REVIEW OF THE CHINOOK EXPLOITATION RATE INDICATOR STOCK PROGRAM FOR THE WASHINGTON COAST AND PUGET SOUND

by

James B. Scott Biometrician Northwest Indian Fisheries Commission

Sandra D. Moore
Fish Biologist
Department of Fisheries

Richard A. Moore Fish Biologist Department of Fisheries

ABSTRACT

The Chinook Exploitation Indicator Stock program was initiated in 1985 to evaluate the effectiveness of management measures prescribed by the Pacific Salmon Commission (PSC). In the program, juveniles from each indicator stock are tagged annually with coded-wire-tags (CWT) and subsequent recoveries in fisheries are used to infer fishery harvest rates, brood exploitation rates, and other statistics. Since this indicator stock program provides the only direct means to evaluate the effectiveness of PSC management actions upon exploitation rates, it is imperative that the program be developed and maintained in a manner that assures this objective is achieved. To this end, the Chinook Technical Committee (CTC) recommended in 1990 that "Indicator stock programs should be reviewed to determine if representation of production regions and stock types is adequate and if tagging levels for the indicator stocks are sufficient." This report reviews Washington coastal and Puget Sound indicator stocks as a response to that request.

Recognizing the importance of the indicator stock program, in 1985 the Washington Department of Fisheries (WDF), the Northwest Indian Fisheries Commission (NWIFC), and the U.S. Fish and Wildlife Service (USFWS) instituted a comprehensive tagging program in Washington State. Exploitation indicator stocks, and associated natural stocks, were established by the CTC in 1987. Since 1985, WDF and NWIFC have spent in excess of \$390,000 annually tagging chinook exploitation rate indicator stocks.

Serious problems exist with the program that severely hamper the ability of technical staff to evaluate compliance with the objectives of the PST. Currently, only 4 of the 27 stocks considered in this report are providing data of the quality required for the fishery harvest rate index. Problems identified generally fall into 1 of the following 3 categories:

- (1) Estimates of the escapement of tagged fish are lacking, are unreliable, or have not been provided to PSMFC;
- (2) Survival of tagged fish has been poor or tagging levels have been too low to provide sufficient fishery recoveries; and
- (3) Budget cutbacks have reduced agency ability to maintain both adequate tagging and high quality escapement sampling programs.

In the report, 17 stocks are identified as candidates for future PSC tagging. Of these, 11 are recommended on a probationary basis (i.e., contingent on program modifications). It is hoped that funds saved by discontinuing some of the current tagging programs could be reallocated to improve the remaining programs.

Since the tagging of representative stocks is a regional rather than an agency need, we recommend the creation of an interagency committee to address the concerns and recommendations of this report.

Table of Contents

List of Tables	Page
List of Figures	
List of Figures	
List of Appendix Tables	iii
1.0 INTRODUCTION	iv
2.1 MINIMUM TAGGING LEVELS	· · · · · · · · · · · · · · · · · · ·
2.1.1 TAGGING LEVELS BASED OF 2.1.2 TAGGING LEVELS FOR SUFF 2.1.3 ASSUMPTIONS	N CTC SELECTION CRITERIA 3 FICIENT AGE 2 COHORT SIZE
2.2 PRECISION OF FISHERY HARVES	ST RATE INDICES
3.1 TAGGING I EVELS DECLYDD	
3.3 REVIEW OF INDICATOR STOCKS	
3.3.2 SUMMER AND SPRING/SUMN 3.3.3 FALL FINGERLING	MER FINGERLING 7
3.3.4 FALL YEARLING AND ACCEL 4.0 DISCUSSION	EVALED PRODUCTION
ACKNOWLEDGEMENTS	28
LITERATURE CITED	30
	31

List of Tables

m 11 4		Page
Table 1.	Natural Puget Sound and Washington coastal spring chinook stocks	- 기계 - :
Table 2.	and associated escapement and exploitation indicator stocks	. 32
radic 2.	Natural Washington coastal summer and spring/summer chinook stocks and associated escapement and exploitation indicator	
Table 3.	stocks.	. 32
rable 5.	Natural Puget Sound and Washington coastal summer/fall and fall chinook stocks and associated escapement and exploitation indicator	j. 5 5
5	stocks.	. 33
Table 4.	Natural Puget Sound fall yearling and accelerated chinook stocks	
Table 5.	and associated escapement and exploitation indicator stocks.	. 34
rable 5.	Target, recommended, and recent year tagging levels for Puget	V.
Table 6.	Sound and Washington coastal exploitation indicator stocks	. 35
Table 0.	Average number of estimated total adult equivalent mortality CWT	
	recoveries for chinook indicator stocks in ocean fisheries with Pacific	
m	Salmon Commission ceilings	. 36
Table 7.	Stocks considered to be the best candidates for future PSC indicator	
Table 8.	stock tagging.	. 38
Lubic o.	Summary of recommendations for Puget Sound and Washington Coastal chinook exploitation rate indicator stocks.	. 39

List of Figures

Figure 1.	- various of natcheries and fiver in Fliget Sound and the Workington	Page
	Coast Washington	41

List of Appendix Tables

Appendix Table 1.	Tagging history and use of the Nooksack	Page
	Hatchery spring yearling stock	44
Appendix Table 2.	Estimated recoveries and contribution rates for	11
	the Nooksack Hatchery spring yearling stock	45
Appendix Table 3.	Tagging history and use of the Skookum Creek	1
	Hatchery spring fingerling stock	47
Appendix Table 4.	Estimated recoveries and contribution rates for	1
	the Skookum Creek Hatchery spring fingerling	
	stock	48
Appendix Table 5.	Tagging history and use of the Skagit Hatchery	
	spring yearling stock.	50
Appendix Table 6.	Estimated recoveries and contribution rates for	
	the Skagit Hatchery spring yearling stock	51
Appendix Table 7.	Tagging history and use of the White River	
A 11 cm 1 a	spring yearling stock.	53
Appendix Table 8.	Estimated recoveries and contribution rates for	4.
A . 11 m . 1 . 0	the White River spring yearling stock	54
Appendix Table 9.	Tagging history and use of the Quilcene	1
Á 11 FD 11: 40	Hatchery spring yearling stock	56
Appendix Table 10.	Estimated recoveries and contribution rates for	
	the Quilcene Hatchery spring yearling stock	58
Appendix Table 11.	Tagging history and use of the Quillayute River	**
A	summer fingerling stock	60
Appendix Table 12.	Estimated recoveries and contribution rates for	
Annondia Table 12	the Quillayute River summer fingerling stock	61
Appendix Table 13.	Tagging history and use of the Samish Hatchery	
Appendin Table 14	fall fingerling stock.	63
Appendix Table 14.	Estimated recoveries and contribution rates for	
Appandiu Tahla 15	the Samish Hatchery fall fingerling stock	64
Appendix Table 15.	Tagging history and use of the Lummi Bay	
Appendin Table 16	Hatchery fall fingerling stock.	66.
Appendix Table 16.	Estimated recoveries and contribution rates for	•
Annandiu Tahla 17	the Lummi Bay Hatchery fingerling stock	67
Appendix rable 17.	Tagging history and use of the Tulalip Hatchery	
Annondia Table 10	fall fingerling stock.	69
Appendix Table 18.	Tagging history and use of the Stillaguamish	
Appendix Toble 10	Hatchery fall fingerling stock.	70
Appendix rable 19.	Estimated recoveries and contribution rates for	
	the Stillaguamish Hatchery fall fingerling	
	stock	71

Appendix Table 2	0. Tagging history and use of the Green River
Appendix Table 2	Hatchery fall fingerling stock
rippendix rable 2	1. Estimated recoveries and contribution rates for
Appendix Table 2	the Green River Hatchery fall fingerling stock
11 14610 2	Hatchery fall fingerling stock
Appendix Table 2	Hatchery fall fingerling stock
	the Grovers Creek Hatchery fall fingerling
	Stock
Appendix Table 2	4. Tagging history and use of the Kalama Hatchery
	fall fingerling stock
Appendix Table 2	5. Estimated recoveries and contribution rates for
	the Kalama Creek Hatchery fall fingerling
	stock.
Appendix Table 2	ragging history and use of the George Adams
	Hatchery fall fingerling stock
Appendix Table 2	. Estimated recoveries and contribution rates for
	the George Adams Hatchery fall fingerling
Annondia T-11 o	SIOCK
Appendix Table 28	3. Tagging history and use of the Lower Elwha
	Hatchery and Elwha Channel fall fingerling
Annendiy Table 20	stock
appendix ruote 2	. Estimated recoveries and contribution rates for
	the Lower Elwha Hatchery fall fingerling stock.
Appendix Table 30	Tagging history and use of the Hoko River fall
•	Universing stock
Appendix Table 31	Estimated recoveries and contribution rates for
	the Hoko Ponds fall fingerling stock
Appendix Table 32	a lagging instory and use of the Makah National
	FISH Hatchery fall fingerling stock
Appendix Table 33	Estimated recoveries and contribution rates for
	the Makah National Fish Hatchery fall fingerling
Annandiy Table 24	STOCK
Appendix Table 34	· ragging instory and use of the Queets River fall
	migerinie stock
appendix Table 55	Estimated recoveries and contribution rates for
Appendix Table 36	the Queets River fall fingerling stock
11 1 4 4010 50	Tagging history and use of the Quinault National Fish Hatchery fell fingerling at 1
Appendix Table 37	National Fish Hatchery fall fingerling stock. 97 Estimated recoveries and contribution rates for
	the Quinault National Fish Hatchery fall
	Universing stock
	98

Appendix Table 38.	Tagging history and use of the Humptulips	
	Hatchery fall fingerling stock	100
Appendix Table 39.	Estimated recoveries and contribution rates for	
	the Humptulips Hatchery fall fingerling stock	101
Appendix Table 40.	agging history and use of the Percival Cove	
	(Deschutes Complex) and Coulter Creek	A.
Annondia T-1.1 44	Hatchery fall yearling stock.	103
Premain Tubic 41.	ragging history and use of the Squaxin Island	
	Pens fall yearling stock	104

1.0 INTRODUCTION

The Chinook Exploitation Indicator Stock program was initiated in 1985 to evaluate the effectiveness of management measures prescribed by the Pacific Salmon Commission (PSC). In the program, juveniles from each indicator stock are tagged annually with coded-wire-tags (CWT) and subsequent recoveries in fisheries are used to infer fishery harvest rates, brood exploitation rates, and other statistics described below (Chinook Technical Committee, 1990). Since the Exploitation Indicator Stock program provides the only direct means to evaluate the effectiveness of PSC management actions upon exploitation rates, it is imperative that the program be developed and maintained in a manner that assures this objective is achieved. To this end, the Chinook Technical Committee (CTC) recommended in 1990 that "Indicator stock programs should be reviewed to determine if representation of production regions and stock types is adequate and if tagging levels for the indicator stocks are sufficient" (Chinook Technical Committee, 1990). This report, in response to that request, reviews the Washington coastal and Puget Sound chinook indicator stocks.

In 1987, the CTC identified two sets of indicator stocks, one for monitoring changes in spawning escapements and the other for monitoring changes in fishery harvest rates and stock exploitation rates (Chinook Technical Committee, 1987). It was recognized that, in order to assess stock status, it is necessary to have both sets of indicator stocks. The indicator stocks identified by the CTC and those currently used for the exploitation rate analysis are shown in Tables 1-4. In some cases, because of data limitations, the stocks originally identified by the CTC are not currently included in the yearly CTC stock evaluation. Of these two sets of stocks, only the exploitation rate indicator stocks are tagged with CWT's and only these tagged stocks will be considered in this report.

Several criteria were considered when stocks were initially selected for inclusion in the Exploitation Indicator Stock program (Morishima, 1986):

- (1) In aggregate, indicator stocks should represent all major regions and racial types that are of interest to the PSC;
- (2) The stock must be sufficiently abundant and easily tagged so that the agency responsible can make a long-term commitment for tagging the stock;
- (3) The agency responsible for tagging the stock must make a commitment to sample and estimate the escapement of tagged fish and report the results to the Pacific State Marine Fisheries Commission (PSMFC) in a timely manner;
- (4) Reliable estimates of catch and escapement must be available.

The exploitation indicator stocks may be used for a variety of analyses depending upon the type of data that are available. The following statistics were reported in the 1989 Annual Report of the CTC (Chinook Technical Committee, 1990):

Fishery Harvest Rate Index: Estimates the annual harvest rate in a fishery relative

to the average harvest rate in the years 1979-1982;

Brood Exploitation Rate: Estimates the proportion of the initial cohort that is

harvested;

Stock Harvest Rate Index: Estimates the proportion of a stock that is harvested

within a year;

Fishery Contribution: Estimates the total contribution to a fishery of the

stock that the indicator represents;

Survival Rate Index: Estimates the survival of each brood;

Catch Distribution: Estimates the proportion of the total catch (or

mortality) of a stock that occurs in each fishery.

Several of the analyses conducted by the CTC are indices that rely upon data collected from 1979-1982. For example, only indicator stocks with tag recoveries during this time period can be used in the calculation of fishery and stock harvest rate indices. With the exception of the survival rate and catch distribution statistics, the analyses also require accurate escapement estimates, reported as the total return of each CWT group to all escapement strata, including both on-station returns and strays to natural spawning areas.

A summary of the different analyses for which each indicator stock can currently be used is shown in Appendix Tables 1-41. All analyses assume that observed changes in the statistics reflect changes occurring in the fisheries and not changes in the characteristics of the stock that is tagged. Rearing conditions that affect survival and distribution, such as the size at release and time of release, should remain consistent from year to year.

Given the needs of the CTC analysis, this review of the Washington coastal and Puget Sound exploitation indicator stock program included assessment of the following questions:

- (1) Are all stock types adequately represented by an exploitation indicator stock?
- (2) Have target tagging levels been achieved and do the target tagging levels need to be modified?

- (3) Has the tagging program had consistent broodstock, time of release, and size at release?
- (4) Have escapement estimates been reported and, if so, how accurate are the estimates?
- (5) What number of stocks would need to be tagged to achieve a desired level of precision for the fishery harvest rate index?

2.0 METHODS

2.1 MINIMUM TAGGING LEVELS

Tag codes and recovery data for Puget Sound and Washington coastal chinook stocks used in the 1990 Annual Report were obtained from the CTC. The Pacific States Marine Fisheries Commission (PSMFC) provided information on the source of broodstock, size at release, and time of release for tag groups through the 1988 brood year. Information on procedures used to estimate escapement were typically obtained directly from each agency. Specific sources are provided within stock specific sections of the text.

Target tagging levels were obtained from unpublished documents of the Washington Department of Fisheries and the Northwest Indian Fisheries Commission. In general, consistent with recommendations from a workshop on the Pacific Salmon Treaty CWT-Indicator Stock program (Morishima, 1986), interim tagging targets of 200,000 for fingerling releases and 150,000 for yearling releases (except for some spring yearling stocks that are tagged at higher levels) have been established. The suitability of this target was assessed by asking two questions:

- (1) Will the target tagging level produce sufficient recoveries in fisheries of interest?
- (2) Will the target tagging level produce a sufficiently large tagged age 2 cohort?

2.1.1 TAGGING LEVELS BASED ON CTC SELECTION CRITERIA

The CTC has developed two criteria to determine which indicator stocks, age classes, and brood years should be used to estimate the harvest rate index for each fishery. The first criterion is used to select a set of stocks and age classes for each fishery for which, on average, the estimated recoveries can be expected to be of sufficient precision. Within this set of stocks and age classes, the second criterion is used to select the particular brood years that had sufficient recoveries. Using historical data, both methods can be used to determine appropriate tagging levels.

Criterion 1. A stock and age class is selected for use in a fishery harvest rate index if at least an average of 35 total adult equivalent mortalities (catch plus incidental mortality

expressed in adult equivalents) occur in the fishery on an annual basis (Chinook Technical Committee, 1989). This criterion was established based upon the relationship between the number of observed recoveries and the variance of the observed recoveries developed by de Libero (1986). The CTC states that the "criterion approximately corresponds to a minimum of a 30% coefficient of variation about the estimated recoveries of multiple tag codes released from a single location...assuming a 20% sampling rate" (Chinook Technical Committee, 1989). The coefficient is approximate for a number of reasons, including: (1) sampling rates in fisheries vary substantially, (2) the CTC recoveries are in terms of adult equivalents, and (3) the CTC recoveries are total estimated mortality rather than estimated recoveries.

One method to compute a target tagging level would be to divide 35 by the average total adult equivalent contribution rate for a fishery of interest. However, tagging levels set using this method would not guarantee sufficient recoveries since random variation might drive the average below the 35 recovery criteria. To guard against this possibility, 35 was divided by the lower end of a 70% confidence interval for the median. The median was selected rather than an average because the median is less sensitive to distributions with heavy tails and it allows the computation of confidence intervals without distributional assumptions. A nonparametric confidence interval was computed using binomial probabilities (Conover, 1980). This procedure should insure that the average number of recoveries will be greater than 35 unless the average is substantially lower than the observed median contribution rate.

Criterion 2. Specific brood years are selected from the set of stock and ages classes identified by criterion 1 by checking the cohort size against a minimum acceptable level. A brood year is selected if the cohort size multiplied by the average exploitation rate for total adult equivalent mortality is greater than 17.5, (i.e., greater than 17.5 estimated total adult equivalent mortality CWT recoveries).

A target tagging level was computed using this criterion by dividing 17.5 by the product of the average total adult equivalent exploitation rate for a fishery and the lower end of a 95% confidence interval for the survival rate. The confidence interval was computed using the procedures discussed for criterion 1.

Minimum tagging levels will need to be re-visited when the PSC Working Group on Mark Recovery Statistics publishes its findings on the variances associated with CWT recoveries. At that time these criteria may be replaced with more appropriate criteria.

2.1.2 TAGGING LEVELS FOR SUFFICIENT AGE 2 COHORT SIZE

Hankin (1990) has conducted simulation studies indicating that estimates of fishery exploitation rates are unreliable (coefficient of variation of greater than 10%) if the estimated age 2 tagged cohort size is less than 500 fish. To utilize this criterion, survival rates were first computed for each stock using the methods and parameter values of

Hankin (1990). A minimum target tagging level was then computed by dividing 500 by the lower end of a 95% confidence interval for the median survival rate.

2.1.3 ASSUMPTIONS

Both methods for computing target tagging levels assume the following:

- (1) Observed survival rates are indicative of survival rates that will be observed in the future;
- (2) Fishery sampling rates will not be modified;
- (3) The observed pattern of exploitation is indicative of future exploitation rates;
- (4) The current level of fishery and temporal stratification (annual) will not be modified.

Since many questions remain regarding the variance of estimated recoveries, the tagging levels computed using the procedures described above are recommended for implementation only if they exceed the current target tagging level.

2.2 PRECISION OF FISHERY HARVEST RATE INDICES

The fishery harvest rate indices are used to measure the relative change in harvest rates of major PSC chinook fisheries in response to management actions and are also important indicators of the progress of the PSC chinook rebuilding program. The index is estimated by combining individual estimates from a number of stock and age classes. Stock/age sample sizes for each index vary among years and fisheries, but are generally small, ranging from a high of 22 in the west coast Vancouver Island (WCVI) troll fishery to a low of 1 in the Strait of Georgia troll fishery. Because of the importance of these indices and the generally small sample sizes that generate them, we wished to evaluate their precision. We attempted to do this by asking the following questions:

- (1) What are the lower confidence limits for the indices by year and fishery?
- (2) What sample size of stocks in each year would have been required to achieve lower confidence limits that are 5%, 10%, or 15% of the index?
- (3) What sample size of stocks would have been required to achieve lower confidence limits that are 5%, 10%, or 15% of the index for 90% of the past 12 years.

We attempted to calculate confidence limits using both parametric (t-distribution; Sokal and Rohlf, 1981) and nonparametric (confidence interval for a quantile; Conover, 1980) techniques.

3.0 RESULTS

3.1 TAGGING LEVELS REQUIRED

Minimum tagging levels based on each of the criteria and associated stock specific data are presented in Appendix Tables 1-41. The recommended tagging levels drawn from this analysis are summarized in Table 5. In general, the selection of the recommended tagging level involved consideration of the fisheries in which the stock was harvested, the number of other stocks providing data for those fisheries, and the overall quality of the tagging program for the stock. For example, only 6 stocks are currently used to estimate the fishery harvest rate index for the Alaska troll fishery, but 12 stocks are used for the WCVI troll fishery. Hence, it would be more likely that an increase in the tagging level would be recommended for a stock that has the potential to be used in the Alaska troll fishery index than a stock that might be used in the index for the WCVI troll fishery.

3.2 NUMBER OF STOCKS REQUIRED

Unfortunately, the methods described to compute the necessary number of stocks proved inappropriate for analyzing the data. The data violate the key assumptions of parametric statistics, since the individual stock estimates of the relative harvest rates are not independent and are not normally distributed (the distribution is bimodal for some fisheries). The quantile test, although free of assumptions about distribution, could not be used either, since the fishery index represents an unknown quantile. Further, this test does not allow one to extrapolate to different sample sizes.

We believe it is important to quantify the precision of the fishery index, since this statistic plays a key role both in PSC negotiations and in the bilateral assessment of the chinook rebuilding program. Attempts to find an appropriate analytical technique are ongoing.

In the interim, an attempt was made to identify those stocks that might be used for various indices if certain data became available. Results of this assessment are summarized in Table 6, which shows the average number of CWT recoveries for each indicator stock in ocean fisheries of interest to the PSC. Those stocks currently used in the calculation of fishery indices are indicated in bold, while footnotes indicate stocks that might be used for the index if: (1) tagging levels were increased; (2) accurate escapement estimates could be developed; or (3) base period tagging data could be generated from a similar stock or by updating the base period. Detailed, stock specific data used to develop this summary table are shown in the Appendix Tables. Note that no Washington coastal or Puget Sound stocks are currently available to monitor harvest rate trends in the troll fisheries of Alaska or North/Central British Columbia (NCBC).

3.3 REVIEW OF INDICATOR STOCKS

Exploitation rate indicator stocks have been established for natural chinook stocks in Puget Sound and along the Washington coast. Exceptions to this rule, including a number of stocks initially selected for inclusion as exploitation rate indicator stocks that are no longer tagged, are discussed below and summarized in Tables 1-4. These tables include two types of exploitation rate indicator stocks, one type is used to represent and monitor corresponding natural stocks, and the other type is used to measure harvest rates in fisheries and does not necessarily represent any natural stock. The sections below provide a description of these exploitation rate indicator stocks, their intended uses, and stock specific comments on the PSC tagging programs. The locations of hatcheries and rivers in Puget Sound and along the Washington coast are provided in Figure 1.

Serious problems exist with the PSC indicator stock program. Although currently there are 31 Puget Sound and Washington coastal chinook stocks tagged as part of the program, only 4 are providing data of sufficient quality to be used for the fishery harvest rate index. Many stocks can not be used because escapement data are either unavailable or of poor quality. We recognize that it is very costly both to tag stocks and to collect good quality escapement estimates. It would take a substantial increase in funding to gather data of sufficient quality for all 31 indicator stocks. Given budget limitations, such increased funding may be unrealistic. If such funding is not available, we would recommend working towards the goal of developing an indicator stock program that includes fewer stocks with higher quality data, especially escapement data. It is hoped that the funds saved by tagging fewer stocks could be used to help implement higher quality escapement estimation programs for the remaining stocks. However, even with a reduced number of stocks, a good quality indicator stock program is likely to require increased funding.

In the assessment presented below, we have tried to take the first step towards this goal. We have attempted to evaluate the existing programs and identify those that are not currently providing information that is useful to the CTC. In each case, we identify the existing problems, as well as some assessment of whether or not the problems might feasibly be solved. The overall intent is to identify the most likely candidates for a future high quality, streamlined, cost-effective, indicator stock program.

3.3.1 SPRING FINGERLING AND YEARLING & FINGERLING

NOOKSACK RIVER SPRING YEARLING

The Nooksack River spring stock is harvested primarily in the Strait of Georgia sport fishery. The purposes of the exploitation indicator stocks in this river are to: (1) monitor exploitation rates in fisheries in the Strait of Georgia, and (2) evaluate the effect of the rebuilding program on the Nooksack River natural spring stock.

Indicator Stocks: When the indicator stock program was initiated, it was believed that fish from the north and south forks of the Nooksack River might have different catch distributions. To evaluate this hypothesis, tagging was initiated at both the Skookum Creek Hatchery on the south fork and at the Nooksack Hatchery on the north fork. The two indicator stocks differ in the source of the broodstock and in the duration of rearing. Spring chinook from the Nooksack Hatchery are released as yearlings while the Skookum Creek indicator stock is a fingerling release. These rearing methods may affect distribution and contribution patterns of the stocks. Attempting to determine if differences exist is difficult with the current data because of the limited number of recoveries. However, preliminary cluster analysis indicates that the catch distributions of the Skookum Creek and Nooksack Hatchery fish are similar.

Nooksack Hatchery. The Nooksack Hatchery provides the indicator stock for production of spring yearlings from this region. Tagging was initiated with the 1981 brood and has continued since that time with the exception of the 1983 and the 1985 broods. Since the stock was not tagged during the base period, it cannot currently be used for the analysis of fishery harvest rate indices. However, the stock can be used to monitor brood exploitation rates.

At the Nooksack Hatchery, spring chinook are defined as all fish that arrive on or before September 1 and spawn before September 10, as well as all tagged spring fish that arrive or spawn after those dates. All other chinook are assumed to be falls. Few fall chinook arrive before the cutoff, so the separation probably works fairly well for springs. However, since springs continue to return during the fall time period, it is possible that some untagged springs are mistaken for falls and, therefore, some genetic mixing is taking place over time. Escapement counts are made at the hatchery rack. Because of the need to separate the spring and fall stocks, spring fingerling production has also been tagged.

The quality of Nooksack escapement data has not been fully assessed, but straying is likely to be a problem. There are plans for cooperative stream surveys by WDF, the Lummi Tribe, the Nooksack Tribe, and the U.S. Forest Service, in 1992 (B. Tweit, pers. comm.). If accurate estimates of CWT escapement can be obtained from such surveys, the quality of future escapement data would be improved.

If the base period for the fishery indices is updated, this stock might be used to measure harvest rate indices in the Strait of Georgia sport fishery. Contribution rates to this fishery and the cohort survival rates indicate that the current target tagging level of 200,000 should be sufficient. However, because of the small sample size and variability in exploitation rates, the CTC cohort criterion indicates that a tagging level of 500,000 fish is required. This level is not recommended until several additional years of data have been evaluated.

For the exploitation pattern of tagged fish to represent natural production, it is important that the characteristics of the tagged fish that are released are similar to naturally

produced smolts. Studies designed to compare the size and outmigration timing of tagged and natural smolts have not been conducted.

Skookum Creek Hatchery. The Skookum Creek Hatchery, located approximately 50 miles upstream, relies upon broodstock collected from the South Fork of the Nooksack River to provide fish for tagging. Adults apparently do not return well to the facility because: (1) a number of excellent holding areas exist between the mouth of the river and the hatchery where fish are removed by poachers, fisheries, or natural predators, and (2) the small hatchery outfall provides little attraction, resulting in a high stray rate to adjacent spawning areas.

The return of hatchery and natural origin fish to the south fork is typically small (<1,000 fish), and collecting sufficient broodstock has often been difficult. For this reason, the number of tagged fish has often been insufficient. For example, only 3,200 fish were tagged from the 1987 brood. Further, the program has not had consistent time of release and size at release.

The lack of return to the hatchery has also made it difficult to estimate the escapement of tagged fish. Preliminary estimates have been computed by multiplying the total escapement to the south fork (estimated from redd counts) by the proportion of recovered carcasses with a particular tag code. The preliminary estimates have not been reported to the PSMFC.

Survival rates for fish released from this facility have been low. Given the poor survival rates, the target tagging level would need to be increased to approximately 300,000 to ensure an adequate cohort size.

Recommendations: Development of an effective exploitation indicator stock for the Nooksack spring stock is desirable because: (1) the stock is one of the three most abundant spring stocks in Puget Sound, (2) numerous regulations have been adopted in Puget Sound fisheries to reduce exploitation on the stock, and (3) the stock has the potential to provide useful information on fisheries in Georgia Strait. Neither the Skookum Creek Hatchery or the Nooksack Hatchery stock are currently providing data of the quality required by the CTC, but the Nooksack Hatchery appears to have fewer problems associated with it.

Continued PSC tagging of the Nooksack Hatchery stock should be considered, on a probationary basis, while efforts are undertaken to solve the problems identified with this program. Studies should be initiated to determine if straying is a problem. If it is, a comprehensive sampling program will be needed in streams where straying occurs to ensure that high quality escapement data can be consistently provided. Because this stock is used as an indicator of the wild stock, studies should be undertaken to determine if the characteristics of tagged fish are similar to the natural fish. The current objective of tagging 200,000 fish should be maintained. Tagging of spring fingerlings should also

continue, to ensure adequate stock separation and compare harvest distribution data between fingerlings and yearlings. If fingerling harvest distribution data are available, less expensive tagging methods could be considered for fingerlings, such as the use of blank tags.

The Skookum Creek program is currently providing data of little value to the CTC. Discontinuing PSC tagging should be considered. Since preliminary cluster analysis indicates that the harvest distributions of the Nooksack and Skookum stocks are similar, discontinuing tagging should not harm the indicator stock program. If tagging were continued, steps would need to be taken to ensure the following: (1) escapement estimates of sufficient precision can be made on an annual basis; (2) enough fish can be tagged to achieve a minimally acceptable cohort size on a continuing basis, and (3) time of release and size at release can be standardized.

SKAGIT RIVER SPRING YEARLING

The purposes of the exploitation indicator stock at the Skagit Hatchery are to: (1) monitor exploitation rates in the Strait of Georgia sport fishery, and (2) provide estimates of exploitation rates that can be to used to evaluate the effect of the rebuilding program on the Skagit River natural spring stock. The status of the natural spring stock has been assessed as Indeterminate by the CTC and designated as "Overfished" by the Pacific Fisheries Management Council (PFMC). The Skagit Spring stock is harvested primarily in the Strait of Georgia sport fishery and in Puget Sound sport and net fisheries.

Indicator Stock: The Skagit Hatchery spring stock was originally designated as the exploitation rate indicator stock for the natural stock of spring salmon in the Skagit River. Tagging was initiated with the 1981 brood, but was temporarily suspended for the 1988 and 1989 broods because of fiscal limitations, poor returns to the hatchery in prior years, and concerns that broodstock collection in years of low hatchery return was negatively impacting the natural spring stock. The stock cannot be currently used for the fishery harvest rate analysis since it was not tagged during the base period, although useful information can be obtained from the time series of brood exploitation rates.

Prior to 1988, all spring chinook were tagged and the spring stock was kept separate at the hatchery by reading tags before spawning and only using tagged spring fish for broodstock. Due to the loss of tagging for the 1988 and 1989 broods, however, a timing criterion had to be used in 1991 to separate the returning adult spring chinook from other stocks. Because of this, some contamination of the broodstock may have occurred.

Skagit escapement counts are made at the hatchery rack. There is some straying, primarily due to low flow in the stream leading to the hatchery. Enhancements made to the facility in 1989 have reduced the stray rate (B. Hayman, pers. comm.). Most straying that does occur is in the lower Cascade. In 1989 and 1990 there was carcass sampling of Cascade fish for age and CWT. Prior to that time, no organized effort was made to collect tags in the river (B. Graeber, pers. comm.).

This stock might be used to monitor harvest rates in the Strait of Georgia sport fishery and the area 8-13 Puget Sound sport fishery if the base period for the exploitation rate analysis were updated. The contribution rate and survival rate data indicate that the current target tagging level of 150,000 would be sufficient.

Recommendations: An exploitation rate indicator stock for the Skagit spring stock would be valuable since: (1) the stock is the most abundant natural spring stock in Puget Sound, (2) numerous regulations have been adopted in Puget Sound fisheries to reduce exploitation on the stock, and (3) the stock has the potential to provide useful information on fisheries in Georgia Strait. However, modification of the program will be required if the indicator stock is to provide useful data to the CTC. Modification should include: (1) development of sufficiently precise and accurate estimates of the total escapement of CWT fish (including fish that stray to natural spawning areas), and (2) verification that the characteristics of the tagged fish (e.g., age, time, and size at release) are similar to those of the natural stock. Continued efforts should be made to achieve the annual tagging target of 150,000. However, natural broodstock should not be collected as long as the natural stock remains depressed. Continued PSC tagging of this stock should be considered, on a probationary basis, as the existing problems are solved.

WHITE RIVER SPRING YEARLING (HUPP SPRINGS)

The primary purpose of this exploitation indicator stock is to provide estimates of exploitation rates that can be to used to evaluate the effect of the rebuilding program on the White River spring stock.

Indicator Stock: This stock remains severely depressed (natural run of <100 fish) and is the focus of extensive enhancement and management activities. A captive broodstock program is maintained at the Squaxin Island net pens, and hatchery production of the White River stock occurs at the Minter Creek and Hupp Springs Hatchery facilities. Efforts are also underway to produce fish from a new hatchery on the White River. Outplanting to the river will occur as production increases. Only production from the Minter Creek and Hupp Springs facilities is tagged as part of the indicator stock program.

Tagging of the White River spring indicator stock has occurred since the 1974 brood with the exception of the 1976 and 1977 broods. The 1974 and 1975 broods were released into the White River, so escapement estimates are not available. Later broods were released from either the Minter Creek or Hupp Springs Hatchery. Escapement estimates at both facilities are made at the hatchery rack. Studies have demonstrated that straying is not a significant problem for this stock (B. Graeber, pers. comm.).

Although there is considerable (~80%) overlap in run timing of the spring and fall stocks, currently, 100% of the production of the White River spring fingerling and yearling stock at Hupp Springs is tagged. Since all tags are read prior to spawning and only tagged springs are used for broodstock, risk of broodstock contamination is minimized.

Recommendations: Because there is a good time series of data for the Hupp Springs stock and because reliable escapement estimates are available, we believe that this stock is good candidate for continued PSC indicator tagging. Ideally, the current practice of tagging 100% of the spring production released at Hupp Springs should be maintained so that returning spring and fall adults can be differentiated and harvest distributions of spring fingerlings and yearlings can be compared. To reduce costs, however, less expensive tagging methods (such as the use of blank tags) could be considered for fingerlings, if fingerling harvest distribution data are available. To further reduce costs, tagging fingerlings at <100% could be considered as long as only tagged fish are used for broodstock. High quality escapement data should continue to be provided to PSMFC. Evaluation of the new program on the White River should occur after several years of production. If tagging, recoveries, and escapement data are adequate, consideration should be given to initiating PSC tagging at this facility.

QUILCENE HATCHERY SPRING YEARLING

The purpose of this indicator stock is to monitor fishery harvest rate indices in the Puget Sound sport fishery.

Indicator Stock: Broodstock for the Quilcene spring yearling program has been obtained from stocks outside the Hood Canal region, primarily the Nooksack River and the Cowlitz River. The lack of base period data currently precludes use of the stock in the analysis of fishery harvest rate indices. Poor contribution rates further limit the utility of this indicator stock. The limited (and variable) recovery data available indicate that a minimum of 674,000 fish would need to be tagged to achieve the desired cohort size.

Recognizing the poor survival rates for this stock, a six year evaluation program has been initiated. An additional stock (Soleduck) will be released from the facility to determine if the primary problem is with the stock or the facility. If poor survival continues, spring chinook production may be abandoned at this facility (R. Comstock, pers. comm.).

Recommendations: At current contribution levels, this stock has little value for monitoring harvest rates in Puget Sound fisheries. Tagging for PSC purposes should be discontinued.

HOOD CANAL SPRING YEARLING

A spring yearling program has recently initiated at Hood Canal hatchery.

Recommendation: Evaluation of this program should occur after several years of production.

3.3.2 SUMMER AND SPRING/SUMMER FINGERLING

NORTH WASHINGTON COAST SPRING/SUMMER AND SUMMER

The primary purpose of this exploitation indicator stock is to provide estimates of exploitation rates that can be used to evaluate the effect of the rebuilding program on natural stocks of summer or spring/summer chinook from the Quillayute, Hoh, and Queets Rivers.

Indicator Stock: The Quillayute stock represents natural production of summer stocks from rivers on the north Washington coast.

Quillayute Broodstock Program. Broodstock for this program is collected from the Bogachiel and Soleduck rivers by pulling a gillnet through suspected holding locations. Since spring chinook are also present in the river at this time, the fish collected are likely a mixture of spring and summer type fish (S. Meadows, pers. comm.). The spring chinook found in the Quillayute are made up of several stocks, most from outside the Quillayute watershed. Because of the mixed origin of fish in the Quillayute program, it is questionable if progeny from the broodstock are representative of natural spring/summer production from the coastal rivers (S. Chitwood, memo to G. Morishima).

After capture, the netted fish are held at the Soleduck Hatchery until spawning. The fish are subsequently incubated, reared, and tagged at the Lonesome Creek Hatchery and moved to the Bear Spring Ponds for final rearing before release in the Soleduck River. The broodstock collection program has been in place since 1987; tagging of the 1985 and 1986 broods relied upon fish that returned to the hatchery.

Difficulties in achieving the interim target of 200,000 tagged fish have been caused by problems collecting sufficient broodstock and by unanticipated mortalities.

The very limited data collected to this time indicate that the target tagging level may not achieve sufficient recoveries. Approximately 300,000 tagged fish would be required to achieve sufficient recoveries in the Alaska troll fishery. The survival rate of the one complete brood (1985) was low. If this survival rate is maintained in future broods, the target tagging level would need to be increased to at least 225,000 to achieve a sufficient cohort size. This stock also has the potential to be used as an indicator for the NCBC fishery, although the data are currently insufficient to indicate a necessary tagging level.

If the program is designed to monitor exploitation rates on a natural stock, it is important that the characteristics of the fish that are released are similar to those of the wild fish. Studies have not been conducted to assess if the size and release time of tagged Quillayute fish correspond to those of the Quillayute, Hoh, and Queets natural stocks.

Escapement estimates for the tagged Quillayute fish have not been completed. Developing sufficiently precise and accurate measures of escapement may be difficult

since very few carcasses are recovered. Although the gillnet fishery might be used to estimate the proportion tagged, gillnets are generally size selective, and the data collected have indicated that the proportion of tagged fish in the gillnet fishery and in broodstock are not the same (S. Meadows, pers. comm.). Given these problems, it is unclear that escapement estimates of sufficient quality could be obtained for this stock.

Recommendations: The utility of this stock is currently limited due to insufficient tag recoveries, the absence of estimates of escapement for tagged fish, and concerns that the stock is not representative of the natural stock. Discontinuing PSC tagging should be considered. If tagging were to continue, the following would be needed:

- (1) Point and variance estimates of the escapement would need to be computed. The variance could then be used to determine if the estimated escapements are sufficiently precise to be used in the exploitation rate analysis. If the estimates are not sufficiently precise, tagging of the stock should be discontinued.
- (2) If escapement estimates are found to be usable, then the target tagging level for the stock could be re-evaluated.
- (3) Studies would need to be initiated to compare the size and outmigration timing of natural and tagged fish.

3.3.3 FALL FINGERLING

NOOKSACK/SAMISH FALL

The primary purpose of the exploitation rate indicator stocks within this region is to monitor harvest rate indices in the WCVI troll and GS sport fisheries.

Indicator Stocks: The fall fingerling stock from this region is represented by the Lummi and Samish indicator stocks. Both stocks are reared and tagged at hatcheries within the region.

Samish Hatchery. The Samish Hatchery stock contributes well to Canadian fisheries and is one of only four of the current indicator stocks with adequate data for use in the fishery exploitation rate analysis. The stock has been tagged intermittently since brood year 1974. Contribution rates for brood years through 1979 were significantly higher than for brood years 1985 and 1986. However, the current target tagging level of 200,000 is still sufficient to achieve adequate recoveries in the WCVI troll fishery, the Strait of Georgia sport and troll fishery, and in North Puget Sound sport and net fisheries.

Escapement counts for the Samish stock are made at the hatchery rack. In recent years, estimates have been improved by implementation of a carcass sampling program below the hatchery. Carcasses are sampled for age and CWT. Based upon these samples, an estimated 20% of the hatchery stock spawns below the rack (B. Graeber, pers. comm.).

Lummi Bay Hatchery. Tagged fish have been released from Lummi Bay Hatchery since brood year 1975 with the exception of brood years 1982 through 1984. Recoveries of tagged fish in the Nooksack River indicate that straying may be a problem. As shown in the table below, which compares 1989 recoveries in Area 7B and the Nooksack River, inriver recoveries are substantially lower than those in the adjacent marine area.

Tog Code	Nooksack River		Area 7B	
Tag Code	Observed	Estimated	Observed	Estimated
211902	1	3	10	38
212232	8	36	161	664
212235	1	4	27	119

Concern over the possibility that escapement may be underestimated has precluded use of this stock in either fishery or brood exploitation rate analyses. If the escapement data are accurate, then data from the Lummi and Samish stocks might be combined; cluster analysis of catch distributions of the two stocks appear similar. Combination of the Lummi and Samish recoveries would result in a substantial improvement of the time series of data for this region.

Eggs for this program have generally come from the Samish Hatchery. However, when a limited number of eggs are available at the Samish Hatchery, the Green River Hatchery has been used as an alternative source. This most recently occurred in the 1988 brood year.

This stock contributes significantly to the WCVI troll fishery, the Strait of Georgia sport and troll fisheries, and Washington Areas 5-7 sport fisheries. The current tagging level of 200,000 would provide adequate recoveries in these fisheries and assure an adequate cohort size.

Recommendations: The Samish stock appears to be a good candidate for continued PSC indicator tagging. Efforts should be made to improve escapement estimates for this stock. Emphasis should be placed on maintaining high quality below rack escapement estimates, and the escapement and sampling methodology should continue to be refined. Methods should be developed for adjusting data from prior years to remove any bias caused by straying.

In contrast to the Samish stock, escapement estimates for the Lummi Bay Hatchery appear to be of poor quality. As such, discontinuing PSC tagging should be considered. If tagging were to continue, the following would be necessary: (1) verification of escapement estimates, (2) improvement of escapement methodologies, and (3) CWT

sampling of strays in the Nooksack River. If adequate estimates of escapement can not be assured for this stock, data will not be useful to the CTC.

The similarity of the catch distribution of fish produced from the Samish Hatchery and the Lummi Bay Hatchery may provide an opportunity to improve the quality of the data from this region. If straying is not a problem at Lummi Bay Hatchery, tag groups released from the two facilities, in prior years, could be combined to increase the number or brood years in which tagging was conducted.

SKAGIT RIVER SUMMER/FALL

Indicator Stock: Despite the fact that the Skagit summer/fall stock is the largest natural stock in Puget Sound, no indicator stock currently exists for summer/fall production from this region. Initially, yearling production of summer/fall chinook from the Skagit Hatchery was to serve as the exploitation rate indicator stock. However, genetic stock identification analysis indicated that both the summer and fall stocks from the Skagit Hatchery were different from the Skagit natural stock. Tagging was only done for the 1971-78 and 1985 broods.

There are several reasons why it is important that an indicator stock be developed for this region. First, base period tagging data indicate that the natural Skagit summer/fall stock is heavily harvested in the Strait of Georgia sport fishery, a fishery for which there is currently a shortage of indicator stocks. Second, terminal runs for the Skagit River natural stock have declined in recent years, and the stock has been classified as Indeterminate by the CTC. In the absence of estimates of exploitation rates, it will be difficult to determine why terminal runs have declined.

Recommendation: The feasibility of developing an indicator stock for production of summer/fall chinook from the Skagit River should be investigated. Funding provided by Seattle City Light might allow for broodstock collection and tagging if such a program were developed. For such a program to be useful to the CTC, high quality escapement estimates would be needed. If escapement estimates can not be obtained, then a new tagging program should not be implemented. Also, since this stock would be used as a natural stock indicator, studies should be undertaken to ensure that the characteristics of tagged fish are similar to the natural fish.

SNOHOMISH REGION SUMMER/FALL

The primary purpose of the exploitation indicator stocks within this region is to provide estimates of exploitation rates that can be to used to evaluate the effect of the rebuilding program on the natural summer/fall chinook stock from the Snohomish Region. The Snohomish stock has been assessed as Probably Not Rebuilding by the Chinook Technical Committee and the PFMC has designated the stock as "Overfished."

Indicator Stocks: Two indicator stocks were originally designated to represent the production of Snohomish summer/fall fingerlings: Skykomish Hatchery summer and Tulalip Hatchery Fall.

Snohomish System. The Skykomish summer tagging project was dropped by WDF after the 1986 brood due to funding shortfalls, concerns about straying, and problems separating the summer and fall stocks at the hatchery. There are no indicator stocks to represent fall production from this region.

<u>Tulalip Hatchery</u>. Evaluation of the Tulalip Hatchery indicator stock is difficult since tagging was not initiated until the 1986 brood. Since the source of the broodstock has varied (Samish, mixed Puget Sound), the stock may not be representative of natural production from the region.

The accounting of escapement for this stock needs further evaluation. Escapement to the hatchery is minimal, since eggs are provided by other facilities. For example, only 1 escapement recovery was reported for the age 3 component of the 1986 brood. In large part, the small number of reported escapement may result from high harvest rates in Tulalip Bay. However, straying to the Snohomish and Stillaguamish Rivers may also be occurring.

Recommendations: In order to evaluate the reasons for the depressed status of this stock, it is important that an indicator stock be established for this region. However, substantial problems exist. Possible alternatives include:

- (1) Resume tagging of summer chinook at Skykomish Hatchery. Efforts would be needed to address the straying problem associated with the previous tagging program and to develop methods for adequate stock separation.
- (2) Develop an indigenous fall indicator stock for the Snohomish region. Either Snoqualmie or Sultan falls might be appropriate for broodstock. The current fall stock at Skykomish hatchery is of Green River origin and may not be useful for evaluating exploitation of the Snohomish stock.

For either alternative, studies should be undertaken to ensure that the characteristics of tagged fish are similar to the natural fish.

The Tulalip hatchery program is currently providing data of limited value to the CTC, due to problems with straying and broodstock source. Discontinuing PSC tagging should be considered. If the program continues, the following problems must be solved: (a) the lack of a consistent source of broodstock from within the region; and (b) questions regarding straying and the accuracy of the escapement estimates.

STILLAGUAMISH SUMMER/FALL

The primary purpose of the exploitation indicator stocks within this region is to provide estimates of exploitation rates that can be to used to evaluate the effect of the rebuilding program on natural stocks of summer/fall chinook from the Stillaguamish River. The Stillaguamish stock has been assessed as Indeterminate by the CTC and the PFMC has designated the stock as "Overfished."

Indicator Stock. The Stillaguamish indicator stock relies upon natural broodstock for tagging. Broodstock are collected from the river, spawned, and the fry reared at Stillaguamish Hatchery before tagging and release from the Fortson Pond.

Tagging levels have been below target, ranging from 23,904 to 127,910. The primary difficulty in achieving the target of 200,000 has been collecting sufficient broodstock. Collection of sufficient broodstock may have detrimental impacts on the natural stock in years of low abundance.

Estimates of the spawning escapement for this stock are difficult since the fingerlings are released off station and a limited number of adults return to the Stillaguamish Hatchery. Currently, total escapement to the river is estimated using aerial surveys. Some information on the proportion of tagged fish present is available from sampling of carcasses and from the broodstock collection program. However, no estimates of the escapement of tagged fish have been completed. For this stock to be used as an indicator for the region, escapement estimates would have to be improved. This would likely require implementation of a comprehensive CWT sampling program.

This stock was not tagged during the base period so it can not currently be used in the fishery harvest rate analysis. If escapement estimates were made, and if the base period were updated, the contribution rate data indicate that this stock could be used to monitor exploitation rates in the WCVI troll fishery and the Strait of Georgia sport fishery. The current target of 200,000 tagged fish would likely be sufficient to produce sufficient recoveries in each of these fisheries. The number of fish required to achieve a minimal cohort size is approximately 239,000.

Studies have not been conducted to assess if the size and release time of tagged Stillaguamish fish correspond to those of the Stillaguamish natural stock.

Recommendations: Development of an effective exploitation rate indicator stock for this the Stillaguamish stock should be given a high priority. The primary limitation at this time is the lack of estimates of the escapement of tagged fish. Data collected in prior years should be collated to determine if escapement can be estimated and if modifications are needed to obtain estimates of the desired precision and accuracy. Continued efforts should be made to achieve the annual tagging target of 200,000, as long as collection of broodstock does not harm the natural stock. Because this stock is used as an indicator of the wild stock, studies should be undertaken to determine if the

characteristics of tagged fish are similar to the natural fish. Continued PSC tagging of this stock should be considered, on a probationary basis, as the existing problems are solved.

GREEN RIVER FALL

The primary purpose of the Green River Hatchery exploitation indicator stock is to provide estimates of exploitation rates that can be to used to evaluate the effect of the rebuilding program on the natural stock of fall chinook salmon in the Green River.

Indicator Stock: The Green River Hatchery stock is one of only four of the current indicator stocks that can be used for all parts of the CTC assessment. This stock has been tagged intermittently since the 1974 brood.

The tagging target of 200,000 should provide adequate recoveries for this stock to be used to measure fishery harvest rate indices in the WCVI troll fishery, the Strait of Georgia sport fishery, and Puget Sound sport fisheries.

Recommendations: This stock appears to be a good candidate for continued PSC indicator tagging. For this program to provide useful data to the CTC, efforts should be made to solve existing problems. The comprehensive CWT sampling program in place since 1989 should be continued, so that stray rates of tagged hatchery fish can be quantified, and high quality hatchery escapement estimates can be consistently provided. Total hatchery escapement estimates, including strays, should be computed and reported to PSMFC. Because this stock is used as an indicator of the wild stock, studies should be undertaken to determine if the characteristics of tagged fish are similar to the natural fish.

MID-PUGET SOUND REGION

The primary purpose of the Grovers Creek Hatchery exploitation indicator stock is to monitor exploitation rates in PSC fisheries.

Indicator Stock: The Grovers Creek stock is used to represent production of fall fingerlings from the mid-Puget Sound Region. The Issaquah Hatchery stock was also originally included as an indicator stock for this region. However, due to budget limitations, WDF ceased tagging this stock after the 1987 brood.

Tagging has been conducted consistently at the Grovers Creek Hatchery since the 1981 brood. Since no tagging was conducted during the base period, analyses that require base period data can only be conducted if the stock is combined with other mid-Puget Sound stocks. The Grovers Creek stock is currently combined with the Green River stock for use in the fishery harvest rate index.

Escapement estimates for the stock appear good. The probability of straying is minimized by the shape of the bay, which tends to funnel fish toward the hatchery, and

the lack of other streams in the vicinity. Sampling for CWT's does occur in areas where straying is likely.

Contribution rates indicate that this stock could be used to monitor harvest rates in the WCVI troll fishery and Puget Sound sport fisheries. The current tagging target of 200,000 should provide sufficient recoveries in these fisheries and provide an adequate cohort size.

Recommendations: This stock appears to be a good candidate for continued PSC indicator tagging. The comprehensive CWT sampling program, currently in place, should be continued. High quality total hatchery escapement estimates, including strays, should be computed and reported to PSMFC.

SOUTH PUGET SOUND FALL

Exploitation rate indicator stocks within this region are used to monitor exploitation rates in PSC fisheries.

Indicator Stock: The Kalama Creek Hatchery is currently the only indicator stock for fall fingerling production from South Sound. Chinook from Percival Cove (Deschutes Complex) were initially established as an indicator stock; however, tagging was halted after brood year 1987 due to funding shortfalls.

Straying is believed to be a significant problem for adults returning to the Kalama Creek Hatchery (B. Graeber, pers. comm.). Limited hatchery escapement has been observed, particularly in brood years prior to 1985. Because of difficulties in achieving escapement goals, eggs for this program have come from a number of sources, including the Green River Hatchery, the Deschutes Complex, and McAllister Creek Hatchery.

The Kalama Creek Hatchery stock has been tagged continuously since the 1979 brood. The primary PSC ceiling fishery to which this stock contributes is the WCVI troll fishery. A target tagging level of 225,000 would be needed to provide adequate recoveries in this fishery. The stock might also provide sufficient recoveries in the north Puget Sound net fishery if the number of tagged fish was increased to this level.

Recommendations: The Kalama Creek Hatchery is the only remaining indicator for production of fall fingerlings from South Sound. As such, priority should be given to ensuring that this stock, or another South Sound stock, can be used in the exploitation rate analysis. Because of existing problems at Kalama Creek, the feasibility of moving the program to another facility should be evaluated. We recommend the following:

Evaluate the advantages and disadvantages of moving the program to another facility. Alternatives include Clear Creek Hatchery, Coulter Creek Hatchery, and Percival Cove (Deschutes Complex).

If the program were to remain at Kalama Creek, the following would be necessary:

- (1) A consistent source of broodstock would need to be used, preferably Kalama Creek, and time of release and size at release would need to be standardized.
- (2) The similarity of Kalama Creek and the Percival Cove (Deschutes Complex) stock, or some other South Sound hatchery production, would need to be assessed. The utility of this stock for analysis of fishery and brood exploitation rates would be greatly enhanced if an alternative stock could be used to represent South Sound production during the base period.
- (3) The stray rate would need to be assessed either by examining carcasses for tagged fish or sampling carcasses for marked otoliths. Exploitation rates on the Kalama Creek stock would need to be checked for consistency with other stocks from the region, as an additional check of the potential effect of straying.
- (4) If the program remains at the Kalama Creek Hatchery, and the recommendations listed above are addressed, then the target tagging level should be increased to 225,000.

HOOD CANAL FALL

The exploitation rate indicator stock from this region is used to monitor exploitation rates in PSC fisheries.

Indicator Stock: Fall fingerling production from the Hood Canal region is represented by the George Adams Hatchery stock. Fingerling production from the George Adams Hatchery has been tagged intermittently since 1974 and continuously since 1985. Since tagging data from the base period are available, the stock can be used for all components of the exploitation rate analysis. The stock is primarily useful for analysis of changes in the harvest rate in the WCVI troll fishery. Tagging levels should be increased to 220,000 to provide adequate recoveries in WCVI troll and Puget Sound sport fisheries.

Escapement estimates for the George Adams stock are made at the hatchery rack. It is believed that most fish make it up Purdy Creek to the hatchery. Carcass counts and CWT sampling are done in Purdy Creek and in the Skokomish River (B. Graeber, pers. comm.).

Recommendation: This stock appears to be a good candidate for continued PSC indicator tagging. The target tagging level for this program should be increased to 220,000 fish. The comprehensive CWT sampling program, in place since 1988, should be continued, to ensure that high quality escapement estimates can be consistently provided. Total hatchery escapement estimates, including strays, should be computed and reported to PSMFC.

STRAIT OF JUAN DE FUCA TRIBUTARIES FALL

The primary purpose of the exploitation indicator stocks within this region is to provide estimates of exploitation rates that can be to used to evaluate the effect of the rebuilding program on natural chinook stocks in tributaries to the Strait of Juan de Fuca.

Indicator Stocks: Two indicator stocks currently exist to represent fall fingerling type production from tributaries to the Strait of Juan de Fuca. A hatchery stock is tagged at the Lower Elwha Hatchery and a wild broodstock collection/tagging project is conducted on the Hoko River.

Lower Elwha Hatchery. The indicator stock program at the Lower Elwha Hatchery was initiated when WDF terminated a similar tagging program at the Elwha Channel in 1988. Tagging data are available from either the Channel or the Hatchery beginning with the 1982 brood.

Estimating the escapement of tagged fish is difficult since the majority of adults do not return to the hatchery or the channel. Estimates of the total escapement to the river are obtained from float surveys, and carcasses are sampled for CWT. Currently, only observed returns to the hatchery plus total fish gaffed for broodstock are reported to PSMFC.

Survival rates for the stock at the Elwha Hatchery have declined since tagging was initiated and recommended tagging levels based on all brood years are likely too low given current survival. Even at historical survival rates (when survival was much higher), a tagging level of approximately 400,000 fish would be required to obtain a sufficient cohort size. It is hoped that efforts to improve future survival will be successful and lower tagging levels will provide sufficient recoveries.

Hoko River. A natural broodstock collection/tagging project has been conducted on the Hoko River since 1985. The number of fish tagged has been below the target of 200,000 (ranging from 110,572 to 199,740) due to difficulties in collecting sufficient broodstock. This may be less of a problem in the future if escapement of the stock continues to increase.

Since few of the adult tagged fish return to the hatchery, an estimate of the escapement of tagged fish to natural spawning areas is required. The total escapement to the system is based on redd counts and an estimated rate of 2.5 fish per redd. Carcasses are sampled for CWT's. Total escapement estimates are available but need to be calibrated for possible bias. Estimates at high escapement levels are believed to be more prone to underestimation due to limitations of the redd accounting methodology. Although no estimates of CWT escapement have yet been provided, the escapement of tagged fish could be estimated by multiplying the escapement to the system by the proportion of carcasses that have tags.

Stocks from the Juan de Fuca region have a more northerly distribution than other stocks from Puget Sound. Eventually, the Hoko River stock might be used to estimate fishery harvest rate indices in the Alaska, NCBC, and WCVI troll fisheries, and in the Washington Areas 5-7 sport fishery. With only three years of tag data available, it is difficult to evaluate the current target tagging level of 200,000. However, the data indicate that the target is marginally adequate, and may need to be increased as additional years of recovery data become available.

Recommendations: Development of an effective exploitation rate indicator stock for the Juan de Fuca region would be useful since these stocks contribute to Alaska and NCBC fisheries, fisheries that are poorly represented in the exploitation rate analysis. Biologists familiar with the Hoko and Elwha stocks believe that differences may exist between the stocks in age at maturity and catch distribution. However, preliminary analysis of the 1985 brood catch distribution indicated that the stocks were more similar to one another than to stocks from Puget Sound or the Washington Coast.

For these programs to provide useful data to the CTC, immediate efforts should be made to solve existing problems. For both stocks, sufficiently precise and accurate estimates of the escapement of tagged fish are essential. Further efforts should be made to achieve target tagging levels, as long as Hoko broodstock collection does not harm the natural stock. Tagging levels may also need to be increased; levels should be re-evaluated in a few years to determine if this is necessary. For the Elwha stock, time of release and size at release should be standardized. For the Hoko, studies should be implemented that compare the size and outmigration timing of tagged and natural smolts. Continued PSC tagging of both stocks should be considered, on a probationary basis, while existing problems are solved.

If problems with the Elwha program are solved and survival rates remain low, tagging levels will need to be increased to ensure sufficient recoveries. If the Elwha dams are removed and a wild stock restoration program is initiated, continued PSC tagging of this stock should be re-evaluated.

NORTH WASHINGTON COAST FALL

The primary purpose of the exploitation indicator stocks within this region is to provide estimates of exploitation rates that can be used to evaluate the effect of the rebuilding program on natural fall chinook stocks from the Quillayute, Hoh, and Queets Rivers.

Indicator Stocks: Natural stocks of fall chinook salmon along the north coast of Washington are represented by indicator stocks at the Makah National Fish Hatchery and the Quinault National Fish Hatchery, as well as the natural broodstock tagging program on the Queets River. Tagging at the Soleduck hatchery was discontinued after the 1987 brood.

Makah National Fish Hatchery. Tagging at the Makah National Fish Hatchery was initiated with the 1985 brood. Survival rates for this stock have been low, and contribution rates to all fisheries have been near zero. The U.S. Fish and Wildlife Service is investigating methods to increase survival rates, including releasing fish at a larger size; however, water availability may limit the success of these attempts (R. Comstock, pers. comm.). Fish appear to return well to the hatchery and escapement estimates are available.

<u>Oueets River</u>. The Queets River project relies upon natural broodstock for tagging. Wild broodstock are captured in the Queets and Clearwater Rivers at or near the time of spawning. The adults are transferred to Shale Creek Pond, located on the Clearwater River. Here the adults are held and spawned. Eggs are incubated in quarantine at the Lake Quinault Hatchery. Certified, eyed eggs are transferred to the Quinault National Fish Hatchery for final incubation, rearing, and tagging. Fingerlings are transferred to Salmon River Pond, on the Queets River, for imprinting and are released at a time and size matching the naturally produced fish. Since 1985, the target of 200,000 tagged fish has been achieved only once. Unanticipated mortality during egg incubation and disease problems during rearing have kept the number of fish tagged below the target level.

Preliminary estimates of the escapement of tagged fish have been completed but not reported to the PSMFC. The escapement of tagged fish is estimated by multiplying the total estimated escapement (obtained from redd counts) by the proportion of carcasses that have a particular tag code. The variance of these estimates has not been computed.

The current tagging target of 200,000 would be sufficient to produce adequate recoveries of age 4 fish in the Alaska and NCBC troll fisheries. This target would also be sufficient to achieve a cohort size of at least 500 fish.

The characteristics of tagged and naturally produced fingerlings in the Queets River have been assessed (Quinault Department of Natural Resources, 1990). Naturally produced fingerlings sampled in the river had a similar size distribution to tagged fish reared in the hatchery, and the date of release for the tagged fish is specifically designed to coincide with the outmigration of the natural stock.

Quinault National Fish Hatchery. Tagging was initiated with the 1974 brood at the Quinault National Fish Hatchery and has occurred continuously since then, with the exception of the 1981 brood. This stock had tagging during the base period and has a hatchery at which to enumerate escapement; unfortunately, escapement estimates are currently of poor quality because of limited records and problems with enumerating fish that spawn in Cook Creek or the Quinault River.

The U.S. Fish and Wildlife Service is investigating questions about the escapement estimates. Preliminary surveys below the weir have found few chinook, suggesting that a high in-river harvest rate may be responsible for the low hatchery returns. However,

spawning survey work by the Quinault Indian Nation indicates that Cook Creek is heavily used by spawning chinook (S. Chitwood, memo to G. Morishima). Investigations are ongoing.

Contribution rates in prior years indicate that the current tagging target of 200,000 fish should produce sufficient recoveries in the Alaska troll fisheries.

Recommendations: An adequate exploitation rate indicator stock is currently lacking for natural production of fall stocks along the north coast of Washington. Development of an effective exploitation rate indicator stock for this region is desirable since these stocks are managed for natural production and they provide a significant portion of the catch in northern B.C. and Alaska. To rectify this problem, the following actions are recommended:

- (1) Reinstating PSC tagging at the Soleduck Hatchery should be considered, if straying is found not to be a problem. Although this stock lacks base period data, it has a good time series of tagging. If needed, a comprehensive program to sample for CWT's should be implemented to ensure that high quality escapement data can be consistently provided.
- (2) Alternatively, improvement of the Queets River program should be considered. For this stock to be useful to the CTC, immediate efforts would be needed to solve existing problems, including: (1) reporting escapement estimates for the Queets River tag groups to the PSMFC, and (2) computing the variance of the escapement estimates to determine if the estimated escapements are sufficiently precise to be used in the exploitation rate analysis.

Either Soleduck or Queets could be chosen for future PSC indicator stock tagging.

- (3) As an alternative to (1) or (2), the possibility of using the Hoko stock as an indicator for both the Strait of Juan de Fuca and North coastal stocks should be investigated. If this stock is sufficiently representative, tagging of other North coastal stocks might be discontinued.
- (4) Data for Quinault Fish Hatchery chinook are not useful without good quality escapement estimates. Old data should be collated and evaluated to determine if historical escapement estimates can be developed. If this is not possible, discontinuing PSC tagging should be considered. If tagging were continued and straying is a problem, then a comprehensive program to sample for CWT's would need to be instituted. Time of release and size at release would also need to be standardized.

(5) Poor survival is limiting the utility of the Makah Hatchery indicator stock program. Tagging for PSC purposes should be discontinued at least until survival rates increase.

GRAYS HARBOR FALL

The primary purpose of the exploitation indicator stocks within this region is to provide estimates of exploitation rates that can be to used to evaluate the effect of the rebuilding program on natural fall chinook stocks from tributaries to Grays Harbor.

Humptulips Hatchery. The Humptulips hatchery stock has been tagged since the 1982 brood. The lack of base period tagging data currently precludes use of this stock in the fishery harvest rate index analysis. Based upon contribution rates for this stock, the current tagging target of 200,000 would likely produce sufficient recoveries only of age 5 fish in the Alaska troll fishery.

Escapement estimates are made from fish returning to the hatchery rack and from spawning survey data. The hatchery is located on Stevens Creek, but the fish are reared mostly on Humptulips River water. This leads to a high stray rate for which there is currently insufficient accounting. Escapement appears to be underestimated since exploitation rates frequently exceed 90%.

Recommendations: This stock is currently not useful because of poor survival and the absence of high quality escapement estimates. Unless substantially improved escapement estimates can be developed, discontinuing PSC tagging should be considered.

WILLAPA BAY FALL

The primary purpose of an exploitation rate indicator stock within this region would be to measure exploitation rates in PSC fisheries.

Indicator Stock: Chinook from the Willapa Hatchery were selected and tagged as an indicator stock through brood year 1987. Tagging was discontinued due to funding limitations.

Recommendations: Straying of chinook between Willapa and Naselle hatcheries appears to be a considerable problem (L. Blankenship, pers. comm.). As such, additional tagging of the Willapa stock is not recommended.

3.3.4 FALL YEARLING AND ACCELERATED PRODUCTION

MID-PUGET SOUND FALL

Exploitation rate indicator stocks within this region are used to monitor exploitation rates in PSC fisheries.

Indicator Stocks: Icy Creek was originally identified as an indicator stock for this region, but PSC tagging was never implemented. The University of Washington Accelerated stock was tagged, although not for PSC purposes. A good time series of tagging data is available for this stock, including base period data, and the stock contributes well to the Strait of Georgia sport fishery. Although this stock is not representative of natural production, it is useful as a harvest rate indicator stock. Tagging was discontinued after the 1984 brood.

Recommendation: The University of Washington stock appears to be a good candidate for PSC indicator tagging if sufficient numbers can be tagged and if good estimates of CWT escapement can be provided. The potential for reinstating tagging of this stock should be evaluated.

SOUTH PUGET SOUND FALL YEARLING

Exploitation rate indicator stocks within this region are used to monitor exploitation rates in PSC fisheries.

Indicator Stock: The Percival Cove (Deschutes Complex) yearling stock was originally designated as the indicator stock for yearling production from the South Sound region. However, due to juvenile mortality problems, the majority of the production was transferred to the Squaxin Pens beginning with the 1986 brood. Tagging of fish from Percival Cove was dropped in 1987 and initiated with the 1986 brood at the Squaxin Pen site.

Insufficient recovery data are available to evaluate the utility of the Squaxin Pen stock for use as an indicator stock. However, the lack of a specific hatchery to attract returns suggests that straying is likely, and that escapement estimates may be of poor quality. Another problem is that base period data are not available for fish released from the Squaxin Pens.

Recommendations: Development of an effective exploitation rate indicator stock for South Sound yearling production is desirable, since the South Sound yearling stock provides one of the better measures of harvest rate indices in the south Puget Sound sport fishery. Unfortunately, the current program at Squaxin Pens will not provide useful data for the CTC until total hatchery escapement estimates are provided to PSMFC. When escapement data are available, the escapement rates for Percival Cove and Squaxin Pens stocks should be compared. If escapement data from Squaxin Pens are considered unreliable, consideration should be given to moving the program from Squaxin Pens back to Percival Cove. Continued PSC tagging at Squaxin Pens should be considered, on a probationary basis, while existing problems are solved.

HOOD CANAL FALL YEARLING

The exploitation rate indicator stock within this region is used to monitor exploitation rates in PSC fisheries.

Indicator Stock: The Hood Canal Hatchery stock was originally selected as an indicator stock. However, WDF ceased tagging after the 1986 brood. The stock was not tagged during the base period. In addition, recoveries in all fisheries were less than sufficient (with the exception of the Puget Sound sport fishery) for those groups that were tagged.

Recommendation: Removing the Hood Canal yearling stock from the indicator stock program does not jeopardize the analyses of the CTC.

4.0 DISCUSSION AND SUMMARY RECOMMENDATIONS

The primary purpose of the Exploitation Rate Indicator Stock program is to provide estimates of exploitation rates for representative stocks in PSC fisheries. A basic tenet of the PSC chinook rebuilding program is that catch ceilings for the major mixed stock fisheries, in conjunction with limitations on harvest in pass-through fisheries, will act to continually reduce harvest rates until the completion of rebuilding. The indicator stocks provide the only means to assess if the realized effects of management actions are consistent with this tenet.

Recognizing the importance of the indicator stock program, WDF, NWIFC, and USFWS instituted a comprehensive tagging program in 1985. Exploitation rate indicator stocks, and associated natural stocks, were formally established by the CTC in 1987. Since 1985, WDF and the NWIFC have spent in excess of \$390,000 annually tagging chinook exploitation rate indicator stocks (NWIFC costs include rack sampling).

Serious problems exist with the program that severely hamper the ability of technical staff to evaluate compliance with the objectives of the PST. Currently, only 4 (Samish River, Green River, Grovers Creek, and George Adams) of the 27 stocks considered in this document are providing data of the quality required for the fishery harvest rate index. Problems identified generally fall into the following three categories:

- (1) Estimates of the escapement of tagged fish are lacking, are of poor quality, or have not been provided to the PSMFC;
- (2) Survival of tagged fish has been poor or tagging levels have been too low to provide sufficient fishery recoveries; and
- (3) Budget cutbacks have reduced agency ability to maintain both adequate tagging and high quality escapement sampling programs.

It is important to note that a functional indicator stock does not currently exist for several major production regions, including the Skagit River, the Stillaguamish River, the Snohomish River, South Puget Sound yearling production, and all production from the Washington coast.

During the review process, it became evident that estimates of escapement of tagged fish were not reported to the PSMFC for a number of stocks. For the exploitation rate indicator stocks, estimates of the total escapement are required, including the estimated number of tagged fish that return to natural spawning areas. Expansion factors associated with recoveries from natural spawning areas were not reported for any stock. this lack of expansion factors can result in a substantial error in the estimates of exploitation rates for stocks with a significant return to natural spawning areas.

Estimating the expansion factor can be expensive, since it typically involves the use of crews to count fish in the river and collect CWT's from carcasses. Knowledge of the required precision of the estimates would facilitate improvements in the sample design and evaluation of the adequacy of the indicator stocks. We recommend that the Working Group on Mark Recovery Statistics, in conjunction with the CTC, develop methods to determine the appropriate level of precision and establish standards for escapement recoveries.

Tagging levels were evaluated for all stocks (Table 5). For some stocks, target tagging levels were found to be too low to provide sufficient recoveries. However, these stocks were generally not found to be good candidates for future PSC tagging. For several other stocks, target tagging levels have not been met routinely. If PSC tagging is continued for these stocks efforts should be made to meet the target levels, unless doing so risks harming the natural stock.

Since the tagging of representative stocks is a regional rather than an agency need, we recommend the creation of an interagency committee to address the concerns and recommendations of this report. In the above section, 17 stocks have been identified as candidates for future PSC indicator stock tagging (see Table 7 for complete list). Five of these stocks are currently providing useful information to the CTC. The remaining thirteen stocks should be considered probationary; tagging should be continued if appropriate modifications can be made to the programs.

Summary recommendations for all stocks are presented in Table 8. We have identified several PSC tagging programs that could be discontinued; it is hoped that the funds saved by discontinuing some of these programs could be reallocated to improve those programs that remain.

ACKNOWLEDGMENTS

Valuable assistance in reviewing this document was provided by: Lee Blankenship (WDF), Scott Chitwood (Queets Tribe), Rich Comstock (USFWS), Pat Crain (Point No Point Treaty Council), Bill Graeber (WDF), Bob Hayman (Skagit System Cooperative), Jeff Haymes (Quileute Tribe), Marianne Johnson (Columbia River Intertribal Fish Commission), Nick Lampsakis (Point No Point Treaty Council), Rich Lincoln (WDF), Gary Morishima (Quinault Management Center), Ron Olson (NWIFC), Gary Schurman (WDF), Carol Smith (WDF), Bill Tweit (WDF), Bill Warren (Puyallup Tribe), Chris Weller (Point No Point Treaty Council), and Terry Wright (NWIFC). The authors gratefully acknowledge their help.

LITERATURE CITED

- Chinook Technical Committee. 1987. Assessing progress towards rebuilding depressed chinook stocks. Pacific Salmon Commission, Report TCCHINOOK (87)-02. Vancouver, British Columbia, Canada.
- Chinook Technical Committee. 1989. Pacific Salmon Commission Joint Chinook Technical Committee 1988 Annual Report. Pacific Salmon Commission, Report TCCHINOOK (89)-1. Vancouver, British Columbia, Canada.
- Chinook Technical Committee. 1990. Pacific Salmon Commission Joint Chinook Technical Committee 1989 Annual Report. Pacific Salmon Commission, Report TCCHINOOK (90)-3. Vancouver, British Columbia, Canada.
- Conover, W.J. 1980. Practical nonparametric statistics. John Wiley and Sons, New York, New York, USA.
- de Libero, F.E. 1986. A statistical assessment of the use of the coded wire tags from chinook (*Oncorhynchus tchawytcha*) and coho (*Oncorhynchus kisutch*) studies. Ph.D. Dissertation. University of Washington, Seattle, Washington.
- Hankin, D.G. 1990. Effects of month of release of hatchery-reared chinook salmon on size at age maturation schedule, and fishery contribution. Oregon Department of Fish and Wildlife, Information Report 90-4.
- Morishima, G.S. 1986. Minutes of Pacific Salmon Treaty CWT-indicator stock workshop. Unpublished memorandum.
- Quinault Department of Natural Resources. 1990. Queets wild fall chinook indicator stock study. Contract report to the Northwest Indian Fisheries Commission, Contract 3106 FY-90.
- Sokal, R.R. and F.J. Rohlf. 1981. Biometry. W.H. Freeman and Company, San Francisco, USA.

Table 1. Natural Puget Sound and Washington coastal spring chinook stocks and associated escapement and exploitation indicator stocks.

NATURAL STOCK	ESCAPEMENT INDICATOR STOCK	EXPLOITATION INDICATOR STOCK		
Nooksack spring	None 1/	Nooksack Hatchery Skookum Creek Hatchery		
Skagit spring	Skagit spring	Skagit Hatchery		
White River spring	None 1/	Hupp Springs Hatchery		
None	None	Quilcene Hatchery 2/		
Juan de Fuca Tributaries	None 1/	None		
Grays Harbor spring	Grays Harbor spring	None		

^{1/} Due to data limitations, this natural stock is not currently used as an escapement indicator stock.

Table 2. Natural Washington coastal summer and spring/summer chinook stocks and associated escapement and exploitation indicator stocks.

NATURAL STOCK	ESCAPEMENT INDICATOR STOCK	EXPLOITATION INDICATOR STOCK		
Quillayute summer	Quillayute summer	Quillayute Broodstock Program		
Hoh spring/summer	Hoh spring/summer	Quillayute Broodstock Program		
Queets spring/summer	Queets spring/summer	Quillayute Broodstock Program		

^{2/} This stock is used as a harvest rate indicator stock an has no associated natural stock.

Natural Puget Sound and Washington coastal summer/fall and fall chinook stocks and associated escapement and exploitation indicator stocks. Table 3.

NATURAL STOCK	ESCAPEMENT INDICATOR STOCK	EXPLOITATION INDICATOR STOCK
Nooksack/Samish Region 1/	None	Lummi Ponds Samish Hatchery
Skagit summer/fall	Skagit summer/fall	
Snohomish summer/fall	Snohomish summer/fall	Skagit Hatchery 2/ Tulalip Hatchery
Stillaguamish summer/fall	Stillaguamish summer/fall	Skykomish Hatchery 2/
Green River Fall	Green River fall	Stillaguamish Broodstock Program Green River Hatchery
Mid-Puget Sound Region 1/	None	Green River Hatchery Grovers Creek Hatchery Issaquah Hatchery 3/
South Puget Sound Region 1/	None	Kalama Creek Deschutes Hatchery 3/
Hood Canal Region 1/	None	George Adams Hatchery
Juan de Fuca Tributaries	None 4/	Lower Elwha Hatchery Elwha Channel 3/ Hoko Broodstock Program
Queets fall	Queets fall	Soleduck Hatchery 3/ Queets Broodstock Program Makah Hatchery Quinault Hatchery
Quillayute fall	Quillayute fall	Soleduck Hatchery 3/ Queets Broodstock Program Makah Hatchery Quinault Hatchery
Hoh fall	Hoh fall	Soleduck Hatchery 3/ Queets Broodstock Program Makah Hatchery Quinault Hatchery
Grays Harbor fall	Grays Harbor fall	Humptulips Hatchery Satsop Hatchery 5/
Willapa Bay fall	None 4/	Willapa Bay Hatchery 3/

^{1/} This region is managed for hatchery chinook production.

^{2/} Tagging of this stock was discontinued because it was not representative of the natural stock.

^{3/} PSC tagging of this stock was discontinued.

^{4/} Due to data limitations, this natural stock is not currently used as an escapement indicator stock.

^{5/} Although recommended as an exploitation indicator stock by the CTC, this stock was never used.

Table 4. Natural Puget Sound fall yearling and accelerated chinook stocks and associated escapement and exploitation indicator stocks.

NATURAL STOCK	ESCAPEMENT INDICATOR STOCK	EXPLOITATION INDICATOR STOCK
Mid-Puget Sound Region 1/	None	U.W. Accelerated 2/ Icy Creek 3/
South Puget Sound Region 1/	None	Percival Cove Pens 4/ Squaxin Island Pens

^{1/} There are no natural fall yearling or accelerated chinook stocks.

^{2/} Tagging of this stock was discontinued.

^{3/} PSC tagging of this stock was discontinued.

^{4/} PSC tagging of this stock was moved to Squaxin Net Pens.

Table 5. Target, recommended, and recent year tagging levels for Puget Sound and Washington coastal exploitation indicator stocks.

ge Target Tagging Level	Recommended Tagging Level	Average Tagging 86-88 Broods ²
200,000	200,000	108,800
200,000	200,000	55,500
150,000	150,000	78,600
85,000	85,000	85,000
150,000		134,300
200,000	200,000	133,500
200,000	200,000	203,100
200,000	-	190,700
200,000	200,000	
200,000	200,000	187,300
200,000	200,000	62,800
200,000	200,000	208,100
200,000	225,000	168,800
200,000	220,000	194,500
200,000	200,000	205,100
200,000	200,000	120,500
200,000	200,000	172,100
200,000	200.000	165,600
200,000	200,000	144,400
- 	200,000	184,800
		205,800
	200,000 150,000	200,000

Recommended only if PSC tagging is continued.
 All broads not available for all stocks, see Appendix Tables for tagging history.

Table 6. Average number of estimated total adult equivalent mortality CWT recoveries for chinook indicator stocks in ocean fisheries with Pacific Salmon Commission ceilings. The stock/fishery combinations currently used for calculating fishery indices are indicated in bold. Stocks that might be used for the indices are footnoted. Averages are calculated by brood year, across all available brood years.

STOCK	Run Timing	Release Stage	Age at Recovery	SEAK Troll a/	NCBC Troll	WCVI Troll	GS Troll	GS Sport	10000
Nooksack Hatchery	spring	yearling	3	1	2	3	10		:/d/
	spring	yearling	4	0	2	18	8		:/d/
Skookum Cr. Hatchery	spring	yearling	3	0	4	11	8	20	
	spring	yearling	4	0	1	3	1	11	
Skagit Hatchery	spring	yearling	3	0	1	3	0	22 c,	:/d/
	spring	yearling	4	1 .,	4	13	3		:/d/
White River	spring	yearling	3	0	0	2	0	2	
	spring	yearling	4	0	1	4	1	. 4	
Quilcene Hatchery	spring	yearling	3	0	0	1	0	5	
	spring	yearling	4	0	2	17	0	4	
Quillayute River	summer	fingerling	3	9-4	3	1	0	0	
	summer	fingerling	4	10 -	6	4	0	0	
Samish Hatchery	fall	fingerling	3	4	19	240	85	252	
	fall	fingerling	4	0	43	537	38	205	
Lummi Bay Hatchery	fall	fingerling	3	2	7	42 c/	16 c/	106 c/	
	fall	fingerling	4	0	6	98 c/	9 c/	77 c/	
Stillaguamish River	sum/fall	fingerling	3	3	5	15 c/d/	0		<u>/</u> /d/
	sum/fall	fingerling	4	0	0	5 c/d/	0		/d/
Green River Hatchery	fall	fingerling	3	1	9	115	11	74	-
	fall	fingerling	4	0	15	193	9	41	
Grovers Cr. Hatchery	fall	fingerling	3	1	4	57	2	17	
	fall	fingerling	4	0	1	84	0	12	
Kalama Hatchery	fall	fingerling	3	0	2	14 b/c/	3	8	- -
	fall	fingerling	4	0	1	51 b/c/	0	8	
George Adams Hatchery	fall	fingerling	3	1	9	53 b/	3	21	
	fall	fingerling	4	0	2	78	0	14	

Table 6 continued.

STOCK	Run Timing	Release Stage	Age at Recovery	SEAK Troll a/	NCBC Troll	WCVI Troll	GS Troll	GS Sport
Lower Elwha Hatchery	fall	fingerling	3	42 c/d/	10 c/d/	24 c/d/	1	9
	fall	fingerling	4	18 c/d/	11 c/d/	33 c/d/	1	
Hoko River	fall	fingerling	. 3	47 c/d/	11 c/d/	13 c/d/	0	4
	fall	fingerling	4	10 c/d/	25 c/d/	38 c/d/	0	2
Makah Hatchery	fall	fingerling	3	7	1	0	0	2
	fall	fingerling	4	6	3	2	0	0
Queets River	fall	fingerling	3	44 c/	13 c/	7	0	0
	fall	fingerling	4	32 c/	23 c/	12	0	0
Quinault Hatchery	fall	fingerling	3	56 c/	26	23	0	0
	fall	fingerling	4	35 c/	48	32	0	1
Humptulips Hatchery	fall	fingerling	3	28	3	3		0
	fall	fingerling	4	65 c/d/	15	9	0	0

a/ SEAK troll ages at recovery are 4 and 5 rather than 3 and 4.
b/ Stock might be used for the fishery index if tagging levels were increased.
c/ Stock might be used for the fishery index if escapement data were improved or made available.
d/ Stock might be used for the fishery index if base period data from a similar stock were available or if the base period were updated.

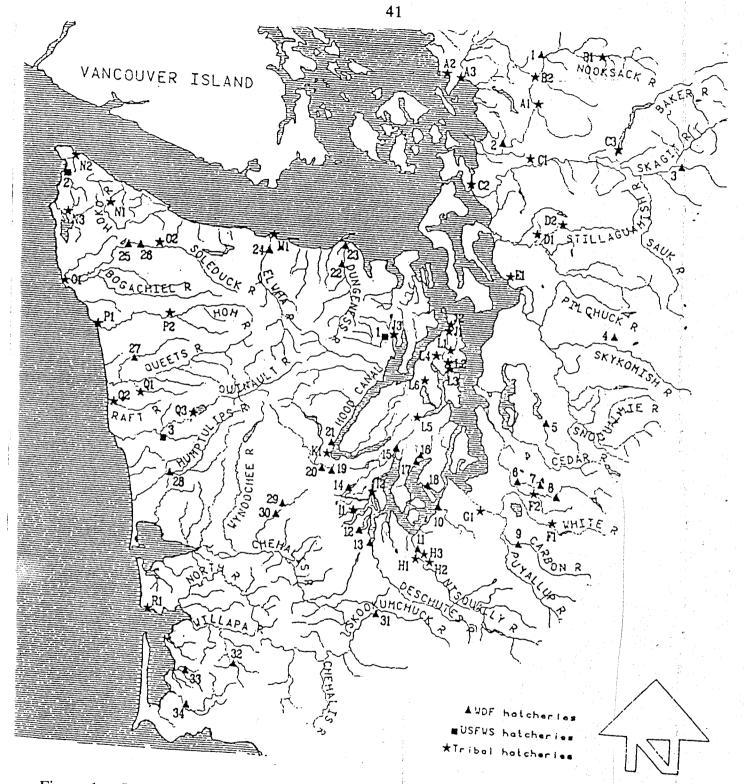
Table 7. Stocks considered to be the best candidates for future PSC indicator stock tagging.

STOCK	RELEASE STAGE	REGION	PROBATIONARY STOCK?
Nooksack Hatchery spring	yearling	Nooksack/Samish	YES
Skagit Hatchery spring	yearling-	Skagit River	YES
White River spring	yearling	White River	NO
Samish Hatchery fall	fingerling	Nooksack/Samish	NO
Skagit Hatchery summer/fall	fingerling	Skagit River	YES
Skykomish Hatchery summer	fingerling	Snohomish Region	YES
Stillaguamish summer/fall	fingerling	Stillaguamish River	YES
Green River Hatchery fall	fingerling	Green River	NO
Grovers Creek Hatchery fall	fingerling	Mid-Puget Sound	NO
South Puget Sound fall	fingerling	South Puget Sound	YES
George Adams Hatchery fall	fingerling	Hood Canal	NO
Lower Elwha Hatchery fall	fingerling	Juan de Fuca	YES
Hoko River fall	fingerling	Juan de Fuca	YES
Soleduck Hatchery fall ¹	fingerling	Washington Coast	YES
Queets River fall 1	fingerling	Washington Coast	YES
U. of W. fall ²	accelerated	Mid-Puget Sound	YES
South Puget Sound fall	yearling	South Puget Sound	YES

One of these two stocks could be chosen to represent Washington coastal production.

This stock is not representative of natural production but could be used as a fishery harvest rate indicator.

Table 8. Summary of recommendations for Puget Sound and Washington Coastal chinook exploitation rate indicator stocks.


	Consider	Consider Establishing/	Consider		IF TAC	IF TAGGING IS CONTINUED;	TINUED:	
Stock	Continuing PSC Tagging	Resuming PSC Tagging	Discontinuing PSC Tagging	Improve/Provide Escapements	Achieve Target Tagging	Evaluate Straying	Evaluate Stock Characteristics	Standardize Size/ Time at Release
Nooksack/Samish Region								
Nooksack Hatchery spring	X				×	×	×	
Skookum Cr. Hatchery spring			X					
Samish Hatchery fall	X			×				
Lummi Bay Hatchery fall			×			-		
Skagit River								
Skagit Hatchery spring	x			×	×		×	
Skagit Hatchery summer/fall		X		×			×	
Snohomish River		-						
Skykomish Hatchery summer		×		×		-:	×	
Tulalip Hatchery fall			x					
Stillaguamish River			-					
Stillaguamish summer/fall	×			×	×		×	
Mid-Puget Sound Region								
Green River Hatchery fall	×							
Grovers Creek Hatchery fall	×							
U. of W. fall		×						
South Puget Sound Region								
White River Spring	×							
							-	

continued on next page

Table 8 continued.

Stock	Consider Continuing PSC Tagging	Consider Establishing/ Resuming PSC Tagging	Consider Discontinuing PSC Tagging	Improve/Provide Escapements	Achieve T Taggii	IF TAGGING IS CONTINUED: arget Evaluate Evalua Straying Chara	TINUED: Evaluate Stock Characteristics	Standardize Size/ Time at Release
South Puget Sound Region cont.								
Kalama Creek fall fing. ¹	×					×		X
Squaxin Pens fall yearling ¹	X			×				
Hood Canal Region								
Quilcene Hatchery spring			X					
George Adams Hatchery fall	X							
Strait of Juan de Fuca Tributaries								
Lower Elwha Hatchery fall	X			×	×			×
Hoko River fall	Х			X	×		×	
North Washington Coast Region								
Quillayute River summer			×					
Makah Hatchery fall			X					
Queets River fall ²	×			X	×			
Quinault Hatchery fall			×					
Soleduck Hatchery fall ²	×			X				
Grays Harbor Region								
Humptulips Hatchery fall	-		Х		v			

¹ Consider moving this program to another facility. 2 One of these two stocks could be chosen to represent Washington coastal production.

Location of hatcheries and river in Puget Sound and the Washington Coast (see key Figure 1. on following two pages).

WESTERN WASHINGTON SALMON HATCHERIES Key To Hatcheries

Tribal Hatcheries

A. Lummi Tribe

A1. Skookum Creek Hatchery

A2. Lummi Bay Hatchery

A3. Mamoya Pond

B. Nooksack Tribe

B1. Dead Horse Creek Pond

B2. Hutchinson Creek Channel

C. Skagit Systems Cooperative

C1. Upper Skagit Tribal Hatchery

C2. Swinomish Rearing Ponds

C3. Lake Shannon Net Pens

D. Stillaguamish Tribe

D1. Stillaguamish Tribal Hatchery

D2. Johnson Creek Hatchery

E. Tulalip Tribe

E1. Tulalip Salmon Hatchery

F. Muckleshoot Tribe

F1. White River Hatchery

F2. Keta Creek Hatchery

G. Puyallup Tribe

G1. Puyallup Tribal Hatchery

H. Nisqually Tribe

H1. Kalama Creek Hatchery

H2. Schorno Springs

H3. Nisqually Hatchery at Clear Creek

I. Squaxin Island Tribe

I1. Elson Creek Hatchery

I2. Squaxin Island Sea Pens

J. Port Gamble Tribe

J1. Port Gamble Sea Pens

J2. Little Boston Hatchery

J3. Quilcene Bay Sea Pens

K. Skokomish Tribe

K1. Enetai Hatchery

L. Suquamish Tribe

L1. Grovers Creek Hatchery

L2. Cowling Creek Hatchery

L3. Agate Pass Sea Pens

L4. Websters Hatchery

L5. Gorst Rearing Pond

L6. Clear Creek Hatchery

M. Lower Elwha Tribe

M1. Lower Elwha Hatchery

N. Makah Tribe

N1. Hoko River Hatchery

N2. Educket Creek Hatchery

N3. Umbrella Creek Hatchery

O. Quileute Tribe

O1. Lonesome Creek Hatchery

O2. Eagle Creek Pond

P. Hoh Tribe

P1. Chalaat Creek Hatchery

P2. Canyon Springs Pond

Q. Quinault Indian Nation

Q1. Salmon River Pond

Q2. Raft River Pond

Q3. Quinault Lake Hatchery

R. Shoalwater Tribe

R1. Newnonshish Hatchery

WDF Hatcheries

- 1. Nooksack Hatchery
- 2. Samish Hatchery
- 3. Skagit Hatchery
- 4. Skykomish Hatchery
- 5. Issaquah Hatchery
- 6. Green River Hatchery
- 7. Crisp Creek Pond
- 8. Icy Creek Pond
- 9. Puyallup Hatchery
- 10. Garrison Springs Hatchery
- 11. McAllister Creek Hatchery
- 12. Allison Springs
- 13. Deschutes Complex

WDF Hatcheries (cont.)

- 14. Johns Creek Hatchery
- 15. Coulter Creek Hatchery
- 16. Hupp Springs Rearing ponds
- 17. Minter Creek Hatchery
- 18. Fox Island Net Pens
- 19. George Adams Hatchery
- 20. McKernan Creek Hatchery
- 21. Hood Canal Hatchery
- 22. Dungeness Hatchery
- 23. Hurd Creek Hatchery
- 24. Elwha Channel
- 25. Soleduck Hatchery
- 26. Bear Springs 1 & 2 Ponds
- 27. Shale Creek Pond
- 28. Humptulips Hatchery
- 29. Satsop Springs Hatchery
- 30. Simpson Hatchery
- 31. Skookumchuck Ponds
- 32. Willapa Hatchery
- 33. Nemah Hatchery
- 34. Naselle Hatchery

USFWS Hatcheries

- 1. Quilcene National Fish Hatchery
- 2. Makah National Fish Hatchery
- 3. Quinault National Fish Hatchery

Appendix Table 1. Tagging history and use of the Nooksack Hatchery spring yearling stock.

Hatchery - Nooksack Hatchery Brood Source - Return to hatchery Agency - WDF Release Type - Yearling Base Period Tagging - No

Escapement Data - Escapement estimates are made at the hatchery rack. No sampling for CWT's is made in the river below the hatchery.

Current Use of Data:

- __ Fishery or Stock Harvest Rate Index
- X Brood Exploitation Rate Analysis
- X Catch Distribution
- X Survival
- __ Chinook Model

Comments - Both spring and fall chinook stocks are raised at Nooksack Hatchery. The stocks are kept separate through a combination of tagging and run timing. Estimates of brood exploitation rate may be biased by the absence of good escapement data.

Code	Brood	Hatchery	Stock	Release Site	Year	Month	Weight in centigrams	Number Tagged	Comments
632411	81	Nooksack	Nooksack	Nooksack	83	4	4,725	53,332	
532546	82	Nooksack	Nooksack	Kendall	84	4	6,048	11,006	
533452	84	Nooksack	Nooksack	Kendall	86	4	7.087	52,274	
33453	84	Nooksack	Nooksack	Kendall	86	4	7,087	52,599	
533247	86	Nooksack	Nooksack	Kendali	88	4	5,670	29,209	
33248	86	Nooksack	Nooksack	Kendall	88	4	5,670	29,428	100
33336	86	Nooksack	Nooksack	Kendali	88	4	5,670	29,426	
34962	87	Nooksack	Nooksack	Kendali	89	4	6,214	46,136	
35059	87	Nooksack	Nooksack	Kendall:	89	4	6.214	45,680	
534422R	3 88	Nooksack	Nooksack	Kendali	90	4	5,968	146,729	

Appendix Table 2. Estimated recoveries and contribution rates for the Nooksack Hatchery spring yearling stock.

Minimum Tagging Level Based on Hankin Cohort Size Criterion Minimum Cohort Size: 500 Minimum Tagging Level: 63344

258 289 265	% 5%		
	0.0182 0.0176 0.0093		
0.00058 0.00064 0.00114 0.00006	.00061 .00060 .00044	57505 60214	769677
	19 0. 41 0. 54 0.		
0.00174 0.00036 0.00279 0.00001	00036 00098 00124	96303	534007
ì	4 0. 78 0. 126 0.	T .	
.00000		ភិកិ	8449126
32 0	0 0. 8 0.0 16 0.0		2
.00041 .00025 .00025 .00000	00000 00013 00019		4988128
14 14	0 0.0 13 0.0		67
00000	00020 0002 2 00026	77773 C	2292821
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11 0.0 18 0.0 24 0.0	2	22
.00000 .00000 .00000 .00000	00006 00010 00012	35 11759 11759	3519833
8 M 9 C C	W W 0.0	99	33
00000	00000 00002 00003	es of	iterion 38624572
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 0.0	coverie N	Criter 3862
00021 00000 00001 00000 00000	00000 00004 100009	imum Re	Cohort 7062
.000 .000	0 0.0 2 0.0 5 0.0	E N	on CTC 1377
00000	0000	Based	Based (
000	0.00	agging NC NC	agging NC
00000 00000 00000	00002	ific T	Minimum Fishery Specific Tagging Based On CTC Cohort Criterion Lower 95% 21210832 NC 13777062 3862457
4000 0000	stics 0 0.0 1 0.0 2 0.0	y Spec NC	y Spec 2121
88 88 88 88	Stati	Fisher)%	Fisher ix
	Summary Median Average SD	Minimum Median Lower 70	inimum ower 95
	4 0.00008 0 0.00000 11 0.00021 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000	81 4 0.00008 0 0.00000 11 0.00021 0 0.00000 8 0.00015 21 0.00039 22 0.00041 0 0.00000 93 0.00174 31 0.00058 82 0 0.00000 0 0.0	81 4 0.00008 0 0.00000 11 0.00021 0 0.00000 3 0.00005 2 0.000041 0 0.00000 93 0.00174 31 0.00058 82 0.00000 0 0.0000

Appendix Table 2. Estimated recoveries and contribution rates for the Nooksack Hatchery spring yearling stock (continued).

urvival Rate	0.01828 0.00789 0.02665	0.018284 0.017610 0.009398		
PSO S-AGE 4 S # Rate	5 0.00009 0 0.00000 2 0.00002 0 0.00000	1 0.00001 0 2 0.00003 0 2 0.00004 0	3670555 NC	15076278
PSO S-AGE 3 # Rate	0 0.00000 0 0.00000 2 0.00002 3 0.00003 9 0.00010	0 0.00000 1 0.00001 1 0.00002	N N	1387812
PSN S-AGE 4 # Rate	4 0.00008 0 0.00000 2 0.00002 5 0.00006	3 0.00004 3 0.00004 2 0.00003	921232 1835278	1152594
PSN S-AGE 3	3 0.00006 0 0.00000 13 0.00012 0 0.00000	0 0.00000 3 0.00004 6 0.00005	N N	20356102
PSO N-AGE 4 # Rate	11 0.00021 0 0.00000 66 0.00063 0 0.00000	6 0.00010 19 0.00021 32 0.00030	339385 NC	8136918
PSO N-AGE 3 # Rate	0 0.00000 20 0.00019 2 0.00019 0 0.00002	0 0.00000 4 0.00004 9 0.00008	35 NC NC	2691701
PSN N-AGE 4 # Rate	10 0.00019 0 0.00000 12 0.00011 0 0.00000	5 0.00006 6 0.00008 6 0.00009	ecoveries Of 611759 NC	. Criterion 18725970
PSN N-AGE 3	29 0.00054 0 0.00000 31 0.00030 0 0.00000 2 0.00002	0 0.00000 12 0.00017 16 0.00025	On Minimum Re NC NC	On CTC Cohort 2883348
WA T-AGE 3 WA T-AGE 4 PSN N-AGE 4 PSO N-AGE 3 PSO N-AGE 4 PSN S-AGE 3 PSN S-AGE 4 PSO S-AGE 3 PSO S-AGE 4 Survival # Rate # Rate Rate	0 0.00000 8 0.00000 0 0.00000	0 0.00000 2 0.00002 4 0.00004	fagging Based NC NC	lagging Based 33796504
WA T-AGE 3 # Rate	0 0.00000	istics 0 0.00000 0 0.00000 0 0.00000	Minimum Fishery Specific Tagging Based On Minimum Recoveries Of Median NC NC NC 611759 Lower 70% NC NC NC	Minimum Fishery Specific Tagging Based On CTC Cohort Criterion Lower 95% 433940032 33796504 2883348 18725970
Brood Year	82 84 86 87 88 88	Summary Statistics Median 0 0. Mean 0 0.	Minimum Fishe Median Lower 70%	Minimum Fish Lower 95%

Fisheries:
AK I: Alaska Troll
WCVI T: West Coast Vancouver Island Troll
GS S: Georgia Strait Sport
PSO N: Puget Sound Other Net
PSN S: Area 5,6,7 Sport

NCBC T: North/Central BC Troll
GS T: Georgia Strait Troll
WA T: Washington Area 1,2,3,4,4B Troll
PSN N: Area 48,5,6,6A,6C,7,7A Net
PSO S: Area 8,9,10,11,12,13 Sport

Appendix Table 3. Tagging history and use of the Skookum Creek Hatchery spring fingerling stock.

Hatchery - Skookum Creek Hatchery Brood Source - Broodstock collection program Agency - Lummi Tribe Release Type - Fingerling Base Period Tagging - No

Escapement Data - There is limited return to the hatchery, because: (1) a number of good holding areas exist below the hatchery where fish are removed by poachers, fisheries, or natural predators, and (2) the hatchery outfall provides poor attraction. Escapement in the river is estimated from snorkel surveys, stream surveys, and the broodstock collection program.

Current Use of Data:

- _ Fishery or Stock Harvest Rate Index
- Brood Exploitation Rate Analysis
- X Catch Distribution
- X Survival
- X Chinook Model

Comments - The utility of this stock is limited by the variable and often small number of fish tagged, as well as the poor quality of the escapement data.

Code	Brood	Hatchery	Stock	Release Site	Year	Month	Weight in centigrams	Number Tagged	Comments
050837	80	Skookum	SF Nooksack	SF Nooksack	81	6	709	46,457	
051418	82	Skookum	SF Nooksack	SF Nooksack	83	6	1.513	20,377	
211617	83	Skookum	SF Nooksack	SF Nooksack	84	8	3,026	11,498	
211661	84	Skookum	SF Nooksack	SF Nooksack	85	8	1,815	51.000	
211932R4	85	Skookum	SF Nooksack	Skookum	86	7	668	52,383	
211937R4		Skookum	Skookum	SF Nooksack	86	8	966	53,751	
212231R4		Skookum	SF Nooksack	SF Nooksack	87	8	1.680	• .	Release number imprecis
211810	87	Skookum	SF Nooksack	SF Nooksack	88	7	1,513	3,218	recese number impress
211938R4	- 88	Skookum	Skookum	SF Nooksack		8	2,229	29,171	

Appendix Table 4. Estimated recoveries and contribution rates for the Skookum Creek Hatchery spring fingerling stock.

Minimum Tagging Level Based on Hankin Cohort Size Criterion Minimum Cohort Size: 500 Minimum Tagging Level: 294798

	AK T-AGE	; AK T-/	IGE 5 NC	SC T-AGE 3 N	ICBC T-AGE 4 1	JCVI T-AGE 3 4	CVI T-AGE 4	GS T-AGE 3	GS T-AGE 4	GS S-AGE 3	GS S-AGE 4 SI	urvival
Brood Year	# Ra	##	Rate	# Rate	# Rate	# Rate	# Rate	# Rate	# Rate	# Rate	# Rate	Rate
80	0 0 0 0 0		00000000	17 0.00039	0 0.00000	38 0.00087	12 0.00028	27 0.00062	0 0.00000	41 0.00094		0.01509
82	0 0 0 0 0			4 0.00020	4 (26 0.00128	0 0.00000	19 0.00093	0 0 00000	34 0.00167	22 0.00108	0.02838
8,4	00000.0		0.00000	0 000000	0.00000	0.00000	0 000000	0 00000	0 00000	9 0.00018		0.00170
38.3	0 0 0 0 0 0 0	-		5 0.00005	00	2 0.00002	4 0.00004	4 0.00004 0 0.00000	0 0 00000	38 0.00036 0 0.00000	6 0.00006 3 0.00002	0.00210
3		2			•							
Summary Statistics Median 0 0.	:istics 0 0.0000		00000000	2 0.00002	0 0.00000	1 0.00001	0 0.0000	2 0.00002	0 0.0000	22 0.00027	8 0.00029 0	0.004262
Average	0 0 00000		0 0.00000	7 0.00016	1 0.00003 2 0.00008	11 0.00036 17 0.00057	3 0.00005 5 0.00011	8 0.00027 12 0.00041	1 0.00006 2 0.00014	20 0.00052 19 0.00066		0.010307
- 1			-							•		
Minimum Fishery Specific Tagging Based On Minimum Median NC NC	iery Specifi NC	ic Tagging N	g Based O NC	7 Minimum Ke 1485876	Recoveries UT 6 NC	3714690	SK SK	1857345	Ş	130961	120859	
Lower 70%	Š	2	ñ	S.	S	Š	2	NC NC	Ş	198333	169377	
Minimum Fish Lower 95%	nery Specifi NC	c Tagging	g Based 0	Minimum Fishery Specific Tagging Based On CTC Cohort Criterion Lower 95% NC 2277555 NC	t Criterion NC	466291	1650069	575234	2582874	144424	235303	

Estimated recoveries and contribution rates for the Skookum Creek Hatchery spring fingerling stock (continued). Appendix Table 4.

Brood Year	1 '	WA T-AGE 3 WA T-AGE 4 PSN N-AGE 3 PSO N-AGE 3 PSO N-AGE 4 PSN S-AGE 4 PSO S-AGE 4 PSO S-AGE 5 PSO S-AGE 4 Survival # Rate # Rate Rate	PSN N-AGE 3 # Rate	PSN N-AGE 4 # Rate	PSO N-AGE 3 # Rate	PSO N-AGE 4 # Rate	PSN S-AGE 3 # Rate	PSN S-AGE 4 # Rate	PSO S-AGE 3 # Rate	PSO S-AGE 4 # Rate	Survival Rate
80 82 83 85 85 85 85 85 85	0 0.00000 0 0.00000 0 0.00000 0 0.00000 5 0.00005	0 0.00000 0 0.00000 0 0.00000 0 0.00000 15 0.00012	4 0.00009 2 0.00010 0 0.00000 4 0.00008 2 0.00002 0 0.00000	0 0.00000	14 0.00032 0 0.00000 0 0.00000 0 0.00000 4 0.00003	20 0.00046 0 0.00000 5 0.00043 0 0.00000 0 0.00000	15 0.00034 7 0.00034 0 0.00000 2 0.00002 2 0.00002	15 0.00034 2 0.00010 2 0.00017 0 0.00000 5 0.00005 0 0.00005	0 0.00000 3 0.00015 0 0.00000 2 0.00000 0 0.00000	00000.0	0.01509 0.02838 0.00426 0.00170
Summary Statistics Median 0 0 Mean 1 0	tistics 0 0.00000 1 0.00001 2 0.00002	0 0.00000 3 0.00002 6 0.00005	2 0.00005 2 0.00005 2 0.00005	0 0.00000 0 0.00000	0 0.00000 3 0.00006 6 0.00013	0 0.00000 4 0.00015 8 0.00023	2 0.00002 4 0.00012 6 0.00017	2 0.00007 4 0.00011 6 0.00013	0 0.00000 1 0.00003 1 0.00006	0 0.00000 0 0 0.00000	0.004262 0.010307 0.011486
Minimum Fish Median Lower 70%	nery Specific NC NC	Minimum Fishery Specific Tagging Based On Minimum Recoveries Of Median NC NC 719606 NC LOWER 70% NC NC 1857345 NC	On Minimum Re 719606 1857345	ecoveries Of NC NC	NC NC	O O	2041524 2266250	481894 742938	O O	SS	
Minimum Fish Lower 95%	nery Specific 1811314	Minimum Fishery Specific Tagging Based On CTC Lower 95% 1811314 732696 157		Cohort Criterion 5497 NC	3113989	275268640	860874	960486	3731108	S S	 -

North/Central BC Troll Georgia Strait Troll Washington Area 1,2,3,4,4B Troll Area 48,5,6,6A,6C,7,7A Net Area 8,9,10,11,12,13 Sport NCBC T: GS T: WA T: PSN N: AK T: Alaska Troll
WCVI T: West Coast Vancouver Island Troll
GS S: Georgia Strait Sport
PSO N: Puget Sound Other Net
PSN S: Area 5,6,7 Sport Fisheries:

Appendix Table 5. Tagging history and use of the Skagit Hatchery spring yearling stock.

Hatchery - Skagit

Brood Source - Return to hatchery

Agency - WDF

Release Type - Yearling

Base Period Tagging - No

Escapement Data - Escapement counts are made at the hatchery rack. In 1989 and 1990 there was carcass sampling in the Cascade River for age and CWT. Prior to that time, there was no effort to estimate straying below the hatchery.

Current Use of Data:

- __ Fishery or Stock Harvest Rate Index
- X Brood Exploitation Rate Analysis
- X Catch Distribution
- X Survival
- _ Chinook Model

Comments - In the past, the spring stock has always been separated by tagging; due to the loss of funding for tagging in 1988, a timing criterion was instituted in 1991 and may have led to some contamination of the spring broodstock. Estimates of brood exploitation rate may be biased by the absence of good escapement data.

Code	Brood	Hatchery	Stock	Release Site	Year	Month	Weight in centigrams	Number Tagged	Comments	
632606	82	Skagit	Clark, Buck	Clark	84	3	2,835	9,481		
632607	82	Skagit	Clark, Buck	Clark	84	3	3,489	58,453		
632608	83	Skagit	Skagit Tribs.	Clark	85	3	2,835	35,893		
633353	84	Skagit	Skagit Tribs.	Clark	86	3	3,489	13,324		
533354	84	Skagit	Skagit Tribs.	Clark	86	3	3,489	13,377		
533323	85	Skagit	Skagit Tribs.	Clark	87	. 4	3,489	47,521		
533314	86	Skagit	Skagit Tribs.	Clark	88	4	4,014	80,395		
534744	87	Skagit	Suiattle	Clark	89	4	4,775	25,725		
634902	87	Skagit	Clark	Clark	89	4	4,775	25,725		
635026	87	Skagit	Clark	Clark	. 89	4	4,775	25,379		

Appendix Table 6. Estimated recoveries and contribution rates for the Skagit Hatchery spring yearling stock.

Minimum Tagging Level Based on Hankin Cohort Size Criterion Minimum Cohort Size: 500 Minimum Tagging Level: 117393

:	AK T-	AGE 4	AK T-AGE 4 AK T-AGE 5 NCBC T-A	VCBC T-AGE 3 N	CBC T-AGE 4 h	JCVI T-AGE 3 1	NGE 3 NCBC 1-AGE 4 HCVI T-AGE 3 HCVI T-AGE 4 GS T-AGE 3 GS T-AGE 4 GS S-AGE 3	GS T-AGE 3	GS T-AGE 4	GS S-AGE 3	GS S-AGE 4 Survival	urvivat
Brood Year	**	Rate	# Rate	* Rate	# Rate	# Rate	# Rate	# Rate	# Rate	# Rate	# Rate	Rate
		0 0.0000	4 0.00042	0 0.00000	0 0.00000	0 0.00000	8 0.00084	0 0.0000	00000 0	29 0.00306	1	1
		0.0000	0 0.0000	0 0.00000	3 0.00008	0 0.00000	0 0.00024		15 0.00026 0 0.00000	23 0.00039 14 0.00039		0.01140
•	82 00 0	0 0.00000	0 0.00000	1 0.00002	6 0.00013	0 0.00000	0 0.00000 27 0.00057	0 0.00000 3 0.00006	0 0.00000 0	10 0.00037 53 0.00112	6 0.00022 94 0.00198	
~ ~	_	00000.	t †	0 000000	3 0.00004	3 0.00004 0 0.00000	29 0 00036	0 0.00000 18 0.00016	2 0.00002	24 0.00030 16 0.00014	53 0.00066	
Summary Statistics Median 0 0	atistics 00.	rics 0 0.00000	0 0.0000	0 0.0000	3 0.00006	0 0.00000	11 0.00030	000000000000000000000000000000000000000	00000000000	23 0.00039		0.011530
Average SD	000	0 000000 0	1 0.00008	1 0.00002	4 0.00007	3 0.00005 6 0.00012	13 0.00034 13 0.00033	0 0.00001		22 0.00080 17 0.00105	37 0.00088 36 0.00075	0.022869
Minimum Fi	shery Spe	ecific Te	agging Based (Minimum Fishery Specific Tagging Based On Minimum Recoveries Of	coveries Of	35						
Lower 70%	- « c	. 5	3 S	ŠŠ	937942	2 2	116622	<u> </u>		89733 93454	44218 53091	
Minimum Fi Lower 95%	shery Spe	ecific TE	Minimum Fishery Specific Tagging Based On CTC Lower 95% NC 2093343 2825		Cohort Criterion 9474 554165	1036417	112038	1005517	CU00C7	002772	/ 4557	
								110000	757705	34150	4 (33)	

Appendix Table 6. Estimated recoveries and contribution rates for the Skagit Hatchery spring yearling stock (continued).

	WA T-AGE 1	. WA T.	-AGE 4	PSN N-AGE 3	PSN N-AGE 4	PSO N-AGE 3	WA T-AGE 3 WA T-AGE 4 PSN N-AGE 3 PSN N-AGE 4 PSO N-AGE 3 PSO N-AGE 4 PSN S-AGE 4 PSO S-AGE 3 PSO S-AGE 4 SURVIVAL	PSN S-AGE 3	PSN S-AGE 4	PSO S-AGE 3	PSO S-AGE 4	survival
Brood Year	•	#±	Rate	# Rate	# Rate	# Rate	# Rate	# Rate	# Rate	# Rate	# Rate	Rate
81	0 0.0000		0 0.0000	7 0.00074	0 0.0000	3 0.00032	7 0.00074	0 0 00000	0 0.00000	2 0.00021	0 0.00000	
82			0 0.00000	00000 0	0 0 0 0 0 0 0	5 0.00009	2 0.00003	2 0.00003	11 0.00019	20 0.00034	0 0.0000	0.01140
8 83	00000.0		0.00000	5 0.00014 0 0.00000	0 0.00014	12 0.00045	17 0.00064	5 0.00019	7 0.00026	5 0.00019	000000	0.01153
85	-		20 0.00042	46 0.00097	19 0.00040	78 0.00164	136 0.00286	5 0.00011	16 0.00034	59 0.00124	22 0.00046	0.05507
86	8 0.00007	_ •	<0.000121 -	00000.0	*nnnn*n *	68 0.00059	60000°0 /	7 0.00006	10000	88 0.00077		•
Summary Statistics Median 0 0	tistics 0 0 00000			5 0.00014	2 0.00002	5 0.00025	7 0.00036	2 0.00003		5 0.00021		0.011530
Mean SD	2 0.00004		5 0.00010 9 0.00017	10 0.00029 17 0.00040	5 0.00010 7 0.00016	17 0.00039 28 0.00058	53 0.00109	2 0.00007	6 0.00012	21 0.00043	9 0.00019	0.020785
Minimum Fish Median Lower 70%	hery Specifi NC NC	c Taggin	ng Based (NC NC	Minimum Fishery Specific Tagging Based On Minimum Recoveries Of Median NC NC 251251 1875883 Lower 70% NC NC NC NC	scoveries Of 1875883 NC	35 140691 409171	96718 401975	1022927 NC	155435 185987	165918 186907	N N	
Minimum Fishery Specific Tagging Based On CTC Cohort Criterion Lower 95% 1089531 521274 378485 229954	nery Specifi 108953	c Taggin 1	ig Based (521274	on CTC Cohort 378485	Criterion 229954	195497	114751	281783	67428	75601	478081	

NCBC T: GS T: WA T: PSN N: West Coast Vancouver Island Troll Georgia Strait Sport Puget Sound Other Net Area 5,6,7 Sport Alaska Troll AK T: WCVI T: GS S: PSO N: PSN S: Fisheries:

North/Central BC Troll Georgia Strait Troll Washington Area 1,2,3,4,4B Troll Area 48,5,6,6A,6C,7,7A Net Area 8,9,10,11,12,13 Sport

Appendix Table 7. Tagging history and use of the White River spring yearling stock.

Hatchery - Hupp Springs

Brood Source - Return to hatchery and Squaxin Pens captive broodstock.

Agency - WDF

Release Type - Yearling

Base Period Tagging - Yes

Escapement Data - Escapement data for the 1974 and 1975 broods are not available because of the outplant to the White River.

Current Use of Data:

- X Fishery or Stock Harvest Rate Index
- X Brood Exploitation Rate Analysis
- X Catch Distribution
- X Survival
- __ Chinook Model

Comments - This stock has limited tagging and recoveries during the base period.

Code 1	Brood	Hatchery	Stock	Release Site	Year	Month	Weight in centigrams	Number Tagged	Comments	
130208	74	Minter	White	White	76	2	3,311	0.205		· · · · · · · · · · · · · · · · · · ·
131010	75	Minter	White	White	77	2	3,780	8,285		
631834	78	Minter	White	Minter	80	3	2,268	40,174		
632047	7 9	Hupp Springs	White	Hupp	81	5	9.072	4,199		
632136	80	Hupp Springs	White	Hupp	82	5	5,040	48,514		
632341	81	Hupp Springs	White	Hupp	83	. 3	9,072	19,486 670		
632604	81	Hupp Springs	White	Hupp	83	3	9,072			
632853	82	Hupp Springs	White	Hupp	84	4	6,480	36,527		
633009	82	Hupp Springs	White	Нирр	84	4	6,480	18,334		
633049	83	Hupp Springs	White	Hupp	85	5	6,480	2,730		
633050	83	Hupp Springs	White	Hupp	85	5		19,586		
632508	84	Hupp Springs	White	Нирр	86	4	6,480 9,072	16,985		
633060	84	Hupp Springs	White	Hupp	86	4	9,072	33,456		
633108	84	Hupp Springs	White	Нирр	86	4	•	7,630		
633131	85	Hupp Springs	White	Нирр	87	- 5	9,072	5,236		
633648	85	Hupp Springs	White	Нирр	87	5	5,670	24,258		
633246	86	Hupp Springs	White	Hupp	88		5,670	21,314		
634145	86	Hupp Springs	White	Нирр	88	4	7,316	28,766		
634702	87	Hupp Springs	White	Hupp	89	4	7,316	47,314		
634704	87	Hupp Springs	White		89	4	9,072	40,720		
630161R3	88	Hupp Springs	White	Hupp ~	90	4	9,072	41,358		
630162R3	88	Hupp Springs	White	Нирр Нирр	90 90	4 4	5,040 5,040	43,882 43,881		

Appendix Table 8. Estimated recoveries and contribution rates for the White River spring yearling stock.

Minimum Tagging Level Based on Hankin Cohort Size Criterion Minimum Cohort Size: 500 Minimum Tagging Level: 99457

Brood Year		AK T-AGE	Rate #	-AGE 3 NCI Rate	3C T-AGE 4 h # Rate		/CVI T-AGE 4 # Rate	GS T-AGE 3 # Rate	AK T-AGE 4 AK T-AGE 5 NCBC T-AGE 3 NCBC T-AGE 4 NCVI T-AGE 3 NCVI T-AGE 4 GS T-AGE 3 GS T-AGE 4 GS S-AGE 3 # Rate		<u>GS S-AGE 4</u> Survival # Rate Rate	rival Rate
78 80 82 83 83 85 85 87 87 87 87	000000000000000000000000000000000000000	000000000000000000000000000000000000000		000000000000000000000000000000000000000	0 0.00000 9 0.00006 0 0.00006 3 0.00014 0 0.00000 0 0.00000 0 0.00000	0 0.00000 8 0.00041 0 0.00000 1 0.00000 1 0.00000 6 0.000013 1 0.000013	0 0.00000 0 0.00000 7 0.00036 0 0.00000 5 0.00024 0 0.00000 11 0.00024 9 0.00012	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000	0 0.00000 0 0.00000 0 0.00000 12 0.00033 0 0.00000 10 0.00000 0 0.00000 0 0.00000	0 0.00000 0.00024 0 0.00000 0.00767 0 0.00000 0.00503 4 0.00019 0.08054 4 0.00011 0.06540 11 0.00024 0.01088 12 0.00026 0.10524 4 0.00005	0.00024 0.00767 0.03080 0.00503 0.08056 0.06540 0.01088
Surmary Statistics Median 0 0 Average 0 0 0 SD 0 0	istics 0 0.00000 0 0.00000 0 0.00000	0 0.00000 0 0.00000 0 0.00000		0 0.00000 0 0.00000 0 0.00000	0 0.00000 1 0.00007 3 0.00016	0 0.00000 2 0.00006 3 0.00013	0 0.00000 4 0.00011 5 0.00014	0.00000 0	0 0.00000 1 0.00005 3 0.00014	0 0.00000 2 0.00006 5 0.00012	4 0.00005 0.020844 4 0.00009 0.034267 5 0.00011 0.037316	3844 4267 7316
Minimum Fishery Specific Tagging Based On Minim Median NC NC NC NC LOWER 70% NC NC	ery Specific NC NC	Tagging Bas NC NC	sed On Mir	nimum Reco NC NC	num Recoveries Of NC NC	35 NC NC	O O	N N	N CO	N N	665700 NC	
Minimum Fishery Specific Tagging Based On CTC (Lower 95% NC NC	ery Specific NC	Tagging Ba: NC	sed On CT(C Cohort (Cohort Criterion 1123169	909905	699754	Ŋ	1408914	1505284	606334	

Estimated recoveries and contribution rates for the White River spring yearling stock (continued). Appendix Table 8.

Brood Year		# UDK - KM	PSN N-AGE 5	PSN N-AGE 4	PSO N-AGE 3	PSO N-AGE 4	PSN S-AGE 3	PSN S-AGE 4	PSO S-AGE 3	PSO S-AGE 4 SURVIVE	Survival
	# Rate	# Rate # Rate # Rate	# Rate	# Rate	# Rate		# Rate				Rate
78	0 0.00000	0 0.0000		0 000000	0 0,00000	0 0.00000	0 0.00000	0 0.0000	0 0 00000	00000 0	0.00024
ድ	1 0.00002	3 0.00006	2 0.0	0 0 00000	60 0.00124	11 0.00023	5 0.00010	0 0,00000	20 0.00041		_
80	0 0.00000	0 0.00000	7 0.0	0 0.00000	6 0.00031		0 0,00000	8 0.00041	68 0.00349	26 0.00133	
81	0 0.00000	0 0.00000	0.0	0 0.00000	0 0 00000		0 0 00000	0 0.00000	9 0.00024		0.00503
82	0 0.00000	3 0.00014	0.0	0 0.00000	93 0.00442	61 0.00290	17 0.00081	9 0.00043	180 0.00855	•	
S &	1 0.00003	7 0 00041) c	7 0 00003	103 0.00282		15 0.00041	10 0.00027	381 0.01042	~ ,	0.06540
	14 0.00031	43 0.00094		4 0.00009	198 0.00434	24 0.00053	35 0.00077	35 0 00077	49 U.00106 640 U.00106	35 0.000/6	0.01088
88	1 0.00001	7 0.00009	10.0	0 00000	00000 92 0.00121	4	0 0.0000	0 0 00000	66 0.00087	, 0	
õ	00000	•	3 0.00004	•	27000.0 46	ı	Z 0.0000 Z	•	90 0.00110	• .	•
Summary Statistics Median 0 0	ics 0 0.00000		2 0.00003	0.0000	35 0 000 AF	\$ 0 000 \$	0.0000		58 0 0000k	22100 0 67	0.000877
	2 0.00004	9 0.00020	2 0.00007	2 0.00005	56 0.00146	14 0.00051	7 0.00021	7 0.00021	141 0.00391	80 0.00221	0.034267
	0.000.0		5 0.00009	4 0.00010	% U.UU1//	76000.0	12 0.00033		211 0.00517		0.037316
Minimum Fishery Specific Tagging Based On Minimum Recoveries Of Median NC NC 1287492 NC	Specific	Tagging Based	On Minimum Re 1287492	ecoveries Of	35	154363	Š	810645	83272	12676	
Lower 70%	S	265997	2662800	<u> </u>	113668	405318	2 2	NC	40345	40428	
Minimum Fishery Specific Tagging Based On CTC ו ו סשפר 95% אראירצי איז איזארצי איז	Specific	Tagging Based	On CTC Cohort	Cohort Criterion	70276	27.8812	* CO702	107007		2,222.0	
LONG! 70A	20000	030010	\$ /000C	\$C\$07.7	00047	* 1 99 * 7	284823	1,49691	01671	7//63	

Fisheries:

West Coast Vancouver Island Troll Georgia Strait Sport Puget Sound Other Net Area 5,6,7 Sport Alaska Troll AK T:
WCVI T:
GS S:
PSO N:
PSN S:

North/Central BC Troll Georgia Strait Troll Washington Area 1,2,3,4,4B Troll Area 48,5,6,6A,6C,7,7A Net Area 8,9,10,11,12,13 Sport NCBC T: GS T: WA T: PSN N: PSO S:

Appendix Table 9. Tagging history and use of the Quilcene Hatchery spring yearling stock.

Hatchery - Quilcene National Fish Hatchery
Brood Source - Return to hatchery and non-local stocks
Agency - USFWS
Release Type - Yearling
Base Period Tagging - No
Escapement Data - Escapement counts are made at the hatchery rack.

Current Use of Data:

- __ Fishery or Stock Harvest Rate Index
- X Brood Exploitation Rate Analysis
- X Catch Distribution
- X Survival
- __ Chinook Model

Comments - Data for this stock are of limited value due to poor survivals.

Code	Brood	Hatchery	Stock	Release	Year	Month	Weight in centigrams	Number Tagged	Comments
051033	81	Quilcene NFH	Cowlitz X SF Nooksack	Big Quilcene	83	5	3,815	28,442	
)51347	82	Quilcene NFH	Cowlitz X Nooksack	Big Quilcene	84	3	4,729	18,972	
051348	8 2	Quilcene NFH	Cowlitz X SF Nooksack	Big Quilcene	84	3	3,632	24,820	
051452	83	Quilcene NFH	Cowlitz X Nooksack	Big Quilcene	85	5	4,451	26,974	
051453			Cowlitz X SF Nooksack	Big Quilcene	85	5	2,624	25,737	
050832		Quilcene NFH	2.6 d 2.11com	Big Quilcene	87	5	1,970	25,442	
)51462		Quilcene NFH	Dig Quillonio	Big Quilcene	87	5	1,970	27,606	
051748		Quilcene NFH	Dig Quincone	Big Quilcene	87	5	1,970	21,811	
)51749		Quilcene NFH	G mileone	Big Quilcene	87	5	1,970	20,694	
51750		Quilcene NFH	Tarib Carneone	Big Quilcene	87	5	1,970	18,637	
51831		Quilcene NFH		Big Quilcene	87	5	1,970	22,951	
)51832		Quilcene NFH	and dancour	Big Quilcene	87	5	1,970	22,388	
)51833		Quilcene NFH		Big Quilcene	87	5	1,970	22,862	
)51911R		Quilcene NFH	B	Big Quilcene	88	5	2,250	127,819	
51959R		Quilcene NFH	6 d	Big Quilcene	89	5	2,640	47,434	
51961R		Quilcene NFH	B Comound	Big Quilcene	89	5	2,640	37,667	
51962R		Quilcene NFH	Dig Quicono	Big Quilcene	89	5	2,639	17 ,5 45	
52121R		Quilcene NFH	To P Canticolle	Big Quilcene	90	5	3,088	21,318	
52122R		Quilcene NFH		Big Quilcene	90	5	3,088	20,628	
52125R		Quilcene NFH	4	Big Quilcene	90	5	3,088	18,613	
52126R		Quilcene NFH	- 6 -	Big Quilcene	90	5	3,088	19,227	
52128R		Quilcene NFH	S.P & Bricono	Big Quilcene	90	5	4,164	19,932	
52131R	-	Quilcene NFH	G	Big Quilcene	90	5	4,164	20,038	
52132R	_	Quilcene NFH	Dig Quiccino	Big Quilcene	90	5	4,166	18,887	
52135R		Quilcene NFH	B -4	Big Quilcene	90	5	4,165	14,433	
52150R		Quilcene NFH	Sig Quilcone	Big Quilcene	90	5	3,089	8,965	
)52152R	3 88	Quilcene NFH	Big Quilcene	Big Quilcene	90	5	4,165	10,415	

Appendix Table 10. Estimated recoveries and contribution rates for the Quilcene Hatchery spring yearling stock.

Minimum Tagging Level Based on Hankin Cohort Size Criterion Minimum Cohort Size: 500 Minimum Tagging Level: 673723

urvival Rate	0.01284 0.00074 0.00528 0.00106	0.003169 0.004981 0.005634		
S-AGE 4 Su # Rate	0 0.00000 0 0.00000 5 0.00009 0 0.00000	0 0.00000 0 4 0.00004 0 6 0.00005 0	N N	6224233
S-AGE 3 GS # Rate	13 0.00046 0 0.00000 4 0.00008 0 0.00000 13 0.00010 1	2 0.00004 0 5 0.00011 4 6 0.00018 6	922443 NC	988482
AK T-AGE 4 AK T-AGE 5 NCBC T-AGE 3 NCBC T-AGE 4 UCVI T-AGE 3 GS T-AGE 4 GS S-AGE 3 GS S-AGE 4 Survival # Rate # Rate # Rate # Rate # Rate # Rate # Rate Rate # Rate	0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000	000000.0 0	N N	NC
GS T-AGE 3 (0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000	0 0.00000 0 0.00000	NC OX	NC
ACVI T-AGE 4 # Rate	27 0.00095 0 0.00000 3 0.00006 0 0.00000 55 0.00043	3 0.00006 17 0.00029 24 0.00041	614962	1690634
// Rate Rate	1 0.00004 0 0.00000 0 0.00000 0 0.00000 6 0.00005 7 0.00007	0 0.00000 1 0.00001 2 0.00002	35 NC NC	2514620
ICBC T-AGE 4	0 0.00000 0 0.00000 7 0.00013 0 0.00000 4 0.00003	0 0.00000 2 0.00003 3 0.00006	coveries Of NC NC	Sohort Criterion 10050923
ICBC T-AGE 3 N # Rate	0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000	0 0.00000 0 0.00000	On Minimum Re NC NC	
AK T-AGE 5 k # Rate	000000000000000000000000000000000000000	0 0.00000 0 0 0.00000	agging Based NC NC	agging Based NC
AK T-AGE 4 # Rate	0.0000000000000000000000000000000000000	00000	Minimum Fishery Specific Tagging Based On Minimum Recoveries Of Median NC NC NC NC Lower 70% NC NC NC	ry Specific T NC
Yr Code	81 83 85 86 87 88	Summary Statistics Median 0 0. Average 0 0. S0 0.	Minimum Fishe Median Lower 70%	Minimum Fishery Specific Tagging Based On CTC (Lower 95% NC NC NC

Appendix Table 10. Estimated recoveries and contribution rates for the Quilcene Hatchery spring yearling stock (continued).

Brood Year	} '	WAT-AGE 3 WAT-AGE 4 PSN N-AGE 3 PSN N-AGE 4 PSO N-AGE 3 PSO N-AGE 4 PSN S-AGE 4 PSO S-AGE 3 PSO S-AGE 4 SUrvival # Rate # Rate Rate	PSN N-AGE 3 # Rate	PSN N-AGE 4 # Rate	PSO N-AGE 3 # Rate	PSO N-AGE 4 # Rate	PSN S-AGE 3 # Rate	PSN S-AGE 4 # Rate	PSO S-AGE 3 # Rate	PSO S-AGE 4 # Rate	Survival Rate
81 83 85 85 87 88	0 0.00000 0 0.00000 0 0.00000 0 0.00000 4 0.00003 0 0.00003	0 0.00000 0 0.00000 6 0.00011 1 0.0001 55 0.00043	2 0.00007 0 0.00000 2 0.00004 13 0.00007 2 0.00002 0 0.00000	2 0.00007 0 0.00000 0 0.00000 0 0.00000 0 0.00000	3 0.00011 11 0.00025 2 0.00004 8 0.00004 9 0.00007 0 0.00000	0 0.00000 0 0.00000 0 0.00000 2 0.00000	3 0.00011 0 0.00000 4 0.00008 3 0.00002 0 0.00000	5 0.00018 0 0.00000 0 0.00000 6 0.00005	3 0.00011 0 0.00000 32 0.00061 16 0.00009 11 0.00009 9 0.00009	36 0.00127 0.01284 0 0.00000 0.00074 5 0.00009 0.00528 5 0.00003 0.00106 41 0.00032	0.01284 0.00074 0.00528 0.00106
Summary Statistics Median 0 0 Mean 10 0 SD 2 0	istics 0 0.00000 1 0.00001 2 0.00001	1. 0.00001 12. 0.00011 24. 0.00019	2 0.00003 3 0.00003 5 0.00003	0 0.00000 0 0.00001 1 0.00003	6 0.00008 6 0.00008 4 0.00009	0 0.00000 0 0.00000 1 0.00001	2 0.00001 2 0.00003 2 0.00005	0 0.00000 2 0.00004 3 0.00008	7 0.00009 10 0.00015 12 0.00023	5 0.00009 (17 0.00053 (19 0.00053	0.003169 0.004981 0.005634
Minimum Fish Median Lower 70%	ery Specific NC	Minimum Fishery Specific Tagging Based On Minimum Median NC 6383685 13062 Lower 70% NC 6383685 22368	On Minimum Re 1306217 2236833	m Recoveries Of 17 NC 33 NC	35 612563 797961	N N O	4255790 NC	N N O	402802	368977	
Minimum Fish Lower 95%	ery Specific 21380880	Minimum Fishery Specific Tagging Based On CTC Cohort Criterion Lower 95% 21380880 2446546 493626 13795240	On CTC Cohort 493626	t Criterion 13795240	233577	15883802	1371753	12618305	385820	1178908	
NC = Not Computed	puted										

MCBC T: GS T: WA T: PSN N: PSO S: West Coast Vancouver Island Troll Georgia Strait Sport Puget Sound Other Net Area 5,6,7 Sport Alaska Troll AK T: WCVI T: GS S: PSO N: PSN S: Fisheries:

North/Central BC Troll Georgia Strait Troll Washington Area 1,2,3,4,4B Troll Area 4B,5,6,6A,6C,7,7A Net Area 8,9,10,11,12,13 Sport

Appendix Table 11. Tagging history and use of the Quillayute River summer fingerling stock.

Hatchery - Lonesome Creek

Brood Source - Broodstock collection program

Agency - Quileute

Release Type - Fingerling

Base Period Tagging - No

Escapement Data - Estimates of the escapement of tagged fish are currently unavailable.

Current Use of Data:

- __ Fishery or Stock Harvest Rate Index
- Brood Exploitation Rate Analysis
- X Catch Distribution
- X Survival
- _ Chinook Model

Comments - Without escapement estimates, this stock can not be used for the fishery or brood harvest rate indices.

Code	Brood Hatchery	Stock	Release Site	Year	Month	Weight in centigrams	Number Tagged	Comments
211760	85 Eagle Creek	Quillayute	Quillayute	86	9	1.566	91,253	
	4 86 Eagle Creek	Quillayute	Quillayute		9	3,026	31.378	
	4 8 Lonesome Creek	Quillayute	Quillayute	88	10	3,631	, –	Low tag retention
131331	4 88Lonesome Creek	Quillayute	Quillayute	89	9	2,900	197,558	

Appendix Table 12. Estimated recoveries and contribution rates for the Quillayute River summer fingerling stock.

Minimum Tagging Level Based on Hankin Cohort Size Criterion Minimum Cohort Size: 500

Minimum Cohort Size: 500 Minimum Tagging Level: 225455

Brood Year	AK T-AGE 4 # Rate	AK T-AGE 5 # Rate	AK T-AGE 4 AK T-AGE 5 NCBC T-AGE 3 NCBC T-AGE 4 WCVI T-AGE 4 GS T-AGE 3 GS T-AGE 4 GS S-AGE 3 GS S-AGE 4 Survival # Rate # Rate Rate	NCBC T-AGE 4 W	CVI T-AGE 3 W	CVI T-AGE 4 # Rate	6S T-AGE 3 # Rate	GS T-AGE 4 # Rate	GS S-AGE 3 # Rate	GS S-AGE 4 Su # Rate	urvival Rate
88 87 88 88	11 0.00012 7 0.00022	11 0.00012 10 0.00011 7 0.00022	8 0.00009 0 0.00000 7 0.00004	7 0.00008 4 0.00013	4 0.00004 0 0.00000 0 0.00000	7 0.00008	0 0.00000	00000-0	0.00000	00000 0	0.00222
Summary Statistics Median 9 0. Average 9 0. SD 3 0.	stics 9 0.00017 9 0.00017 3 0.00007	10 0.00011 10 0.00011 0 0.00000	0 0.00000 3 0.00003 5 0.00005	6 0.00010 6 0.00010 2 0.00004	0 0.00000 1 0.00001 2 0.00003	4 0.00004 4 0.00004 5 0.00005	0 0 00000 0 0 0 00000 0 0 0 0 0 0 0 0 0	0 0.00000 0 0 0.00000	0 0.0000 0 0.00000 0 0.00000	0 000000 0	0.002218 0.002218 0.000000
Minimum Fishery Specific Tagging Based On Minimu Median 203707 319386 NC Lower 70% 290350 319386 NC	ry Specific 203707 290350	Tagging Base 319386 319386	d On Minimum R NC NC	m Recoveries Of 342822 456265	35 NC NC	912530 NC	Q Q	N N	N N	2 2	
Minimum Fisher Lower 95%	ry Specific 247899	Tagging Base 159693	Minimum Fishery Specific Tagging Based On CTC Cohort Criterion Lower 95% 247899 159693 5236711 296714	t Criterion 2967142	7855066	456265	, NC		NO N	, Q	

Appendix Table 12. Estimated recoveries and contribution rates for the Quillayute River summer fingerling stock (continued).

Brood Year		WA T-AGE 3 WA T-AGE 4 PSN N-AGE 3 PSN N-AGE 4 # Rate # Rate # Rate	PSN N-AGE 3 # Rate	PSN N-AGE 4	PSO N-AGE 3 # Rate	PSO N-AGE 4 PSN S-AGE 3	PSN S-AGE 3	PSN S-AGE 4	PSO S-AGE 3	PSO S-AGE 4 Survival	Survival
85 86 87 88	3 0.00003 0 0.00000 2 0.00001	3 0 0.00000 0 3 0.00010	0 0.00000	0 0.00000	0 0.00000	0000000	0 0.00000	0 0.00000	0 0.00000 0 0 0.00000 0	0.0	0.00222
Summary Statistics Median 0 0. Mean 1 0. SD 2 0.	tistics 0 0.00000 1 0.00001 2 0.00002	2 0.00005 1 2 0.00005 2 0.00007	0 0.00000 0 0.00000	0 0.00000 0 0.00000	0 0.00000 0 0.00000 0 0.00000	0 0.00000 0	0 0.00000	0 0.00000	0 0.00000 0 0.00000 0 0.00000	0 0.00000 0	0.002218 0.002218 0.000000
Minimum Fish Median Lower 70%	ery Specific NC NC	Minimum Fishery Specific Tagging Based On Minimum Recoveries Of Median NC 732153 NC NC LOWER 70% NC NC NC NC	On Minimum Re NC NC	ecoveries Of NC NC	35 NC NC	N N O O	N N	O O	N N	N N O O	
Minimum Fish Lower 95%	ery Specific 3148072	Minimum Fishery Specific Tagging Based On CTC Cohort Criterion Lower 95% 3148072 3956189 NC NC	On CTC Cohort NC	: Criterion NC	N.	NC	NC	N.	N CO	ñ	
NC = Not Computed	puted					-					
Fisheries: WCVI T: We GS S: Ge PSO N: PL	Alaska Troll West Coast Vancouver Georgia Strait Sport Puget Sound Other Net Area 5,6,7 Sport	Alaska Troll West Coast Vancouver Island Troll Georgia Strait Sport Puget Sound Other Net Area 5,6,7 Sport	Troll	NCBC T: GS T: WA T: PSN N: PSO S:		North/Central BC Troll Georgia Strait Troll Washington Area 1,2,3,4,4B Troll Area 48,5,6,6A,6C,7,7A Net Area 8,9,10,11,12,13 sport	48 Troll		- 1		

Appendix Table 13. Tagging history and use of the Samish Hatchery fall fingerling stock.

Hatchery - Samish

Brood Source - Return to hatchery

Agency - WDF

Release Type - Fingerling

Base Period Tagging - Yes

Escapement Data - Escapement counts are made at the hatchery rack. The escapement counts include some fish that are released above the rack. In recent years, a program has been implemented to sample carcasses below the hatchery for age and CWT.

Current Use of Data:

- X Fishery or Stock Harvest Rate Index
- X Brood Exploitation Rate Analysis
- X Catch Distribution
- X Survival
- X Chinook Model

Comments - Only one brood year is available from the base period for both age 3 and age 4. Tagged releases from the Nooksack Hatchery have been included because of geographical proximity and similarity of broodstock.

Code	Brood	Hatchery	Stock	Release Site	Year	Month	Weight in centigrams	Number Tagged	Comments	: :
011305	74	Nooksack	Nooksack	Kendall	26					
130104	74	Samish	Samish	Friday	75	6	907	51,340		
130215	74	Nooksack	Nooksack		75	5	454	72,493		
130302	75	Nooksack	Nooksack	Kendall	75	5	454	75,761		
130602	75	Samish	Samish	Kendall	76	6	907	72,842		
130603	75	Samish	Clark	Friday	76	5	329	9,770		
632042	79	Samish	Samish	Samish	76	6	334	76,106		
632101	79	Samish	Samish	Samish	80	5	1,221	100,514		
632102	79	Samish	Samish	Friday	80	5	440	106,037		
633804	85	Samish	Samish	Friday	80	5	488	103,023		
633805	85	Samish		Friday	86	5	454	53,773		
633806	85	Samish	Samish	Friday	86	- 5	454	52,297	11	
633807	85	Samish	Samish	Friday .	86	5	454	52,297		
634111R4		Nooksack	Samish Nacional X C	Friday	86	5	454	52,506		
634122R4		Samish	Nooksack X Samish	Kendall	86	6	709	201,804		
634732R4		Samish	Samish	Friday	87	5	372	204,517		1
635242R4	٠.	Samish Samish	Samish	Friday	88	5	468	205,145		
0555721(4	00	Samish	Samish	Friday	89	5	384	199,723		
								•		

Appendix Table 14. Estimated recoveries and contribution rates for the Samish Hatchery fall fingerling stock.

Minimum Tagging Level Based on Hankin Cohort Size Criterion Minimum Cohort Size: 500 Minimum Tagging Level: 90094

Survival	0.04301 0.08951 0.00555	0.066259 0.062890 0.048139		
GS S-AGE 4 8	108 0.00068 459 0.00148 37 0.00009 214 0.00105	161 0.00086 205 0.00082 185 0.00059	40537 51436	170942
GS S-AGE 3 # Rate	309 0.00195 606 0.00196 62 0.00015 283 0.00138 21 0.00010	283 0.00138 252 0.00109 239 0.00095	25294 25294	104136
GS T-AGE 4 # Rate	30 0.00019 68 0.00022 0 0.00000 54 0.00026	42 0.00020 38 0.00017 30 0.00012	171287 185171	953030
GS T-AGE 3 # Rate	154 0.00097 245 0.00079 4 0.00001 24 0.00012 26 0.00013	24 0.00012 85 0.00038 109 0.00047	298254	261488
WCVI T-AGE 4 # Rate	309 0.00195 1325 0.00428 79 0.00019 433 0.00212	371 0.00203 537 0.00213 546 0.00167	17224 17978	89269
# Rate	180 0.00113 872 0.00282 54 0.00013 94 0.00046 26 0.00013	94 0.00046 240 0.00091 359 0.00115	35 76150 76150	132702
NCBC T-AGE 4 # Rate	2 0.00001 155 0.00050 4 0.0001 11 0.00005	8 0.00003 43 0.00014 75 0.00024	mum Recoveries Of 1619 1054436 1619 2777565	Cohort Criterion 9388 1836475
WCBC T-AGE 3	27 0.00017 57 0.00018 4 0.00001 5 0.00002 4 0.00002	5 0.00002 19 0.00008 24 0.00009	On Minimum Re 1431619 1431619	
AK T-AGE 4 AK T-AGE 5 NCBC T-AGE 4 NCVI T-AGE 3 NCVI T-AGE 4 GS T-AGE 3 GS T-AGE 4 GS S-AGE 3 GS S-AGE 4 Survival # Rate # Rate Rate Rate	000000000000000000000000000000000000000	0 0.00000 0 0 0.00000	agging Based NC NC	agging Based NC
AK T-AGE 4 # Rate	0 0.00000 14 0.00005 0 0.00000 3 0.00001	istics 2 0.00001 4 0.00001 7 0.00002	ry Specific T 4772064 NC	ry Specific T 15103717
Brood Year	£ \$ 88 88 88 88 88 88 88 88 88 88 88 88 8	Summary Statistics Median 2 0. Average 4 0. SD	Minimum Fishery Specific Tagging Based On Minir Median 4772064 NC 143 Lower 70% NC NC 143	Minimum Fishery Specific Tagging Based On CTC Lower 95% 15103717 NC 374

Appendix Table 14. Estimated recoveries and contribution rates for the Samish Hatchery fall fingerling stock (continued).

Brood Year		WA T-AGE 3 WA T-AGE 4 PSN N-AGE 3 # Rate # Rate # Rate	PSN N-AGE 3 # Rate	PSN N-AGE 4	PSO N-AGE 3 # Rate	PSN N-AGE 4 PSO N-AGE 4 PSN S-AGE 3 PSN S-AGE 4 PSO S-AGE 5 PSO S-AGE 4 Survival # Rate # Rate # Rate # Rate Rate Rate	PSN S-AGE 3 # Rate	PSN S-AGE 4 # Rate	PSO S-AGE 3 # Rate	PSO S-AGE 4 # Rate	Survival Rate
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	12 0.00008 104 0.00034 30 0.00007 41 0.00020 30 0.00015	24 0.00015 229 0.00074 30 0.00007 402 0.00197	72 0.00045 896 0.00289 72 0.00017 63 0.00031 2 0.00001	82 0.00052 298 0.00096 4 0.00001 13 0.00006	156 0.00098 990 0.00320 142 0.00034 359 0.00176 43 0.00021	646 0.00407 1620 0.00523 225 0.00055 625 0.00306	122 0.00077 253 0.00082 31 0.00008 83 0.00041 45 0.00022	70 0.00044 524 0.00169 34 0.0008 69 0.00034	46 0.00029 234 0.00076 10 0.00002 25 0.00012 11 0.00005	4 0.00003 108 0.00035 10 0.00002 28 0.00014	0.04301 0.08951 0.00555
Summary Statistics Median 30 0. Mean 37 0. SD 40 0.	tistics 30 0.00008 37 0.00014 40 0.00013	130 0.00045 171 0.00073 181 0.00087	72 0.00031 221 0.00077 379 0.00120	48 0.00029 99 0.00039 137 0.00045	156 0.00098 329 0.00126 391 0.00128	636 0.00356 779 0.00323 593 0.00200	83 0.00041 98 0.00041 99 0.00038	70 0.00039 174 0.00064 234 0.00072	25 0.00012 63 0.00024 97 0.00031	19 0.00008 c 38 0.00013 0 48 0.00015 0	0.066259 0.062890 0.048139
Minimum Fish Median Lower 70%	ery Specific 462928 462928	Minimum Fishery Specific Tagging Based On Minimu 462928 78569 1136 Lower 70% 462928 231464 1136	On Minimum Re 113621 113621	Minimum Recoveries Of 113621 120647 113621 550623	35 35610 35610	982 3 11453	86242	89926 103741	286324	431806	
Minimum Fish Lower 95%	ery Specific 319814	Minimum Fishery Specific Tagging Based On CTC Cohort Criterion Lower 95% 319814 184909 205374 394351	On CTC Cohort 205374	1 Criterion 394351	82841	32845	174037	237267	478873	1051982	
NC = Not Computed	puted										
Fisheries: ALM T: ALMCVI T: WE GS S: PSO N: PUPSO N: PUPS	Alaska Troll West Coast Vancouver Georgia Strait Sport Puget Sound Other Net Area 5,6,7 Sport	Alaska Troll West Coast Vancouver Island Troll Georgia Strait Sport Puget Sound Other Net Area 5,6,7 Sport	Troll	NCBC T: GS T: WA T: PSN N: PSO S:		North/Central BC Troll Georgia Strait Troll Washington Area 1,2,3,4,48 Trol Area 48,5,6,64,6C,7,7A Net Area 8,9,10,11,12,13 Sport	B Troll t				

Appendix Table 15. Tagging history and use of the Lummi Bay Hatchery fall fingerling stock.

Hatchery - Lummi Bay Hatchery Brood Source - Generally Samish Hatchery Agency - Lummi Release Type - Fingerling Base Period Tagging - Yes Escapement Data - Straying appears to be a problem with this stock.

Current Use of Data:

- __ Fishery or Stock Harvest Rate Index
- Brood Exploitation Rate Analysis
- X Catch Distribution
- X Survival
- X Chinook Model

Comments - Data for this stock are of limited value to the CTC.

	5	Number Tagged	Weight in centigrams	Month	Year	Release Site	Stock	Brood Hatchery	Code
		12,735	1,170	6	76	Lummi Bay	Green	75 Skookum Cr	40711
		23,447	503	6	77	Lummi Bay	Green	76 Lummi Ponds	52601
	- 1	96,486	567	6	78	Lummi Bay	Green	77 Skookum Cr	50324 50326
		45,484	732	7.	79	Lummi Bay	Samish	78 Lummi Ponds	50526
		14,019	757	7	79	Lummi Bay	Samish	78 Lummi Ponds	50727 50727
		40,468	613	7	80	Lummi Bay	Samish	79 Lummi Ponds	50831
		46,423	700	6	81	Lummi Bay	Samish	80 Lummi Ponds	50857
		48,847	560	6	82	Lummi Bay	Green	81 Skookum Cr	30637 11902R4
		100,719	649	6	86	Lummi Bay	Samish	- Dennin Long	12232R4
		93,685	652	5	87	Lummi Bay	Samish	. So Danini I Olida	12235R4
$x = \left(\frac{\pi}{2} (x - \theta)\right)^{-1}$		98,550	652	5	87	Lummi Bay	Samish	Demini I Ondo	12537R4
		96,572	560	6	88	Lummi Bay	Samish		12538R4
	1.	92,897	516	6	88	Lummi Bay	Samish	- Dennin Londs	12336R4
		190,485	600	5	89	Lummi Bay	Green	4 88 Lummi Ponds	13142 K 4

Appendix Table 16. Estimated recoveries and contribution rates for the Lummi Bay Hatchery fingerling stock.

Minimum Tagging Level Based on Hankin Cohort Size Criterion Minimum Cohort Size: 500 Minimum Tagging Level: 77935

Survival	0.08699 0.03397 0.03832 0.00642 0.01177 0.01177	0.016416 0.026658 0.027346		
GS S-AGE 4 4 ** Rate	13 0.00102 19 0.00081 202 0.00209 3 0.00045 18 0.00045 19 0.00041 28 0.00057 7 0.00057 380 0.00198	19 0.00057 0.77 0.00083 0.730 0.00075	61059 78501	55268
GS S-AGE 3 # Rate	47 0.00369 10 0.00043 206 0.00214 19 0.00032 19 0.00047 24 0.00052 53 0.00013 13 0.00013 665 0.00346 7 0.00004	22 0.00049 106 0.00122 205 0.00138	70878 74369	65593
GS T-AGE 4 # Rate	4 0.00031 0 0.00000 28 0.00020 0 0.00000 8 0.00017 0 0.00000 45 0.00023	0 0.00000 9 0.00011 16 0.00014	N N	475374
GS T-AGE 3 # Rate	9 0.00071 11 0.00047 75 0.00078 0 0.00000 0 0.00000 27 0.00055 0 0.00000 40 0.00021 2 0.00001	5 0.00010 16 0.00027 25 0.00032	336408 NC	328646
# Rate	56 0.00440 61 0.00260 107 0.00111 10 0.00032 35 0.00087 24 0.00057 14 0.00014 565 0.00294	35 0.00087 98 0.00144 178 0.00152	40372	35192
# Rate	72 0.00565 42 0.00179 48 0.00050 22 0.00037 21 0.00052 21 0.00068 33 0.00002 161 0.00084 33 0.00017	28 0.00051 42 0.00108 47 0.00168	35 68786 70354	24842
ICBC T-AGE 4 1	0 0.00000 4 0.00017 27 0.00028 0 0.00000 0 0.00000 11 0.00023 0 0.00000	0 0.00000 6 0.00008 9 0.00011	nimum Recoveries Of 374743 NC 560680 NC	Criterion 670097
CBC T-AGE 3 h # Rate	4 0.00031 7 0.00030 12 0.00012 0 0.00000 7 0.00017 0 0.00000 21 0.00043 4 0.00004 12 0.00006 2 0.00001	6 0.00009 7 0.00014 7 0.00015	on Minimum Red 374743 560680	in CTC Cohort 712036
AK T-AGE 4 AK T-AGE 5 NCBC T-AGE 3 NCBC T-AGE 4 WCVI T-AGE 3 WCVI T-AGE 4 GS T-AGE 4 GS S-AGE 3 GS S-AGE 4 Survival # Rate # Rate Rate	0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000	0 0.00000 0 0.00000	agging Based (NC NC	igging Based C
AK T-AGE 4 # Rate	5 0.00039 0 0.00000 0 0.00000 2 0.00005 3 0.00006 7 0.00004	stics 0 0.00000 2 0.00006 3 0.00013	ry Specific Te NC NC	7 Specific Te 1066297
Brood Year	5 5 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Summary Statistics Median 0 0. Average 2 0. SD 3 0.	Minimum Fishery Specific Tagging Based On Minim Median NC NC NC 374. Lower 70% NC NC S60	Minimum Fishery Specific Tagging Based On CTC Cohort Criterion Lower 95% 1066297 NC 712036 670097

Appendix Table 16. Estimated recoveries and contribution rates for the Lummi Bay Hatchery fingerling stock (continued).

Brood Year	WA T-AGE 3	WA T-AGE 4	PSN N-AGE 3 # Rate	PSN N-AGE 4 # Rate	PSO N-AGE 3 # Rate	PSO N-AGE 4 # Rate	PSN S-AGE 3 # Rate	PSN S-AGE 4 # Rate	PSO S-AGE 3 # Rate	PSO S-AGE 4 Survival # Rate Rate	Survival
~ ~ ~		0 0.00000		28	32 0.00251 18 0.00077	105 0.00824 68 0.00290	11 0.00086	9 0.00071	3 0.00024	0 0.00000	0.08699
77	7 3 0.00003 8 0 0.00000		37 0.00	43 0.00045	52 0.00054			20 0.00021	0 0.0000		0.03832
97 08	9 0 0.00000	 ⊂	5 0.00012	m ·					7 0.00017	0 0.00000	0.00642
818	104	0 0	14 0.00029	* (1)	36 0.00074			5 0.00011	14 0.00030 4 0.00008	0 0.00000	0.01177
8888	122	339 0.00176	5 0.00005 88 0.00046 0 0.00000	0,00000 9 0,000005	20 0.00020 885 0.00460 58 0.00031	39 0.00039 1185 0.00616 -	6 0.00006 77 0.00040 8 0.00004	0 0.00000 57 0.00030	0 0.00000 40 0.00021 2 0.00001	0 0.00000	0.00296
Summary Statistics Median 0 0 Mean 13 0 SD 38 0	itistics 0 0.00000 13 0.00008 38 0.00020	1 0.00002 42 0.00026 112 0.00057	8 0.00021 18 0.00029 27 0.00031	4 0.00007 11 0.00038 15 0.00071	21 0.00054 108 0.00101 274 0.00145	65 0.00161 223 0.00294 376 0.00270	10 0.00018 16 0.00029 23 0.00031	7 0.00020 13 0.00022 18 0.00021	2 0.00004 7 0.00010 13 0.00012	0 0.00000 0 5 0.00006 0 10 0.00011 0	0.016416 0.026658 0.027346
Minimum Fisi Median	hery Specific NC	Minimum Fishery Specific Tagging Based On Minimum Recoveries Of Median NC 1413020 170541 471007	On Minimum Re 170541	coveries of 471007	35	21739	102040	170045	05/003	9	
Lower 70%	Ų,	SN SN	282604	747573	64943	26207	213706	201860	0240CO	<u> </u>	
Minimum Fisl Lower 95%	hery Specific 742409	Minimum Fishery Specific Tagging Based On CTC Cohort Criterion Lower 95% 742409 196413 252666 19487	On CTC Cohort 252666	Criterion 194879	69838	14647	222644	226354	537900	650611	
NC = Not Computed	nputed										
S	•									•	
<u></u>	Alaska Troll West Coast Vancouver Georgia Strait Sport	Alaska Troll West Coast Vancouver Island Troll Georgia Strait Sport	Troll	NCBC T: GS T: WA T:		North/Central BC Troll Georgia Strait Troll Dashindton Area 1.2 % / P	1100				
PSO N: PSN S: A	Puget Sound Other Net Area 5,6,7 Sport	her Net t		PSN N: PSO S:	Area 48,5,6 Area 8,9,10	Area 48,5,6,64,6C,7,7A Net Area 8,9,10,11,12,13 Sport					
			4.								

Appendix Table 17. Tagging history and use of the Tulalip Hatchery fall fingerling stock.

Hatchery - Tulalip Brood Source - Varies Agency - Tulalip Release Type - Fingerling Base Period Tagging - No

Escapement Data - Escapement to the hatchery is limited as the fishery in Area 8D is managed to harvest the entire return. Straying to the Snohomish and Stillaguamish rivers may be occurring.

Current	LISA	Ωf	Data
Current	USC	O1	1JAIA:

- __ Fishery or Stock Harvest Rate Index
- Brood Exploitation Rate Analysis
- _ Catch Distribution
- __ Survival
- _ Chinook Model

Comments - This program is difficult to evaluate because of the limited duration of the tagging.

Code Br	ood	Hatchery	Stock	Release Site	Year	Month	Weight in centigrams	Number Tagged	Comments	
212204R4 8 212544R4 8 213141 8		Tulalip Tulalip Tulalip	Samish Green X Tulalip Snohomish	Tulalip Tulalip Tulalip	87 88 89	5 5 5	509 503 534	191,825 188,110 181,873		

Appendix Table 18. Tagging history and use of the Stillaguamish Hatchery fall fingerling stock.

Hatchery - Stillaguamish Brood Source - Broodstock collection program Agency - Stillaguamish Tribe Release Type - Fingerling Base Period Tagging - No

Escapement Data - Estimates of tagged escapement are currently not available.

Current Use of Data:

- __ Fishery or Stock Harvest Rate Index
- Brood Exploitation Rate Analysis
- X Catch Distribution
- X Survival
- X Chinook Model

Comments - Brood years prior to 1987 had small tag groups and recoveries were limited. Small tag group sizes resulted from difficulty in collecting sufficient broodstock from the river.

Code	Brood Hatchery	Stock	Release Site	Year	Month	Weight in centigrams	Number Tagged	
050843 051063 051427 211618 212221R	80 Stillaguamish 81 Stillaguamish 82 Stillaguamish 83 Stillaguamish 4 86 Stillaguamish	Stillaguamish Stillaguamish Stillaguamish Stillaguamish Stillaguamish	Stillaguamish Stillaguamish Stillaguamish Stillaguamish Stillaguamish	82 83 83	4 3 4 3 4	251 239 251 251 275	59,274 46,186 33,444 26,915 23,904	Broodstock collection
212555R4 213147R4	D	Stillaguamish Stillaguamish	Stillaguamish Stillaguamish	88 89	5 5	503 500	127,910 36,599	limited by smal

Appendix Table 19. Estimated recoveries and contribution rates for the Stillaguamish Hatchery fall fingerling stock.

Minimum Tagging Level Based on Hankin Cohort Size Criterion Minimum Cohort Size: 500 Minimum Tagging Level: 239008

<u>GE 3 NCBC T-AGE 4 WCVI T-AGE 3 WCVI T-AGE 4 GS T-AGE 3 GS S-AGE 3 GS S-AGE 4</u> Survival Rate # Rate # Rate # Rate Rate Rate # Rate # Rate Rate Rate Rate Rate	0.00008 6 0.00010 0.00209 0.00013 0 0.00000 0.00390 0.00033 12 0.00040 0.01092 0.00022 7 0.00026 0.00825 0.00096 19 0.00079	018 7 0.00026 0.006073 029 9 0.00031 0.006288 035 7 0.00031 0.004024	198394 134575 269418 134575	751772 02800
4 GS S-AGE ate # R	2.405.25	00 6 0.00018 00 8 0.00029 00 8 0.00035	198	126
GS T-AGE	00 0 0.00000 00 0 0.00000 00 0 0.00000 00 0 0.00000 00 0 0.00000	0 0.00000	N	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
GS T-AGE 3	0 0.00000 0 0.00000 0 0.00000 0 0.00000 2 0.00000	0 0.0000 0 0.00000 0 0.00000	O O	22961674
WCVI T-AGE 4 # Rate	2 0.00003 3 0.0006 10 0.00033 5 0.00019 5 0.00021	5 0.00019 5 0.00016 3 0.00012	188405 188405	172829
# Rate	10 0.00017 4 0.00009 28 0.00074 20 0.00074 29 0.00121 76 0.00059	15 0.00046 15 0.00052 12 0.00050	35 76772 207459	30229
NCBC T-AGE 4 WCVI # Rate #	000000000000000000000000000000000000000	0 0.00000	ecoveries Of NC NC	Cohort Criterion
NCBC T-AGE 3 # Rate	0 0.00000 20 0.00043 4 0.00013 0 0.00000 8 0.00033 36 0.00028	2 0.00007 5 0.00015 8 0.00019	Minimum Fishery Specific Tagging Based On Minimum Recoveries Of Median NC NC 530688 NC LOWER 70% NC NC NC	
AK T-AGE 4 AK T-AGE 5 NCBC T-AN # Rate # Rate #	000000000000000000000000000000000000000	0 0.00000 0 0.00000 0 0.00000	Tagging Based NC NC	Minimum Fishery Specific Tagging Based On CTC (
4	0 0.00000 10 0.00022 0 0.00000 6 0.00022 0 0.00000	istics 0 0.00000 3 0.00009 5 0.00012	ery Specific NC NC	ery Specific 878413
Brood Year	80 81 83 84 87 88	Summary Statistics Median 0 0 Average 3 0 SD	Minimum Fish Median Lower 70%	Minimum Fishe

Appendix Table 19. Estimated recoveries and contribution rates for the Stillaguamish Hatchery fall fingerling stock (continued).

Brood Year	' '	WA T-AGE 4 # Rate	WA T-AGE 3 WA T-AGE 4 PSN N-AGE 3 # Rate # Rate # Rate	PSN N-AGE 4 # Rate	PSN N-AGE 4 PSO N-AGE 3 # Rate # Rate	PSO N-AGE 4	PSN S-AGE 3 # Rate	PSN S-AGE 4	PSO S-AGE 3	PSO S-AGE 4 Surviva	Survival
80 82 83 86 87 88	0 0.00000 0 0.00000 0 0.00000 14 0.00059 23 0.00018	0 0.00000 0 0 0.00000 0 0 0.00000 0 0 0.00000 0 0 0.00000 0 0 0.00000 0 0 0.00000 0 0 0.00000 0 0 0 0.00000 0 0 0 0 0.00000 0 0 0 0 0.00000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 0.00002 0 0.00000 1 0.00003 0 0.00003 2 0.00013	0 0.00000 0 0.00000 8 0.00026 0 0.00000	3 0.00005 1 0.00002 3 0.00010 0 0.00000 4 0.00017	2 0.00003 5 0.00011 5 0.00016 4 0.00015 2 0.00008	0 0.00000 2 0.00004 0 0.00000 8 0.00030 17 0.00071	0 0.00000 0 0.00000 0 0.00000 0 0.00000	10 0.00017 3 0.00006 4 0.00013 0 0.00000 14 0.00059 26 0.00020	00000	0.00209 0.00390 0.01092
Summary Statistics Median 0 0. Mean 2 0. SD 6 0.	istics 0 0.00000 2 0.00010 6 0.00024	0 0.00000 0 0.00000	1 0.00001 1 0.00003 1 0.00005	0 0.00000 2 0.00005 4 0.00012	2 0.00004 2 0.00006 2 0.00007	4 0.00011 4 0.00011 2 0.00005	1 0.00002 5 0.00018 7 0.00029	0 0.00000 0 0.00000	4 0.00010 5 0.00016 6 0.00022	0 0.00000 0 3 0.00012 0 5 0.00016	0.006073 0.006288 0.004024
Minimum Fishe Median Lower 70%	Minimum Fishery Specific Tagging Based On Minimum Median NC NC (1491) LOWER 70% NC NC NC	agging Based NC NC	On Minimum Re 4149180 NC	n Recoveries Of 80 NC NC	35 968671 1616510	323302 323302	1616510 NC	N N	355584		
Minimum Eishe Lower 95%	Minimum Fishery Specific Tagging Based On CIC Cohort Criterion Lower 95% 591143 NC 4908652 4867076	agging Based NC	On CTC Cohort 4908652	Criterion 4867079	1403258	200896	284154	2 2 2	158103	1622378	
NC = Not Computed Fisheries: AK T: Alaska WCVI T: West Co GS S: Georgi PSO N: Puget S	mputed Alaska Troll West Coast Vancouver Island Troll Georgia Strait Sport Puget Sound Other Net Area 5,6,7 Sport	ouver Island Sport er Net	Troll	NCBC T: GS T: WA T: PSN N: PSO S:		North/Central BC Troll Georgia Strait Troll Washington Area 1,2,3,4,48 Area 48,5,6,64,6C,7,7A Net Area 8,9,10,11,12,13 Sport	B Troll t				

Appendix Table 20. Tagging history and use of the Green River Hatchery fall fingerling stock.

Hatchery - Green River
Brood Source - Return to hatchery
Agency - WDF
Release Type - Fingerling
Base Period Tagging - Yes
Escapement Data - The extent of straying should be further quantified.

Current Use of Data:

- X Fishery or Stock Harvest Rate Index
- X Brood Exploitation Rate Analysis
- X Catch Distribution
- X Survival
- X Chinook Model

Comments - Data for this stock are combined with other mid-Sound stocks for use in the exploitation rate analysis.

Code	Brood	Hatchery	Stock	Release Site	Year	Month	Weight in centigrams	Number Tagged	Comments	
011403	74	Green R.	Big Soos	Big Soos	75	5	488	39,704		
011404	74	Green R.	Big Soos	Big Soos	75	5	488	40,124		
130604	75	Green R.	Big Soos	Big Soos	76	5	553	78.146		
631935	78	Green R.	Big Soos	Big Soos	79	5	458	99,372		
631936	78	Green R.	Big Soos	Big Soos	79	5	405	100,664		
531945	78	Green R.	Big Soos	Big Soos	79	5	454	185,133		
531944	79	Green R.	Big Soos	Big Soos	80	5	428	119,913		
532253	80	Green R.	Big Soos	Big Soos	81	5	280	159,801		
532158	81	Green R.	Big Soos	Big Soos	82	5	349	211,883		
533643	85	Green R.	Big Soos	Big Soos	86	5	412	50,487		
633644	85	Green R.	Big Soos	Big Soos	86	5	412	50,488		
633645	85	Green R.	Big Soos	Big Soos	86	5	412	50,488		-
633646	85	Green R.	Big Soos	Big Soos	86	5	412	50,487		
6 <mark>34116R</mark> 4	86	Green R.	Big Soos	Green	87	5	657	199,670		
6 <mark>35221R</mark> 4	87	Green R.	Big Soos	Green	88	5	445	206,718		
635238R4	88	Green R.	Big Soos	Green	89	5	521	217,988		

Appendix Table 21. Estimated recoveries and contribution rates for the Green River Hatchery fall fingerling stock.

Minimum Tagging Level Based on Hankin Cohort Size Criterion Minimum Cohort Size: 500 Minimum Tagging Level: 85763

urvival Rate	0.07112 0.01202 0.03175 0.00273 0.01505	0.015051 0.022594 0.023421		
<u>NGE 3 NCBC 1-AGE 4 WCVI 1-AGE 3 WCVI 1-AGE 4 GS 1-AGE 3 GS 1-AGE 4 GS S-AGE 3 GS S-AGE 4</u> Survival Rate # Rate	58 0.00074 19 0.0005 41 0.00034 0 0.00000 22 0.00010 19 0.00003	22 0.00010 C 41 0.00028 C 42 0.00030 C	337087 372013	279819
GS S-AGE 3 # Rate	165 0.00211 155 0.00040 34 0.00028 3 0.00028 83 0.00039 0 0.000074 0 0.00000	59 0.00034 74 0.00049 74 0.00070	103663	427981
GS T-AGE 4 # Rate	10 0.00013 33 0.00009 8 0.00007 0 0.00000 6 0.00003 3 0.00001 2 0.00001	6 0.00003 9 0.00005 11 0.00005	1235984 2356083	1008592
GS T-AGE 3 # Rate	60 0.00077 10 0.00003 7 0.00006 0 0.00000 7 0.00000 4 0.00002 0 0.00000	6 0.00002 11 0.00011 20 0.00027	1521882 1747113	2906068
WCVI T-AGE 4 # Rate	289 0.00370 224 0.00058 143 0.00119 7 0.00004 41 0.00026 568 0.00284	143 0.00058 193 0.00128 193 0.00143	60183 96310	59019
WCVI T-AGE 3 # Rate	300 0.00384 128 0.00033 193 0.00161 42 0.00026 91 0.00047 149 0.00075 8 0.00004	110 0.00038 115 0.00091 101 0.00129	35 91887 105320	164576
NCBC T-AGE 4 # Rate	25 0.00032 24 0.00006 45 0.00038 0 0.00000 0 0.00000 9 0.000005	9 0.00005 15 0.00011 17 0.00016	coveries Of 776494 NC	Cohort Criterion 3619 1263200
VCBC T-AGE 3 # Rate	24 0.00031 6 0.00002 5 0.00004 0 0.00008 0 16 0.00008 0 6 0.00003 12 0.00006 0 0.00000	6 0.00004 9 0.00007 8 0.00010	On Minimum Re 980293 1178042	
AK T-AGE 5 # Rate	0 0.00000 0 0.00000 0 0 0.0000 0 0 0.0000 0 0 0 0.0000 0 0 0 0.0000 0 0 0 0.00000 0 0 0 0.0000 0 0 0 0.0000 0 0 0 0 0.0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.00000 0 0 0.00000 0 0 0.00000	agging Based NC NC	agging Based NC
AK T-AGE 4 AK T-AGE 5 NCBC T-A # Rate # Rate #	0 0.00000 4 0.00001 5 0.00004 0 0.00000 0 0.00000 0 0.00000	stics 0 0.00000 1 0.00001 2 0.00002	ry Specific T NC NC	ry Specific T 7355531
Brood Year	77 78 79 81 85 85 86 87 88	Summary Statistics Median 0 0 Average 1 0 SD SD	Minimum Fishery Specific Tagging Based On Minimum Recoveries Of Median NC NC 980293 776494 Lower 70% NC NC 1178042 NC	Minimum Fishery Specific Tagging Based On CTC Lower 95% 7355531 NC 481

Appendix Table 21. Estimated recoveries and contribution rates for the Green River Hatchery fall fingerling stock (continued).

Brood Year	WA T-AGE 3 # Rate	WA T-AGE 3 WA T-AGE 4 PSN N-AGE 3 PSN N-AGE 4 PSO N-AGE 3 PSO N-AGE 4 # Rate # Rate # Rate # Rate # Rate	PSN N-AGE 3 # Rate	PSN N-AGE 4 # Rate	PSO N-AGE 3 # Rate	PSO N-AGE 4 # Rate		PSN S-AGE 3	PSO S-AGE 3 # Rate	PSO S-AGE 4 Survival	Survival Rate
77 87 79 81 81 83 84 87 88	18 0.00023 11 0.00003 13 0.00011 2 0.00001 7 0.00003 6 0.00066 7 0.00066	24 0.00031 46 0.00012 25 0.00021 3 0.00027 7 0.0003 25 0.00013	65 0.00083 29 0.00008 51 0.00043 3 0.00002 12 0.00009 64 0.00032 0 0.00000	21 0.00027 38 0.00010 5 0.00004 0 0.00000 4 0.00002 3 0.00001 56 0.00028	44 0.00056 16 0.00004 83 0.00069 18 0.00011 85 0.00000 351 0.00176 9 0.000004	55 0.00070 305 0.00079 338 0.00282 33 0.00021 256 0.00121 93 0.00046	145 0.00186 57 0.00015 17 0.00014 0 0.00000 37 0.00003 94 0.00047 0 0.00000	56 0.00072 48 0.00012 90 0.00075 0 0.00000 36 0.00017 21 0.00010	84 0.00107 161 0.00042 121 0.00101 26 0.00016 103 0.00049 8 0.00004 163 0.00082	76 0.00097 56 0.00015 113 0.00094 52 0.00025 20 0.000114	0.07112 0.01202 0.003175 0.00273 0.01505
Summary Statistics Median 9 0, Mean 24 0, SD 44 0,	istics 9 0.00003 24 0.00014 44 0.00022	25 0.00012 86 0.00045 170 0.00084	24 0.00008 30 0.00023 26 0.00029	5 0.00004 18 0.00010 21 0.00012	31 0.00026 75 0.00045 117 0.00059	256 0.00079 262 0.00143 251 0.00135	27 0.00014 45 0.00035 52 0.00063	48 0.00017 53 0.00035 42 0.00032	94 0.00045 83 0.00050 66 0.00043	56 0.00025 79 0.00051 74 0.00048	0.015051 0.022594 0.023421
Minimum Fishe Median Lower 70%	ery Specific 1 1115584 1178042	Minimum Fishery Specific Tagging Based On Minimum Median 1115584 282730 42433 Lower 70% 1178042 293063 46485	~0.0	Recoveries Of 839391 1853976	35 136238 310724	44200	241582 246880	205997	77424	142614 240731	
Minimum Fish Lower 95%	ery Specific 906188	Minimum Fishery Specific Tagging Based On CIC Cohort Criterion Lower 95% 906188 183525 551073 531454	On CTC Cohort 551073	: Criterion 531454	263191	28782	737993	195431	225431	126008	
NC = Not Computed	outed										
Fisheries: AK.T: AL WCVI T: We GS S: Ge PSO N: PU	Alaska Troll West Coast Vancouver Georgia Strait Sport Puget Sound Other Net Area 5,6,7 Sport	Alaska Troll West Coast Vancouver Island Troll Georgia Strait Sport Puget Sound Other Net Area 5,6,7 Sport	Troll	NCBC T: GS T: WA T: PSN N: PSO S:		North/Central BC Troll Georgia Strait Troll Washington Area 1,2,3,4,4B Troll Area 48,5,6,6A,6C,7,7A Net Area 8,9,10,11,12,13 Sport	4B Troll Wet ort				

Appendix Table 22. Tagging history and use of the Grovers Creek Hatchery fall fingerling stock.

Hatchery - Grovers Creek

Brood Source - Return to hatchery

Agency - Suquamish Tribe

Release Type - Fingerling

Base Period Tagging - No

Escapement Data - The probability of straying by this stock is minimized by the shape of bay, which funnels fish into hatchery outlet, and the lack of other streams in the vicinity.

Current Use of Data:

- X Fishery or Stock Harvest Rate Index
- X Brood Exploitation Rate Analysis
- X Catch Distribution
- X Survival
- _ Chinook Model

Comments - Data for this stock are combined with other mid-Sound stocks for use in the exploitation rate analysis.

Code	Brood	Hatchery	Stock	Release Site	Year	Month	Weight in centigrams	Number Tagged	Comments	-
51047	81	Grovers Creek	Deschutes	Grovers	82	5	946	47 471		
51346	82	Grovers Creek	Grovers	Grovers	83	5	649	47,471		
11622	83	Grovers Creek	Grovers	Grovers	84	5		45,436		
1657		Grovers Creek	Grovers	Grovers	85	5	638	40,324		
l 1901 R4	85	Grovers Creek	Grovers	Grovers	86	, •	757	45,907		
1961R4	86	Grovers Creek	Grovers	Grovers	,	3	733	207,155		
2542R4	87	Grovers Creek	Grovers		87	, 5	-658	187,757		
13137R4		Grovers Creek		Grovers	88	5	703	193,906		
1313/14	00	Glovers Creek	Grovers	Grovers	89	5	388	124,626	Severe BGD	at relea

Appendix Table 23. Estimated recoveries and contribution rates for the Grovers Creek Hatchery fall fingerling stock.

Minimum Tagging Level Based on Hankin Cohort Size Criterion Minimum Cohort Size: 500 Minimum Tagging Level: 35560

Brood Year	AK T-AGE 4 # Rat	AK T-/	AGE 5 NC Rate	CBC T-AGE 3 h	ICBC T-AGE 4 # Rate	MCVI T-AGE 3 # Rate	AK T-AGE 4 AK T-AGE 5 NCBC T-AGE 4 WCVI T-AGE 3 WCVI T-AGE 4 GS T-AGE 3 GS T-AGE 4 GS S-AGE 3 # Rate	GS T-AGE 3 # Rate	GS T-AGE 4 # Rate	GS S-AGE 3 # Rate	GS S-AGE 4 Survival	urvival Rate
83 83 84 85 87 88	0 0.0000 0 0.00000 0 0.00000 2 0.00004 2 0.00001		000000000000000000000000000000000000000	11 0.00023 0 0.00000 0 0.00000 0 0.00000 6 0.00003 8 0.00004	0 0.00000 0 0.00000 0 0.00000 5 0.00011 0 0.00000	135 0.00284 24 0.00053 18 0.00045 40 0.00087 53 0.00026 127 0.00068 75 0.00039	25 0.00053 52 0.00114 17 0.00042 50 0.00109 60 0.00029 300 0.00160	7 0.00015 0 0.00000 0 0.00000 0 0.00000 4 0.00002 0 0.00000 2 0.00001	000000000000000000000000000000000000000	20 0.00042 6 0.00013 10 0.00025 31 0.00068 19 0.00009 32 0.00017 6 0.00003	7 0.00015 4 0.00009 4 0.00010 22 0.00048 13 0.00006 22 0.00012	0.05851 0.01687 0.01430 0.02562 0.01406
Summary Statistics Median 0 0 Average 1 0	istics 0 0.00000 1 0.00001 1 0.00002	1	000000000000000000000000000000000000000	0 0.00000 4 0.00004 5 0.00008	0 0.00000 1 0.00002 2 0.00004	40 0.00053 57 0.00080 53 0.00094	51 0.00081 84 0.00084 107 0.00051	0 0.00000 2 0.00002 3 0.00005	0 0.00000 0 0 0.00000	19 0.00017 17 0.00025 12 0.00023	10 0.00011 0 12 0.00017 0 8 0.00016 0	0.016867 0.025871 0.018838
Minimum Fishery Specific Tagging Based On Minimum Median NC NC NC Lower 70% NC NC	ery Specific NC NC	c Tagging N	ig Based O NC NC	on Minimum Re NC NC	m Recoveries Of NC NC	35 66261 78408	43322 66459	N N O	N N	205359 265043	323521 352835	
Minimum Fishery Specific Tagging Based On CTC Cohort Criterion Lower 95% 2665659 NC 2613324 141246	ery Specific 2665659	Tagging N	Based 0	n CTC Cohort 2613324	Criterion 1412463	39488	28481	1708320	NC	120909	134987	

Appendix Table 23. Estimated recoveries and contribution rates for the Grovers Creek Hatchery fall fingerling stock (continued).

Brood Year	WA T-AGE 3 # Rate	WA T-AGE 4 # Rate	PSN N-AGE 3 # Rate	PSN N-AGE 4 # Rate	PSO N-AGE 3 # Rate	PSO N-AGE 4 # Rate	PSN S-AGE 3	PSN S-AGE 4	PSO S-AGE 3	PSO S-AGE 4 Surviva # Rate Rate	Survival
81 82 84 85 86 87 88	0 0.00000 0 0.00000 11 0.00027 20 0.00044 70 0.00034 112 0.00060 75 0.00039	3 0.00006 2 0.00004 11 0.00027 26 0.00057 61 0.00029 259 0.00138	10 0.00021 12 0.00026 0 0.00000 1 0.00002 39 0.00019 28 0.00015	0 0.00000 0 0.00000 1 0.00002 5 0.00011 34 0.00016 2 0.00001	99 0.00209 4 0.00009 11 0.00027 34 0.00074 35 0.00017 157 0.00084 12 0.00006	11 0.00023 4 0.00009 7 0.00017 19 0.00041 58 0.00028 76 0.00040	34 0.00072 2 0.00004 0 0.00000 12 0.00026 30 0.00014 81 0.00043 24 0.00012	12 0.00025 7 0.00015 8 0.00020 12 0.00026 35 0.00017 63 0.00034	206 0.00434 30 0.00066 16 0.00040 23 0.00050 16 0.00008 118 0.00063 46 0.00024	14 0.00029 29 0.00064 3 0.00007 3 0.00007 14 0.00007 93 0.00050	0.05851 0.01687 0.01430 0.02562 0.01406
Summary Statistics Median 11 0. Mean 30 0. SD 44 0.	istics 11 0.00027 30 0.00023 44 0.00024	19 0.00028 60 0.00044 100 0.00050	10 0.00015 13 0.00012 15 0.00011	2 0.00002 7 0.00005 13 0.00007	34 0.00027 49 0.00060 58 0.00073	15 0.00026 29 0.00027 30 0.00013	12 0.00014 23 0.00023 29 0.00027	12 0.00023 23 0.00023 22 0.00007	23 0.00050 58 0.00094 76 0.00152	14 0.00018 0 26 0.00027 0 34 0.00025 0	0.016867 0.025871 0.018838
Minimum Fishe Median Lower 70%	ery Specific 128304 NC	Minimum Fishery Specific Tagging Based On Hinimum Median 128304 123401 2346 Lower 70% NC 16067	On Minimum Re 234696 1606745	m Recoveries Of 96 1974546 45 3285748	35 128304 201401	136798 151044	241681 795130	155149	69858 88209	189540 470447	
Minimum Fishe Lower 95%	ery Specific 1 78110	Minimum Fishery Specific Tagging Based On CTC Cohort Criterion Lower 95% 243457 531066	On CTC Cohort 243457	Criterion 531069	98320	107535	148897	95083	41306	85302	
NC = Not Computed Fisheries: AK T: Alaska WCVI T: West C GS S: Georgii PSO N: Puget % PSN S: Area 5,	mputed Alaska Troll West Coast Vancouver Georgia Strait Sport Puget Sound Other Net Area 5,6,7 Sport	mputed Alaska Troll West Coast Vancouver Island Troll Georgia Strait Sport Puget Sound Other Net Area 5,6,7 Sport	Troll	NCBC T: GS T: WA T: PSN N: PSO S:		North/Central BC Troll Georgia Strait Troll Washington Area 1,2,3,4,48 Area 48,5,6,6A,6C,7,7A Net Area 8,9,10,11,12,13 Sport	48 Troll et rt				

Appendix Table 24. Tagging history and use of the Kalama Hatchery fall fingerling stock.

Hatchery - Kalama Creek
Brood Source - Varies
Agency - Nisqually Tribe
Release Type - Fingerling
Base Period Tagging - No
Escapement Data - Fish do not return well to the hatchery.

Current Use of Data:

- __ Fishery Fishery or Stock Harvest Rate Index
- Brood Exploitation Rate Analysis
- X Catch Distribution
- X Survival
- X Chinook Model

Comments - Source of broodstock and time at release have not been consistent.

 Comments	Number Tagged	Weight in centigrams	Month	Year	Release Site	Stock	Hatchery	rood	Code B
	33,494	391	4	80	Kalama	Green	Nisqually	79	50722
	14,106	483	5	81	Kalama	Puyallup	Nisqually	80	050839
	33,298	483	5	81	Kalama	Puyallup	Nisqually	80	050840
	9,486	596	4	82	Kalama	Green	Kalama	81	051048
	29,150	596	4	82	Kalama	Green	Kalama	81	051049
	37,118	630	4	83	Kalama	Green	Kalama	82	051344
	11,675	630	4	83	Kalama	Green	Kalama	82	051345
	37,541	567	. 4	84	Kalama	Nisqually X Green	Kalama	83	211628
	11,317	567	4	84	Kalama	Nisqually X Green	Kalama	83	211629
	38,605	638	4	85	Kalama	Kalama	Kalama	84	211706
	44,898	384	5	85	Kalama	Deschutes	Kalama	84	211707
	94,552	638	5	86	Kalama	Deschutes	Kalama	85	211759
	85,934	567	6	86	Kalama	Deschutes	Kalama	85	211761
·	194,459	1,134	6	87	Kalama	Kalama X Green	Kalama	86	211962R4
	195,101	907	7	88	Kalama	Kalama X Green	Kalama	87	212541R4
'	193,837	900	6	89	Kalama	Kalama	Kalama	88	213138R4

Appendix Table 25. Estimated recoveries and contribution rates for the Kalama Creek Hatchery fall fingerling stock.

Minimum Tagging Level Based on Hankin Cohort Size Criterion Minimum Cohort Size: 500 Minimum Tagging Level: 94903

Brood Year	AK T-AGE 4 # Rate	AK T-AGE 5 # Rate	NCBC T-AGE 3 # Rate	NCBC T-AGE 4 # Rate	WCVI T-AGE 3 # Rate	<u>AK I-AGE 4 AK I-AGE 5 NCBC I-AGE 3 NCBC I-AGE 4 WCVI T-AGE 3 GS I-AGE 4 GS S-AGE 3 GS S-AGE 4</u> Survival # Rate # Rate Rate	GS T-AGE 3 # Rate	GS T-AGE 4 # Rate	GS S-AGE 3 # Rate	GS S-AGE 4 S	urvival Rate
7.9 8.3 8.4 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	0 0.00000 0 0.00000 0 0 0.0000 0 0 0.00000 0 0 0.00000 0 0 0.00000 0 0 0.00000 0 0 0.0000 0 0 0.0000 0 0 0.0000 0 0 0.0000 0 0 0.0000 0 0 0.0000 0 0 0.0000 0 0 0.0000 0 0 0.0000 0 0 0.0000 0 0 0.0000 0 0 0.0000 0 0 0.0000 0 0 0.0000 0 0 0 0.0000 0 0 0 0.0000 0 0 0 0.0000 0 0 0 0.0000 0 0 0 0.0000 0 0 0 0.0000 0 0 0 0.0000 0 0 0 0.0000 0 0 0 0 0.0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000	0 0.00000 5 0.00011 0 0.00000 0 0.00000 0 0.00000 9 0.00005 5 0.00003	0 0.00000 0 0.00000 0 0.00000 3 0.00006 0 0.00000 3 0.00000	6 0.00018 1 0.0002 38 0.00098 15 0.00031 13 0.00027 2 0.00009 35 0.00018 2 0.00001	29 0.00087 19 0.00040 6 0.00016 5 0.00010 14 0.00029 0 0.00000 27 0.00015 307 0.00158	8 0.00024 5 0.00011 0 0.00000 0 0.00000 2 0.00002 11 0.00006 0 0.00000	0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000	3 0.00009 10 0.00021 4 0.00010 0 0.00000 8 0.00016 10 0.00012 4 0.00002 32 0.00016	6 0.00018 0 0.00000 4 0.00008 0 0.00000 5 0.00006 0 0.00000 45 0.00023	0.01135 0.00527 0.01032 0.00539 0.00578 0.00578
Summary Statistics Median 0.0. Average 0.0. S0	istics 0 0.00000 0 0.00000 0 0.00000	0 0.00000 0 0.00000 0 0.00000	0 0.00000 2 0.00002 3 0.00004	0 0.00000 1 0.00001 1 0.00002	13 0.00018 14 0.00023 14 0.00030	17.0.00022 51.0.00044 104.0.00053	0 0.00000 3 0.00005 4 0.00008	0 0.00000 0 0.00000	4 0.00010 8 0.00010 10 0.00008	2 0.00003 0 8 0.00007 0 15 0.00009	0.005390 0.006769 0.002847
Minimum Fishery Specific Tagging Based On Minimum Recoveries Of Median NC NC NC NC Lower 70% NC NC NC NC	ry Specific To NC NC	agging Based (NC NC	On Minimum Re NC NC	ecoveries Of NC NC	35 195382 371589	158428 2253 <i>77</i>	N N O	NC	338065 390763		÷ 1
Minimum Fishery Specific Tagging Based On CTC Cohort Criterion Lower 95% NC NC NC 4935229 3018154	ry Specific To NC	agging Based (NC	On CTC Cohort 4935229	: Criterion 3018154	103688	100991	527976	S S	235816	717439	

Appendix Table 25. Estimated recoveries and contribution rates for the Kalama Creek Hatchery fall fingerling stock (continued).

Brood Year	NA T-AGE 3	3 WA T-AGE 4 te # Rate	PSN N-AGE 3	PSN N-AGE 4 # Rate	PSO N-AGE 3	PSO N-AGE 4 # Rate	PSN S-AGE 3 # Rate	PSN S-AGE 4	PSO S-AGE 3 # Rate	PSO S-AGE 4 Surviva # Rate Rate	Survival Rate
r- 89 (N O 1	Ф О	3	20		1 0.00003	0 0.00000	13 0.00039 5 0.00011	20 0.00060	17 0.00051 12 0.00025	0.01135
∞ ∞ ∞		18 0 0.00000 12 0 0.00000 10 1 0.00002		0 0.00000	37 0.00096 8 0.00016 13 0.00027	5 0.00013 27 0.00055 34 0.00070	2 0.00005 0 0.00000	6 0.00016 5 0.00010	26 0.00067	3 0.00006	0.01032
∞ ∞ ∞ €	84 8 0.00010 85 16 0.00009 86 20 0.00010	313 313	. ~	0 M O		-	4 0.00005 5 0.00003 28 0.00014	4 0.00005 7 0.00004 32 0.00016		22 0.00012 131 0.00067	0.00398 0.00530
88 88			0 0.00000	· • •	8 0.00004		0 0.00000				
Summary Statistics Median 2 0 Mean 6 0 SD 8 0	atistics 2 0.00006 6 0.00005 8 0.00004	3 0.00004 5 43 0.00025 1 109 0.00056	2 0.00004 4 0.00004 7 0.00004	0 0.00000 1 0.00001 1 0.00002	13 0.00016 39 0.00040 79 0.00046	25 0.00051 87 0.00064 160 0.00077	2 0.00003 5 0.00004 9 0.00005	6 0.00010 9 0.00013 10 0.00011	11 0.00012 17 0.00024 23 0.00025	8 0.00009 0 24 0.00021 0 44 0.00025 0	0.005390 0.006769 0.002847
Minimum Fis Median Lower 70%	shery Specific 586145 1707755	Minimum Fishery Specific Tagging Based On Minimum Recoveries Median. 586145 871237 855015 NC LOWER 70% 1707755 1710030 1659140 NC	On Minimum Re 855015 1659140	ecoveries Of NC NC	35 213469 224816	68799	1263402 NC	336619	292261	- 381727 569252	
Minimum Fis Lower 95%	shery Specific 393928	Minimum Fishery Specific Tagging Based On CTC Cohort Criterion Lower 95% 393928 380690 859457 2610464	On CTC Cohort 859457	t Criterion 2610466	123161	172932	653656	200831	81196	243798	
NC = Not Computed	mputed										
Fisheries: AK T: WCVI T:	Alaska Troll West Coast Va	Alaska Troll West Coast Vancouver Island Troll	Tro[[NCBC T:		North/Central BC Troll Georgia Strait Incll					
GS S: PSO N: PSN S:	Georgia Strait Sport Puget Sound Other Net Area 5.6.7 Sport	t Sport ther Net ort		PSN N:	Washington Area 48,5,6	Washington Area 1,2,3,4,48 Troll Mashington Area 48,5,6,64,6C,7,7,8 Net	8 Troll				
,	L				או עם מיא'	1,11,12,13 3,001	٠,				

Appendix Table 26. Tagging history and use of the George Adams Hatchery fall fingerling stock.

Hatchery - George Adams

Brood Source - Return to hatchery

Agency - WDF

Release Type - Fingerling

Base Period Tagging - Yes

Escapement Data - Escapement counts are made at the hatchery rack.

Current Use of Data:

- X Fishery or Stock Harvest Rate Index
- X Brood Exploitation Rate Analysis
- X Catch Distribution
- X Survival
- X Chinook Model

Comments - Tagged releases from the Hood Canal Hatchery have been included because of geographical proximity and frequent mixing of broodstock.

Code	Broo	d Hatchery	Stock	Release Site	Year	Month	Weight in centigrams	Number Tagged	Comment	
30303	74	George AdamsH	lood Canal X George Adams							
30913	75	George Adams	Deschutes		75	6	856	70,315		
31752	78	George Adams	George Adams	Purdy	76	6	667	77,369		
1915	78	Hood Canal	Finch	Purdy	79 70	5	378	37,439		
32041	7 9	George Adams	Mixed South Sound	Finch	7 9	. 5	454	34,300		
2109	7 9	Hood Canal	Finch	Purdy	79	4	302	73,387		
2146	80	George Adams	Mixed South Sound	Finch	80	4	302	48,954		
262		George Adams	Mixed South Sound	Purdy	81	. , 5	454	38,530		
2161	80	Hood Canal	Finch	Purdy	81	. 4	453	56,372		
235	81	George Adams S	South Sound X Hood Canal	Finch	81	4	319	65,178		
331	81	Hood Canal	Finch	Purdy	82	5	440	<i>7</i> 3,550		
501	85	George Adams S	outh Sound X Hood Canal	Finch	82	.5	420	55,145	1 .	
502	85	George Adams S	outh Sound X Hood Canal	Purdy	86	5	527	51,828	The second secon	
503	85	George Adams S	outh Sound X Hood Canal	Purdy	86	5	527	54,070		
504	85	George Adams S	outh Sound X Hood Canal	Purdy	86	5	526	52,945		
119R4	00	George Adams	George Adams	Purdy	86	5	527	52,814		
208R4		George Adams	Mixed Hood Canal	Purdy	87	5	613	210,674		
237R4		George Adams	Troot Canal	Purdy	88	. 5	582	198,497		
		5		Purdy	89	6	504	206,049		

Appendix Table 27. Estimated recoveries and contribution rates for the George Adams Hatchery fall fingerling stock.

Minimum Tagging Level Based on Hankin Cohort Size Criterion Minimum Cohort Size: 500 Minimum Tagging Level: 123494

Brood Year	AK T-AGE 4 # Rate	AK T-AGE 5 # Rate	NCBC T-AGE 3 # Rate	ICBC T-AGE 4	# Rate	AK T-AGE 4 AK T-AGE 5 NCBC T-AGE 3 NCBC T-AGE 4 WCVI T-AGE 3 WCVI T-AGE 4 GS T-AGE 4 GS S-AGE 3 # Rate # Rate # Rate # Rate # Rate	GS T-AGE 3 # Rate	GS T-AGE 4 # Rate	GS S-AGE 3 # Rate	GS S-AGE 4 Survival	urvival Rate
75 77 80 80 81 85 87 88	0 0.00000 0 0.00000 0 0.00000 7 0.00000 0 0.00000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.00000 15 0.00021 0 0.00000 5 0.00003 39 0.00030 8 0.00004 1 0.00000	0 0.00000 4 0.00006 5 0.00004 0 0.00000 1 0.00001 0 0.00000	11 0.00014 66 0.00092 33 0.00027 25 0.00016 175 0.00136 81 0.00038 34 0.00016	9 0.00012 138 0.00192 58 0.00047 7 0.00004 68 0.00053 129 0.00061 140 0.00066	2 0.00003 7 0.00010 2 0.00002 0 0.00000 13 0.00010 0 0.00000 0 0.00000	0 0.00000 0 0.00000 0 0.00000 0 0 0.00000 0 0 0.00000 0 0 0.00000 0 0 0.00000 0 0 0.0000 0 0 0.0000 0 0 0.0000 0 0 0.0000 0 0 0.0000 0 0 0.0000 0 0 0.0000 0 0 0.0000 0 0 0.0000 0 0 0.0000 0 0 0.0000 0 0 0 0.0000 0 0 0 0.0000 0 0 0 0.0000 0 0 0 0.0000 0 0 0 0.0000 0 0 0 0.0000 0 0 0 0.0000 0 0 0 0.0000 0 0 0 0.0000 0 0 0 0.0000 0 0 0 0.0000 0 0 0 0.0000 0 0 0 0.0000 0 0 0 0.0000 0 0 0.0000 0 0 0 0.0000 0 0 0 0.0000 0 0 0 0.0000 0 0 0 0.0000 0 0 0 0.0000 0 0 0 0.0000 0 0 0 0.0000 0 0 0 0.0000 0 0 0 0.0000 0 0 0.0000 0 0 0 0 0.0000 0 0 0 0 0.0000 0 0 0 0 0 0 0 0 0 0.0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 0.00009 56 0.00078 0 0.00000 8 0.00005 41 0.00032 23 0.00011 32 0.00016	0 0.00000 8 0.00011 6 0.00005 4 0.00002 11 0.00009 32 0.00015	0.00405 0.04828 0.00766 0.00318 0.02452 -
Summary Statistics Median 0 0 Average 1 0 SD	stics 0 0.00000 1 0.00001 3 0.00002	0 0.00000 0 0 0.00000	3 0.00002 9 0.00007 13 0.00012	1 0.00001 2 0.00002 2 0.00002	34 0.00022 53 0.00042 56 0.00047	68 0.00053 78 0.00062 58 0.00062	1 0.00001 3 0.00003 5 0.00004	0 0.00000	16 0.00010 21 0.00019 21 0.00026	8 0.00009 14 0.00009 15 0.00007	0.020552 0.019318 0.016101
Minimum Fishe Median Lower 70%	Minimum Fishery Specific Tagging Based On Minimum Median NC NC 19454 Lower 70% NC NC 73735	agging Based NC NC	On Minimum Re 1945468 7373590	m Recoveries Of .68 4504325 .90 NC	35 162366 216870	66240 73826	4281935 NC	OO	351508 386845	409484	
num Fishe °95%	ry Specific T 11578955	agging Based NC	Minimum Fishery Specific Tagging Based On CTC Cohort Criterion Lower 95% 11578955 NC 1364423 623612	Criterion 6236124	125225	160111	2333493	NC	359537	936345	

Appendix Table 27. Estimated recoveries and contribution rates for the George Adams Hatchery fall fingerling stock (continued).

75 78 78 88 88 88 88 88 88 88 88 88 88 88	WA T-AGE 4 PSN N-AGE 3	PSN N-AGE 3		2 304-M 030 7 308-M NSG						
75 3 78 14 79 5 80 0 81 25 85 97 86 36 87 68 88	:	# Rate	' 1	# Rate	PSO N-AGE 4	PSN S-AGE 3 # Rate	PSN S-AGE 4 # Rate	PSO S-AGE 3 # Rate	PSO S-AGE 4 Survival	Survival Rate
y Stati	9 0.00012 20 0.00028 1 0.00001 0 0.00003 126 0.00060 162 0.00067	0 0.00000 23 0.00032 37 0.00030 7 0.00004 20 0.00016 82 0.00013 25 0.00013	0 0.0000 83 0.00116 6 0.00005 3 0.00002 14 0.00007	16 0.00021 117 0.00163 27 0.00022 18 0.00011 114 0.00089 51 0.00024 31 0.00024	10 0.00013 133 0.00185 20 0.00016 12 0.00007 87 0.00068 179 0.00085 46 0.00022	5 0.00006 57 0.00079 6 0.0005 20 0.00012 57 0.00044 101 0.00048 71 0.00020	0 0.00000 14 0.00020 15 0.00012 5 0.0003 23 0.00018 122 0.00058 52 0.00025	32 0.00041 227 0.00316 20 0.00016 19 0.00012 142 0.00110 73 0.00034 21 0.00010 61 0.00031	7 0.00009 12 0.00017 18 0.00015 2 0.00001 59 0.00046 30 0.00014 48 0.00023	0.00405 0.04828 0.00766 0.00318 0.02452
Median 10 0.00011 Mean 23 0.00014 SD 33 0.00015	9 0.00012 46 0.00026 68 0.00031	22 0.00014 25 0.00017 27 0.00015	3 0.00002 16 0.00019 30 0.00043	29 0.00021 47 0.00043 45 0.00055	46 0.00022 70 0.00057 66 0.00064	31 0.00016 36 0.00027 35 0.00028	15 0.00018 33 0.00019 43 0.00019	27 0.00025 67 0.00068 79 0.00106	18 0.00015 (2 25 0.00014 (2 2 0.00014 (2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.020552 0.019318 0.016101
Minimum Fishery Specific Tagging Based On Minimum Recoveries Of Median 330579 300879 242792 1501442 Lower 70% 855387 1126081 263343 1867600	Tagging Based (300879 1126081	On Minimum Re 242792 263343	ecoveries Of 1501442 1867600	35 163744 169245	160295	215851 280140				
Minimum Fishery Specific Tagging Based On CTC Cohort Criterion Lower 95% 394214 356192 265347 112072	Tagging Based (356192	On CTC Cohort 265347	t Criterion 1120728	113652	171804	214213	496383	107901	384982	
NC = Not Computed										
Fisheries: AK T: Alaska Troll WCVI T: West Coast Vancouver Island Troll GS S: Georgia Strait Sport PSO N: Puget Sound Other Net PSN S: Area 5,6,7 Sport	ouver Island T Sport er Net t	roll	NCBC T: GS T: WA T: PSN N: PSO S:	North/Central BC Troll Georgia Strait Troll Washington Area 1,2,3, Area 48,5,6,6A,6C,7,7A Area 8,9,10,11,12,13 S	North/Central BC Troll Georgia Strait Troll Washington Area 1,2,3,4,4B Troll Area 4B,5,6,6A,6C,7,7A Net Area 8,9,10,11,12,13 Sport	B Troll				

Appendix Table 28. Tagging history and use of the Lower Elwha Hatchery and Elwha Channel fall fingerling stock.

Hatchery - Lower Elwha Hatchery, Elwha Channel

Brood Source - Return to hatchery, broodstock collection, Elwha Channel

Agency - Lower Elwha Klallam Tribe (Lower Elwha Hatchery), WDF (Elwha Channel)

Release Type - Fingerling

Base Period Tagging - No

Escapement Data - Fish do not return well to either hatchery located on this system. Estimates of total in-river escapement, calculated from cumulative redd counts, are available. Estimates of the total CWT contribution are not currently available in the PSMFC database.

Current Use of Data:

- __ Fishery or Stock Harvest Rate Index
- Brood Exploitation Rate Analysis
- X Catch Distribution
- X Survival
- __ Chinook Model

Comments - Releases from the Elwha Channel are no longer tagged as part of the exploitation indicator stock program.

Code	Brood	Hatchery	Stock	Release Site	Year	Month	Weight in centigrams	Number Tagged	Comments	•
051363	82	Lower Elwha	Elwha	Elwha	83		007	45.400		
632721	82	Elwha Channel	Elwha	Elwha	83	6 7	907	45,120		
632722	82	Elwha Channel	Elwha	Elwha	83	7	504	25,535		
211616	83	Lower Elwha	Elwha	Elwha	.83 84		503	25,584		
633038	83	Elwha Channel	Elwha	Elwha	84	6	927	40,592		
633039	83	Elwha Channel	Elwha	Elwha	84	_	756	25,316		
211658	84	Lower Elwha	Elwha	Elwha	85	6	756	24,964		
633419	84	Elwha Channel	Elwha	Elwha	85	6	811	41,550		
633420	84	Elwha Channel	Elwha	Elwha	బ 85	,6	732	26,510		
211919	85	Lower Elwha	Elwha	Elwha	- బ 86	6	732	26,317		
211920	85	Lower Elwha	Elwha	Elwha	86	6	604	16,621		
211921	85	Lower Elwha	Elwha	Elwha	86	6	604	16,125		
633543	85	Elwha Channel	Elwha	Elwha	86	6	604	16,107		
533544	85	Elwha Channel	Elwha	Elwha	86	6	732	25,992		1
533547	85	Elwha Channel	Elwha	Elwha		6	732	26,097		
533548	85	Elwha Channel	Elwha	Elwha	86	7	907	26,060		
212208R4	86	Lower Elwha	Elwha	Elwha		7	907	26,607		
213132	88	Lower Elwha	Elwha	Elwha	87 89	6	567	49,097		
				Liwna	89	6	600	191,895		

Appendix Table 29. Estimated recoveries and contribution rates for the Lower Elwha Hatchery fall fingerling stock.

Minimum Tagging Level Based on Hankin Cohort Size Criterion Minimum Cohort Size: 500

Minimum Tagging Level: 413133

	AK T-AGE 4	AK T-AGE 5	VCRC T-ACE Z	, 504 T 000M							
Brood Year	# Rate	# Rate	# Rate	# Rate	# Rate	WCVI I-AGE 4	GS T-AGE 3 # Rate	GS T-AGE 4 # Rate	GS S-AGE 3 # Rate	# Rate Rate Rate Rate Rate	te a
c	0,100										1
83	_	51 0.00113 9 0.00022	15 0.00033	12 0.00027	33 0.00073	58 0.00129	0 0.00000	5 0.00011	2 0.00004	10 0.00022 0.03751	31
2 8		10 0.00024	25 0.00060	18 0.00043	12 0.00029	44 0.00108	5 0.00012	0 0.00000	17 0.00042 26 0.00063	9 0.00022 0.00606	909
88		00000	1 0.00002	5 0.00010	12 0.00025 1 0.00002	10 0.00020 6 0.00012	0 0.00000	0 0.00000	0 0.00000	0 0.00000 0.001	<u> </u>
Summary Statistics	tistics										
Median	16 0.00039	10 0.00023	10 0.00025	10 0.00022	12 0.00029	44 0.00108	0 0.00000	0 0.00000	2 0.00004	867700 0 000000 0 0	å
SO	65 0.00144	23 0.00050	10 0.00024	5 0.00012	24 0.00056 24 0.00059	33 0.00078 24 0.00056	1 0.00002 2 0.00005	1 0.00002	9 0.00022	4 0.00009 0.012894 5 0.00012 0.014504	2 2 2
Minimum Fish	Minimum Fishery Specific Tagging Based On Minimum Recoveries Of	agging Based	On Minimum Re	coveries Of	35	•	**	- -	-		2
Lower 70%	90891	151387 157858	142072 142072	157858 157858	121188 121188	32289	S S S	2 2	789600	NC CA	
Minimum Fish	Minimum Fishery Specific Tagging Based On CTC Cohort Criterion	agging Based (On CTC Cohort	Criterion						2	
Lower 95%	248062	361689	4240408	3407194	324559	194021	9830237	13654599	1026640	2244754	

Appendix Table 29. Estimated recoveries and contribution rates for the Lower Elwha Hatchery fall fingerling stock (continued).

	WA T-AGE 3	WA T-AGE 4	PSN N-AGE 3	7 JUN N-AGE 7	7 304-W 020	DCO N-ACE /	DON C. ACE 7	104 0 100			
Brood Year	ar # Rate	# Rate Rate Rate Rate Rate	# Rate	# Rate	# Rate	# Rate	# Rate	# Rate	# Rate	# Rate	Survival Rate
₩ (3 0.00007		10 0.00022	1 0.00002	16 0.00035	59 0.00131	5 0.00011	0 0.0000	0.03751
~ ເວ	84 9 0.00015	4 0.00010	38 0.00094 5 0.00012	11 0.00027 25 0.00060	5 0.00012 0 0.00000	0 0.00000 17 0.00041	21 0.00052 24 0.00058	23 0.00057 15 0.00036	2 0.00005	0 0.00000	0.00606
ະນ ແລ	5 / 0.00014 5 0 0.00000	7 0.00014 0.00000	5 0.00010 2 0.00004		0 0.00000 0	3 0.00006	7 0.00014 5 0.00010	23 0.00047 6 0.00012	0 0.00000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00121
Summary Statistics Median 6 0,	atistics 6 0.00014 5 0.00011	4 0.00010	5 0.00010	11 0.00027	0 0 0 0 0	2 0.00004		23 0.00047	2 0.00005	0 000000	0.006428
SD	4 0.00009	6 0.00014	15 0.00038	14 0.00032	4 0.00010	7 0.00017	15 0.00034 8 0.00021	25 0.00057 20 0.00045	2 0.00004 2 0.00005		0.012894 0.016596
Minimum Fis Median Lower 70%	Minimum Fishery Specific Tagging Based On Minimum 244265 355180 34197 Lower 70% 244265 355180 34197	Tagging Based 355180 355180	On Minimum Re 341971 341971	n Recoveries Of 71 129156 71 12015 <i>k</i>	35 S	859198	98700	74342	727125	<u> </u>	
Minimum Fis Lower 95%	Minimum Fishery Specific Tagging Based On CIC Cohort Criterion Lower 95% 14,00644 1332568 46,774	Tagging Based	On CTC Cohort	t Criterion	5 % X	794,764	76700	4542	(7L/2)	S I	
					51515	1014521	30/5/05	CC0477	264/866	2571524	

NC = Not Computed

Fisheries:

West Coast Vancouver Island Troll Georgia Strait Sport Puget Sound Other Net Area 5,6,7 Sport Alaska Troll AK T:
WCVI T:
GS S:
PSO N:
PSN S:

Washington Area 1,2,3,4,4B Troll Area 48,5,6,6A,6C,7,7A Net Area 8,9,10,11,12,13 Sport NCBC T: GS T: WA T: PSN N: PSO S:

North/Central BC Troll Georgia Strait Troll

Appendix Table 30. Tagging history and use of the Hoko River fall fingerling stock.

Hatchery - Hoko River

Brood Source - Broodstock collection program

Agency - Makah Tribe

Release Type - Fingerling

Base Period Tagging - No

Escapement Data - There is no return to the hatchery rack; all hatchery fish stray to the river as part of a supplementation program. Total escapement estimates are made, however, escapement estimates for tagged fish are currently not available.

Current Use of Data:

- __ Fishery or Stock Harvest Rate Index
- X Brood Exploitation Rate Analysis
- X Catch Distribution
- X Survival
- _ Chinook Model

Comments - Size at release and time of release should be evaluated for similarity to natural stock.

Code I	3rood	Hatchery	Stock	Release Site	Year	Month	Weight in centigrams	Number Tagged	Comments	
211935R4	85	Makah NFH	Hoko	Hoko	86	5	966	123,563	Unable	to collec
212216R4 211907R4		Makah NFH Hoko Ponds	Hoko Hoko	Hoko Hoko	87 88	5 6	649 762		sufficient b	

Appendix Table 31. Estimated recoveries and contribution rates for the Hoko Ponds fall fingerling stock.

Minimum Tagging Level Based on Hankin Cohort Size Criterion Minimum Cohort Size: 500 Minimum Tagging Level: 205254

rvival Rate	00244	0.002436 0.002436 0.000000		
Surv	0 0.00000 0.00244		10	
GE 4 Rat	0000	2 0.00001 2 0.00001 3 0.00002	2528435 NC	4105730
-S S:	0.4	3 0 0.	23 –	. 4
S S-AGE 3 (0 0.00000 6 0.00004 0 0.00000	0 0.00000 2 0.00001 3 0.00002	N N	4001274
AK T-AGE 4 AK T-AGE 5 NCBC T-AGE 3 NCBC T-AGE 4 NCVI T-AGE 3 MCVI T-AGE 4 GS T-AGE 3 GS S-AGE 3 GS S-AGE 4 Survival Brood Year # Rate Rate	000000000000000000000000000000000000000	0 0.00000 0 0.00000	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	X
GS T-AGE 3 # Rate	0 0.00000 0 0.00000 2 0.00001	0 0.00000 0 0.00000 0 0.00000	Z Z	15894386
WCVI T-AGE 4 # Rate	12 0.00010 64 0.00044	38 0.00027 38 0.00027 37 0.00024	129611 360392	149886
# Rate	16 0.00013 24 0.00017 39 0.00020	16 0.00013 13 0.00010 12 0.00009	35 270294 270294	213084
NCBC T-AGE 4	6 0.00005 43 0.00030	25 0.00017 25 0.00017 26 0.00018	m Recoveries Of 70 202211 70 720784	t Criterion 3284585
NCBC T-AGE 3 # Rate	13 0.00011 21 0.00015 7 0.00004	13 0.00011 11 0.00008 11 0.00008	On Minimum Ro 332670 332670	On CTC Cohort 1832287
AK T-AGE 5 # Rate	10 0.00008	10 0.00008 10 0.00008 0 0.00000	agging Based 432471 432471	agging Based 216235
AK T-AGE 4 # Rate	85 10 0.00008 10 0.00008 13 0.00011 86 84 0.00058 - 21 0.00015 87 - 7 0.00004	stics 47 0.00033 47 0.00035 52 0.00035	ry Specific T 105689 432471	ry Specific T 134642
Brood Year	85 86 87	Summary Statistics Median 47 0. Average 47 0. SD 52 0.	Minimum Fishery Specific Tagging Based On Minimum Median 105689 432471 33265 Lower 70% 432471 33265	Minimum Fishery Specific Tagging Based On CTC Cohort Criterion Lower 95% 134642 216235 1832287 3284585

Appendix Table 31. Estimated recoveries and contribution rates for the Hoko Ponds fall fingerling stock (continued).

Brood Year	Year	WA T-AGE 3 # Rate	WA T-AGE 4 # Rate	PSN N-AGE 3 # Rate	PSN N-AGE 4 # Rate	PSO N-AGE 3	PSO N-AGE 4 # Rate	PSN S-AGE 3 # Rate	PSN S-AGE 4 # Rate	PSO S-AGE 3	WA T-AGE 3 WA T-AGE 4 PSN N-AGE 3 PSN N-AGE 4 PSO N-AGE 4 PSN S-AGE 4 PSO S-AGE 3 PSO S-AGE 4 SUrvival # Rate Rate
	85 86 87	0 0.00000 1 0.00001 0 0.00000	1 0.00001	1 0.00001 2 0.00001 6 0.00003	0 0.00000	0 0.00000 0 0.00000	0 0.00000	12 0.00010 37 0.00026 14 0.00007	17 0.00014 32 0.00022	0 0.00000	0 0.00000 0.00244
Summary Statistics	Stati	stics									
Median Mean SD		0 0.00000 0 0.00000 1 0.00000	6 0.00004 6 0.00004 7 0.00005	1 0.00001 1 0.00001 1 0.00001	0 0.00000 0 0 0.00000	0 0.00000	0 0.00000	12 0.00010 16 0.00012	25 0.00018 25 0.00018	0 0.00000	0 0.00000 0.002436 0 0.00000 0.002436
Minimum	Fisher	V. Specific							90000	0 000000	0 0.00000 0.000000
Median Lower 70%	. »	NC NC	Median NC 831087 4324705 NC 4324705 NC 4324705 NC 4324705 NC 4324705 NC	Un Minimum Re 4324705 4324705	scoveries Of NC NC	N 5	NC NC	360392	194952 254394	O 2	O C
Minimum F	Fisher	Y Specific	Minimum Fishery Specific Tagging Based On CTC Cohort Criterion	On CTC Cohort	Criterion					!	2
		24010042	110984	21/6/62	ž	S	NC	261000	170085	15894386	NC
	Ċ	-									

NC = Not Computed

Fisheries:

West Coast Vancouver Island Troll Georgia Strait Sport Puget Sound Other Net Area 5,6,7 Sport Alaska Troll AK T:
WCVI T:
GS S:
PSO N:
PSN S:

Washington Area 1,2,3,4,4B Troll Area 48,5,6,6A,6C,7,7A Net Area 8,9,10,11,12,13 Sport NCBC T: GS T: WA T: PSN N: PSO S:

North/Central BC Troll Georgia Strait Troll

Appendix Table 32. Tagging history and use of the Makah National Fish Hatchery fall fingerling stock.

Hatchery - Makah National Fish Hatchery

Brood Source - Return to hatchery

Agency - USFWS

Release Type - Fingerling

Base Period Tagging - No

Escapement Data - Escapement is enumerated at the hatchery rack.

Current Use of Data:

- Fishery or Stock Harvest Rate Index
- X Brood Exploitation Rate Analysis
- X Catch Distribution
- X Survival
- __ Chinook Model

Comments - Survival rates for this stock have been poor. Data for this stock are of limited value to the CTC.

lode Broo	od Hatchery	Stock	Release Site	Year	Month	Weight in centigrams	Number Tagged	Comments	
	Makah NFH	Sooes	Sooes	86	5	570	25 027		
	Makah NFH	Sooes	Sooes	86	5	570	35,827 36,173		
	Makah NFH	Sooes	Sooes	86	5	570	35,914		
	Makah NFH	Sooes	Sooes	86	5	570 570	30,076		
	Makah NFH	Sooes	Sooes	87	5	550	127,387		
51950R3 87	Makah NFH	Sooes	Sooes	88	5	610	203,819		

Appendix Table 33. Estimated recoveries and contribution rates for the Makah National Fish Hatchery fall fingerling stock.

Minimum Tagging Level Based on Hankin Cohort Size Criterion Minimum Cohort Size: 500 Minimum Tagging Level: 259258

	AK T-AGE 4	AK T-AGF 5	NCRC TAGE 3	, 104 T 000H	# # # # # # # # # # # # # # # # # # #						
	# Rate	# Rate	# Rate	# Rate	WCVI T-AGE 3 W	/CVI T-AGE 4 # Rate	GS T-AGE 3 # Rate	GS T-AGE 4 # Rate	GS S-AGE 3 # Rate	Brood Year # Rate Rate	vival Rate
	85 14 0.00010 86 0 0.00000 87	6 0.00004	3 0.00002 1 0.00001 14 0.00007	0 0.00000 0	1 0.00001 0 0.00000 21 0.00010	3 0.00002	0 0.00000	0 0.00000	0 0.00000	0 0.00000 0.00193	00193
a T	Summary Statistics Median 7 0 00005	0000	•	,					70000		
	7 0.00005	6 0.00004 0 0.00000	1 0.00001 2 0.00001	3 0.00002 3 0.00002 4 0.00003	0 0.00000 0 0.00000 1 0.00000	2 0.00001 2 0.00001 2 0.00002	0 0.00000	0 0.00000	0 0.00000		0.001929
	ery Specific T	agging Based	On Minimum Re	coveries Of	35				00000	0 0.00000 0.00	0.00000
	LOWER 70% NC 804942 4458545 1486182 NC	804942	4458545 4458545	1486182 NC	N N	3219767 · NC	N N O O	N.	O C	SN C	
جَہ ا	Minimum Fishery Specific Tagging Based On CTC Cohort Criterion Lower 95% 1188317 402471 19589240 NC	agging Based 402471	On CTC Cohort 19589240	Criterion NC	2436157	5545477	. NC	¥	14691929	2. <u> </u>	
)	

Appendix Table 33. Estimated recoveries and contribution rates for the Makah National Fish Hatchery fall fingerling stock (continued).

Brood Year	# Rate Rate Rate Rate Rate Rate Rate	# Rate	# Rate	# Rate	# Rate	# Rate	# Rate	# Rate	# Rate	# Rate	Rate
85 86 87	0 0.00000 0 0.00000 2 0.00001	0 0.00000 0	0 0.00000 0 0.00000 0 0.00000	0 0.00000	0 0.00000 0 0.00000 0 0.00000	0 0.00000	0 0.00000 0 0.00000 0 0.00000	0 0.00000	0 0.00000	0 0.00000	0.00193
Summary Statistics Median 0 0. Mean 0 0. SD 0 0.	tistics 0 0.00000 0 0.00000 0 0.00000	0 0.00000	000000000000000000000000000000000000000	0 0.00000 0 0.00000	0 0.00000 0 0.00000	0 0.00000 0 0.00000	0 0.00000 0 0.00000 0 0.00000	0 0.00000 0 0.00000 0 0.00000	0 0.00000 0 0.00000	0 0.00000 0 0.00000	0.001929 0.001929 0.000000
Minimum Fisl Median Lower 70%	Minimum Fishery Specific Tagging Based On Minimum Recoveries Of Median NC NC NC NC LOWER 70% NC NC NC	fagging Based NC NC	On Minimum Re NC NC	ecoveries Of NC NC	35 NC NC	N N C) C)	N N O O	N N	N O	N N O	
Minimum Fisl Lower 95%	Minimum Fishery Specific Tagging Based On CTC Lower 95% 29383858 NC NC	fagging Based NC		Cohort Criterion NC	Ŋ	N U	Š	S	N.	N	

Washington Area 1,2,3,4,4B Troll Area 48,5,6,6A,6C,7,7A Net Area 8,9,10,11,12,13 Sport

North/Central BC Troll Georgia Strait Troll

NCBC T:

GS T: WA T: PSN N: PSO S:

West Coast Vancouver Island Troll Georgia Strait Sport Puget Sound Other Net Area 5,6,7 Sport

AK T:
WCVI T:
GS S:
PSO N:
PSN S:

Alaska Troll

Fisheries:

Appendix Table 34. Tagging history and use of the Queets River fall fingerling stock.

Release Site - Salmon River Ponds Brood Source - Broodstock collection program Agency - Quinault Release Type - Fingerling

Base Period Tagging - Yes

Escapement Data - Escapement estimates are currently not available in the PSMFC database.

Current Use of Data:

- __ Fishery or Stock Harvest Rate Index
- __ Brood Exploitation Rate Analysis
- X Catch Distribution
- X Survival
- _ Chinook Model

Comments - Broodstock is collected in the Queets and Clearwater rivers, eggs are incubated at the Lake Quinault Hatchery, eyed eggs are transferred to the Quinault National Fish Hatchery for incubation, rearing, and tagging, and fingerlings are transferred to the Salmon River Ponds for imprinting and release.

Code	Brood Hatchery	7 Stock	Release Site	Year	Month	Weight in centigrams	Number Tagged		
050361 050520 050521 050522 050525 050661 050830 050833 050962 051016 051425 211621 211908R4 212101R4 212835R4	77 Quinault N 78 Quinault N 78 Quinault N 78 Quinault N 78 Quinault N 79 Quinault N 80 Quinault N 80 Quinault N 81 Quinault N 82 Quinault N 82 Quinault N 83 Quinault N 83 Quinault N 84 Quinault N 85 Quinault N 86 Salmon R Po 87 Quinault N 88 Salmon R Po	FH Quinault FH Green X Samish FH Queets FH Quinault X Queets FH Queets	Salmon	78 79 79 79 79 80 81 81 82 82 83 84 86 87 88	7 6 6 6 6 8 6 6 8 6 7 7 7 8 8	1,243 1,107 887 887 657 1,680 1,138 825 503 503 873 1,032 477 1,746 1,822 1,261	32,934 27,201 26,200 44,633 16,829 33,073 47,617 45,789 35,701 58,470 98,684 117,674 199,013 101,914 132,135	Combine w	rith 050521

Appendix Table 35. Estimated recoveries and contribution rates for the Queets River fall fingerling stock.

Minimum Tagging Level Based on Hankin Cohort Size Criterion Minimum Cohort Size: 500 Minimum Tagging Level: 118059

viva(Rate	0.00380 0.00563 0.02037 0.00621 0.00424 0.00468	0.005634 0.009646 0.008151		
4 Sur				
S-AGE	0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000	0 0.00000 0 0.00000 0 0.00000	N N	N.
Rate GS	000			
GS S-AGE 3 GS S-AGE 4 Survival	0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000	0 0.00000	S S	N
GS T-AGE 4 # Rate	0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000	000000000000000000000000000000000000000	N N	NC
Rate GS	000000000000000000000000000000000000000			
NCBC T-AGE 4 WCVI T-AGE 3 WCVI T-AGE 4 GS T-AGE 3 R Rate # Rate	0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000	0 0.00000 0 0.00000	NC NC	N C
-AGE 4 Rate	7 0.00018 21 0.00021 0 0.00000 5 0.00006 4 0.00005 0 0.00005 5 0.00005 23 0.00022	5 0.00006 12 0.00011 14 0.00009	564830 690788	215104
#CVI T	222 230 230 230 230 230 230 230 230 230	5 0.0006 12 0.00011 14 0.00009	. N. 40	2
-AGE 3	0 0.00000 5 0.00005 6 0.00036 3 0.00004 6 0.00007 0 0.00000 21 0.00021 4 0.00003 26 0.00013	5 0.00004 7 0.00009 9 0.00012	35 793817 941383	459575
#CVI 1	20 00 00 00 00 00 00 00 00 00 00 00 00 0	5 0. 9 0.	,-0	4
-AGE 4 Rate	7 0.00018 31 0.00032 3 0.00018 8 0.00016 21 0.00026 9 0.00015 63 0.00064 26 0.00022 43 0.00022	21 0.00022 23 0.00025 20 0.00016	ies Of 161987 196338	rion 28881
MCBC T	21 0 31 0 34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	21 0.00022 23 0.00025 20 0.00016	coveri	Crite
AGE 3	3 0.00008 11 0.00011 15 0.00089 2 0.00005 4 0.00005 3 0.00022 33 0.00028 33 0.0007 10 0.00010	00009 00019 0026	inimum Re 372146 461172	Cohort 8650
# # T-	11 0. 15 0. 15 0. 2 0. 2 2 0. 3 3 0. 10 0.	8 0.00009 13 0.00019 13 0.00026	on Mini 37 46	on cTC 170
GE 5	0 0.00000 10 0.00010 0 0.00000 31 0.00038 25 0.00031 14 0.00024 113 0.00115 59 0.00050		g Based (128152 146175	Based (5955
AK T-A	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20 0.00027 32 0.00033 38 0.00037	129 ing 12 14	igging 13
AK T-AGE 4 AK T-AGE 5 NCBC T-AGE 3 # Rate # Rate # Rate	7 0.00018 8 0.00029 5 0.00208 0 0.00025 5 0.00018 1 0.00019 2 0.00134 4 0.00029 6 0.00058	0.01	ecific Te 122544 141208	ific Ta 5404
AK T-A	7 0.00018 28 0.00029 35 0.00208 20 0.00025 15 0.00018 11 0.00019 132 0.00134 34 0.00029	stics 28 0.00029 44 0.00060 46 0.00067	7 Spec 12 14	y Spec
Year -	77 78 78 79 80 81 82 83 85 86 88	Stati	Fisher %	Fisher %
Brood Year		Summary Statistics Median 28 0.00028 Average 44 0.00066 SD 46 0.00067	Minimum Fishery Specific Tagging Based On Minimum Recoveries Of Hedian 122544 128152 372146 161987 Lower 70% 141208 146175 461172 196338	Minimum Fishery Specific Tagging Based On CTC Cohort Criterion Lower 95% 66404 135955 1708650 192888

Appendix Table 35. Estimated recoveries and contribution rates for the Queets River fall fingerling stock (continued).

Brood Year	WA T-AGE 3	WA T-AGE 4	PSN N-AGE 3 # Rate	PSN N-AGE 4 # Rate	PSO N-AGE 3 # Rate	PSO N-AGE 4 # Rate	PSN S-AGE 3	PSN S-AGE 4	PSO S-AGE 3 # Rate	PSO S-AGE 4 Survival # Rate Rate	Survival
7,7 80,0 81,0 83,0 83,0 84,0 85,0 86,0 87,0 88,0 88,0 88,0 88,0 88,0 88,0 88	0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000	0 0.00000 1 0.00000 1 0.00000 0 0.00000 0 0.00000 3 0.00000 0 0.00000	0 0.00000 0 0.00000 2 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000	0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000	0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000	0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000	0 0.00000 4 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 6 0.00000 3 0.00002 0 0.00000	0 0.00000 0 0.00000 0 0.00000 2 0.00002 0 0.00000 3 0.00003 4 0.00003	0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000	0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000	0.00380 0.00563 0.02037 0.00621 0.00424 0.00468
Summary Statistics Median 0 0 Mean 0 0. SD 0 0.	istics 0 0.00000 0 0.00000 0 0.00000 ery Specific	Surmary Statistics Median 0 0.00000 0 0.00000 0 0.00000 Mean 0 0.00000 0 0.00001 0 0.00000 Sp 0 0.00000 1 0.00002 1 0.00001 0 0.00000 Minimum Fishery Specific Tagging Based On Minimum Fishery	0 0.00000 0 0.00000 1 0.00001	0 0.00000 0 0.00000 0 0.00000	0.00000 0.00000 0.00000 0.00000	0 0.00000 0 0.00000	0 0.00000 1 0.00001 2 0.00002	0 0.00000 1 0.00001 2 0.00002	0 0.00000 0	0 00000000	0.005634 0.009646 0.008151
Median Lower 70%	O O	S S	NC NC	NC NC	N N N	, OX	ON O	NC.	S	NC	
Minimum Fishe Lower 95%	ery Specific 1 NC	Minimum Fishery Specific Tagging Based On CTC Cohort Criterion Lower 95% NC 6994691 9796287 NC	Jn CTC Cohort (9796287	Criterion NC	NC	2	2877530	NC 3069886	N N	N ON	
NC = Not Computed	xted										
Fisheries: AK T: ALWEVI T: WEGS S: GERPSON: PUGPON: PUGPON: PUGPON: PUGPON: PUGPON: ARE	Alaska Troll West Coast Vancouver Georgia Strait Sport Puget Sound Other Net Area 5,6,7 Sport	Alaska Troll West Coast Vancouver Island Troll Georgia Strait Sport Puget Sound Other Net Area 5,6,7 Sport	رها ا	NCBC T: GS T: WA T: PSN N:	North/Central BC Trol Georgia Strait Troll Washington Area 1,2,3 Area 48,5,6,6A,6C,7,7 Area 8,9,10,11,12,13	h/Central BC Troll gia Strait Troll ington Area 1,2,3,4,4B Troll 48,5,6,6A,6C,7,7A Net 8,9,10,11,12,13 Sport	3 Troll				

Appendix Table 36. Tagging history and use of the Quinault National Fish Hatchery fall fingerling stock.

Hatchery - Quinault National Fish Hatchery

Brood Source - Return to hatchery and broodstock collection

Agency - USFWS

Release Type - Fingerling

Base Period Tagging - Yes

Escapement Data - Escapement counts are made at the hatchery. It is unclear at this time if the limited return to the hatchery is due to high in-river harvest rates or straying, or both.

Current Use of Data:

- Fishery or Stock Harvest Rate Index
- Brood Exploitation Rate Analysis
- X Catch Distribution
- X Survival
- X Chinook Model

Comments -

Code	Brood Hatchery	Stock	Release Site	Year	Month	Weight in centigrams	Number Tagged	Comments	-
140402	74 Quinault NFH	Cook	Cook	75	8	2.405	25.220		
140502	74 Quinault NFH	Cook	Cook	75	6	2,495	25,228		,
141402	74 Quinault NFH	Quinault X Willapa	Cook	75	. 6	873 757	14,634		
140310	75 Quinault NFH	Cook	Cook	76	6		20,294		
140410	75 Quinault NFH	Cook	Cook	76	8	1,009 1,974	13,744		
140510	75 Quinault NFH	Quinault X Willapa	Cook	76	6	1,009	15,203		
140610	75 Quinault NFH	Quinault X Willapa	Cook	76	8	1,974	18,475		
140710	75 Quinault NFH	Quinault X Nemah	Cook	76	6		17,377		
140810	75 Quinault NFH	Quinault X Nemah	Cook	76	7	1,948 1,974	14,445		
053501	76 Quinault NFH	Deschutes X Nemah	Cook	77	7	950	14,601		
053601	76 Quinault NFH	Cook	Cook	77	7		184,453		
050337	77 Quinault NFH	Cook	Cook	78	7	1,297	8,806		
050338	78 Quinault NFH	Cook	Cook	79	6	3,492	93,363		
050328	79 Quinault NFH	Cook	Cook	80	7	779	95,123		
050724	79 Quinault NFH	Cook	Cook	80	6	1,102	44,896		
050835	80 Quinault NFH	Cook	Cook	81	8	714	39,165		
050836	80 Quinault NFH	Cook	Cook "	81	7	962	49,111		
051117	82 Quinault NFH	Cook	Cook	83	6	954	51,275		
051463	83 Quinault NFH	Cook	Cook	84	8	904	46,873		
211654	84 Quinault NFH	Quinault	Cook	85	8	1,970	46,384		
211904R4		Quinault	Cook	86	7	1,182	51,943		
212102R4	an damagic tal II	Quinault	Cook	87	7	1,164	201,209		
212550R4	a. Samment 141 II	Quinault	Cook	88	7	1,109	200,006		
213152R4	88 Quinault NFH	Quinault	Cook	89	. 7	837	193,395		
213501R4	88 Quinault NFH	Quinault	Cook	89	7	800	38,928		
	<u> </u>		COOK.	07	/	800	122,190		

Appendix Table 37. Estimated recoveries and contribution rates for the Quinault National Fish Hatchery fall fingerling stock.

Minimum Tagging Level Based on Hankin Cohort Size Criterion Minimum Cohort Size: 500 Minimum Tagging Level: 85360

Survival te Rate	0.01896 0.00601 0.00586 0.00477 0.01662 0.01683 0.07499	0.016726 0.024075 0.025855		
GS S-AGE 4 S # Rate	0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000	0 0.00000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		N.
1	0 0.00000 3 0.00002 0 0.00000 0 0.00000 2 0.00000 4 0.00000 0 0.00000 0 0.00000 0 0.00000	0 0.00000 1 0.00001 1 0.00002	25.55	7339704
GS T-AGE 4 # Rate	0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000	0 0.00000 0 0.00000	N N	Ä
GS T-AGE 3 # Rate	0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000	000000000000000000000000000000000000000	NC	N
WCVI T-AGE 4 # Rate	29 0.00031 24 0.00012 0 0.00000 7 0.00007 7 0.00008 58 0.00058 77 0.00166 81 0.00166 53 0.00026 12 0.00006	24 0.00015 32 0.00044 30 0.00060	234365 281836	214769
WCVI T-AGE 3 # Rate	70 0.00075 24 0.00012 14 0.00015 8 0.00008 5 0.000018 5 0.00011 57 0.0012 19 0.00037 44 0.00022 6 0.00003	16 0.00014 23 0.00027 23 0.00036	35 255346 281836	212288
NCBC T-AGE 4 # Rate	51 0.00054 37 0.00019 25 0.00027 19 0.00020 12 0.00014 56 0.00015 70 0.00151 83 0.00160 151 0.00075 15 0.00077	37 0.00027 48 0.00055 42 0.00054	coveries Of 130708 175227	Criterion 572274
NCBC T-AGE 3 # Rate	50 0.00053 26 0.00013 23 0.00025 3 0.00003 1 0.00001 34 0.00031 42 0.00091 37 0.00071 79 0.00059 11 0.00005	25 0.00021 26 0.00029 24 0.00029	on Minimum Re 167856 205069	On CIC Cohort 799493
AK T-AGE 4 AK T-AGE 5 NCBC T-AGE 3 NCBC T-AGE 4 WCVI T-AGE 4 GS T-AGE 3 GS T-AGE 4 GS S-AGE 3	34 0.00036 0 0.00000 13 0.00014 6 0.00005 20 0.00020 28 0.00060 51 0.00110 50 0.00096 147 0.00073	24 0.00028 35 0.00042 43 0.00040	agging Based 124659 175676	agging Based 248740
' 1	59 0.00063 29 0.00015 11 0.00015 18 0.00019 17 0.00020 70 0.00070 27 0.00058 103 0.0022 48 0.00092 157 0.00078	istics 48 0.00058 56 0.00062 44 0.00060	ry Specific T 60761 97225	ry Specific T 104919
Brood Year	75 77 73 73 88 88 88 88 88 88 88	Summary Statistics Median 48 0 Average 56 0 SD 44 0.	Minimum Fishery Specific Tagging Based On Minimum Recoveries Of Median 60761 124659 167856 130708 Lower 70% 97225 175676 205069 175227	Minimum Fishery Specific Tagging Based On CTC Cohort Criterion Lower 95% 104919 248740 799493 572274

Appendix Table 37. Estimated recoveries and contribution rates for the Quinault National Fish Hatchery fall fingerling stock (continued).

Brood Year	WA T-AGE 3 # Rate	WA T-AGE 4 # Rate	PSN N-AGE 3 # Rate	PSN N-AGE 4 # Rate	PSO N-AGE 3 # Rate	PSO N-AGE 4 # Rate	PSN S-AGE 3 # Rate	PSN S-AGE 4 # Rate	PSO S-AGE 3 # Rate	PSO S-AGE 4 Survival	Survival
25 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3 0.00003 0 0.00000 6 0.00000 0 0.00000 0 0.00000 4 0.00000 4 0.00000 6 0.00000 0 0.00000	0 0.00000 4 0.00002 0 0.00000 0 0.00000 5 0.00005 2 0.00004 3 0.00004 2 0.00004	2 0.00002 5 0.00003 0 0.00000 3 0.00000 2 0.00000 1 0.00000 2 0.00000 2 0.00000 0 0.00000	0 0.00000 16 0.00000 16 0.00017 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000	0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000	0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000	7 0.00007 13 0.00007 6 0.00006 0 0.00000 0 0.00000 12 0.00026 0 0.00000 5 0.00000 0 0.00000	8 0.00009 7 0.00004 0 0.00000 0 0.00000 13 0.00013 0 0.00000 10 0.00022 5 0.00002 5 0.00008	0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000	0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000	0.01896 0.00601 0.00586 0.00477 0.00447 0.01683 0.01683
Summary Statistics Median 0 0 Mean 1 0	istics 0 0.00000 1 0.00002 2 0.00003	0 0 00000 1 0.00002 2 0.00002	1 0.00000 1 0.00001 2 0.00001	0 0.00000 1 0.00002 5 0.00005	0 0.00000 0 0 0.00000	000000000000000000000000000000000000000	0 0.00000 4 0.00004 5 0.00007	5 0.00004 6 0.00006 6 0.00007	0 0.00000 0 0.00000	0 0.00000 0	0.016726 0.024075 0.025855
Minimum fishe Median Lower 70%	ery Specific NC NC	Minimum Fishery Specific Tagging Based On Minimum Recoveries Of Median NC 7042315 NC Lower 70% NC NC NC NC	On Minimum Red 7042315 NC	coveries Of NC NC	35 NC NC	NC	N N	966295 1400042	N N	N	
Minimum Fishe Lower 95%	ery Specific 2515585	Minimum Fishery Specific Tagging Based On CTC Cohort Criterion Lower 95% 2515585 4470380 2373623 114444	On CTC Cohort 2373623	Criterion 1144449	NC	NC	1196244	1276389	NC	NC C	
NC = Not Computed Fisheries: AK T: Alaska MCVI T: West Co GS S: Georgic GS S: Peorgic PSO N: Puget S	omputed Alaska Troll West Coast Vancouver Georgia Strait Sport Puget Sound Other Net Area 5,6,7 Sport	omputed Alaska Troll West Coast Vancouver Island Troll Georgia Strait Sport Puget Sound Other Net Area 5,6,7 Sport	froll	NCBC T: GS T: WA T: PSN N: PSO S:	North/Central BC Troll Georgia Strait Troll Washington Area 1,2,3, Area 48,5,6,64,6C,7,7A	North/Central BC Troll Georgia Strait Troll Washington Area 1,2,3,4,48 Troll Area 48,5,6,64,6C,7,7A Net Area 8,9,10,11,12,13 Sport	is Troll				

Appendix Table 38. Tagging history and use of the Humptulips Hatchery fall fingerling stock.

Hatchery - Humptulips

Brood Source - Return to hatchery and broodstock collection

Agency - WDF

Release Type - Fingerling

Base Period Tagging - No

Escapement Data - Escapement counts are made at the hatchery rack; however, significant straying is believed to occur. Escapements of the total hatchery escapement would be needed for continued PSC tagging to be useful.

Current Use of Data:

- Fishery or Stock Harvest Rate Index
- Brood Exploitation Rate Analysis
- X Catch Distribution
- X Survival
- Chinook Model

Comments - Since fish are reared mainly on Humptulips River water and the hatchery is located on Stevens Creek, there is a high stray rate for which there is currently insufficient accounting.

Code	Brood	d Hatchery	Stock	Release Site	Year	Month	Weight in centigrams	Number Tagged	Comments
32257		Humptulips	Humptulips	Stevens	. 83				
33229	84	Humptulips	Humptulips	Stevens	-	6	454	112,592	
3230	84	Humptulips	Humptulips		85	6	295	59,334	
3231		Humptulips	Humptulips	Stevens	85	6	295	58,133	
2842		Humptulips	• •	Stevens	85	6	295	58,430	
34414R4		Humptulips	Humptulips	Stevens	86	7	351	133.358	
35235R4		Humptulips	Humptulips	Stevens	87	7	493	201,468	
35259R4			Humptulips	Stevens	88	6	605	209,254	*
~~>1(4	00	Humptulips	Humptulips	Stevens	89	7	698	206,735	

Appendix Table 39. Estimated recoveries and contribution rates for the Humptulips Hatchery fall fingerling stock.

Minimum Tagging Level Based on Hankin Cohort Size Criterion Minimum Cohort Size: 500 Minimum Tagging Level: 57315

		AK T-AGE 5	VCBC T-AGE 3	NCBC T-AGE 4 1	CVI T-AGE 3 1	VCVI T-AGE 4	GS T-AGE 3	GS T-AGE 4	GS S-AGE 3	GS S-AGE 4 S	urvival
Brood Year		# Rate Rate	# Rate	# Rate	# Rate	# Rate	# Rate	# Rate	# Rate	# Rate	Rate
82	33 0 00029	25 0 00022	1 0 0001	70000 0 7	00000	0	00000	0000	0000	0000	
8	9 0.00005	82 0.00047	7 0.00004	32 0.00018	2 0.00001	7 0.00004	0 0.00000	0 0 00000	00000	0,0000	0.008/2
85	13 0.00010		5 0.00004	16 0.00012	6 0.00004	4 0.00003	0 0 00000	0 000000	0 0 0 0 0 0	0 000000	3
8 :	58 0.00029	•	0 0.00000	6 0.00003	7 0.00003	25 0.00012	0 0,00000	0 0.00000	5 0.00002	0 000000	
87	•		0 0.00000	•	19 0.00009	•	0 0 00000		0 0.00000	•	•
88	•	•	•	•	•		•	•	1	•	•
Summary Statistics	istics										
Median Average	23 0.00019 28 0.00018	82 0.00047 65 0.00045	3 0,00002	11 0.00008 15 0.00009	3 0.00002	6 0.00003 9 0.00005	0 0 00000	000000	0 0.00000	0 0.00000	0.013538
QS1	22 0.00013		3 0.00002	13 0.00007	3 0.00002	11 0.00005	0 0,00000	0 0.00000	2 0.00001		0.006808
Minimum Fish	ery Specific	Tagging Based	On Minimum Re	scoveries Of	35	:					
Median	Median 181644 75078 3940720 450148	75078	3940720	450148	3078198	1003002	Š	Š	NC	, UN	
Lower 70%	359041	75078	3940720	985180	3078198	1166883	NC	N	NC	NC O	
Minimum Fish	Minimum Fishery Specific Tagging Based On CTC	Tagging Based		Cohort Criterion							
LOWEr 95%	140307	73454		28850284	1703669	755454	N C	N. C	7341998	NC	

Appendix Table 39. Estimated recoveries and contribution rates for the Humptulips Hatchery fall fingerling stock (continued).

Brood Year		WA T-AGE 3 WA T-AGE 4 PSN N-AGE 3 # Rate # Rate # Rate	PSN N-AGE 3 # Rate	PSN N-AGE 4 # Rate	PSO N-AGE 3 # Rate	PSO N-AGE 4 # Rate	PSN S-AGE 3 # Rate	PSN S-AGE 4 # Rate	PSO S-AGE 3 # Rate	PSO S-AGE 4 Survival	vival
85 87 87 88 88 88	0 0.00000 0 0.00000 0 0.00000 2 0.00001 0 0.00000	0 0.00000 0 0.00000 0 0.00000 0 0.00000 0	0 0.00000 0 0.00000 0 0.00000 0 0.00000	0 0.00000 0 0.00000 0 0.00000 0 0.00000	0 0.00000 0 0.00000 0 0.00000 0 0.00000	0 0.00000 0 0.00000 0 0.00000 0 0.00000	0 0.00000 0 0.00000 0 0.00000 4 0.00002 0 0.00000	0 0.00000 0 0.00000 0 0.00000 0 0.00000	0 0.00000 0 0.00000 0 0.00000 0 0.00000 0 0.00000	0 0.00000 0.00872 0 0.00000 0.01835 0 0.00000	0.00872
Summary Statistics Median 0 0 Mean 0 0. SD 1 0.	istics 0 0.00000 0 0.00000 1 0.00000	000000000000000000000000000000000000000	0 0.00000 0 0.00000	0 0.00000 0 0.00000 0 0.00000	0 0.00000 0 0.00000 0 0.00000	0 0.00000 0 0.00000 0 0.00000	0 0.00000 1 0.00000 2 0.00001	0 0.00000 0 0.00000 0 0.00000	0 0.00000 0 0.00000 0 0.00000 0	0 0.00000 0.013538 0 0.00000 0.013538 0 0.00000 0.013538	3538 3538 8808
Minimum Fishe Median Lower 70%	ery Specific NC NC	Minimum Fishery Specific Tagging Based On Minimu Median Lower 70% NC NC NC NC	On Minimum Re NC NC	m Recoveries Of NC NC	8 8 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3	N N C) C)	N N	N N	O O	N 0	8
Minimum Fishe Lower 95%	ry Specific 18354996	Minimum Fishery Specific Tagging Based On CTC Cohort Criterion Lower 95% 18354996 NC NC NC	On CTC Cohort NC	Criterion NC	NC NC	9	9177498	Ů,	Ä	NG S	
NC = Not Computed	uted										and different to the second
Fisheries: AK T: Ala WCVI T: Wes GS S: Gec PSO N: Pug PSN S: Are	Alaska Troll West Coast Vancouver Georgia Strait Sport Puget Sound Other Net Area 5,6,7 Sport	Alaska Troll West Coast Vancouver Island Troll Georgia Strait Sport Puget Sound Other Net Area 5,6,7 Sport	Iroll	NCBC T: GS T: WA T: PSN N:	North/Central BC Troll Georgia Strait Troll Washington Area 1,2,3, Area 48,5,6,6A,6C,7,7A	North/Central BC Troll Georgia Strait Troll Washington Area 1,2,3,4,4B Troll Area 48,5,6A,6C,7,7A Net Area 8,9,10,11,12,13 Sport	B Troll				

Appendix Table 40. Tagging history and use of the Percival Cove (Deschutes Complex) and Coulter Creek Hatchery fall yearling stock.

Hatchery - Percival Cove and Coulter Creek

Brood Source - Return to hatchery.

Agency - WDF

Release Type - Yearling

Base Period Tagging - Yes

Escapement Data - Complete enumeration occurs at a trapping site located in the Deschutes River; there is no accounting for straying below the trap.

Current Use of Data:

- X Fishery or Stock Harvest Rate Index
- X Brood Exploitation Rate Analysis
- X Catch Distribution
- X Survival
- X Chinook Model

Comments - Tagging was discontinued and replaced with the Squaxin Net Pen tagging program.

Code	Brood	Hatchery	Stock	Release Site	Year	Month	Weight in centigrams	Number Tagged	Comments
32004	78	Deschutes	Hood Canal X Green	Capitol Lake	80	3	2.700	40.106	-
32019	7 9	Deschutes	South Sound	Capitol Lake	81	3	3,780 15,120	48,196	
32054	7 9	Coulter	Big Soos	Coulter	81	3	6,480	30,929 8,383	
32055	79	Coulter	Deschutes	Coulter	81	3	6,480	9,696	
32056	79	Coulter	Deschutes + Minter	Coulter	81	3	6,480	8,681	
10204	79	Coulter	Big Soos	Coulter	81	3	7,560	9,095	
32248	80	Coulter	Big Soos	Coulter	82	2	5,040	17,770	
2302		eorge Adams	South Sound X Hood Canal		82	5	1,972	57,684	
32308	80	Deschutes	South Sound X Hood Canal	Capitol Lake	82	5	6,048	23,020	
32147	81	Deschutes	South Sound	Capitol Lake	83	5	4,877	28,997	
32360	81	Deschutes	South Sound	Capitol Lake	83	5	4.877	21,218	
34959R6	86	Deschutes	South Sound	Capitol Lake	88	4	11,063	38,977	

ppendix Table 41. Tagging history and use of the Squaxin Island Pens fall yearling

Hatchery - Squaxin Net Pens

Brood Source - Return to Deschutes Hatchery.

Agency - WDF

Release Type - Yearling

Base Period Tagging - No

Escapement Data - Escapement will be difficult to estimate because straying over many

Current Use of Data:

- Fishery or Stock Harvest Rate Index
- Brood Exploitation Rate Analysis
- X Catch Distribution
- X Survival
- Chinook Model

Comments - This program is difficult to evaluate because of its limited duration.

Code Brood Hatchery	Stock	Release Site	Year	Month	Weight in centigrams	Number Tagged	Comments	
334162R3 86 S Sound Net Pens 334202R3 87 S Sound Net Pens 335244R3 88 S Sound Net Pens	Deschutes Deschutes Deschutes	Peale Peale Peale	88 89 90	4 4 4	11,063 10,080 7,316	133,528 144,032 146,359		