## MSF Impacts on CWT System

## Annette Hoffmann

Marianna Alexandersdottir

## Mark-Selective What?

\# Concerns over impacts to the viability of the CWT system in the presence of MSF's.
\% How much do MSFs impact the CWT system relative to other impacts?
\# How can we weigh the benefits against the costs (both informationally and financially)

## What is Mark-Selective Fishing?

Release any salmon with an intact adipose fin


Keep any salmon without an adipose fin


| Release | Marked Hatchery | Wild | Unmarked Hatchery |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
|  | $\mathrm{ER}^{\mathrm{M}} 1$ | $E R^{U} 1$ | $E R^{U} 1$ |
|  | ER ${ }^{\text {2 }} 2$ | $E R^{\mathrm{U}} 2$ | $E R^{U} 2$ |
|  | $E R^{M} 3$ | $E R^{U} 3$ | $E R^{U} 3$ |
|  | $E R^{M} 4$ | $E R^{U} 4$ | $E R^{U} 4$ |
| Escapement |  |  |  |

## What is DIT?

\# Two tag groups for each indicator stock.
One group is mass marked with an ad clip
The second group is not mass marked
B Both are tagged
乡 The unmarked DIT group now represents the unmarked production.
\# Assumption: both groups are identical except for clip.

## Unmarked

Hatchery DIT
Release
1
2
2
NSF 1
NSF 2

Escapement

Tags
Est Tags
Est Tags
Tags
Tags

Tags

Estimate the tags well, and the $\mathrm{ER}^{\mathrm{U}}$ 's are ok

Estimate the tags poorly and the $E R^{U}$ 's are biased

## What are the MSF Impacts?

\% Depending on analytical method used, introduction of bias or imprecision to ER's of MSF's.
Requires the substitution of assumed parameters for otherwise observed data.
\% Similar to unreported tags, will bias the ER's of other NSF's exploiting the same stocks.

## Estimating MSF Incidental Jnmarked Mortalities

Estimate of Unmarked * Incidental hook and Encounters release mortality rate

Observed Marked Encounters * $\lambda * \quad s f m$
$\lambda$ is the unmarked to marked ratio for specific DIT groups encountered

## Estimating Unmarked to Marked

 Ratio ( $\lambda$ )

Unmarked Hatchery

## Example: Salmon River Coho

| MSF | Marked Recoveries | SE (M) |
| :--- | ---: | ---: |
| Coos Bay | 1.74 | 1.13 |
| Tillamook | 1.20 | 0.49 |
| WA Area 1 | 25.33 | 5.31 |
| WA Area 2 | 66.25 | 9.24 |
| WA Area 3 | 3.58 | 0.84 |
| WA Area 4 | 8.65 | 4.04 |
| SUM | 105.01 | 11.49 |

## Example: Salmon River Coho: $\lambda^{\text {REL }}$

$$
\lambda^{\mathrm{REL}}=\frac{68,234}{72,236}=0.945
$$

$$
\sum U^{M S F}=\left(\sum M^{M S F}\right) \lambda^{R E L} s f m=105.01 * 0.945 * 0.14=13.89
$$

$$
S E\left(\sum U^{M S F}\right) \cong \sqrt{V\left(\sum M^{M S F}\right)\left(\lambda^{R E L}\right)^{2} s f m^{2}}=\sqrt{132.12} * 0.945 * 0.14=1.52
$$

## Example: Salmon River Coho: $\lambda^{\text {NSF }}$

$$
\begin{gathered}
\lambda^{\mathrm{NSF}}=\frac{7.48}{7.48}=1.0 \\
V\left(\lambda^{\text {NSF }}\right) \cong\left(\frac{1}{7.48}\right)^{2} 48.44+48.44\left(\frac{1}{7.48}\right)^{2}=1.73
\end{gathered}
$$

$\sum U^{M S F}=\left(\sum M^{M S F}\right) \lambda^{N S F} s f m=105.01 * 1.0 * 0.14=14.7$

$$
S E\left(\sum U^{\text {MSF }}\right) \cong \sqrt{\left(\sum M^{\text {MSF }}\right)^{2}\left(s f m^{2}\right) V\left(\lambda^{\text {NSF }}\right)+V\left(\sum M^{\text {MSF }}\right)\left(\lambda^{\text {NSF }}\right)^{2} s f m^{2}}
$$

$$
=\sqrt{(105.01)^{2}\left(0.14^{2}\right) 1.73+132.12(1.0)^{2}\left(0.14^{2}\right)}=19.53
$$

## Example: Salmon River Coho: $\lambda^{\text {ESC }}$

$$
\begin{gathered}
\lambda^{E S C}=\frac{856.5}{611.6}=1.4 \\
V\left(\lambda^{E S C}\right) \cong\left(\frac{1}{M^{E S C}}\right)^{2} V\left(U^{\text {ESC }}\right)+V\left(M^{E S C}\right)\left(\frac{\lambda^{E S C}}{M^{E S C}}\right)^{2}=0.187 \\
\sum U^{M S F}=\left(\sum M^{M S F}\right) \lambda^{E S C} s f m=105.01 * 1.4 * 0.14=20.58 \\
S E\left(\sum U^{M S F}\right) \cong \sqrt{\left(\sum M^{M S F}\right)^{2}\left(s f m^{2}\right) V\left(\lambda^{E S C}\right)+V\left(\sum M^{M S F}\right)\left(\lambda^{E S C}\right)^{2} s f m^{2}} \\
=\sqrt{(105.01)^{2}\left(0.14^{2}\right) 0.187+132.12(1.4)^{2}\left(0.14^{2}\right)}=6.74
\end{gathered}
$$

## REL vs. NSF vs. ESC



## Maximum Bias Estimate

$$
\begin{array}{cccc}
\mid & \mid & \mid \\
\text { Release } \lambda<\operatorname{MSF} \lambda & \text { Escapement } \lambda
\end{array}
$$

$\lambda^{\text {REL }}$ with a negative bias
$\lambda^{\text {ESC }}$ with a positive bias

$$
\mathrm{M} * \lambda^{\mathrm{ESC}} * \mathrm{sfm}-\mathrm{M} * \lambda^{\text {REL } *} s f m=\mathrm{M} * s f m\left(\lambda^{\mathrm{ESC}}-\lambda^{\mathrm{REL}}\right)
$$

## Confidence Intervals

$\lambda^{\text {REL }}$ with a negative bias $\quad\left(\hat{U}-2 \sqrt{\text { Bias }^{2}+\text { Var }}, \hat{U}+2 \sqrt{\text { Var }}\right)$
(10.86, 27.62)
$\lambda^{\text {NSF }}$ with no bias

$$
(\hat{U}-2 \sqrt{\operatorname{Var}}, \hat{U}+2 \sqrt{\operatorname{Var}})
$$

$$
(-24.36,53.76)
$$

$\lambda^{\text {ESC }}$ with a positive bias

$$
\left(\hat{U}-2 \sqrt{V a r}, \hat{U}+2 \sqrt{\text { Bias }^{2}+V a r}\right)
$$

(1.58, 34.06)

|  |  | Bro |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Year | NSF | SF | NSF | SF |
|  | Bingham <br> Creek | $\begin{aligned} & 1995 \\ & 1996 \\ & 1997 \end{aligned}$ | $\begin{array}{r} 18.9 \% \\ 8.6 \% \\ 27.2 \% \end{array}$ | $\begin{aligned} & 6.8 \% \\ & 3.5 \% \\ & 6.8 \% \end{aligned}$ | $\begin{array}{r} 10.1 \% \\ 6.9 \% \\ 28.5 \% \end{array}$ | $\begin{aligned} & 1.0 \% \\ & 2.4 \% \\ & 2.4 \% \end{aligned}$ |
|  | Forks Creek | 1995 | 56.7\% | 2.2\% | 54.9\% | 0.3\% |
| Reg | Humptulips | $\begin{aligned} & 1995 \\ & 1996 \end{aligned}$ | $\begin{aligned} & 58.9 \% \\ & 27.8 \% \end{aligned}$ | $\begin{aligned} & 3.2 \% \\ & 3.0 \% \end{aligned}$ | $\begin{aligned} & 58.1 \% \\ & 22.9 \% \end{aligned}$ | $\begin{aligned} & 0.4 \% \\ & 0.4 \% \end{aligned}$ |
|  | Makah NFH | $\begin{aligned} & 1996 \\ & 1997 \end{aligned}$ | $\begin{array}{r} 15.3 \% \\ 1.8 \% \end{array}$ | $\begin{aligned} & 5.6 \% \\ & 8.7 \% \end{aligned}$ | $\begin{array}{r} 20.4 \% \\ 3.1 \% \end{array}$ | $\begin{aligned} & 1.1 \% \\ & 1.7 \% \end{aligned}$ |
|  | Quinault NFH | $\begin{aligned} & 1995 \\ & 1996 \\ & 1997 \end{aligned}$ | $\begin{aligned} & 58.5 \% \\ & 47.9 \% \\ & 44.3 \% \end{aligned}$ | $\begin{aligned} & 0.2 \% \\ & 4.5 \% \\ & 9.8 \% \end{aligned}$ | 46.9\% <br> 52. 4\% <br> 51.1\% | $\begin{aligned} & 0.0 \% \\ & 0.8 \% \\ & 1.9 \% \end{aligned}$ |
|  | Salmon River | $\begin{aligned} & 1996 \\ & 1997 \end{aligned}$ | $\begin{aligned} & 38.7 \% \\ & 37.3 \% \end{aligned}$ | $\begin{array}{r} 9.1 \% \\ 14.7 \\ \% \end{array}$ | 38.8\% <br> 34.9\% | $\begin{aligned} & 1.4 \% \\ & 2.1 \% \end{aligned}$ |
|  | Solduc | $\begin{aligned} & 1996 \\ & 1997 \end{aligned}$ | $\begin{aligned} & 9.8 \% \\ & 0.9 \% \end{aligned}$ | $\begin{array}{r} 7.6 \% \\ 11.2 \\ \% \end{array}$ | $\begin{aligned} & 9.5 \% \\ & 0.2 \% \end{aligned}$ | $\begin{aligned} & 1.1 \% \\ & 2.0 \% \end{aligned}$ |
| Coastal Total |  |  | 29.8\% | 6.6\% | 28.9\% | 1.3\% |

## So ... how big are the MSF Impacts?



Unmarked Hatchery

## Comparison of return rates to hatchery (Coho DIT Report)

$$
z=\frac{\hat{p}_{u}-\hat{p}_{m}}{\sqrt{\operatorname{Var}\left(\hat{p}_{u}\right)+\operatorname{Var}\left(\hat{p}_{m}\right)}}
$$

# Comparison of return rates to hatchery (Coho DIT Report) 

Table 1. Summary of escapement return rate tests by brood year summarized from Table 15.

| Run Year | $p_{m}>p_{u}(P<0.05)$ | $p_{u}>p_{m}(P<0.05)$ | Non- <br> significant |
| :---: | :---: | :---: | :---: |
| 1998 | 0 | 2 | 6 |
| 1999 | 1 | 5 | 10 |
| 2000 | 1 | 3 | 9 |

## MSF Impact on Coho



## MSF Impact on Coho



## MSF Impact on Coho



## Similarities to Other Incidental Vortalities

Estimate of Unmarked *
Encounters $\begin{aligned} & \text { Incidental hook and } \\ & \text { release mortality rate }\end{aligned}$
Estimate of Sub-legal * Incidental hook and Encounters

Estimate of CNR
Encounters
Estimate of drop-off Encounters

* Incidental hook and release mortality rate
* Incidental hook and release mortality rate


## Differences From Other Sources of ncidental Mortalities

3 With MSF's there is a differential impact between the unmarked and marked DIT groups not shared by other listed sources of incidental mortalities.

## On the Other Hand ...

Bias in number of mortalities biases the ER's, and bias is a statistical property that can be
compared among different sources of incidental mortalities.


SER

## What about chinook?

\% There was a preterminal MSF on chinook in the Strait of Juan de Fuca in 2003.
\% Marked CWTs were recovered from
G. Adams, Grovers, Chilliwack, Shuswap, Kalama, Lewis, Lyons Ferry, Marblemount, Nisqually, Samish, Soos, White River and Whitehorse Pond

## What about chinook?

With an sfm of 0.14:
\# Grovers Creek age $4 \quad \mathrm{M}=23.97 \quad U^{\text {REL }}=3.34$
a Projected
$M=14.17 \quad$ UREL $=1.98$
\% Grovers Creek age 3 $\mathrm{M}=29.84 \quad$ UREL $=4.23$
a Projected
$M=23.05$
UREL $=3.27$

## What about chinook?

With an sim of 0.14:

Soos Creek age 4 Q Projected
\% Soos Creek age 3
a Projected
$M=12.80 \quad U^{R E L}=1.83$
$M=20.43 \quad$ UREL $=2.93$
$M=30.69 \quad$ UREL $=4.48$
$M=19.86 \quad$ UREL $=2.9$

## Distribution Issues

- A large MSF in ST JDF
- $\lambda=1.0$
- A second MSF in Area 9
- $\lambda=2.0$
-Escapement including fish from ST Georgia with no MSF's
- $\lambda=1.2$



## Do we need DIT?

$$
\mathrm{U}=\mathrm{M} * \lambda^{\mathrm{REL}} * \mathrm{sfm}
$$

$$
\operatorname{SER}(\mathrm{U})=\frac{\mathrm{M} * \lambda^{\text {REL }} * s f m}{\text { Unmarked Cohort }}
$$

$$
=\frac{\mathrm{M} * \lambda^{\mathrm{REL}} * \mathrm{sfm}}{\text { Marked Cohort } * \lambda^{\text {ReL }}}
$$

$$
=\operatorname{SER}(\mathrm{M}) * s f m
$$

## DIT in NSF Fisheries

|  | True <br> Marked <br> Mortalities <br> $(M)^{11}$ | True <br> Mortalities <br> $(U)$ | True <br> Fishery | Estimated <br> Explorkatio <br> n Rate | Estimated <br> Unmarked <br> Mortalities <br> (est'd U) <br> w/DIT ${ }^{1}$ | Estimated <br> Unmarked <br> Exploitatio <br> n Rate <br> w/DIT |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Initial <br> Cohort <br> Size | 1000 | 1000 |  | 998.65 | Unmarked <br> Exploitatio <br> nate w/o <br> DIT |  |
| MSF 1 <br> HR $=0.15$ | 150 | 15 | 0.015 | 15 | 0.015 | 0.015 |
| MSF 2 <br> HR $=0.10$ | 85 | 9.85 | 0.00985 | 8.5 | 0.0085 | 0.0085 |
| NSF 1 <br> HR $=0.20$ | 153 | 195.03 | 0.195 | 195.03 | 0.1953 | 0.153 |
| NSF 2 <br> HR $=0.10$ | 61.2 | 69.15 | 0.06915 | 69.15 | 0.0692 | 0.0612 |
| Escapeme <br> nt | 550.8 | 710.97 |  | 710.97 |  |  |

## With DIT

\% We have a data based means of bounding bias on ER's where the escapement $\lambda$ is an overestimate.

We have a means of monitoring the MSF impact We have less biased ER's in NSF's.

## Conclusions

3 There is more than one way to do the MSF analyses (e.g. release, NSF, or escapement $\lambda$ )
\% Some methods are biased, others imprecise
\% In the coho MSF's the MSF impact was difficult to detect (even with SER's ~ 15\%).
シ DIT provides monitoring information, a means for bounding bias.


