Management Applications: Coded Wire Tag Program

Chinook and Coho Salmon in the Pacific Northwest

Outline

- Origins - the CWT Program
- Uses - Major Categories
- Descriptions
- Objectives
- Examples
- Assumptions/Data Needs/Limitations

Origins

Fin Marking \& Tagging Efforts

- General distribution/contribution patterns
- Hatchery Production

CWT Application Developed in the 1960's

- Initial applications - hatchery production experiments
1977 Coastwide sampling program established

The CWT Program

- Coastwide coordination of CWT release and recovery efforts
- Standards for:
- Sampling rates
- Release/recovery reporting to centralized site
- Access/capability to extract data of interest
- Agreed upon methods for analysis among managers

Uses of the CWT Program -

- Hatchery Evaluation/Management
- Hatchery Rearing/Release experiments
- Estimating Hatchery Production - adults
- Brood stock management
- Natural Stock Evaluation/Management
- Natural stock spawning composition
- Stock distribution (among fisheries, spawning areas)
- Run size estimation
- Smolt to Adult return rates
- Fisheries Management
- Mixed Stock Fishery - Stock composition
- Fishery Management - time/area stock differences
- Harvest and/or Exploitation Rate estimation

Other experimental \& monitoring uses

Production Experiments

Compare relative results of different rearing/release treatments

- Basic Assumptions
- Availability of representative CWT release groups
- Statistically adequate number of recoveries
- Treatments are the only difference in rearing/release among groups

Hatchery Programs: Estimating Production

- Hatchery Returns plus Landed Catch
- Simple: Production from single release program
- More complex: Regional Production
- Basic Assumptions
- Availability of representative CWT release groups
- Statistically adequate number of recoveries
- Fisheries: Estimated sample to catch ratios
- Escapement: Estimate of ratio Tagged/Non-tagged returns
- Regional production - relative size of returns to different components

Stock Composition: Mixed Stock Fishery

- What stocks are contributing to the catch in the fishery? - What are the contributions of each component?
- Basic Assumptions
- Availability of representative CWT release groups for components
- Statistically adequate number of recoveries
- Fisheries: Estimated sample to catch ratios
- Escapement: Estimate of ratio Tagged/Non-tagged returns for component runs (for total contribution estimates)

Estimating Harvest and Exploitation Rates

- Definitions
- Simple Terminal Area Case
- Multiple Fisheries
- Age Structure/Maturity Considerations
- Landed Catch vs Total Harvest Imposed Mortalities

Harvest Rate: Landed Catch

Proportion Harvested

- Stock specific
- Simple example - Terminal area fisheries applications
- Basic Assumptions
- Availability of representative CWT release group(s)
- Statistically adequate number of recoveries
- Fisheries: Estimated sample to catch ratios
- Stocks include in the estimate are equally vulnerable to the fishery

Components: Single Age Class

Space

Fishery A
Fishery B
Terminal
Spawning

Time

Exploitation Rates: Landed Catch

- Expressed in terms of Cohort size at time of Fishery - proportion of fish alive at the time of the fishery
- Basic Assumptions
- Availability of representative CWT release group(s)
- Statistically adequate number of recoveries
- Fisheries: Estimated sample to catch ratios,
- Fisheries: Estimate/assumption regarding movement in time/space
- Escapement: Accurate estimate of total escapement

Exploitation Rates: Considering Non-Landed Harvest Mortalities

- Non-landed Catch Mortalities
- Releases of sub-legal sized fish
- Drop-offs
- Non-retention
- etc.
- Lack of direct sampling for CWTs in nonlanded mortalities
- Estimating Losses at the Fishery Level
- Encounter rates
- Mortalities

Components: Single Age Class

Space

Fishery A

Time
Fishery B
Terminal Area
Spawning

Components: Multiple Ages at Return (eng. Chinook)

Space

Spawning

Fishery A

Terminal Area
Fishery B

Year n

Year $n+1$

Stock Exploitation Rates - Catch plus Non-landed Harvest Mortalities

- Expressed in terms of Cohort size at time of Fishery including non-catch Mortalities
- Basic Assumptions
- Availability of representative CWT release group(s)
- Statistically adequate number of recoveries
- Fisheries: Estimated sample to catch ratios,
- Fisheries: Estimate/assumption regarding movement in time/space
- Escapement: Estimate of ratio Tagged/Non-tagged returns
- Escapement: Accurate estimate of total escapement
- Estimates of Non-Landed mortalities for fisheries - usually not sampled for CWTs, estimated based on composite estimate of non-landed catch, size/timing/spatial distribution of stocks.

Stock Exploitation Rates - Use in Preseason Planning

- Multiple Stock Model
- Used to estimate allowable catch consistent with escapement or exploitation rate objectives
- Data Needs
- Previous CWT Experiments for representative stocks
- Preseason forecasts - stock abundance
- Basic Assumptions
- Availability of representative CWT release group(s)
- Fisheries: Estimate/assumption regarding movement in time/space
- Stock distribution constant from year to year - sampled years are representative of average distributions
- Time/Area movements

Applications: Annual Management

- Time/Area Shaping:
- Determining spatial/temporal patterns within one or more fisheries
- Examples
- Columbia River - Timing separation Snake Fall chinook vs Upriver Bright fall chinook
- Assumptions/Data Needs
- Availability of representative CWT release groups for components
- Statistically adequate number of recoveries by time/spatial units

Brood Stock Management

- Avoiding mixing of different stocks
- Straying from other programs
- Sorting among multiple programs
- Support breeding protocols (avoiding deleterious inbreeding effects)

Natural Production Applications

- Determining stock composition: Natural spawners
Estimating straying rates - usually using hatchery releases
- Reducing outside stock contributions
- Estimating run size - Mark/recapture methodologies

Other Applications

Evaluating habitat/hydropower actions

- Example: Smolt transport system - Columbia River
Dam passage experiments

