MSF Impacts on CWT System

Annette Hoffmann Marianna Alexandersdottir

Mark-Selective What?

- Concerns over impacts to the viability of the CWT system in the presence of MSF's.
- How much do MSFs impact the CWT system relative to other impacts?
- How can we weigh the benefits against the costs (both informationally and financially)

What is Mark-Selective Fishing?

Release any salmon with an intact adipose fin

Keep any salmon without an adipose fin

	Marked	Wild	Unmarked
	Hatchery		Hatchery
Release			
	ER ^M 1	ER ^U 1	ER ^U 1
	ER ^M 2	ER ^U 2	ER ^U 2
	ER ^M 3	ER ^U 3	ER ^U 3
	ER ^M 4	ER ^U 4	ER ^U 4
Escapement			

San State Commence

What is DIT?

- Two tag groups for each indicator stock.
 - One group is mass marked with an ad clip
 - The second group is not mass marked
 - Both are tagged
- The unmarked DIT group now represents the unmarked production.
- Assumption: both groups are identical except for clip.

Unmarked Hatchery DIT

Release

MSF 1

MSF 2

NSF 1

NSF 2

Escapement

Tags

Est Tags

Est Tags

Tags

Tags

Tags

Estimate the tags well, and the ER^U's are ok

Estimate the tags poorly and the ER^U's are biased

What are the MSF Impacts?

- Depending on analytical method used, introduction of bias or imprecision to ER's of MSF's.
 - Requires the substitution of assumed parameters for otherwise observed data.
- Similar to unreported tags, will bias the ER's of other NSF's exploiting the same stocks.

Estimating MSF Incidental **Unmarked Mortalities**

Estimate of Unmarked * Incidental hook and Encounters

release mortality rate

Observed Marked Encounters * λ *

sfm

λ is the unmarked to marked ratio for specific DIT groups encountered

Estimating Unmarked to Marked Ratio (λ)

Example: Salmon River Coho

MSF	Marked Recoveries		SE (M)	
Coos Bay		1.74		1.13
Tillamook		1.20		0.49
WA Area 1		25.33		5.31
WA Area 2		66.25		9.24
WA Area 3		3.58		0.84
WA Area 4		8.65		4.04
SUM		105.01		11.49

Example: Salmon River Coho: λ^{REL}

$$\lambda^{\text{REL}} = \frac{68,234}{72,236} = 0.945$$

$$\sum U^{MSF} = \left(\sum M^{MSF}\right) \lambda^{REL} sfm = 105.01 * 0.945 * 0.14 = 13.89$$

$$SE(\sum U^{MSF}) \cong \sqrt{V(\sum M^{MSF})(\lambda^{REL})^2 sfm^2} = \sqrt{132.12} * 0.945 * 0.14 = 1.52$$

Example: Salmon River Coho: λ^{NSF}

$$\lambda^{\text{NSF}} = \frac{7.48}{7.48} = 1.0$$

$$V(\lambda^{NSF}) \cong \left(\frac{1}{7.48}\right)^2 48.44 + 48.44 \left(\frac{1}{7.48}\right)^2 = 1.73$$

$$\sum U^{MSF} = \left(\sum M^{MSF}\right) \lambda^{NSF} sfm = 105.01 * 1.0 * 0.14 = 14.7$$

$$SE\left(\sum U^{MSF}\right) \cong \sqrt{\left(\sum M^{MSF}\right)^{2} \left(sfm^{2}\right) V\left(\lambda^{NSF}\right) + V\left(\sum M^{MSF}\right) \left(\lambda^{NSF}\right)^{2} sfm^{2}}$$

$$= \sqrt{(105.01)^2(0.14^2)1.73 + 132.12(1.0)^2(0.14^2)} = 19.53$$

Example: Salmon River Coho: λ^{ESC}

$$\lambda^{\rm ESC} = \frac{856.5}{611.6} = 1.4$$

$$V(\lambda^{ESC}) \cong \left(\frac{1}{M^{ESC}}\right)^2 V(U^{ESC}) + V(M^{ESC}) \left(\frac{\lambda^{ESC}}{M^{ESC}}\right)^2 = 0.187$$

$$\sum U^{MSF} = \left(\sum M^{MSF}\right) \lambda^{ESC} sfm = 105.01 * 1.4 * 0.14 = 20.58$$

$$SE(\sum U^{MSF}) \cong \sqrt{(\sum M^{MSF})^2 (sfm^2)V(\lambda^{ESC}) + V(\sum M^{MSF})(\lambda^{ESC})^2 sfm^2}$$

$$= \sqrt{(105.01)^2(0.14^2)0.187 + 132.12(1.4)^2(0.14^2)} = 6.74$$

REL vs. NSF vs. ESC

Maximum Bias Estimate

Release λ < MSF λ < Escapement λ

 λ^{REL} with a negative bias

 $\lambda^{\rm ESC}$ with a positive bias

 $M*\lambda^{ESC}*sfm - M*\lambda^{REL}*sfm = M*sfm (\lambda^{ESC} - \lambda^{REL})$

Confidence Intervals

 λ^{REL} with a negative bias

$$(\hat{U} - 2\sqrt{Bias^2 + Var}, \hat{U} + 2\sqrt{Var})$$

(10.86, 27.62)

 λ^{NSF} with no bias

$$(\hat{U} - 2\sqrt{Var}, \hat{U} + 2\sqrt{Var})$$

(-24.36, 53.76)

 $\lambda^{\rm ESC}$ with a positive bias

$$(\hat{U} - 2\sqrt{Var}, \hat{U} + 2\sqrt{Bias^2 + Var})$$

(1.58, 34.06)

		Bro	Marked		Unmarked	
	Hatchery	od Year	NSF	SF	NSF	SF
	Bingham Creek	1995	18.9%	6.8%	10.1%	1.0%
		1996	8.6%	3.5%	6.9%	2.4%
		1997	27.2%	6.8%	28.5%	2.4%
	Forks Creek	1995	56.7%	2.2%	54.9%	0.3%
	Humptulips	1995	58.9%	3.2%	58.1%	0.4%
Region		1996	27.8%	3.0%	22.9%	0.4%
Region	Makah	1996	15.3%	5.6%	20.4%	1.1%
	NFH	1997	1.8%	8.7%	3.1%	1.7%
	Onto and to	1995	58.5%	0.2%	46.9%	0.0%
	Quinault NFH	1996	47.9%	4.5%	52. 4%	0.8%
		1997	44.3%	9.8%	51.1%	1.9%
	Salmon	1996	38.7%	9.1%	38.8%	1.4%
	River	1997	37.3%	14.7 %	34.9%	2.1%
		1996	9.8%	7.6%	9.5%	1.1%
	Solduc	1997	0.9%	11.2 %	0.2%	2.0%
Coastal Tota			29.8%	6.6%	28.9%	1.3%

Miles

So ... how big are the MSF Impacts? Marked Hatchery Release MSF Escapement **MSF NSF**

Comparison of return rates to hatchery (Coho DIT Report)

$$z = \frac{\hat{p}_u - \hat{p}_m}{\sqrt{V\hat{a}r(\hat{p}_u) + V\hat{a}r(\hat{p}_m)}}$$

Comparison of return rates to hatchery (Coho DIT Report)

Table 1. Summary of escapement return rate tests by brood year summarized from Table 15.

Run Year	$p_m > p_u (P < 0.05)$	$p_u > p_m \ (P < 0.05)$	Non- significant
1998	0	2	6
1999	/1	5	10
2000	1	3	9

MSF Impact on Coho

(b) Hood Canal/S.J.D.F

MSF Impact on Coho

MSF Impact on Coho

Similarities to Other Incidental Mortalities

Estimate of Unmarked Encounters

Estimate of Sub-legal Encounters

Estimate of CNR Encounters

Estimate of drop-off
Encounters

Incidental hook and release mortality rate

Differences From Other Sources of Incidental Mortalities

With MSF's there is a differential impact between the unmarked and marked DIT groups not shared by other listed sources of incidental mortalities.

On the Other Hand ...

Bias in number of mortalities biases the ER's, and bias is a statistical property that can be compared among different sources of incidental mortalities.

PMSE

SER

What about chinook?

- There was a preterminal MSF on chinook in the Strait of Juan de Fuca in 2003.
- Marked CWTs were recovered from
 - G. Adams, Grovers, Chilliwack, Shuswap, Kalama, Lewis, Lyons Ferry, Marblemount, Nisqually, Samish, Soos, White River and Whitehorse Pond

What about chinook?

With an sfm of 0.14:

Grovers Creek age 4 M = 23.97

Projected

Projected

M = 23.97 $U^{REL} = 3.34$

M = 14.17 $U^{REL} = 1.98$

 $M = 29.84 \quad U^{REL} = 4.23$

M = 23.05 $U^{REL} = 3.27$

What about chinook?

With an sfm of 0.14:

- Soos Creek age 4
 - Projected
- Soos Creek age 3
 - Projected

$$M = 12.80$$
 $U^{REL} = 1.83$

$$M = 20.43$$
 $U^{REL} = 2.93$

$$M = 30.69$$
 $U^{REL} = 4.48$

$$M = 19.86$$
 $U^{REL} = 2.9$

Distribution Issues

- A large MSF in ST JDF
 - $\lambda = 1.0$
- •A second MSF in Area 9
 - $\lambda = 2.0$
- •Escapement including fish from ST Georgia with no MSF's
 - $\lambda = 1.2$

Do we need DIT?

```
SER(U) = \frac{M * \lambda^{REL} * sfm}{Unmarked Cohort}
= \frac{M * \lambda^{REL} * sfm}{Unmarked Cohort}
= \frac{M * \lambda^{REL} * sfm}{Marked Cohort * \lambda^{REL}}
= SER(M) * sfm
```

DIT in NSF Fisheries

Fishery	True Marked Mortalities $(M)^{/1}$	True Unmarked Mortalities (<i>U</i>)	True Unmarked Exploitatio n Rate	Estimated Unmarked Mortalities (est'd U) w/DIT/1	Estimated Unmarked Exploitatio n Rate w/DIT	Estimated Unmarked Exploitatio n Rate w/o DIT
Initial Cohort Size	1000	1000		998.65		
MSF 1 HR = 0.15	150	15	0.015	15	0.015	0.015
MSF 2 HR = 0.10	85	9.85	0.00985	8.5	0.0085	0.0085
NSF 1 HR = 0.20	153	195.03	0.195	195.03	0.1953	0.153
NSF 2 HR = 0.10	61.2	69.15	0.06915	69.15	0.0692	0.0612
Escapeme nt	550.8	710.97		710.97		

With DIT

- We have a data based means of bounding bias on ER's where the escapement λ is an overestimate.
- We have a means of monitoring the MSF impact
- We have less biased ER's in NSF's.

Conclusions

- There is more than one way to do the MSF analyses (e.g. release, NSF, or escapement λ)
- Some methods are biased, others imprecise
- In the coho MSF's the MSF impact was difficult to detect (even with SER's ~ 15%).
- DIT provides monitoring information, a means for bounding bias.

