Category: Southeast Alaska

Salmonscape Workshop: scoping a life history approach to assessing and modelling freshwater and marine bottlenecks to inform salmon management

We propose a workshop to review the current approaches to assessing and modelling salmon survival across freshwater/coastal and marine life history stages and to recommend options that will inform the host of management tools/processes that require consideration of the full life history. We will bring together experts possessing experience with these techniques to share their knowledge in a structured manner. Case studies drawn from Pacific Salmon Treaty stocks that have requisite information will be developed that can be used to test the modelling approach. A Workshop Technical Planning Team will be convened from North Pacific Anadromous Fish Commission -International Year of the Salmon partner government agencies, NGO’s and academia to ensure relevance of the work to management and to assist in identifying a complete complement of experts. Experts will include representatives from Pacific Salmon Commission Secretariat staff and Technical Committees (Chinook, Coho, Chum and Sockeye). We will support travel for experts from Asia, Canada, Europe and the U.S. to attend. It will be essential for us to incorporate approaches to understanding freshwater and marine ecosystem status with Indigenous Peoples. Additionally, we will assess the potential for the development of new and emerging technologies and citizen science to augment this work.

Mixed Stock Analysis of Alaska Troll and Sport Chinook Salmon Fisheries

U.S. fisheries in Southeast Alaska (SEAK) harvest stocks of Chinook salmon originating from river systems in Alaska, Canada, and the continental U.S. Thus, fisheries in SEAK are managed under the purview of the Pacific Salmon Treaty (PST), in which an abundance-based management framework is used for Chinook fisheries. This requires management to have access to reliable information on stock-specific catch, escapement, and recruitment to forecast indices of abundance in PST fisheries.
This project aims to improve fishery management and provide independent estimates of stock composition in commercial troll and sport Chinook salmon fisheries in Southeast Alaska. This type of information has been used to measure the effectiveness of management actions in SEAK by combining genetic stock identification (GSI) with CWT information to estimate the harvest of wild SEAK stocks, as well as to contribute to applications outside of SEAK (e.g. estimating age-specific terminal returns of stock groups and forecasting returning run sizes). This project is an integral part of a larger SEAK GSI program for Chinook salmon, which includes comprehensive coverage of major gillnet, troll, and sport fisheries. The objective of this project is to use GSI to determine the stock composition of fish harvested in the SEAK Chinook salmon fisheries.

Alaska Sockeye Salmon Genetic Baseline Update Taku/Stikine Mainstem

The Stikine and Taku rivers in Southeast Alaska support sockeye salmon runs important for various commercial and aboriginal fisheries in both the United States (U.S.) and Canada. Sockeye salmon from these rivers are harvested in Canadian aboriginal, recreational, and commercial gillnet fisheries, and in U.S. subsistence, personal use, and commercial gillnet fisheries. By updating the sockeye genetic baseline for Taku and Stikine rivers with novel genetic markers, we aim to differentiate between mainstems stocks in the Taku and Stikine and improve stock assessment. Stock contribution estimates are critical to document compliance with the harvest sharing agreements, reconstruct runs of wild stocks, estimate the return of enhanced fish, forecast upcoming returns, and support sustainable management.

Alaska Coho Salmon Genetic Baseline

The overarching goal of this multi-year project is to develop a coho salmon genetic baseline for genetic stock identification (GSI) of Alaska commercial and sport harvest. The ability to account for stock-specific harvest will aid in the development of brood tables and escapement goals for coho salmon in Southeast Alaska (SEAK). This proposal will cover the first two years of intensive field sampling to obtain genetic samples from spawning populations of coho salmon throughout SEAK, focusing on transboundary Taku and Stikine rivers and the Northern Boundary Area. Future proposals will seek funds to genotype these samples and add them to Alaska’s growing coho salmon genetic baseline.

Productivity, migration timing, and survival of sockeye, coho, and pink salmon at Auke Creek

The goal of this project is to examine the productivity, migration timing, and survival of sockeye, coho, and pink salmon through support of essential operations at the Auke Creek Research Station in Juneau, Alaska, USA. The Auke Creek Research Station maintains a 40-plus year time series of biological and environmental data related to the timing and productivity of Pacific salmon. The weir at Auke Creek operates annually from mid-February through the end of October, with a base function of enumerating virtually 100% of outmigrating salmon fry and smolt species and returning adults. Along with basic counts, migrating fishes are subsampled for age and growth, sex, length, and genetics throughout the season. Auke Creek is the longest and most complete coho salmon time series in Southeast Alaska and is used as a regional indicator of marine survival, harvest, and productivity. Additionally, the complete enumeration of sockeye and pink salmon juveniles and returning adults provide indices of productivity that help inform science and management of those species in the Transboundary Rivers and Northern Boundary regions of the Pacific Salmon Treaty.

Coho and Chinook Early Saltwater Introduction Rearing

The Port Armstrong Hatchery (PAH), which is owned and operated by Armstrong-Keta, Inc. (AKI), has been producing cohos annually since 1988 and Chinooks since 2001. The expansion of facilities at PAH for the production of both species has been supported by a series of Chinook Mitigation grants, including the US/Canada Mitigation Fund, the Southeast Sustainable Salmon Fund and the Chinook Mitigation Fund and these projects have had full support of the Alaska Trollers Association (ATA) and various Southeast Alaska communities. The ATA has encouraged AKI to submit this current application for boosting coho and Chinook production by acquiring additional net pens and making use of our new early introduction saltwater techniques, thereby avoiding the burdensome costs of developing increased freshwater delivery to the hatchery and installing on-land rearing raceways. The management and staff of the Little Port Walter Research Station have been similarly encouraging of this plan, as they have decades of expertise in the propagation of various Chinook stocks for dissemination to production hatcheries throughout Southeast Alaska and are interested in increasing their contributions to the Alaska salmon industry via collaboration with the salmon enhancement hatcheries.

AKI’s goal is to maximize the return of adult coho and Chinook salmon to lower Chatham Strait in order to benefit the troll and sport fisheries. Common property contributions of Port Armstrong cohos have ranged from 42% to 67%, with averages over 50%, as measured by ADF&G coded-wire tag recoveries. PAH has experienced higher contribution rates in recent years and also in years when buyers have been stationed locally, which in turn increases the number of trollers in the area. There is currently a processor stationing a buying barge at Port Armstrong each summer to take advantage our PAH production as well as the wild salmon in the area.

Relaxed selection in salmon hatcheries

Hatchery fish are a significant component of fisheries subject to management under the Pacific Salmon Treaty (PST), and research on the costs and benefits of additional enhancement opportunities is a priority of the Northern Fund. The genetic risks of hatcheries, including potential loss of fitness to wild stocks, have been a long-standing concern (Waples and Do 1994, Naish et al. 2008, Grant et al. 2017). This study will investigate domestication in hatchery populations arising from relaxation of natural selection, a little-studied pathway for hatchery-induced changes. The results could have implications for the design of additional enhancement efforts as well as for practices at current enhancement facilities.

Chinook salmon genetic baseline update for Southeast Alaska and Canadian AABM fisheries

Southeast Alaska (SEAK) and Canadian aggregate abundance-based management (AABM) fisheries harvest Chinook salmon originating from throughout Southeast Alaska, Canada, and the southern U.S.  This diverse mixture of migrating stocks requires a comprehensive coastwide genetic baseline to accurately estimate the stock composition of harvests. The overall goal of this project is to use a phased approach to develop a coastwide Chinook salmon single nucleotide polymorphisms (SNPs) baseline to estimate the stock composition of harvests in SEAK and Canadian AABM fisheries.

The two biggest hurdles to assembling a coastwide Chinook salmon SNP baseline are: 1) no single agency has all of the baseline tissue or DNA samples necessary to adequately represent coastwide Chinook salmon production, and 2) different agencies do not all necessarily use the same SNP panels. To address these hurdles, we have worked with collaborators at the University of Washington (UW) to compile lists of SNP markers and populations screened by agency and university labs from Canada and the U.S.

N19-I10B Chinook salmon genetic baseline update for Southeast Alaska and Canadian AABM Fisheries 2019 Report

Origins of Chinook Salmon Harvested in Southeast Alaska Fisheries

U.S. fisheries in Southeast Alaska (SEAK) harvest stocks of Chinook salmon bound for river systems in Alaska, Canada, and the continental U.S. Thus, fisheries in SEAK are managed under the purview of the Pacific Salmon Treaty (PST), in which an abundance-based management framework is used for Chinook fisheries. This requires management to have access to reliable information on stock-specific catch, escapement, and recruitment to forecast indices of abundance in PST fisheries.

This project aims to improve fishery management and provide independent estimates of stock composition in commercial troll and sport Chinook salmon fisheries in Southeast Alaska. Further, the project will take the analysis beyond basic estimation of stock composition by combining genetic assignment of individuals from selected stocks and fisheries with their associated age and mark information to provide additional information about Chinook salmon in SEAK fisheries for Chinook Technical Committee needs. This type of information has been used to measure the effectiveness of management actions in SEAK as well as to contribute to applications outside of SEAK (e.g. estimating age-specific terminal returns of stock groups and forecasting returning run sizes). This project is an integral part of a larger SEAK genetic stock identification program for Chinook salmon, which includes comprehensive coverage of major gillnet, troll, and sport fisheries.

N17-VHP07 Origins of Chinook harvested in SEAK fisheries Report 2017

 

Southeast Alaska Coastal Monitoring of Southeast Alaska Coastal Monitoring of Epipelagic Fish and Marine Ecosystem Conditions Associated with Salmon Fish and Marine Ecosystem Conditions Associated with Salmon

Alaska stocks of pink (Oncorhynchus gorbuscha) and Chinook salmon (O. tshawytscha) spend large portions of their life histories in marine waters within the U.S. Exclusive Economic Zone (EEZ) and beyond the 200-mile EEZ of the coastal States. However, the strength of salmon year-classes is often set during the early overwintering phases of immatures or during the nearshore seaward migration phase of juveniles. Thus, the Alaska Fisheries Science Center (AFSC), Auke Bay Laboratories (ABL) initiated the Southeast Alaska Coastal Monitoring (SECM) project in 1997 to better understand the effects of climate and near-shore Ocean conditions on year-class strength of salmon and ecologically-related species. This research in turn provides improved information for resource management of salmon in the Pacific Salmon Treaty (PST) northern boundary. In particular SECM data provides a forecast index for northern southeast Alaska (SEAK) Transboundary River Chinook salmon returns, an annual pink salmon abundance forecast, and long term environmental and population data that are used by harvest managers in the PST northern boundary, which includes PST Chapter 2 pink salmon treaty issues in districts 101, 102, 103, and 104.

N18-I11 Southeast Alaska Coastal Monitoring of Epipelagic Fish and Marine Ecosystem Conditions Associated with Salmon Report 2018

N17-I12 Southeast Alaska Coastal Monitoring of Epipelagic Fish and Marine Ecosystem Conditions Associated with Salmon 2017

N16_I01 Southeast Alaska Coastal Monitoring of Epipelagic Fish and Marine Ecosystem Conditions Associated with Salmon 2016

N15-I01 Southeast Alaska Coastal Monitoring of Epipelagic Fish and Marine Ecosystem Conditions Associated with Salmon 2015

N14-I01 Southeast Alaska Coastal Monitoring of Epipelagic Fish and Marine Ecosystem Conditions Associated with Salmon 2014

N13-I01 Southeast Alaska Coastal Monitoring of Epipelagic Fish and Marine Ecosystem Conditions Associated with Salmon 2013