Category: North Coast BC

Projects located in the Northern Coast of BC

Nass Sockeye Mark-Recapture Assessment Project

We propose to assess mark-rates of Sockeye (and tag loss) at the Kwinageese weir and include these data in the mark-recapture while simultaneously assessing spaghetti tag loss, observer efficiency, and potential selective removal of spaghetti tagged fish. This will be achieved through implementing Passive Integrated Transponder (PIT) technology alongside our traditional spaghetti tagging program.

Northern Boundary Coho Salmon Genetic Baseline Augmentation

We propose to initiate a multi-phase approach to completing the genetic baseline for Northern Boundary coho salmon (“coho”) populations. Our primary objective is to augment the current baseline so that managers can reliably estimate stock composition of coho populations susceptible to harvest in Canadian and Alaskan mixed-stock fisheries. Augmenting the number of coho populations in the SNP baseline will increase genetic resolution, allowing us to identify the populations of origin with higher precision for coho captured in mixed-stock fisheries in Canada and the U.S. When used in conjunction with abundance estimates of a specific coho population, an upgraded genetic baseline can also improve estimates of exploitation rates in mixed-stock fisheries and therefore further support informed management decisions.

Genetic tools to inform sustainable fisheries and rebuild at-risk coho, chum and Chinook populations

In the Central Coast of BC, coho, chum and Chinook salmon populations have declined in recent decades, likely due to ongoing climate change, freshwater habitat degradation, and overharvest in mixed-stock fisheries. The spawning abundance of many populations is poorly monitored, harvest rate estimates are lacking for Central Coast coho stocks, stock composition in commercial chum fisheries is unquantified, and harvest rate information is only available for two hatchery-enhanced Chinook stocks (i.e., Atnarko, Wannock). These issues raise concerns about the long-term sustainability of fisheries as well as the feasibility of recovery and conservation efforts. Thus, there is an urgent need to develop and apply genetic tools that can inform the management of mixed-stock fisheries in British Columbia and Southeast Alaska under the Pacific Salmon Treaty (PST) and improve the effectiveness of recovery efforts.

This project will align with First Nations-led DNA collections to build baselines for coho, chum, and Chinook and the application of GSI to mixed-stock samples collected in on-going catch monitoring programs administered by CCIRA and Central Coast First Nations (CCFN) by providing additional opportunities for collections of mixed-stock samples to quantify catch composition in Central Coast fisheries. Expanded DNA baselines for Central Coast coho, chum, and Chinook will enable estimates of harvest for Central Coast stocks in Alaskan and BC fisheries and improve data on catch composition and total harvest in Central Coast fisheries. These data will lead to improved salmon management under the PST by allowing managers to direct fishing activity (commercial, recreational and First Nations Food, Social, and Ceremonial, FSC) towards abundant populations, thereby reducing impacts on at-risk stocks.

Slamgeesh Salmon Project – Fence Sill Rebuild

Slamgeesh Salmon project, which enumerates sockeye and coho adults and smolts, has been in continuous operation by Gitksan Watershed Authorities from 2000 to 2019. The fence was washed out on August 23, 2020 by an extreme precipitation event in conjunction with upstream beaver dam failures, which released relatively massive amounts of stored water and the resulting peak flow collapsed the counting fence. The fence abutments remained solid, fence trusses and panels were subsequently recovered; however, the foundation was altered and the sill disappeared.
This project concept proposes to re-install a functional counting fence foundation and sill (58’ X 12’) utilizing small pipe piles, a structural steel framework capable of supporting the aluminum sill plate and fence superstructure components including the panels and smolt trap accessories.

Production capacity and habitat status of Meziadin Lake

Historically, Meziadin Lake has been the largest producer of sockeye salmon in the Nass River watershed. Between 1982 and 2016, the overall average annual escapement of Meziadin Lake sockeye salmon declined, with an especially notable downward trend in annual escapement since 2010. Similarly, since 1982 the proportion of Meziadin Lake sockeye salmon as a proportion of the total Nass River aggregate population has decreased an average of 3-13% per decade, with the largest decrease occurring in the last ten years. A variety of factors can contribute to declining stocks, including biological or habitat constraints to freshwater productivity. Biological limitations to the production of sockeye salmon in Meziadin Lake have been the subject of fisheries management discussions for decades, and historically the limnology of Meziadin Lake was relatively well-studied compared to other systems in the region. In 2002, Fisheries and Oceans Canada (DFO) recommended that in years of low spawner abundance (<100,000), Meziadin Lake limnology should be assessed throughout the growing season and fall-fry abundance and age composition obtained to further explain factors affecting fry growth and survival (Bocking et al. 2002). However, despite recommendations in 2006 by DFO Core Stock Assessment Program to establish a comprehensive sockeye lakes research program throughout the BC north coast, many of these programs were discontinued. As a result, comprehensive seasonally-resolved limnology surveys in conjunction with an evaluation of production capacity have not been conducted on Meziadin Lake since 2001. The ongoing decline in sockeye salmon escapement to Meziadin Lake warrants updated information on potential limiting factors to freshwater productivity.

The objectives of our proposal are to identify potential limitations to freshwater productivity within Meziadin Lake by providing updated estimates of sockeye salmon production capacity and habitat status. To achieve these objectives, we will collect limnological, hydroacoustic, zooplankton population and limnetic fish data throughout the growing season and use a bioenergetics model to estimate net juvenile  sockeye productivity and habitat carrying capacity. Results will also provide updated information on the evolution of limnological conditions throughout the growing season and how those patterns may influence short and long-term freshwater productivity, as well as inform future development of habitat benchmarks for Meziadin Lake.

Salmonscape Workshop: scoping a life history approach to assessing and modelling freshwater and marine bottlenecks to inform salmon management

We propose a workshop to review the current approaches to assessing and modelling salmon survival across freshwater/coastal and marine life history stages and to recommend options that will inform the host of management tools/processes that require consideration of the full life history. We will bring together experts possessing experience with these techniques to share their knowledge in a structured manner. Case studies drawn from Pacific Salmon Treaty stocks that have requisite information will be developed that can be used to test the modelling approach. A Workshop Technical Planning Team will be convened from North Pacific Anadromous Fish Commission -International Year of the Salmon partner government agencies, NGO’s and academia to ensure relevance of the work to management and to assist in identifying a complete complement of experts. Experts will include representatives from Pacific Salmon Commission Secretariat staff and Technical Committees (Chinook, Coho, Chum and Sockeye). We will support travel for experts from Asia, Canada, Europe and the U.S. to attend. It will be essential for us to incorporate approaches to understanding freshwater and marine ecosystem status with Indigenous Peoples. Additionally, we will assess the potential for the development of new and emerging technologies and citizen science to augment this work.

Canadian independent review of District-104 fishery evaluation and Skeena and Nass sockeye salmon escapement goal analysis

Under Chapter 2 of the 2019 Pacific Salmon Treaty, Canada is required to conduct an analysis of escapement goals for sockeye salmon returning to the Skeena and Nass watersheds prior to the 2023 fishing season. The Alaska Department of Fish and Game will complete a harvest pattern analysis of the pink salmon fishery in District 104 that evaluates long-term abundance trends for salmon stocks within the Northern Boundary area. The Treaty language states that these analyses (of Skeena and Nass sockeye escapement goals and District 104 pink salmon fishery) shall be reviewed by independent contractors selected by each country and then submitted to the Northern Boundary Technical Committee and Northern Panel for further review.

An initial draft of the harvest-pattern analysis for District 104 fisheries is near completion, and the Skeena and Nass sockeye salmon escapement goals analysis is underway. The Canadian escapement goal analysis will occur in two stages which include (1) a technical review of the alternative datasets for Skeena and Nass sockeye, and (2) estimation and evaluation of biological escapement goals for these populations.

Skeena River Chum Salmon Radio Telemetry

We propose to conduct a chum salmon radiotelemetry feasibility project on the Skeena River to evaluate if a fullscale Skeena chum salmon radiotelemetry would be beneficial, and to determine if enough chum salmon could be captured at sites along the lower Skeena River to provide a sufficient number of viable adult chum salmon to carry out a radio telemetry project of this scope in future years. If a fullscale radiotelemetry project is deemed worthwhile and feasible, and funding is provided, we will assess spawning distribution, relative abundances of the different Skeena chum stocks, migratory behavior, and evaluate if the development of an aggregate Skeena chum salmon escapement estimator using genetic tools is possible, and appropriate.

Tracking North Coast pink salmon escapement

North Coast pink salmon have a fixed 2-year life cycle, with reproductively distinct stocks spawning in the same location in odd and even years. Assumptions of dominance of one life cycle over the other can drive pre-season fishery planning. Most north coast stocks (excluding those on Haida Gwaii) have been more abundant in odd years than even years in the 1980s, 1990’s and 2000’s. However in the 2010’s in Area 3, even-year pink salmon have, on average for the decade, surpassed odds. Survey effort has decreased since 2010 for coastal systems and large contributing rivers, potentially screwing our understanding of true patterns. Therefore, DFO and Nisga’a, through the Joint Technical Committee, are increasing our reliance on making large expansions that estimate returns to Conservation Units, Treaty Areas and Management Areas. Implications of incorrectly expanding can mean that commercial and treaty harvest opportunities may not align with actual returns and can thus lead to either over-harvest or foregone catch.

For 2021, we propose to survey key systems which include four aerial surveys of the big producer systems in Area 3 (Iknouk, Khutzeymateen, Kwinamass, Kincolith) and three sets of ground surveys (Dogfish, Illiance, Crag). Directed effort will enable us to produce strong watershed estimates and to compare it with regressions used in previous years to check accuracy.

Nass and Skeena Rivers Sockeye Salmon Escapement Goal Review and District 104 Fishery Review

The purpose of this project is to fund independent peer reviews of salmon assessments outlined in Chapter 2 (Northern British Columbia and Southeastern Alaska) of the 2019 Pacific Salmon Treaty. Canada agreed to “complete a comprehensive escapement goal analysis (prior to the 2023 fishing season) for Nass and Skeena river sockeye salmon that shall be peer-reviewed by an independent contractor and then submitted to the Committee and Northern Panel for further review.” In addition, the U.S. agreed “to complete a harvest pattern analysis of the pink salmon fishery in District 104 that shall be peer-reviewed by an independent contractor and then submitted to the Committee and the Northern Panel for further review.”