch for 2001-2005 from Calibration #0705.

PSC Chinook YEAR
Stock Group Model Stock 2001 2002 2003 2004 2005
Southeast Alaska (H) Alaska Hatchery” 24,588 27,176 23,312 32,724 31,074
Southeast Alaska Alaska South SE 3,781 3,825 3,838 4,795 6,249
AK/BC Transboundary | Alaska TBR® 0 0 0 0 4,288
Mid/Upper Columbia Col R Summer 6,734 14,426 11,833 11,668 12,361
Lower Columbia Fall Cowlitz Hat 495 2,083 4,073 1,967 2,466
Fraser Fraser Early 9,474 19,411 15,622 15,276 15,187
Fraser Fraser Late 148 344 666 392 248
Strait of Georgia Georgia St. Lwr Ha 367 386 400 345 454
Strait of Georgia Georgia St. Lwr Na 84 121 102 107 96
Strait of Georgia Georgia St. Upper 4,499 6,352 7,329 8,706 8,917
Lower Columbia Lewis R Wild 899 2,135 2,789 3,272 1,519
Lower Columbia Lwr Bonneville Hat 0 0 0 0 0
Mid/Upper Columbia Lyons Ferry 216 489 371 470 531
Mid/Upper Columbia Mid Col R Brights 7,240 24,900 27,810 22,176 18,173
Puget Sound Nooksack Fall 34 33 28 20 19
Puget Sound Nooksack Spring 0 0 0 0 0
North/Central BC North/Centr 20,178 25,893 23,953 26,792 27,281
Oregon Coast Oregon Coast 19,727 47,794 45,251 50,238 48,626
Puget Sound Pgt Sd Fing 146 210 169 189 227
Puget Sound Pgt Sd NatF 43 59 43 54 38
Puget Sound Pgt Sd Year 7 9 11 13 17
Puget Sound Skagit Wild 133 153 211 296 280
Puget Sound Snohomish Wild 47 38 63 98 69
Lower Columbia Spr Cowlitz Hat 38 152 248 242 188
Lower Columbia Spring Creek Hat 0 0 0 0 0
Puget Sound Stillaguamish Wild 49 35 46 62 50
Unknown Unknown* 19,100 44,247 45,620 47,781 44,981
Mid/Upper Columbia UpRiver Brights 19,506 48,269 57,079 55,409 54,871
Washington Coast WA Coastal Hat 1,971 3,879 3512 4,187 4,571
Washington Coast WA Coastal Wild 2,778 5,488 5114 6,129 6,247
WCVI WCVI Hatchery 7,098 33,413 42,149 51,206 42,751
WCVI WCVI Natural 978 4,089 4,217 3,946 3,476
Lower Columbia Willamette R 2923 9,898 4,834 6,106 3,182

2 Not present in the PSC Chinook Model. This represents Alaska Hatchery Addon fish.

3 Not present in the PSC Chinook Model. This represents transboundary river excluded fish.

* Not present in the PSC Chinook Model. This is the difference between the number of treaty fish and the fish that
can be accounted for in the model.

40



Table 5. GSI Stock Composition Estimate of Southeast Alaska Troll Fishery Catch for 2001.

Harvest 11,198 11,388 28,250 64,854 30,509 7,081 153,280
Early Late

Region Stock Group Winter Winter Spring Summerl Summer2 Terminal® Total
Central Valley (Sp, F, W) California 0 0 0 363 46 409
California, S. Oregon Coastal California 0 35 0 0 802 838
Klamath (Sp and F) California 0 0 0 590 3 593
Mid and North Oregon Coastal Oregon Coast 228 0 144 15,046 13,561 28,980
Lower Columbia Spring and Fall Lower Columbia 956 288 93 5,545 366 7,249
Willamette Lower Columbia 22 0 0 655 159 836
Mid and Upper Columbia, Snake Sp  Mid/Upper Columbia 0 52 0 830 52 934
Upper Columbia (Su, F), Snake F Mid/Upper Columbia 3,163 1,103 418 8,022 3,832 16,539
Washington Coastal Washington Coast 0 79 192 0 3,621 3,892
Puget Sound Puget Sound 475 814 814 305 2,096 4,503
Lower Fraser Fraser 0 0 0 0 0 0
Thompson River Fraser 50 358 946 10,422 464 12,240
Mid and Upper Fraser Fraser 0 73 737 1,783 296 2,890
Strait of Georgia Strait of Georgia 1,327 1,877 1,701 4,955 580 10,439
WCVI WCVI 847 134 184 8,061 1,724 10,950
Central BC Coastal North/Central BC 862 855 1,503 0 1,336 4,557
Skeena North/Central BC 1,359 2,188 692 2,082 0 6,321
Nass North/Central BC 0 162 302 2,426 0 2,890
AK/BC Transboundary AK/BC Transboundary 0 174 3,037 1,725 0 4,936
Southern SE AK Southeast Alaska 1,632 2,956 16,518 1,342 1,400 7,081 30,929
King Salmon River Southeast Alaska 58 0 0 337 3 399
Chilkat Southeast Alaska 71 0 802 0 168 1,041
Gulf of Alaska Other Alaska 0 130 0 39 0 169
Susitna Other Alaska 148 0 141 0 0 289
Kodiak Other Alaska 0 0 0 0 0 0
AK Peninsula Other Alaska 0 110 28 0 0 139
Western AK Other Alaska 0 0 0 0 0 0
Upper Canadian Yukon Upper Canadian Yukon 0 0 0 337 0 337
Unknown Unknown -1 -1 -3 -13 0 -18

> Terminal catch of Alaska hatchery Chinook. No GSI sampling but assumed to be 100% Alaska hatchery fish.
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Table 6. GSI Stock Composition Estimate of Southeast Alaska Troll Fishery Catch for 2002.

Harvest 17,152 12,237 37,610 187,003 65,266 6,040 325,308
Early Late

Region Stock Group Winter Winter Spring Summerl Summer2 Terminal® Total
Central Valley (Sp, F, W) California 0 34 0 991 0 1,025
California, S. Oregon Coastal California 1,235 116 263 1,346 633 3,594
Klamath (Sp and F) California 334 37 0 0 0 371
Mid and North Oregon Coastal Oregon Coast 518 124 282 21,711 17,994 40,629
Lower Columbia Spring and Fall Lower Columbia 580 1 0 12,024 1,096 13,702
Willamette Lower Columbia 244 274 0 842 398 1,757
Mid and Upper Columbia, Snake Sp  Mid/Upper Columbia 328 318 260 9,144 2,350 12,399
Upper Columbia (Su, F), Snake F Mid/Upper Columbia 5,240 2,024 1,395 34,970 19,227 62,856
Washington Coastal Washington Coast 0 306 327 36,858 10,351 47,843
Puget Sound Puget Sound 3,135 568 801 5,030 5,091 14,625
Lower Fraser Fraser 0 297 0 0 0 297
Thompson River Fraser 377 1,296 3,359 21,767 176 26,975
Mid and Upper Fraser Fraser 0 135 60 2,356 646 3,197
Strait of Georgia Strait of Georgia 2,583 1,308 1,689 4,750 4,895 15,225
WCVI WCVI 0 1,712 2,802 9,406 0 13,920
Central BC Coastal North/Central BC 1,221 1,273 2,129 4,395 0 9,017
Skeena North/Central BC 398 126 940 8,770 463 10,698
Nass North/Central BC 0 379 87 0 209 675
AK/BC Transboundary AK/BC Transboundary 0 549 1,493 0 796 2,839
Southern SE AK Southeast Alaska 849 1,245 21,378 11,632 764 6,040 41,906
King Salmon River Southeast Alaska 0 0 0 0 0 0
Chilkat Southeast Alaska 0 55 11 524 0 590
Gulf of Alaska Other Alaska 0 28 0 0 0 28
Susitna Other Alaska 0 0 0 0 0 0
Kodiak Other Alaska 0 0 0 0 0 0
AK Peninsula Other Alaska 0 0 229 505 0 734
Western AK Other Alaska 0 0 113 0 0 113
Upper Canadian Yukon Upper Canadian Yukon 41 33 0 0 0 74
Unknown Unknown 69 -1 -8 -19 176 217

6 See footnote 4.
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Table 7. GSI Stock Composition Estimate of Southeast Alaska Troll Fishery Catch for 2003.

Harvest 18,672 32,182 35,435 240,577 0 3,826 330,692
Early Late

Region Stock Group Winter Winter Spring Summerl Summer2 Terminal’ Total
Central Valley (Sp, F, W) California 665 0 0 0 0 665
California, S. Oregon Coastal California 1,122 1,242 188 2,646 0 5,199
Klamath (Sp and F) California 0 0 967 0 0 967
Mid and North Oregon Coastal Oregon Coast 0 592 996 31,612 0 33,200
Lower Columbia Spring and Fall Lower Columbia 1,539 3,241 549 8,949 0 14,278
Willamette Lower Columbia 1,453 1,619 0 0 0 3,071
Mid and Upper Columbia, Snake Sp  Mid/Upper Columbia 288 257 273 1,877 0 2,694
Upper Columbia (Su, F), Snake F Mid/Upper Columbia 3,320 8,091 1,403 49,030 0 61,843
Washington Coastal Washington Coast 0 245 677 15,758 0 16,679
Puget Sound Puget Sound 1,223 1,429 532 1,419 0 4,603
Lower Fraser Fraser 0 978 0 3,055 0 4,034
Thompson River Fraser 1,042 2,230 2,746 30,818 0 36,836
Mid and Upper Fraser Fraser 0 544 0 0 0 544
Strait of Georgia Strait of Georgia 2,476 1,924 220 11,067 0 15,687
WCVI WCVI 164 2,945 2,523 34,114 0 39,746
Central BC Coastal North/Central BC 0 2,771 3,753 15,204 0 21,728
Skeena North/Central BC 508 2,176 0 7,723 0 10,406
Nass North/Central BC 0 0 0 5,942 0 5,942
AK/BC Transboundary AK/BC Transboundary 0 0 3,051 7,097 0 10,148
Southern SE AK Southeast Alaska 4,188 1,262 16,807 10,922 0 3,826 37,005
King Salmon River Southeast Alaska 0 0 0 0 0 0
Chilkat Southeast Alaska 0 0 0 409 0 409
Gulf of Alaska Other Alaska 284 357 0 0 0 641
Susitna Other Alaska 405 0 0 0 0 405
Kodiak Other Alaska 0 0 0 0 0 0
AK Peninsula Other Alaska 0 167 50 217 0 433
Western AK Other Alaska 0 0 106 0 0 106
Upper Canadian Yukon Upper Canadian Yukon 0 0 595 1,492 0 2,087
Unknown Unknown -4 113 0 1,227 0 1,336

7 See footnote 4.

43



Table 8. GSI Stock Composition Estimate of Southeast Alaska Troll Fishery Catch for 2004.

Harvest 12,686 40,200 55,193 194,045 50,937 1,603 354,664
Early Late

Region Stock Group Winter Winter Spring Summerl Summer2 Terminal® Total
Central Valley Fa California 0 0 0 524 0 524
Central Valley Sp California 0 0 0 349 0 349
Central Valley Wi California 0 0 0 0 0 0
California Coast California 0 0 0 0 0 0
Kalamath R Basin California 0 0 0 0 0 0
North CA, South OR coast Oregon Coast 0 0 79 407 0 486
Rogue River Oregon Coast 0 0 0 155 0 155
Mid Oregon Coast Oregon Coast 157 655 476 14,534 7,365 23,188
North OR Coast Oregon Coast 0 181 823 20,297 7,432 28,733
Lower Columbia Sp Lower Columbia 270 84 0 0 372 726
Lower Columbia Fa Lower Columbia 464 860 430 7,839 1,885 11,479
Willamette River Lower Columbia 594 2,299 0 2,445 1,228 6,566
Mid Columbia tule Mid/Upper Columbia 207 0 0 310 0 517
Mid and Upp Columbia Mid/Upper Columbia 0 0 0 0 0 0
Deschutes R fa Mid/Upper Columbia 0 113 111 2,988 0 3,212
Upp Columbia Su Fa Mid/Upper Columbia 4,311 3,863 2,779 36,985 10,014 57,952
Snake R fa Mid/Upper Columbia 105 245 381 1,455 662 2,849
Snake River Sp Su Mid/Upper Columbia 98 0 0 0 138 235
Washington Coast Washington Coast 122 334 1,100 22,393 9,271 33,219
Hood Canal Puget Sound 0 0 288 0 0 288
South Puget Sound Puget Sound 0 0 0 0 0 0
North Puget Sound Puget Sound 1,081 764 314 1,611 509 4,278
Juan de Fuca Puget Sound 108 551 0 427 0 1,085
Lower Fraser Fraser 0 0 60 0 148 208
Lower Thompson Fraser 0 0 0 0 0 0
South Thompson Fraser 207 3,015 2,783 16,668 2,644 25,317
North Thompson R Fraser 0 117 0 485 138 739
Mid Fraser Fraser 0 0 168 1,591 10 1,769
Upper Fraser Fraser 98 0 65 175 0 337

8 See footnote 4.
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Table 8. Continued.

Harvest 12,686 40,200 55,193 194,045 50,937 1,603 354,664
Early Late

Region Stock Group Winter Winter Spring Summerl Summer2 Terminal® Total
East Vancouver Strait of Georgia 742 1,013 1,500 3,997 565 7,817
West Vancouver WCVI 1,271 15,545 6,808 36,907 4,350 64,882
South BC Mainland Strait of Georgia 0 354 421 1,688 0 2,463
Central BC Coast North/Central BC 1,237 2,090 456 1,591 586 5,960
Lower Skeena North/Central BC 655 900 63 970 132 2,720
Upper Skeena North/Central BC 58 539 298 582 372 1,849
Nass River North/Central BC 43 539 585 0 458 1,626
Upper Stikine R AK/BC Transboundary 96 571 2,631 1,417 204 4,919
Taku River AK/BC Transboundary 0 1,435 5,185 407 0 7,027
S. Southeast AK Southeast Alaska 507 2,661 7,758 6,772 1,711 1,603 21,013
Andrew Creek Southeast Alaska 256 1,471 19,224 8,053 677 29,682
King Salmon Southeast Alaska 0 0 0 0 0 0
Chilkat R Southeast Alaska 0 0 408 0 0 408
Alsek R Southeast Alaska 0 0 0 0 76 76
Situk R Southeast Alaska 0 0 0 0 0 0
Unknown Unknown -1 0 0 19 -10 8

? See footnote 4.
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Table 9. GSI Stock Composition Estimate of Southeast Alaska Troll Fishery Catch for 2005.

Harvest 12,982 37,479 53,986 151,555 75,725 4,446 2,264 338,437
Early Late

Region Stock Group Winter Winter Spring Summerl Summer2 TBR Terminal®® Total
Central Valley Fa California 0 0 0 0 0 0 0
Central Valley Sp California 0 0 0 0 159 0 159
Central Valley Wi California 0 0 0 0 0 0 0
California Coast California 0 0 0 333 0 0 333
Kalamath R Basin California 0 0 0 0 0 0 0
North CA, South OR coast Oregon Coast 0 0 0 0 0 0 0
Rogue River Oregon Coast 0 0 0 0 0 0 0
Mid Oregon Coast Oregon Coast 178 322 180 13,716 5,339 0 19,735
North OR Coast Oregon Coast 197 90 228 20,975 11,253 0 32,743
Lower Columbia Sp Lower Columbia 205 0 77 0 0 0 282
Lower Columbia Fa Lower Columbia 73 424 0 5,047 2,143 30 7,716
Willamette River Lower Columbia 251 1,612 189 1,682 333 33 4,100
Mid Columbia tule Mid/Upper Columbia 40 0 0 0 0 0 40
Mid and Upp Columbia Mid/Upper Columbia 0 49 69 0 8 0 126
Deschutes R fa Mid/Upper Columbia 86 124 74 3,986 1,863 0 6,132
Upp Columbia Su Fa Mid/Upper Columbia 3,296 3,152 1,483 29,189 23,876 252 61,248
Snake R fa Mid/Upper Columbia 34 0 220 2,122 1,780 51 4,206
Snake River Sp Su Mid/Upper Columbia 30 0 74 121 0 0 225
Washington Coast Washington Coast 121 881 320 14,686 8,792 0 24,799
Hood Canal Puget Sound 0 0 80 409 0 0 489
South Puget Sound Puget Sound 122 266 0 0 45 33 467
North Puget Sound Puget Sound 698 420 220 3,562 394 8 5,301
Juan de Fuca Puget Sound 134 127 155 0 0 0 416
Lower Fraser Fraser 217 124 0 394 833 0 1,567
Lower Thompson Fraser 0 0 4 0 0 0 4
South Thompson Fraser 90 855 1,768 16,792 6,217 0 25,721
North Thompson R Fraser 32 0 104 0 0 0 136
Mid Fraser Fraser 151 0 0 0 212 0 363
Upper Fraser Fraser 60 0 0 0 0 0 60

10 See footnote 4.
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Table 9. Continued.

Harvest 12,982 37,479 53,986 151,555 75,725 4,446 2,264 338,437
Early Late

Region Stock Group Winter Winter Spring Summerl Summer2 TBR Terminal'' Total
East Vancouver Strait of Georgia 853 1,533 1,369 3,849 1,355 66 9,026
West Vancouver WCVI 1,458 16,330 12,218 11,154 7,360 367 48,887
South BC Mainland Strait of Georgia 96 131 346 0 424 0 997
Central BC Coast North/Central BC 1,907 4,936 2,845 1,137 931 95 11,851
Lower Skeena North/Central BC 0 768 1,260 2,895 0 231 5,154
Upper Skeena North/Central BC 123 0 255 576 0 0 954
Nass River North/Central BC 164 0 336 606 318 93 1,517
Upper Stikine R AK/BC Transboundary 216 0 3,305 152 386 1,140 5,198
Taku River AK/BC Transboundary 92 1,529 4,115 591 220 749 7,296
S. Southeast AK Southeast Alaska 1,415 2,878 9,821 13,443 977 879 2,264 31,678
Andrew Creek Southeast Alaska 641 929 12,525 4,137 492 420 19,145
King Salmon Southeast Alaska 0 0 0 0 0 0 0
Chilkat R Southeast Alaska 0 0 216 0 0 0 216
Alsek R Southeast Alaska 0 0 74 0 0 0 74
Situk R Southeast Alaska 0 0 51 0 0 0 51
Unknown Unknown 4 0 6 0 15 0 24

' See footnote 4.
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Table 10. Side by Side comparison of Yearly PSC Chinook Model and GSI Catch Composition Estimates for the Southeast Alaska Troll Fishery
from 2001 to 2005.

PSC Chinook Model Catch Composition Estimates. GSI Catch Composition Estimates.

Stock Group 2001 2002 2003 2004 2005 2001 2002 2003 2004 2005
AK/BC Transboundary 0 0 0 0 4,288 4,936 2,839 | 10,148 | 11,946 | 12,495
California 1,840 4,991 6,831 873 492
Fraser 9,622 | 19,755 | 16,288 | 15,668 | 15,435 | 15,130 | 30,470 | 41,414 | 28,371 | 27,851
Lower Columbia 4,355 | 14,268 | 11,944 | 11,587 7,355 8,085 | 15459 | 17,349 | 18,771 | 12,098
Mid/Upper Columbia 33,697 | 88,085 | 97,093 | 89,723 | 85936 | 17,474 | 75,255 | 64,538 | 64,765 | 71,977
North/Central BC 20,178 | 25,893 | 23,953 | 26,792 | 27,281 | 13,767 | 20,390 | 38,076 | 12,155 | 19,476
Oregon Coast 19,727 | 47,794 | 45,251 | 50,238 | 48,626 | 28,980 | 40,629 | 33,200 | 52,562 | 52,478
Other Alaska 597 875 1,586

Puget Sound 458 537 571 731 701 4,503 | 14,625 4,603 5,652 6,673
Southeast Alaska 3,781 3,825 3,838 4,795 6,249 | 32,369 | 42,496 | 37,414 | 51,179 | 51,163
Southeast Alaska (H) 24,588 | 27,176 | 23,312 | 32,724 | 31,074

Strait of Georgia 4,950 6,859 7,831 9,157 9,467 | 10,439 | 15,225 | 15,687 | 10,280 | 10,023
Unknown™? 19,100 | 44,247 | 45,620 | 47,781 | 44,981 -18 217 1,336 8 24
Upper Canadian Yukon 337 74 2,087

Washington Coast 4,748 9,367 8,627 | 10,316 | 10,817 3,892 | 47,843 | 16,679 | 33,219 | 24,799
WCVI 8,076 | 37,502 | 46,366 | 55,152 | 46,227 | 10,950 | 13,920 | 39,746 | 64,882 | 48,887
Grand Total 153,280 325,308 330,692 354,664 338,437 | 153,280 | 325,308 | 330,692 | 354,664 | 338,437

12 The Unknown component from the PSC Chinook Model is due to factors such as unrepresented stock groups or poor choices for CWT indicator stocks. However, the
Unknown category for GSI estimates is due to the inability to assign all fish in a sample to a stock group.
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Table 11. Absolute and Relative Deviations of the Yearly PSC Chinook Model from the GSI Catch Composition Estimates for the Southeast
Alaska Troll Fishery from 2001 to 2005.

Deviation of PSC Model from GSI. Relative Deviation of PSC Model from GSI.

Stock Group 2001 2002 2003 2004 2005 2001 2002 2003 2004 2005
AK/BC Transboundary -4,936 -2,839 | -10,148 | -11,946 -8,206 -100% -100% -100% -100% -66%
California NA NA NA NA NA NA NA NA NA NA
Fraser -5,508 | -10,715| -25,126 | -12,703 | -12,417 -36% -35% -61% -45% -45%
Lower Columbia -3,729 -1,191 -5,406 -7,185 -4,743 -46% -8% -31% -38% -39%
Mid/Upper Columbia 16,223 12,829 32,555 24,959 13,959 93% 17% 50% 39% 19%
North/Central BC 6,411 5,503 | -14,123 14,637 7,805 47% 27% -37% 120% 40%
Oregon Coast -9,253 7,166 12,051 -2,325 -3,852 -32% 18% 36% -4% -7%
Other Alaska NA NA NA NA NA NA NA NA NA NA
Puget Sound -4,045 | -14,088 -4,032 -4,920 -5,972 -90% -96% -88% -87% -89%
Southeast Alaska®® -4,000 | -11,495| -10,263 | -13,659 | -13,840 -12% -27% -27% -27% -27%
Strait of Georgia -5,489 -8,365 -7,856 -1,124 -556 -53% -55% -50% -11% -6%
Unknown™*

Upper Canadian Yukon NA NA NA NA NA NA NA NA NA NA
Washington Coast 856 | -38,476 -8,053 | -22,903 | -13,982 22% -80% -48% -69% -56%
WCVI -2,874 23,581 6,620 -9,730 -2,661 -26% 169% 17% -15% -5%

Summary:

The PSC Chinook Model was not originally intended to produce total catch composition estimates for the fisheries present in the model.

However, with the addition of auxiliary information on the magnitude of the Alaska Hatchery Addon and the magnitude of Transboundary river
exclusion catches comparisons can be made between the catch compositions from the PSC Chinook Model and GSI estimates in the Southeast
Alaska troll fishery. Due to an incomplete representation of stocks in the model, the use of potentially inappropriate CWT indicator stocks and
other factors the stock composition estimates from the PSC Chinook Model has a fairly large unknown component. Given the shortcomings of the
model the comparisons between the model estimates and the GSI estimates were surprisingly similar, although there were some consistent biases
for several stock groups. The Fraser, Lower Columbia and Puget Sound stock groups were consistently underestimated and the Mid/Upper
Columbia stock group was consistently over-estimated by the PSC Chinook Model.

" The deviations for the Southeast Alaska stock were computed using the combination of the Southeast Alaska and Southeast Alaska (H) stocks.
'* Comparisons for the Unknowns from the PSC Chinook Model and from GSI were not made due to the disparate nature of the Unknowns from these two methods.
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2.2 The CTC model assumes that exploitation rates estimated from CWT data for hatchery
stocks adequately represent the exploitation rates on wild stocks. How can GSI data be
used to evaluate or avoid this assumption?

No analysis undertaken.

2.3 Incidental Mortality
Robert Kope

Management of mixed-stock ocean salmon fisheries for Chinook and coho salmon is based on
total mortality. This includes both landed catch and incidental mortality. Incidental mortality in
salmon fisheries is mortality resulting from fishing activity, but not landed as catch. This
includes fish brought to the boat (encounters), but released or discarded because of their size,
species, or mark status (discards), as well as fish that die as the result of encountering fishing
gear without being brought to the boat because they escape from the gear, or are removed by
predators (dropoffs/dropouts).

Dropoff/Dropout

Dropoff and dropout mortality is currently assumed to have the same stock composition as that
of encountered fish in the same fishery, and is calculated as a fraction of total encounters. This
fraction depends on gear and location and is based on observations were these data are available.
Where no observational data specific to a fishery are available, default, agreed upon, gear—
specific rates are used. Because fish escape from gear unobserved, and most fish removed from
gear by predators are also unobserved, there is a good deal of uncertainty about the magnitude of
dropoff/dropout mortality. However, there is no reason to suspect that the stock composition of
this mortality should differ from that of encountered fish. Further, because these fish escape the
gear before they are brought to the boat, there is no opportunity to collect tissue samples, and
thus no way for GSI to provide additional information about stock composition. The same
cannot be said of discards.

Discards

Fish may be discarded because they are undersized (shakers), regulations do not permit retention
of the species, or they are unmarked fish in a mark-selective fishery. Regardless of the type of
discards, similar problems are encountered in estimating the incidental mortality associated with
discards. In order to account for discard mortality, estimates are needed for the total amount of
discard, the discard mortality rate, and the stock/age composition of the mortalities.

Currently, a variety of methods are used to estimate the total amount of discard. All methods for
estimating shaker mortality depend on a discard rate applied to landed catch. The rate may be
based on direct estimates from observer programs, reported discards from logbooks, rates in
similar fisheries, or historic average rates which may, or may not, be scaled to account for
current abundance. Discard mortality is then estimated by multiplying total discards by the
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release mortality rate. Release mortality rates are gear specific and are based on studies that
have been done over several decades. The estimates of discard mortality must then be allocated
to the stocks. The current model structure requires that it also be attributed to cohorts within the
stocks.

Historically, there has been no means to routinely estimate stock composition of discards. With
CWT programs, information is only provided for marked stocks, and recovery of that
information requires lethal sampling. Alternatively, it would be possible to apply tags to
released fish and use terminal area recoveries to estimate the stock composition of releases. This
type of marking program was carried out in high seas fisheries under the International North
Pacific Fisheries Commission, but it is a very expensive methodology because of the cost of
tagging at sea, and low tag recovery rates. The cost precludes its use for routine stock
composition estimates.

Currently, estimates of stock composition of discards are derived from harvest models, and
depend on numerous assumptions (CTC 2004). For shakers, the PSC Chinook model allocates
sub-legal mortality based on the relative abundance of sub-legal fish in all stocks that contribute
to the landed catch in a fishery. This scheme for allocation of sub-legal impacts implicitly
assumes that sub-legal fish from each stock that has a non-zero catch in the fishery are equally
vulnerable to the fishery regardless of the stock-specific exploitation rates of legal-sized fish in
that fishery. Encounter rate studies in Southeast Alaska troll fisheries using GSI have
demonstrated problems with this allocation scheme.

Several methods are currently used to estimate the amount of discard in non-retention fisheries.
The choice of method usually depends on the data available. Methods used include: direct input
of discards estimated by observer programs, the ratio of effort in non-retention periods to that in
periods of legal retention, the ratio of days open to non-retention to that of legal retention,
observed encounter rates of legal sized fish during periods of non-retention, and the use of a
calculated catchability coefficient when there is no legal retention. Regardless of the method for
estimating discards, they are assumed to have the same stock composition as that of landed
catch.

Application of GSI

The PSC Chinook model currently does not have the capability of assessing impacts of mark-
selective fisheries. Model-based methods to allocate incidental mortality to stock are not likely
to perform well because the underlying premise of mark-selective fisheries is that the fish
released have a different stock composition than those retained. With CWTs, information is only
available for landed catch.

GSI offers a method for obtaining direct estimates of the stock composition of discards that do
not rely on the assumptions of the current methods. However, this would either require
fishermen to collect tissue samples or on-board observers to collect tissue samples from released
fish. Observer programs would offer the additional benefit of allowing direct estimates of
discard rates to provide better estimates of total discards, but would be expensive to conduct.
Alternatively, tissues could be collected by fishermen, and logbooks could be used to estimate
discard rates. This would be less expensive, but the data may be less reliable.
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Either way, GSI alone can only provide estimates of the stock composition of the discard
component of incidental mortality. It cannot provide information on the age composition, or
improve estimates of release mortality rates.

Literature cited

Chinook Technical Committee. 2004. Estimation and application of incidental fishing mortality
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TCCHINOOK (04)-1. Pacific Salmon Commission, Vancouver.
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2.4  How can GSI Data Be Used to Improve Estimates of the Underlying Stock
Distribution Over Space and Time?

Peter Lawson

The CTC model assumes that the underlying distribution of stocks is consistent over time. A
baseline distribution estimated from CWT recoveries (and a variety of other factors) is used as
the starting point for estimating fishery impacts. In order to collect enough CWT recoveries to
estimate the distributions of all stocks of interest, data from a number of years is combined.
Spatial resolution is by area of catch (10 — 200 km) and temporal resolution in the Chinook
model is 3 months. Collection of the data is fishery-dependent, and assumes constant
distributions over years.

GSI has the potential to improve our estimates of stock distributions, and test some of the
assumptions of CWT-based estimates. The principal advantage of GSI is that it enables stock
proportions to be estimated from smaller samples than required for CWTs because information
can be obtained from each fish sampled. A sample of a few hundred fish (exact sample sizes for
specific applications to be determined) should be sufficient to determine stock composition, and
can be collected from a closely defined area over a short period of time.

GSI does not provide age data. Ages can be read from scales, but there is some question whether
scales can be read accurately enough for use in cohort analysis. It may be that scales from ocean
fisheries are useful, but scales from terminal runs taken after the resorption process has begun
cannot be used reliably. At the very least, age compositions derived from CWT data could be
applied to the GSI stock proportions to arrive at a stock-specific age distribution.

The GSI data collected in this way are no different from CWT data in their fishery-dependence.
However, there is the potential for survey fisheries to collect fishery-independent data in a way
that is not feasible with CWTs. Again, this stems from the ability to obtain stock information
from every fish sampled, rather than from the roughly 5% of fish marked with CWTs.

Sampling at a much finer spatio-temporal scale, utilizing GPS locations to map the fishing effort
and location of each fish caught, is being conducted by the CROOS project in Oregon. Data at
this scale are not necessary for fishery management as implemented by the PSC, but could be
useful for local efforts to respond rapidly to the movement of sensitive stocks.

Although GSI does not solve all the problems of estimating stock distribution, it gives us the
ability to measure stock composition of fish at smaller time and space scales than is feasible with
CWTs. We could then test the assumption that stock composition is constant from year to year,
and potentially map migration patterns at monthly or finer time scales and 10-50 km spatial
scales. This can be done with fishery-dependent sampling as in the current CWT program, or
with a combination of fishery-dependent and fishery-independent sampling. Age compositions
can potentially be derived from CWT data. Some error may be introduced into the stock
identifications relative to the CWT ids which are (more or less) absolute. Some stocks will be
harder to id with GSI than with CWTs. By and large, a considerable improvement in the
resolution of stock composition and distribution data should be achievable using GSI in
combination with scale analysis and CWT recoveries.
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The CROOS pilot project in 2006 provides some insight into the potential for determining fine-
scale changes in stock distributions using GSI. It also highlights some of the limitations and
problems with this approach. This was treated in considerable detail in the Genetics section of
the 2006 annual report.
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2.5.1 Use of Improved Stock Distribution Information From GSI Data for InSeason
Fishery Management.

Brain Riddell

<See Power Point from Brian Ridell, Sept. 12, 2007>

55



2.5.2 Alternative Management Strategies
Gary Morishima

Current management of chinook and coho salmon is based primarily on stock-age-fishery
specific estimates of exploitation rates derived from cohort analysis of CWT data. An alternative
management approach that would constrain fishery mortalities on specific groups of fish may
warrant investigation.

Harvest managers covet flexibility as they strive to increase social benefits from fishing while
constraining impacts on stocks of concern to acceptable levels. Interest has been high in
gathering GSI data to establish an information base to help “shape” fisheries. For example, GSI
data have been used to manage the West Coast Vancouver Island (WCVI) troll fishery to limit
impacts on depressed WCVI, Fraser River, and Lower Strait of Georgia stocks to a pre-
determined level. The CROOS project is intended to provide data to help shape Northern
California and Central Oregon ocean fisheries to minimize impacts on Klamath fall chinook.

Information presented at the GSI workshop indicated that assignment error can be reduced
through the use of reporting groups. Basically, aggregation takes advantage of the fact that stock
assignment error is likely largest with stocks with similar genetic profiles. Aggregation would
reduce uncertainty of contributions for larger stock groups, but would leave the manager without
information regarding impacts on individual stocks that might be of particular concern, most
likely a problem for stocks which comprise a small proportion of the catch.

The increased reliability of aggregated reporting groups for GSI-based data could be integrated
into a management strategy that incorporates variable resolution into its structure. For instance,
it may be feasible to employ a high degree of aggregation in instances where the proportion of
the sampled population accounted for by individual stocks is small due to distribution and then
disaggregate where the proportion increases or where greater resolution might be possible
through the use of a more detailed local GSI baseline. Such an approach would accommodate
greater uncertainty where stock-specific impacts would be expected to be of least concern.

An approach that might be employed to constrain impacts on stocks of concern using planning
models, CWT experiments, and GSI data is outlined below for consideration.

. Use planning models (e.g., CTC Model, Chinook FRAM) to forecast stock compositions
in major fisheries.

. Aggregate contributions of stocks which would comprise a small proportion of the catch.

. Estimate mortalities of stock (groups) allowable under agreed coastwide fishing regimes.

. Convert these mortalities into landed catch (or encounters for non-retention, size limit, or

mark selective fishing) constraints

. Allow harvest managers the flexibility to shape fisheries in the manner of their choosing
so long as the morality constraints are not exceeded.
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. In-season monitoring and fishery regulation would be based on data collected from an in-
season GSI sampling program designed to estimate contributions of the selected stock
(groups) with acceptable accuracy and precision.

. Evaluate cumulative effects across fisheries through CWT-based cohort analysis on
appropriate indicator stocks.

A simulation study, incorporating errors from important sources (e.g., sampling, stock-age

misassignment and unassigned fish, uncertainty in catch or escapements, etc.) could provide
insight into likely performance of this alternative management strategy.
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2.6.1 Stock Assignment Error
Gary Morishima

A strength of CWT data is that individual recoveries of CWT’d fish can be assigned to a specific
release group with very little chance of error. With GSI microsatellite methods, the ability to
determine the origin of fish depends on a variety of factors, including genetic homogeneity
within a population of interest, genetic heterogeneity between populations of interest in the GSI
baseline, and the methods employed (e.g., loci, analysis algorithms). It is useful to examine
uncertainty associated with GSI microsat results in terms of two general concepts described by
Ken Warheit (WDFW) at the GSI Workshop: Confidence and Power.

Confidence is the probability that a fish from a specific population will be correctly
assigned to that population.

Power is the probability that a fish assigned to a specific population is actually from that
population.

Mathematically, if the notation P(J|I) represents the probability that a fish from stock I is
assigned to stock J, then Confidence = P(I]I). The assignment probability for a fish from a given
stock can be characterized as an assignment vector. For a given stock, with no assignment error
Confidence = 1 and P(J|I) =0 for J# 1.

Power depends on both the assignment probability vectors for the stocks that are in the sample
and the relative sizes of those stocks.

_ sp(H)*PCl[T)
Pwr(l)—zsp(J)*P(lp) (1)
J

where sp(I) = the proportion of the sample comprised of stock I.
When the sample is comprised only of fish from the baseline stocks and when the Confidence

for all stocks =1, then the Power =1 for all stocks. In this case, stock assignment error = 0.
Otherwise, for at least one stock, Power < 1 and stock assignment error results.

With GSI microsatellite methods, the usual objective of the analysis is to estimate stock
proportions in a given fishery sample. Ken Warheit’s presentation at the GSI Workshop
indicated that the probabilities for stock assignment error can be expected to vary for the stocks
in the current GAPs GSI Baseline. In the presence of assignment error, the estimated proportion
of the sample comprised of a given stock EstP(l) is:

EStP(I):ZSp(J)*P(I [J) (2)
J
This is simply the denominator for the calculation of Power in equation (1).

58



For stock(I), EstP(l) incorporates two types of errors: (A) the probability that a fish from
Stock(I) is incorrectly assigned to another stock; and (B) the probability that a fish from another
stock is incorrectly assigned to Stock(I), which may partially offset one another. Both types of
errors can have serious consequences for management because they can lead to over/under
estimation of fishery impacts. For instance, if a stock that comprises a large proportion of the
sample has even a small probability of misassignment to a small stock of conservation concern,
such as one listed under the Endangered Species Act, action may be taken to constrain the
fishery inappropriately even if the real impact on the ESA stock is much smaller.

The true error in the estimate of the contribution for stock | is:
TrueError(l) = P(I|I)—1 =Conf(l)-1

Effects of assignment error on apparent sample compositions

The following example illustrates the concepts described above using a 5-stock baseline.

o The top portion depicts the Assignment matrix (the probability of a fish from one stock
being assigned to other stocks in the baseline); the italicized values along the decreasing
diagonal represent the Conf(l).

o The leftmost column in the middle portion of the example indicated the true proportion of
the sample comprised of each of the stocks.

o The matrix in the middle portion of the example shows the resulting proportions assigned
to each stock.

o “GSI” represents the GSI-estimate of sample composition.

o “Power” represents the probability that a fish assigned to a given stock is really from that
stock.

. “AppRelativeError” is the (GSI- True stock proportion)/True stock proportion.

. “TrueRelativeError” is the (Proportion of the sample composition which is assigned to

the correct stock — True stock proportion)/True stock proportion = Conf(1)-1.
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Example 1(A)

STOCK ASSIGNMENT MATRIX
FROM\TO A B C D E
A 0.90 0.05 0.03 0.00 0.02
B 0.05 0.80 0.05 0.05 0.05
C 0.00 0.20 0.70 0.00 0.10
D 0.50 0.00 0.00 0.50 0.00
E 0.10 0.10 0.10 0.10 0.60
TruePro
0.2400 A 0.2160 | 0.0120 | 0.0072 | 0.0000 | 0.0048
0.1000 B 0.0050 | 0.0800 | 0.0050 | 0.0050 | 0.0050
0.5000 C 0.0000 | 0.1000 | 0.3500 | 0.0000 | 0.0500
0.1500 D 0.0750 | 0.0000 | 0.0000 | 0.0750 | 0.0000
0.0100 E 0.0010 | 0.0010 | 0.0010 | 0.0010 | 0.0060

1.0000 GSI 0.2970 | 0.1930 | 0.3632 | 0.0810 | 0.0658
Power 0.7273 1 0.4145 | 0.9637 | 0.9259 | 0.0912

AppRelative Error | 23.8% | 93.0% | 27.4% | 46.0% | 558.0%

TrueRelativeError | 10.0% | 20.0% | 30.0% | 50.0% | -40.0%

In this example, the AppRelativeError is substantial, ranging from -46% to +558%, even with a
90% confidence for the largest stock. Thus, serious bias can be introduced into estimates of the
contribution of small stocks. The magnitude and direction of the apparent relative error depends
on the true composition of the sampled population. In example 1(B) the proportions of the
sample comprised of stocks B and C are switched. Note that in this case, the direction of the
apparent relative errors for stocks B and C are reversed.
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Example 1(B).
ASSIGNMENT MATRIX
FROM\TO A B C D E

A 0.90 0.05 0.03 0.00 0.02

B 0.05 0.80 0.05 0.05 0.05

C 0.00 0.20 0.70 0.00 0.10

D 0.50 0.00 0.00 0.50 0.00

E 0.10 0.10 0.10 0.10 0.60

TruePro

0.2400 A 0.2160 | 0.0120 | 0.0072 | 0.0000 | 0.0048
0.5000 B 0.0250 | 0.4000 | 0.0250 | 0.0250 | 0.0250
0.1000 C 0.0000 | 0.0200 | 0.0700 | 0.0000 | 0.0100
0.1500 D 0.0750 | 0.0000 | 0.0000 | 0.0750 | 0.0000
0.0100 E 0.0010 | 0.0010 | 0.0010 | 0.0010 | 0.0060
1.0000 GSI 0.3170 | 0.4330 | 0.1032 | 0.1010 | 0.0458
Power 0.6814 | 0.9238 | 0.6783 | 0.7426 | 0.1310
AppRelative Error | 32.1% | 13.4% | 3.2% | 32.7% | 358.0%
TrueRelativeError | 10.0% | 20.0% | 30.0% | 50.0% | -40.0%

This example is not to be interpreted as a real-life situation, but rather is intended illustrates the
challenges confronting the use of GSI to provide data for estimation of stock composition or
cohort analysis in the presence of stock assignment error.

The difficulty, of course, is that the magnitude and direction of stock assignment error cannot be
determined without information on the {sp(J)}, the true stock proportions present in the sample.

The challenge is to find methods to either adjust for stock assignment error or establish criteria
that can reliably determine when estimates of stock composition are unreliable.

A Method to Estimate Sample Compositions
From Apparent Sample Compositions in the Presence of Assignment Error?

With the GAPs baseline, Ken demonstrated that the ability to assign fish to its correct population
cannot reasonably be assumed to be perfect. The example presented above indicates that the
failure to correct for misassignment can result in substantial errors. A means to overcome the
effects of stock and age assignment errors is necessary to estimate true contributions to a fishery
stratum.

A simple optimization procedure can be used to estimate the stock proportions in a sample from
the assignment matrix and GSI estimates of compositions which include assignment error,
provided that the fish in the sample reflect the same variability within and between stock groups
represented by the fish in the baseline.
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The assignment matrix consists of stock-specific vectors of probabilities of assignment to stocks
included in a GSI baseline. The GSI estimates of compositions reflect the results of the
assignment matrix and the true proportions of the populations.

The optimization Model: find the stock proportions {Sp(J)} such that:

minZ[GSI(I)—Zsp(J)*P(I \J)}

where GSI(I) is the estimated proportion of the sample comprised of stock I
resulting from assignment error.

If the fish in the sample reflect the same variability within and between the stock groups
represented in the baseline, a GSI baseline that includes all stocks encountered in the sample, and
Confidence levels which are acceptable for all stocks, this model would be expected to generate
estimates of sample composition which are close to the correct values.

The Problem of Unassigned Fish

At the GSI Workshop, Ken also described the relationship between “Posterior Probability
Cutoffs (criteria for acceptance that an assignment is correct) and Unassigned Fish.” Rarely
would no assignment error be expected for a given stock. Some GSI analyses report stock-
composition results that reflect the highest probability stock assignments regardless of the actual
magnitude; other analyses report only the stock-compositions of fish that can be assigned with a
selected level of certainty (e.g., 90%); still others report the proportion of the sample that cannot
be reliably assigned to any stock in the GSI Baseline.

Ken’s presentation indicated that:

. Stock assignment error rates differ by stocks and the baseline used

. Increasing stringency (higher cutoff criteria) will decrease stock assignment error, but
will increase the proportion of individual fish that cannot be assigned to a particular stock.

. The relationship between stringency and unassignment differs by stock.

In addition, unassignment and assignment error and can result when the baseline employed for
the GSI analysis does not include populations that occur in the sample.

There are two major consequences of stringency criteria and unassignment: (a) larger sample
sizes would be required to obtain estimates of desired reliability; and (b) greater uncertainty with
respect to estimates of stock composition. Four basic alternatives have been proposed to address
the unassigned fish problem: (1) Report results only for fish that satisfy stringency criteria; (2)
Report results for fish that satisfy stringency criteria plus the proportion of the sample that could
not be assigned; (3) Report confidence intervals about estimates of stock contributions and leave
interpretation up to policy decision-makers; and (4) Assume that the stock proportions of
unassigned fish are not equal to stock proportions of assigned fish. Ken’s presentation
demonstrated that the last alternative would be ill-advised.

The Problem of Aggregation
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Ken’s presentation at the GSI workshop also indicated that assignment error can be reduced
through the use of reporting groups. Basically, this approach would take advantage of the fact
that stock assignment error is likely largest with stocks with similar genetic profiles.
Aggregation would reduce uncertainty of contributions for larger stock groups, but would leave
the manager without information regarding impacts on individual stocks that might be of
particular concern,

The problem of aggregation needs to be investigated. Aggregation is most likely to be a problem
for stocks which comprise a small proportion of the sample and for stocks with similar genetic
characteristics.

Stock assignment error needs to be investigated. The challenge is that the implications of stock
assignment error and attendant consequences are situational, that is, they will depend on the
stocks involved, their relative proportions in the exploited population, the baseline and methods
employed for analysis, and the size/representativeness of the samples used to estimate stock
proportions. Because of these factors, it will be extremely difficult to develop standardized
formulas or methods for adjusting GSI-based estimates of fishery impacts which are sufficiently
robust to be usefully applied in a wide variety of circumstances.

It may be possible, however, to devise a simulation study or model that could be employed to
evaluate the implications of stock assignment error, the application of various algorithms to
allocate unassigned fish, and issues relating to stock-specific variability that may result from
aggregation.
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2.6.2 Effects of Aging Error on Cohort Analysis
Gary Morishima

Fish from a given stock of Chinook salmon (Oncorhynchus tshawytscha) may be harvested at
various ages and stages of maturity over an extensive geographic range. The ability to accurately
age fish is vitally important for management of this species. Age data are required for a variety
of brood-year based analyses, including cohort reconstruction, evaluation of exploitation relative
to productive capacity, variability in marine survival, abundance forecasting, and assessment of
fishery impacts.

The usual method of aging Pacific salmon is by scale analysis based on the interpretation of
circuli, although other methods involving dissection of bony structures (otoliths, fins) have also
been employed. Several difficulties have been identified with aging fish by scale reading, such
as the ability to distinguish estuarine from ocean age checks, and resorbtion when fish enter
rivers to spawn. Resorbtion results in the loss of circuli and annuli on the periphery of scales
which contributes to error in age determination; aging error is likely to increase for older-aged
spawners. Both these types of problems suggest that aging error is likely to be fishery and stock-
dependent. Aging error in highly mixed stock fisheries will result from variability in patterns of
growth and migration during early life history of the exploited stocks. In terminal areas, less
variability in scale patterns for early life history would be expected because the number of stocks
would be more limited but resorbtion becomes a key consideration.

Method to evaluate effects of aging error in cohort reconstruction

Case study: Klamath fall chinook

Several years of data on the accuracy of scale-aging and estimates of ocean exploitation rates
derived from cohort analysis are available for Klamath fall chinook. The following procedure is
proposed to use these data to evaluate the effects of aging error on cohort analysis:

1. Generate brood-year escapements for Klamath fall chinook by allocating annual
estimates of terminal run sizes or natural escapements to age based on scale reading

results.

2. Use CWT-based estimates of in-river harvest rates and ocean exploitation rates by age to
generate estimates of fishery catches for these broods.

3. Perform a cohort analysis using the data from steps 1 & 2.
4. Compare estimates of in-river harvest rates, ocean exploitation rates, and maturation rates

obtained from Step 3 with the corresponding values derived from CWT-based cohort
analysis of the same broods.
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2.6.3 Using GSI when Ageing Data is Not Available in Harvest — Small Area Estimation
Carl Schwarz

The current CWT system provides data on the number of fish harvested in a fishery and the
number of spawners that is used to compute a run-reconstruction (assuming knowledge of yearly
survival rates).

For example, the following two matrices are a representation of the data available from the CWT
for a index stock subject to a year fishery with a some returns to the spawning grounds at age 2,
3 or 4. There are 5 brood years, and each brood year is not subject to harvest until age 2. For
example, from brood year 1, 1000 fish were marked with CWT and released. There were 10 fish
were harvested in calendar year 2 (at age 2), 19.44 fish were harvested in calendar year 3 (age 3),
and 7.62 fish were harvested in calendar year 4 (age 4). There were 9.00, 13.61, and 17.78
spawners at ages 2, 3, 4 (after the harvest) respectively.

Number of CWT released
Brood Year
1 2 3 4 5

1000 2000 1000 2000 1000

Harvest Fish (expanded from CTW counts and sampling

fraction)
Calendar Brood Year
Year 1 2 3 4 5 GSI
0 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00
10.00 0.00 0.00 0.00 0.00  10.00
19.44 20.00 0.00 0.00 0.00 3944
7.62 38.88 10.00 0.00 0.00  56.50
0.00 1524 19.44 20.00 0.00  54.68
0.00 0.00 7.62 38.88 10.00  56.50
0.00 0.00 0.00 1524 19.44
0.00 0.00 0.00 0.00 7.62

03N kW~

Spawners (known from spawning surveys)

Calendar Brood Year
Year 1 2 3 4 5
0 0.00 0.00 0.00 0.00 0.00
1 0.00 0.00 0.00 0.00 0.00
2 9.00 0.00 0.00 0.00 0.00
3 13.61 18.00 0.00 0.00 0.00
4 17.78 27.22 9.00 0.00 0.00
5 0.00 35.56 13.61 18.00 0.00
6 0.00 0.00 17.78 27.22 9.00
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7 0.00 0.00 0.00 35.56 13.61
8 0.00 0.00 0.00 0.00 17.78

The run reconstruction assumes knowledge of the yearly survival rates (in this case assumed to
be 0.80 year ', and works backwards from the oldest fish:

Example of run reconstruction for cohort 1

Spawners at age 4 17.78
Harvest at age 4 7.62
Alive at age 4 prior 254

to harvest or maturation

Survival Age 3 >4 0.8
Alive at age 3 after harvest 31.75
Spawners at age 3 13.61
Harvest at age 3 19.44
Alive at age 3 prior 64.80

to harvest or maturation

Survival Age 3 -> 4 0.8
Alive at age 2 after harvest 81
Spawners at age 2 9.00
Harvest at age 2 10.00
Alive at age 2 prior 100.00
to harvest or maturation

Initial Release 1000
Survival to age 2 0.1

These match the parameters used to generate the initial table (assuming that yearly survival rate
is known and correct).

If GSI methods are used to estimate the harvest of fish from this stock, the age of the harvest fish
are unknown. For example, GSI methods can determine the proportion composition of the catch
and given the total catch of all fish of all ages, the total number of fish harvest from each stock
(over all ages) will be known. This corresponds to the ROW SUM s of the harvested table.
[Ignore for now that GSI will give the total harvest from this stock and not just the CWT fish
from this stock — the principles are the same.]

If a separate run reconstruction is required for each cohort, it does not appear to be possible to do
this given the GSI summary information. Each year’s harvest provides 1 data point but
represents the sum of 3 new values and so would require additional constraints to be imposed to
remove the non-identifiability.
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A simple example of Small Area Estimation

The current CWT system treats every release cohort and index stream independently of each
other in determining estimates of exploitation and run reconstructions. The index systems were
chosen to be representative of broad geographical areas. By concentrating marking effort on
these index system, (mostly) sufficient recoveries of CWT are obtained that provide estimates
with reasonable precision. These types of estimators are called direct estimators because they
only reply upon recoveries from each individual index stream and cohort to provide estimates
applicable to that index stream and cohort.

The proposed GSI system will enable identification of fish to much smaller scales, i.e. to
individual rivers and streams. However, total sampling effort in the harvest and spawning
enumeration is unlikely to be increased over current levels which implies that the number of fish
identified to these small management units will be very small giving estimates at small
geographical areas that will be very imprecise.

This type of problem is generically called small area estimation (e.g. Rao, 2003). Direct
estimates based solely upon the observed data for a particular small area will have very poor
precision because they are based on very small amounts of data. The principle behind small area
estimation is that synthetic estimators are constructed that rely upon spatial and temporal
correlations with neighboring areas. In essence, localized pooling is used to improve estimators
at the small area. These estimators can also be improved though use of covariates to build a
prediction model, but I do not think that covariates will be useful in the GSI/CWT context.

Information from the small areas can be aggregated to larger (regional) levels. At the same time,
these regional estimates are often calibrated from other information. For example, CWT methods
may give estimates of total exploitation at the regional level which can be compared to the
aggregate estimates from the small area estimates. If these differ considerably, a calibration step
is often performed. I haven’t considered the calibration problem here as it is not clear what data
would be used for calibration.

This following example is just to illustrate how small area estimation would work and is not
intended to be a definitive treatment of the information in the CWT system.

Refer to Figure 1. An exploitation rate was generated for 100 index streams based on the smooth
sinusoidal curve. Streams with similar “index-numbers” are considered geographically close, i.e.
stream 1 is close to stream 2, but far from stream 50. Then based on the value of the exploitation
rate on the curve, a number of fish harvested was generated using independent binomial
distributions (with a common index of 25). The raw estimates are shown in the thin black line.
There is considerable uncertainty in the estimates with huge swings seen in neighbouring
streams.

A very simple conditional first order autoregressive moving average model (CAR(1)) (Besag and
Kooperberg, 1995; Rao, 2003, Section 5.4.4). is often used for “uni-dimensional” series. In this
model:

Y. ~ Binomial (25, p,)
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where localized smoothing is done on the (logit) of the p’s by looking at the preceding and
following “disturbances” from the overall mean:

logit(p;) = u+ &

Normal(s,,,,07) i=1
4 2
gle. ~ Normal(Gz1 8 9y j_o N
2 2
Normal(s,_,,07) i=N

The notation ¢ ; refers to all other streams except index i.

This model was fit using WINBUGS with the resulting smoothed estimates shown in the thick
red-dashed line in Figure 1. As seen, there is considerable localized smoothing. The shape of the
underlying curve was NOT used in the smoothing process — only returns from neighboring
streams were used. The smoothing distance can be extended to more streams “below” and
“above” the current stream, with higher weights given to streams that are “closer” to the stream
of interest. Weights can also be functions of distance.

While the smoothed curve seems to underfit for the first 20 and last 20 streams, notice that the
actual data were all, by chance, below or above the actual generating curve. The pointwise 95%
credible intervals do contain the generating curve except for a few streams.

Typical estimates of precision based on about 5 CTW returned will have se of NG (using the
poisson approximation) for a relative se of about 45%. The average relative se of the smoothed
estimates was about 16%. To achieve the same level of precision without smoothing would
require about a (45/16)°=8 times increase in effort to get additional CTW back from each stream!
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Figure 1: lllustration of small area estimation - CAR model
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As well temporal averaging could also be done when a sufficient time series is established.
This type of smoothing could be used for any of the exploitation rates where many small sources
are measured, each with very small numbers of fish (or CWT) are measured. It could also be

used for the year 0 to year 2 initial survival rate that is currently estimated from the run
reconstruction values.

Besag, J. and Kooperberg, C.L. (1995). On conditional and intrinsic autoregressions. Biometrika
, 82 ,733--746. [

Rao, J. N. K. (2003). Small Area Estimation. Wiley, New-Y ork.
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2.7  Using Stock Synthesis Modelling Approaches for Chinook Management
Rishi Sharma
Introduction

The Pacific Salmon Commission (PSC) was established in 1985. The primary objective was to
manage for the conservation of different species of Pacific salmon in Alaska, Canada, Oregon
and Washington. One of the most valuable stocks both commercially and recreationally managed
by the PSC is Chinook (Oncorhynchus Tschawaycha). An appendix to this Treaty signed in
1999, describes the principles behind the management of these stocks (PSC 1999). Under the
PST’s Aggregate Abundance Based Management (AABM) approach for Chinook, the annual
allowable harvest level in specific ocean fisheries increases or decreases based upon
corresponding changes in the abundance of the stock aggregates that contribute to that fishery.
This management approach also makes provisions to make additional adjustments for declines in
specific weak stock groups. Under this management system, the more abundant stocks have a
greater influence on the abundance index and the resulting harvest level. Changes in the
productivity (survival) of the more abundant stocks have a proportionally greater impact on a
fishery. Stocks that contribute heavily to any fishery are commonly called “driver” stocks.
Columbia Upriver Bright fall Chinook salmon stocks, which spawn in Hanford Reach, tend to be
far north migrating and contribute heavily to ocean fisheries in Southeast Alaska (SEAK) and
Northern British Columbia (NBC), making them driver stocks for those fisheries.

Currently, the PST uses a cohort analysis algorithm that scales current abundance to a historic
base period (1979-1982) abundance, and projects terminal runsize or escapements for thirty
different stocks by estimating environmental variability parameters that scale a Ricker stock-
production relationship for a particular stock to the observed terminal run size or escapement for
that stock. The algorithm as such does not fit abundance to match fishery specific catches but
adjusts the cohort size on a stock complex to adjust the quota on certain fisheries.

Over the last few decades, numerous age-structured models have been developed to manage long
lived species such as cod and halibut (Clark 2003, Sullivan et. al. 1999). These models
simultaneously estimate numerous parameters to give the best fit to the observed data (Patterson
et. al. 2001, Fournier and Archibald 1982, Deriso and Parma 1987). Algorithms such as the
generic age structured algorithm developed by Fournier and Archibold (1982) are adapted in
numerous ways to model the species being managed. Coleraine (Hilborn et. al. 2003),and Sock
Synthesis (Methot et. al. 2001) are two modeling tools being used to forecast and manage
commercial fisheries in New Zealand and the west coast of the United States which adapt these
algorithms. For Pacific salmon however, only recently have such models been developed
(Severide and Quinn 2004), and are still waiting to be developed with complex fishery and stock
structure.

We present an alternative approach, a catch at age model using the life history of Chinook
salmon and a time series of Coded Wire Tag (CWT) data (Johnson 1990, Lapi et al. 1990) and
terminal run data to fit to ocean catches, terminal catches and terminal escapement. Potentials
of using this model with different types of data collected from different techniques and its

70



implications on Chinook salmon management could also be evaluated under this approach as we
can evaluate uncertainty and precision in the estimates using this approach.

Methods

Fournier and Archibald (1992) describe a statistical catch at age model. A slight modification of
their approach could be used to model Chinook salmon. In essence, different components of
ocean catch, and terminal catch data by stock and age in conjunction with escapement data, can
be used to estimate parameters such as recruitment to age 2, fishing mortality by fisheries, stock
and age, maturation and vulnerability schedules by age for fisheries. This method can be
extremely useful in cases where our escapement data may not be up to data standards (e.g. some
of the Puget Sound, and North Central British Columbia escapement data).

Forward Projection Model

The method uses a forward projection algorithm (Figure 1.7, Chapter 4) that is based on
estimation of certain key parameters, namely recruitment to age 2 ocean fish, maturation of age
2, 3 and 4, catchability by ocean and terminal fishery and vulnerability by gear type in each
fishery. The model uses an optimization function to find the parameters that minimize the
difference between model projections and observed ocean catches of the stock by age and fishery
of concern (Deriso et al 1985) by maximizing the likelihood functions between observed and
predicted catches in fisheries and escapements (Figure 1).
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Figure 1 Schematic used to estimate Age 2 recruitment, catchability, vulnerability and
maturation using statistical catch at age techniques for a simple 2 area model (ocean and

terminal).

Ocean Fisheries:

N,, = Recruitment estimated (1)

Recruitment to age 2 and time t is estimated as a function of the model projected catches and
escapement.

— N ef(Fa.tJrMa) _ N

a+lt+1 at at

N x MR, )

Essentially population size at time t, is a function of population size at time t-1, and is a function
of both fishing mortality at that age and time, and natural mortality at that age (equation 2) as
well as the fraction of the population that matured at the previous age (MR) and entered the
terminal area.

In order to project catch, we need to estimate a catchability coefficient (qo) as a function of effort
(equation 3).

Ffull, =g, x E, )

Fishing mortality at age is then estimated as a function of age specific vulnerability and F (full)
(eq.4)

Fa,t :Va,t x Ffu”t 4)

Catch at age and time is then projected as a function of ocean cohort at a particular age, and
fishing mortality and natural mortality at that age (eq. 5).

F

5)

C . =N X(l_e—(Fa,t"'Ma))x
at a,t Fajt + M .

Terminal Fisheries

For terminal fisheries, we have another set of equation. They are similar to the ones used above
but have the added component of estimating maturation from the ocean cohort to the terminal
area.

Na,tT :(N t_C t)x MRa,t (6)

a, a,
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where N, (1) 1s the age a abundance at time t in terminal area (T), and MR is the maturation rate
at age a (time t). This is a function of the ocean cohort at time, t.

Equation similar the ones above (eq. 3,4 and 5) are used to project terminal catch (eq. 7, 8 and 9).
Ffull, =q; xE; (7
where the subscript T indicates terminal effort (E) and catchability (q).

Fa,t-r :Va,tT Ffu”tT 3
where F(a,t, T) is fishery specific mortality by age and is a function of vulnerability by age.

Cat =Nagp x(1-e™) ©)

atr

where C(a,t T) is the projected catch in the terminal area (we assume loss due to Natural
Mortality is zero).

Escapement at age is then calculated using equation10.

Esc,, =N, —C,,, (10)

The Likelihood Equation used in fitting these different data with a Normal error structure sources
is:

1 : exp| — (Ca,t,f )— (éa,t,f ))2

L(C,. ¢ 10)= (11)
o H,lZﬂaf 2O'f2

In Log space using a log-normal error, this can be re written (ignoring the constants) as

ln((ca,t,f )_ 1n(éa,t,f ))2

20; (12)

~InL(C,,,|0)= Zn:ln(O'f )+
f=1

As is evident from the above equation, the likelihood could be weighed by the data estimates in
each of the fisheries. Thus, we could possibly use some information from GSI methods by using
the assignment error and weighing that with coded-wire tag information that has no assignment
error. In addition, we could possibly use this structure by using both historical CWT data and
GSI data simultaneously. Such approaches could be tested and simulated across fisheries to test
the robustness of the estimation algorithms presented here. This is thus the engine of the stock
assessment model that would be analogous to some of the new techniques developed for ground
fish such as stock synthesis (Methot 2001) and Coleraine (Hilborn et. al. 2003).
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Appendix: Using the current assessment structure to evaluate uncertainty

Reverse Mode (assuming all fish in Amax mature)

_E + Z Cgtpgta

geterminal

1
m,= N a < amax
t+l,a+1 +1
Tt,a
T Z Cg,t pg,t,a
N _ t,a geocean

ta

exp[-M,|m,,  exp[-6M,]

gta

pgta ZC

Likelihoods

~InL(C™[0)= Z‘ln[ﬁg]+ (n[C52]-1n[C,.]

2
20'g

“In L(Eobs | 9) _ Zln[aE]+ (ln[¢E£aS:'—ln[Et’a:|)

2
20¢

In this structure, the parameters catch and escapement are assumed as unknowns rather than
known. This is true as we have a pesky little thing known as sampling error, and incorporating
that into our assessment will provide us a benchmark for uncertainty.

Parameters to estimate
Et,a ’ Cg,t ’

Fixed parameters
59 Ma: Gga ¢9 O-E

Og,
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2.8.1 Methods to Determine Sample Size Requirements Using GSI Methods
Gary Morishima

This draft working paper was prepared to help initiate investigations into the feasibility of
developing a tool to facilitate the estimation of sample size requirements using GSI methods.
The draft reflects my preliminary thoughts as to methods and thus represents a work in progress.
Undoubtedly, others will have ideas of their own. Investigations into this topic would certainly
benefit from thoughtful review or volunteers who are willing to take charge to revise, extend and
refine methods. Ultimately, the hope is that a tool that will provide useful guidance to decision-
makers responsible for budget allocation will become available.

Several major issues affecting sample size requirements have not yet been explored in the current
draft:

(1) effects of mis-assignment (stock and age);

(2) effects of the level of confidence and disposition of samples that cannot be classified with
a desired degree of accuracy;

(3) effects of aggregation;

(4) the development of methods to quantify the level of uncertainty that can be expected for a
fixed sample size — it should be readily possible to extend the methods already contained
in this draft to provide information on the expected confidence intervals for a given stock,
depending on the proportion of the sampled population it comprises. This would enable
more direct understanding of the relationship between confidence & budgets available for
sampling; and

(5) cost considerations regarding expenses incurred for sample collection, processing,
analysis, archiving, and reporting

GSI Sample Sizes

A fundamental problem for sampling design is to determine how the sample size required when
the stock composition of the exploited population is not known in advance.

Before addressing that problem, it is useful to step back and examine the statistical relationship
between sample sizes, the proportion of the exploited population comprised of a stock of interest,
and uncertainty. When determining sample sizes for GSI experiments, it is important to clearly
specify the statistical requirements for the estimated contribution of the stock of interest
(proportion of the total exploited population comprised of the stock, or equivalently, the
probability that an individual fish from the stock will be caught'®). The sample size will depend
on the number of fish in the population to be fished, the proportion comprised of the stock of
interest, and the desired degree of precision around the estimated contribution. The degree of
precision is normally expressed in terms of either standard error or relative standard error. The
difference between the two is critical to understand.

"> (CWT Release)*(Survival)*(Fishery Exploitation Rate)
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The standard error (SE) is the square root of the variance about the estimated contribution. For a
fished population >20000, the binomial approximation can be used, so SE is approximately:

n

Where n is the sample size and p is the proportion comprised of the stock of interest.

The relative standard error (RSE) is the standard error divided by the proportion comprised of the
stock of interest.

pd-p)

RsE=L—N (2
p

These two measures of precision interact with sample size n and the proportion p in different
ways. The SE becomes largest when p=.50 and its magnitude decreases as the sample size
increases (fig 1).

Fig 1. Effect of Sample Size on
Standard Error of Estimated
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In contrast, RSE decreases asymptotically as p increases and its magnitude decreases with
increasing sample sizes (fig 2).
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Fig 2. Effect of Sample Size on Relative
Standard Error of Proportion
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When the stock of interest comprises a small proportion of the fished population, a small SE
represents a large RSE. For a proportion of the sampled population comprised of a stock of
interest, the RSE can be related to the sample size through the use of power functions.

RSE =a*n°®
In(RSE) = In(a) + b * In(n)

Parameters for the power function are provided in the following table for proportions ranging
from 1% to 10%

Proportion In(a) B
1% 297114 -0.5001
5% 1.36170 -0.5001
10% 0.66855 -0.5001
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Determining required sample sizes

In determining required sample sizes, the desired degree of confidence for the results are defined
by the concepts of risk and error tolerance, i.e., there is an a% chance that the true value lies
within the estimated proportion by E amount.

For proportions, risk is characterized through the use of a standard normal distribution (mean=0,
variance =1). The familiar bell-shaped curve of the normal distribution indicates that the
probability of observing a value decreases the further the value is from zero. The probability that
an observation will deviate from zero by at least E amount is expressed through the use of a z
statistic — the larger the value of z, the smaller the probability. Risk is the probability that the
true proportion of the population lies outside the desired confidence interval. Commonly
confidence intervals, associated risk, and z values are depicted in Table 1.

Table 1. Two-Sided Confidence intervals, levels of risk, and z-values.

Confidence 80% 90% 95% 99%
Interval

Risk 20% 10% 5% 1%
z value 1.282 1.645 1.960 2.236

When SE is used to characterize the error tolerance, the required sample size can be
approximated using equation (1) as'®:

_’p(1-p)
="t 0

For example, if a 95% confidence interval is specified with an acceptable SE of 5% is specified
for a stock comprising 1% of the exploited population, then the required sample size would be:

' This approximation is known the Wald interval (Wald, A. 1943. Tests of Statistical Hypotheses Concerning
Several Parameters When the Number of Observations is Large, Transactions of the American Mathematical
Society, 54, (1943), 426-482). The Wald approximation does not work well if N is small or p is close to 0 or 1.
Clopper & Pearson (1934. The use of confidence or fiducial limits illustrated in the case of the binomial.
Biometrika 26:404-413) proposed an “exact” method of computing the confidence interval, but the method tends to
over-estimate the width of the confidence interval. Agresti & Couli (1998, Approximation is better than “exact” for
interval estimation of binomial proportion, Am Statist.52(2):119-126.) developed the 95% modified Wald interval
as:

0 = S+2
N +4

p'+196M
o N + 4

The numbers 2 and 4 are actually the z and Z” critical values from the Gaussian distribution. Since 95% of all values
of a normal distribution lie within 1.96 of the mean, z=1.96 (rounded to 2) for 95% confidence intervals.
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.05°
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While the sample size is small, the resulting estimate of the proportion of the population
comprised of the stock of interest may not be of much interest. The confidence interval includes
the range from 0 to 6%, not very informative for a stock that comprises only 1% of the fished
population. For conservation purposes, RSE is likely to be of greater relevance than SE; it will
be more important to estimate contributions with a high degree of relative precision, e.g., to
estimate the proportion of the catch comprised of a stock of interest within x% of the true value.

Consequently, RSE is likely to be the more relevant statistic for harvest management. When RSE
is used to characterize the error tolerance, the required sample size can be computed by the
formula:

E’p

Note that equation (4) is simply equation (3) divided by the square of the proportion of the
population comprised of the stock of interest. This indicates that the difference in required
sample sizes resulting from the use of SE or RSE is dramatically affected by the contribution of
the stock of interest. To illustrate, if a RSE of 5% is specified in the previous example, then the
required sample size is:

_’(1-p)

" Ep
1.96*(1-.01)
© 052 %(.01)
=152,127

n

Sample size requirements would apply for each strata of interest. A sample size large enough to
provide a RSE of 5% for a stock that comprises 1% of the exploited population would not only
be costly to process, but could also require harvesting the population at a rate that may exceed
the allowable level for a stock of conservation concern.

The relationship between required sample sizes and the true proportion of the population

comprised of the stock of concern is depicted in figure 3, assuming a 95% confidence level that
the estimated proportion lies within 5% (for any SE; of the true value for RSE).
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Fig.3 Required Sample Size
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Error Resulting From A Selected Sample Size

The number of GSI samples that can be taken and processed will be limited by available budget.
Another way to view the issue of sample size is to examine the confidence that can be placed on
estimates of proportions resulting from a given sample size.

The SE surrounding an estimated proportion for a given sample size, stock proportion, and
specified level of risk is:

n

The RSE surrounding an estimated proportion for a given sample size, stock proportion, and
specified level of risk is:

P n

Confidence intervals for absolute and relative error for sample sizes of 200 fish and 10,000 fish
are compared in Table 2 (courtesy of Bob Conrad, NWIFC. Note that in Bob’s formulation, n is
replaced by n-1 per Cochran’s correction).
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Table 2. Comparison between SE and RSE values for sample sizes of 200 and 10,000, at various
levels of stock contribution.

SAMPLE
SIZE: 200 10,000
Expected % Contribution (p) Expected % Contribution (p)
Alpha
Level zvalue | 0.01 0.02 0.05 0.10 0.01 0.02 0.05 0.10
SE (x % absolute)
0.99 2.58 1.82% 2.56% 3.98% 5.48% 0.26% 0.36% 0.56% 0.77%
0.95 1.96 1.38% 1.95% 3.03% 4.17% 0.20% 0.27% 0.43% 0.59%
0.90 1.65 1.16% 1.64% 2.55% 3.51% 0.16% 0.23% 0.36% 0.50%
0.85 1.44 1.02% 1.43% 2.22%  3.06% 0.14% 0.20% 0.31% 0.43%
0.80 1.28 0.90% 1.27% 1.98%  2.73% 0.13% 0.18% 0.28% 0.38%
RSE (+ % of expected contribution)
0.99 2.58 181.68% 127.82% 79.59% 54.78% 25.63% 18.03% 11.23% 7.73%
0.95 1.96 138.24%  97.26% 60.56% 41.68% 19.50% 13.72%  8.54% 5.88%
0.90 1.65 116.38%  81.88% 50.98% 35.09% 16.42% 11.55%  7.19% 4.95%
0.85 1.44 101.57%  71.46% 44.50% 30.62% 14.33% 10.08%  6.28% 4.32%
0.80 1.28 90.39%  63.60% 39.60% 27.26% 12.75%  8.97%  5.59% 3.84%

RSE confidence intervals become smaller at a decreasing rate as sample sizes increase (fig.4).

Figure 4. Effect of Sample Size on The 95%
Confidence Interval (Relative Error) For a
Stock Comprising 1% or 5% of the Population
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For a given z value, the shape of the RSE relationship to sample size is consistent for all values of
p, but the magnitude differs. It is likely that many stocks of conservation concern would
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comprise a relatively small proportion of the catch in a highly mixed-stock fishery; large sample
sizes would be required to estimate the catch of such stocks with a high degree of precision.
Because the number of samples that can be taken and processed will be limited by budgetary
considerations, some other metric may be needed as a means to determine optimal sample sizes.
In this regard, it is useful to examine the marginal rate of relative reductions in RSE confidence
intervals in relation to sample size. The marginal rate of reduction at any given sample size n is
mathematically the value of the derivative of the RSE at that point.

—z*p*(1-p)

V n

The marginal rate of reduction in RSE confidence intervals rapidly approaches zero as sample
sizes approach 10,000; large increases in sample sizes beyond that point result in little
improvement (fig 5). This relationship can provide managers with a means to evaluate trade-offs
between the precision of the estimate of stock contribution and costs of sampling.

Figure 5. Marginal Rate of Change in RSE in Relation to
Sample Size For Stock Proportions Ranging from 0.001 to
0.100
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The difficulty with the above methods of determining sample size, of course, is that some means
to determine, a priori, the proportion of the exploited population comprised of the stock of
interest must be available.
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Interestingly, the relative marginal rate of reduction in RSE is independent of the proportion p
and the z-value, i.e., the same reduction in the relative marginal rate of reduction in RSE is
attained for a given sample size.

—z*p*(d-p) * P -1

2*|O>,<nz>,<\/|o*(l—|o) Z*\/p*(l—p) S 2*n
n n

Because this relationship (fig. 6) asymptotically approaches zero with increasing sample size, the
potential to employ a different fishery sampling strategy for estimating stock compositions using
GSI than is presently used for recovering CWTs appears. With CWTs, the generally accepted
standard is to sample a minimum of 20% of the catch in a given strata of interest so the number
of fish sampled varies with the size of the catch. With GSI, however, it may be sufficient to
employ a representative fixed sample size strategy since improvements in the relative marginal
precision of the contribution rate estimate becomes less and less apparent with stratum sample
sizes larger than about 10,000.

Figure 6. Marginal Relative Rate of Change in RSE In Relation to Sample Size
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Alternative Approach To Determining Sample Size Requirements

There are alternative ways to estimate require sample sizes besides using SE or RSE.  One way
would be to determine the sample size required to provide a specified confidence that at least k
fish from the stock of interest would be observed. In this instance, using a binomial probability
model, the probability is:

Pr(k SSSn)Zl—f(njpi *(1_ p)n—i

i=0 \ i
where:
k  Minimum number of fish from the stock of interest to be
observed
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S  The number of fish from the stock of interest in the sample
n  Sample size

P Proportion of the population comprised of the stock of interes

For a large k and n, the cumulative density function can be a bit of a chore to compute so an

approximation would be helpful. The binomial probability function built into Excel can be used

to find the minimum sample size n required to have a specified probability PR of obtaining at
least k fish from the stock of interest.

(1-Binomdist(k —1,n, p,1)) > PR

For example, Table 3 provides estimates of 95% and 90% sample size requirements for
observing at least 10 fish from a stock of interest which comprises from 0.005 to 0.50 of the
sampled population.

Table 3. Sample sizes which provide 95% and 90% confidence to obtain at least 10 fish from a

group of interest which comprises from 0.005 to 0.50 of the total population.
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N=10; n=10; N=10; n=10; N=10; n=10;
p 95% 90% p 95% 90% P 95% 90%
0.0005 31408 28410 0.0205 763 691 0.05 310 282
0.0010 15702 14204 | 0.0210 745 6741 0.06 259 235
0.0015 10467 9469 | 0.0215 728 659 0.07 221 201
0.0020 7850 7101 1 0.0220 711 6441 0.08 193 175
0.0025 6279 5680 | 0.0225 695 6291 0.09 172 156
0.0030 5232 47331 0.0230 680 616 0.10 154 140
0.0035 4484 40571 0.0235 665 602 0.11 140 127
0.0040 3923 35491 0.0240 652 590 0.12 128 116
0.0045 3487 31551 0.0245 638 578 0.13 118 107
0.0050 3138 28391 0.0250 625 566 0.14 109 99
0.0055 2853 25811 0.0255 613 555 0.15 102 93
0.0060 2615 2366 | 0.0260 601 5441 0.16 95 87
0.0065 2413 21831 0.0265 590 5341 0.17 89 82
0.0070 2241 20271 0.0270 579 5241 0.18 84 77
0.0075 2091 18921 0.0275 568 5141 0.19 80 73
0.0080 1960 1774 | 0.0280 558 505 0.20 76 69
0.0085 1845 1669 | 0.0285 548 496 [ 0.21 72 65
0.0090 1742 1576 | 0.0290 539 488 0.22 68 62
0.0095 1650 1493 1 0.0295 530 479 | 0.23 65 60
0.0100 1568 1418 | 0.0300 521 471 0.24 62 57
0.0105 1493 1351 1 0.0305 512 464 | 0.25 60 55
0.0110 1425 1289 | 0.0310 504 456 | 0.26 57 52
0.0115 1363 12331 0.0315 496 449 [ 0.27 55 50
0.0120 1306 1182 | 0.0320 488 442 0.28 53 48
0.0125 1254 11341 0.0325 480 435 0.29 51 47
0.0130 1205 1091 | 0.0330 473 428 0.30 49 45
0.0135 1160 1050 | 0.0335 466 422 0.35 42 38
0.0140 1119 1013 | 0.0340 459 416 | 0.40 36 33




0.0145 1080 978 1 0.0345 452 410 045 32 29
0.0150 1044 9451 0.0350 446 404 ( 0.50 28 26
0.0155 1010 9141 0.0355 440 398
0.0160 979 886 | 0.0360 433 392
0.0165 949 8591 0.0365 427 387
0.0170 921 8341 0.0370 422 382
0.0175 895 810 | 0.0375 416 377
0.0180 870 7871 0.0380 410 372
0.0185 846 766 | 0.0385 405 367
0.0190 824 746 | 0.0390 400 362
0.0195 803 726 | 0.0395 395 358
0.0200 782 708 | 0.0400 390 353

The relationship between required sample sizes and the proportion of the sampled population
comprised of a stock group is depicted in figure 7.

Sample Size Required to Have a 95% Chance of Observing
at Least 10 Fish from a Target Group

175000
150000 -|
125000 -|
100000
75000 -
50000

\
25000 |\
0 ¥

Required Sample Size

0 0.002 0.004 0.006 0.008 0.01

Proportion of Sampled Population Comprosed
of the Group of Interest

Fig. 7. Sample Size required to observe at least 10 fish

This is obviously a form of power function, indicating that a simple formula can be developed to
estimate the sample sizes required, based on the proportion of the sampled population which is
comprised of the group of interest.

n=a*p"
In(n) = In(a) + b *In( p)

Parameters for power functions to estimate sample sizes required to observe at least 10 fish with
80%, 90%, and 95% confidence are presented below.

| Confidence | In(a) | B |
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80% 2.502833 -1.00438
90% 2.617341 -1.00656
95% 2.762440 -0.98825

There are alternative ways to determine the sample size, such as using the entropy function or the
normal approximation to the binomial.

If we define an=k-1, (a would represent the fraction of the sample comprised of the population
of interest), the entropy function can be used.

H(a)=z=alog, (l] +(1-a)log, (l;j
a -a

This would allow the following approximation to be used (provided that a < p):

k 2nH(a)

YR i _l-«a
i 1_ n—i < * %k Ran sk 1_ (I-a)n
;(ijp =P 1-¢ 27ma(l-a)n prrd-p)
P

Required minimum sample sizes can also be estimated using the normal approximation to the
binomial. Let:

2

a=p
b=2"*(p*-p)-2*m*p
c=m’

The minimum sample size can then be estimated using the quadratic equation as:

n_—b+\/b2—4*a*c

2*a

where:

m  Minimum number of fish from the group to be observed

N Minimum sample size

P Proportion of the sampled population comprised of the group of interest (can
also be considered as the probability that a fish from the group will be
caught)

z one-sided z-value associated with the desired confidence level

Annette Hoffman used this approach in estimating the sample sizes presented in table 9 in the
USCTCSG response to assignment 7.
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Confidence Intervals for Estimates of Total Contributions
For a Given Stock Across Heterogeneous Sample Strata

Because ocean fisheries harvest a complex and dynamic mixture of stocks, both the catch and the

proportion of the catch comprised of a given stock of interest can be expected to vary
substantially by time and area. This poses an interesting challenge for estimating confidence
intervals for the total catch of a given stock across heterogeneous strata.

This topic seems to have received surprisingly little attention in the literature. A method to
determine confidence intervals for heterogeneous sampling strata follows. The approach is a
modification of results of a simulation study by Nanthakumar and Selvavel.'” As with all
methods based on Wald-type normal approximation of the binomial density function, the
confidence interval may not achieve the desired coverage probability when p is near O or 1. This
may be of particular concern to managers who are concerned about fishery impacts on stocks
that comprise a small proportion of the catch; the procedure presented below will likely
underestimate the size of confidence intervals for stocks that comprise a small portion of the

catch.

Notation:

N, Catch estimate for stratum h

n, Sample size for stratum h

k Number of strata

N Estimate of total catch for all strata combined

p Proportion of the stock of interest in the stratified population
P, Proportion of the stock of interest in stratum h
Xp Number of fish from the stock of interest in n,
A Xn Estimate of the proportion of sample n, which is comprised of the stock
Ph = n, of interest
- n, Sample fraction for stratum h
N,

———
o = [P 0-p)
h

Wald normal approximation for the standard deviation of the proportion
of the stock of interest in stratum h

The stratified estimate for n is simply the average of the p, weighted by the proportions of the

total catch represented by the strata.

A

p:

- Py

7 Nanthakumar, A, and K. Selvavel. 2004. Estimation of Proportion of Success From a Stratified Population: A
Comparative Study. Communications in Statistics. Theory and Methods 33:99): 2245-2257.

&9




The variance of p is:

N 2
varpy - Y| e | o
h
The (1-x%) Wilson-type confidence interval for p is:

f+t
P 2
2

*var(p)

The degrees of freedom can be estimated as:

N, 2* 2 2
{E{N} "h}
Ny oy 1

Z{N} o (1)

Example. Five strata

df =

Wald Normal Components Components Components
Stratum Pn (1= Py) Ny N, Oy, oy Proportion Variance DF(denom)
1.71468E- 1.47745E-
1 0.10 | 0.90 200 | 5000 | 0.021 | 0.000450 | 0.006173 06 14
3.77229E- 1.42316E-
2 0.01 | 0.99 |10000 | 50000 | 0.001 | 0.000001 | 0.006173 07 17
7.23975E- | 5.24664E-
3 0.05| 0.95 1000 | 10000 | 0.007 | 0.000048 | 0.006173 07 16
1.23457E- |  6.09907E-
4 0.10 | 0.90 2500 | 15000 | 0.006 | 0.000036 | 0.018519 06 16
2.98735E- | 9.01440E-
5 0.02] 0.98 100 | 1000 | 0.014 | 0.000196 | 0.000247 08 18
4.08032E- 1.59323E-

N [ 81000 p | 0.03728395 06 14
df [ 1044.9872

The total catch = 81,000, the estimated proportion comprised of the stock of interest is 0.0373,

and the variance about that estimate is 4.08E-06 (standard deviation 0.00202).

The degrees of freedom are estimated as:

¢ . (4.08E —06)’
1.593E — 14

=1045
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For a 95% confidence interval, the t value for df this large would approximate the z-value from
the normal distribution (1.96), so the estimated confidence interval for p would be:

0373 £1.96*0.00202 = [0.03332, 0.04124]
The confidence interval for the estimate for the total catch for the stock of interest is:
3020+ 321

With estimates of catches, stock sizes, and variances in hand, it should be possible to estimate
confidence intervals surrounding estimates of exploitation rates using bootstrapping or Bayesian
methods.
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2.8.2 Sample Size Considerations for GSI Studies

Michael Mohr

As Morishima (Section 2.8.1) mentions, this is hardly the first time the question of sample size
relative to estimation of p using GSI has come up. In my view, a suite of metrics should be
considered simultaneously in determining the appropriate sampling level:

1. Q: probability of detecting > 1 individual from stock
2. CV: coefficient of variation of p
3. w: confidence interval width for p

4. d: minimum detectable difference between two contribution rates

Morishima (Section 2.8.1) discusses #1—#3: his version of #1 is more general (> k); re. #2 he uses
the equivalent term RSE rather than CV; re. #3 he reports on the half-interval width, w/2. Formulas
relating the quantities in #1-#4 to p and n are provided in the following section (“‘Sample size
formulas”), and a graphical display of the implied relationships is provided in Figure 1, under the
following assumptions:

1. All collected tissues are GSI processed and classified as to stock-of-origin.
2. All GSI stock-of-origin classifications are 100% accurate.

3. Type I and Type II error rates are applicable to p; for an individual stock i of interest, rather
than to a set of {p;} as a whole.

4. Simple random sampling within each stratum.
5. Sampling fraction is negligible.

6. The normal distribution is a satisfactory approximation to the binomial distribution, particu-
larly for small contribution rates.

If these assumptions are not met, particularly #1—#4, the derived sample sizes will be insufficient
to meet the objectives, and should be increased accordingly.



Sample Size Formulas

Notation
n = sample size
Y = number of individuals in sample from stock of interest
p = stock contribution rate
CV = coefficient of variation of p
Q = probability of detecting > 1 individuals from stock
w = confidence interval width for p
d = minimum detectable difference between two contribution rates, p; and p;

Z = standard normal cumulative density function

Probability of detecting > 1 individuals from stock
The binomial model, P(Y =y) = (;l) p’(1—p)"Y, implies
OQ=PY>1)=1-PY=0)=1—(1-p)",
n=log(1—Q)/log(1—p).
Coefficient of variation of p

For the binomial model, V(p) = p(1 — p)/n, which implies that

CV =\V(p)/p=+/(1=p)/(np),

n=(1-p)/(p-CV?).

Confidence interval width for p
With the binomial model and normal approximation for the distribution of p,

w=2-Zi_qpn-/p(l—p)/n,

n=4-Z;_on-p(1—p)/w.

Detectable difference between two contribution rates

With the binomial model and normal approximation for the distribution of p and p»,

2
n' = |:Zl—oc\/ 215(1 —]3) +Zp0wer\/pl (1 _pl) +P2(1 _p2) /d27

2
n=(n'/4) [1 +/1+ (4/(n’d))} .

6]
2)

3)
)

&)
(6)

(7
®)

where p; > pa,p = p1,d = p1 — p2,p = (p1 + p2)/2. Equation (7) for n’ is from Zar (1996, Eq.

23.71), and Equation (8) for n is from Zar (1996, Eq. 23.74).
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Figure 1. Sample size relationships.



Example Application

The sample size required depends on the study goals, as well as the statistical objectives. Three
such example applications are outlined below. In each example, the time-area-fishery specific n is
determined that simultaneously meets all of the associated statistical objectives.

Application I
e Goals
* p for all stocks by time, area, fishery
e Statistical Objectives

* 0 >0.999 for p > 0.01
* CV <0.20 for p > 0.03

e Minimum 7 per stratum

* ~ 800

Application 11
e Goals
* p for all stocks by time, area, fishery
o Statistical Objectives

* 0 >0.999 for p > 0.01
* CV <0.20 for p > 0.03
* w<0.06 for p >0.01 with a = 0.05

e Minimum 7 per stratum

* ~ 1,070

Application II1
e Goals

* p for all stocks by time, area, fishery

* Compare p inshore versus offshore
e Statistical Objectives

* 0 >0.999 for p > 0.01



* CV <£0.20 for p > 0.03

* w<0.06 for p > 0.01 with a = 0.05

* power > 0.80 to detect d = pyy — pin With o = 0.05
* assume por > 0.03, and pip, < pog/2

e Minimum 7;,, s per stratum

* ~ 1,350

The statistical objectives specified above are, of course, arbitrary. Application I presumes that an
n that would provide: (a) a 99.9% chance of detecting a stock given its contribution rate was at
least 1%, and (b) a CV less than 20% for p > 3%, is an appropriate compromise, but its certainly
arguable. The n required to achieve a CV of less than 20% for p < 0.03 rises rapidly to untenable
levels as p approaches zero, so that “good” estimates of p for weakly contributing stocks (e.g. p <
2%) are probably not achievable given practical cost constraints.

Stock Assessment

The proportion of some specific stock in the landings, p, is not necessarily the quantity of in-
terest for assessment purposes, although the quantity of interest is likely to be a function of p.
Morishima (Section 2.8.1) provides one such example (“‘Confidence intervals for estimates of total
contributions for a given stock across heterogeneous sample strata”). This fact seems to be gen-
erally under-appreciated, and it should be recognized that sample size recommendations based on
the uncertainty associated with p may not be adequate for other derived metrics of interest.

The quantity p is a function of the ocean stock abundances of all contributing stocks to that fish-
ery, their distribution, their catchability, and their probability of being legal size (exceeding the
minimum size limit). To first order, for stock i in stratum j:

_ G Niagiliify  Ni%ijqijti
YiCrj  YaNeowaqrileifi  YaNeOkqrile;

Pij ©)
where, C is the catch, N is oceanwide abundance, ¢ is distributional coefficient (fraction of N in
stratum), ¢ is catchability, ¢ is the proportion legal size, and f is fishing effort. Thus, assuming
equal catchabilities, a historical time-series of p may be of direct interest for forecasting the im-
pacts of a planned quota fishery, assuming estimates of the component historical stock abundances
and proportions legal size are available to adjust those p for the current mix of expected abundances
and legal size proportions (depends on size limit). Here p, expressed as a percentage, is directly
interpretable: number of the stock expected to be caught per 100 fish in the quota fishery. In other
contexts however (e.g., for cohort analysis and seasonal management), one may need to estimate
the total number of the stock contacted in the stratum ([Cp/¢)), or per day of fishing ([Cp//]/d),
or per unit of effort ((Cp//¢]/f). Here, C, ¢, and f will themselves need to be estimated, so that the
uncertainty of the quantity of interest depends on the uncertainty of C, ¢, and possibly f, as well

as p.



It also appears to be generally under-appreciated that observed differences in p across strata for the
stock of interest i may be entirely due to variation in {o;} across these strata for some dominant
stock k, rather than due to variation in {;;} (variation in the denominator of equation (9) rather
than the numerator). From the numerator of equation (9), and noting that Y, ¢, = 1 for a particular
time period and fishery-type (commercial or recreational), to first order

o — G/ WNaitiify) _ Cij/ (it f;)

1] — - 9
L Y Cin/ (Niginlinfn)  LnCin/(qinlinf)
so that assuming constant catchability across strata for stock i, inference re. its ocean distribution

should be based on variation in {C;;/(¢;jf;)} = {(Cjpij)/(Lijf;)} across j during a particular
period of time and fishery-type; not on variation in {p;;}.

(10)

Other Considerations

e Age-specific p. If the sampling goals include achieving the statistical objectives with respect
to each age class (e.g., for Chinook), the approach and formulas outlined above can be used
if the mixture is redefined to be a collection of the various stock-age combinations, rather
than the collection of stocks. Of course, the age-stratified p components will be less than
for the stock as a whole and as a result, considering that stock alone, the required n will
increase (or if the n is not increased, the precision will be less than desired). For age-specific
p, the sample size formulas further assume no age assignment errors for the sampled fish,
and stock classification will presumably be done by individual assignment analysis (IAA)
rather than mixed stock analysis (MSA) because the age-determination is fish-specific (and
there is no reason to believe that the stocks in the mixture will all have the same age structure
in that stratum). Currently, the assumption that “GSI classification uncertainty is negligible”
appears to be far less supportable for IAA than for MSA.

e Adequacy of binomial distribution, normal approximation. While simple, the sampling mod-
els and approximations used here are probably adequate for general planning purposes if the
objective of estimation is p. Whether they are adequate for very low levels of p should be
further investigated. Of course the actual V(p) depends on the actual survey design em-
ployed within a stratum, and may be quite complicated. For estimation purposes, estimators
of p and V (p) that are appropriate for the specific sampling design employed should be used
on the actual data. The binomial-based V (p) will likely be conservative wrt the actual V (p)
if the sampling fraction is non-negligible. For example, if the stratum overall catch is 1000,
and 500 fish are sampled from it, the actual V (p) will be substantially less than for a sample
of 500 from a catch of 20000. The simplest sampling model to account for such a non-
negligble sampling fraction is the hypergeometric distribution, however use of that model
for planning purposes would require specification of the anticipated overall catch in addition
to p.

e Ocean population or fishery landings estimator? The previous item raises another question:
is the goal of estimation the population, or the catch? For example, is the goal estimation
of the stock composition of the mixture of stocks in the ocean in some particular stratum,



or is it the stock composition of the mixture of stocks in the catch in that stratum? With the
former, even if the entire catch were sampled (n = C), V() would not be 0 as the catch is
only a sample of the ocean mixture. With the latter, if the entire catch were sampled, V (p)
would be 0 (assuming no non-sampling errors).

Inverse sampling for low p. Another approach, also discussed by Morishima (Section 2.8.1),
is to continue to sample a stratum until at least m fish are detected from the stock of interest,
where m is set at a level which will insure an acceptable CV for stocks with a low contri-
bution rate. Cochran (1977, Section 4.5) indicates that for C large, p small, and m > 10,
CV < /m/(m—1) so that, for example, CV < 0.2 if m = 27, independent of p. While
this would insure a good estimate of a small p of the stock of interest in each stratum, it
would not alter the expected level of n required for that value of p. E.g., for p = 0.03,
E[n] =~ 27/0.03 =900 (close to the 800 previously identified for p = 0.03 and CV = 0.2);
for p = 0.01, E[n] =~ 27/0.01 = 2700. While this inverse sampling approach would not
seem to be practical for dockside sampling (realtime GSI transport, processing, feedback
required; may encourage “front-loading” of stratum sampling effort to insure meeting the
m = 27 requirement resulting in uneven sample coverage of strata), perhaps a hybrid scheme
with large n taken dockside and an m-type stopping rule applied at the GSI processing phase
might save money and/or maintain quality of the estimates for small p. However, unless
there is only one or a few stocks of interest, where would the line be drawn on which stocks
in which strata should be represented by at least m individuals in the sample? And what
if there aren’t m individuals of each of those stocks in the stratum catch—would the entire
catch end up being sampled?

Specified sampling fraction or specified sample size? For the CWT coastwide sampling pro-
gram, the objective is to sample a constant fraction (20%) of the catch in every stratum.
This constant sampling fraction approach (known as “proportional allocation” in the sample
survey literature on stratified sampling, Cochran 1977) is an optimal allocation of sampling
effort if the statistical objective is to simultaneously minimize the sampling variances of the
estimated coastwide catchs of the stocks of interest. However, if the statistical objectives
involve minimum acceptable levels of precision within each stratum (as presumed here),
this overides the notion of a constant sampling fraction, and the optimal allocation of sam-
pling effort in this case is the minimum 7 necessary to meet the stratum-specific statistical
objectives.

Stratified sampling for p. With respect to stratified sampling for estimation of a proportion,
Morishima (Section 2.8.1) states that “This topic seems to have received surprisingly little
attention in the literature”, however quite a bit of work has been done on this topic under
the umbrella of sample survey design, see e.g. Cochran (1977) Sections 5.10, 5.11, and 5.12
for p with stratified sampling, and Section 5.4 for associated CI's and degrees of freedom.
However, I would formulate this problem slightly differently than Morishima (Section 2.8.1)
if the objective of estimation is Cj, the coastwide catch of stock i. Rather than estimate the
coastwide p; as a weighted combination of the stratum-specific p;; and then expand p; by
the all-stocks coastwide C to estimate C’i, I would instead estimate the C;; for each stratum



and then sum those for C‘i as follows:

Ci=Y Cij=Y Cipij, (1)
J J

with associated sampling variance

V() =Y. V() = Zcfv(p,-,-). (12)

J

The advantage of this formulation is that it provides the stratum-specific catch estimates
for the stock of interest, and their variance, and is easier to generalize to more complicated
situations. For example, the above equations assume that the stratum catch C; is known
rather than estimated. With estimated {C;}:

Ci=Y.Cij=Y Cipij, (13)
J J
with associated sampling variance
V(G) =Y V(C)).- =) V(Cipij). (14)
J J

The variance of ; j is now more complicated (the variance of a product of random variables),
but the {V(C;;)} are still additive across strata due to the independence of sampling across
strata.
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2.8.3 Comments on Morishima’s Sample Size Analysis (Section 2.8.1)
Jerome Pella

The draft (Section 2.8.2 by G. Morishima) covers well the use of the binomial sampling model
when unique stock identifiers, or marks, such as CWTs are available and 100% of the population
is marked. The difference between genetic marks (e.g., microsatellites or SNPs) and CWTs in
terms of their specificity is not discussed, and it seems to me the distinction would benefit the
discussion. The CWTs’ great appeal is that the source of a marked individual is known with
certainty, but the major shortcoming for coast-wide chinook management is that few of the
sources are marked. The genetic marks’ great appeal is that all individuals of all sources are
marked, but the major shortcoming is that in practical terms the source of marked individuals can
only be delimited to subsets or groups of stocks that are genetically similar. Although in theory
the source composition and identity of every mixture individual can be evaluated from genetic
marks to the level of individual stocks, the evaluation is based on probabilities, and the source
probabilities of individuals decrease (or source uncertainty increases) as greater source detail is
attempted. The totality of possible source stocks is usually partitioned into reporting stock
groups, and this reporting partition is a compromise between the desire for detail and the concern
for uncertainty. The choice of the reporting partition and definition of reporting stock groups is
typically guided by statistical measures of genetic similarity among stocks as well as
experimentation in estimating composition of simulated stock mixtures. Criteria to use in
selection of the reporting partition are not standard and routine. Quite conceivably, as the number
of genetic characters is increased in the future, their combination could become nearly as certain
as a CWT in identifying stock sources, and the reporting partition would become irrelevant.

With the current microsatellite baseline and practical-sized samples, the source composition of a
chinook salmon mixture can apparently be reliably estimated to the level of 41 reporting groups
(12 GAPS authors. 2005. Interlaboratory standardization of coast-wide chinook salmon genetic
data for international harvest management. Final Report). The reporting group identities of
mixture individuals can be probabilistically evaluated and used to assign them to source group
with good success as well. Evidently the GAPS team felt comfortable with their reporting
partition, but at some finer level of stock detail, uncertainty in composition estimation or in
individual assignments became problematic. Limitation on detail is characteristic of stock
mixture analysis, whenever natural features, e.g., patterns or chemical signatures on hard parts
and scales, morphological measurements, or genetic traits, are used to distinguish sources, This
stock confusion problem can occur whether few or many stocks compose the mixture. The
sorting or separation of mixture individuals to their sources becomes increasingly difficult in
progressing from larger similarity stock groups toward the individual comprising stocks. Stock
confusion becomes especially problematic when presence of a rare (< a few % of the mixture)
stock has to be estimated or detected in the catch. However, the corresponding reporting group,
of which the rare stock is a member, could serve as an indicator of its possible presence.

Stock confusion can be reduced by either increasing the number of characters measured on
individuals, or by introducing additional prior (external to the catch sample) information about
stock composition of the catch mixture. Commonly, an uninformative prior for stock
composition is used in Bayesian stock mixture analysis, but the option of using an informative
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prior is available. The informative prior could be fixed and external to the chinook model and
depend on historical observations of timing and relative magnitudes for the various stocks’
presence in fisheries. Or possibly better, the informative prior might be integrated into the
chinook model with the latter parameterized so that the stock mixture compositions of catches
could be computed from its parameters and variables. The chinook model parameters and
variables could be updated by the genetic samples from the catches. The estimation could then
loop back to update the informative prior for the stock mixture compositions in the catches. The
possibility of using such a Markov chain Monte Carlo estimation process could be examined.
The development of informative priors for stock mixtures of catches is an open area, and it has
potential to reduce the stock confusion problem.

Specific comments:

1. Under “GSI Sample Sizes”, 2nd paragraph. The population to be sampled could be the
“number of fish in the population to be fished”, or else the catch itself. Usually, the catch
is the “population” from which the GSI samples are drawn and to which inferences apply.
The final section title “Confidence Intervals ...Across Heterogeneous Sample Strata”
indicates that catch is the population of interest. If the catch is randomly drawn from the
mixed stocks in a fishing stratum, its composition can be used to infer that of the mixed
stocks. The distinction—population fished vs. catch—could be important for small
catches when the proportion sampled becomes relatively large (>5%) so that the binomial
would be less accurate than the hypergeometric distribution.

2. Under “Alternative Approach To Determining Sample Size Requirements”, I wonder if
simple detection of an endangered stock might be useful? Detection would be the finding
of one or more individuals in the catch. Entomologists use this approach in sampling for
pests during quarantine inspections (see Venette, R., R. Moon, and W. Hutchison. 2002.
Strategies and statistics of sampling for rare individuals. Annual Review of Entomology,
47: 143-174.) Figure 1 (below) is repeated from Venette et al. 2002. Given a mixture
sample size of 200, a 100%-marked stock (the mark is not confused with that of other
stocks) with contribution or relative frequency of only 0.004 (0.4%) results in the
probability of detection exceeding 0.5, a relative frequency of 0.010 (1.0%) results in the
probability of detection equal to 0.87, and a relative frequency of 0.020 (2.0%) results in
the probability of detection exceeding 0.98. If detection is the goal, and all individuals of
the rare stock were perfectly identifiable from its mark, the necessary sample sizes to
achieve high probability of detection could be practical.

3. Another detection result from Venette et al. 2002 concerns the fact that sampling for
marks cannot prove an endangered stock is absent from a catch or mixture, and the best
that can be done is to demonstrate its contribution is below some level. Restated, what is
the maximum proportion of the 100%-marked and endangered stock, say pmax, in a catch
if none of its individuals are found after sampling n fish? To compute Pyax, only the
sample size n and the desired probability of detection, Prob (X > 0), are needed, and then

p.. =1—[1-Prob (x>0)]"". The true and unknown proportion of the endangered stock
lies between 0 and ppax With confidence equal to Prob (X > 0) -100%. Using n =200 and

Prob (x> 0) = 0.98, pmax = 0.0194, which is in agreement within rounding of the
statement of comment 2 above regarding a sample size of n =200: “a relative frequency
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01 0.020 (2.0%) results in the probability of detection exceeding 0.98”. The latter
statement would be more precisely stated as “a relative frequency of 0.01995 (1.995%)
results in the probability of detection exceeding 0.98224.”

4. The equation in comment 3 above can be rearranged to calculate the sampling effort to
detect a specified endangered stock proportion with specified detection probability,
namely n=In [1 — Prob(x > 0)]/1n(1 — p). For example, to detect with 95% confidence a

100% marked endangered stock in a mixture when its proportion is p = 0.01 requires a
sample of n=1In(1-0.95)/In(1-0.01) =298.

Prob(X=0) vs Log(Freq) by Sample Size
1.00 /,7__
0.90
0.70 /

0.60 7/ P(X>+0|n=20)

/
0.50 I n=200
|
/

2:2 / / n=2000
0.20 ;] ] ]

0.007 T T T T T T T T T T

log(f)

Log(Freq)

Figure 1. Detection probability for rare individuals as related to their frequency, or proportion, in
a binomial population (the linear scale for common logarithm, Log (Freq), ranges from
10 = 0.0000010n the left to 10™ = 0.1 on the right.) The three curves correspond to
random samples of sizes n = 20 (blue), n = 200 (red), and n = 2000 (yellow). (From
Venette et al. 2002).
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2.8.4 Catch Sampling to Determine Stock Composition with GSI: Sample Sizes and
procedures

David R. Bernard

I’ve found over the years that successful catch sampling is a matter of knowing what you want
and how the fishery works. Knowing the information you want and why you want it helps to
determine sample-size targets needed to gain desired precision in statistics. However, sample-
size targets are determined under the presumption of random sampling, a presumption that is
invariably wrong. Sampling according to how the fishery works, therefore, improves accuracy in
statistics. For these reasons I’ve divided my contribution to our discussion into two parts: sample
sizes and procedures. I’ll begin with the more traditional ‘determination of sample sizes.’

Sample Sizes: Planning catch sampling programs to estimate stock composition with GSI has
the following 10 issues:

1) the objective(s) of sampling,

2) standards for meeting the objective,

3) definition of the sampling frame,

4) simultaneous or single estimation of parameters,

5) use of relative or absolute precision to describe uncertainty in estimates,

6) finite sampling,

7) stratification,

8) misclassification,

9) subsampling, and

10) additional measurement error.

Most of the procedures to determine sample-size targets have been long established. However,
objectives of sampling are obviously specific to the matter at hand, so I’ll start with them.

Objectives: Ostensibly the objective for sampling is given in Dave’s KEYISSUES document
dated 19 June as ‘to estimate specified stock proportions ... (with) special problems of small
populations.’ I presume Dave’s referring to estimating proportions in landed catches (and
perhaps non-retained catches as well). Other objectives might be to detect the presence of a
stock, or to test some hypothesis based on comparing two or more proportions representing
the same or different stocks. Detecting presence usually involves a lower sample-size target
than does estimating proportions, and estimating proportions lower than testing hypotheses.
For now, I'’ll follow Dave’s directive and presume we’re estimating proportions.

Standards for Meeting the Objective. Criteria for successfully meeting an objective are
usually couched in terms of confidence intervals based on estimates, such that, a large
percentage (usually 95%) would cover the true proportion. How large these intervals (and
hence sample-size targets) should be depends on how estimates will be analyzed (stock-
recruit analysis, exploitation rate analysis, forecasting, etc.). Given the precision required of
estimated proportions for analysis, a person responsible for a catch sampling program would
use established statistical procedures in the form of a table, graph, or equation to link the
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desired outcome to the appropriate sample-size target (presuming that sampling will be
random).

Dave begins Section III.A. with ‘Sample size requirements to estimate ...”. The word
‘requirements’ implies that a standard like those in USCTC (1997) will be used to determine
a sample-size target. That’s more than putting together a table (or graph) linking sample
sizes to precision; that’s specifying which line on the table to use. Are we determining those
standards for estimating catch by stock with GSI? If we are, we need to consider how the
resulting statistic will be used. One important issue for us to address about standards is how
small a proportion must be to render it inestimable with reasonable confidence. One
percent? Five percent? A half percent?

Definition of the Sampling Frame. The sampling frame for a stratified catch sampling
program is obvious with the fish being the basic sampling unit and a stratum being all fish
caught during a specified time and/or in a location. If a stratum is further subdivided, say
into offshore or onshore, some post stratification is involved, but sample-size targets would
be unaffected. For the sake of generalized planning, however, I suggest we determine a
sample-size target for a sampling frame from which a ‘simple’ random sample will be drawn
without replacement. Such a sample-size target will be germane to one stratum at a time, or
to many collectively, depending upon the desired scope of the estimated proportion.

Simultaneous vs. Single Estimation. | imagine that we would be interested in estimating
proportions for several stocks at once. That would up sample-size targets to some degree
over estimating a single parameter. The reference I have used with success in the past is
Thompson (1992, p. 31-40). Given a standard for meeting the objective using absolute
precision, the worst-case scenarios are given in the Thompson’s Table 5.1 for a simple
random sample:

TABLE 5.1. Sample Size no for Simultaneously Estimating Several Proportions
within Distance d of the True Values at Confidence Level 1 — o

o d*nmo no with d = 05

m
50 44129 177 a
40 50729 203 4
30 60123 241 3
20 74739 299 3
10 1.00635 403 3
05 1.27359 510 3
05 1.55963 624 2
02 1.65872 664 2
01 1.96986 788 2
005 2.28514 : 915 2
001 3.02892 1212 2
0005 3.33530 1342 2
0001 4.11209 1645 2

Source:  S.K. Thompson, “Sample size for estimating multinomial proportions,” 1987, The
American Statistician 41 42-46. With permission from the American Statistical Association.

The table above is based on absolute precision under the worst-case scenario which occurs
when m stocks in the catch represent equal proportions and the remaining stocks zero. For
example, sample-size target for a confidence level of 95% and a width of 0.05 is 510 (m =3
here). A sample-size target for o = 0.05 and a d = 0.01 is 12,736 (= 1.2735/d%). These
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sample sizes will give at worst the specified absolute precision on all proportions and
probably much better. In contrast sample-size targets from methods in Cochran (1977) eq.
4.2 for the worst-case scenario involving a single stock are 384 (d = 0.05) and 9,604 (d =
0.01). Sample-size targets based on relative precision can be obtained from the table above
by scaling d to an estimated proportion. For instance, if p = 0.08 is the smallest proportion of
interest to you, and you want relative precision of 25%, d = 0.02 for use in the table. For the
worst case distribution of parameters, relative precision would be met for all p > 0.08 and
not met for all p <0.08.

Relative or Absolute Precision. I’'m a fan of absolute precision myself, primarily because I
have built quite a few brood tables in my day. Such tables are usually built for relatively
large stocks or stock groups, and size and larger proportions make for better precision.
However, if you want to scare a biologist, show them the sample size required to obtain
‘good’ relative precision for a stock represented by a small proportion of the catch in a
single stratum. However, there is little need to show with confidence that a catch of stock A
in a stratum 1s 1% as opposed to 2%. Small is small, and with few exceptions, small stocks
should not influence the management of a fishery on an aggregate of stocks. Outside of
management plans and treaties, the major exception is that the small stock is in jeopardy of
extinction. However, protecting such stocks from extinction does not require highly precise
estimates of the proportions caught.

Finite Sampling. Sampling from a finite population means that uncertainty is reduced as the
sampling fraction approaches one, reduced to certainty if all units are sampled and there is
no misclassification. There is no reason to set a sample-size target that is beyond the catch
in a stratum. For the workshop we (I) don’t have the information on catches needed to
rationally reduce sample-size targets, but we can and should explain the fpc (finite
population correction) and how it’s used to adjust sample-size targets downward. For the
table above, the fpc can be found in Thompson (1992, P. 40):
1
n=———
1/n, +1/C

where N, is the unadjusted sample-size target from the table above, n is the target adjusted
for sampling from a finite population, and C is the expected catch (the expected size of the
finite population) in a stratum.
Stratification. If the sampling frame for the estimated proportion is larger than a single
stratum, the sample-size targets from the table need to be spread across strata. Proportional
allocation of sampling is:

C

i
> c,
where n, comes from the table above, nyj is the new sample-size target from stratum j, Cj is
the anticipated catch from stratum |j, and j' denotes a stratum for purposes of summation. If
the desired statistics are proportions from 10 strata collectively, and each stratum
represented the same catch, ny/10 would be the sample-size target for each stratum. In the
examples above, these new targets no;j sans an fpc would be 51 for d = 0.05 and 1274 for d =
0.01. The anticipated fpc would be applied to the no. For instance, if Cj = 10,000, the new
sample-size target for a stratum would remain at 51 when d = 0.05, but would drop to 1,130
[=(1/1,274 + 1/10,000)'] when d = 0.01. The new targets would actually improve precision
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(lower the realized o below the desired level) to the extent that the C; differ across all strata
(see Cochran 1970, Section 5.10). This is an opportunity to lower n (the overall sample-size
target), however, to do so requires some a priori knowledge of the proportions to be
estimated. Ironically, possession of such knowledge would permit optimal allocation of
sampling for a further improvement in precision or lowering of n. Considering that such a
priori knowledge is unavailable to this workgroup at this time, my recommendation for
setting planning rules would be to assume that proportions will follow the worst-case
scenarios in every stratum. I suggest that part of our recommendations include descriptions
of the general procedures for determining sample-size targets in a stratified program.
Individual planners can use these procedures to reduce sample-size targets for sampling in
their strata accordingly based on more detailed knowledge. An alternative recommendation
would be to consider subsampling (see below).

Misclassification. Errors in assigning salmon to the wrong stock will add uncertainty to
estimated proportions which can be countered to some degree by increasing sample-size
targets over those in the table above. Ignoring the fpc for the time being, and assuming that
misclassification is random and independent of sampling, the variance of P can be

approximated with:

. _a(l-x 1-
n n
where 7 is the expected fraction of fish correctly classified in the sample. Dividing V () by

variance due to sampling error [(p(1 - p)/n] and subtracting one from the result produces the
fraction that the sample-size needs to be increased to meet expected precision. Given the
worst-case scenario that p = 0.5, the inset table provides expansions. Given a standard of
90% correct classification for GSI, sample-size targets for our 10-stratum example with
10,000 fish per stratum would be 69 when d = 0.05 and 1733 when d = 0.01.

Obviously this approach is not very robust and perhaps a bit amusing in

a naive sort of way. A rigorous solution needs a lot more work ... or

needs someone in the know (Jerry?). In the long distant past the 0.90 36.0%
Department ran simulations to establish sample sizes for scale patterns 091 32.8%
analysis, a technique to estimate stock composition from a mixture that 0.92  29.4%

was fraught with misclassification. Simulations could prove useful here | 0.93  26.0%
as well, but I would hope Jerry is correct when he said that most of these | 0.94  22.6%
techniques have been worked out. 095 19.0%
096  15.4%
Subsampling. Not all samples taken need be analyzed. Considering the 097 11.6%
cost of genotyping a single sample relative to taking that sample, tossing | 0.98 7.8%
some of the samples in the trash might be a smart thing to do. During 0.99 4.0%
fishing a relatively large sample would be taken from each stratum, say 1.00 0.0%
a set fraction of the catch (a fraction that could be recommended by this
work group). Samples would then be numbered and stored. After the fishing season (or after
fishing in a stratum has ceased for a time), a small subsample would be randomly drawn
from storage. Information on stock proportions from genotyping the subsample and on
catches would be used to produce well-informed sample-size targets that would optimize
precision of estimated stock proportions. If needed, more samples in storage would be
randomly selected for genotyping to meet the well-informed targets. Samples still on the
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shelf would then be tossed or kept as per the wishes of the lab. This stratagem trades some
cheap bookkeeping and cheap sampling for expensive analysis and produces near optimal
precision in estimates.

Additional Measurement Error. Michael’s thoughts on estimated catch (his equations 5 and
6) touch on another aspect of planning that we should consider because it involves a very
important rule. For some strata catch is known with near certainty (such as for some
commercial fisheries) and in others notably for most sport fisheries), catch is estimated with
some uncertainty. If catch by stock is the wanted statistic, and catch is estimated, catch by
stock i in stratum J and its variance are calculated:

A

Cij = éj pij V(éij) = V(éj pij) V(éij) = V(éj ) f’j + V( f)ij )éjz - V(éj )V( pij)

again using Michael’s notation (note that I substituted a lower case v for V to signify an
estimated variance). The variance of a product of two, independent random variates is as
per Goodman (1960) (estimates for C and p are assumed to have come from different
sampling programs). Goodman (1960) also shows that for planning purposes (variances are
‘known’):

CV?*(C;)=CV?*(C,)+CV’(p;)+CV*(C,)CV*(fy)
which means that catch sampling as one of a set of programs to estimate Cjj will at best
reduce precision to that of the estimated catch regardless of the number of caught fish
sampled. This ‘splash of cold water’ needs to be included in the write-up of this assignment.

Sampling Procedures. As mentioned before, sampling catch from fisheries is not a random
process. Fishermen fish an area during an opening, then deliver their catch to the nearest port,
tender, or boat ramp. As commercial fisherman move across an area, those fish caught first are
to be found in the bottom of the hold while those caught last tend to be on the top. Off loading on
shore and on tenders has the same effect because distance of fishermen determines the order in
which their catch is offloaded. Sport fishermen usually sail, fish, and return to a port or ramp
nearest to their residence or to where their cruise ship is docked. In contrast, the sampler must go
to the fish at a particular cannery, dock, or tender. At these sites, the sampler will not be faced
with a random selection of the catch.

The only prudent response is for the sampler to follow several simple rules to get a systematic
sample. Such an approach should provide accurate estimates of stock proportions in the catch,
but under some circumstances provide badly inaccurate estimates of variance (see Wolter 1985,
Chapter 7). If systematic samples are rigorously drawn, some alternative formulation for
variance calculations can be used to reduce the bias. If not so drawn, at least the samples should
be taken in a way not to significantly bias the statistics of interest.

Here are some common-sense rules:
» Within a stratum, sampling should occur in near proportion to the catch. If there are five

processing plants that traditionally handle 5, 10, 15, 20, and 50% of the catch in a stratum,
roughly 5, 10, 15, 20, and 50% of the samples should be taken from each processor,
respectively.
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» Samples from commercial fisheries should be taken proportionally through time in a stratum.
Sampling should not be concentrated during the first few days in a stratum when deliveries
or landings probably represent fish caught nearby. Nor should sampling be concentrated
during the last few day when off loaded catches probably came from far away.

» Samples from sport fisheries should be taken proportionally through the day. Fishermen
returning early probably fished nearby, those returning late in the day far away.

» When sampling from fish coming from a hold, draw the sample systematically while the
hold is emptied.

» Do not take all samples from a single boat or tender or a small subset of all boats or tenders.

Subsampling is of little benefit within a stratum because information on the spatial and temporal
pattern of catches is not recorded or is difficult to find.

Cochran, W. G. 1977. Sampling techniques. John Wiley. New York.

Goodman, L. A. 1960. On the exact variance of products. Journal of the American Statistical
Association 55:708-713.

Thompson, S. K. 1992. Sampling. John Wiley, New York.
Wolter, K. M. 1985. Introduction to variance estimation. Springer-Verlag. New York.

USCTCChinook(97)-1. 1997. A review of stock assessment data and procedures for U. S.
Chinook stocks. A Report of the Pacific Salmon Commission, Vancouver, B. B. Canada
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2.9.1 Methods for Estimating Escapement Using CWTs & GSI estimates of Stock
Composition

Gary Morishima

It can be difficult and costly to obtain high quality (low uncertainty) estimates of natural
escapements (number of fish by age) from spawning ground survey data. A combination of GSI-
based estimates of catch contribution and exploitation rates derived from cohort analysis of
representative CWT experiments can be used to generate estimates of age-specific escapements
using the methods described below.

Methods:

Notation (stock subscript assumed):

E Spawning Escapement

Ea Spawning Escapement of Age a

EscRatea Escapement rate for Age a

THR Terminal Fishery Harvest Rate estimated from CWTs

THR, Terminal Fishery Harvest Rate for Age a in terminal estimated from
CWTs

PSM Post-Fishery/Pre-Spawning Mortality Rate

PSM, Post-Fishery/Pre-Spawning Mortality Rate for Age a

C Catch of associated natural stock

Ca Catch of Age a fish from associated natural stock

Cas Catch of Age a fish from associated natural stock in Fishery f

IMR Incidental Mortality Rate

IMR, Incidental Mortality Rate for Age a

IMR, Incidental Mortality Rate for Age a in Fishery f

ERag Exploitation Rate for Age a in Fishery f

MR ¢ Maturation Rate for Age a in Fishery f

Assumptions:

1. GSI-based estimates of stock contributions are made without stock/aging
assignment error.

2. Natural and hatchery fish have the same growth, maturation, and fishery
exploitation/harvest rates.

For a given stock, escapement by age can be estimated using the simple relationship:

E,  EscRate,
Ca,f ERa,f
C, ; * EscRate,
E,=—
: ER

a, f
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Case 1: Terminal fishery. Available data: THR, C, PSM, IMR. Natural and CWT’d population
have same age structure.

_ C*(1-THR-IMR-PSM)
THR

E (1)

Case la: Terminal fishery. Available data: THR, C, PSM, IMR. Natural and CWT’d
population DO NOT have same age structure.

% _ — -
E=ZCa (1-THR, — IMR, — PSM,) 2

THR,

Case 2: Preterminal Fishery. Available data: ER, THR, C, PSM, IMR. Natural and CWT’d
population DO NOT have to have the same age structure.

For a given age, pick the pre-terminal fishery which has the least uncertainty about the GSI-
based magnitude of the catch and the smallest relative error surrounding the estimate of the
exploitation rate (Note that different fisheries could be used for each age if desired).

C. >“(I—Z(ERa’f +IMR, ())*MR, *(1-THR, — IMR, = PSM,)
f

E,= ER €)

a,f

The total escapement is then simply the sum of the age-specific escapement estimates.

E=>E, (4)

EVALUATION:

Performance of the proposed methods in the presence of known uncertainty can be evaluated
through the use of a simulation study that incorporates errors in spawning ground survey
methods, GSI stock-age assignment error, and statistical uncertainty surrounding CWT-based
estimates of exploitation rates.

Additionally, the proposed methods could be evaluated using information for a few selected
stocks that have reliable escapement, GSI and exploitation rate data available. Two types of
comparative studies could be performed: (1) Escapements could be estimated for hatchery stocks
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for comparison with rack recoveries where age and count data would be relatively easy to obtain;
(2) Estimates of escapements generated using the methods described above could be compared to
estimates derived from spawning ground surveys.
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David R. Bernard

Proposed Application of GSI and Indicator Stock Data:
Modification of Appendix C

A method to annually estimate the size Mrm Of terminal runs of mature Chinook salmon is
described in Appendix C of the Report of the Expert Panel on the Future of the Coded Wire Tag
Recovery Program for Pacific Salmon. Calculations for this estimator are based on landed
catches from untagged stocks as estimated through genetic stock identification (GSI) and the
recovery of coded wire tags (CWTSs) from indicator stocks in each calendar year. A modified
version of the estimator in Appendix C is presented in this essay as

Mterm(W) :Zazf ﬁa(l)éfa(W) (1)

where Mterm(w) is the estimated annual run to the terminal area of wild stock W and Cfa(w) Is the

landed catch in pre-terminal fishery f of Chinook salmon age a belonging to the same wild stock

as estimated through GSI. Estimated multipliers 7, ,, are functions of recovered CWTs such that

r]term,a(l) (2)

”a(l) anfa(l)

where ngy( is the expanded number of coded wire tags (CWTs) from indicator stock I in the
landed catch in fishery f age a and Neerm aqry 1S the expanded number of CWTs from indicator stock
I in the terminal run age a. No knowledge of maturation rates is required in this modification.
Precision of estimates improve as more pre-terminal fisheries are included in the summation in
equation (2), however, there must be a corresponding estimate of landed catch by age of the wild
stock in each of the fisheries so included. Approximate variance for I\?Ite,m(w) is

V(Mterm(W)) =

zazf |:V(7%a(l))cfa(W) +7%a(l)v(cfa(W)) _V(ﬁ-a(l))v(cfa(W)) + szffa(.)ffb(.) COV(Cfa(W)'Cfb(W)):‘ (3)

A4 A2
T

. . n T
with v(7,,) = 2> —0 4 20 (4)
term,a(l) f ¢f ¢termnterm,a(l)




David R. Bernard

where b is an age other than a, and estimated variances and covariances of landed catch by age
come from the GSI program.

The Modification

Landed catches of a cohort of Chinook salmon in a calendar year by fishery can be expressed as
a series of general equations

N (1_ Sseak) = Nggar (5)

NSseak (1_ Snbc) = Nipe (6)

NSseakSnbc (1_ chvi ) = nvvcvi (7)

NSseak Snchwcvi (1 - S preterm) =n preterm (8)

where St is the survival rate of salmon through fishery f (=SEAK, NBC, WCVI, Pre-terminal) in
a calendar year, nyis the number of individuals in the landed catch in fishery f that year, and N is
the number of salmon in that cohort available to be fished at the beginning of the season.
Abundance N represents all fish that will mature that calendar year plus all those that will not,
but are physically exposed to fishing. Implicit in these general equations is that there is no
natural or incidental mortality, or no emigration from or immigration to the fishing grounds
while the cohort is exposed to fishing or is not exposed to fishing between fisheries. Subsequent
derivations will show that these assumptions are irrelevant to estimating the size of the terminal
run with GSI. Note that N and n could represent either a tagged or an untagged population. The
sum of landed catches across all fisheries can be expressed as

nseak + nnbc + nchi + npreterm = Nh(S) (9)

where h(S) = (1 - Sseak) + Sseak (1 - Snbc) + Sseak Snbc (1 - chvi) + Sseak Snbc chvi (1 - Spreterm)- In
contrast the number of salmon nery in the terminal area (terminal fishery and escapement) in a
calendar year can be expressed as

Mo = NG(0,5) (10)

where g(6,S) = € Sseak Snvc S wevi Spreterm @and @ is the fraction of fishable abundance that will
mature (or would have matured) that year. The ratio of the two functions g and h gives the
number of salmon in the terminal area for the cohort in question as a function of the catches from
all pre-terminal fishing:



David R. Bernard

nterm — g(@,S) =7 (11)
nseak + nnbc + nwcvi +Nn h(S)

preterm

Note that the expansion z is independent of the initial size of the fishable population and for that
reason is germane to any two or more cohorts with the same dynamic rates. For any such set of

cohorts that meet this “gorilla assumption”, an estimate of z for one cohort (call it cohort 1) can
be used to estimate the terminal abundance Mem for another cohort (call the other cohort W)
given knowledge of the landed catches C, ,,, from the second cohort:

Mterm(W) :ﬁ(I)Zf Cf(W) (12)

For PSC fisheries, cohort |1 would be an indicator stock and cohort W a corresponding untagged
wild stock. Because dynamic rates vary by age for Chinook salmon, estimating the terminal run
size in a calendar year requires stratification by cohort, that is, by age:

Mterm(W) =Zazf ﬁa(l)éfa(W) (13)

where a signifies a cohort (indicator stock) or age (wild stock). Statistics from the same fisheries
would be used to calculate 7,,,and Zéfa(w) with the former based on the recovery of tags from

the indicator stock and the latter on estimated landed catches of the wild stock from GSI.
Statistics should be summed over as many fisheries as appropriately possible to improve
precision of the result (assuming that all statistics are free of significant bias). Incidental
mortality and emigration can be ignored in calculations without biasing results because these
phenomena can be expressed as dynamic rates. For instance, a more complex model for an ocean
fishery could be:

Ffa
Naz_(l_sfa):nfa (14)

fa

where Zs, is instantaneous rate of mortality for age group a in fishery f and F, is the
instantaneous rate of landed mortality. Note abundance Nj is still separable making the ratio
g(...)/h(...) germane to both indicator and wild cohorts so long as the “gorilla” assumption
holds.
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Table 1. — Expanded CWTS Ngeax o from five cohorts recovered through sampling the
SEAK fishery in 2001 that represent the NOC indicator stock along with arbitrarily
apportioned landed catch by age Cseaka as estimated through GSI on the SEAK fishery
in 2001. Statistics Nomer a are expanded recoveries from ocean fisheries other that
SEAK in 2001. Shaded cells were used to estimate .
Brood . A NG
Year ages Nseak,a Nother,a Nterm,a ”a(l) Cseak,a(W) ”a(l) seak,a(W)
1995 0.5 8 6 11 1.375 467 642
1996 0.4 52 26 267 5.135 3,033 15,571
1997 0.3 337 2041 2,920 8.665 19,653 170,289
1998 0.2 43 60 989 | 23.000 2,508 57,677
1999 0.1 0 0 337 - - -
M ermuy = 244,178

The Example: the NOC Stock

From Table C1 in Appendix C, the expanded recoveries of CWTs for the NOC indicator stock in
2001 are in Table 1 above. The estimate of landed catch of the untagged (wild) NOC stocks in
the SEAK troll fishery in 2001 is 25,660 Chinook salmon of all ages combined. Relative cohort
composition in the SEAK troll fishery within the NOC indicator stock was used to apportion the
25,660 estimate into estimated landed catch by age in Appendix C. For demonstration in this
essay, the same relative cohort composition was used in Table 1 to apportion estimated catch,
even though this was probably a poor choice for a surrogate. Results reported here are exactly

the same as those reported in Appendix C (244,178 Chinook salmon).

Equivalence of results reported in Appendix C and reported here is due to both approaches being
mathematically equivalent. Combining equations (1-3) from Appendix C, simplifying, and
summing over age shows that the estimator proffered in Appendix C is mathematically the same

as equation (1) in this essay for the situation when only one pre-terminal fishery is considered:

R .
LEGCat, >~ MatRte,,_, , .
M _ Z zj Rb)’=)’—i _ I‘EGCatyz:i-I-Rby:y—i _ rlterm(l)Z:aCseak,a(W)
erm(W) — - -
t i Rby=y—i Matheby—y/ Z j Rby:y— ] nseak(l)
TRby:yfi

(15)
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The estimated maturity rates MatRtep,=y.i cancel as do the recoveries by age (Rpy=y-i). For this
reason knowledge of maturity rates by age is not needed to accurately estimate terminal run size
with GSI and CWTs. Knowledge of estimated age composition of landed catch would also be
superfluous®, but only if relative cohort composition within the indicator stock is the same as
relative age composition of the untagged wild stock during fishing. This is an unlikely
circumstance given that a tagged cohort begins life with an arbitrarily decided abundance.

Accurately estimating terminal run size of Chinook salmon with GSI and CWTs requires that the
GSI program produce estimates of landed catch by stock and age. Direct estimates of relative
age composition would be needed to fairly demonstrate the accuracy of calculations. The
example above disregarded this requirement to demonstrate calculations.

The Approximated Variance

Following procedures in Goodman (1960) for estimating the variance of a product, the
estimated variance for Mterm(w) is

VM) =33, [v(ﬁa)é?a A(E ) —VENVC ) + 25 A, cov(éfa,ém} (16)

b>a

v(C,),and

cov(C,,,C,,) would be estimated through a GSI program®. Statistics z,and v(z,) would be

where subscripts | and W are implied and b is an age other than a. Statistics C

fa ?

estimated from CWTs randomly recovered from catch sampling programs. Equation (11)
describes how to calculate 7, in terms of the ns,, however, the ng, are usually the result of
expanding the actual ri; CWTSs recovered while sampling ¢ x 100 % of the landed catch or
terminal run such that

7 = r]term,a _ r-term,a/¢term (17)

T Zf nfa B Zf rfa/¢f

! Inspection of equation (15) shows that if cohort composition of the indicator stock is the same as age composition of the
untagged wild stock, no stratification by age in the calculations is needed at all.

2 Goddman, L. A. 1960. On the exact variance of products. Journal of the American Statistical Association 55:708-13.

* Because covariances for landed catches of two age groups of wild salmon in the same fishery involve age composition and
multinomial distributions, they should be negative.
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such that n = /¢ . Although 7, and 7z, from two cohorts are calculated with recoveries from

the same sampling program, recoveries r, and rg, from two cohorts within the same fishery have

a covariance so small that it can be ignored with essentially no consequence”.

Equation (17) forms the basis for approximating v(z,) . The subscript a is dropped in the
following derivation with the understanding that all the statistics in the calculations for an age
group correspond to age group a. From the delta method:

v(fr)zzf: v(r, )(ST”] +2200v(rf,rj)(¥](g—f] +

f j>f i

v(rterm{a—’%j +22cov(rf,nerm>(%}( on J (18)

e or, | Oy
(note that j denotes a pre-terminal fishery other than fishery f and that cov(rs, r;) here is for
recoveries from the same cohort (implied a) across two fisheries). The N salmon in the tagged
cohort extant at the beginning of the year suffer by the end of the year one of a series of fates.
Some are taken in an ocean fishery and their CWTs recovered during sampling; some evade
being caught and subsequently mature; some evade being caught but do not mature; some are
caught but are not landed; some are caught, landed, but not sampled; etc. The numbers of tagged
salmon grouped by fate follow a multinomial distribution where 4; is the probability that a fish
suffers fate i. The maximum likelihood estimate for the probability that a CWT is recovered by
sampling a fishery is 4, =r, /N Ao = T/ N fOT recovery in the terminal area. Estimated

variances for the rt,, riem, and their two covariances are NA, (1= 4;), NAgm (L~ Agrm)» = NA 4},
and — N, A, , respectively. Partial derivatives are
o —#° on 7

—= and =
arf ¢f nterm arterm ¢term nterm

Substituting these variances, covariances, and derivatives into equation (18) produces the

approximation

4 Bernard, D. R., and J. E. Clark. 1996. Estimating salmon harvest with coded-wire tags. Canadian Journal of Fisheries and
Aguatic Sciences 53: 2323-2332.
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I\

V(#) = z{m a-i)-2 r23N P }

¢f r]term >f ¢f ¢j nterm

2 ~3

j| sz:{ N/?’ ﬂ’term M—ﬂ-:| (19)

{Nﬂm A ) 57

¢te rm term

Remembering that 4, =r, /Nand thatr, =n¢, , equation (19) can be modified to become

74 n. n? n.n. 73 n
V(7)== > AL SSULT I R SR N P | (20)
¢f N j>f N ¢term Iqterm N n f N

term term

Substituting the relationship 7 =n,,, /2n; into equation (20) and collecting terms gives

term

Ag A2 n2 Zznfnj
V(7) = Z v, LA S S - (21)
nterm ¢f ¢term term N (anf) (anf)

The term in brackets in equation (21) equals zero, which means that knowledge of cohort size is
unnecessary to approximating variance and that the approximation is

A2

v(7%)~”2 Z¢ (22)

term f ¢term term

Table 2 on the next page contains statistics for the example involving the NOC indicator stock in
2001. All ¢ were arbitrarily set to 0.2 and ¢erm Was arbitrarily set to 0.85 (20% of terminal catch
sampled and 85% of escapement). Relative precision inz:

R Zf f/ ¢f 1
= 23
) J 1Y ol )

improves with more recoveries (larger numbers tagged in indicator stock, more fisheries sampled
for GSI and CWTs, and higher sampling fractions in the CWT programs). Relative precision
ranged in the example from 10% to 68% for age groups (see Table 2). Sampling all landed catch
and escapement (all ¢ =1), relative precision would range from 2% to 30% for age groups. If
relative cohort composition of the indicator stock can be shown to be the same as relative age
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Table 2. - Expanded CWTS Nseak.a @Nd Nother,a from five cohorts of the NOC indicator
stock recovered through sampling ocean fisheries in 2001 and from the terminal area
(nerma) N the same year. Shaded cells were used to calculated 7 and to approximate
v(7). The Totals line corresponds to the situation when relative cohort composition of
the indicator stock in landed catch is the same the relative age composition of the
corresponding untagged (wild) stock, a circumstance that requires no age stratification.
BYl’ggrd ages Nseak,a Nother,a Nterm,a ﬁ-a(l) V(ﬁ-a(l)) Cv(ﬁ'a(l))
1995 0.5 8 6 11| 0.786 0.287 68%
1996 0.4 52 26 267 | 3.423 0.803 26%
1997 0.3 337 2041 2,920 | 5.397 0.281 10%
1998 0.2 43 60 989 | 9.602 4.585 22%
1999 0.1 0 0 337 - - -
) V(7)) cv(7,y)
Totals | 0.2+ 440 296 4187 | 5.689 0.223 8%

composition of the wild stock (unlikely, but instructive), relative precision for the estimate of the
terminal run is 8% (the Totals line). Comparison of relative precision for the 7,and for 7 from
the Totals line provides some insight into the uncertainty arising from the CWT programs in the
estimates of terminal run size (at least in the context of the arbitrarily chosen values for ¢).
Completion of this example awaits knowledge of landed catch by age for the wild stock coming
from a GSI program.
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