Category: 2015

Nass Area Coastal Coho Escapement Project

The Nass Area Coastal Coho Escapement Project will improve escapement data and further enable fishery managers to more accurately estimate harvests of this important species in commercial, recreational, and First Nation fisheries. The data will also improve the quality of information available to inform management decisions and aid in the sustainability of Nass Area Coho stocks in the future. This will be become increasingly important as industrial pressures within the marine areas of the Nass Area continue to mount due to mining, hydro-electricity, port development at Stewart, shipping, and pipelines. Improving our understanding of the abundance for Nass Area Coastal Coho stocks is imperative for understanding and mitigating the potential effects of these development pressures on Nass Area Coastal Coho.

N18-I28 Coastal and Lower Nass Coho Salmon Escapement Surveys Report

N15-I49 Nass Coastal Coho Salmon Escapement Report 2015 & 2016

 

 

Southeast Alaska Coastal Monitoring

Alaska stocks of pink (Oncorhynchus gorbuscha) and Chinook salmon (O. tshawytscha) spend large portions of their life histories in marine waters within the U.S. Exclusive Economic Zone (EEZ) and beyond the 200-mile EEZ of the coastal States. However, the strength of salmon year-classes is often set during the early overwintering phases of immatures or during the nearshore seaward migration phase of juveniles. Thus, the Alaska Fisheries Science Center (AFSC), Auke Bay Laboratories (ABL) initiated the Southeast Alaska Coastal Monitoring (SECM) project in 1997 to better understand the effects of climate and near-shore Ocean conditions on year-class strength of salmon and ecologically-related species. This research in turn provides improved information for resource management of salmon in the Pacific Salmon Treaty (PST) northern boundary. In particular SECM data provides a forecast index for northern southeast Alaska (SEAK) Transboundary River Chinook salmon returns, an annual pink salmon abundance forecast, and long term environmental and population data that are used by harvest managers in the PST northern boundary, which includes PST Chapter 2 pink salmon treaty issues in districts 101, 102, 103, and 104.

N19-I14A SEAK Coastal Monitoring of Epipelagic Fish and Marine Ecosystem Conditions Associated with Salmon: Continuation of a Long-term Data Series in a Changing Climate 2019 Report

N18-I11 Southeast Alaska Coastal Monitoring of Epipelagic Fish and Marine Ecosystem Conditions Associated with Salmon Report 2018

N17-I12 Southeast Alaska Coastal Monitoring of Epipelagic Fish and Marine Ecosystem Conditions Associated with Salmon 2017

N16_I01 Southeast Alaska Coastal Monitoring of Epipelagic Fish and Marine Ecosystem Conditions Associated with Salmon 2016

N15-I01 Southeast Alaska Coastal Monitoring of Epipelagic Fish and Marine Ecosystem Conditions Associated with Salmon 2015

N14-I01 Southeast Alaska Coastal Monitoring of Epipelagic Fish and Marine Ecosystem Conditions Associated with Salmon 2014

N13-I01 Southeast Alaska Coastal Monitoring of Epipelagic Fish and Marine Ecosystem Conditions Associated with Salmon 2013

 

Salish Sea Marine Survival Project

The Salish Sea Marine Survival Project leverages human and financial resources from the United States and Canada to determine the primary factors affecting the survival of juvenile salmon and steelhead in the Salish Sea. It is the largest and most important research of its kind in the shared waters of British Columbia and Washington State, addressing a key uncertainty impeding salmon recovery and sustainable fisheries. The project will, for the first time, undertake a comprehensive study of the physical, chemical and biological factors impacting salmon survival, in order to improve our collective understanding of salmon in saltwater, facilitating smarter management and stronger returns.

Over 60 organizations, representing diverse philosophies and encompassing most of the region’s fisheries and marine research and management complex, are working together on this massive transboundary effort. And, the Pacific Salmon Foundation (PSF) and Long Live the Kings (LLTK) are coordinating it.

Salish Sea Marine Survival Project 2018

Salish Sea Marine Survival Project 2017

Salish Sea Marine Survival Project 2016

Salish Sea Marine Survival Project 2015

Salish Sea Marine Survival Project 2014

S13-I16A Salish Sea Marine Survival Project – Research Program Development. Year 1

S13-I16B Salish Sea Marine Survival Project - Retrospective Analysis of Marine Survival: A Proof of Concept Using Coho Salmon. Year 1

Gitanyow (Kitwanga) Lake Assessment

The Kitwanga River is a tributary of the Skeena River, located 250 km from the coast and supports significant runs of Pacific salmon. Kitwanga sockeye are genetically unique and a distinct conservation unit as described under Canada’s Wild Salmon Policy. Historically, sockeye returns to the Kitwanga were in the tens of thousands and they supported a number of sustenance and economic fisheries. In more recent times the stock has been depressed and in many years returns are not enough to meet the minimum biological requirements for the stock. In response to this conservation concern the Gitanyow, with help from organizations like the Pacific Salmon Commission and Fisheries and Oceans Canada, have initiated a rebuilding plan to preserve the genetic uniqueness of the stock and to try and rebuild it to more historical levels. Rebuilding efforts have included the creation of spawning platforms in 2006 and 2007 in Gitanyow Lake, the enhancement of the stock through hatchery production in 2006 & 2007 and a reduction in the overall exploitation rate on the stock through the implementation of strict fisheries management guidelines. The results of the rebuilding efforts have been mixed as the stock has responded positively in some year classes but not in others. To date, millions of dollars have been spent to rebuild the stock and many more millions of dollars have been foregone in lost revenues in the Canadian commercial catch, in efforts to get more spawners back to the Kitwanga River and Gitanyow Lake.

Since 1999, the GFA in partnership with DFO and other organizations have been studying Kitwanga sockeye and Gitanyow Lake in an attempt to better understand the stock and the environment where they reside. Annual smolt and adult enumeration operations have been ongoing for over 10 years, while Gitanyow Lake studies were performed between 1999 and 2003. Lake studies were abandoned due to funding constraints and because it was found that freshwater smolt production from the system at that time was very high and the lake limnology was not likely impacting smolt production. However, since that time we have noticed a significant decrease in freshwater smolt production which has renewed the need to look at the lake biology in more detail.

N16-I39 Gitanyow (Kitwanga) Lake Assessment Report 2016

N15-I50 Gitanyow (Kitwanga) Lake Assessment Report 2015

 

Mark Recovery Program Coded Wire Tag Sampling, Dissection and Reporting

This project is one component of the Coast Wide CWT System which includes fully integrated CWT tagging, sampling, lab operations, analyses and data exchange along the entire west coast of North America with a high level of coordination and cooperation among the coastal states and Canada across many political jurisdictions. The funding supports fishery CWT sampling from Commercial, First Nations economic, and recreational fisheries in BC that encounter Chinook indicator stocks, as well as head lab operations and the management of resulting data.

CWT data is essential in annual analyses in deriving Canadian and US allotments of chinook total allowable catch, assessing compliance under the PST, calculating fisheries and stock specific statistics (i.e. exploitation rates, survival rates, maturation rates), monitoring trends in marine survival, assessing fishing impacts, forecasting pre-fishery ocean stock abundances, and evaluating the effectiveness of hatchery production and experimental programs. CWT data is also important for assessing stock status, forecasting stock abundance, and monitoring trends in regional survival patterns for climate change investigations and ecosystem-based assessments. Long-term time series of CWT data is key information to discern variations in salmon abundance resulting from variations in ocean survival and human-induced impacts.

VHP16-05 Canadian Mark Recovery Program CWT Sampling, Lab Operations and Reporting 2016 Year 2

VHP15-01 Canadian Mark Recovery Program CWT Sampling and Coordination. Year 1 of 4

 

Nass Chinook Mark-Recapture Project

Since 2009, the Pacific Salmon Commission (PSC) Chinook Technical Committee (CTC) has established a 15% coefficient of variation (CV) as an acceptable level of uncertainty for estimating Chinook Salmon populations that are used in managing US and Canadian Chinook Salmon fisheries. Overall, the Nass Chinook Salmon program has achieved the CV data standard in 15 of 24 (63%) years since the start of the Nisga’a Fisheries Program in 1992. The main factor determining CV has been the number of marked Chinook Salmon recovered at terminal spawning areas in the Upper Nass River. Achieving an adequate number of marked recoveries has required two conditions to be met: (1) a sufficient number of Chinook Salmon are marked (>1250) at the fishwheels and (2) sufficient effort is made on the spawning grounds for recovering marks such that >50 marks are recovered. Results from the past funded studies have indicated that these requirements can be met, even in low return years, by marking adult Chinook Salmon at both fishwheel marking locations (Gitwinksihlkw and Grease Harbour), examining fish throughout the run at Meziadin Fishway and the Kwinageese videocounting weir, and conducting carcass surveys at Damdochax Creek. These three Upper Nass spawning systems represent on average 39% of the aggregate spawning stock based on stock composition estimates and are geographically separated to be representative of all stocks that spawn above the marking sites.
The primary purposes of the proposed project are to: (1) continue to augment marking and recovery efforts, (2) improve methods for generating accurate and precise MR escapement estimates for the Upper Nass River Chinook Salmon aggregate stock, and (3) achieve unbiased population estimates that meet the PSC CTC data standard (CV – 15%).

N19-I40 Estimating the Abundance of Adult Chinook Returning to the Nass River, BC, using Mark-Recapture Techniques 2019 Report

N18-VHP13 Nass chinook salmon mark-recapture Report 2018

N17-VHP04 Nass Chinook Mark-Recapture Report 2017

N16-I22 Nass Chinook Mark-Recapture Report 2016 Year 8

N15-I39 Nass Chinook Mark-Recapture Report 2015. Year 7

Coastal Nass Area Chum Escapement Project

Nass Chum Salmon are a key species to benefit from better stock assessment and data acquisition. Significant harvests of Nass Chum have occurred in both Canadian and Alaskan fisheries from 1980-2014. However, since 2007, Nass Chum have returned on average 84% lower than the average return from 1985-2006, not met escapement goals since 2006, and are showing no sign of recovery based on recent assessment data collected. In response to this decreased abundance, Fisheries and Oceans Canada fisheries managers have reduced Canadian exploitation rates since 2007 to a mean of 3% compared to the 1980-2006 mean of 26%. However, recovery of stocks has not occurred to date and the data defining the Chum Salmon decline in the Nass Area are inadequate. Poor returns coupled with inconsistent escapement monitoring methods limit the ability to accurately assess the conservation status of Nass Area Chum stocks and inform future recovery planning.

We propose to increase escapement surveys on both indicator and non-indicator lower Nass and coastal streams and to develop a long-term, scientifically defensible, and cost-effective escapement program.

N19-I38 Chum Escapement Surveys in the Nass Area 2019 Report

N18-I27 Chum Salmon (Oncorhynchus keta) Escapement Surveys in the Nass Area Report 2018

N17-I27 Nass Area Coastal Chum Salmon Escapement Report 2017

N16-I43 Nass Area Chum Salmon Escapement Survey Report 2016 Year 3 of 5

N15-I48 Nass Area Coastal Chum Escapement

 

North Coast (Areas 3 & 4) Creel Survey

The North Coast-Skeena First Nations Stewardship Society (NCSFNSS) proposes to conduct a creel survey of the Area 3 and 4 recreational fishery following the design and methodology used by the Department of Fisheries and Oceans Canada (DFO) in the last 6 years (Van Tongeren 2012), in order to ensure continuity of data for temporal comparisons. Software for data management and analysis will be developed in partnership with LGL to offer comparable statistics and precision of catch and effort estimates as provided by DFO’. The purpose of the survey is to provide estimates of the catch and effort of all species targeted by the recreational fishery with known variance. Of high priority for the survey is the provision of monthly in-season catch estimates for all salmon species and Halibut harvested in the North Coast recreational fishery. Biological data will also be collected, such as fin clip incidence for Coho and Chinook, scale samples of Chinook, and Halibut lengths.

N20-I35 North Coast (Areas 3 & 4) Recreational Angling Creel Survey 2020 Report

N19-I35 North Coast (Areas 3 & 4) Recreational Angling Creel Survey 2019 Report

N18-VHP11 North Coast (Areas 3 & 4) Recreational Angling Creel Survey Report 2018

N17-VHP15 North Coast (Areas 3 & 4) Recreational Angling Creel Survey 2017

N16-I29 North Coast (Areas 3 & 4) Creel Survey Report 2016

N15-I30 North Coast (Areas 3 & 4) Creel Survey. Year 1 of 4

Monitoring occurrence and prevalence of Ichthyophthirius multifiliis (Ich), Loma salmonae (Loma), and infectious hematopoietic necrosis virus (IHNV) in Skeena River sockeye stocks

Babine sockeye are the single largest sockeye stock in the northern boundary area. The stock currently provides approximately 90% of the Skeena sockeye. Recent returns have generally been below average, and the 2013 return in the range of 400,000 was one of the lowest since the early 1950’s. Although the specific causes for reduced productivity in recent years are unknown; one potential contributing factor may be losses due to infectious or parasitic disease. For instance, disease outbreaks of Ich and Loma in the Fulton River spawning channels in 1994 and 1995 resulted in exceedingly high prespawn mortalities (PSM) that ultimately lead to an estimated 154 million fewer sockeye salmon fry than the historical average. More recently in 2009 and 2013, Ich and Loma were found in association with upwards of 40% PSM in the largest channel at Fulton, resulting in sharp decreases in production from those two brood years. Another pathogen known to cause significant mortality in British Columbian and Alaskan Sockeye salmon populations is IHNV. Despite the potential impact that these pathogens may have on the productivity of Skeena sockeye stocks, our knowledge concerning the basic epidemiology (i.e. prevalence and distribution) of these agents is limited to that obtained through opportunistic sampling by DFO stock assessment and science staff.

Consequently the objective of this project is to conduct routine monitoring of Babine Sockeye stocks to better understand the disease epidemiology of deadly pathogens (Ich, Loma, and IHNV) with the goal of acquiring information to aid management in developing strategies to reduce disease impacts.

N16-I26 Monitoring occurrence and prevalence of Ichthyophthirius multifiliis (Ich), Loma salmonae (Loma), and infectious hematopoietic necrosis virus (IHNV) in Skeena River sockeye report. Year 2 of 4

N15-I51 Monitoring occurrence and prevalence of Ichthyophthirius multifiliis (Ich), Loma salmonae (Loma), and infectious hematopoietic necrosis virus (IHNV) in Skeena River sockeye stocks. Year 1

 

Stikine Chinook Aerial Surveys

Chinook salmon in the Stikine River comprise one of over 50 indicator stocks included in annual assessments by the Chinook Technical Committee of the Pacific Salmon Commission to determine stock status, effects of management regimes, and other requirements of the Pacific Salmon Treaty (Der Hovanisian and Etherton 2006). The Stikine River is one of the largest producers of Chinook salmon in Northern B.C. and Southeast Alaska (Der Hovanisian and Etherton 2006).

Stikine Chinook aerial surveys provide Chinook counts from index sites in both the upper (Little Tahltan, Tahltan, and Beatty) and lower reaches (Christina and Verrett) of the Stikine River which loosely corresponds to DFO’s Wild Salmon Policy prescribed conservation units (stocks), in concert with augmenting the current Little Tahltan weir, and providing some measure of validation of the system wide mark-recapture based escapement estimates.

N18-VHP06 Stikine River Chinook Aerial Surveys Report 2018

N16-I51 Aerial Survey Counts from Select Stikine River Chinook Spawning Sites 2016. Year 4

N15-I15 Stikine Chinook Aerial Surveys 2015. Year 3

N13-I16 Stikine Chinook Aerial Surveys 2014. Year 1